blob: 17c1ee368c89618e2e61c7d5c987febcd1b51296 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
drhccb21132020-06-19 11:34:57 +000072** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drh37ccfcf2020-08-31 18:49:04 +0000115#ifdef SQLITE_DEBUG
116/*
drha7fc1682020-11-24 19:55:49 +0000117** Return and reset the seek counter for a Btree object.
drh37ccfcf2020-08-31 18:49:04 +0000118*/
119sqlite3_uint64 sqlite3BtreeSeekCount(Btree *pBt){
120 u64 n = pBt->nSeek;
121 pBt->nSeek = 0;
122 return n;
123}
124#endif
125
daneebf2f52017-11-18 17:30:08 +0000126/*
127** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128** (MemPage*) as an argument. The (MemPage*) must not be NULL.
129**
130** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133** with the page number and filename associated with the (MemPage*).
134*/
135#ifdef SQLITE_DEBUG
136int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000137 char *zMsg;
138 sqlite3BeginBenignMalloc();
139 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000140 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
141 );
drh8bfe66a2018-01-22 15:45:12 +0000142 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000143 if( zMsg ){
144 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
145 }
146 sqlite3_free(zMsg);
147 return SQLITE_CORRUPT_BKPT;
148}
149# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
150#else
151# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
152#endif
153
drhe53831d2007-08-17 01:14:38 +0000154#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000155
156#ifdef SQLITE_DEBUG
157/*
drh0ee3dbe2009-10-16 15:05:18 +0000158**** This function is only used as part of an assert() statement. ***
159**
160** Check to see if pBtree holds the required locks to read or write to the
161** table with root page iRoot. Return 1 if it does and 0 if not.
162**
163** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000164** Btree connection pBtree:
165**
166** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
167**
drh0ee3dbe2009-10-16 15:05:18 +0000168** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000169** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000170** the corresponding table. This makes things a bit more complicated,
171** as this module treats each table as a separate structure. To determine
172** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000173** function has to search through the database schema.
174**
drh0ee3dbe2009-10-16 15:05:18 +0000175** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000176** hold a write-lock on the schema table (root page 1). This is also
177** acceptable.
178*/
179static int hasSharedCacheTableLock(
180 Btree *pBtree, /* Handle that must hold lock */
181 Pgno iRoot, /* Root page of b-tree */
182 int isIndex, /* True if iRoot is the root of an index b-tree */
183 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
184){
185 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
186 Pgno iTab = 0;
187 BtLock *pLock;
188
drh0ee3dbe2009-10-16 15:05:18 +0000189 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000190 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000191 ** Return true immediately.
192 */
danielk197796d48e92009-06-29 06:00:37 +0000193 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000194 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000195 ){
196 return 1;
197 }
198
drh0ee3dbe2009-10-16 15:05:18 +0000199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
203 */
drh2c5e35f2014-08-05 11:04:21 +0000204 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000205 return 1;
206 }
207
danielk197796d48e92009-06-29 06:00:37 +0000208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
211 ** table. */
212 if( isIndex ){
213 HashElem *p;
dan877859f2020-06-17 20:29:56 +0000214 int bSeen = 0;
danielk197796d48e92009-06-29 06:00:37 +0000215 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
216 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000217 if( pIdx->tnum==(int)iRoot ){
dan877859f2020-06-17 20:29:56 +0000218 if( bSeen ){
drh1ffede82015-01-30 20:59:27 +0000219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
222 return 1;
223 }
shane5eff7cf2009-08-10 03:57:58 +0000224 iTab = pIdx->pTable->tnum;
dan877859f2020-06-17 20:29:56 +0000225 bSeen = 1;
danielk197796d48e92009-06-29 06:00:37 +0000226 }
227 }
228 }else{
229 iTab = iRoot;
230 }
231
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
236 if( pLock->pBtree==pBtree
237 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
238 && pLock->eLock>=eLockType
239 ){
240 return 1;
241 }
242 }
243
244 /* Failed to find the required lock. */
245 return 0;
246}
drh0ee3dbe2009-10-16 15:05:18 +0000247#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000248
drh0ee3dbe2009-10-16 15:05:18 +0000249#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000250/*
drh0ee3dbe2009-10-16 15:05:18 +0000251**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000252**
drh0ee3dbe2009-10-16 15:05:18 +0000253** Return true if it would be illegal for pBtree to write into the
254** table or index rooted at iRoot because other shared connections are
255** simultaneously reading that same table or index.
256**
257** It is illegal for pBtree to write if some other Btree object that
258** shares the same BtShared object is currently reading or writing
259** the iRoot table. Except, if the other Btree object has the
260** read-uncommitted flag set, then it is OK for the other object to
261** have a read cursor.
262**
263** For example, before writing to any part of the table or index
264** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000265**
266** assert( !hasReadConflicts(pBtree, iRoot) );
267*/
268static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
269 BtCursor *p;
270 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
271 if( p->pgnoRoot==iRoot
272 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000273 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000274 ){
275 return 1;
276 }
277 }
278 return 0;
279}
280#endif /* #ifdef SQLITE_DEBUG */
281
danielk1977da184232006-01-05 11:34:32 +0000282/*
drh0ee3dbe2009-10-16 15:05:18 +0000283** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000284** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000285** SQLITE_OK if the lock may be obtained (by calling
286** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000287*/
drhc25eabe2009-02-24 18:57:31 +0000288static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000289 BtShared *pBt = p->pBt;
290 BtLock *pIter;
291
drh1fee73e2007-08-29 04:00:57 +0000292 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000293 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
294 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000295 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000296
danielk19775b413d72009-04-01 09:41:54 +0000297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
300 */
301 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
302 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
303
drh0ee3dbe2009-10-16 15:05:18 +0000304 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000305 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000306 return SQLITE_OK;
307 }
308
danielk1977641b0f42007-12-21 04:47:25 +0000309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
311 */
drhc9166342012-01-05 23:32:06 +0000312 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000313 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
314 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000315 }
316
danielk1977e0d9e6f2009-07-03 16:25:06 +0000317 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
320 **
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
322 **
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
326 */
327 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
328 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
329 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
330 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
331 if( eLock==WRITE_LOCK ){
332 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000333 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000334 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000335 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000336 }
337 }
338 return SQLITE_OK;
339}
drhe53831d2007-08-17 01:14:38 +0000340#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000341
drhe53831d2007-08-17 01:14:38 +0000342#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000343/*
344** Add a lock on the table with root-page iTable to the shared-btree used
345** by Btree handle p. Parameter eLock must be either READ_LOCK or
346** WRITE_LOCK.
347**
danielk19779d104862009-07-09 08:27:14 +0000348** This function assumes the following:
349**
drh0ee3dbe2009-10-16 15:05:18 +0000350** (a) The specified Btree object p is connected to a sharable
351** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000352**
drh0ee3dbe2009-10-16 15:05:18 +0000353** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000354** with the requested lock (i.e. querySharedCacheTableLock() has
355** already been called and returned SQLITE_OK).
356**
357** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000359*/
drhc25eabe2009-02-24 18:57:31 +0000360static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000361 BtShared *pBt = p->pBt;
362 BtLock *pLock = 0;
363 BtLock *pIter;
364
drh1fee73e2007-08-29 04:00:57 +0000365 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000366 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
367 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
drh1e32bed2020-06-19 13:33:53 +0000371 ** by a connection in read-uncommitted mode is on the sqlite_schema
danielk1977e0d9e6f2009-07-03 16:25:06 +0000372 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000373 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000374
danielk19779d104862009-07-09 08:27:14 +0000375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000378 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000379
380 /* First search the list for an existing lock on this table. */
381 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
382 if( pIter->iTable==iTable && pIter->pBtree==p ){
383 pLock = pIter;
384 break;
385 }
386 }
387
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
390 */
391 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000392 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000393 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000394 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }
396 pLock->iTable = iTable;
397 pLock->pBtree = p;
398 pLock->pNext = pBt->pLock;
399 pBt->pLock = pLock;
400 }
401
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
405 */
406 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000407 if( eLock>pLock->eLock ){
408 pLock->eLock = eLock;
409 }
danielk1977aef0bf62005-12-30 16:28:01 +0000410
411 return SQLITE_OK;
412}
drhe53831d2007-08-17 01:14:38 +0000413#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000414
drhe53831d2007-08-17 01:14:38 +0000415#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000416/*
drhc25eabe2009-02-24 18:57:31 +0000417** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000418** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000419**
drh0ee3dbe2009-10-16 15:05:18 +0000420** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000421** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000422** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000423*/
drhc25eabe2009-02-24 18:57:31 +0000424static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000425 BtShared *pBt = p->pBt;
426 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000427
drh1fee73e2007-08-29 04:00:57 +0000428 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000429 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000430 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000431
danielk1977aef0bf62005-12-30 16:28:01 +0000432 while( *ppIter ){
433 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000435 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000436 if( pLock->pBtree==p ){
437 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000438 assert( pLock->iTable!=1 || pLock==&p->lock );
439 if( pLock->iTable!=1 ){
440 sqlite3_free(pLock);
441 }
danielk1977aef0bf62005-12-30 16:28:01 +0000442 }else{
443 ppIter = &pLock->pNext;
444 }
445 }
danielk1977641b0f42007-12-21 04:47:25 +0000446
drhc9166342012-01-05 23:32:06 +0000447 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000448 if( pBt->pWriter==p ){
449 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000450 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000451 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000452 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000456 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000457 **
drhc9166342012-01-05 23:32:06 +0000458 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000459 ** be zero already. So this next line is harmless in that case.
460 */
drhc9166342012-01-05 23:32:06 +0000461 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000462 }
danielk1977aef0bf62005-12-30 16:28:01 +0000463}
danielk197794b30732009-07-02 17:21:57 +0000464
danielk1977e0d9e6f2009-07-03 16:25:06 +0000465/*
drh0ee3dbe2009-10-16 15:05:18 +0000466** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000467*/
danielk197794b30732009-07-02 17:21:57 +0000468static void downgradeAllSharedCacheTableLocks(Btree *p){
469 BtShared *pBt = p->pBt;
470 if( pBt->pWriter==p ){
471 BtLock *pLock;
472 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000473 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000474 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
475 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
476 pLock->eLock = READ_LOCK;
477 }
478 }
479}
480
danielk1977aef0bf62005-12-30 16:28:01 +0000481#endif /* SQLITE_OMIT_SHARED_CACHE */
482
drh01be4632015-09-03 15:17:12 +0000483#ifndef SQLITE_OMIT_CONCURRENT
danf5cebf72015-08-22 17:28:55 +0000484/*
485** The following structure - BtreePtrmap - stores the in-memory pointer map
danbf3cf572015-08-24 19:56:04 +0000486** used for newly allocated pages in CONCURRENT transactions. Such pages are
danf5cebf72015-08-22 17:28:55 +0000487** always allocated in a contiguous block (from the end of the file) starting
488** with page BtreePtrmap.iFirst.
489*/
dan7b3d71e2015-08-19 20:27:05 +0000490typedef struct RollbackEntry RollbackEntry;
491typedef struct PtrmapEntry PtrmapEntry;
492struct PtrmapEntry {
493 Pgno parent;
494 u8 eType;
495};
496struct RollbackEntry {
497 Pgno pgno;
498 Pgno parent;
499 u8 eType;
500};
dan7b3d71e2015-08-19 20:27:05 +0000501struct BtreePtrmap {
502 Pgno iFirst; /* First new page number aPtr[0] */
503
504 int nPtrAlloc; /* Allocated size of aPtr[] array */
505 PtrmapEntry *aPtr; /* Array of parent page numbers */
506
507 int nSvpt; /* Used size of aSvpt[] array */
508 int nSvptAlloc; /* Allocated size of aSvpt[] */
509 int *aSvpt; /* First aRollback[] entry for savepoint i */
510
511 int nRollback; /* Used size of aRollback[] array */
512 int nRollbackAlloc; /* Allocated size of aRollback[] array */
513 RollbackEntry *aRollback; /* Array of rollback entries */
514};
515
drh01be4632015-09-03 15:17:12 +0000516/* !defined(SQLITE_OMIT_CONCURRENT)
517**
danf5cebf72015-08-22 17:28:55 +0000518** If page number pgno is greater than or equal to BtreePtrmap.iFirst,
519** store an entry for it in the pointer-map structure.
520*/
dan7b3d71e2015-08-19 20:27:05 +0000521static int btreePtrmapStore(
danf5cebf72015-08-22 17:28:55 +0000522 BtShared *pBt,
523 Pgno pgno,
dan7b3d71e2015-08-19 20:27:05 +0000524 u8 eType,
525 Pgno parent
526){
danf5cebf72015-08-22 17:28:55 +0000527 BtreePtrmap *pMap = pBt->pMap;
dan7b3d71e2015-08-19 20:27:05 +0000528 if( pgno>=pMap->iFirst ){
529 int iEntry = pgno - pMap->iFirst;
530
danf5cebf72015-08-22 17:28:55 +0000531 /* Grow the aPtr[] array as required */
532 while( iEntry>=pMap->nPtrAlloc ){
dan7b3d71e2015-08-19 20:27:05 +0000533 int nNew = pMap->nPtrAlloc ? pMap->nPtrAlloc*2 : 16;
534 PtrmapEntry *aNew = (PtrmapEntry*)sqlite3_realloc(
535 pMap->aPtr, nNew*sizeof(PtrmapEntry)
536 );
537 if( aNew==0 ){
538 return SQLITE_NOMEM;
539 }else{
540 int nByte = (nNew-pMap->nPtrAlloc)*sizeof(PtrmapEntry);
541 memset(&aNew[pMap->nPtrAlloc], 0, nByte);
542 pMap->aPtr = aNew;
543 pMap->nPtrAlloc = nNew;
544 }
545 }
546
547 /* Add an entry to the rollback log if required */
548 if( pMap->nSvpt>0 && pMap->aPtr[iEntry].parent ){
549 if( pMap->nRollback>=pMap->nRollbackAlloc ){
550 int nNew = pMap->nRollback ? pMap->nRollback*2 : 16;
551 RollbackEntry *aNew = (RollbackEntry*)sqlite3_realloc(
552 pMap->aRollback, nNew*sizeof(RollbackEntry)
553 );
554 if( aNew==0 ){
555 return SQLITE_NOMEM;
556 }else{
557 pMap->aRollback = aNew;
558 pMap->nRollbackAlloc = nNew;
559 }
560 }
561
562 pMap->aRollback[pMap->nRollback].pgno = pgno;
563 pMap->aRollback[pMap->nRollback].parent = pMap->aPtr[iEntry].parent;
564 pMap->aRollback[pMap->nRollback].eType = pMap->aPtr[iEntry].eType;
dan606f7182017-05-26 16:15:05 +0000565 pMap->nRollback++;
dan7b3d71e2015-08-19 20:27:05 +0000566 }
567
568 /* Update the aPtr[] array */
569 pMap->aPtr[iEntry].parent = parent;
570 pMap->aPtr[iEntry].eType = eType;
571 }
572
573 return SQLITE_OK;
574}
575
drh01be4632015-09-03 15:17:12 +0000576/* !defined(SQLITE_OMIT_CONCURRENT)
577**
dan7b3d71e2015-08-19 20:27:05 +0000578** Open savepoint iSavepoint, if it is not already open.
579*/
danf5cebf72015-08-22 17:28:55 +0000580static int btreePtrmapBegin(BtShared *pBt, int nSvpt){
581 BtreePtrmap *pMap = pBt->pMap;
dan606f7182017-05-26 16:15:05 +0000582 if( pMap && nSvpt>pMap->nSvpt ){
dan7b3d71e2015-08-19 20:27:05 +0000583 int i;
584 if( nSvpt>=pMap->nSvptAlloc ){
585 int nNew = pMap->nSvptAlloc ? pMap->nSvptAlloc*2 : 16;
586 int *aNew = sqlite3_realloc(pMap->aSvpt, sizeof(int) * nNew);
587 if( aNew==0 ){
588 return SQLITE_NOMEM;
589 }else{
590 pMap->aSvpt = aNew;
591 pMap->nSvptAlloc = nNew;
592 }
593 }
594
595 for(i=pMap->nSvpt; i<nSvpt; i++){
596 pMap->aSvpt[i] = pMap->nRollback;
597 }
598 pMap->nSvpt = nSvpt;
599 }
600
601 return SQLITE_OK;
602}
603
drh01be4632015-09-03 15:17:12 +0000604/* !defined(SQLITE_OMIT_CONCURRENT)
605**
dan7b3d71e2015-08-19 20:27:05 +0000606** Rollback (if op==SAVEPOINT_ROLLBACK) or release (if op==SAVEPOINT_RELEASE)
607** savepoint iSvpt.
608*/
danf5cebf72015-08-22 17:28:55 +0000609static void btreePtrmapEnd(BtShared *pBt, int op, int iSvpt){
610 BtreePtrmap *pMap = pBt->pMap;
611 if( pMap ){
612 assert( op==SAVEPOINT_ROLLBACK || op==SAVEPOINT_RELEASE );
613 assert( iSvpt>=0 || (iSvpt==-1 && op==SAVEPOINT_ROLLBACK) );
614 if( iSvpt<0 ){
615 pMap->nSvpt = 0;
616 pMap->nRollback = 0;
617 memset(pMap->aPtr, 0, sizeof(Pgno) * pMap->nPtrAlloc);
618 }else if( iSvpt<pMap->nSvpt ){
619 if( op==SAVEPOINT_ROLLBACK ){
620 int ii;
621 for(ii=pMap->nRollback-1; ii>=pMap->aSvpt[iSvpt]; ii--){
622 RollbackEntry *p = &pMap->aRollback[ii];
623 PtrmapEntry *pEntry = &pMap->aPtr[p->pgno - pMap->iFirst];
624 pEntry->parent = p->parent;
625 pEntry->eType = p->eType;
626 }
dan7b3d71e2015-08-19 20:27:05 +0000627 }
danf5cebf72015-08-22 17:28:55 +0000628 pMap->nSvpt = iSvpt + (op==SAVEPOINT_ROLLBACK);
629 pMap->nRollback = pMap->aSvpt[iSvpt];
dan7b3d71e2015-08-19 20:27:05 +0000630 }
dan7b3d71e2015-08-19 20:27:05 +0000631 }
632}
633
drh01be4632015-09-03 15:17:12 +0000634/* !defined(SQLITE_OMIT_CONCURRENT)
635**
danbf3cf572015-08-24 19:56:04 +0000636** This function is called after an CONCURRENT transaction is opened on the
danf5cebf72015-08-22 17:28:55 +0000637** database. It allocates the BtreePtrmap structure used to track pointers
638** to allocated pages and zeroes the nFree/iTrunk fields in the database
639** header on page 1.
640*/
641static int btreePtrmapAllocate(BtShared *pBt){
642 int rc = SQLITE_OK;
dan987f8212015-08-27 17:42:38 +0000643 if( pBt->pMap==0 ){
644 BtreePtrmap *pMap = sqlite3_malloc(sizeof(BtreePtrmap));
645 if( pMap==0 ){
646 rc = SQLITE_NOMEM;
647 }else{
648 memset(&pBt->pPage1->aData[32], 0, sizeof(u32)*2);
649 memset(pMap, 0, sizeof(BtreePtrmap));
650 pMap->iFirst = pBt->nPage + 1;
651 pBt->pMap = pMap;
652 }
danf5cebf72015-08-22 17:28:55 +0000653 }
654 return rc;
655}
656
drh01be4632015-09-03 15:17:12 +0000657/* !defined(SQLITE_OMIT_CONCURRENT)
658**
danf5cebf72015-08-22 17:28:55 +0000659** Free any BtreePtrmap structure allocated by an earlier call to
660** btreePtrmapAllocate().
661*/
662static void btreePtrmapDelete(BtShared *pBt){
663 BtreePtrmap *pMap = pBt->pMap;
664 if( pMap ){
665 sqlite3_free(pMap->aRollback);
666 sqlite3_free(pMap->aPtr);
667 sqlite3_free(pMap->aSvpt);
668 sqlite3_free(pMap);
669 pBt->pMap = 0;
670 }
671}
dan51883df2018-12-03 19:29:37 +0000672
673/*
674** Check that the pointer-map does not contain any entries with a parent
675** page of 0. Call sqlite3_log() multiple times to output the entire
676** data structure if it does.
677*/
678static void btreePtrmapCheck(BtShared *pBt, Pgno nPage){
679 Pgno i;
680 int bProblem = 0;
681 BtreePtrmap *p = pBt->pMap;
682
683 for(i=p->iFirst; i<=nPage; i++){
684 PtrmapEntry *pEntry = &p->aPtr[i-p->iFirst];
685 if( pEntry->eType==PTRMAP_OVERFLOW1
686 || pEntry->eType==PTRMAP_OVERFLOW2
687 || pEntry->eType==PTRMAP_BTREE
688 ){
689 if( pEntry->parent==0 ){
690 bProblem = 1;
691 break;
692 }
693 }
694 }
695
696 if( bProblem ){
697 for(i=p->iFirst; i<=nPage; i++){
698 PtrmapEntry *pEntry = &p->aPtr[i-p->iFirst];
699 sqlite3_log(SQLITE_CORRUPT,
700 "btreePtrmapCheck: pgno=%d eType=%d parent=%d",
701 (int)i, (int)pEntry->eType, (int)pEntry->parent
702 );
703 }
704 abort();
705 }
706}
707
drh01be4632015-09-03 15:17:12 +0000708#else /* SQLITE_OMIT_CONCURRENT */
danf5cebf72015-08-22 17:28:55 +0000709# define btreePtrmapAllocate(x) SQLITE_OK
710# define btreePtrmapDelete(x)
711# define btreePtrmapBegin(x,y) SQLITE_OK
712# define btreePtrmapEnd(x,y,z)
dan51883df2018-12-03 19:29:37 +0000713# define btreePtrmapCheck(y,z)
drh01be4632015-09-03 15:17:12 +0000714#endif /* SQLITE_OMIT_CONCURRENT */
dan7b3d71e2015-08-19 20:27:05 +0000715
drh980b1a72006-08-16 16:42:48 +0000716static void releasePage(MemPage *pPage); /* Forward reference */
drh3908fe92017-09-01 14:50:19 +0000717static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000718static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000719
drh1fee73e2007-08-29 04:00:57 +0000720/*
drh0ee3dbe2009-10-16 15:05:18 +0000721***** This routine is used inside of assert() only ****
722**
723** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000724*/
drh0ee3dbe2009-10-16 15:05:18 +0000725#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000726static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000727 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000728}
drh5e08d0f2016-06-04 21:05:54 +0000729
730/* Verify that the cursor and the BtShared agree about what is the current
731** database connetion. This is important in shared-cache mode. If the database
732** connection pointers get out-of-sync, it is possible for routines like
733** btreeInitPage() to reference an stale connection pointer that references a
734** a connection that has already closed. This routine is used inside assert()
735** statements only and for the purpose of double-checking that the btree code
736** does keep the database connection pointers up-to-date.
737*/
dan7a2347e2016-01-07 16:43:54 +0000738static int cursorOwnsBtShared(BtCursor *p){
739 assert( cursorHoldsMutex(p) );
740 return (p->pBtree->db==p->pBt->db);
741}
drh1fee73e2007-08-29 04:00:57 +0000742#endif
743
danielk197792d4d7a2007-05-04 12:05:56 +0000744/*
dan5a500af2014-03-11 20:33:04 +0000745** Invalidate the overflow cache of the cursor passed as the first argument.
746** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000747*/
drh036dbec2014-03-11 23:40:44 +0000748#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000749
750/*
751** Invalidate the overflow page-list cache for all cursors opened
752** on the shared btree structure pBt.
753*/
754static void invalidateAllOverflowCache(BtShared *pBt){
755 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000756 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000757 for(p=pBt->pCursor; p; p=p->pNext){
758 invalidateOverflowCache(p);
759 }
760}
danielk197796d48e92009-06-29 06:00:37 +0000761
dan5a500af2014-03-11 20:33:04 +0000762#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000763/*
764** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000765** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000766** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000767**
768** If argument isClearTable is true, then the entire contents of the
769** table is about to be deleted. In this case invalidate all incrblob
770** cursors open on any row within the table with root-page pgnoRoot.
771**
772** Otherwise, if argument isClearTable is false, then the row with
773** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000774** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000775*/
776static void invalidateIncrblobCursors(
777 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000778 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000779 i64 iRow, /* The rowid that might be changing */
780 int isClearTable /* True if all rows are being deleted */
781){
782 BtCursor *p;
drh49bb56e2021-05-14 20:01:36 +0000783 assert( pBtree->hasIncrblobCur );
danielk197796d48e92009-06-29 06:00:37 +0000784 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000785 pBtree->hasIncrblobCur = 0;
786 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
787 if( (p->curFlags & BTCF_Incrblob)!=0 ){
788 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000789 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000790 p->eState = CURSOR_INVALID;
791 }
danielk197796d48e92009-06-29 06:00:37 +0000792 }
793 }
794}
795
danielk197792d4d7a2007-05-04 12:05:56 +0000796#else
dan5a500af2014-03-11 20:33:04 +0000797 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000798 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000799#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000800
drh980b1a72006-08-16 16:42:48 +0000801/*
danielk1977bea2a942009-01-20 17:06:27 +0000802** Set bit pgno of the BtShared.pHasContent bitvec. This is called
803** when a page that previously contained data becomes a free-list leaf
804** page.
805**
806** The BtShared.pHasContent bitvec exists to work around an obscure
807** bug caused by the interaction of two useful IO optimizations surrounding
808** free-list leaf pages:
809**
810** 1) When all data is deleted from a page and the page becomes
811** a free-list leaf page, the page is not written to the database
812** (as free-list leaf pages contain no meaningful data). Sometimes
813** such a page is not even journalled (as it will not be modified,
814** why bother journalling it?).
815**
816** 2) When a free-list leaf page is reused, its content is not read
817** from the database or written to the journal file (why should it
818** be, if it is not at all meaningful?).
819**
820** By themselves, these optimizations work fine and provide a handy
821** performance boost to bulk delete or insert operations. However, if
822** a page is moved to the free-list and then reused within the same
823** transaction, a problem comes up. If the page is not journalled when
824** it is moved to the free-list and it is also not journalled when it
825** is extracted from the free-list and reused, then the original data
826** may be lost. In the event of a rollback, it may not be possible
827** to restore the database to its original configuration.
828**
829** The solution is the BtShared.pHasContent bitvec. Whenever a page is
830** moved to become a free-list leaf page, the corresponding bit is
831** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000832** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000833** set in BtShared.pHasContent. The contents of the bitvec are cleared
834** at the end of every transaction.
835*/
836static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
837 int rc = SQLITE_OK;
838 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000839 assert( pgno<=pBt->nPage );
840 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000841 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000842 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000843 }
844 }
845 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
846 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
847 }
848 return rc;
849}
850
851/*
852** Query the BtShared.pHasContent vector.
853**
854** This function is called when a free-list leaf page is removed from the
855** free-list for reuse. It returns false if it is safe to retrieve the
856** page from the pager layer with the 'no-content' flag set. True otherwise.
857*/
858static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
859 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000860 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000861}
862
863/*
864** Clear (destroy) the BtShared.pHasContent bitvec. This should be
865** invoked at the conclusion of each write-transaction.
866*/
867static void btreeClearHasContent(BtShared *pBt){
868 sqlite3BitvecDestroy(pBt->pHasContent);
869 pBt->pHasContent = 0;
870}
871
872/*
drh138eeeb2013-03-27 03:15:23 +0000873** Release all of the apPage[] pages for a cursor.
874*/
875static void btreeReleaseAllCursorPages(BtCursor *pCur){
876 int i;
drh352a35a2017-08-15 03:46:47 +0000877 if( pCur->iPage>=0 ){
878 for(i=0; i<pCur->iPage; i++){
879 releasePageNotNull(pCur->apPage[i]);
880 }
881 releasePageNotNull(pCur->pPage);
882 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000883 }
drh138eeeb2013-03-27 03:15:23 +0000884}
885
danf0ee1d32015-09-12 19:26:11 +0000886/*
887** The cursor passed as the only argument must point to a valid entry
888** when this function is called (i.e. have eState==CURSOR_VALID). This
889** function saves the current cursor key in variables pCur->nKey and
890** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
891** code otherwise.
892**
893** If the cursor is open on an intkey table, then the integer key
894** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
895** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
896** set to point to a malloced buffer pCur->nKey bytes in size containing
897** the key.
898*/
899static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000900 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000901 assert( CURSOR_VALID==pCur->eState );
902 assert( 0==pCur->pKey );
903 assert( cursorHoldsMutex(pCur) );
904
drha7c90c42016-06-04 20:37:10 +0000905 if( pCur->curIntKey ){
906 /* Only the rowid is required for a table btree */
907 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
908 }else{
danfffaf232018-12-14 13:18:35 +0000909 /* For an index btree, save the complete key content. It is possible
910 ** that the current key is corrupt. In that case, it is possible that
911 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
912 ** up to the size of 1 varint plus 1 8-byte value when the cursor
913 ** position is restored. Hence the 17 bytes of padding allocated
914 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000915 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000916 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000917 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000918 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000919 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000920 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000921 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000922 pCur->pKey = pKey;
923 }else{
924 sqlite3_free(pKey);
925 }
926 }else{
mistachkinfad30392016-02-13 23:43:46 +0000927 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000928 }
929 }
930 assert( !pCur->curIntKey || !pCur->pKey );
931 return rc;
932}
drh138eeeb2013-03-27 03:15:23 +0000933
934/*
drh980b1a72006-08-16 16:42:48 +0000935** Save the current cursor position in the variables BtCursor.nKey
936** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000937**
938** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
939** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000940*/
941static int saveCursorPosition(BtCursor *pCur){
942 int rc;
943
drhd2f83132015-03-25 17:35:01 +0000944 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000945 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000946 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000947
drh7b14b652019-12-29 22:08:20 +0000948 if( pCur->curFlags & BTCF_Pinned ){
949 return SQLITE_CONSTRAINT_PINNED;
950 }
drhd2f83132015-03-25 17:35:01 +0000951 if( pCur->eState==CURSOR_SKIPNEXT ){
952 pCur->eState = CURSOR_VALID;
953 }else{
954 pCur->skipNext = 0;
955 }
drh980b1a72006-08-16 16:42:48 +0000956
danf0ee1d32015-09-12 19:26:11 +0000957 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000958 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000959 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000960 pCur->eState = CURSOR_REQUIRESEEK;
961 }
962
dane755e102015-09-30 12:59:12 +0000963 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000964 return rc;
965}
966
drh637f3d82014-08-22 22:26:07 +0000967/* Forward reference */
968static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
969
drh980b1a72006-08-16 16:42:48 +0000970/*
drh0ee3dbe2009-10-16 15:05:18 +0000971** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000972** the table with root-page iRoot. "Saving the cursor position" means that
973** the location in the btree is remembered in such a way that it can be
974** moved back to the same spot after the btree has been modified. This
975** routine is called just before cursor pExcept is used to modify the
976** table, for example in BtreeDelete() or BtreeInsert().
977**
drh27fb7462015-06-30 02:47:36 +0000978** If there are two or more cursors on the same btree, then all such
979** cursors should have their BTCF_Multiple flag set. The btreeCursor()
980** routine enforces that rule. This routine only needs to be called in
981** the uncommon case when pExpect has the BTCF_Multiple flag set.
982**
983** If pExpect!=NULL and if no other cursors are found on the same root-page,
984** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
985** pointless call to this routine.
986**
drh637f3d82014-08-22 22:26:07 +0000987** Implementation note: This routine merely checks to see if any cursors
988** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
989** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000990*/
991static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000992 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000993 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000994 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000995 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000996 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
997 }
drh27fb7462015-06-30 02:47:36 +0000998 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
999 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
1000 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +00001001}
1002
1003/* This helper routine to saveAllCursors does the actual work of saving
1004** the cursors if and when a cursor is found that actually requires saving.
1005** The common case is that no cursors need to be saved, so this routine is
1006** broken out from its caller to avoid unnecessary stack pointer movement.
1007*/
1008static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +00001009 BtCursor *p, /* The first cursor that needs saving */
1010 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
1011 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +00001012){
1013 do{
drh138eeeb2013-03-27 03:15:23 +00001014 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +00001015 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +00001016 int rc = saveCursorPosition(p);
1017 if( SQLITE_OK!=rc ){
1018 return rc;
1019 }
1020 }else{
drh85ef6302017-08-02 15:50:09 +00001021 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +00001022 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +00001023 }
1024 }
drh637f3d82014-08-22 22:26:07 +00001025 p = p->pNext;
1026 }while( p );
drh980b1a72006-08-16 16:42:48 +00001027 return SQLITE_OK;
1028}
1029
1030/*
drhbf700f32007-03-31 02:36:44 +00001031** Clear the current cursor position.
1032*/
danielk1977be51a652008-10-08 17:58:48 +00001033void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00001034 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +00001035 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +00001036 pCur->pKey = 0;
1037 pCur->eState = CURSOR_INVALID;
1038}
1039
1040/*
danielk19773509a652009-07-06 18:56:13 +00001041** In this version of BtreeMoveto, pKey is a packed index record
1042** such as is generated by the OP_MakeRecord opcode. Unpack the
1043** record and then call BtreeMovetoUnpacked() to do the work.
1044*/
1045static int btreeMoveto(
1046 BtCursor *pCur, /* Cursor open on the btree to be searched */
1047 const void *pKey, /* Packed key if the btree is an index */
1048 i64 nKey, /* Integer key for tables. Size of pKey for indices */
1049 int bias, /* Bias search to the high end */
1050 int *pRes /* Write search results here */
1051){
1052 int rc; /* Status code */
1053 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +00001054
1055 if( pKey ){
danb0c4c942019-01-24 15:16:17 +00001056 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +00001057 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +00001058 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +00001059 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +00001060 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
1061 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +00001062 rc = SQLITE_CORRUPT_BKPT;
drh42a410d2021-06-19 18:32:20 +00001063 }else{
1064 rc = sqlite3BtreeIndexMoveto(pCur, pIdxKey, pRes);
drh094b7582013-11-30 12:49:28 +00001065 }
drh42a410d2021-06-19 18:32:20 +00001066 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +00001067 }else{
1068 pIdxKey = 0;
drh42a410d2021-06-19 18:32:20 +00001069 rc = sqlite3BtreeTableMoveto(pCur, nKey, bias, pRes);
danielk19773509a652009-07-06 18:56:13 +00001070 }
1071 return rc;
1072}
1073
1074/*
drh980b1a72006-08-16 16:42:48 +00001075** Restore the cursor to the position it was in (or as close to as possible)
1076** when saveCursorPosition() was called. Note that this call deletes the
1077** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +00001078** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +00001079** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +00001080*/
danielk197730548662009-07-09 05:07:37 +00001081static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +00001082 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +00001083 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +00001084 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00001085 assert( pCur->eState>=CURSOR_REQUIRESEEK );
1086 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00001087 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00001088 }
drh980b1a72006-08-16 16:42:48 +00001089 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +00001090 if( sqlite3FaultSim(410) ){
1091 rc = SQLITE_IOERR;
1092 }else{
1093 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
1094 }
drh980b1a72006-08-16 16:42:48 +00001095 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +00001096 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +00001097 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +00001098 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +00001099 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +00001100 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
1101 pCur->eState = CURSOR_SKIPNEXT;
1102 }
drh980b1a72006-08-16 16:42:48 +00001103 }
1104 return rc;
1105}
1106
drha3460582008-07-11 21:02:53 +00001107#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +00001108 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +00001109 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +00001110 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +00001111
drha3460582008-07-11 21:02:53 +00001112/*
drh6848dad2014-08-22 23:33:03 +00001113** Determine whether or not a cursor has moved from the position where
1114** it was last placed, or has been invalidated for any other reason.
1115** Cursors can move when the row they are pointing at is deleted out
1116** from under them, for example. Cursor might also move if a btree
1117** is rebalanced.
drha3460582008-07-11 21:02:53 +00001118**
drh6848dad2014-08-22 23:33:03 +00001119** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +00001120**
drh6848dad2014-08-22 23:33:03 +00001121** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
1122** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +00001123*/
drh6848dad2014-08-22 23:33:03 +00001124int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +00001125 assert( EIGHT_BYTE_ALIGNMENT(pCur)
1126 || pCur==sqlite3BtreeFakeValidCursor() );
1127 assert( offsetof(BtCursor, eState)==0 );
1128 assert( sizeof(pCur->eState)==1 );
1129 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +00001130}
1131
1132/*
drhfe0cf7a2017-08-16 19:20:20 +00001133** Return a pointer to a fake BtCursor object that will always answer
1134** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
1135** cursor returned must not be used with any other Btree interface.
1136*/
1137BtCursor *sqlite3BtreeFakeValidCursor(void){
1138 static u8 fakeCursor = CURSOR_VALID;
1139 assert( offsetof(BtCursor, eState)==0 );
1140 return (BtCursor*)&fakeCursor;
1141}
1142
1143/*
drh6848dad2014-08-22 23:33:03 +00001144** This routine restores a cursor back to its original position after it
1145** has been moved by some outside activity (such as a btree rebalance or
1146** a row having been deleted out from under the cursor).
1147**
1148** On success, the *pDifferentRow parameter is false if the cursor is left
1149** pointing at exactly the same row. *pDifferntRow is the row the cursor
1150** was pointing to has been deleted, forcing the cursor to point to some
1151** nearby row.
1152**
1153** This routine should only be called for a cursor that just returned
1154** TRUE from sqlite3BtreeCursorHasMoved().
1155*/
1156int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +00001157 int rc;
1158
drh6848dad2014-08-22 23:33:03 +00001159 assert( pCur!=0 );
1160 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +00001161 rc = restoreCursorPosition(pCur);
1162 if( rc ){
drh6848dad2014-08-22 23:33:03 +00001163 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +00001164 return rc;
1165 }
drh606a3572015-03-25 18:29:10 +00001166 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +00001167 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +00001168 }else{
drh6848dad2014-08-22 23:33:03 +00001169 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +00001170 }
1171 return SQLITE_OK;
1172}
1173
drhf7854c72015-10-27 13:24:37 +00001174#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +00001175/*
drh0df57012015-08-14 15:05:55 +00001176** Provide hints to the cursor. The particular hint given (and the type
1177** and number of the varargs parameters) is determined by the eHintType
1178** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +00001179*/
drh0df57012015-08-14 15:05:55 +00001180void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +00001181 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +00001182}
drhf7854c72015-10-27 13:24:37 +00001183#endif
1184
1185/*
1186** Provide flag hints to the cursor.
1187*/
1188void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
1189 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
1190 pCur->hints = x;
1191}
1192
drh28935362013-12-07 20:39:19 +00001193
danielk1977599fcba2004-11-08 07:13:13 +00001194#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +00001195/*
drha3152892007-05-05 11:48:52 +00001196** Given a page number of a regular database page, return the page
1197** number for the pointer-map page that contains the entry for the
1198** input page number.
drh5f77b2e2010-08-21 15:09:37 +00001199**
1200** Return 0 (not a valid page) for pgno==1 since there is
1201** no pointer map associated with page 1. The integrity_check logic
1202** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +00001203*/
danielk1977266664d2006-02-10 08:24:21 +00001204static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +00001205 int nPagesPerMapPage;
1206 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +00001207 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +00001208 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +00001209 nPagesPerMapPage = (pBt->usableSize/5)+1;
1210 iPtrMap = (pgno-2)/nPagesPerMapPage;
1211 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +00001212 if( ret==PENDING_BYTE_PAGE(pBt) ){
1213 ret++;
1214 }
1215 return ret;
1216}
danielk1977a19df672004-11-03 11:37:07 +00001217
danielk1977afcdd022004-10-31 16:25:42 +00001218/*
danielk1977afcdd022004-10-31 16:25:42 +00001219** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001220**
1221** This routine updates the pointer map entry for page number 'key'
1222** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +00001223**
1224** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
1225** a no-op. If an error occurs, the appropriate error code is written
1226** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +00001227*/
drh98add2e2009-07-20 17:11:49 +00001228static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +00001229 DbPage *pDbPage; /* The pointer map page */
1230 u8 *pPtrmap; /* The pointer map data */
1231 Pgno iPtrmap; /* The pointer map page number */
1232 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001233 int rc; /* Return code from subfunctions */
1234
1235 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001236
danf5cebf72015-08-22 17:28:55 +00001237 assert( sqlite3_mutex_held(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00001238 /* The super-journal page number must never be used as a pointer map page */
danf5cebf72015-08-22 17:28:55 +00001239 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
1240
drh01be4632015-09-03 15:17:12 +00001241#ifndef SQLITE_OMIT_CONCURRENT
dan7b3d71e2015-08-19 20:27:05 +00001242 if( pBt->pMap ){
danf5cebf72015-08-22 17:28:55 +00001243 *pRC = btreePtrmapStore(pBt, key, eType, parent);
1244 return;
dan7b3d71e2015-08-19 20:27:05 +00001245 }
danf5cebf72015-08-22 17:28:55 +00001246#endif
1247
1248 assert( pBt->autoVacuum );
1249 if( key==0 ){
1250 *pRC = SQLITE_CORRUPT_BKPT;
1251 return;
1252 }
1253 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001254 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danf5cebf72015-08-22 17:28:55 +00001255 if( rc!=SQLITE_OK ){
1256 *pRC = rc;
1257 return;
1258 }
drh203b1ea2018-12-14 03:14:18 +00001259 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1260 /* The first byte of the extra data is the MemPage.isInit byte.
1261 ** If that byte is set, it means this page is also being used
1262 ** as a btree page. */
1263 *pRC = SQLITE_CORRUPT_BKPT;
1264 goto ptrmap_exit;
1265 }
danf5cebf72015-08-22 17:28:55 +00001266 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1267 if( offset<0 ){
1268 *pRC = SQLITE_CORRUPT_BKPT;
1269 goto ptrmap_exit;
1270 }
1271 assert( offset <= (int)pBt->usableSize-5 );
1272 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1273
1274 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1275 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1276 *pRC= rc = sqlite3PagerWrite(pDbPage);
1277 if( rc==SQLITE_OK ){
1278 pPtrmap[offset] = eType;
1279 put4byte(&pPtrmap[offset+1], parent);
1280 }
1281 }
1282
1283ptrmap_exit:
1284 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001285}
1286
1287/*
1288** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001289**
1290** This routine retrieves the pointer map entry for page 'key', writing
1291** the type and parent page number to *pEType and *pPgno respectively.
1292** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001293*/
danielk1977aef0bf62005-12-30 16:28:01 +00001294static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001295 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001296 int iPtrmap; /* Pointer map page index */
1297 u8 *pPtrmap; /* Pointer map page data */
1298 int offset; /* Offset of entry in pointer map */
1299 int rc;
1300
drh1fee73e2007-08-29 04:00:57 +00001301 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001302
danielk1977266664d2006-02-10 08:24:21 +00001303 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001304 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001305 if( rc!=0 ){
1306 return rc;
1307 }
danielk19773b8a05f2007-03-19 17:44:26 +00001308 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001309
danielk19778c666b12008-07-18 09:34:57 +00001310 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001311 if( offset<0 ){
1312 sqlite3PagerUnref(pDbPage);
1313 return SQLITE_CORRUPT_BKPT;
1314 }
1315 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001316 assert( pEType!=0 );
1317 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001318 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001319
danielk19773b8a05f2007-03-19 17:44:26 +00001320 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001321 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001322 return SQLITE_OK;
1323}
1324
danielk197785d90ca2008-07-19 14:25:15 +00001325#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001326 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001327 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001328 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001329#endif
danielk1977afcdd022004-10-31 16:25:42 +00001330
drh0d316a42002-08-11 20:10:47 +00001331/*
drh271efa52004-05-30 19:19:05 +00001332** Given a btree page and a cell index (0 means the first cell on
1333** the page, 1 means the second cell, and so forth) return a pointer
1334** to the cell content.
1335**
drhf44890a2015-06-27 03:58:15 +00001336** findCellPastPtr() does the same except it skips past the initial
1337** 4-byte child pointer found on interior pages, if there is one.
1338**
drh271efa52004-05-30 19:19:05 +00001339** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001340*/
drh1688c862008-07-18 02:44:17 +00001341#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001342 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001343#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001344 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001345
drh68f2a572011-06-03 17:50:49 +00001346
drh43605152004-05-29 21:46:49 +00001347/*
drh5fa60512015-06-19 17:19:34 +00001348** This is common tail processing for btreeParseCellPtr() and
1349** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1350** on a single B-tree page. Make necessary adjustments to the CellInfo
1351** structure.
drh43605152004-05-29 21:46:49 +00001352*/
drh5fa60512015-06-19 17:19:34 +00001353static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1354 MemPage *pPage, /* Page containing the cell */
1355 u8 *pCell, /* Pointer to the cell text. */
1356 CellInfo *pInfo /* Fill in this structure */
1357){
1358 /* If the payload will not fit completely on the local page, we have
1359 ** to decide how much to store locally and how much to spill onto
1360 ** overflow pages. The strategy is to minimize the amount of unused
1361 ** space on overflow pages while keeping the amount of local storage
1362 ** in between minLocal and maxLocal.
1363 **
1364 ** Warning: changing the way overflow payload is distributed in any
1365 ** way will result in an incompatible file format.
1366 */
1367 int minLocal; /* Minimum amount of payload held locally */
1368 int maxLocal; /* Maximum amount of payload held locally */
1369 int surplus; /* Overflow payload available for local storage */
1370
1371 minLocal = pPage->minLocal;
1372 maxLocal = pPage->maxLocal;
1373 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1374 testcase( surplus==maxLocal );
1375 testcase( surplus==maxLocal+1 );
1376 if( surplus <= maxLocal ){
1377 pInfo->nLocal = (u16)surplus;
1378 }else{
1379 pInfo->nLocal = (u16)minLocal;
1380 }
drh45ac1c72015-12-18 03:59:16 +00001381 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh5fa60512015-06-19 17:19:34 +00001382}
1383
1384/*
danebbf3682020-12-09 16:32:11 +00001385** Given a record with nPayload bytes of payload stored within btree
1386** page pPage, return the number of bytes of payload stored locally.
1387*/
dan59964b42020-12-14 15:25:14 +00001388static int btreePayloadToLocal(MemPage *pPage, i64 nPayload){
danebbf3682020-12-09 16:32:11 +00001389 int maxLocal; /* Maximum amount of payload held locally */
1390 maxLocal = pPage->maxLocal;
1391 if( nPayload<=maxLocal ){
1392 return nPayload;
1393 }else{
1394 int minLocal; /* Minimum amount of payload held locally */
1395 int surplus; /* Overflow payload available for local storage */
1396 minLocal = pPage->minLocal;
1397 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize-4);
1398 return ( surplus <= maxLocal ) ? surplus : minLocal;
1399 }
1400}
1401
1402/*
drh5fa60512015-06-19 17:19:34 +00001403** The following routines are implementations of the MemPage.xParseCell()
1404** method.
1405**
1406** Parse a cell content block and fill in the CellInfo structure.
1407**
1408** btreeParseCellPtr() => table btree leaf nodes
1409** btreeParseCellNoPayload() => table btree internal nodes
1410** btreeParseCellPtrIndex() => index btree nodes
1411**
1412** There is also a wrapper function btreeParseCell() that works for
1413** all MemPage types and that references the cell by index rather than
1414** by pointer.
1415*/
1416static void btreeParseCellPtrNoPayload(
1417 MemPage *pPage, /* Page containing the cell */
1418 u8 *pCell, /* Pointer to the cell text. */
1419 CellInfo *pInfo /* Fill in this structure */
1420){
1421 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1422 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001423 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001424#ifndef SQLITE_DEBUG
1425 UNUSED_PARAMETER(pPage);
1426#endif
drh5fa60512015-06-19 17:19:34 +00001427 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1428 pInfo->nPayload = 0;
1429 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001430 pInfo->pPayload = 0;
1431 return;
1432}
danielk197730548662009-07-09 05:07:37 +00001433static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001434 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001435 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001436 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001437){
drh3e28ff52014-09-24 00:59:08 +00001438 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001439 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001440 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001441
drh1fee73e2007-08-29 04:00:57 +00001442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001443 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001444 assert( pPage->intKeyLeaf );
1445 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001446 pIter = pCell;
1447
1448 /* The next block of code is equivalent to:
1449 **
1450 ** pIter += getVarint32(pIter, nPayload);
1451 **
1452 ** The code is inlined to avoid a function call.
1453 */
1454 nPayload = *pIter;
1455 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001456 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001457 nPayload &= 0x7f;
1458 do{
1459 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1460 }while( (*pIter)>=0x80 && pIter<pEnd );
1461 }
1462 pIter++;
1463
1464 /* The next block of code is equivalent to:
1465 **
1466 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1467 **
1468 ** The code is inlined to avoid a function call.
1469 */
1470 iKey = *pIter;
1471 if( iKey>=0x80 ){
1472 u8 *pEnd = &pIter[7];
1473 iKey &= 0x7f;
1474 while(1){
1475 iKey = (iKey<<7) | (*++pIter & 0x7f);
1476 if( (*pIter)<0x80 ) break;
1477 if( pIter>=pEnd ){
1478 iKey = (iKey<<8) | *++pIter;
1479 break;
1480 }
1481 }
1482 }
1483 pIter++;
1484
1485 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001486 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001487 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001488 testcase( nPayload==pPage->maxLocal );
1489 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001490 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001491 /* This is the (easy) common case where the entire payload fits
1492 ** on the local page. No overflow is required.
1493 */
drhab1cc582014-09-23 21:25:19 +00001494 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1495 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001496 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001497 }else{
drh5fa60512015-06-19 17:19:34 +00001498 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1499 }
1500}
1501static void btreeParseCellPtrIndex(
1502 MemPage *pPage, /* Page containing the cell */
1503 u8 *pCell, /* Pointer to the cell text. */
1504 CellInfo *pInfo /* Fill in this structure */
1505){
1506 u8 *pIter; /* For scanning through pCell */
1507 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001508
drh5fa60512015-06-19 17:19:34 +00001509 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1510 assert( pPage->leaf==0 || pPage->leaf==1 );
1511 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001512 pIter = pCell + pPage->childPtrSize;
1513 nPayload = *pIter;
1514 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001515 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001516 nPayload &= 0x7f;
1517 do{
1518 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1519 }while( *(pIter)>=0x80 && pIter<pEnd );
1520 }
1521 pIter++;
1522 pInfo->nKey = nPayload;
1523 pInfo->nPayload = nPayload;
1524 pInfo->pPayload = pIter;
1525 testcase( nPayload==pPage->maxLocal );
1526 testcase( nPayload==pPage->maxLocal+1 );
1527 if( nPayload<=pPage->maxLocal ){
1528 /* This is the (easy) common case where the entire payload fits
1529 ** on the local page. No overflow is required.
1530 */
1531 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1532 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1533 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001534 }else{
1535 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001536 }
drh3aac2dd2004-04-26 14:10:20 +00001537}
danielk197730548662009-07-09 05:07:37 +00001538static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001539 MemPage *pPage, /* Page containing the cell */
1540 int iCell, /* The cell index. First cell is 0 */
1541 CellInfo *pInfo /* Fill in this structure */
1542){
drh5fa60512015-06-19 17:19:34 +00001543 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001544}
drh3aac2dd2004-04-26 14:10:20 +00001545
1546/*
drh5fa60512015-06-19 17:19:34 +00001547** The following routines are implementations of the MemPage.xCellSize
1548** method.
1549**
drh43605152004-05-29 21:46:49 +00001550** Compute the total number of bytes that a Cell needs in the cell
1551** data area of the btree-page. The return number includes the cell
1552** data header and the local payload, but not any overflow page or
1553** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001554**
drh5fa60512015-06-19 17:19:34 +00001555** cellSizePtrNoPayload() => table internal nodes
1556** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001557*/
danielk1977ae5558b2009-04-29 11:31:47 +00001558static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001559 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1560 u8 *pEnd; /* End mark for a varint */
1561 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001562
1563#ifdef SQLITE_DEBUG
1564 /* The value returned by this function should always be the same as
1565 ** the (CellInfo.nSize) value found by doing a full parse of the
1566 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1567 ** this function verifies that this invariant is not violated. */
1568 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001569 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001570#endif
1571
drh3e28ff52014-09-24 00:59:08 +00001572 nSize = *pIter;
1573 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001574 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001575 nSize &= 0x7f;
1576 do{
1577 nSize = (nSize<<7) | (*++pIter & 0x7f);
1578 }while( *(pIter)>=0x80 && pIter<pEnd );
1579 }
1580 pIter++;
drhdc41d602014-09-22 19:51:35 +00001581 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001582 /* pIter now points at the 64-bit integer key value, a variable length
1583 ** integer. The following block moves pIter to point at the first byte
1584 ** past the end of the key value. */
1585 pEnd = &pIter[9];
1586 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001587 }
drh0a45c272009-07-08 01:49:11 +00001588 testcase( nSize==pPage->maxLocal );
1589 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001590 if( nSize<=pPage->maxLocal ){
1591 nSize += (u32)(pIter - pCell);
1592 if( nSize<4 ) nSize = 4;
1593 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001594 int minLocal = pPage->minLocal;
1595 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001596 testcase( nSize==pPage->maxLocal );
1597 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001598 if( nSize>pPage->maxLocal ){
1599 nSize = minLocal;
1600 }
drh3e28ff52014-09-24 00:59:08 +00001601 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001602 }
drhdc41d602014-09-22 19:51:35 +00001603 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001604 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001605}
drh25ada072015-06-19 15:07:14 +00001606static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1607 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1608 u8 *pEnd; /* End mark for a varint */
1609
1610#ifdef SQLITE_DEBUG
1611 /* The value returned by this function should always be the same as
1612 ** the (CellInfo.nSize) value found by doing a full parse of the
1613 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1614 ** this function verifies that this invariant is not violated. */
1615 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001616 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001617#else
1618 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001619#endif
1620
1621 assert( pPage->childPtrSize==4 );
1622 pEnd = pIter + 9;
1623 while( (*pIter++)&0x80 && pIter<pEnd );
1624 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1625 return (u16)(pIter - pCell);
1626}
1627
drh0ee3dbe2009-10-16 15:05:18 +00001628
1629#ifdef SQLITE_DEBUG
1630/* This variation on cellSizePtr() is used inside of assert() statements
1631** only. */
drha9121e42008-02-19 14:59:35 +00001632static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001633 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001634}
danielk1977bc6ada42004-06-30 08:20:16 +00001635#endif
drh3b7511c2001-05-26 13:15:44 +00001636
danielk197779a40da2005-01-16 08:00:01 +00001637#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001638/*
drh0f1bf4c2019-01-13 20:17:21 +00001639** The cell pCell is currently part of page pSrc but will ultimately be part
1640** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1641** pointer to an overflow page, insert an entry into the pointer-map for
1642** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001643*/
drh0f1bf4c2019-01-13 20:17:21 +00001644static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001645 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001646 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001647 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001648 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001649 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001650 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001651 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1652 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001653 *pRC = SQLITE_CORRUPT_BKPT;
1654 return;
1655 }
1656 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001657 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001658 }
danielk1977ac11ee62005-01-15 12:45:51 +00001659}
danielk197779a40da2005-01-16 08:00:01 +00001660#endif
1661
danielk1977ac11ee62005-01-15 12:45:51 +00001662
drhda200cc2004-05-09 11:51:38 +00001663/*
dane6d065a2017-02-24 19:58:22 +00001664** Defragment the page given. This routine reorganizes cells within the
1665** page so that there are no free-blocks on the free-block list.
1666**
1667** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1668** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001669**
1670** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1671** b-tree page so that there are no freeblocks or fragment bytes, all
1672** unused bytes are contained in the unallocated space region, and all
1673** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001674*/
dane6d065a2017-02-24 19:58:22 +00001675static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001676 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001677 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001678 int hdr; /* Offset to the page header */
1679 int size; /* Size of a cell */
1680 int usableSize; /* Number of usable bytes on a page */
1681 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001682 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001683 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001684 unsigned char *data; /* The page data */
1685 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001686 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001687 int iCellFirst; /* First allowable cell index */
1688 int iCellLast; /* Last possible cell index */
dan7f65b7a2021-04-10 20:27:06 +00001689 int iCellStart; /* First cell offset in input */
drh17146622009-07-07 17:38:38 +00001690
danielk19773b8a05f2007-03-19 17:44:26 +00001691 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001692 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001693 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001694 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001695 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001696 temp = 0;
1697 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001698 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001699 cellOffset = pPage->cellOffset;
1700 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001701 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
drh17146622009-07-07 17:38:38 +00001702 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001703 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001704
1705 /* This block handles pages with two or fewer free blocks and nMaxFrag
1706 ** or fewer fragmented bytes. In this case it is faster to move the
1707 ** two (or one) blocks of cells using memmove() and add the required
1708 ** offsets to each pointer in the cell-pointer array than it is to
1709 ** reconstruct the entire page. */
1710 if( (int)data[hdr+7]<=nMaxFrag ){
1711 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001712 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001713 if( iFree ){
1714 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001715 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001716 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1717 u8 *pEnd = &data[cellOffset + nCell*2];
1718 u8 *pAddr;
1719 int sz2 = 0;
1720 int sz = get2byte(&data[iFree+2]);
1721 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001722 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001723 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001724 }
dane6d065a2017-02-24 19:58:22 +00001725 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001726 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001727 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001728 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001729 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1730 sz += sz2;
drhd78fe4e2021-04-09 22:34:59 +00001731 }else if( iFree+sz>usableSize ){
dandcc427c2019-03-21 21:18:36 +00001732 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001733 }
dandcc427c2019-03-21 21:18:36 +00001734
dane6d065a2017-02-24 19:58:22 +00001735 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001736 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001737 memmove(&data[cbrk], &data[top], iFree-top);
1738 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1739 pc = get2byte(pAddr);
1740 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1741 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1742 }
1743 goto defragment_out;
1744 }
1745 }
1746 }
1747
drh281b21d2008-08-22 12:57:08 +00001748 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001749 iCellLast = usableSize - 4;
dan7f65b7a2021-04-10 20:27:06 +00001750 iCellStart = get2byte(&data[hdr+5]);
drh43605152004-05-29 21:46:49 +00001751 for(i=0; i<nCell; i++){
1752 u8 *pAddr; /* The i-th cell pointer */
1753 pAddr = &data[cellOffset + i*2];
1754 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001755 testcase( pc==iCellFirst );
1756 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001757 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001758 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001759 */
dan7f65b7a2021-04-10 20:27:06 +00001760 if( pc<iCellStart || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001761 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001762 }
dan7f65b7a2021-04-10 20:27:06 +00001763 assert( pc>=iCellStart && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001764 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001765 cbrk -= size;
dan7f65b7a2021-04-10 20:27:06 +00001766 if( cbrk<iCellStart || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001767 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001768 }
dan7f65b7a2021-04-10 20:27:06 +00001769 assert( cbrk+size<=usableSize && cbrk>=iCellStart );
drh0a45c272009-07-08 01:49:11 +00001770 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001771 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001772 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001773 if( temp==0 ){
drh588400b2014-09-27 05:00:25 +00001774 if( cbrk==pc ) continue;
1775 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drhccf0bb42021-06-07 13:50:36 +00001776 memcpy(&temp[iCellStart], &data[iCellStart], usableSize - iCellStart);
drh588400b2014-09-27 05:00:25 +00001777 src = temp;
1778 }
1779 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001780 }
dane6d065a2017-02-24 19:58:22 +00001781 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001782
1783 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001784 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001785 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001786 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001787 }
drh17146622009-07-07 17:38:38 +00001788 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001789 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001790 data[hdr+1] = 0;
1791 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001792 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001793 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001794 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001795}
1796
drha059ad02001-04-17 20:09:11 +00001797/*
dan8e9ba0c2014-10-14 17:27:04 +00001798** Search the free-list on page pPg for space to store a cell nByte bytes in
1799** size. If one can be found, return a pointer to the space and remove it
1800** from the free-list.
1801**
1802** If no suitable space can be found on the free-list, return NULL.
1803**
drhba0f9992014-10-30 20:48:44 +00001804** This function may detect corruption within pPg. If corruption is
1805** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001806**
drhb7580e82015-06-25 18:36:13 +00001807** Slots on the free list that are between 1 and 3 bytes larger than nByte
1808** will be ignored if adding the extra space to the fragmentation count
1809** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001810*/
drhb7580e82015-06-25 18:36:13 +00001811static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001812 const int hdr = pPg->hdrOffset; /* Offset to page header */
1813 u8 * const aData = pPg->aData; /* Page data */
1814 int iAddr = hdr + 1; /* Address of ptr to pc */
1815 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1816 int x; /* Excess size of the slot */
1817 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1818 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001819
drhb7580e82015-06-25 18:36:13 +00001820 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001821 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001822 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1823 ** freeblock form a big-endian integer which is the size of the freeblock
1824 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001825 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001826 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001827 testcase( x==4 );
1828 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001829 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001830 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1831 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001832 if( aData[hdr+7]>57 ) return 0;
1833
dan8e9ba0c2014-10-14 17:27:04 +00001834 /* Remove the slot from the free-list. Update the number of
1835 ** fragmented bytes within the page. */
1836 memcpy(&aData[iAddr], &aData[pc], 2);
1837 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001838 }else if( x+pc > maxPC ){
1839 /* This slot extends off the end of the usable part of the page */
1840 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1841 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001842 }else{
1843 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001844 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001845 put2byte(&aData[pc+2], x);
1846 }
1847 return &aData[pc + x];
1848 }
drhb7580e82015-06-25 18:36:13 +00001849 iAddr = pc;
1850 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001851 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001852 if( pc ){
1853 /* The next slot in the chain is not past the end of the current slot */
1854 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1855 }
1856 return 0;
1857 }
drh87d63c92017-08-23 23:09:03 +00001858 }
drh298f45c2019-02-08 22:34:59 +00001859 if( pc>maxPC+nByte-4 ){
1860 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001861 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001862 }
dan8e9ba0c2014-10-14 17:27:04 +00001863 return 0;
1864}
1865
1866/*
danielk19776011a752009-04-01 16:25:32 +00001867** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001868** as the first argument. Write into *pIdx the index into pPage->aData[]
1869** of the first byte of allocated space. Return either SQLITE_OK or
1870** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001871**
drh0a45c272009-07-08 01:49:11 +00001872** The caller guarantees that there is sufficient space to make the
1873** allocation. This routine might need to defragment in order to bring
1874** all the space together, however. This routine will avoid using
1875** the first two bytes past the cell pointer area since presumably this
1876** allocation is being made in order to insert a new cell, so we will
1877** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001878*/
drh0a45c272009-07-08 01:49:11 +00001879static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001880 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1881 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001882 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001883 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001884 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001885
danielk19773b8a05f2007-03-19 17:44:26 +00001886 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001887 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001888 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001889 assert( nByte>=0 ); /* Minimum cell size is 4 */
1890 assert( pPage->nFree>=nByte );
1891 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001892 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001893
drh0a45c272009-07-08 01:49:11 +00001894 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1895 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001896 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001897 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1898 ** and the reserved space is zero (the usual value for reserved space)
1899 ** then the cell content offset of an empty page wants to be 65536.
1900 ** However, that integer is too large to be stored in a 2-byte unsigned
1901 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001902 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001903 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001904 if( gap>top ){
1905 if( top==0 && pPage->pBt->usableSize==65536 ){
1906 top = 65536;
1907 }else{
daneebf2f52017-11-18 17:30:08 +00001908 return SQLITE_CORRUPT_PAGE(pPage);
drhded340e2015-06-25 15:04:56 +00001909 }
drhe7266222015-05-29 17:51:16 +00001910 }
drh4c04f3c2014-08-20 11:56:14 +00001911
drhd4a67442019-02-11 19:27:36 +00001912 /* If there is enough space between gap and top for one more cell pointer,
1913 ** and if the freelist is not empty, then search the
1914 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001915 */
drh0a45c272009-07-08 01:49:11 +00001916 testcase( gap+2==top );
1917 testcase( gap+1==top );
1918 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001919 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001920 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001921 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001922 int g2;
drh2b96b692019-08-05 16:22:20 +00001923 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001924 *pIdx = g2 = (int)(pSpace-data);
drhb9154182021-06-20 22:49:26 +00001925 if( g2<=gap ){
drh2b96b692019-08-05 16:22:20 +00001926 return SQLITE_CORRUPT_PAGE(pPage);
1927 }else{
1928 return SQLITE_OK;
1929 }
drhb7580e82015-06-25 18:36:13 +00001930 }else if( rc ){
1931 return rc;
drh9e572e62004-04-23 23:43:10 +00001932 }
1933 }
drh43605152004-05-29 21:46:49 +00001934
drh4c04f3c2014-08-20 11:56:14 +00001935 /* The request could not be fulfilled using a freelist slot. Check
1936 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001937 */
1938 testcase( gap+2+nByte==top );
1939 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001940 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001941 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001942 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001943 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001944 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001945 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001946 }
1947
1948
drh43605152004-05-29 21:46:49 +00001949 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001950 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001951 ** validated the freelist. Given that the freelist is valid, there
1952 ** is no way that the allocation can extend off the end of the page.
1953 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001954 */
drh0a45c272009-07-08 01:49:11 +00001955 top -= nByte;
drh43605152004-05-29 21:46:49 +00001956 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001957 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001958 *pIdx = top;
1959 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001960}
1961
1962/*
drh9e572e62004-04-23 23:43:10 +00001963** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001964** The first byte of the new free block is pPage->aData[iStart]
1965** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001966**
drh5f5c7532014-08-20 17:56:27 +00001967** Adjacent freeblocks are coalesced.
1968**
drh5860a612019-02-12 16:58:26 +00001969** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001970** that routine will not detect overlap between cells or freeblocks. Nor
1971** does it detect cells or freeblocks that encrouch into the reserved bytes
1972** at the end of the page. So do additional corruption checks inside this
1973** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001974*/
drh5f5c7532014-08-20 17:56:27 +00001975static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001976 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001977 u16 iFreeBlk; /* Address of the next freeblock */
1978 u8 hdr; /* Page header size. 0 or 100 */
1979 u8 nFrag = 0; /* Reduction in fragmentation */
1980 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001981 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001982 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001983 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001984
drh9e572e62004-04-23 23:43:10 +00001985 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001986 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001987 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001988 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001989 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001990 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001991 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001992
drh5f5c7532014-08-20 17:56:27 +00001993 /* The list of freeblocks must be in ascending order. Find the
1994 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001995 */
drh43605152004-05-29 21:46:49 +00001996 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001997 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001998 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1999 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
2000 }else{
drh85f071b2016-09-17 19:34:32 +00002001 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
2002 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00002003 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00002004 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00002005 }
drh7bc4c452014-08-20 18:43:44 +00002006 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00002007 }
drh628b1a32020-01-05 21:53:15 +00002008 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00002009 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00002010 }
drh7bc4c452014-08-20 18:43:44 +00002011 assert( iFreeBlk>iPtr || iFreeBlk==0 );
2012
2013 /* At this point:
2014 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00002015 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00002016 **
2017 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
2018 */
2019 if( iFreeBlk && iEnd+3>=iFreeBlk ){
2020 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00002021 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00002022 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh6aa75152020-06-12 00:31:52 +00002023 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00002024 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00002025 }
drh7bc4c452014-08-20 18:43:44 +00002026 iSize = iEnd - iStart;
2027 iFreeBlk = get2byte(&data[iFreeBlk]);
2028 }
2029
drh3f387402014-09-24 01:23:00 +00002030 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
2031 ** pointer in the page header) then check to see if iStart should be
2032 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00002033 */
2034 if( iPtr>hdr+1 ){
2035 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
2036 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00002037 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00002038 nFrag += iStart - iPtrEnd;
2039 iSize = iEnd - iPtr;
2040 iStart = iPtr;
2041 }
2042 }
daneebf2f52017-11-18 17:30:08 +00002043 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00002044 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00002045 }
drh5e398e42017-08-23 20:36:06 +00002046 x = get2byte(&data[hdr+5]);
2047 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00002048 /* The new freeblock is at the beginning of the cell content area,
2049 ** so just extend the cell content area rather than create another
2050 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00002051 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00002052 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00002053 put2byte(&data[hdr+1], iFreeBlk);
2054 put2byte(&data[hdr+5], iEnd);
2055 }else{
2056 /* Insert the new freeblock into the freelist */
2057 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00002058 }
drh5e398e42017-08-23 20:36:06 +00002059 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
2060 /* Overwrite deleted information with zeros when the secure_delete
2061 ** option is enabled */
2062 memset(&data[iStart], 0, iSize);
2063 }
2064 put2byte(&data[iStart], iFreeBlk);
2065 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00002066 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00002067 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00002068}
2069
2070/*
drh271efa52004-05-30 19:19:05 +00002071** Decode the flags byte (the first byte of the header) for a page
2072** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00002073**
2074** Only the following combinations are supported. Anything different
2075** indicates a corrupt database files:
2076**
2077** PTF_ZERODATA
2078** PTF_ZERODATA | PTF_LEAF
2079** PTF_LEAFDATA | PTF_INTKEY
2080** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00002081*/
drh44845222008-07-17 18:39:57 +00002082static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00002083 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00002084
2085 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00002086 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00002087 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00002088 flagByte &= ~PTF_LEAF;
2089 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00002090 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00002091 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00002092 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00002093 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
2094 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00002095 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00002096 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
2097 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00002098 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00002099 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00002100 if( pPage->leaf ){
2101 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00002102 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00002103 }else{
2104 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00002105 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00002106 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00002107 }
drh271efa52004-05-30 19:19:05 +00002108 pPage->maxLocal = pBt->maxLeaf;
2109 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00002110 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00002111 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
2112 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00002113 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00002114 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
2115 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00002116 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00002117 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00002118 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00002119 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00002120 pPage->maxLocal = pBt->maxLocal;
2121 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00002122 }else{
drhfdab0262014-11-20 15:30:50 +00002123 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
2124 ** an error. */
daneebf2f52017-11-18 17:30:08 +00002125 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00002126 }
drhc9166342012-01-05 23:32:06 +00002127 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00002128 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00002129}
2130
2131/*
drhb0ea9432019-02-09 21:06:40 +00002132** Compute the amount of freespace on the page. In other words, fill
2133** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00002134*/
drhb0ea9432019-02-09 21:06:40 +00002135static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00002136 int pc; /* Address of a freeblock within pPage->aData[] */
2137 u8 hdr; /* Offset to beginning of page header */
2138 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00002139 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00002140 int nFree; /* Number of unused bytes on the page */
2141 int top; /* First byte of the cell content area */
2142 int iCellFirst; /* First allowable cell or freeblock offset */
2143 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00002144
danielk197771d5d2c2008-09-29 11:49:47 +00002145 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00002146 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00002148 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00002149 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2150 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00002151 assert( pPage->isInit==1 );
2152 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002153
drhb0ea9432019-02-09 21:06:40 +00002154 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00002155 hdr = pPage->hdrOffset;
2156 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00002157 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
2158 ** the start of the cell content area. A zero value for this integer is
2159 ** interpreted as 65536. */
2160 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00002161 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00002162 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00002163
drh14e845a2017-05-25 21:35:56 +00002164 /* Compute the total free space on the page
2165 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2166 ** start of the first freeblock on the page, or is zero if there are no
2167 ** freeblocks. */
2168 pc = get2byte(&data[hdr+1]);
2169 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
2170 if( pc>0 ){
2171 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00002172 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00002173 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2174 ** always be at least one cell before the first freeblock.
2175 */
daneebf2f52017-11-18 17:30:08 +00002176 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00002177 }
drh14e845a2017-05-25 21:35:56 +00002178 while( 1 ){
2179 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00002180 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00002181 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002182 }
2183 next = get2byte(&data[pc]);
2184 size = get2byte(&data[pc+2]);
2185 nFree = nFree + size;
2186 if( next<=pc+size+3 ) break;
2187 pc = next;
2188 }
2189 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00002190 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00002191 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002192 }
2193 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00002194 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00002195 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002196 }
danielk197771d5d2c2008-09-29 11:49:47 +00002197 }
drh14e845a2017-05-25 21:35:56 +00002198
2199 /* At this point, nFree contains the sum of the offset to the start
2200 ** of the cell-content area plus the number of free bytes within
2201 ** the cell-content area. If this is greater than the usable-size
2202 ** of the page, then the page must be corrupted. This check also
2203 ** serves to verify that the offset to the start of the cell-content
2204 ** area, according to the page header, lies within the page.
2205 */
drhdfcecdf2019-05-08 00:17:45 +00002206 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00002207 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00002208 }
2209 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00002210 return SQLITE_OK;
2211}
2212
2213/*
drh5860a612019-02-12 16:58:26 +00002214** Do additional sanity check after btreeInitPage() if
2215** PRAGMA cell_size_check=ON
2216*/
2217static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
2218 int iCellFirst; /* First allowable cell or freeblock offset */
2219 int iCellLast; /* Last possible cell or freeblock offset */
2220 int i; /* Index into the cell pointer array */
2221 int sz; /* Size of a cell */
2222 int pc; /* Address of a freeblock within pPage->aData[] */
2223 u8 *data; /* Equal to pPage->aData */
2224 int usableSize; /* Maximum usable space on the page */
2225 int cellOffset; /* Start of cell content area */
2226
2227 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
2228 usableSize = pPage->pBt->usableSize;
2229 iCellLast = usableSize - 4;
2230 data = pPage->aData;
2231 cellOffset = pPage->cellOffset;
2232 if( !pPage->leaf ) iCellLast--;
2233 for(i=0; i<pPage->nCell; i++){
2234 pc = get2byteAligned(&data[cellOffset+i*2]);
2235 testcase( pc==iCellFirst );
2236 testcase( pc==iCellLast );
2237 if( pc<iCellFirst || pc>iCellLast ){
2238 return SQLITE_CORRUPT_PAGE(pPage);
2239 }
2240 sz = pPage->xCellSize(pPage, &data[pc]);
2241 testcase( pc+sz==usableSize );
2242 if( pc+sz>usableSize ){
2243 return SQLITE_CORRUPT_PAGE(pPage);
2244 }
2245 }
2246 return SQLITE_OK;
2247}
2248
2249/*
drhb0ea9432019-02-09 21:06:40 +00002250** Initialize the auxiliary information for a disk block.
2251**
2252** Return SQLITE_OK on success. If we see that the page does
2253** not contain a well-formed database page, then return
2254** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2255** guarantee that the page is well-formed. It only shows that
2256** we failed to detect any corruption.
2257*/
2258static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00002259 u8 *data; /* Equal to pPage->aData */
2260 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00002261
2262 assert( pPage->pBt!=0 );
2263 assert( pPage->pBt->db!=0 );
2264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2265 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
2266 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
2267 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
2268 assert( pPage->isInit==0 );
2269
2270 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002271 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002272 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2273 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002274 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002275 return SQLITE_CORRUPT_PAGE(pPage);
2276 }
2277 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2278 pPage->maskPage = (u16)(pBt->pageSize - 1);
2279 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002280 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2281 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2282 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2283 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002284 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2285 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002286 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002287 if( pPage->nCell>MX_CELL(pBt) ){
2288 /* To many cells for a single page. The page must be corrupt */
2289 return SQLITE_CORRUPT_PAGE(pPage);
2290 }
2291 testcase( pPage->nCell==MX_CELL(pBt) );
2292 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2293 ** possible for a root page of a table that contains no rows) then the
2294 ** offset to the cell content area will equal the page size minus the
2295 ** bytes of reserved space. */
2296 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002297 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002298 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002299 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002300 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002301 if( pBt->db->flags & SQLITE_CellSizeCk ){
2302 return btreeCellSizeCheck(pPage);
2303 }
drh9e572e62004-04-23 23:43:10 +00002304 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002305}
2306
2307/*
drh8b2f49b2001-06-08 00:21:52 +00002308** Set up a raw page so that it looks like a database page holding
2309** no entries.
drhbd03cae2001-06-02 02:40:57 +00002310*/
drh9e572e62004-04-23 23:43:10 +00002311static void zeroPage(MemPage *pPage, int flags){
2312 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002313 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002314 u8 hdr = pPage->hdrOffset;
2315 u16 first;
drh9e572e62004-04-23 23:43:10 +00002316
danielk19773b8a05f2007-03-19 17:44:26 +00002317 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002318 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2319 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002320 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002321 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002322 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002323 memset(&data[hdr], 0, pBt->usableSize - hdr);
2324 }
drh1bd10f82008-12-10 21:19:56 +00002325 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002326 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002327 memset(&data[hdr+1], 0, 4);
2328 data[hdr+7] = 0;
2329 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002330 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002331 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002332 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002333 pPage->aDataEnd = &data[pBt->usableSize];
2334 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002335 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002336 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002337 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2338 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002339 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002340 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002341}
2342
drh897a8202008-09-18 01:08:15 +00002343
2344/*
2345** Convert a DbPage obtained from the pager into a MemPage used by
2346** the btree layer.
2347*/
2348static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2349 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002350 if( pgno!=pPage->pgno ){
2351 pPage->aData = sqlite3PagerGetData(pDbPage);
2352 pPage->pDbPage = pDbPage;
2353 pPage->pBt = pBt;
2354 pPage->pgno = pgno;
2355 pPage->hdrOffset = pgno==1 ? 100 : 0;
2356 }
2357 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002358 return pPage;
2359}
2360
drhbd03cae2001-06-02 02:40:57 +00002361/*
drh3aac2dd2004-04-26 14:10:20 +00002362** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002363** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002364**
drh7e8c6f12015-05-28 03:28:27 +00002365** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2366** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002367** to fetch the content. Just fill in the content with zeros for now.
2368** If in the future we call sqlite3PagerWrite() on this page, that
2369** means we have started to be concerned about content and the disk
2370** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002371*/
danielk197730548662009-07-09 05:07:37 +00002372static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002373 BtShared *pBt, /* The btree */
2374 Pgno pgno, /* Number of the page to fetch */
2375 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002376 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002377){
drh3aac2dd2004-04-26 14:10:20 +00002378 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002379 DbPage *pDbPage;
2380
drhb00fc3b2013-08-21 23:42:32 +00002381 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002382 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002383 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002384 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002385 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002386 return SQLITE_OK;
2387}
2388
2389/*
danielk1977bea2a942009-01-20 17:06:27 +00002390** Retrieve a page from the pager cache. If the requested page is not
2391** already in the pager cache return NULL. Initialize the MemPage.pBt and
2392** MemPage.aData elements if needed.
2393*/
2394static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2395 DbPage *pDbPage;
2396 assert( sqlite3_mutex_held(pBt->mutex) );
2397 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2398 if( pDbPage ){
2399 return btreePageFromDbPage(pDbPage, pgno, pBt);
2400 }
2401 return 0;
2402}
2403
2404/*
danielk197789d40042008-11-17 14:20:56 +00002405** Return the size of the database file in pages. If there is any kind of
2406** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002407*/
drhb1299152010-03-30 22:58:33 +00002408static Pgno btreePagecount(BtShared *pBt){
2409 return pBt->nPage;
2410}
drh584e8b72020-07-22 17:12:59 +00002411Pgno sqlite3BtreeLastPage(Btree *p){
drhb1299152010-03-30 22:58:33 +00002412 assert( sqlite3BtreeHoldsMutex(p) );
drh584e8b72020-07-22 17:12:59 +00002413 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002414}
2415
2416/*
drh28f58dd2015-06-27 19:45:03 +00002417** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002418**
drh15a00212015-06-27 20:55:00 +00002419** If pCur!=0 then the page is being fetched as part of a moveToChild()
2420** call. Do additional sanity checking on the page in this case.
2421** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002422**
2423** The page is fetched as read-write unless pCur is not NULL and is
2424** a read-only cursor.
2425**
2426** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002427** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002428*/
2429static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002430 BtShared *pBt, /* The database file */
2431 Pgno pgno, /* Number of the page to get */
2432 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002433 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2434 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002435){
2436 int rc;
drh28f58dd2015-06-27 19:45:03 +00002437 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002438 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002439 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002440 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002441 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002442
danba3cbf32010-06-30 04:29:03 +00002443 if( pgno>btreePagecount(pBt) ){
2444 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002445 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002446 }
drh9584f582015-11-04 20:22:37 +00002447 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002448 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002449 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002450 }
drh8dd1c252015-11-04 22:31:02 +00002451 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002452 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002453 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002454 rc = btreeInitPage(*ppPage);
2455 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002456 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002457 }
drhee696e22004-08-30 16:52:17 +00002458 }
drh8dd1c252015-11-04 22:31:02 +00002459 assert( (*ppPage)->pgno==pgno );
2460 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002461
drh15a00212015-06-27 20:55:00 +00002462 /* If obtaining a child page for a cursor, we must verify that the page is
2463 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002464 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002465 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002466 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002467 }
drh28f58dd2015-06-27 19:45:03 +00002468 return SQLITE_OK;
2469
drhb0ea9432019-02-09 21:06:40 +00002470getAndInitPage_error2:
2471 releasePage(*ppPage);
2472getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002473 if( pCur ){
2474 pCur->iPage--;
2475 pCur->pPage = pCur->apPage[pCur->iPage];
2476 }
drh325d0872015-06-29 00:52:33 +00002477 testcase( pgno==0 );
2478 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002479 return rc;
2480}
2481
dan7fff2e12017-05-29 14:27:37 +00002482#ifndef SQLITE_OMIT_CONCURRENT
2483/*
2484** Set the value of the MemPage.pgnoRoot variable, if it exists.
2485*/
2486static void setMempageRoot(MemPage *pPg, u32 pgnoRoot){
2487 pPg->pgnoRoot = pgnoRoot;
2488}
2489#else
2490# define setMempageRoot(x,y)
2491#endif
2492
drhde647132004-05-07 17:57:49 +00002493/*
drh3aac2dd2004-04-26 14:10:20 +00002494** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002495** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002496**
2497** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002498*/
drhbbf0f862015-06-27 14:59:26 +00002499static void releasePageNotNull(MemPage *pPage){
2500 assert( pPage->aData );
2501 assert( pPage->pBt );
2502 assert( pPage->pDbPage!=0 );
2503 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2504 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2505 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2506 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2507}
drh4b70f112004-05-02 21:12:19 +00002508static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002509 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002510}
drh3908fe92017-09-01 14:50:19 +00002511static void releasePageOne(MemPage *pPage){
2512 assert( pPage!=0 );
2513 assert( pPage->aData );
2514 assert( pPage->pBt );
2515 assert( pPage->pDbPage!=0 );
2516 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2517 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2518 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2519 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2520}
drh3aac2dd2004-04-26 14:10:20 +00002521
2522/*
drh7e8c6f12015-05-28 03:28:27 +00002523** Get an unused page.
2524**
2525** This works just like btreeGetPage() with the addition:
2526**
2527** * If the page is already in use for some other purpose, immediately
2528** release it and return an SQLITE_CURRUPT error.
2529** * Make sure the isInit flag is clear
2530*/
2531static int btreeGetUnusedPage(
2532 BtShared *pBt, /* The btree */
2533 Pgno pgno, /* Number of the page to fetch */
2534 MemPage **ppPage, /* Return the page in this parameter */
2535 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2536){
2537 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2538 if( rc==SQLITE_OK ){
2539 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2540 releasePage(*ppPage);
2541 *ppPage = 0;
2542 return SQLITE_CORRUPT_BKPT;
2543 }
2544 (*ppPage)->isInit = 0;
2545 }else{
2546 *ppPage = 0;
2547 }
2548 return rc;
2549}
2550
2551
2552/*
drha6abd042004-06-09 17:37:22 +00002553** During a rollback, when the pager reloads information into the cache
2554** so that the cache is restored to its original state at the start of
2555** the transaction, for each page restored this routine is called.
2556**
2557** This routine needs to reset the extra data section at the end of the
2558** page to agree with the restored data.
2559*/
danielk1977eaa06f62008-09-18 17:34:44 +00002560static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002561 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002562 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002563 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002564 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002565 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002566 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002567 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002568 /* pPage might not be a btree page; it might be an overflow page
2569 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002570 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002571 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002572 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002573 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002574 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002575 }
drha6abd042004-06-09 17:37:22 +00002576 }
2577}
2578
2579/*
drhe5fe6902007-12-07 18:55:28 +00002580** Invoke the busy handler for a btree.
2581*/
danielk19771ceedd32008-11-19 10:22:33 +00002582static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002583 BtShared *pBt = (BtShared*)pArg;
2584 assert( pBt->db );
2585 assert( sqlite3_mutex_held(pBt->db->mutex) );
drh783e1592020-05-06 20:55:38 +00002586 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
drhe5fe6902007-12-07 18:55:28 +00002587}
2588
2589/*
drhad3e0102004-09-03 23:32:18 +00002590** Open a database file.
2591**
drh382c0242001-10-06 16:33:02 +00002592** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002593** then an ephemeral database is created. The ephemeral database might
2594** be exclusively in memory, or it might use a disk-based memory cache.
2595** Either way, the ephemeral database will be automatically deleted
2596** when sqlite3BtreeClose() is called.
2597**
drhe53831d2007-08-17 01:14:38 +00002598** If zFilename is ":memory:" then an in-memory database is created
2599** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002600**
drh33f111d2012-01-17 15:29:14 +00002601** The "flags" parameter is a bitmask that might contain bits like
2602** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002603**
drhc47fd8e2009-04-30 13:30:32 +00002604** If the database is already opened in the same database connection
2605** and we are in shared cache mode, then the open will fail with an
2606** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2607** objects in the same database connection since doing so will lead
2608** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002609*/
drh23e11ca2004-05-04 17:27:28 +00002610int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002611 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002612 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002613 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002614 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002615 int flags, /* Options */
2616 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002617){
drh7555d8e2009-03-20 13:15:30 +00002618 BtShared *pBt = 0; /* Shared part of btree structure */
2619 Btree *p; /* Handle to return */
2620 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2621 int rc = SQLITE_OK; /* Result code from this function */
2622 u8 nReserve; /* Byte of unused space on each page */
2623 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002624
drh75c014c2010-08-30 15:02:28 +00002625 /* True if opening an ephemeral, temporary database */
2626 const int isTempDb = zFilename==0 || zFilename[0]==0;
2627
danielk1977aef0bf62005-12-30 16:28:01 +00002628 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002629 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002630 */
drhb0a7c9c2010-12-06 21:09:59 +00002631#ifdef SQLITE_OMIT_MEMORYDB
2632 const int isMemdb = 0;
2633#else
2634 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002635 || (isTempDb && sqlite3TempInMemory(db))
2636 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002637#endif
2638
drhe5fe6902007-12-07 18:55:28 +00002639 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002640 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002641 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002642 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2643
2644 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2645 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2646
2647 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2648 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002649
drh75c014c2010-08-30 15:02:28 +00002650 if( isMemdb ){
2651 flags |= BTREE_MEMORY;
2652 }
2653 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2654 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2655 }
drh17435752007-08-16 04:30:38 +00002656 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002657 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002658 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002659 }
2660 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002661 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002662#ifndef SQLITE_OMIT_SHARED_CACHE
2663 p->lock.pBtree = p;
2664 p->lock.iTable = 1;
2665#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002666
drh198bf392006-01-06 21:52:49 +00002667#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002668 /*
2669 ** If this Btree is a candidate for shared cache, try to find an
2670 ** existing BtShared object that we can share with
2671 */
drh4ab9d252012-05-26 20:08:49 +00002672 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002673 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002674 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002675 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002676 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002677 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002678
drhff0587c2007-08-29 17:43:19 +00002679 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002680 if( !zFullPathname ){
2681 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002682 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002683 }
drhafc8b7f2012-05-26 18:06:38 +00002684 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002685 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002686 }else{
2687 rc = sqlite3OsFullPathname(pVfs, zFilename,
2688 nFullPathname, zFullPathname);
2689 if( rc ){
drhc398c652019-11-22 00:42:01 +00002690 if( rc==SQLITE_OK_SYMLINK ){
2691 rc = SQLITE_OK;
2692 }else{
2693 sqlite3_free(zFullPathname);
2694 sqlite3_free(p);
2695 return rc;
2696 }
drhafc8b7f2012-05-26 18:06:38 +00002697 }
drh070ad6b2011-11-17 11:43:19 +00002698 }
drh30ddce62011-10-15 00:16:30 +00002699#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002700 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2701 sqlite3_mutex_enter(mutexOpen);
drhccb21132020-06-19 11:34:57 +00002702 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
drhff0587c2007-08-29 17:43:19 +00002703 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002704#endif
drh78f82d12008-09-02 00:52:52 +00002705 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002706 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002707 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002708 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002709 int iDb;
2710 for(iDb=db->nDb-1; iDb>=0; iDb--){
2711 Btree *pExisting = db->aDb[iDb].pBt;
2712 if( pExisting && pExisting->pBt==pBt ){
2713 sqlite3_mutex_leave(mutexShared);
2714 sqlite3_mutex_leave(mutexOpen);
2715 sqlite3_free(zFullPathname);
2716 sqlite3_free(p);
2717 return SQLITE_CONSTRAINT;
2718 }
2719 }
drhff0587c2007-08-29 17:43:19 +00002720 p->pBt = pBt;
2721 pBt->nRef++;
2722 break;
2723 }
2724 }
2725 sqlite3_mutex_leave(mutexShared);
2726 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002727 }
drhff0587c2007-08-29 17:43:19 +00002728#ifdef SQLITE_DEBUG
2729 else{
2730 /* In debug mode, we mark all persistent databases as sharable
2731 ** even when they are not. This exercises the locking code and
2732 ** gives more opportunity for asserts(sqlite3_mutex_held())
2733 ** statements to find locking problems.
2734 */
2735 p->sharable = 1;
2736 }
2737#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002738 }
2739#endif
drha059ad02001-04-17 20:09:11 +00002740 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002741 /*
2742 ** The following asserts make sure that structures used by the btree are
2743 ** the right size. This is to guard against size changes that result
2744 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002745 */
drh062cf272015-03-23 19:03:51 +00002746 assert( sizeof(i64)==8 );
2747 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002748 assert( sizeof(u32)==4 );
2749 assert( sizeof(u16)==2 );
2750 assert( sizeof(Pgno)==4 );
2751
2752 pBt = sqlite3MallocZero( sizeof(*pBt) );
2753 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002754 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002755 goto btree_open_out;
2756 }
danielk197771d5d2c2008-09-29 11:49:47 +00002757 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002758 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002759 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002760 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002761 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2762 }
2763 if( rc!=SQLITE_OK ){
2764 goto btree_open_out;
2765 }
shanehbd2aaf92010-09-01 02:38:21 +00002766 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002767 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002768 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002769 p->pBt = pBt;
2770
drhe53831d2007-08-17 01:14:38 +00002771 pBt->pCursor = 0;
2772 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002773 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002774#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002775 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002776#elif defined(SQLITE_FAST_SECURE_DELETE)
2777 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002778#endif
drh113762a2014-11-19 16:36:25 +00002779 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2780 ** determined by the 2-byte integer located at an offset of 16 bytes from
2781 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002782 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002783 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2784 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002785 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002786#ifndef SQLITE_OMIT_AUTOVACUUM
2787 /* If the magic name ":memory:" will create an in-memory database, then
2788 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2789 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2790 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2791 ** regular file-name. In this case the auto-vacuum applies as per normal.
2792 */
2793 if( zFilename && !isMemdb ){
2794 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2795 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2796 }
2797#endif
2798 nReserve = 0;
2799 }else{
drh113762a2014-11-19 16:36:25 +00002800 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2801 ** determined by the one-byte unsigned integer found at an offset of 20
2802 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002803 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002804 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002805#ifndef SQLITE_OMIT_AUTOVACUUM
2806 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2807 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2808#endif
2809 }
drhfa9601a2009-06-18 17:22:39 +00002810 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002811 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002812 pBt->usableSize = pBt->pageSize - nReserve;
2813 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002814
2815#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2816 /* Add the new BtShared object to the linked list sharable BtShareds.
2817 */
dan272989b2016-07-06 10:12:02 +00002818 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002819 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002820 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhccb21132020-06-19 11:34:57 +00002821 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);)
danielk1977075c23a2008-09-01 18:34:20 +00002822 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002823 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002824 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002825 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002826 goto btree_open_out;
2827 }
drhff0587c2007-08-29 17:43:19 +00002828 }
drhe53831d2007-08-17 01:14:38 +00002829 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002830 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2831 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002832 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002833 }
drheee46cf2004-11-06 00:02:48 +00002834#endif
drh90f5ecb2004-07-22 01:19:35 +00002835 }
danielk1977aef0bf62005-12-30 16:28:01 +00002836
drhcfed7bc2006-03-13 14:28:05 +00002837#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002838 /* If the new Btree uses a sharable pBtShared, then link the new
2839 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002840 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002841 */
drhe53831d2007-08-17 01:14:38 +00002842 if( p->sharable ){
2843 int i;
2844 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002845 for(i=0; i<db->nDb; i++){
2846 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002847 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002848 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002849 p->pNext = pSib;
2850 p->pPrev = 0;
2851 pSib->pPrev = p;
2852 }else{
drh3bfa7e82016-03-22 14:37:59 +00002853 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002854 pSib = pSib->pNext;
2855 }
2856 p->pNext = pSib->pNext;
2857 p->pPrev = pSib;
2858 if( p->pNext ){
2859 p->pNext->pPrev = p;
2860 }
2861 pSib->pNext = p;
2862 }
2863 break;
2864 }
2865 }
danielk1977aef0bf62005-12-30 16:28:01 +00002866 }
danielk1977aef0bf62005-12-30 16:28:01 +00002867#endif
2868 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002869
2870btree_open_out:
2871 if( rc!=SQLITE_OK ){
2872 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002873 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002874 }
drh17435752007-08-16 04:30:38 +00002875 sqlite3_free(pBt);
2876 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002877 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002878 }else{
dan0f5a1862016-08-13 14:30:23 +00002879 sqlite3_file *pFile;
2880
drh75c014c2010-08-30 15:02:28 +00002881 /* If the B-Tree was successfully opened, set the pager-cache size to the
2882 ** default value. Except, when opening on an existing shared pager-cache,
2883 ** do not change the pager-cache size.
2884 */
2885 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
dan78f04752020-09-04 19:10:43 +00002886 sqlite3BtreeSetCacheSize(p, SQLITE_DEFAULT_CACHE_SIZE);
drh75c014c2010-08-30 15:02:28 +00002887 }
dan0f5a1862016-08-13 14:30:23 +00002888
2889 pFile = sqlite3PagerFile(pBt->pPager);
2890 if( pFile->pMethods ){
2891 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2892 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002893 }
drh7555d8e2009-03-20 13:15:30 +00002894 if( mutexOpen ){
2895 assert( sqlite3_mutex_held(mutexOpen) );
2896 sqlite3_mutex_leave(mutexOpen);
2897 }
dan272989b2016-07-06 10:12:02 +00002898 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002899 return rc;
drha059ad02001-04-17 20:09:11 +00002900}
2901
2902/*
drhe53831d2007-08-17 01:14:38 +00002903** Decrement the BtShared.nRef counter. When it reaches zero,
2904** remove the BtShared structure from the sharing list. Return
2905** true if the BtShared.nRef counter reaches zero and return
2906** false if it is still positive.
2907*/
2908static int removeFromSharingList(BtShared *pBt){
2909#ifndef SQLITE_OMIT_SHARED_CACHE
drh067b92b2020-06-19 15:24:12 +00002910 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; )
drhe53831d2007-08-17 01:14:38 +00002911 BtShared *pList;
2912 int removed = 0;
2913
drhd677b3d2007-08-20 22:48:41 +00002914 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh067b92b2020-06-19 15:24:12 +00002915 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
2916 sqlite3_mutex_enter(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002917 pBt->nRef--;
2918 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002919 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2920 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002921 }else{
drh78f82d12008-09-02 00:52:52 +00002922 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002923 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002924 pList=pList->pNext;
2925 }
drh34004ce2008-07-11 16:15:17 +00002926 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002927 pList->pNext = pBt->pNext;
2928 }
2929 }
drh3285db22007-09-03 22:00:39 +00002930 if( SQLITE_THREADSAFE ){
2931 sqlite3_mutex_free(pBt->mutex);
2932 }
drhe53831d2007-08-17 01:14:38 +00002933 removed = 1;
2934 }
drh067b92b2020-06-19 15:24:12 +00002935 sqlite3_mutex_leave(pMainMtx);
drhe53831d2007-08-17 01:14:38 +00002936 return removed;
2937#else
2938 return 1;
2939#endif
2940}
2941
2942/*
drhf7141992008-06-19 00:16:08 +00002943** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002944** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2945** pointer.
drhf7141992008-06-19 00:16:08 +00002946*/
2947static void allocateTempSpace(BtShared *pBt){
2948 if( !pBt->pTmpSpace ){
2949 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002950
2951 /* One of the uses of pBt->pTmpSpace is to format cells before
2952 ** inserting them into a leaf page (function fillInCell()). If
2953 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2954 ** by the various routines that manipulate binary cells. Which
2955 ** can mean that fillInCell() only initializes the first 2 or 3
2956 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2957 ** it into a database page. This is not actually a problem, but it
2958 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2959 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002960 ** zero the first 4 bytes of temp space here.
2961 **
2962 ** Also: Provide four bytes of initialized space before the
2963 ** beginning of pTmpSpace as an area available to prepend the
2964 ** left-child pointer to the beginning of a cell.
2965 */
2966 if( pBt->pTmpSpace ){
2967 memset(pBt->pTmpSpace, 0, 8);
2968 pBt->pTmpSpace += 4;
2969 }
drhf7141992008-06-19 00:16:08 +00002970 }
2971}
2972
2973/*
2974** Free the pBt->pTmpSpace allocation
2975*/
2976static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002977 if( pBt->pTmpSpace ){
2978 pBt->pTmpSpace -= 4;
2979 sqlite3PageFree(pBt->pTmpSpace);
2980 pBt->pTmpSpace = 0;
2981 }
drhf7141992008-06-19 00:16:08 +00002982}
2983
2984/*
drha059ad02001-04-17 20:09:11 +00002985** Close an open database and invalidate all cursors.
2986*/
danielk1977aef0bf62005-12-30 16:28:01 +00002987int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002988 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00002989
danielk1977aef0bf62005-12-30 16:28:01 +00002990 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002991 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002992 sqlite3BtreeEnter(p);
drh5a4a15f2021-03-18 15:42:59 +00002993
2994 /* Verify that no other cursors have this Btree open */
2995#ifdef SQLITE_DEBUG
2996 {
2997 BtCursor *pCur = pBt->pCursor;
2998 while( pCur ){
2999 BtCursor *pTmp = pCur;
3000 pCur = pCur->pNext;
3001 assert( pTmp->pBtree!=p );
3002
danielk1977aef0bf62005-12-30 16:28:01 +00003003 }
drha059ad02001-04-17 20:09:11 +00003004 }
drh5a4a15f2021-03-18 15:42:59 +00003005#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003006
danielk19778d34dfd2006-01-24 16:37:57 +00003007 /* Rollback any active transaction and free the handle structure.
3008 ** The call to sqlite3BtreeRollback() drops any table-locks held by
3009 ** this handle.
3010 */
drh47b7fc72014-11-11 01:33:57 +00003011 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00003012 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003013
danielk1977aef0bf62005-12-30 16:28:01 +00003014 /* If there are still other outstanding references to the shared-btree
3015 ** structure, return now. The remainder of this procedure cleans
3016 ** up the shared-btree.
3017 */
drhe53831d2007-08-17 01:14:38 +00003018 assert( p->wantToLock==0 && p->locked==0 );
3019 if( !p->sharable || removeFromSharingList(pBt) ){
3020 /* The pBt is no longer on the sharing list, so we can access
3021 ** it without having to hold the mutex.
3022 **
3023 ** Clean out and delete the BtShared object.
3024 */
3025 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00003026 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00003027 if( pBt->xFreeSchema && pBt->pSchema ){
3028 pBt->xFreeSchema(pBt->pSchema);
3029 }
drhb9755982010-07-24 16:34:37 +00003030 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00003031 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00003032 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00003033 }
3034
drhe53831d2007-08-17 01:14:38 +00003035#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00003036 assert( p->wantToLock==0 );
3037 assert( p->locked==0 );
3038 if( p->pPrev ) p->pPrev->pNext = p->pNext;
3039 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00003040#endif
3041
drhe53831d2007-08-17 01:14:38 +00003042 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00003043 return SQLITE_OK;
3044}
3045
3046/*
drh9b0cf342015-11-12 14:57:19 +00003047** Change the "soft" limit on the number of pages in the cache.
3048** Unused and unmodified pages will be recycled when the number of
3049** pages in the cache exceeds this soft limit. But the size of the
3050** cache is allowed to grow larger than this limit if it contains
3051** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00003052*/
danielk1977aef0bf62005-12-30 16:28:01 +00003053int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
3054 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00003055 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00003056 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00003057 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00003058 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00003059 return SQLITE_OK;
3060}
3061
drh9b0cf342015-11-12 14:57:19 +00003062/*
3063** Change the "spill" limit on the number of pages in the cache.
3064** If the number of pages exceeds this limit during a write transaction,
3065** the pager might attempt to "spill" pages to the journal early in
3066** order to free up memory.
3067**
3068** The value returned is the current spill size. If zero is passed
3069** as an argument, no changes are made to the spill size setting, so
3070** using mxPage of 0 is a way to query the current spill size.
3071*/
3072int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
3073 BtShared *pBt = p->pBt;
3074 int res;
3075 assert( sqlite3_mutex_held(p->db->mutex) );
3076 sqlite3BtreeEnter(p);
3077 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
3078 sqlite3BtreeLeave(p);
3079 return res;
3080}
3081
drh18c7e402014-03-14 11:46:10 +00003082#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00003083/*
dan5d8a1372013-03-19 19:28:06 +00003084** Change the limit on the amount of the database file that may be
3085** memory mapped.
3086*/
drh9b4c59f2013-04-15 17:03:42 +00003087int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00003088 BtShared *pBt = p->pBt;
3089 assert( sqlite3_mutex_held(p->db->mutex) );
3090 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00003091 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00003092 sqlite3BtreeLeave(p);
3093 return SQLITE_OK;
3094}
drh18c7e402014-03-14 11:46:10 +00003095#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00003096
3097/*
drh973b6e32003-02-12 14:09:42 +00003098** Change the way data is synced to disk in order to increase or decrease
3099** how well the database resists damage due to OS crashes and power
3100** failures. Level 1 is the same as asynchronous (no syncs() occur and
3101** there is a high probability of damage) Level 2 is the default. There
3102** is a very low but non-zero probability of damage. Level 3 reduces the
3103** probability of damage to near zero but with a write performance reduction.
3104*/
danielk197793758c82005-01-21 08:13:14 +00003105#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00003106int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00003107 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00003108 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00003109){
danielk1977aef0bf62005-12-30 16:28:01 +00003110 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00003111 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00003112 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00003113 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00003114 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00003115 return SQLITE_OK;
3116}
danielk197793758c82005-01-21 08:13:14 +00003117#endif
drh973b6e32003-02-12 14:09:42 +00003118
drh2c8997b2005-08-27 16:36:48 +00003119/*
drh90f5ecb2004-07-22 01:19:35 +00003120** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00003121** Or, if the page size has already been fixed, return SQLITE_READONLY
3122** without changing anything.
drh06f50212004-11-02 14:24:33 +00003123**
3124** The page size must be a power of 2 between 512 and 65536. If the page
3125** size supplied does not meet this constraint then the page size is not
3126** changed.
3127**
3128** Page sizes are constrained to be a power of two so that the region
3129** of the database file used for locking (beginning at PENDING_BYTE,
3130** the first byte past the 1GB boundary, 0x40000000) needs to occur
3131** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00003132**
3133** If parameter nReserve is less than zero, then the number of reserved
3134** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00003135**
drhc9166342012-01-05 23:32:06 +00003136** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00003137** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00003138*/
drhce4869f2009-04-02 20:16:58 +00003139int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00003140 int rc = SQLITE_OK;
drhe937df82020-05-07 01:56:57 +00003141 int x;
danielk1977aef0bf62005-12-30 16:28:01 +00003142 BtShared *pBt = p->pBt;
drhe937df82020-05-07 01:56:57 +00003143 assert( nReserve>=0 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00003144 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00003145 pBt->nReserveWanted = nReserve;
3146 x = pBt->pageSize - pBt->usableSize;
3147 if( nReserve<x ) nReserve = x;
drhc9166342012-01-05 23:32:06 +00003148 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00003149 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00003150 return SQLITE_READONLY;
3151 }
drhf49661a2008-12-10 16:45:50 +00003152 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00003153 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
3154 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00003155 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00003156 assert( !pBt->pCursor );
drh906602a2021-01-21 21:36:25 +00003157 if( nReserve>32 && pageSize==512 ) pageSize = 1024;
drhb2eced52010-08-12 02:41:12 +00003158 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00003159 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00003160 }
drhfa9601a2009-06-18 17:22:39 +00003161 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00003162 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00003163 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00003164 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00003165 return rc;
drh90f5ecb2004-07-22 01:19:35 +00003166}
3167
3168/*
3169** Return the currently defined page size
3170*/
danielk1977aef0bf62005-12-30 16:28:01 +00003171int sqlite3BtreeGetPageSize(Btree *p){
3172 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00003173}
drh7f751222009-03-17 22:33:00 +00003174
dan0094f372012-09-28 20:23:42 +00003175/*
3176** This function is similar to sqlite3BtreeGetReserve(), except that it
3177** may only be called if it is guaranteed that the b-tree mutex is already
3178** held.
3179**
3180** This is useful in one special case in the backup API code where it is
3181** known that the shared b-tree mutex is held, but the mutex on the
3182** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3183** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00003184** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00003185*/
3186int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00003187 int n;
dan0094f372012-09-28 20:23:42 +00003188 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00003189 n = p->pBt->pageSize - p->pBt->usableSize;
3190 return n;
dan0094f372012-09-28 20:23:42 +00003191}
3192
drh7f751222009-03-17 22:33:00 +00003193/*
3194** Return the number of bytes of space at the end of every page that
3195** are intentually left unused. This is the "reserved" space that is
3196** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00003197**
drh4d347662020-04-22 00:50:21 +00003198** The value returned is the larger of the current reserve size and
3199** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3200** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00003201*/
drh45248de2020-04-20 15:18:43 +00003202int sqlite3BtreeGetRequestedReserve(Btree *p){
drhe937df82020-05-07 01:56:57 +00003203 int n1, n2;
drhd677b3d2007-08-20 22:48:41 +00003204 sqlite3BtreeEnter(p);
drhe937df82020-05-07 01:56:57 +00003205 n1 = (int)p->pBt->nReserveWanted;
3206 n2 = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00003207 sqlite3BtreeLeave(p);
drhe937df82020-05-07 01:56:57 +00003208 return n1>n2 ? n1 : n2;
drh2011d5f2004-07-22 02:40:37 +00003209}
drhf8e632b2007-05-08 14:51:36 +00003210
drhad0961b2015-02-21 00:19:25 +00003211
drhf8e632b2007-05-08 14:51:36 +00003212/*
3213** Set the maximum page count for a database if mxPage is positive.
3214** No changes are made if mxPage is 0 or negative.
3215** Regardless of the value of mxPage, return the maximum page count.
3216*/
drhe9261db2020-07-20 12:47:32 +00003217Pgno sqlite3BtreeMaxPageCount(Btree *p, Pgno mxPage){
3218 Pgno n;
drhd677b3d2007-08-20 22:48:41 +00003219 sqlite3BtreeEnter(p);
3220 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
3221 sqlite3BtreeLeave(p);
3222 return n;
drhf8e632b2007-05-08 14:51:36 +00003223}
drh5b47efa2010-02-12 18:18:39 +00003224
3225/*
drha5907a82017-06-19 11:44:22 +00003226** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3227**
3228** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3229** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3230** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3231** newFlag==(-1) No changes
3232**
3233** This routine acts as a query if newFlag is less than zero
3234**
3235** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3236** freelist leaf pages are not written back to the database. Thus in-page
3237** deleted content is cleared, but freelist deleted content is not.
3238**
3239** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3240** that freelist leaf pages are written back into the database, increasing
3241** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00003242*/
3243int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
3244 int b;
drhaf034ed2010-02-12 19:46:26 +00003245 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00003246 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00003247 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
3248 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00003249 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00003250 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
3251 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
3252 }
3253 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00003254 sqlite3BtreeLeave(p);
3255 return b;
3256}
drh90f5ecb2004-07-22 01:19:35 +00003257
3258/*
danielk1977951af802004-11-05 15:45:09 +00003259** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3260** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3261** is disabled. The default value for the auto-vacuum property is
3262** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3263*/
danielk1977aef0bf62005-12-30 16:28:01 +00003264int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00003265#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00003266 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00003267#else
danielk1977dddbcdc2007-04-26 14:42:34 +00003268 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003269 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00003270 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00003271
3272 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00003273 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003274 rc = SQLITE_READONLY;
3275 }else{
drh076d4662009-02-18 20:31:18 +00003276 pBt->autoVacuum = av ?1:0;
3277 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00003278 }
drhd677b3d2007-08-20 22:48:41 +00003279 sqlite3BtreeLeave(p);
3280 return rc;
danielk1977951af802004-11-05 15:45:09 +00003281#endif
3282}
3283
3284/*
3285** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3286** enabled 1 is returned. Otherwise 0.
3287*/
danielk1977aef0bf62005-12-30 16:28:01 +00003288int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003289#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003290 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003291#else
drhd677b3d2007-08-20 22:48:41 +00003292 int rc;
3293 sqlite3BtreeEnter(p);
3294 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003295 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3296 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3297 BTREE_AUTOVACUUM_INCR
3298 );
drhd677b3d2007-08-20 22:48:41 +00003299 sqlite3BtreeLeave(p);
3300 return rc;
danielk1977951af802004-11-05 15:45:09 +00003301#endif
3302}
3303
danf5da7db2017-03-16 18:14:39 +00003304/*
3305** If the user has not set the safety-level for this database connection
3306** using "PRAGMA synchronous", and if the safety-level is not already
3307** set to the value passed to this function as the second parameter,
3308** set it so.
3309*/
drh2ed57372017-10-05 20:57:38 +00003310#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3311 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003312static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3313 sqlite3 *db;
3314 Db *pDb;
3315 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3316 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3317 if( pDb->bSyncSet==0
3318 && pDb->safety_level!=safety_level
3319 && pDb!=&db->aDb[1]
3320 ){
3321 pDb->safety_level = safety_level;
3322 sqlite3PagerSetFlags(pBt->pPager,
3323 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3324 }
3325 }
3326}
3327#else
danfc8f4b62017-03-16 18:54:42 +00003328# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003329#endif
danielk1977951af802004-11-05 15:45:09 +00003330
drh0314cf32018-04-28 01:27:09 +00003331/* Forward declaration */
3332static int newDatabase(BtShared*);
3333
3334
danielk1977951af802004-11-05 15:45:09 +00003335/*
drha34b6762004-05-07 13:30:42 +00003336** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003337** also acquire a readlock on that file.
3338**
3339** SQLITE_OK is returned on success. If the file is not a
3340** well-formed database file, then SQLITE_CORRUPT is returned.
3341** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003342** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003343*/
danielk1977aef0bf62005-12-30 16:28:01 +00003344static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003345 int rc; /* Result code from subfunctions */
3346 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003347 u32 nPage; /* Number of pages in the database */
3348 u32 nPageFile = 0; /* Number of pages in the database file */
3349 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003350
drh1fee73e2007-08-29 04:00:57 +00003351 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003352 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003353 rc = sqlite3PagerSharedLock(pBt->pPager);
3354 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003355 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003356 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003357
3358 /* Do some checking to help insure the file we opened really is
3359 ** a valid database file.
3360 */
drhc2a4bab2010-04-02 12:46:45 +00003361 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003362 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003363 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003364 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003365 }
drh0314cf32018-04-28 01:27:09 +00003366 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3367 nPage = 0;
3368 }
drh97b59a52010-03-31 02:31:33 +00003369 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003370 u32 pageSize;
3371 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003372 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003373 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003374 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3375 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3376 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003377 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003378 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003379 }
dan5cf53532010-05-01 16:40:20 +00003380
3381#ifdef SQLITE_OMIT_WAL
3382 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003383 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003384 }
3385 if( page1[19]>1 ){
3386 goto page1_init_failed;
3387 }
3388#else
dane04dc882010-04-20 18:53:15 +00003389 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003390 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003391 }
dane04dc882010-04-20 18:53:15 +00003392 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003393 goto page1_init_failed;
3394 }
drhe5ae5732008-06-15 02:51:47 +00003395
dana470aeb2010-04-21 11:43:38 +00003396 /* If the write version is set to 2, this database should be accessed
3397 ** in WAL mode. If the log is not already open, open it now. Then
3398 ** return SQLITE_OK and return without populating BtShared.pPage1.
3399 ** The caller detects this and calls this function again. This is
3400 ** required as the version of page 1 currently in the page1 buffer
3401 ** may not be the latest version - there may be a newer one in the log
3402 ** file.
3403 */
drhc9166342012-01-05 23:32:06 +00003404 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003405 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003406 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003407 if( rc!=SQLITE_OK ){
3408 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003409 }else{
danf5da7db2017-03-16 18:14:39 +00003410 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003411 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003412 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003413 return SQLITE_OK;
3414 }
dane04dc882010-04-20 18:53:15 +00003415 }
dan8b5444b2010-04-27 14:37:47 +00003416 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003417 }else{
3418 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003419 }
dan5cf53532010-05-01 16:40:20 +00003420#endif
dane04dc882010-04-20 18:53:15 +00003421
drh113762a2014-11-19 16:36:25 +00003422 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3423 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3424 **
drhe5ae5732008-06-15 02:51:47 +00003425 ** The original design allowed these amounts to vary, but as of
3426 ** version 3.6.0, we require them to be fixed.
3427 */
3428 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3429 goto page1_init_failed;
3430 }
drh113762a2014-11-19 16:36:25 +00003431 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3432 ** determined by the 2-byte integer located at an offset of 16 bytes from
3433 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003434 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003435 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3436 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003437 if( ((pageSize-1)&pageSize)!=0
3438 || pageSize>SQLITE_MAX_PAGE_SIZE
3439 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003440 ){
drh07d183d2005-05-01 22:52:42 +00003441 goto page1_init_failed;
3442 }
drhdcc27002019-01-06 02:06:31 +00003443 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003444 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003445 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3446 ** integer at offset 20 is the number of bytes of space at the end of
3447 ** each page to reserve for extensions.
3448 **
3449 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3450 ** determined by the one-byte unsigned integer found at an offset of 20
3451 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003452 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003453 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003454 /* After reading the first page of the database assuming a page size
3455 ** of BtShared.pageSize, we have discovered that the page-size is
3456 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3457 ** zero and return SQLITE_OK. The caller will call this function
3458 ** again with the correct page-size.
3459 */
drh3908fe92017-09-01 14:50:19 +00003460 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003461 pBt->usableSize = usableSize;
3462 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003463 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003464 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3465 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003466 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003467 }
drh0f1c2eb2018-11-03 17:31:48 +00003468 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003469 rc = SQLITE_CORRUPT_BKPT;
3470 goto page1_init_failed;
3471 }
drh113762a2014-11-19 16:36:25 +00003472 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3473 ** be less than 480. In other words, if the page size is 512, then the
3474 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003475 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003476 goto page1_init_failed;
3477 }
drh43b18e12010-08-17 19:40:08 +00003478 pBt->pageSize = pageSize;
3479 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003480#ifndef SQLITE_OMIT_AUTOVACUUM
3481 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003482 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003483#endif
drh306dc212001-05-21 13:45:10 +00003484 }
drhb6f41482004-05-14 01:58:11 +00003485
3486 /* maxLocal is the maximum amount of payload to store locally for
3487 ** a cell. Make sure it is small enough so that at least minFanout
3488 ** cells can will fit on one page. We assume a 10-byte page header.
3489 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003490 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003491 ** 4-byte child pointer
3492 ** 9-byte nKey value
3493 ** 4-byte nData value
3494 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003495 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003496 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3497 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003498 */
shaneh1df2db72010-08-18 02:28:48 +00003499 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3500 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3501 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3502 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003503 if( pBt->maxLocal>127 ){
3504 pBt->max1bytePayload = 127;
3505 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003506 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003507 }
drh2e38c322004-09-03 18:38:44 +00003508 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003509 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003510 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003511 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003512
drh72f82862001-05-24 21:06:34 +00003513page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003514 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003515 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003516 return rc;
drh306dc212001-05-21 13:45:10 +00003517}
3518
drh85ec3b62013-05-14 23:12:06 +00003519#ifndef NDEBUG
3520/*
3521** Return the number of cursors open on pBt. This is for use
3522** in assert() expressions, so it is only compiled if NDEBUG is not
3523** defined.
3524**
3525** Only write cursors are counted if wrOnly is true. If wrOnly is
3526** false then all cursors are counted.
3527**
3528** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003529** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003530** have been tripped into the CURSOR_FAULT state are not counted.
3531*/
3532static int countValidCursors(BtShared *pBt, int wrOnly){
3533 BtCursor *pCur;
3534 int r = 0;
3535 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003536 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3537 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003538 }
3539 return r;
3540}
3541#endif
3542
drh306dc212001-05-21 13:45:10 +00003543/*
drhb8ca3072001-12-05 00:21:20 +00003544** If there are no outstanding cursors and we are not in the middle
3545** of a transaction but there is a read lock on the database, then
3546** this routine unrefs the first page of the database file which
3547** has the effect of releasing the read lock.
3548**
drhb8ca3072001-12-05 00:21:20 +00003549** If there is a transaction in progress, this routine is a no-op.
3550*/
danielk1977aef0bf62005-12-30 16:28:01 +00003551static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003552 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003553 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003554 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003555 MemPage *pPage1 = pBt->pPage1;
3556 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003557 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003558 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003559 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003560 }
3561}
3562
3563/*
drhe39f2f92009-07-23 01:43:59 +00003564** If pBt points to an empty file then convert that empty file
3565** into a new empty database by initializing the first page of
3566** the database.
drh8b2f49b2001-06-08 00:21:52 +00003567*/
danielk1977aef0bf62005-12-30 16:28:01 +00003568static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003569 MemPage *pP1;
3570 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003571 int rc;
drhd677b3d2007-08-20 22:48:41 +00003572
drh1fee73e2007-08-29 04:00:57 +00003573 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003574 if( pBt->nPage>0 ){
3575 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003576 }
drh3aac2dd2004-04-26 14:10:20 +00003577 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003578 assert( pP1!=0 );
3579 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003580 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003581 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003582 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3583 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003584 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3585 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003586 data[18] = 1;
3587 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003588 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3589 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003590 data[21] = 64;
3591 data[22] = 32;
3592 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003593 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003594 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003595 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003596#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003597 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003598 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003599 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003600 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003601#endif
drhdd3cd972010-03-27 17:12:36 +00003602 pBt->nPage = 1;
3603 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003604 return SQLITE_OK;
3605}
3606
3607/*
danb483eba2012-10-13 19:58:11 +00003608** Initialize the first page of the database file (creating a database
3609** consisting of a single page and no schema objects). Return SQLITE_OK
3610** if successful, or an SQLite error code otherwise.
3611*/
3612int sqlite3BtreeNewDb(Btree *p){
3613 int rc;
3614 sqlite3BtreeEnter(p);
3615 p->pBt->nPage = 0;
3616 rc = newDatabase(p->pBt);
3617 sqlite3BtreeLeave(p);
3618 return rc;
3619}
3620
3621/*
danielk1977ee5741e2004-05-31 10:01:34 +00003622** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003623** is started if the second argument is nonzero, otherwise a read-
3624** transaction. If the second argument is 2 or more and exclusive
3625** transaction is started, meaning that no other process is allowed
3626** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003627** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003628** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003629**
danielk1977ee5741e2004-05-31 10:01:34 +00003630** A write-transaction must be started before attempting any
3631** changes to the database. None of the following routines
3632** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003633**
drh23e11ca2004-05-04 17:27:28 +00003634** sqlite3BtreeCreateTable()
3635** sqlite3BtreeCreateIndex()
3636** sqlite3BtreeClearTable()
3637** sqlite3BtreeDropTable()
3638** sqlite3BtreeInsert()
3639** sqlite3BtreeDelete()
3640** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003641**
drhb8ef32c2005-03-14 02:01:49 +00003642** If an initial attempt to acquire the lock fails because of lock contention
3643** and the database was previously unlocked, then invoke the busy handler
3644** if there is one. But if there was previously a read-lock, do not
3645** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3646** returned when there is already a read-lock in order to avoid a deadlock.
3647**
3648** Suppose there are two processes A and B. A has a read lock and B has
3649** a reserved lock. B tries to promote to exclusive but is blocked because
3650** of A's read lock. A tries to promote to reserved but is blocked by B.
3651** One or the other of the two processes must give way or there can be
3652** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3653** when A already has a read lock, we encourage A to give up and let B
3654** proceed.
drha059ad02001-04-17 20:09:11 +00003655*/
drhbb2d9b12018-06-06 16:28:40 +00003656int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003657 BtShared *pBt = p->pBt;
dan7bb8b8a2020-05-06 20:27:18 +00003658 Pager *pPager = pBt->pPager;
danielk1977ee5741e2004-05-31 10:01:34 +00003659 int rc = SQLITE_OK;
dan9a477712020-07-16 20:24:11 +00003660 int bConcurrent = (p->db->eConcurrent && !ISAUTOVACUUM);
danielk1977ee5741e2004-05-31 10:01:34 +00003661
drhd677b3d2007-08-20 22:48:41 +00003662 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003663 btreeIntegrity(p);
3664
danielk1977ee5741e2004-05-31 10:01:34 +00003665 /* If the btree is already in a write-transaction, or it
3666 ** is already in a read-transaction and a read-transaction
3667 ** is requested, this is a no-op.
3668 */
danielk1977aef0bf62005-12-30 16:28:01 +00003669 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003670 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003671 }
dan56c517a2013-09-26 11:04:33 +00003672 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003673
danea933f02018-07-19 11:44:02 +00003674 if( (p->db->flags & SQLITE_ResetDatabase)
dan7bb8b8a2020-05-06 20:27:18 +00003675 && sqlite3PagerIsreadonly(pPager)==0
danea933f02018-07-19 11:44:02 +00003676 ){
3677 pBt->btsFlags &= ~BTS_READ_ONLY;
3678 }
3679
drhb8ef32c2005-03-14 02:01:49 +00003680 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003681 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003682 rc = SQLITE_READONLY;
3683 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003684 }
3685
danielk1977404ca072009-03-16 13:19:36 +00003686#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003687 {
3688 sqlite3 *pBlock = 0;
3689 /* If another database handle has already opened a write transaction
3690 ** on this shared-btree structure and a second write transaction is
3691 ** requested, return SQLITE_LOCKED.
3692 */
3693 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3694 || (pBt->btsFlags & BTS_PENDING)!=0
3695 ){
3696 pBlock = pBt->pWriter->db;
3697 }else if( wrflag>1 ){
3698 BtLock *pIter;
3699 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3700 if( pIter->pBtree!=p ){
3701 pBlock = pIter->pBtree->db;
3702 break;
3703 }
danielk1977641b0f42007-12-21 04:47:25 +00003704 }
3705 }
drh5a1fb182016-01-08 19:34:39 +00003706 if( pBlock ){
3707 sqlite3ConnectionBlocked(p->db, pBlock);
3708 rc = SQLITE_LOCKED_SHAREDCACHE;
3709 goto trans_begun;
3710 }
danielk1977404ca072009-03-16 13:19:36 +00003711 }
danielk1977641b0f42007-12-21 04:47:25 +00003712#endif
3713
danielk1977602b4662009-07-02 07:47:33 +00003714 /* Any read-only or read-write transaction implies a read-lock on
3715 ** page 1. So if some other shared-cache client already has a write-lock
3716 ** on page 1, the transaction cannot be opened. */
drh346a70c2020-06-15 20:27:35 +00003717 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
drh4c301aa2009-07-15 17:25:45 +00003718 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003719
drhc9166342012-01-05 23:32:06 +00003720 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3721 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003722 do {
dan11a81822020-05-07 14:26:40 +00003723 sqlite3PagerWalDb(pPager, p->db);
dan58021b22020-05-05 20:30:07 +00003724
3725#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3726 /* If transitioning from no transaction directly to a write transaction,
3727 ** block for the WRITER lock first if possible. */
3728 if( pBt->pPage1==0 && wrflag ){
3729 assert( pBt->inTransaction==TRANS_NONE );
dan861fb1e2020-05-06 19:14:41 +00003730 rc = sqlite3PagerWalWriteLock(pPager, 1);
dan7bb8b8a2020-05-06 20:27:18 +00003731 if( rc!=SQLITE_BUSY && rc!=SQLITE_OK ) break;
dan58021b22020-05-05 20:30:07 +00003732 }
3733#endif
3734
danielk1977295dc102009-04-01 19:07:03 +00003735 /* Call lockBtree() until either pBt->pPage1 is populated or
3736 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3737 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3738 ** reading page 1 it discovers that the page-size of the database
3739 ** file is not pBt->pageSize. In this case lockBtree() will update
3740 ** pBt->pageSize to the page-size of the file on disk.
3741 */
3742 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003743
drhb8ef32c2005-03-14 02:01:49 +00003744 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003745 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003746 rc = SQLITE_READONLY;
3747 }else{
dan987f8212015-08-27 17:42:38 +00003748 int exFlag = bConcurrent ? -1 : (wrflag>1);
dancf7c1bf2020-05-18 15:41:31 +00003749 rc = sqlite3PagerBegin(pPager, exFlag, sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003750 if( rc==SQLITE_OK ){
3751 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003752 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3753 /* if there was no transaction opened when this function was
3754 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3755 ** code to SQLITE_BUSY. */
3756 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003757 }
drhb8ef32c2005-03-14 02:01:49 +00003758 }
3759 }
3760
danielk1977bd434552009-03-18 10:33:00 +00003761 if( rc!=SQLITE_OK ){
danfc87ab82020-05-06 19:22:59 +00003762 (void)sqlite3PagerWalWriteLock(pPager, 0);
drhb8ef32c2005-03-14 02:01:49 +00003763 unlockBtreeIfUnused(pBt);
3764 }
danf9b76712010-06-01 14:12:45 +00003765 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003766 btreeInvokeBusyHandler(pBt) );
dan7bb8b8a2020-05-06 20:27:18 +00003767 sqlite3PagerWalDb(pPager, 0);
3768#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3769 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3770#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003771
3772 if( rc==SQLITE_OK ){
3773 if( p->inTrans==TRANS_NONE ){
3774 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003775#ifndef SQLITE_OMIT_SHARED_CACHE
3776 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003777 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003778 p->lock.eLock = READ_LOCK;
3779 p->lock.pNext = pBt->pLock;
3780 pBt->pLock = &p->lock;
3781 }
3782#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003783 }
3784 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3785 if( p->inTrans>pBt->inTransaction ){
3786 pBt->inTransaction = p->inTrans;
3787 }
danielk1977404ca072009-03-16 13:19:36 +00003788 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003789 MemPage *pPage1 = pBt->pPage1;
3790#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003791 assert( !pBt->pWriter );
3792 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003793 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3794 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003795#endif
dan59257dc2010-08-04 11:34:31 +00003796
3797 /* If the db-size header field is incorrect (as it may be if an old
3798 ** client has been writing the database file), update it now. Doing
3799 ** this sooner rather than later means the database size can safely
3800 ** re-read the database size from page 1 if a savepoint or transaction
3801 ** rollback occurs within the transaction.
3802 */
3803 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3804 rc = sqlite3PagerWrite(pPage1->pDbPage);
3805 if( rc==SQLITE_OK ){
3806 put4byte(&pPage1->aData[28], pBt->nPage);
3807 }
3808 }
3809 }
danielk1977aef0bf62005-12-30 16:28:01 +00003810 }
3811
drhd677b3d2007-08-20 22:48:41 +00003812trans_begun:
drh01be4632015-09-03 15:17:12 +00003813#ifndef SQLITE_OMIT_CONCURRENT
dan987f8212015-08-27 17:42:38 +00003814 if( bConcurrent && rc==SQLITE_OK && sqlite3PagerIsWal(pBt->pPager) ){
3815 rc = sqlite3PagerBeginConcurrent(pBt->pPager);
3816 if( rc==SQLITE_OK && wrflag ){
3817 rc = btreePtrmapAllocate(pBt);
3818 }
3819 }
3820#endif
3821
drhbb2d9b12018-06-06 16:28:40 +00003822 if( rc==SQLITE_OK ){
3823 if( pSchemaVersion ){
3824 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3825 }
3826 if( wrflag ){
3827 /* This call makes sure that the pager has the correct number of
3828 ** open savepoints. If the second parameter is greater than 0 and
3829 ** the sub-journal is not already open, then it will be opened here.
3830 */
drh0c1fa5c2018-06-06 17:03:53 +00003831 int nSavepoint = p->db->nSavepoint;
dancf7c1bf2020-05-18 15:41:31 +00003832 rc = sqlite3PagerOpenSavepoint(pPager, nSavepoint);
drh0c1fa5c2018-06-06 17:03:53 +00003833 if( rc==SQLITE_OK && nSavepoint ){
3834 rc = btreePtrmapBegin(pBt, nSavepoint);
3835 }
dan7b3d71e2015-08-19 20:27:05 +00003836 }
danielk1977fd7f0452008-12-17 17:30:26 +00003837 }
danielk197712dd5492008-12-18 15:45:07 +00003838
danielk1977aef0bf62005-12-30 16:28:01 +00003839 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003840 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003841 return rc;
drha059ad02001-04-17 20:09:11 +00003842}
3843
danielk1977687566d2004-11-02 12:56:41 +00003844#ifndef SQLITE_OMIT_AUTOVACUUM
3845
3846/*
3847** Set the pointer-map entries for all children of page pPage. Also, if
3848** pPage contains cells that point to overflow pages, set the pointer
3849** map entries for the overflow pages as well.
3850*/
3851static int setChildPtrmaps(MemPage *pPage){
3852 int i; /* Counter variable */
3853 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003854 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003855 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003856 Pgno pgno = pPage->pgno;
3857
drh1fee73e2007-08-29 04:00:57 +00003858 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003859 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003860 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003861 nCell = pPage->nCell;
3862
3863 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003864 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003865
drh0f1bf4c2019-01-13 20:17:21 +00003866 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003867
danielk1977687566d2004-11-02 12:56:41 +00003868 if( !pPage->leaf ){
3869 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003870 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003871 }
3872 }
3873
3874 if( !pPage->leaf ){
3875 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003876 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003877 }
3878
danielk1977687566d2004-11-02 12:56:41 +00003879 return rc;
3880}
3881
3882/*
drhf3aed592009-07-08 18:12:49 +00003883** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3884** that it points to iTo. Parameter eType describes the type of pointer to
3885** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003886**
3887** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3888** page of pPage.
3889**
3890** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3891** page pointed to by one of the cells on pPage.
3892**
3893** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3894** overflow page in the list.
3895*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003896static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003897 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003898 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003899 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003900 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003901 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003902 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003903 }
danielk1977f78fc082004-11-02 14:40:32 +00003904 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003905 }else{
danielk1977687566d2004-11-02 12:56:41 +00003906 int i;
3907 int nCell;
drha1f75d92015-05-24 10:18:12 +00003908 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003909
drh14e845a2017-05-25 21:35:56 +00003910 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003911 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003912 nCell = pPage->nCell;
3913
danielk1977687566d2004-11-02 12:56:41 +00003914 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003915 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003916 if( eType==PTRMAP_OVERFLOW1 ){
3917 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003918 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003919 if( info.nLocal<info.nPayload ){
3920 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003921 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003922 }
3923 if( iFrom==get4byte(pCell+info.nSize-4) ){
3924 put4byte(pCell+info.nSize-4, iTo);
3925 break;
3926 }
danielk1977687566d2004-11-02 12:56:41 +00003927 }
3928 }else{
3929 if( get4byte(pCell)==iFrom ){
3930 put4byte(pCell, iTo);
3931 break;
3932 }
3933 }
3934 }
3935
3936 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003937 if( eType!=PTRMAP_BTREE ||
3938 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003939 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003940 }
danielk1977687566d2004-11-02 12:56:41 +00003941 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3942 }
danielk1977687566d2004-11-02 12:56:41 +00003943 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003944 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003945}
3946
danielk1977003ba062004-11-04 02:57:33 +00003947
danielk19777701e812005-01-10 12:59:51 +00003948/*
3949** Move the open database page pDbPage to location iFreePage in the
3950** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003951**
3952** The isCommit flag indicates that there is no need to remember that
3953** the journal needs to be sync()ed before database page pDbPage->pgno
3954** can be written to. The caller has already promised not to write to that
3955** page.
danielk19777701e812005-01-10 12:59:51 +00003956*/
danielk1977003ba062004-11-04 02:57:33 +00003957static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003958 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003959 MemPage *pDbPage, /* Open page to move */
3960 u8 eType, /* Pointer map 'type' entry for pDbPage */
3961 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003962 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003963 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003964){
3965 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3966 Pgno iDbPage = pDbPage->pgno;
3967 Pager *pPager = pBt->pPager;
3968 int rc;
3969
danielk1977a0bf2652004-11-04 14:30:04 +00003970 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3971 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003972 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003973 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003974 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003975
drh85b623f2007-12-13 21:54:09 +00003976 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003977 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3978 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003979 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003980 if( rc!=SQLITE_OK ){
3981 return rc;
3982 }
3983 pDbPage->pgno = iFreePage;
3984
3985 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3986 ** that point to overflow pages. The pointer map entries for all these
3987 ** pages need to be changed.
3988 **
3989 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3990 ** pointer to a subsequent overflow page. If this is the case, then
3991 ** the pointer map needs to be updated for the subsequent overflow page.
3992 */
danielk1977a0bf2652004-11-04 14:30:04 +00003993 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003994 rc = setChildPtrmaps(pDbPage);
3995 if( rc!=SQLITE_OK ){
3996 return rc;
3997 }
3998 }else{
3999 Pgno nextOvfl = get4byte(pDbPage->aData);
4000 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00004001 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00004002 if( rc!=SQLITE_OK ){
4003 return rc;
4004 }
4005 }
4006 }
4007
4008 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
4009 ** that it points at iFreePage. Also fix the pointer map entry for
4010 ** iPtrPage.
4011 */
danielk1977a0bf2652004-11-04 14:30:04 +00004012 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00004013 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00004014 if( rc!=SQLITE_OK ){
4015 return rc;
4016 }
danielk19773b8a05f2007-03-19 17:44:26 +00004017 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00004018 if( rc!=SQLITE_OK ){
4019 releasePage(pPtrPage);
4020 return rc;
4021 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00004022 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00004023 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00004024 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00004025 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00004026 }
danielk1977003ba062004-11-04 02:57:33 +00004027 }
danielk1977003ba062004-11-04 02:57:33 +00004028 return rc;
4029}
4030
danielk1977dddbcdc2007-04-26 14:42:34 +00004031/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00004032static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00004033
4034/*
dan51f0b6d2013-02-22 20:16:34 +00004035** Perform a single step of an incremental-vacuum. If successful, return
4036** SQLITE_OK. If there is no work to do (and therefore no point in
4037** calling this function again), return SQLITE_DONE. Or, if an error
4038** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00004039**
peter.d.reid60ec9142014-09-06 16:39:46 +00004040** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00004041** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00004042**
dan51f0b6d2013-02-22 20:16:34 +00004043** Parameter nFin is the number of pages that this database would contain
4044** were this function called until it returns SQLITE_DONE.
4045**
4046** If the bCommit parameter is non-zero, this function assumes that the
4047** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00004048** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00004049** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00004050*/
dan51f0b6d2013-02-22 20:16:34 +00004051static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00004052 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00004053 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004054
drh1fee73e2007-08-29 04:00:57 +00004055 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00004056 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00004057
4058 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00004059 u8 eType;
4060 Pgno iPtrPage;
4061
4062 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00004063 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00004064 return SQLITE_DONE;
4065 }
4066
4067 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
4068 if( rc!=SQLITE_OK ){
4069 return rc;
4070 }
4071 if( eType==PTRMAP_ROOTPAGE ){
4072 return SQLITE_CORRUPT_BKPT;
4073 }
4074
4075 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00004076 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00004077 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00004078 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00004079 ** truncated to zero after this function returns, so it doesn't
4080 ** matter if it still contains some garbage entries.
4081 */
4082 Pgno iFreePg;
4083 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00004084 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00004085 if( rc!=SQLITE_OK ){
4086 return rc;
4087 }
4088 assert( iFreePg==iLastPg );
4089 releasePage(pFreePg);
4090 }
4091 } else {
4092 Pgno iFreePg; /* Index of free page to move pLastPg to */
4093 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00004094 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
4095 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00004096
drhb00fc3b2013-08-21 23:42:32 +00004097 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00004098 if( rc!=SQLITE_OK ){
4099 return rc;
4100 }
4101
dan51f0b6d2013-02-22 20:16:34 +00004102 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00004103 ** is swapped with the first free page pulled off the free list.
4104 **
dan51f0b6d2013-02-22 20:16:34 +00004105 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00004106 ** looping until a free-page located within the first nFin pages
4107 ** of the file is found.
4108 */
dan51f0b6d2013-02-22 20:16:34 +00004109 if( bCommit==0 ){
4110 eMode = BTALLOC_LE;
4111 iNear = nFin;
4112 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004113 do {
4114 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00004115 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00004116 if( rc!=SQLITE_OK ){
4117 releasePage(pLastPg);
4118 return rc;
4119 }
4120 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00004121 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00004122 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00004123
dane1df4e32013-03-05 11:27:04 +00004124 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00004125 releasePage(pLastPg);
4126 if( rc!=SQLITE_OK ){
4127 return rc;
danielk1977662278e2007-11-05 15:30:12 +00004128 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004129 }
4130 }
4131
dan51f0b6d2013-02-22 20:16:34 +00004132 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00004133 do {
danielk19773460d192008-12-27 15:23:13 +00004134 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00004135 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
4136 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004137 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00004138 }
4139 return SQLITE_OK;
4140}
4141
4142/*
dan51f0b6d2013-02-22 20:16:34 +00004143** The database opened by the first argument is an auto-vacuum database
4144** nOrig pages in size containing nFree free pages. Return the expected
4145** size of the database in pages following an auto-vacuum operation.
4146*/
4147static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
4148 int nEntry; /* Number of entries on one ptrmap page */
4149 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
4150 Pgno nFin; /* Return value */
4151
4152 nEntry = pBt->usableSize/5;
4153 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
4154 nFin = nOrig - nFree - nPtrmap;
4155 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
4156 nFin--;
4157 }
4158 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
4159 nFin--;
4160 }
dan51f0b6d2013-02-22 20:16:34 +00004161
4162 return nFin;
4163}
4164
4165/*
danielk1977dddbcdc2007-04-26 14:42:34 +00004166** A write-transaction must be opened before calling this function.
4167** It performs a single unit of work towards an incremental vacuum.
4168**
4169** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00004170** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00004171** SQLITE_OK is returned. Otherwise an SQLite error code.
4172*/
4173int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00004174 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004175 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004176
4177 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00004178 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
4179 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00004180 rc = SQLITE_DONE;
4181 }else{
dan51f0b6d2013-02-22 20:16:34 +00004182 Pgno nOrig = btreePagecount(pBt);
4183 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
4184 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
4185
drhbc2cf3b2020-07-14 12:40:53 +00004186 if( nOrig<nFin || nFree>=nOrig ){
dan91384712013-02-24 11:50:43 +00004187 rc = SQLITE_CORRUPT_BKPT;
4188 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00004189 rc = saveAllCursors(pBt, 0, 0);
4190 if( rc==SQLITE_OK ){
4191 invalidateAllOverflowCache(pBt);
4192 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
4193 }
dan51f0b6d2013-02-22 20:16:34 +00004194 if( rc==SQLITE_OK ){
4195 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4196 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
4197 }
4198 }else{
4199 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00004200 }
danielk1977dddbcdc2007-04-26 14:42:34 +00004201 }
drhd677b3d2007-08-20 22:48:41 +00004202 sqlite3BtreeLeave(p);
4203 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00004204}
4205
4206/*
danielk19773b8a05f2007-03-19 17:44:26 +00004207** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00004208** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00004209**
4210** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
4211** the database file should be truncated to during the commit process.
4212** i.e. the database has been reorganized so that only the first *pnTrunc
4213** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00004214*/
danielk19773460d192008-12-27 15:23:13 +00004215static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00004216 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00004217 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00004218 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00004219
drh1fee73e2007-08-29 04:00:57 +00004220 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00004221 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00004222 assert(pBt->autoVacuum);
4223 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00004224 Pgno nFin; /* Number of pages in database after autovacuuming */
4225 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00004226 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00004227 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00004228
drhb1299152010-03-30 22:58:33 +00004229 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00004230 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
4231 /* It is not possible to create a database for which the final page
4232 ** is either a pointer-map page or the pending-byte page. If one
4233 ** is encountered, this indicates corruption.
4234 */
danielk19773460d192008-12-27 15:23:13 +00004235 return SQLITE_CORRUPT_BKPT;
4236 }
danielk1977ef165ce2009-04-06 17:50:03 +00004237
danielk19773460d192008-12-27 15:23:13 +00004238 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00004239 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00004240 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00004241 if( nFin<nOrig ){
4242 rc = saveAllCursors(pBt, 0, 0);
4243 }
danielk19773460d192008-12-27 15:23:13 +00004244 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00004245 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00004246 }
danielk19773460d192008-12-27 15:23:13 +00004247 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00004248 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4249 put4byte(&pBt->pPage1->aData[32], 0);
4250 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00004251 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00004252 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00004253 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00004254 }
4255 if( rc!=SQLITE_OK ){
4256 sqlite3PagerRollback(pPager);
4257 }
danielk1977687566d2004-11-02 12:56:41 +00004258 }
4259
dan0aed84d2013-03-26 14:16:20 +00004260 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00004261 return rc;
4262}
danielk1977dddbcdc2007-04-26 14:42:34 +00004263
danielk1977a50d9aa2009-06-08 14:49:45 +00004264#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4265# define setChildPtrmaps(x) SQLITE_OK
4266#endif
danielk1977687566d2004-11-02 12:56:41 +00004267
drh01be4632015-09-03 15:17:12 +00004268#ifndef SQLITE_OMIT_CONCURRENT
danielk1977687566d2004-11-02 12:56:41 +00004269/*
danbf3cf572015-08-24 19:56:04 +00004270** This function is called as part of merging an CONCURRENT transaction with
dan5cf03722015-08-24 10:05:03 +00004271** the snapshot at the head of the wal file. It relocates all pages in the
4272** range iFirst..iLast, inclusive. It is assumed that the BtreePtrmap
4273** structure at BtShared.pMap contains the location of the pointers to each
4274** page in the range.
4275**
4276** If pnCurrent is NULL, then all pages in the range are moved to currently
4277** free locations (i.e. free-list entries) within the database file before page
4278** iFirst.
4279**
4280** Or, if pnCurrent is not NULL, then it points to a value containing the
4281** current size of the database file in pages. In this case, all pages are
4282** relocated to the end of the database file - page iFirst is relocated to
4283** page (*pnCurrent+1), page iFirst+1 to page (*pnCurrent+2), and so on.
4284** Value *pnCurrent is set to the new size of the database before this
4285** function returns.
4286**
4287** If no error occurs, SQLITE_OK is returned. Otherwise, an SQLite error code.
4288*/
4289static int btreeRelocateRange(
4290 BtShared *pBt, /* B-tree handle */
4291 Pgno iFirst, /* First page to relocate */
4292 Pgno iLast, /* Last page to relocate */
4293 Pgno *pnCurrent /* If not NULL, IN/OUT: Database size */
4294){
4295 int rc = SQLITE_OK;
4296 BtreePtrmap *pMap = pBt->pMap;
4297 Pgno iPg;
4298
4299 for(iPg=iFirst; iPg<=iLast && rc==SQLITE_OK; iPg++){
4300 MemPage *pFree = 0; /* Page allocated from free-list */
4301 MemPage *pPg = 0;
4302 Pgno iNew; /* New page number for pPg */
4303 PtrmapEntry *pEntry; /* Pointer map entry for page iPg */
4304
4305 if( iPg==PENDING_BYTE_PAGE(pBt) ) continue;
4306 pEntry = &pMap->aPtr[iPg - pMap->iFirst];
4307
4308 if( pEntry->eType==PTRMAP_FREEPAGE ){
4309 Pgno dummy;
4310 rc = allocateBtreePage(pBt, &pFree, &dummy, iPg, BTALLOC_EXACT);
dan51883df2018-12-03 19:29:37 +00004311 if( pFree ){
4312 assert( sqlite3PagerPageRefcount(pFree->pDbPage)==1 );
4313 sqlite3PcacheDrop(pFree->pDbPage);
4314 }
dan5cf03722015-08-24 10:05:03 +00004315 assert( rc!=SQLITE_OK || dummy==iPg );
4316 }else if( pnCurrent ){
4317 btreeGetPage(pBt, iPg, &pPg, 0);
4318 assert( sqlite3PagerIswriteable(pPg->pDbPage) );
4319 assert( sqlite3PagerPageRefcount(pPg->pDbPage)==1 );
4320 iNew = ++(*pnCurrent);
4321 if( iNew==PENDING_BYTE_PAGE(pBt) ) iNew = ++(*pnCurrent);
4322 rc = relocatePage(pBt, pPg, pEntry->eType, pEntry->parent, iNew, 1);
4323 releasePageNotNull(pPg);
4324 }else{
4325 rc = allocateBtreePage(pBt, &pFree, &iNew, iFirst-1, BTALLOC_LE);
4326 assert( rc!=SQLITE_OK || iNew<iFirst );
dan5cf03722015-08-24 10:05:03 +00004327 if( rc==SQLITE_OK ){
danac0a4222015-08-25 14:37:39 +00004328 releasePage(pFree);
dan5cf03722015-08-24 10:05:03 +00004329 btreeGetPage(pBt, iPg, &pPg, 0);
4330 rc = relocatePage(pBt, pPg, pEntry->eType, pEntry->parent,iNew,1);
4331 releasePage(pPg);
4332 }
4333 }
4334 }
4335 return rc;
4336}
4337
drh01be4632015-09-03 15:17:12 +00004338/* !defined(SQLITE_OMIT_CONCURRENT)
4339**
dan7b3d71e2015-08-19 20:27:05 +00004340** The b-tree handle passed as the only argument is about to commit an
danbf3cf572015-08-24 19:56:04 +00004341** CONCURRENT transaction. At this point it is guaranteed that this is
dan7b3d71e2015-08-19 20:27:05 +00004342** possible - the wal WRITER lock is held and it is known that there are
4343** no conflicts with committed transactions.
4344*/
4345static int btreeFixUnlocked(Btree *p){
4346 BtShared *pBt = p->pBt;
4347 MemPage *pPage1 = pBt->pPage1;
4348 u8 *p1 = pPage1->aData;
4349 Pager *pPager = pBt->pPager;
4350 int rc = SQLITE_OK;
4351
4352 /* If page 1 of the database is not writable, then no pages were allocated
4353 ** or freed by this transaction. In this case no special handling is
4354 ** required. Otherwise, if page 1 is dirty, proceed. */
4355 BtreePtrmap *pMap = pBt->pMap;
4356 Pgno iTrunk = get4byte(&p1[32]);
4357 Pgno nPage = btreePagecount(pBt);
dan7b3d71e2015-08-19 20:27:05 +00004358 u32 nFree = get4byte(&p1[36]);
4359
dan7b3d71e2015-08-19 20:27:05 +00004360 assert( pBt->pMap );
4361 rc = sqlite3PagerUpgradeSnapshot(pPager, pPage1->pDbPage);
4362 assert( p1==pPage1->aData );
4363
4364 if( rc==SQLITE_OK ){
4365 Pgno nHPage = get4byte(&p1[28]);
dan5cf03722015-08-24 10:05:03 +00004366 Pgno nFin = nHPage; /* Size of db after transaction merge */
dan7b3d71e2015-08-19 20:27:05 +00004367
4368 if( sqlite3PagerIswriteable(pPage1->pDbPage) ){
4369 Pgno iHTrunk = get4byte(&p1[32]);
4370 u32 nHFree = get4byte(&p1[36]);
4371
dan51883df2018-12-03 19:29:37 +00004372 btreePtrmapCheck(pBt, nPage);
4373
dan7b3d71e2015-08-19 20:27:05 +00004374 /* Attach the head database free list to the end of the current
4375 ** transactions free-list (if any). */
4376 if( iTrunk!=0 ){
4377 put4byte(&p1[36], nHFree + nFree);
4378 put4byte(&p1[32], iTrunk);
4379 while( iTrunk ){
4380 DbPage *pTrunk = sqlite3PagerLookup(pPager, iTrunk);
4381 iTrunk = get4byte((u8*)pTrunk->pData);
4382 if( iTrunk==0 ){
4383 put4byte((u8*)pTrunk->pData, iHTrunk);
4384 }
4385 sqlite3PagerUnref(pTrunk);
4386 };
4387 }
4388
dan572a21c2015-08-21 18:55:22 +00004389 if( nHPage<(pMap->iFirst-1) ){
4390 /* The database consisted of (pMap->iFirst-1) pages when the current
danbf3cf572015-08-24 19:56:04 +00004391 ** concurrent transaction was opened. And an concurrent transaction may
dan572a21c2015-08-21 18:55:22 +00004392 ** not be executed on an auto-vacuum database - so the db should
4393 ** not have shrunk since the transaction was opened. Therefore nHPage
4394 ** should be set to (pMap->iFirst-1) or greater. */
dan7b3d71e2015-08-19 20:27:05 +00004395 rc = SQLITE_CORRUPT_BKPT;
4396 }else{
4397 /* The current transaction allocated pages pMap->iFirst through
4398 ** nPage (inclusive) at the end of the database file. Meanwhile,
4399 ** other transactions have allocated (iFirst..nHPage). So move
dan51883df2018-12-03 19:29:37 +00004400 ** pages (iFirst..MIN(nPage,nHPage)) to (MAX(nPage,nHPage)+1). */
dan7b3d71e2015-08-19 20:27:05 +00004401 Pgno iLast = MIN(nPage, nHPage); /* Last page to move */
dan572a21c2015-08-21 18:55:22 +00004402 Pgno nCurrent; /* Current size of db */
dan51883df2018-12-03 19:29:37 +00004403
dan572a21c2015-08-21 18:55:22 +00004404 nCurrent = MAX(nPage, nHPage);
dan51883df2018-12-03 19:29:37 +00004405 pBt->nPage = nCurrent;
dan5cf03722015-08-24 10:05:03 +00004406 rc = btreeRelocateRange(pBt, pMap->iFirst, iLast, &nCurrent);
danb87b25f2015-08-21 20:11:23 +00004407
dan5cf03722015-08-24 10:05:03 +00004408 /* There are now no collisions with the snapshot at the head of the
4409 ** database file. So at this point it would be possible to write
4410 ** the transaction out to disk. Before doing so though, attempt to
4411 ** relocate some of the new pages to free locations within the body
4412 ** of the database file (i.e. free-list entries). */
4413 if( rc==SQLITE_OK ){
4414 assert( nCurrent!=PENDING_BYTE_PAGE(pBt) );
4415 sqlite3PagerSetDbsize(pBt->pPager, nCurrent);
4416 nFree = get4byte(&p1[36]);
dane3c3be82017-05-25 21:02:00 +00004417 nFin = nCurrent-nFree;
dan5cf03722015-08-24 10:05:03 +00004418 if( nCurrent>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){
4419 nFin--;
dan70af25d2015-08-21 17:57:16 +00004420 }
dane3c3be82017-05-25 21:02:00 +00004421 nFin = MAX(nFin, nHPage);
dan5cf03722015-08-24 10:05:03 +00004422 rc = btreeRelocateRange(pBt, nFin+1, nCurrent, 0);
danf5cebf72015-08-22 17:28:55 +00004423 }
dan572a21c2015-08-21 18:55:22 +00004424
dan5cf03722015-08-24 10:05:03 +00004425 put4byte(&p1[28], nFin);
dan7b3d71e2015-08-19 20:27:05 +00004426 }
4427 }
dan5cf03722015-08-24 10:05:03 +00004428 sqlite3PagerSetDbsize(pPager, nFin);
dan7b3d71e2015-08-19 20:27:05 +00004429 }
4430
4431 return rc;
4432}
drh3f531da2015-09-01 17:48:54 +00004433#else
4434# define btreeFixUnlocked(X) SQLITE_OK
drh01be4632015-09-03 15:17:12 +00004435#endif /* SQLITE_OMIT_CONCURRENT */
dan7b3d71e2015-08-19 20:27:05 +00004436
4437/*
drh80e35f42007-03-30 14:06:34 +00004438** This routine does the first phase of a two-phase commit. This routine
4439** causes a rollback journal to be created (if it does not already exist)
4440** and populated with enough information so that if a power loss occurs
4441** the database can be restored to its original state by playing back
4442** the journal. Then the contents of the journal are flushed out to
4443** the disk. After the journal is safely on oxide, the changes to the
4444** database are written into the database file and flushed to oxide.
4445** At the end of this call, the rollback journal still exists on the
4446** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00004447** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00004448** commit process.
4449**
4450** This call is a no-op if no write-transaction is currently active on pBt.
4451**
drh067b92b2020-06-19 15:24:12 +00004452** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4453** the name of a super-journal file that should be written into the
4454** individual journal file, or is NULL, indicating no super-journal file
drh80e35f42007-03-30 14:06:34 +00004455** (single database transaction).
4456**
drh067b92b2020-06-19 15:24:12 +00004457** When this is called, the super-journal should already have been
drh80e35f42007-03-30 14:06:34 +00004458** created, populated with this journal pointer and synced to disk.
4459**
4460** Once this is routine has returned, the only thing required to commit
4461** the write-transaction for this database file is to delete the journal.
4462*/
drh067b92b2020-06-19 15:24:12 +00004463int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zSuperJrnl){
drh80e35f42007-03-30 14:06:34 +00004464 int rc = SQLITE_OK;
4465 if( p->inTrans==TRANS_WRITE ){
4466 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004467 sqlite3BtreeEnter(p);
dan3d394342015-07-27 19:31:45 +00004468
drh80e35f42007-03-30 14:06:34 +00004469#ifndef SQLITE_OMIT_AUTOVACUUM
dan7b3d71e2015-08-19 20:27:05 +00004470 if( pBt->autoVacuum ){
danbf3cf572015-08-24 19:56:04 +00004471 assert( ISCONCURRENT==0 );
danielk19773460d192008-12-27 15:23:13 +00004472 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00004473 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00004474 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004475 return rc;
4476 }
4477 }
danbc1a3c62013-02-23 16:40:46 +00004478 if( pBt->bDoTruncate ){
4479 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
4480 }
drh80e35f42007-03-30 14:06:34 +00004481#endif
dan9a477712020-07-16 20:24:11 +00004482 if( rc==SQLITE_OK && ISCONCURRENT && p->db->eConcurrent==CONCURRENT_OPEN ){
dan7b3d71e2015-08-19 20:27:05 +00004483 rc = btreeFixUnlocked(p);
4484 }
dan3d394342015-07-27 19:31:45 +00004485 if( rc==SQLITE_OK ){
dan1098bdb2020-07-30 19:19:12 +00004486 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zSuperJrnl, 0);
dan3d394342015-07-27 19:31:45 +00004487 }
drhd677b3d2007-08-20 22:48:41 +00004488 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004489 }
4490 return rc;
4491}
4492
4493/*
danielk197794b30732009-07-02 17:21:57 +00004494** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4495** at the conclusion of a transaction.
4496*/
4497static void btreeEndTransaction(Btree *p){
4498 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004499 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004500 assert( sqlite3BtreeHoldsMutex(p) );
4501
danbc1a3c62013-02-23 16:40:46 +00004502#ifndef SQLITE_OMIT_AUTOVACUUM
4503 pBt->bDoTruncate = 0;
4504#endif
danc0537fe2013-06-28 19:41:43 +00004505 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004506 /* If there are other active statements that belong to this database
4507 ** handle, downgrade to a read-only transaction. The other statements
4508 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004509 downgradeAllSharedCacheTableLocks(p);
4510 p->inTrans = TRANS_READ;
4511 }else{
4512 /* If the handle had any kind of transaction open, decrement the
4513 ** transaction count of the shared btree. If the transaction count
4514 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4515 ** call below will unlock the pager. */
4516 if( p->inTrans!=TRANS_NONE ){
4517 clearAllSharedCacheTableLocks(p);
4518 pBt->nTransaction--;
4519 if( 0==pBt->nTransaction ){
4520 pBt->inTransaction = TRANS_NONE;
4521 }
4522 }
4523
4524 /* Set the current transaction state to TRANS_NONE and unlock the
4525 ** pager if this call closed the only read or write transaction. */
4526 p->inTrans = TRANS_NONE;
4527 unlockBtreeIfUnused(pBt);
4528 }
4529
dan987f8212015-08-27 17:42:38 +00004530 /* If this was an CONCURRENT transaction, delete the pBt->pMap object.
4531 ** Also call PagerEndConcurrent() to ensure that the pager has discarded
4532 ** the record of all pages read within the transaction. */
danf5cebf72015-08-22 17:28:55 +00004533 btreePtrmapDelete(pBt);
dan987f8212015-08-27 17:42:38 +00004534 sqlite3PagerEndConcurrent(pBt->pPager);
danielk197794b30732009-07-02 17:21:57 +00004535 btreeIntegrity(p);
4536}
4537
4538/*
drh2aa679f2001-06-25 02:11:07 +00004539** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004540**
drh6e345992007-03-30 11:12:08 +00004541** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004542** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4543** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4544** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004545** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004546** routine has to do is delete or truncate or zero the header in the
4547** the rollback journal (which causes the transaction to commit) and
4548** drop locks.
drh6e345992007-03-30 11:12:08 +00004549**
dan60939d02011-03-29 15:40:55 +00004550** Normally, if an error occurs while the pager layer is attempting to
4551** finalize the underlying journal file, this function returns an error and
4552** the upper layer will attempt a rollback. However, if the second argument
4553** is non-zero then this b-tree transaction is part of a multi-file
4554** transaction. In this case, the transaction has already been committed
drh067b92b2020-06-19 15:24:12 +00004555** (by deleting a super-journal file) and the caller will ignore this
dan60939d02011-03-29 15:40:55 +00004556** functions return code. So, even if an error occurs in the pager layer,
4557** reset the b-tree objects internal state to indicate that the write
4558** transaction has been closed. This is quite safe, as the pager will have
4559** transitioned to the error state.
4560**
drh5e00f6c2001-09-13 13:46:56 +00004561** This will release the write lock on the database file. If there
4562** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004563*/
dan60939d02011-03-29 15:40:55 +00004564int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004565
drh075ed302010-10-14 01:17:30 +00004566 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004567 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004568 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004569
4570 /* If the handle has a write-transaction open, commit the shared-btrees
4571 ** transaction and set the shared state to TRANS_READ.
4572 */
4573 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004574 int rc;
drh075ed302010-10-14 01:17:30 +00004575 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004576 assert( pBt->inTransaction==TRANS_WRITE );
4577 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004578 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004579 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004580 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004581 return rc;
4582 }
drh2b994ce2021-03-18 12:36:09 +00004583 p->iBDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004584 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004585 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004586 }
danielk1977aef0bf62005-12-30 16:28:01 +00004587
danielk197794b30732009-07-02 17:21:57 +00004588 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004589 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004590 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004591}
4592
drh80e35f42007-03-30 14:06:34 +00004593/*
4594** Do both phases of a commit.
4595*/
4596int sqlite3BtreeCommit(Btree *p){
4597 int rc;
drhd677b3d2007-08-20 22:48:41 +00004598 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004599 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4600 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004601 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004602 }
drhd677b3d2007-08-20 22:48:41 +00004603 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004604 return rc;
4605}
4606
drhc39e0002004-05-07 23:50:57 +00004607/*
drhfb982642007-08-30 01:19:59 +00004608** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004609** code to errCode for every cursor on any BtShared that pBtree
4610** references. Or if the writeOnly flag is set to 1, then only
4611** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004612**
drh47b7fc72014-11-11 01:33:57 +00004613** Every cursor is a candidate to be tripped, including cursors
4614** that belong to other database connections that happen to be
4615** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004616**
dan80231042014-11-12 14:56:02 +00004617** This routine gets called when a rollback occurs. If the writeOnly
4618** flag is true, then only write-cursors need be tripped - read-only
4619** cursors save their current positions so that they may continue
4620** following the rollback. Or, if writeOnly is false, all cursors are
4621** tripped. In general, writeOnly is false if the transaction being
4622** rolled back modified the database schema. In this case b-tree root
4623** pages may be moved or deleted from the database altogether, making
4624** it unsafe for read cursors to continue.
4625**
4626** If the writeOnly flag is true and an error is encountered while
4627** saving the current position of a read-only cursor, all cursors,
4628** including all read-cursors are tripped.
4629**
4630** SQLITE_OK is returned if successful, or if an error occurs while
4631** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004632*/
dan80231042014-11-12 14:56:02 +00004633int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004634 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004635 int rc = SQLITE_OK;
4636
drh47b7fc72014-11-11 01:33:57 +00004637 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004638 if( pBtree ){
4639 sqlite3BtreeEnter(pBtree);
4640 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004641 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004642 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004643 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004644 if( rc!=SQLITE_OK ){
4645 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4646 break;
4647 }
4648 }
4649 }else{
4650 sqlite3BtreeClearCursor(p);
4651 p->eState = CURSOR_FAULT;
4652 p->skipNext = errCode;
4653 }
drh85ef6302017-08-02 15:50:09 +00004654 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004655 }
dan80231042014-11-12 14:56:02 +00004656 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004657 }
dan80231042014-11-12 14:56:02 +00004658 return rc;
drhfb982642007-08-30 01:19:59 +00004659}
4660
4661/*
drh41422652019-05-10 14:34:18 +00004662** Set the pBt->nPage field correctly, according to the current
4663** state of the database. Assume pBt->pPage1 is valid.
4664*/
4665static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4666 int nPage = get4byte(&pPage1->aData[28]);
4667 testcase( nPage==0 );
4668 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4669 testcase( pBt->nPage!=nPage );
4670 pBt->nPage = nPage;
4671}
4672
4673/*
drh47b7fc72014-11-11 01:33:57 +00004674** Rollback the transaction in progress.
4675**
4676** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4677** Only write cursors are tripped if writeOnly is true but all cursors are
4678** tripped if writeOnly is false. Any attempt to use
4679** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004680**
4681** This will release the write lock on the database file. If there
4682** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004683*/
drh47b7fc72014-11-11 01:33:57 +00004684int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004685 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004686 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004687 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004688
drh47b7fc72014-11-11 01:33:57 +00004689 assert( writeOnly==1 || writeOnly==0 );
4690 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004691 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004692 if( tripCode==SQLITE_OK ){
4693 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004694 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004695 }else{
4696 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004697 }
drh0f198a72012-02-13 16:43:16 +00004698 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004699 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4700 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4701 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004702 }
danielk1977aef0bf62005-12-30 16:28:01 +00004703 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004704
4705 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004706 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004707
danielk19778d34dfd2006-01-24 16:37:57 +00004708 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004709 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004710 if( rc2!=SQLITE_OK ){
4711 rc = rc2;
4712 }
4713
drh24cd67e2004-05-10 16:18:47 +00004714 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004715 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004716 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004717 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004718 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004719 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004720 }
drh85ec3b62013-05-14 23:12:06 +00004721 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004722 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004723 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004724 }
danielk1977aef0bf62005-12-30 16:28:01 +00004725
danielk197794b30732009-07-02 17:21:57 +00004726 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004727 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004728 return rc;
4729}
4730
4731/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004732** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004733** back independently of the main transaction. You must start a transaction
4734** before starting a subtransaction. The subtransaction is ended automatically
4735** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004736**
4737** Statement subtransactions are used around individual SQL statements
4738** that are contained within a BEGIN...COMMIT block. If a constraint
4739** error occurs within the statement, the effect of that one statement
4740** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004741**
4742** A statement sub-transaction is implemented as an anonymous savepoint. The
4743** value passed as the second parameter is the total number of savepoints,
4744** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4745** are no active savepoints and no other statement-transactions open,
4746** iStatement is 1. This anonymous savepoint can be released or rolled back
4747** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004748*/
danielk1977bd434552009-03-18 10:33:00 +00004749int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004750 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004751 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004752 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004753 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004754 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004755 assert( iStatement>0 );
4756 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004757 assert( pBt->inTransaction==TRANS_WRITE );
4758 /* At the pager level, a statement transaction is a savepoint with
4759 ** an index greater than all savepoints created explicitly using
4760 ** SQL statements. It is illegal to open, release or rollback any
4761 ** such savepoints while the statement transaction savepoint is active.
4762 */
4763 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danf5cebf72015-08-22 17:28:55 +00004764 if( rc==SQLITE_OK ){
4765 rc = btreePtrmapBegin(pBt, iStatement);
dan7b3d71e2015-08-19 20:27:05 +00004766 }
drhd677b3d2007-08-20 22:48:41 +00004767 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004768 return rc;
4769}
4770
4771/*
danielk1977fd7f0452008-12-17 17:30:26 +00004772** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4773** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004774** savepoint identified by parameter iSavepoint, depending on the value
4775** of op.
4776**
4777** Normally, iSavepoint is greater than or equal to zero. However, if op is
4778** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4779** contents of the entire transaction are rolled back. This is different
4780** from a normal transaction rollback, as no locks are released and the
4781** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004782*/
4783int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4784 int rc = SQLITE_OK;
4785 if( p && p->inTrans==TRANS_WRITE ){
4786 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004787 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4788 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4789 sqlite3BtreeEnter(p);
danf5cebf72015-08-22 17:28:55 +00004790 btreePtrmapEnd(pBt, op, iSavepoint);
drh2343c7e2017-02-02 00:46:55 +00004791 if( op==SAVEPOINT_ROLLBACK ){
4792 rc = saveAllCursors(pBt, 0, 0);
4793 }
4794 if( rc==SQLITE_OK ){
4795 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4796 }
drh9f0bbf92009-01-02 21:08:09 +00004797 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004798 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4799 pBt->nPage = 0;
4800 }
drh9f0bbf92009-01-02 21:08:09 +00004801 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004802 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004803
dana9a54652019-04-22 11:47:40 +00004804 /* pBt->nPage might be zero if the database was corrupt when
4805 ** the transaction was started. Otherwise, it must be at least 1. */
4806 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004807 }
danielk1977fd7f0452008-12-17 17:30:26 +00004808 sqlite3BtreeLeave(p);
4809 }
4810 return rc;
4811}
4812
4813/*
drh8b2f49b2001-06-08 00:21:52 +00004814** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004815** iTable. If a read-only cursor is requested, it is assumed that
4816** the caller already has at least a read-only transaction open
4817** on the database already. If a write-cursor is requested, then
4818** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004819**
drhe807bdb2016-01-21 17:06:33 +00004820** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4821** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4822** can be used for reading or for writing if other conditions for writing
4823** are also met. These are the conditions that must be met in order
4824** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004825**
drhe807bdb2016-01-21 17:06:33 +00004826** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004827**
drhfe5d71d2007-03-19 11:54:10 +00004828** 2: Other database connections that share the same pager cache
4829** but which are not in the READ_UNCOMMITTED state may not have
4830** cursors open with wrFlag==0 on the same table. Otherwise
4831** the changes made by this write cursor would be visible to
4832** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004833**
4834** 3: The database must be writable (not on read-only media)
4835**
4836** 4: There must be an active transaction.
4837**
drhe807bdb2016-01-21 17:06:33 +00004838** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4839** is set. If FORDELETE is set, that is a hint to the implementation that
4840** this cursor will only be used to seek to and delete entries of an index
4841** as part of a larger DELETE statement. The FORDELETE hint is not used by
4842** this implementation. But in a hypothetical alternative storage engine
4843** in which index entries are automatically deleted when corresponding table
4844** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4845** operations on this cursor can be no-ops and all READ operations can
4846** return a null row (2-bytes: 0x01 0x00).
4847**
drh6446c4d2001-12-15 14:22:18 +00004848** No checking is done to make sure that page iTable really is the
4849** root page of a b-tree. If it is not, then the cursor acquired
4850** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004851**
drhf25a5072009-11-18 23:01:25 +00004852** It is assumed that the sqlite3BtreeCursorZero() has been called
4853** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004854*/
drhd677b3d2007-08-20 22:48:41 +00004855static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004856 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004857 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004858 int wrFlag, /* 1 to write. 0 read-only */
4859 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4860 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004861){
danielk19773e8add92009-07-04 17:16:00 +00004862 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004863 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004864
drh1fee73e2007-08-29 04:00:57 +00004865 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004866 assert( wrFlag==0
4867 || wrFlag==BTREE_WRCSR
4868 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4869 );
danielk197796d48e92009-06-29 06:00:37 +00004870
danielk1977602b4662009-07-02 07:47:33 +00004871 /* The following assert statements verify that if this is a sharable
4872 ** b-tree database, the connection is holding the required table locks,
4873 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004874 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4875 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4876 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004877 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4878
danielk19773e8add92009-07-04 17:16:00 +00004879 /* Assert that the caller has opened the required transaction. */
4880 assert( p->inTrans>TRANS_NONE );
4881 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4882 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004883 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004884
drh3fbb0222014-09-24 19:47:27 +00004885 if( wrFlag ){
4886 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004887 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drh3fbb0222014-09-24 19:47:27 +00004888 }
drhdb561bc2019-10-25 14:46:05 +00004889 if( iTable<=1 ){
4890 if( iTable<1 ){
4891 return SQLITE_CORRUPT_BKPT;
4892 }else if( btreePagecount(pBt)==0 ){
4893 assert( wrFlag==0 );
4894 iTable = 0;
4895 }
danielk19773e8add92009-07-04 17:16:00 +00004896 }
danielk1977aef0bf62005-12-30 16:28:01 +00004897
danielk1977aef0bf62005-12-30 16:28:01 +00004898 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004899 ** variables and link the cursor into the BtShared list. */
drhabc38152020-07-22 13:38:04 +00004900 pCur->pgnoRoot = iTable;
danielk1977172114a2009-07-07 15:47:12 +00004901 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004902 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004903 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004904 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004905 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004906 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004907 /* If there are two or more cursors on the same btree, then all such
4908 ** cursors *must* have the BTCF_Multiple flag set. */
4909 for(pX=pBt->pCursor; pX; pX=pX->pNext){
drhabc38152020-07-22 13:38:04 +00004910 if( pX->pgnoRoot==iTable ){
drh27fb7462015-06-30 02:47:36 +00004911 pX->curFlags |= BTCF_Multiple;
4912 pCur->curFlags |= BTCF_Multiple;
4913 }
drha059ad02001-04-17 20:09:11 +00004914 }
drh27fb7462015-06-30 02:47:36 +00004915 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004916 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004917 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004918 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004919}
drhdb561bc2019-10-25 14:46:05 +00004920static int btreeCursorWithLock(
4921 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004922 Pgno iTable, /* Root page of table to open */
drhdb561bc2019-10-25 14:46:05 +00004923 int wrFlag, /* 1 to write. 0 read-only */
4924 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4925 BtCursor *pCur /* Space for new cursor */
4926){
4927 int rc;
4928 sqlite3BtreeEnter(p);
4929 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4930 sqlite3BtreeLeave(p);
4931 return rc;
4932}
drhd677b3d2007-08-20 22:48:41 +00004933int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004934 Btree *p, /* The btree */
drhabc38152020-07-22 13:38:04 +00004935 Pgno iTable, /* Root page of table to open */
danielk1977cd3e8f72008-03-25 09:47:35 +00004936 int wrFlag, /* 1 to write. 0 read-only */
4937 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4938 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004939){
drhdb561bc2019-10-25 14:46:05 +00004940 if( p->sharable ){
4941 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004942 }else{
drhdb561bc2019-10-25 14:46:05 +00004943 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004944 }
drhd677b3d2007-08-20 22:48:41 +00004945}
drh7f751222009-03-17 22:33:00 +00004946
4947/*
4948** Return the size of a BtCursor object in bytes.
4949**
4950** This interfaces is needed so that users of cursors can preallocate
4951** sufficient storage to hold a cursor. The BtCursor object is opaque
4952** to users so they cannot do the sizeof() themselves - they must call
4953** this routine.
4954*/
4955int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004956 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004957}
4958
drh7f751222009-03-17 22:33:00 +00004959/*
drhf25a5072009-11-18 23:01:25 +00004960** Initialize memory that will be converted into a BtCursor object.
4961**
4962** The simple approach here would be to memset() the entire object
4963** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4964** do not need to be zeroed and they are large, so we can save a lot
4965** of run-time by skipping the initialization of those elements.
4966*/
4967void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004968 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004969}
4970
4971/*
drh5e00f6c2001-09-13 13:46:56 +00004972** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004973** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004974*/
drh3aac2dd2004-04-26 14:10:20 +00004975int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004976 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004977 if( pBtree ){
4978 BtShared *pBt = pCur->pBt;
4979 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004980 assert( pBt->pCursor!=0 );
4981 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004982 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004983 }else{
4984 BtCursor *pPrev = pBt->pCursor;
4985 do{
4986 if( pPrev->pNext==pCur ){
4987 pPrev->pNext = pCur->pNext;
4988 break;
4989 }
4990 pPrev = pPrev->pNext;
4991 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004992 }
drh352a35a2017-08-15 03:46:47 +00004993 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004994 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004995 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004996 sqlite3_free(pCur->pKey);
daneeee8a52021-03-18 14:31:37 +00004997 if( (pBt->openFlags & BTREE_SINGLE) && pBt->pCursor==0 ){
4998 /* Since the BtShared is not sharable, there is no need to
4999 ** worry about the missing sqlite3BtreeLeave() call here. */
5000 assert( pBtree->sharable==0 );
5001 sqlite3BtreeClose(pBtree);
5002 }else{
5003 sqlite3BtreeLeave(pBtree);
5004 }
dan97c8cb32019-01-01 18:00:17 +00005005 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00005006 }
drh8c42ca92001-06-22 19:15:00 +00005007 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00005008}
5009
drh5e2f8b92001-05-28 00:41:15 +00005010/*
drh86057612007-06-26 01:04:48 +00005011** Make sure the BtCursor* given in the argument has a valid
5012** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00005013** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00005014**
5015** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00005016** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00005017*/
drh9188b382004-05-14 21:12:22 +00005018#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00005019 static int cellInfoEqual(CellInfo *a, CellInfo *b){
5020 if( a->nKey!=b->nKey ) return 0;
5021 if( a->pPayload!=b->pPayload ) return 0;
5022 if( a->nPayload!=b->nPayload ) return 0;
5023 if( a->nLocal!=b->nLocal ) return 0;
5024 if( a->nSize!=b->nSize ) return 0;
5025 return 1;
5026 }
danielk19771cc5ed82007-05-16 17:28:43 +00005027 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00005028 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00005029 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00005030 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00005031 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00005032 }
danielk19771cc5ed82007-05-16 17:28:43 +00005033#else
5034 #define assertCellInfo(x)
5035#endif
drhc5b41ac2015-06-17 02:11:46 +00005036static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
5037 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00005038 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00005039 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00005040 }else{
5041 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00005042 }
drhc5b41ac2015-06-17 02:11:46 +00005043}
drh9188b382004-05-14 21:12:22 +00005044
drhea8ffdf2009-07-22 00:35:23 +00005045#ifndef NDEBUG /* The next routine used only within assert() statements */
5046/*
5047** Return true if the given BtCursor is valid. A valid cursor is one
5048** that is currently pointing to a row in a (non-empty) table.
5049** This is a verification routine is used only within assert() statements.
5050*/
5051int sqlite3BtreeCursorIsValid(BtCursor *pCur){
5052 return pCur && pCur->eState==CURSOR_VALID;
5053}
5054#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00005055int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
5056 assert( pCur!=0 );
5057 return pCur->eState==CURSOR_VALID;
5058}
drhea8ffdf2009-07-22 00:35:23 +00005059
drh9188b382004-05-14 21:12:22 +00005060/*
drha7c90c42016-06-04 20:37:10 +00005061** Return the value of the integer key or "rowid" for a table btree.
5062** This routine is only valid for a cursor that is pointing into a
5063** ordinary table btree. If the cursor points to an index btree or
5064** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00005065*/
drha7c90c42016-06-04 20:37:10 +00005066i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00005067 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00005068 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00005069 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00005070 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00005071 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00005072}
drh2af926b2001-05-15 00:39:25 +00005073
drh7b14b652019-12-29 22:08:20 +00005074/*
5075** Pin or unpin a cursor.
5076*/
5077void sqlite3BtreeCursorPin(BtCursor *pCur){
5078 assert( (pCur->curFlags & BTCF_Pinned)==0 );
5079 pCur->curFlags |= BTCF_Pinned;
5080}
5081void sqlite3BtreeCursorUnpin(BtCursor *pCur){
5082 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
5083 pCur->curFlags &= ~BTCF_Pinned;
5084}
5085
drh092457b2017-12-29 15:04:49 +00005086#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00005087/*
drh2fc865c2017-12-16 20:20:37 +00005088** Return the offset into the database file for the start of the
5089** payload to which the cursor is pointing.
5090*/
drh092457b2017-12-29 15:04:49 +00005091i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00005092 assert( cursorHoldsMutex(pCur) );
5093 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00005094 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00005095 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00005096 (i64)(pCur->info.pPayload - pCur->pPage->aData);
5097}
drh092457b2017-12-29 15:04:49 +00005098#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00005099
drh72f82862001-05-24 21:06:34 +00005100/*
drha7c90c42016-06-04 20:37:10 +00005101** Return the number of bytes of payload for the entry that pCur is
5102** currently pointing to. For table btrees, this will be the amount
5103** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00005104**
5105** The caller must guarantee that the cursor is pointing to a non-NULL
5106** valid entry. In other words, the calling procedure must guarantee
5107** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00005108*/
drha7c90c42016-06-04 20:37:10 +00005109u32 sqlite3BtreePayloadSize(BtCursor *pCur){
5110 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00005111 assert( pCur->eState==CURSOR_VALID );
5112 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00005113 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00005114}
5115
5116/*
drh53d30dd2019-02-04 21:10:24 +00005117** Return an upper bound on the size of any record for the table
5118** that the cursor is pointing into.
5119**
5120** This is an optimization. Everything will still work if this
5121** routine always returns 2147483647 (which is the largest record
5122** that SQLite can handle) or more. But returning a smaller value might
5123** prevent large memory allocations when trying to interpret a
5124** corrupt datrabase.
5125**
5126** The current implementation merely returns the size of the underlying
5127** database file.
5128*/
5129sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
5130 assert( cursorHoldsMutex(pCur) );
5131 assert( pCur->eState==CURSOR_VALID );
5132 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
5133}
5134
5135/*
danielk1977d04417962007-05-02 13:16:30 +00005136** Given the page number of an overflow page in the database (parameter
5137** ovfl), this function finds the page number of the next page in the
5138** linked list of overflow pages. If possible, it uses the auto-vacuum
5139** pointer-map data instead of reading the content of page ovfl to do so.
5140**
5141** If an error occurs an SQLite error code is returned. Otherwise:
5142**
danielk1977bea2a942009-01-20 17:06:27 +00005143** The page number of the next overflow page in the linked list is
5144** written to *pPgnoNext. If page ovfl is the last page in its linked
5145** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00005146**
danielk1977bea2a942009-01-20 17:06:27 +00005147** If ppPage is not NULL, and a reference to the MemPage object corresponding
5148** to page number pOvfl was obtained, then *ppPage is set to point to that
5149** reference. It is the responsibility of the caller to call releasePage()
5150** on *ppPage to free the reference. In no reference was obtained (because
5151** the pointer-map was used to obtain the value for *pPgnoNext), then
5152** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00005153*/
5154static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00005155 BtShared *pBt, /* The database file */
5156 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00005157 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00005158 Pgno *pPgnoNext /* OUT: Next overflow page number */
5159){
5160 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005161 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00005162 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00005163
drh1fee73e2007-08-29 04:00:57 +00005164 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00005165 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00005166
5167#ifndef SQLITE_OMIT_AUTOVACUUM
5168 /* Try to find the next page in the overflow list using the
5169 ** autovacuum pointer-map pages. Guess that the next page in
5170 ** the overflow list is page number (ovfl+1). If that guess turns
5171 ** out to be wrong, fall back to loading the data of page
5172 ** number ovfl to determine the next page number.
5173 */
5174 if( pBt->autoVacuum ){
5175 Pgno pgno;
5176 Pgno iGuess = ovfl+1;
5177 u8 eType;
5178
5179 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
5180 iGuess++;
5181 }
5182
drhb1299152010-03-30 22:58:33 +00005183 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00005184 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00005185 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00005186 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00005187 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00005188 }
5189 }
5190 }
5191#endif
5192
danielk1977d8a3f3d2009-07-11 11:45:23 +00005193 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00005194 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00005195 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00005196 assert( rc==SQLITE_OK || pPage==0 );
5197 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00005198 next = get4byte(pPage->aData);
5199 }
danielk1977443c0592009-01-16 15:21:05 +00005200 }
danielk197745d68822009-01-16 16:23:38 +00005201
danielk1977bea2a942009-01-20 17:06:27 +00005202 *pPgnoNext = next;
5203 if( ppPage ){
5204 *ppPage = pPage;
5205 }else{
5206 releasePage(pPage);
5207 }
5208 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00005209}
5210
danielk1977da107192007-05-04 08:32:13 +00005211/*
5212** Copy data from a buffer to a page, or from a page to a buffer.
5213**
5214** pPayload is a pointer to data stored on database page pDbPage.
5215** If argument eOp is false, then nByte bytes of data are copied
5216** from pPayload to the buffer pointed at by pBuf. If eOp is true,
5217** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
5218** of data are copied from the buffer pBuf to pPayload.
5219**
5220** SQLITE_OK is returned on success, otherwise an error code.
5221*/
5222static int copyPayload(
5223 void *pPayload, /* Pointer to page data */
5224 void *pBuf, /* Pointer to buffer */
5225 int nByte, /* Number of bytes to copy */
5226 int eOp, /* 0 -> copy from page, 1 -> copy to page */
5227 DbPage *pDbPage /* Page containing pPayload */
5228){
5229 if( eOp ){
5230 /* Copy data from buffer to page (a write operation) */
5231 int rc = sqlite3PagerWrite(pDbPage);
5232 if( rc!=SQLITE_OK ){
5233 return rc;
5234 }
5235 memcpy(pPayload, pBuf, nByte);
5236 }else{
5237 /* Copy data from page to buffer (a read operation) */
5238 memcpy(pBuf, pPayload, nByte);
5239 }
5240 return SQLITE_OK;
5241}
danielk1977d04417962007-05-02 13:16:30 +00005242
5243/*
danielk19779f8d6402007-05-02 17:48:45 +00005244** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00005245** for the entry that the pCur cursor is pointing to. The eOp
5246** argument is interpreted as follows:
5247**
5248** 0: The operation is a read. Populate the overflow cache.
5249** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00005250**
5251** A total of "amt" bytes are read or written beginning at "offset".
5252** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00005253**
drh3bcdfd22009-07-12 02:32:21 +00005254** The content being read or written might appear on the main page
5255** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00005256**
drh42e28f12017-01-27 00:31:59 +00005257** If the current cursor entry uses one or more overflow pages
5258** this function may allocate space for and lazily populate
5259** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00005260** Subsequent calls use this cache to make seeking to the supplied offset
5261** more efficient.
danielk1977da107192007-05-04 08:32:13 +00005262**
drh42e28f12017-01-27 00:31:59 +00005263** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00005264** invalidated if some other cursor writes to the same table, or if
5265** the cursor is moved to a different row. Additionally, in auto-vacuum
5266** mode, the following events may invalidate an overflow page-list cache.
5267**
5268** * An incremental vacuum,
5269** * A commit in auto_vacuum="full" mode,
5270** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00005271*/
danielk19779f8d6402007-05-02 17:48:45 +00005272static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00005273 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00005274 u32 offset, /* Begin reading this far into payload */
5275 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00005276 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00005277 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00005278){
5279 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00005280 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00005281 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00005282 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00005283 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00005284#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00005285 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00005286#endif
drh3aac2dd2004-04-26 14:10:20 +00005287
danielk1977da107192007-05-04 08:32:13 +00005288 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00005289 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00005290 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00005291 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00005292 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00005293
drh86057612007-06-26 01:04:48 +00005294 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00005295 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00005296 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00005297
drh0b982072016-03-22 14:10:45 +00005298 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00005299 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00005300 /* Trying to read or write past the end of the data is an error. The
5301 ** conditional above is really:
5302 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
5303 ** but is recast into its current form to avoid integer overflow problems
5304 */
daneebf2f52017-11-18 17:30:08 +00005305 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00005306 }
danielk1977da107192007-05-04 08:32:13 +00005307
5308 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00005309 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00005310 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00005311 if( a+offset>pCur->info.nLocal ){
5312 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00005313 }
drh42e28f12017-01-27 00:31:59 +00005314 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00005315 offset = 0;
drha34b6762004-05-07 13:30:42 +00005316 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00005317 amt -= a;
drhdd793422001-06-28 01:54:48 +00005318 }else{
drhfa1a98a2004-05-14 19:08:17 +00005319 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00005320 }
danielk1977da107192007-05-04 08:32:13 +00005321
dan85753662014-12-11 16:38:18 +00005322
danielk1977da107192007-05-04 08:32:13 +00005323 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00005324 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00005325 Pgno nextPage;
5326
drhfa1a98a2004-05-14 19:08:17 +00005327 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
drh584e8b72020-07-22 17:12:59 +00005328
drha38c9512014-04-01 01:24:34 +00005329 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00005330 **
5331 ** The aOverflow[] array is sized at one entry for each overflow page
5332 ** in the overflow chain. The page number of the first overflow page is
5333 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5334 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00005335 */
drh42e28f12017-01-27 00:31:59 +00005336 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00005337 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00005338 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00005339 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00005340 ){
dan85753662014-12-11 16:38:18 +00005341 Pgno *aNew = (Pgno*)sqlite3Realloc(
5342 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00005343 );
5344 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00005345 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00005346 }else{
dan5a500af2014-03-11 20:33:04 +00005347 pCur->aOverflow = aNew;
5348 }
5349 }
drhcd645532017-01-20 20:43:14 +00005350 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
5351 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00005352 }else{
5353 /* If the overflow page-list cache has been allocated and the
5354 ** entry for the first required overflow page is valid, skip
5355 ** directly to it.
5356 */
5357 if( pCur->aOverflow[offset/ovflSize] ){
5358 iIdx = (offset/ovflSize);
5359 nextPage = pCur->aOverflow[iIdx];
5360 offset = (offset%ovflSize);
danielk19772dec9702007-05-02 16:48:37 +00005361 }
5362 }
danielk1977da107192007-05-04 08:32:13 +00005363
drhcd645532017-01-20 20:43:14 +00005364 assert( rc==SQLITE_OK && amt>0 );
5365 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00005366 /* If required, populate the overflow page-list cache. */
drh584e8b72020-07-22 17:12:59 +00005367 if( nextPage > pBt->nPage ) return SQLITE_CORRUPT_BKPT;
drh42e28f12017-01-27 00:31:59 +00005368 assert( pCur->aOverflow[iIdx]==0
5369 || pCur->aOverflow[iIdx]==nextPage
5370 || CORRUPT_DB );
5371 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00005372
danielk1977d04417962007-05-02 13:16:30 +00005373 if( offset>=ovflSize ){
5374 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00005375 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00005376 ** data is not required. So first try to lookup the overflow
5377 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00005378 ** function.
danielk1977d04417962007-05-02 13:16:30 +00005379 */
drha38c9512014-04-01 01:24:34 +00005380 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00005381 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00005382 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00005383 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00005384 }else{
danielk1977da107192007-05-04 08:32:13 +00005385 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00005386 }
danielk1977da107192007-05-04 08:32:13 +00005387 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00005388 }else{
danielk19779f8d6402007-05-02 17:48:45 +00005389 /* Need to read this page properly. It contains some of the
5390 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00005391 */
danielk1977cfe9a692004-06-16 12:00:29 +00005392 int a = amt;
danf4ba1092011-10-08 14:57:07 +00005393 if( a + offset > ovflSize ){
5394 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00005395 }
danf4ba1092011-10-08 14:57:07 +00005396
5397#ifdef SQLITE_DIRECT_OVERFLOW_READ
5398 /* If all the following are true:
5399 **
5400 ** 1) this is a read operation, and
5401 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00005402 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00005403 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00005404 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00005405 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00005406 **
5407 ** then data can be read directly from the database file into the
5408 ** output buffer, bypassing the page-cache altogether. This speeds
5409 ** up loading large records that span many overflow pages.
5410 */
drh42e28f12017-01-27 00:31:59 +00005411 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00005412 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00005413 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00005414 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00005415 ){
dan09236752018-11-22 19:10:14 +00005416 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00005417 u8 aSave[4];
5418 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00005419 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00005420 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00005421 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00005422 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00005423 nextPage = get4byte(aWrite);
5424 memcpy(aWrite, aSave, 4);
5425 }else
5426#endif
5427
5428 {
5429 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00005430 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00005431 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00005432 );
danf4ba1092011-10-08 14:57:07 +00005433 if( rc==SQLITE_OK ){
5434 aPayload = sqlite3PagerGetData(pDbPage);
5435 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00005436 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00005437 sqlite3PagerUnref(pDbPage);
5438 offset = 0;
5439 }
5440 }
5441 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00005442 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00005443 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00005444 }
drhcd645532017-01-20 20:43:14 +00005445 if( rc ) break;
5446 iIdx++;
drh2af926b2001-05-15 00:39:25 +00005447 }
drh2af926b2001-05-15 00:39:25 +00005448 }
danielk1977cfe9a692004-06-16 12:00:29 +00005449
danielk1977da107192007-05-04 08:32:13 +00005450 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00005451 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00005452 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00005453 }
danielk1977da107192007-05-04 08:32:13 +00005454 return rc;
drh2af926b2001-05-15 00:39:25 +00005455}
5456
drh72f82862001-05-24 21:06:34 +00005457/*
drhcb3cabd2016-11-25 19:18:28 +00005458** Read part of the payload for the row at which that cursor pCur is currently
5459** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00005460** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00005461**
drhcb3cabd2016-11-25 19:18:28 +00005462** pCur can be pointing to either a table or an index b-tree.
5463** If pointing to a table btree, then the content section is read. If
5464** pCur is pointing to an index b-tree then the key section is read.
5465**
5466** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5467** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5468** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00005469**
drh3aac2dd2004-04-26 14:10:20 +00005470** Return SQLITE_OK on success or an error code if anything goes
5471** wrong. An error is returned if "offset+amt" is larger than
5472** the available payload.
drh72f82862001-05-24 21:06:34 +00005473*/
drhcb3cabd2016-11-25 19:18:28 +00005474int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00005475 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00005476 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005477 assert( pCur->iPage>=0 && pCur->pPage );
5478 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00005479 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00005480}
drh83ec2762017-01-26 16:54:47 +00005481
5482/*
5483** This variant of sqlite3BtreePayload() works even if the cursor has not
5484** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5485** interface.
5486*/
danielk19773588ceb2008-06-10 17:30:26 +00005487#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00005488static SQLITE_NOINLINE int accessPayloadChecked(
5489 BtCursor *pCur,
5490 u32 offset,
5491 u32 amt,
5492 void *pBuf
5493){
drhcb3cabd2016-11-25 19:18:28 +00005494 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00005495 if ( pCur->eState==CURSOR_INVALID ){
5496 return SQLITE_ABORT;
5497 }
dan7a2347e2016-01-07 16:43:54 +00005498 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00005499 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00005500 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
5501}
5502int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
5503 if( pCur->eState==CURSOR_VALID ){
5504 assert( cursorOwnsBtShared(pCur) );
5505 return accessPayload(pCur, offset, amt, pBuf, 0);
5506 }else{
5507 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005508 }
drh2af926b2001-05-15 00:39:25 +00005509}
drhcb3cabd2016-11-25 19:18:28 +00005510#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005511
drh72f82862001-05-24 21:06:34 +00005512/*
drh0e1c19e2004-05-11 00:58:56 +00005513** Return a pointer to payload information from the entry that the
5514** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005515** the key if index btrees (pPage->intKey==0) and is the data for
5516** table btrees (pPage->intKey==1). The number of bytes of available
5517** key/data is written into *pAmt. If *pAmt==0, then the value
5518** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005519**
5520** This routine is an optimization. It is common for the entire key
5521** and data to fit on the local page and for there to be no overflow
5522** pages. When that is so, this routine can be used to access the
5523** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005524** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005525** the key/data and copy it into a preallocated buffer.
5526**
5527** The pointer returned by this routine looks directly into the cached
5528** page of the database. The data might change or move the next time
5529** any btree routine is called.
5530*/
drh2a8d2262013-12-09 20:43:22 +00005531static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005532 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005533 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005534){
danf2f72a02017-10-19 15:17:38 +00005535 int amt;
drh352a35a2017-08-15 03:46:47 +00005536 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005537 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005538 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005539 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00005540 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005541 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005542 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5543 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005544 amt = pCur->info.nLocal;
5545 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5546 /* There is too little space on the page for the expected amount
5547 ** of local content. Database must be corrupt. */
5548 assert( CORRUPT_DB );
5549 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5550 }
5551 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005552 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005553}
5554
5555
5556/*
drhe51c44f2004-05-30 20:46:09 +00005557** For the entry that cursor pCur is point to, return as
5558** many bytes of the key or data as are available on the local
5559** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005560**
5561** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005562** or be destroyed on the next call to any Btree routine,
5563** including calls from other threads against the same cache.
5564** Hence, a mutex on the BtShared should be held prior to calling
5565** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005566**
5567** These routines is used to get quick access to key and data
5568** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005569*/
drha7c90c42016-06-04 20:37:10 +00005570const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005571 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005572}
5573
5574
5575/*
drh8178a752003-01-05 21:41:40 +00005576** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005577** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005578**
5579** This function returns SQLITE_CORRUPT if the page-header flags field of
5580** the new child page does not match the flags field of the parent (i.e.
5581** if an intkey page appears to be the parent of a non-intkey page, or
5582** vice-versa).
drh72f82862001-05-24 21:06:34 +00005583*/
drh3aac2dd2004-04-26 14:10:20 +00005584static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005585 BtShared *pBt = pCur->pBt;
dan7fff2e12017-05-29 14:27:37 +00005586 int rc;
drh72f82862001-05-24 21:06:34 +00005587
dan7a2347e2016-01-07 16:43:54 +00005588 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005589 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005590 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005591 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005592 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5593 return SQLITE_CORRUPT_BKPT;
5594 }
drh271efa52004-05-30 19:19:05 +00005595 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005596 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005597 pCur->aiIdx[pCur->iPage] = pCur->ix;
5598 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005599 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005600 pCur->iPage++;
drhb25057c2017-08-28 17:19:35 +00005601 rc = getAndInitPage(pBt, newPgno, &pCur->pPage,
drh28f58dd2015-06-27 19:45:03 +00005602 pCur, pCur->curPagerFlags);
dan7fff2e12017-05-29 14:27:37 +00005603 if( rc==SQLITE_OK ){
drhb25057c2017-08-28 17:19:35 +00005604 setMempageRoot(pCur->pPage, pCur->pgnoRoot);
dan7fff2e12017-05-29 14:27:37 +00005605 }
5606 return rc;
drh72f82862001-05-24 21:06:34 +00005607}
5608
drhd879e3e2017-02-13 13:35:55 +00005609#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005610/*
5611** Page pParent is an internal (non-leaf) tree page. This function
5612** asserts that page number iChild is the left-child if the iIdx'th
5613** cell in page pParent. Or, if iIdx is equal to the total number of
5614** cells in pParent, that page number iChild is the right-child of
5615** the page.
5616*/
5617static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005618 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5619 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005620 assert( iIdx<=pParent->nCell );
5621 if( iIdx==pParent->nCell ){
5622 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5623 }else{
5624 assert( get4byte(findCell(pParent, iIdx))==iChild );
5625 }
5626}
5627#else
5628# define assertParentIndex(x,y,z)
5629#endif
5630
drh72f82862001-05-24 21:06:34 +00005631/*
drh5e2f8b92001-05-28 00:41:15 +00005632** Move the cursor up to the parent page.
5633**
5634** pCur->idx is set to the cell index that contains the pointer
5635** to the page we are coming from. If we are coming from the
5636** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005637** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005638*/
danielk197730548662009-07-09 05:07:37 +00005639static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005640 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005641 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005642 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005643 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005644 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005645 assertParentIndex(
5646 pCur->apPage[pCur->iPage-1],
5647 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005648 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005649 );
dan6c2688c2012-01-12 15:05:03 +00005650 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005651 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005652 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005653 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005654 pLeaf = pCur->pPage;
5655 pCur->pPage = pCur->apPage[--pCur->iPage];
5656 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005657}
5658
5659/*
danielk19778f880a82009-07-13 09:41:45 +00005660** Move the cursor to point to the root page of its b-tree structure.
5661**
5662** If the table has a virtual root page, then the cursor is moved to point
5663** to the virtual root page instead of the actual root page. A table has a
5664** virtual root page when the actual root page contains no cells and a
5665** single child page. This can only happen with the table rooted at page 1.
5666**
5667** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005668** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5669** the cursor is set to point to the first cell located on the root
5670** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005671**
5672** If this function returns successfully, it may be assumed that the
5673** page-header flags indicate that the [virtual] root-page is the expected
5674** kind of b-tree page (i.e. if when opening the cursor the caller did not
5675** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5676** indicating a table b-tree, or if the caller did specify a KeyInfo
5677** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5678** b-tree).
drh72f82862001-05-24 21:06:34 +00005679*/
drh5e2f8b92001-05-28 00:41:15 +00005680static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005681 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005682 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005683
dan7a2347e2016-01-07 16:43:54 +00005684 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005685 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5686 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5687 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005688 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005689 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005690
5691 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005692 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005693 releasePageNotNull(pCur->pPage);
5694 while( --pCur->iPage ){
5695 releasePageNotNull(pCur->apPage[pCur->iPage]);
5696 }
5697 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005698 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005699 }
dana205a482011-08-27 18:48:57 +00005700 }else if( pCur->pgnoRoot==0 ){
5701 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005702 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005703 }else{
drh28f58dd2015-06-27 19:45:03 +00005704 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005705 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5706 if( pCur->eState==CURSOR_FAULT ){
5707 assert( pCur->skipNext!=SQLITE_OK );
5708 return pCur->skipNext;
5709 }
5710 sqlite3BtreeClearCursor(pCur);
5711 }
drh352a35a2017-08-15 03:46:47 +00005712 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005713 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005714 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005715 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005716 return rc;
drh777e4c42006-01-13 04:31:58 +00005717 }
drhb25057c2017-08-28 17:19:35 +00005718 setMempageRoot(pCur->pPage, pCur->pgnoRoot);
danielk1977172114a2009-07-07 15:47:12 +00005719 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005720 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005721 }
drh352a35a2017-08-15 03:46:47 +00005722 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005723 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005724
5725 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5726 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5727 ** NULL, the caller expects a table b-tree. If this is not the case,
5728 ** return an SQLITE_CORRUPT error.
5729 **
5730 ** Earlier versions of SQLite assumed that this test could not fail
5731 ** if the root page was already loaded when this function was called (i.e.
5732 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5733 ** in such a way that page pRoot is linked into a second b-tree table
5734 ** (or the freelist). */
5735 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5736 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005737 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005738 }
danielk19778f880a82009-07-13 09:41:45 +00005739
drh7ad3eb62016-10-24 01:01:09 +00005740skip_init:
drh75e96b32017-04-01 00:20:06 +00005741 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005742 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005743 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005744
drh352a35a2017-08-15 03:46:47 +00005745 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005746 if( pRoot->nCell>0 ){
5747 pCur->eState = CURSOR_VALID;
5748 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005749 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005750 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005751 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005752 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005753 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005754 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005755 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005756 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005757 }
5758 return rc;
drh72f82862001-05-24 21:06:34 +00005759}
drh2af926b2001-05-15 00:39:25 +00005760
drh5e2f8b92001-05-28 00:41:15 +00005761/*
5762** Move the cursor down to the left-most leaf entry beneath the
5763** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005764**
5765** The left-most leaf is the one with the smallest key - the first
5766** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005767*/
5768static int moveToLeftmost(BtCursor *pCur){
5769 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005770 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005771 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005772
dan7a2347e2016-01-07 16:43:54 +00005773 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005774 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005775 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005776 assert( pCur->ix<pPage->nCell );
5777 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005778 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005779 }
drhd677b3d2007-08-20 22:48:41 +00005780 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005781}
5782
drh2dcc9aa2002-12-04 13:40:25 +00005783/*
5784** Move the cursor down to the right-most leaf entry beneath the
5785** page to which it is currently pointing. Notice the difference
5786** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5787** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5788** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005789**
5790** The right-most entry is the one with the largest key - the last
5791** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005792*/
5793static int moveToRightmost(BtCursor *pCur){
5794 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005795 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005796 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005797
dan7a2347e2016-01-07 16:43:54 +00005798 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005799 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005800 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005801 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005802 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005803 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005804 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005805 }
drh75e96b32017-04-01 00:20:06 +00005806 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005807 assert( pCur->info.nSize==0 );
5808 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5809 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005810}
5811
drh5e00f6c2001-09-13 13:46:56 +00005812/* Move the cursor to the first entry in the table. Return SQLITE_OK
5813** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005814** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005815*/
drh3aac2dd2004-04-26 14:10:20 +00005816int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005817 int rc;
drhd677b3d2007-08-20 22:48:41 +00005818
dan7a2347e2016-01-07 16:43:54 +00005819 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005820 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005821 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005822 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005823 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005824 *pRes = 0;
5825 rc = moveToLeftmost(pCur);
5826 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005827 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005828 *pRes = 1;
5829 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005830 }
drh5e00f6c2001-09-13 13:46:56 +00005831 return rc;
5832}
drh5e2f8b92001-05-28 00:41:15 +00005833
drh9562b552002-02-19 15:00:07 +00005834/* Move the cursor to the last entry in the table. Return SQLITE_OK
5835** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005836** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005837*/
drh3aac2dd2004-04-26 14:10:20 +00005838int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005839 int rc;
drhd677b3d2007-08-20 22:48:41 +00005840
dan7a2347e2016-01-07 16:43:54 +00005841 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005842 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005843
5844 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005845 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005846#ifdef SQLITE_DEBUG
5847 /* This block serves to assert() that the cursor really does point
5848 ** to the last entry in the b-tree. */
5849 int ii;
5850 for(ii=0; ii<pCur->iPage; ii++){
5851 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5852 }
drh319deef2021-04-04 23:56:15 +00005853 assert( pCur->ix==pCur->pPage->nCell-1 || CORRUPT_DB );
5854 testcase( pCur->ix!=pCur->pPage->nCell-1 );
5855 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
drh352a35a2017-08-15 03:46:47 +00005856 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005857#endif
drheb265342019-05-08 23:55:04 +00005858 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005859 return SQLITE_OK;
5860 }
5861
drh9562b552002-02-19 15:00:07 +00005862 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005863 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005864 assert( pCur->eState==CURSOR_VALID );
5865 *pRes = 0;
5866 rc = moveToRightmost(pCur);
5867 if( rc==SQLITE_OK ){
5868 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005869 }else{
drh44548e72017-08-14 18:13:52 +00005870 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005871 }
drh44548e72017-08-14 18:13:52 +00005872 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005873 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005874 *pRes = 1;
5875 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005876 }
drh9562b552002-02-19 15:00:07 +00005877 return rc;
5878}
5879
drh42a410d2021-06-19 18:32:20 +00005880/* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5881** table near the key intKey. Return a success code.
drh3aac2dd2004-04-26 14:10:20 +00005882**
drh5e2f8b92001-05-28 00:41:15 +00005883** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005884** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005885** were present. The cursor might point to an entry that comes
5886** before or after the key.
5887**
drh64022502009-01-09 14:11:04 +00005888** An integer is written into *pRes which is the result of
5889** comparing the key with the entry to which the cursor is
5890** pointing. The meaning of the integer written into
5891** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005892**
5893** *pRes<0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005894** is smaller than intKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005895** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005896**
5897** *pRes==0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005898** exactly matches intKey.
drhbd03cae2001-06-02 02:40:57 +00005899**
5900** *pRes>0 The cursor is left pointing at an entry that
drh42a410d2021-06-19 18:32:20 +00005901** is larger than intKey.
drha059ad02001-04-17 20:09:11 +00005902*/
drh42a410d2021-06-19 18:32:20 +00005903int sqlite3BtreeTableMoveto(
drhe63d9992008-08-13 19:11:48 +00005904 BtCursor *pCur, /* The cursor to be moved */
drhe63d9992008-08-13 19:11:48 +00005905 i64 intKey, /* The table key */
5906 int biasRight, /* If true, bias the search to the high end */
5907 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005908){
drh72f82862001-05-24 21:06:34 +00005909 int rc;
drhd677b3d2007-08-20 22:48:41 +00005910
dan7a2347e2016-01-07 16:43:54 +00005911 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005912 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005913 assert( pRes );
drh42a410d2021-06-19 18:32:20 +00005914 assert( pCur->pKeyInfo==0 );
5915 assert( pCur->eState!=CURSOR_VALID || pCur->curIntKey!=0 );
drha2c20e42008-03-29 16:01:04 +00005916
5917 /* If the cursor is already positioned at the point we are trying
5918 ** to move to, then just return without doing any work */
drh42a410d2021-06-19 18:32:20 +00005919 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 ){
drhe63d9992008-08-13 19:11:48 +00005920 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005921 *pRes = 0;
5922 return SQLITE_OK;
5923 }
drh451e76d2017-01-21 16:54:19 +00005924 if( pCur->info.nKey<intKey ){
5925 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5926 *pRes = -1;
5927 return SQLITE_OK;
5928 }
drh7f11afa2017-01-21 21:47:54 +00005929 /* If the requested key is one more than the previous key, then
5930 ** try to get there using sqlite3BtreeNext() rather than a full
5931 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005932 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005933 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005934 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005935 rc = sqlite3BtreeNext(pCur, 0);
5936 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005937 getCellInfo(pCur);
5938 if( pCur->info.nKey==intKey ){
5939 return SQLITE_OK;
5940 }
drh2ab792e2017-05-30 18:34:07 +00005941 }else if( rc==SQLITE_DONE ){
5942 rc = SQLITE_OK;
5943 }else{
5944 return rc;
drh451e76d2017-01-21 16:54:19 +00005945 }
5946 }
drha2c20e42008-03-29 16:01:04 +00005947 }
5948 }
5949
drh37ccfcf2020-08-31 18:49:04 +00005950#ifdef SQLITE_DEBUG
5951 pCur->pBtree->nSeek++; /* Performance measurement during testing */
5952#endif
5953
drh42a410d2021-06-19 18:32:20 +00005954 rc = moveToRoot(pCur);
5955 if( rc ){
5956 if( rc==SQLITE_EMPTY ){
5957 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5958 *pRes = -1;
5959 return SQLITE_OK;
5960 }
5961 return rc;
dan1fed5da2014-02-25 21:01:25 +00005962 }
drh42a410d2021-06-19 18:32:20 +00005963 assert( pCur->pPage );
5964 assert( pCur->pPage->isInit );
5965 assert( pCur->eState==CURSOR_VALID );
5966 assert( pCur->pPage->nCell > 0 );
5967 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5968 assert( pCur->curIntKey );
5969
5970 for(;;){
5971 int lwr, upr, idx, c;
5972 Pgno chldPg;
5973 MemPage *pPage = pCur->pPage;
5974 u8 *pCell; /* Pointer to current cell in pPage */
5975
5976 /* pPage->nCell must be greater than zero. If this is the root-page
5977 ** the cursor would have been INVALID above and this for(;;) loop
5978 ** not run. If this is not the root-page, then the moveToChild() routine
5979 ** would have already detected db corruption. Similarly, pPage must
5980 ** be the right kind (index or table) of b-tree page. Otherwise
5981 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5982 assert( pPage->nCell>0 );
5983 assert( pPage->intKey );
5984 lwr = 0;
5985 upr = pPage->nCell-1;
5986 assert( biasRight==0 || biasRight==1 );
5987 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5988 pCur->ix = (u16)idx;
5989 for(;;){
5990 i64 nCellKey;
5991 pCell = findCellPastPtr(pPage, idx);
5992 if( pPage->intKeyLeaf ){
5993 while( 0x80 <= *(pCell++) ){
5994 if( pCell>=pPage->aDataEnd ){
5995 return SQLITE_CORRUPT_PAGE(pPage);
5996 }
5997 }
5998 }
5999 getVarint(pCell, (u64*)&nCellKey);
6000 if( nCellKey<intKey ){
6001 lwr = idx+1;
6002 if( lwr>upr ){ c = -1; break; }
6003 }else if( nCellKey>intKey ){
6004 upr = idx-1;
6005 if( lwr>upr ){ c = +1; break; }
6006 }else{
6007 assert( nCellKey==intKey );
6008 pCur->ix = (u16)idx;
6009 if( !pPage->leaf ){
6010 lwr = idx;
6011 goto moveto_table_next_layer;
6012 }else{
6013 pCur->curFlags |= BTCF_ValidNKey;
6014 pCur->info.nKey = nCellKey;
6015 pCur->info.nSize = 0;
6016 *pRes = 0;
6017 return SQLITE_OK;
6018 }
6019 }
6020 assert( lwr+upr>=0 );
6021 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
6022 }
6023 assert( lwr==upr+1 || !pPage->leaf );
6024 assert( pPage->isInit );
6025 if( pPage->leaf ){
6026 assert( pCur->ix<pCur->pPage->nCell );
6027 pCur->ix = (u16)idx;
6028 *pRes = c;
6029 rc = SQLITE_OK;
6030 goto moveto_table_finish;
6031 }
6032moveto_table_next_layer:
6033 if( lwr>=pPage->nCell ){
6034 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6035 }else{
6036 chldPg = get4byte(findCell(pPage, lwr));
6037 }
6038 pCur->ix = (u16)lwr;
6039 rc = moveToChild(pCur, chldPg);
6040 if( rc ) break;
6041 }
6042moveto_table_finish:
6043 pCur->info.nSize = 0;
6044 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
6045 return rc;
6046}
6047
6048/* Move the cursor so that it points to an entry in an index table
6049** near the key pIdxKey. Return a success code.
6050**
6051** If an exact match is not found, then the cursor is always
6052** left pointing at a leaf page which would hold the entry if it
6053** were present. The cursor might point to an entry that comes
6054** before or after the key.
6055**
6056** An integer is written into *pRes which is the result of
6057** comparing the key with the entry to which the cursor is
6058** pointing. The meaning of the integer written into
6059** *pRes is as follows:
6060**
6061** *pRes<0 The cursor is left pointing at an entry that
6062** is smaller than pIdxKey or if the table is empty
6063** and the cursor is therefore left point to nothing.
6064**
6065** *pRes==0 The cursor is left pointing at an entry that
6066** exactly matches pIdxKey.
6067**
6068** *pRes>0 The cursor is left pointing at an entry that
6069** is larger than pIdxKey.
6070**
6071** The pIdxKey->eqSeen field is set to 1 if there
6072** exists an entry in the table that exactly matches pIdxKey.
6073*/
6074int sqlite3BtreeIndexMoveto(
6075 BtCursor *pCur, /* The cursor to be moved */
6076 UnpackedRecord *pIdxKey, /* Unpacked index key */
6077 int *pRes /* Write search results here */
6078){
6079 int rc;
6080 RecordCompare xRecordCompare;
6081
6082 assert( cursorOwnsBtShared(pCur) );
6083 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
6084 assert( pRes );
6085 assert( pCur->pKeyInfo!=0 );
6086
6087#ifdef SQLITE_DEBUG
6088 pCur->pBtree->nSeek++; /* Performance measurement during testing */
6089#endif
6090
6091 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
6092 pIdxKey->errCode = 0;
6093 assert( pIdxKey->default_rc==1
6094 || pIdxKey->default_rc==0
6095 || pIdxKey->default_rc==-1
6096 );
dan1fed5da2014-02-25 21:01:25 +00006097
drh5e2f8b92001-05-28 00:41:15 +00006098 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00006099 if( rc ){
drh44548e72017-08-14 18:13:52 +00006100 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00006101 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00006102 *pRes = -1;
6103 return SQLITE_OK;
6104 }
drhd677b3d2007-08-20 22:48:41 +00006105 return rc;
6106 }
drh352a35a2017-08-15 03:46:47 +00006107 assert( pCur->pPage );
6108 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00006109 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00006110 assert( pCur->pPage->nCell > 0 );
6111 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00006112 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00006113 for(;;){
drhec3e6b12013-11-25 02:38:55 +00006114 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00006115 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00006116 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00006117 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00006118
6119 /* pPage->nCell must be greater than zero. If this is the root-page
6120 ** the cursor would have been INVALID above and this for(;;) loop
6121 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00006122 ** would have already detected db corruption. Similarly, pPage must
6123 ** be the right kind (index or table) of b-tree page. Otherwise
6124 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00006125 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00006126 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00006127 lwr = 0;
6128 upr = pPage->nCell-1;
drh42a410d2021-06-19 18:32:20 +00006129 idx = upr>>1; /* idx = (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00006130 pCur->ix = (u16)idx;
drh42a410d2021-06-19 18:32:20 +00006131 for(;;){
6132 int nCell; /* Size of the pCell cell in bytes */
6133 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00006134
drh42a410d2021-06-19 18:32:20 +00006135 /* The maximum supported page-size is 65536 bytes. This means that
6136 ** the maximum number of record bytes stored on an index B-Tree
6137 ** page is less than 16384 bytes and may be stored as a 2-byte
6138 ** varint. This information is used to attempt to avoid parsing
6139 ** the entire cell by checking for the cases where the record is
6140 ** stored entirely within the b-tree page by inspecting the first
6141 ** 2 bytes of the cell.
6142 */
6143 nCell = pCell[0];
6144 if( nCell<=pPage->max1bytePayload ){
6145 /* This branch runs if the record-size field of the cell is a
6146 ** single byte varint and the record fits entirely on the main
6147 ** b-tree page. */
6148 testcase( pCell+nCell+1==pPage->aDataEnd );
6149 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
6150 }else if( !(pCell[1] & 0x80)
6151 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
6152 ){
6153 /* The record-size field is a 2 byte varint and the record
6154 ** fits entirely on the main b-tree page. */
6155 testcase( pCell+nCell+2==pPage->aDataEnd );
6156 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
6157 }else{
6158 /* The record flows over onto one or more overflow pages. In
6159 ** this case the whole cell needs to be parsed, a buffer allocated
6160 ** and accessPayload() used to retrieve the record into the
6161 ** buffer before VdbeRecordCompare() can be called.
6162 **
6163 ** If the record is corrupt, the xRecordCompare routine may read
6164 ** up to two varints past the end of the buffer. An extra 18
6165 ** bytes of padding is allocated at the end of the buffer in
6166 ** case this happens. */
6167 void *pCellKey;
6168 u8 * const pCellBody = pCell - pPage->childPtrSize;
6169 const int nOverrun = 18; /* Size of the overrun padding */
6170 pPage->xParseCell(pPage, pCellBody, &pCur->info);
6171 nCell = (int)pCur->info.nKey;
6172 testcase( nCell<0 ); /* True if key size is 2^32 or more */
6173 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
6174 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
6175 testcase( nCell==2 ); /* Minimum legal index key size */
6176 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
6177 rc = SQLITE_CORRUPT_PAGE(pPage);
6178 goto moveto_index_finish;
6179 }
6180 pCellKey = sqlite3Malloc( nCell+nOverrun );
6181 if( pCellKey==0 ){
6182 rc = SQLITE_NOMEM_BKPT;
6183 goto moveto_index_finish;
6184 }
6185 pCur->ix = (u16)idx;
6186 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
6187 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
6188 pCur->curFlags &= ~BTCF_ValidOvfl;
6189 if( rc ){
drhfacf0302008-06-17 15:12:00 +00006190 sqlite3_free(pCellKey);
drh42a410d2021-06-19 18:32:20 +00006191 goto moveto_index_finish;
drhe51c44f2004-05-30 20:46:09 +00006192 }
drh42a410d2021-06-19 18:32:20 +00006193 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
6194 sqlite3_free(pCellKey);
drh72f82862001-05-24 21:06:34 +00006195 }
drh42a410d2021-06-19 18:32:20 +00006196 assert(
6197 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
6198 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
6199 );
6200 if( c<0 ){
6201 lwr = idx+1;
6202 }else if( c>0 ){
6203 upr = idx-1;
6204 }else{
6205 assert( c==0 );
6206 *pRes = 0;
6207 rc = SQLITE_OK;
6208 pCur->ix = (u16)idx;
6209 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
6210 goto moveto_index_finish;
6211 }
6212 if( lwr>upr ) break;
6213 assert( lwr+upr>=0 );
6214 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00006215 }
drhb07028f2011-10-14 21:49:18 +00006216 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00006217 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00006218 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00006219 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00006220 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00006221 *pRes = c;
6222 rc = SQLITE_OK;
drh42a410d2021-06-19 18:32:20 +00006223 goto moveto_index_finish;
drhebf10b12013-11-25 17:38:26 +00006224 }
drhebf10b12013-11-25 17:38:26 +00006225 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00006226 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00006227 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00006228 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00006229 }
drh75e96b32017-04-01 00:20:06 +00006230 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00006231 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00006232 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00006233 }
drh42a410d2021-06-19 18:32:20 +00006234moveto_index_finish:
drhd2022b02013-11-25 16:23:52 +00006235 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00006236 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00006237 return rc;
6238}
6239
drhd677b3d2007-08-20 22:48:41 +00006240
drh72f82862001-05-24 21:06:34 +00006241/*
drhc39e0002004-05-07 23:50:57 +00006242** Return TRUE if the cursor is not pointing at an entry of the table.
6243**
6244** TRUE will be returned after a call to sqlite3BtreeNext() moves
6245** past the last entry in the table or sqlite3BtreePrev() moves past
6246** the first entry. TRUE is also returned if the table is empty.
6247*/
6248int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00006249 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6250 ** have been deleted? This API will need to change to return an error code
6251 ** as well as the boolean result value.
6252 */
6253 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00006254}
6255
6256/*
drh5e98e832017-02-17 19:24:06 +00006257** Return an estimate for the number of rows in the table that pCur is
6258** pointing to. Return a negative number if no estimate is currently
6259** available.
6260*/
6261i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
6262 i64 n;
6263 u8 i;
6264
6265 assert( cursorOwnsBtShared(pCur) );
6266 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00006267
6268 /* Currently this interface is only called by the OP_IfSmaller
6269 ** opcode, and it that case the cursor will always be valid and
6270 ** will always point to a leaf node. */
6271 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00006272 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00006273
drh352a35a2017-08-15 03:46:47 +00006274 n = pCur->pPage->nCell;
6275 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00006276 n *= pCur->apPage[i]->nCell;
6277 }
6278 return n;
6279}
6280
6281/*
drh2ab792e2017-05-30 18:34:07 +00006282** Advance the cursor to the next entry in the database.
6283** Return value:
6284**
6285** SQLITE_OK success
6286** SQLITE_DONE cursor is already pointing at the last element
6287** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006288**
drhee6438d2014-09-01 13:29:32 +00006289** The main entry point is sqlite3BtreeNext(). That routine is optimized
6290** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6291** to the next cell on the current page. The (slower) btreeNext() helper
6292** routine is called when it is necessary to move to a different page or
6293** to restore the cursor.
6294**
drh89997982017-07-11 18:11:33 +00006295** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6296** cursor corresponds to an SQL index and this routine could have been
6297** skipped if the SQL index had been a unique index. The F argument
6298** is a hint to the implement. SQLite btree implementation does not use
6299** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00006300*/
drh89997982017-07-11 18:11:33 +00006301static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00006302 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006303 int idx;
danielk197797a227c2006-01-20 16:32:04 +00006304 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00006305
dan7a2347e2016-01-07 16:43:54 +00006306 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00006307 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00006308 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00006309 rc = restoreCursorPosition(pCur);
6310 if( rc!=SQLITE_OK ){
6311 return rc;
6312 }
6313 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006314 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006315 }
drh0c873bf2019-01-28 00:42:06 +00006316 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00006317 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006318 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006319 }
danielk1977da184232006-01-05 11:34:32 +00006320 }
danielk1977da184232006-01-05 11:34:32 +00006321
drh352a35a2017-08-15 03:46:47 +00006322 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006323 idx = ++pCur->ix;
drha957e222020-09-30 00:48:45 +00006324 if( !pPage->isInit || sqlite3FaultSim(412) ){
drhf3cd0c82018-06-08 19:13:57 +00006325 /* The only known way for this to happen is for there to be a
6326 ** recursive SQL function that does a DELETE operation as part of a
6327 ** SELECT which deletes content out from under an active cursor
6328 ** in a corrupt database file where the table being DELETE-ed from
6329 ** has pages in common with the table being queried. See TH3
6330 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
6331 ** example. */
6332 return SQLITE_CORRUPT_BKPT;
6333 }
danbb246c42012-01-12 14:25:55 +00006334
6335 /* If the database file is corrupt, it is possible for the value of idx
6336 ** to be invalid here. This can only occur if a second cursor modifies
6337 ** the page while cursor pCur is holding a reference to it. Which can
6338 ** only happen if the database is corrupt in such a way as to link the
drha2d50282019-12-23 18:02:15 +00006339 ** page into more than one b-tree structure.
6340 **
6341 ** Update 2019-12-23: appears to long longer be possible after the
6342 ** addition of anotherValidCursor() condition on balance_deeper(). */
6343 harmless( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00006344
danielk197771d5d2c2008-09-29 11:49:47 +00006345 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00006346 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006347 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00006348 if( rc ) return rc;
6349 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006350 }
drh5e2f8b92001-05-28 00:41:15 +00006351 do{
danielk197771d5d2c2008-09-29 11:49:47 +00006352 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006353 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006354 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00006355 }
danielk197730548662009-07-09 05:07:37 +00006356 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00006357 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006358 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00006359 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00006360 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006361 }else{
drhee6438d2014-09-01 13:29:32 +00006362 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00006363 }
drh8178a752003-01-05 21:41:40 +00006364 }
drh3aac2dd2004-04-26 14:10:20 +00006365 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00006366 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00006367 }else{
6368 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00006369 }
drh72f82862001-05-24 21:06:34 +00006370}
drh2ab792e2017-05-30 18:34:07 +00006371int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00006372 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00006373 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00006374 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006375 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00006376 pCur->info.nSize = 0;
6377 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00006378 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00006379 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00006380 if( (++pCur->ix)>=pPage->nCell ){
6381 pCur->ix--;
drh89997982017-07-11 18:11:33 +00006382 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00006383 }
6384 if( pPage->leaf ){
6385 return SQLITE_OK;
6386 }else{
6387 return moveToLeftmost(pCur);
6388 }
6389}
drh72f82862001-05-24 21:06:34 +00006390
drh3b7511c2001-05-26 13:15:44 +00006391/*
drh2ab792e2017-05-30 18:34:07 +00006392** Step the cursor to the back to the previous entry in the database.
6393** Return values:
6394**
6395** SQLITE_OK success
6396** SQLITE_DONE the cursor is already on the first element of the table
6397** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00006398**
drhee6438d2014-09-01 13:29:32 +00006399** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6400** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00006401** to the previous cell on the current page. The (slower) btreePrevious()
6402** helper routine is called when it is necessary to move to a different page
6403** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00006404**
drh89997982017-07-11 18:11:33 +00006405** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6406** the cursor corresponds to an SQL index and this routine could have been
6407** skipped if the SQL index had been a unique index. The F argument is a
6408** hint to the implement. The native SQLite btree implementation does not
6409** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00006410*/
drh89997982017-07-11 18:11:33 +00006411static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00006412 int rc;
drh8178a752003-01-05 21:41:40 +00006413 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00006414
dan7a2347e2016-01-07 16:43:54 +00006415 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00006416 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
6417 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00006418 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00006419 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00006420 if( rc!=SQLITE_OK ){
6421 return rc;
drhf66f26a2013-08-19 20:04:10 +00006422 }
6423 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00006424 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00006425 }
drh0c873bf2019-01-28 00:42:06 +00006426 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00006427 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00006428 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00006429 }
danielk1977da184232006-01-05 11:34:32 +00006430 }
danielk1977da184232006-01-05 11:34:32 +00006431
drh352a35a2017-08-15 03:46:47 +00006432 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00006433 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00006434 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00006435 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00006436 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00006437 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00006438 rc = moveToRightmost(pCur);
6439 }else{
drh75e96b32017-04-01 00:20:06 +00006440 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00006441 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00006442 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00006443 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00006444 }
danielk197730548662009-07-09 05:07:37 +00006445 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00006446 }
drhee6438d2014-09-01 13:29:32 +00006447 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00006448 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006449
drh75e96b32017-04-01 00:20:06 +00006450 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00006451 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00006452 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00006453 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00006454 }else{
6455 rc = SQLITE_OK;
6456 }
drh2dcc9aa2002-12-04 13:40:25 +00006457 }
drh2dcc9aa2002-12-04 13:40:25 +00006458 return rc;
6459}
drh2ab792e2017-05-30 18:34:07 +00006460int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00006461 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00006462 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00006463 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00006464 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
6465 pCur->info.nSize = 0;
6466 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00006467 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00006468 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00006469 ){
drh89997982017-07-11 18:11:33 +00006470 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00006471 }
drh75e96b32017-04-01 00:20:06 +00006472 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00006473 return SQLITE_OK;
6474}
drh2dcc9aa2002-12-04 13:40:25 +00006475
6476/*
drh3b7511c2001-05-26 13:15:44 +00006477** Allocate a new page from the database file.
6478**
danielk19773b8a05f2007-03-19 17:44:26 +00006479** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00006480** has already been called on the new page.) The new page has also
6481** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00006482** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00006483**
6484** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00006485** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00006486**
drh82e647d2013-03-02 03:25:55 +00006487** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00006488** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00006489** attempt to keep related pages close to each other in the database file,
6490** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00006491**
drh82e647d2013-03-02 03:25:55 +00006492** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6493** anywhere on the free-list, then it is guaranteed to be returned. If
6494** eMode is BTALLOC_LT then the page returned will be less than or equal
6495** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6496** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00006497*/
drh4f0c5872007-03-26 22:05:01 +00006498static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00006499 BtShared *pBt, /* The btree */
6500 MemPage **ppPage, /* Store pointer to the allocated page here */
6501 Pgno *pPgno, /* Store the page number here */
6502 Pgno nearby, /* Search for a page near this one */
6503 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006504){
drh3aac2dd2004-04-26 14:10:20 +00006505 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00006506 int rc;
drh35cd6432009-06-05 14:17:21 +00006507 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00006508 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00006509 MemPage *pTrunk = 0;
6510 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00006511 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00006512
drh1fee73e2007-08-29 04:00:57 +00006513 assert( sqlite3_mutex_held(pBt->mutex) );
dan572a21c2015-08-21 18:55:22 +00006514 assert( eMode==BTALLOC_ANY || (nearby>0 && REQUIRE_PTRMAP ) );
drh3aac2dd2004-04-26 14:10:20 +00006515 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00006516 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00006517 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
6518 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00006519 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00006520 testcase( n==mxPage-1 );
dan51883df2018-12-03 19:29:37 +00006521 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00006522 return SQLITE_CORRUPT_BKPT;
6523 }
dan7b3d71e2015-08-19 20:27:05 +00006524
6525 /* Ensure page 1 is writable. This function will either change the number
6526 ** of pages in the free-list or the size of the database file. Since both
6527 ** of these operations involve modifying page 1 header fields, page 1
danbf3cf572015-08-24 19:56:04 +00006528 ** will definitely be written by this transaction. If this is an CONCURRENT
dan7b3d71e2015-08-19 20:27:05 +00006529 ** transaction, ensure the BtreePtrmap structure has been allocated. */
dan7b3d71e2015-08-19 20:27:05 +00006530 rc = sqlite3PagerWrite(pPage1->pDbPage);
6531 if( rc ) return rc;
6532
drh3aac2dd2004-04-26 14:10:20 +00006533 if( n>0 ){
drh91025292004-05-03 19:49:32 +00006534 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006535 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006536 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00006537 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006538
drh82e647d2013-03-02 03:25:55 +00006539 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006540 ** shows that the page 'nearby' is somewhere on the free-list, then
6541 ** the entire-list will be searched for that page.
6542 */
dan51f0b6d2013-02-22 20:16:34 +00006543 if( eMode==BTALLOC_EXACT ){
danbf3cf572015-08-24 19:56:04 +00006544 assert( ISAUTOVACUUM!=ISCONCURRENT );
dan70af25d2015-08-21 17:57:16 +00006545 if( ISAUTOVACUUM ){
drh7e4f8362020-08-10 21:16:29 +00006546 if( nearby<=mxPage ){
dan70af25d2015-08-21 17:57:16 +00006547 u8 eType;
6548 assert( nearby>0 );
6549 assert( pBt->autoVacuum );
6550 rc = ptrmapGet(pBt, nearby, &eType, 0);
6551 if( rc ) return rc;
6552 if( eType==PTRMAP_FREEPAGE ){
6553 searchList = 1;
6554 }
dan51f0b6d2013-02-22 20:16:34 +00006555 }
dan70af25d2015-08-21 17:57:16 +00006556 }else{
6557 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006558 }
dan572a21c2015-08-21 18:55:22 +00006559 }else if( eMode==BTALLOC_LE ){
dan51f0b6d2013-02-22 20:16:34 +00006560 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006561 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006562
6563 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6564 ** first free-list trunk page. iPrevTrunk is initially 1.
6565 */
drh3aac2dd2004-04-26 14:10:20 +00006566 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006567
6568 /* The code within this loop is run only once if the 'searchList' variable
6569 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00006570 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6571 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00006572 */
6573 do {
6574 pPrevTrunk = pTrunk;
6575 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00006576 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6577 ** is the page number of the next freelist trunk page in the list or
6578 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006579 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00006580 }else{
drh113762a2014-11-19 16:36:25 +00006581 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6582 ** stores the page number of the first page of the freelist, or zero if
6583 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00006584 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00006585 }
drhdf35a082009-07-09 02:24:35 +00006586 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00006587 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00006588 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00006589 }else{
drh7e8c6f12015-05-28 03:28:27 +00006590 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00006591 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006592 if( rc ){
drhd3627af2006-12-18 18:34:51 +00006593 pTrunk = 0;
6594 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006595 }
drhb07028f2011-10-14 21:49:18 +00006596 assert( pTrunk!=0 );
6597 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00006598 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6599 ** is the number of leaf page pointers to follow. */
6600 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006601 if( k==0 && !searchList ){
6602 /* The trunk has no leaves and the list is not being searched.
6603 ** So extract the trunk page itself and use it as the newly
6604 ** allocated page */
6605 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00006606 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006607 if( rc ){
6608 goto end_allocate_page;
6609 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006610 *pPgno = iTrunk;
6611 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6612 *ppPage = pTrunk;
6613 pTrunk = 0;
6614 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006615 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006616 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006617 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006618 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006619#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006620 }else if( searchList
6621 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6622 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006623 /* The list is being searched and this trunk page is the page
6624 ** to allocate, regardless of whether it has leaves.
6625 */
dan51f0b6d2013-02-22 20:16:34 +00006626 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006627 *ppPage = pTrunk;
6628 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006629 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006630 if( rc ){
6631 goto end_allocate_page;
6632 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006633 if( k==0 ){
6634 if( !pPrevTrunk ){
6635 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6636 }else{
danf48c3552010-08-23 15:41:24 +00006637 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6638 if( rc!=SQLITE_OK ){
6639 goto end_allocate_page;
6640 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006641 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6642 }
6643 }else{
6644 /* The trunk page is required by the caller but it contains
6645 ** pointers to free-list leaves. The first leaf becomes a trunk
6646 ** page in this case.
6647 */
6648 MemPage *pNewTrunk;
6649 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006650 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006651 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006652 goto end_allocate_page;
6653 }
drhdf35a082009-07-09 02:24:35 +00006654 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006655 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006656 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006657 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006658 }
danielk19773b8a05f2007-03-19 17:44:26 +00006659 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006660 if( rc!=SQLITE_OK ){
6661 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006662 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006663 }
6664 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6665 put4byte(&pNewTrunk->aData[4], k-1);
6666 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006667 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006668 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006669 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006670 put4byte(&pPage1->aData[32], iNewTrunk);
6671 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006672 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006673 if( rc ){
6674 goto end_allocate_page;
6675 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006676 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6677 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006678 }
6679 pTrunk = 0;
6680 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6681#endif
danielk1977e5765212009-06-17 11:13:28 +00006682 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006683 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006684 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006685 Pgno iPage;
6686 unsigned char *aData = pTrunk->aData;
6687 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006688 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006689 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006690 if( eMode==BTALLOC_LE ){
6691 for(i=0; i<k; i++){
6692 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006693 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006694 closest = i;
6695 break;
6696 }
6697 }
6698 }else{
6699 int dist;
6700 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6701 for(i=1; i<k; i++){
6702 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6703 if( d2<dist ){
6704 closest = i;
6705 dist = d2;
6706 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006707 }
6708 }
6709 }else{
6710 closest = 0;
6711 }
6712
6713 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006714 testcase( iPage==mxPage );
drh07812192021-04-07 12:21:35 +00006715 if( iPage>mxPage || iPage<2 ){
drhcc97ca42017-06-07 22:32:59 +00006716 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006717 goto end_allocate_page;
6718 }
drhdf35a082009-07-09 02:24:35 +00006719 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006720 if( !searchList
6721 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6722 ){
danielk1977bea2a942009-01-20 17:06:27 +00006723 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006724 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006725 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6726 ": %d more free pages\n",
6727 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006728 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6729 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006730 if( closest<k-1 ){
6731 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6732 }
6733 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006734 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006735 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006736 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006737 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006738 if( rc!=SQLITE_OK ){
6739 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006740 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006741 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006742 }
6743 searchList = 0;
6744 }
drhee696e22004-08-30 16:52:17 +00006745 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006746 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006747 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006748 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006749 }else{
danbc1a3c62013-02-23 16:40:46 +00006750 /* There are no pages on the freelist, so append a new page to the
6751 ** database image.
6752 **
6753 ** Normally, new pages allocated by this block can be requested from the
6754 ** pager layer with the 'no-content' flag set. This prevents the pager
6755 ** from trying to read the pages content from disk. However, if the
6756 ** current transaction has already run one or more incremental-vacuum
6757 ** steps, then the page we are about to allocate may contain content
6758 ** that is required in the event of a rollback. In this case, do
6759 ** not set the no-content flag. This causes the pager to load and journal
6760 ** the current page content before overwriting it.
6761 **
6762 ** Note that the pager will not actually attempt to load or journal
6763 ** content for any page that really does lie past the end of the database
6764 ** file on disk. So the effects of disabling the no-content optimization
6765 ** here are confined to those pages that lie between the end of the
6766 ** database image and the end of the database file.
6767 */
drh3f387402014-09-24 01:23:00 +00006768 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006769
drhdd3cd972010-03-27 17:12:36 +00006770 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6771 if( rc ) return rc;
6772 pBt->nPage++;
6773 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006774
danielk1977afcdd022004-10-31 16:25:42 +00006775#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006776 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006777 /* If *pPgno refers to a pointer-map page, allocate two new pages
6778 ** at the end of the file instead of one. The first allocated page
6779 ** becomes a new pointer-map page, the second is used by the caller.
6780 */
danielk1977ac861692009-03-28 10:54:22 +00006781 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006782 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6783 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006784 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006785 if( rc==SQLITE_OK ){
6786 rc = sqlite3PagerWrite(pPg->pDbPage);
6787 releasePage(pPg);
6788 }
6789 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006790 pBt->nPage++;
6791 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006792 }
6793#endif
drhdd3cd972010-03-27 17:12:36 +00006794 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6795 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006796
danielk1977599fcba2004-11-08 07:13:13 +00006797 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006798 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006799 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006800 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006801 if( rc!=SQLITE_OK ){
6802 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006803 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006804 }
drh3a4c1412004-05-09 20:40:11 +00006805 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006806 }
danielk1977599fcba2004-11-08 07:13:13 +00006807
danba14c692019-01-25 13:42:12 +00006808 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006809
6810end_allocate_page:
6811 releasePage(pTrunk);
6812 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006813 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6814 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006815 return rc;
6816}
6817
6818/*
danielk1977bea2a942009-01-20 17:06:27 +00006819** This function is used to add page iPage to the database file free-list.
6820** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006821**
danielk1977bea2a942009-01-20 17:06:27 +00006822** The value passed as the second argument to this function is optional.
6823** If the caller happens to have a pointer to the MemPage object
6824** corresponding to page iPage handy, it may pass it as the second value.
6825** Otherwise, it may pass NULL.
6826**
6827** If a pointer to a MemPage object is passed as the second argument,
6828** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006829*/
danielk1977bea2a942009-01-20 17:06:27 +00006830static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6831 MemPage *pTrunk = 0; /* Free-list trunk page */
6832 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6833 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6834 MemPage *pPage; /* Page being freed. May be NULL. */
6835 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006836 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006837
danielk1977bea2a942009-01-20 17:06:27 +00006838 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006839 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006840 assert( !pMemPage || pMemPage->pgno==iPage );
6841
drh53218e22020-07-31 23:34:53 +00006842 if( iPage<2 || iPage>pBt->nPage ){
drh58b42ad2019-03-25 19:50:19 +00006843 return SQLITE_CORRUPT_BKPT;
6844 }
danielk1977bea2a942009-01-20 17:06:27 +00006845 if( pMemPage ){
6846 pPage = pMemPage;
6847 sqlite3PagerRef(pPage->pDbPage);
6848 }else{
6849 pPage = btreePageLookup(pBt, iPage);
6850 }
drh3aac2dd2004-04-26 14:10:20 +00006851
drha34b6762004-05-07 13:30:42 +00006852 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006853 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006854 if( rc ) goto freepage_out;
6855 nFree = get4byte(&pPage1->aData[36]);
6856 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006857
drhc9166342012-01-05 23:32:06 +00006858 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006859 /* If the secure_delete option is enabled, then
6860 ** always fully overwrite deleted information with zeros.
6861 */
drhb00fc3b2013-08-21 23:42:32 +00006862 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006863 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006864 ){
6865 goto freepage_out;
6866 }
6867 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006868 }
drhfcce93f2006-02-22 03:08:32 +00006869
danielk1977687566d2004-11-02 12:56:41 +00006870 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006871 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006872 */
dan7b3d71e2015-08-19 20:27:05 +00006873 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00006874 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006875 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006876 }
danielk1977687566d2004-11-02 12:56:41 +00006877
danielk1977bea2a942009-01-20 17:06:27 +00006878 /* Now manipulate the actual database free-list structure. There are two
6879 ** possibilities. If the free-list is currently empty, or if the first
6880 ** trunk page in the free-list is full, then this page will become a
6881 ** new free-list trunk page. Otherwise, it will become a leaf of the
6882 ** first trunk page in the current free-list. This block tests if it
6883 ** is possible to add the page as a new free-list leaf.
6884 */
6885 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006886 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006887
6888 iTrunk = get4byte(&pPage1->aData[32]);
drh10248222020-07-28 20:32:12 +00006889 if( iTrunk>btreePagecount(pBt) ){
6890 rc = SQLITE_CORRUPT_BKPT;
6891 goto freepage_out;
6892 }
drhb00fc3b2013-08-21 23:42:32 +00006893 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006894 if( rc!=SQLITE_OK ){
6895 goto freepage_out;
6896 }
6897
6898 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006899 assert( pBt->usableSize>32 );
6900 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006901 rc = SQLITE_CORRUPT_BKPT;
6902 goto freepage_out;
6903 }
drheeb844a2009-08-08 18:01:07 +00006904 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006905 /* In this case there is room on the trunk page to insert the page
6906 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006907 **
6908 ** Note that the trunk page is not really full until it contains
6909 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6910 ** coded. But due to a coding error in versions of SQLite prior to
6911 ** 3.6.0, databases with freelist trunk pages holding more than
6912 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6913 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006914 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006915 ** for now. At some point in the future (once everyone has upgraded
6916 ** to 3.6.0 or later) we should consider fixing the conditional above
6917 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006918 **
6919 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6920 ** avoid using the last six entries in the freelist trunk page array in
6921 ** order that database files created by newer versions of SQLite can be
6922 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006923 */
danielk19773b8a05f2007-03-19 17:44:26 +00006924 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006925 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006926 put4byte(&pTrunk->aData[4], nLeaf+1);
6927 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006928 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006929 sqlite3PagerDontWrite(pPage->pDbPage);
6930 }
danielk1977bea2a942009-01-20 17:06:27 +00006931 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006932 }
drh3a4c1412004-05-09 20:40:11 +00006933 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006934 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006935 }
drh3b7511c2001-05-26 13:15:44 +00006936 }
danielk1977bea2a942009-01-20 17:06:27 +00006937
6938 /* If control flows to this point, then it was not possible to add the
6939 ** the page being freed as a leaf page of the first trunk in the free-list.
6940 ** Possibly because the free-list is empty, or possibly because the
6941 ** first trunk in the free-list is full. Either way, the page being freed
6942 ** will become the new first trunk page in the free-list.
6943 */
drhb00fc3b2013-08-21 23:42:32 +00006944 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006945 goto freepage_out;
6946 }
6947 rc = sqlite3PagerWrite(pPage->pDbPage);
6948 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006949 goto freepage_out;
6950 }
6951 put4byte(pPage->aData, iTrunk);
6952 put4byte(&pPage->aData[4], 0);
6953 put4byte(&pPage1->aData[32], iPage);
6954 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6955
6956freepage_out:
6957 if( pPage ){
6958 pPage->isInit = 0;
6959 }
6960 releasePage(pPage);
6961 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006962 return rc;
6963}
drhc314dc72009-07-21 11:52:34 +00006964static void freePage(MemPage *pPage, int *pRC){
6965 if( (*pRC)==SQLITE_OK ){
6966 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6967 }
danielk1977bea2a942009-01-20 17:06:27 +00006968}
drh3b7511c2001-05-26 13:15:44 +00006969
6970/*
drh86c779f2021-05-15 13:08:44 +00006971** Free the overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00006972*/
drh86c779f2021-05-15 13:08:44 +00006973static SQLITE_NOINLINE int clearCellOverflow(
drh9bfdc252014-09-24 02:05:41 +00006974 MemPage *pPage, /* The page that contains the Cell */
6975 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006976 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006977){
drh60172a52017-08-02 18:27:50 +00006978 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006979 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006980 int rc;
drh94440812007-03-06 11:42:19 +00006981 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006982 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006983
drh1fee73e2007-08-29 04:00:57 +00006984 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh86c779f2021-05-15 13:08:44 +00006985 assert( pInfo->nLocal!=pInfo->nPayload );
drh6fcf83a2018-05-05 01:23:28 +00006986 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6987 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6988 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006989 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006990 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006991 }
drh80159da2016-12-09 17:32:51 +00006992 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006993 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006994 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006995 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006996 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006997 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006998 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006999 );
drh72365832007-03-06 15:53:44 +00007000 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00007001 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00007002 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00007003 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00007004 /* 0 is not a legal page number and page 1 cannot be an
7005 ** overflow page. Therefore if ovflPgno<2 or past the end of the
7006 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00007007 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007008 }
danielk1977bea2a942009-01-20 17:06:27 +00007009 if( nOvfl ){
7010 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
7011 if( rc ) return rc;
7012 }
dan887d4b22010-02-25 12:09:16 +00007013
shaneh1da207e2010-03-09 14:41:12 +00007014 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00007015 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
7016 ){
7017 /* There is no reason any cursor should have an outstanding reference
7018 ** to an overflow page belonging to a cell that is being deleted/updated.
7019 ** So if there exists more than one reference to this page, then it
7020 ** must not really be an overflow page and the database must be corrupt.
7021 ** It is helpful to detect this before calling freePage2(), as
7022 ** freePage2() may zero the page contents if secure-delete mode is
7023 ** enabled. If this 'overflow' page happens to be a page that the
7024 ** caller is iterating through or using in some other way, this
7025 ** can be problematic.
7026 */
7027 rc = SQLITE_CORRUPT_BKPT;
7028 }else{
7029 rc = freePage2(pBt, pOvfl, ovflPgno);
7030 }
7031
danielk1977bea2a942009-01-20 17:06:27 +00007032 if( pOvfl ){
7033 sqlite3PagerUnref(pOvfl->pDbPage);
7034 }
drh3b7511c2001-05-26 13:15:44 +00007035 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00007036 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00007037 }
drh5e2f8b92001-05-28 00:41:15 +00007038 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00007039}
7040
drh86c779f2021-05-15 13:08:44 +00007041/* Call xParseCell to compute the size of a cell. If the cell contains
7042** overflow, then invoke cellClearOverflow to clear out that overflow.
7043** STore the result code (SQLITE_OK or some error code) in rc.
7044**
7045** Implemented as macro to force inlining for performance.
7046*/
7047#define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
7048 pPage->xParseCell(pPage, pCell, &sInfo); \
7049 if( sInfo.nLocal!=sInfo.nPayload ){ \
7050 rc = clearCellOverflow(pPage, pCell, &sInfo); \
7051 }else{ \
7052 rc = SQLITE_OK; \
7053 }
7054
7055
drh3b7511c2001-05-26 13:15:44 +00007056/*
drh91025292004-05-03 19:49:32 +00007057** Create the byte sequence used to represent a cell on page pPage
7058** and write that byte sequence into pCell[]. Overflow pages are
7059** allocated and filled in as necessary. The calling procedure
7060** is responsible for making sure sufficient space has been allocated
7061** for pCell[].
7062**
7063** Note that pCell does not necessary need to point to the pPage->aData
7064** area. pCell might point to some temporary storage. The cell will
7065** be constructed in this temporary area then copied into pPage->aData
7066** later.
drh3b7511c2001-05-26 13:15:44 +00007067*/
7068static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00007069 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00007070 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00007071 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00007072 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00007073){
drh3b7511c2001-05-26 13:15:44 +00007074 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00007075 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00007076 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00007077 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00007078 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00007079 unsigned char *pPrior;
7080 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00007081 BtShared *pBt;
7082 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00007083 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00007084
drh1fee73e2007-08-29 04:00:57 +00007085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00007086
drhc5053fb2008-11-27 02:22:10 +00007087 /* pPage is not necessarily writeable since pCell might be auxiliary
7088 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00007089 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00007090 || sqlite3PagerIswriteable(pPage->pDbPage) );
7091
drh91025292004-05-03 19:49:32 +00007092 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00007093 nHeader = pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00007094 if( pPage->intKey ){
drhdfc2daa2016-05-21 23:25:29 +00007095 nPayload = pX->nData + pX->nZero;
7096 pSrc = pX->pData;
7097 nSrc = pX->nData;
7098 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh3b7511c2001-05-26 13:15:44 +00007099 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00007100 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh3b7511c2001-05-26 13:15:44 +00007101 }else{
drh8eeb4462016-05-21 20:03:42 +00007102 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
7103 nSrc = nPayload = (int)pX->nKey;
7104 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00007105 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00007106 }
drhdfc2daa2016-05-21 23:25:29 +00007107
7108 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00007109 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00007110 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00007111 /* This is the common case where everything fits on the btree page
7112 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00007113 n = nHeader + nPayload;
7114 testcase( n==3 );
7115 testcase( n==4 );
7116 if( n<4 ) n = 4;
7117 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00007118 assert( nSrc<=nPayload );
7119 testcase( nSrc<nPayload );
7120 memcpy(pPayload, pSrc, nSrc);
7121 memset(pPayload+nSrc, 0, nPayload-nSrc);
7122 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00007123 }
drh5e27e1d2017-08-23 14:45:59 +00007124
7125 /* If we reach this point, it means that some of the content will need
7126 ** to spill onto overflow pages.
7127 */
7128 mn = pPage->minLocal;
7129 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
7130 testcase( n==pPage->maxLocal );
7131 testcase( n==pPage->maxLocal+1 );
7132 if( n > pPage->maxLocal ) n = mn;
7133 spaceLeft = n;
7134 *pnSize = n + nHeader + 4;
7135 pPrior = &pCell[nHeader+n];
7136 pToRelease = 0;
7137 pgnoOvfl = 0;
7138 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00007139
drh6200c882014-09-23 22:36:25 +00007140 /* At this point variables should be set as follows:
7141 **
7142 ** nPayload Total payload size in bytes
7143 ** pPayload Begin writing payload here
7144 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
7145 ** that means content must spill into overflow pages.
7146 ** *pnSize Size of the local cell (not counting overflow pages)
7147 ** pPrior Where to write the pgno of the first overflow page
7148 **
7149 ** Use a call to btreeParseCellPtr() to verify that the values above
7150 ** were computed correctly.
7151 */
drhd879e3e2017-02-13 13:35:55 +00007152#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00007153 {
7154 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00007155 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00007156 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00007157 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00007158 assert( *pnSize == info.nSize );
7159 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00007160 }
7161#endif
7162
7163 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00007164 while( 1 ){
7165 n = nPayload;
7166 if( n>spaceLeft ) n = spaceLeft;
7167
7168 /* If pToRelease is not zero than pPayload points into the data area
7169 ** of pToRelease. Make sure pToRelease is still writeable. */
7170 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
7171
7172 /* If pPayload is part of the data area of pPage, then make sure pPage
7173 ** is still writeable */
7174 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
7175 || sqlite3PagerIswriteable(pPage->pDbPage) );
7176
7177 if( nSrc>=n ){
7178 memcpy(pPayload, pSrc, n);
7179 }else if( nSrc>0 ){
7180 n = nSrc;
7181 memcpy(pPayload, pSrc, n);
7182 }else{
7183 memset(pPayload, 0, n);
7184 }
7185 nPayload -= n;
7186 if( nPayload<=0 ) break;
7187 pPayload += n;
7188 pSrc += n;
7189 nSrc -= n;
7190 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00007191 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00007192 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00007193#ifndef SQLITE_OMIT_AUTOVACUUM
7194 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00007195 if( pBt->autoVacuum ){
7196 do{
7197 pgnoOvfl++;
7198 } while(
7199 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
7200 );
danielk1977b39f70b2007-05-17 18:28:11 +00007201 }
danielk1977afcdd022004-10-31 16:25:42 +00007202#endif
drhf49661a2008-12-10 16:45:50 +00007203 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
dan7b3d71e2015-08-19 20:27:05 +00007204
danielk1977a19df672004-11-03 11:37:07 +00007205 /* If the database supports auto-vacuum, and the second or subsequent
7206 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00007207 ** for that page now.
7208 **
7209 ** If this is the first overflow page, then write a partial entry
7210 ** to the pointer-map. If we write nothing to this pointer-map slot,
7211 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00007212 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00007213 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00007214 */
dan7b3d71e2015-08-19 20:27:05 +00007215 if( REQUIRE_PTRMAP && rc==SQLITE_OK ){
danielk19774ef24492007-05-23 09:52:41 +00007216 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00007217 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00007218 if( rc ){
7219 releasePage(pOvfl);
7220 }
danielk1977afcdd022004-10-31 16:25:42 +00007221 }
drh3b7511c2001-05-26 13:15:44 +00007222 if( rc ){
drh9b171272004-05-08 02:03:22 +00007223 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00007224 return rc;
7225 }
drhc5053fb2008-11-27 02:22:10 +00007226
7227 /* If pToRelease is not zero than pPrior points into the data area
7228 ** of pToRelease. Make sure pToRelease is still writeable. */
7229 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
7230
7231 /* If pPrior is part of the data area of pPage, then make sure pPage
7232 ** is still writeable */
7233 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
7234 || sqlite3PagerIswriteable(pPage->pDbPage) );
7235
drh3aac2dd2004-04-26 14:10:20 +00007236 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00007237 releasePage(pToRelease);
7238 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00007239 pPrior = pOvfl->aData;
7240 put4byte(pPrior, 0);
7241 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00007242 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00007243 }
drhdd793422001-06-28 01:54:48 +00007244 }
drh9b171272004-05-08 02:03:22 +00007245 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00007246 return SQLITE_OK;
7247}
7248
drh14acc042001-06-10 19:56:58 +00007249/*
7250** Remove the i-th cell from pPage. This routine effects pPage only.
7251** The cell content is not freed or deallocated. It is assumed that
7252** the cell content has been copied someplace else. This routine just
7253** removes the reference to the cell from pPage.
7254**
7255** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00007256*/
drh98add2e2009-07-20 17:11:49 +00007257static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00007258 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00007259 u8 *data; /* pPage->aData */
7260 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00007261 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00007262 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00007263
drh98add2e2009-07-20 17:11:49 +00007264 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00007265 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00007266 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00007267 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00007268 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00007269 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00007270 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00007271 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00007272 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00007273 hdr = pPage->hdrOffset;
7274 testcase( pc==get2byte(&data[hdr+5]) );
7275 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00007276 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00007277 *pRC = SQLITE_CORRUPT_BKPT;
7278 return;
shane0af3f892008-11-12 04:55:34 +00007279 }
shanedcc50b72008-11-13 18:29:50 +00007280 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00007281 if( rc ){
7282 *pRC = rc;
7283 return;
shanedcc50b72008-11-13 18:29:50 +00007284 }
drh14acc042001-06-10 19:56:58 +00007285 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00007286 if( pPage->nCell==0 ){
7287 memset(&data[hdr+1], 0, 4);
7288 data[hdr+7] = 0;
7289 put2byte(&data[hdr+5], pPage->pBt->usableSize);
7290 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
7291 - pPage->childPtrSize - 8;
7292 }else{
7293 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
7294 put2byte(&data[hdr+3], pPage->nCell);
7295 pPage->nFree += 2;
7296 }
drh14acc042001-06-10 19:56:58 +00007297}
7298
7299/*
7300** Insert a new cell on pPage at cell index "i". pCell points to the
7301** content of the cell.
7302**
7303** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00007304** will not fit, then make a copy of the cell content into pTemp if
7305** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00007306** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00007307** in pTemp or the original pCell) and also record its index.
7308** Allocating a new entry in pPage->aCell[] implies that
7309** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00007310**
7311** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00007312*/
drh98add2e2009-07-20 17:11:49 +00007313static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00007314 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00007315 int i, /* New cell becomes the i-th cell of the page */
7316 u8 *pCell, /* Content of the new cell */
7317 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00007318 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00007319 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
7320 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00007321){
drh383d30f2010-02-26 13:07:37 +00007322 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00007323 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00007324 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00007325 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00007326
drhcb89f4a2016-05-21 11:23:26 +00007327 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00007328 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00007329 assert( MX_CELL(pPage->pBt)<=10921 );
7330 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00007331 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
7332 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00007333 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00007334 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00007335 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00007336 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00007337 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00007338 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00007339 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00007340 }
danielk19774dbaa892009-06-16 16:50:22 +00007341 if( iChild ){
7342 put4byte(pCell, iChild);
7343 }
drh43605152004-05-29 21:46:49 +00007344 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00007345 /* Comparison against ArraySize-1 since we hold back one extra slot
7346 ** as a contingency. In other words, never need more than 3 overflow
7347 ** slots but 4 are allocated, just to be safe. */
7348 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00007349 pPage->apOvfl[j] = pCell;
7350 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00007351
7352 /* When multiple overflows occur, they are always sequential and in
7353 ** sorted order. This invariants arise because multiple overflows can
7354 ** only occur when inserting divider cells into the parent page during
7355 ** balancing, and the dividers are adjacent and sorted.
7356 */
7357 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
7358 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00007359 }else{
dan7b3d71e2015-08-19 20:27:05 +00007360 BtShared *pBt = pPage->pBt;
danielk19776e465eb2007-08-21 13:11:00 +00007361 int rc = sqlite3PagerWrite(pPage->pDbPage);
7362 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00007363 *pRC = rc;
7364 return;
danielk19776e465eb2007-08-21 13:11:00 +00007365 }
7366 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00007367 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00007368 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00007369 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00007370 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00007371 /* The allocateSpace() routine guarantees the following properties
7372 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00007373 assert( idx >= 0 );
7374 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
dan7b3d71e2015-08-19 20:27:05 +00007375 assert( idx+sz <= (int)pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00007376 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00007377 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00007378 /* In a corrupt database where an entry in the cell index section of
7379 ** a btree page has a value of 3 or less, the pCell value might point
7380 ** as many as 4 bytes in front of the start of the aData buffer for
7381 ** the source page. Make sure this does not cause problems by not
7382 ** reading the first 4 bytes */
7383 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00007384 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00007385 }else{
7386 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00007387 }
drh2c8fb922015-06-25 19:53:48 +00007388 pIns = pPage->aCellIdx + i*2;
7389 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
7390 put2byte(pIns, idx);
7391 pPage->nCell++;
7392 /* increment the cell count */
7393 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00007394 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
dan7b3d71e2015-08-19 20:27:05 +00007395 if( REQUIRE_PTRMAP ){
danielk1977a19df672004-11-03 11:37:07 +00007396 /* The cell may contain a pointer to an overflow page. If so, write
7397 ** the entry for the overflow page into the pointer map.
7398 */
drh0f1bf4c2019-01-13 20:17:21 +00007399 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00007400 }
drh14acc042001-06-10 19:56:58 +00007401 }
7402}
7403
7404/*
drhe3dadac2019-01-23 19:25:59 +00007405** The following parameters determine how many adjacent pages get involved
7406** in a balancing operation. NN is the number of neighbors on either side
7407** of the page that participate in the balancing operation. NB is the
7408** total number of pages that participate, including the target page and
7409** NN neighbors on either side.
7410**
7411** The minimum value of NN is 1 (of course). Increasing NN above 1
7412** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7413** in exchange for a larger degradation in INSERT and UPDATE performance.
7414** The value of NN appears to give the best results overall.
7415**
7416** (Later:) The description above makes it seem as if these values are
7417** tunable - as if you could change them and recompile and it would all work.
7418** But that is unlikely. NB has been 3 since the inception of SQLite and
7419** we have never tested any other value.
7420*/
7421#define NN 1 /* Number of neighbors on either side of pPage */
7422#define NB 3 /* (NN*2+1): Total pages involved in the balance */
7423
7424/*
drh1ffd2472015-06-23 02:37:30 +00007425** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00007426** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00007427**
7428** The cells in this array are the divider cell or cells from the pParent
7429** page plus up to three child pages. There are a total of nCell cells.
7430**
7431** pRef is a pointer to one of the pages that contributes cells. This is
7432** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7433** which should be common to all pages that contribute cells to this array.
7434**
7435** apCell[] and szCell[] hold, respectively, pointers to the start of each
7436** cell and the size of each cell. Some of the apCell[] pointers might refer
7437** to overflow cells. In other words, some apCel[] pointers might not point
7438** to content area of the pages.
7439**
7440** A szCell[] of zero means the size of that cell has not yet been computed.
7441**
7442** The cells come from as many as four different pages:
7443**
7444** -----------
7445** | Parent |
7446** -----------
7447** / | \
7448** / | \
7449** --------- --------- ---------
7450** |Child-1| |Child-2| |Child-3|
7451** --------- --------- ---------
7452**
drh26b7ec82019-02-01 14:50:43 +00007453** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00007454**
7455** 1. All cells from Child-1 in order
7456** 2. The first divider cell from Parent
7457** 3. All cells from Child-2 in order
7458** 4. The second divider cell from Parent
7459** 5. All cells from Child-3 in order
7460**
drh26b7ec82019-02-01 14:50:43 +00007461** For a table-btree (with rowids) the items 2 and 4 are empty because
7462** content exists only in leaves and there are no divider cells.
7463**
7464** For an index btree, the apEnd[] array holds pointer to the end of page
7465** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7466** respectively. The ixNx[] array holds the number of cells contained in
7467** each of these 5 stages, and all stages to the left. Hence:
7468**
drhe3dadac2019-01-23 19:25:59 +00007469** ixNx[0] = Number of cells in Child-1.
7470** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7471** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7472** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7473** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00007474**
7475** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7476** are used and they point to the leaf pages only, and the ixNx value are:
7477**
7478** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00007479** ixNx[1] = Number of cells in Child-1 and Child-2.
7480** ixNx[2] = Total number of cells.
7481**
7482** Sometimes when deleting, a child page can have zero cells. In those
7483** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7484** entries, shift down. The end result is that each ixNx[] entry should
7485** be larger than the previous
drh1ffd2472015-06-23 02:37:30 +00007486*/
7487typedef struct CellArray CellArray;
7488struct CellArray {
7489 int nCell; /* Number of cells in apCell[] */
7490 MemPage *pRef; /* Reference page */
7491 u8 **apCell; /* All cells begin balanced */
7492 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00007493 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
7494 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00007495};
7496
7497/*
7498** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7499** computed.
7500*/
7501static void populateCellCache(CellArray *p, int idx, int N){
7502 assert( idx>=0 && idx+N<=p->nCell );
7503 while( N>0 ){
7504 assert( p->apCell[idx]!=0 );
7505 if( p->szCell[idx]==0 ){
7506 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
7507 }else{
7508 assert( CORRUPT_DB ||
7509 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
7510 }
7511 idx++;
7512 N--;
7513 }
7514}
7515
7516/*
7517** Return the size of the Nth element of the cell array
7518*/
7519static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
7520 assert( N>=0 && N<p->nCell );
7521 assert( p->szCell[N]==0 );
7522 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
7523 return p->szCell[N];
7524}
7525static u16 cachedCellSize(CellArray *p, int N){
7526 assert( N>=0 && N<p->nCell );
7527 if( p->szCell[N] ) return p->szCell[N];
7528 return computeCellSize(p, N);
7529}
7530
7531/*
dan8e9ba0c2014-10-14 17:27:04 +00007532** Array apCell[] contains pointers to nCell b-tree page cells. The
7533** szCell[] array contains the size in bytes of each cell. This function
7534** replaces the current contents of page pPg with the contents of the cell
7535** array.
7536**
7537** Some of the cells in apCell[] may currently be stored in pPg. This
7538** function works around problems caused by this by making a copy of any
7539** such cells before overwriting the page data.
7540**
7541** The MemPage.nFree field is invalidated by this function. It is the
7542** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00007543*/
drh658873b2015-06-22 20:02:04 +00007544static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00007545 CellArray *pCArray, /* Content to be added to page pPg */
7546 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00007547 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00007548 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00007549){
7550 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
7551 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
7552 const int usableSize = pPg->pBt->usableSize;
7553 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00007554 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00007555 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00007556 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00007557 u8 *pCellptr = pPg->aCellIdx;
7558 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7559 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00007560 int k; /* Current slot in pCArray->apEnd[] */
7561 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00007562
drhe3dadac2019-01-23 19:25:59 +00007563 assert( i<iEnd );
7564 j = get2byte(&aData[hdr+5]);
drh3b76c452020-01-03 17:40:30 +00007565 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00007566 memcpy(&pTmp[j], &aData[j], usableSize - j);
7567
7568 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7569 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00007570
dan8e9ba0c2014-10-14 17:27:04 +00007571 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00007572 while( 1/*exit by break*/ ){
7573 u8 *pCell = pCArray->apCell[i];
7574 u16 sz = pCArray->szCell[i];
7575 assert( sz>0 );
drh8cae5a42021-04-20 20:48:15 +00007576 if( SQLITE_WITHIN(pCell,aData+j,pEnd) ){
drhe3dadac2019-01-23 19:25:59 +00007577 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007578 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00007579 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
7580 && (uptr)(pCell)<(uptr)pSrcEnd
7581 ){
7582 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00007583 }
drhe3dadac2019-01-23 19:25:59 +00007584
7585 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00007586 put2byte(pCellptr, (pData - aData));
7587 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00007588 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drheca3c672021-04-22 20:01:02 +00007589 memmove(pData, pCell, sz);
drhe3dadac2019-01-23 19:25:59 +00007590 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007591 i++;
7592 if( i>=iEnd ) break;
7593 if( pCArray->ixNx[k]<=i ){
7594 k++;
7595 pSrcEnd = pCArray->apEnd[k];
7596 }
dan33ea4862014-10-09 19:35:37 +00007597 }
7598
dand7b545b2014-10-13 18:03:27 +00007599 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00007600 pPg->nCell = nCell;
7601 pPg->nOverflow = 0;
7602
7603 put2byte(&aData[hdr+1], 0);
7604 put2byte(&aData[hdr+3], pPg->nCell);
7605 put2byte(&aData[hdr+5], pData - aData);
7606 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00007607 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00007608}
7609
dan8e9ba0c2014-10-14 17:27:04 +00007610/*
drhe3dadac2019-01-23 19:25:59 +00007611** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7612** This function attempts to add the cells stored in the array to page pPg.
7613** If it cannot (because the page needs to be defragmented before the cells
7614** will fit), non-zero is returned. Otherwise, if the cells are added
7615** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00007616**
7617** Argument pCellptr points to the first entry in the cell-pointer array
7618** (part of page pPg) to populate. After cell apCell[0] is written to the
7619** page body, a 16-bit offset is written to pCellptr. And so on, for each
7620** cell in the array. It is the responsibility of the caller to ensure
7621** that it is safe to overwrite this part of the cell-pointer array.
7622**
7623** When this function is called, *ppData points to the start of the
7624** content area on page pPg. If the size of the content area is extended,
7625** *ppData is updated to point to the new start of the content area
7626** before returning.
7627**
7628** Finally, argument pBegin points to the byte immediately following the
7629** end of the space required by this page for the cell-pointer area (for
7630** all cells - not just those inserted by the current call). If the content
7631** area must be extended to before this point in order to accomodate all
7632** cells in apCell[], then the cells do not fit and non-zero is returned.
7633*/
dand7b545b2014-10-13 18:03:27 +00007634static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007635 MemPage *pPg, /* Page to add cells to */
7636 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007637 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007638 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007639 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007640 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007641 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007642){
drhe3dadac2019-01-23 19:25:59 +00007643 int i = iFirst; /* Loop counter - cell index to insert */
7644 u8 *aData = pPg->aData; /* Complete page */
7645 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7646 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7647 int k; /* Current slot in pCArray->apEnd[] */
7648 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007649 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007650 if( iEnd<=iFirst ) return 0;
7651 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7652 pEnd = pCArray->apEnd[k];
7653 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007654 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007655 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007656 assert( pCArray->szCell[i]!=0 );
7657 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007658 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007659 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007660 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007661 pSlot = pData;
7662 }
drh48310f82015-10-10 16:41:28 +00007663 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7664 ** database. But they might for a corrupt database. Hence use memmove()
7665 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7666 assert( (pSlot+sz)<=pCArray->apCell[i]
7667 || pSlot>=(pCArray->apCell[i]+sz)
7668 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007669 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7670 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7671 ){
7672 assert( CORRUPT_DB );
7673 (void)SQLITE_CORRUPT_BKPT;
7674 return 1;
7675 }
drh48310f82015-10-10 16:41:28 +00007676 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007677 put2byte(pCellptr, (pSlot - aData));
7678 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007679 i++;
7680 if( i>=iEnd ) break;
7681 if( pCArray->ixNx[k]<=i ){
7682 k++;
7683 pEnd = pCArray->apEnd[k];
7684 }
dand7b545b2014-10-13 18:03:27 +00007685 }
7686 *ppData = pData;
7687 return 0;
7688}
7689
dan8e9ba0c2014-10-14 17:27:04 +00007690/*
drhe3dadac2019-01-23 19:25:59 +00007691** The pCArray object contains pointers to b-tree cells and their sizes.
7692**
7693** This function adds the space associated with each cell in the array
7694** that is currently stored within the body of pPg to the pPg free-list.
7695** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007696**
7697** This function returns the total number of cells added to the free-list.
7698*/
dand7b545b2014-10-13 18:03:27 +00007699static int pageFreeArray(
7700 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007701 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007702 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007703 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007704){
7705 u8 * const aData = pPg->aData;
7706 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007707 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007708 int nRet = 0;
7709 int i;
drhf7838932015-06-23 15:36:34 +00007710 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007711 u8 *pFree = 0;
7712 int szFree = 0;
7713
drhf7838932015-06-23 15:36:34 +00007714 for(i=iFirst; i<iEnd; i++){
7715 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007716 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007717 int sz;
7718 /* No need to use cachedCellSize() here. The sizes of all cells that
7719 ** are to be freed have already been computing while deciding which
7720 ** cells need freeing */
7721 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007722 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007723 if( pFree ){
7724 assert( pFree>aData && (pFree - aData)<65536 );
7725 freeSpace(pPg, (u16)(pFree - aData), szFree);
7726 }
dand7b545b2014-10-13 18:03:27 +00007727 pFree = pCell;
7728 szFree = sz;
drhccb897c2021-05-11 10:47:41 +00007729 if( pFree+sz>pEnd ){
7730 return 0;
drhc3c23f32021-05-06 11:02:55 +00007731 }
dand7b545b2014-10-13 18:03:27 +00007732 }else{
7733 pFree = pCell;
7734 szFree += sz;
7735 }
7736 nRet++;
7737 }
7738 }
drhfefa0942014-11-05 21:21:08 +00007739 if( pFree ){
7740 assert( pFree>aData && (pFree - aData)<65536 );
7741 freeSpace(pPg, (u16)(pFree - aData), szFree);
7742 }
dand7b545b2014-10-13 18:03:27 +00007743 return nRet;
7744}
7745
dand7b545b2014-10-13 18:03:27 +00007746/*
drha0466432019-01-29 16:41:13 +00007747** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007748** balanced. The current page, pPg, has pPg->nCell cells starting with
7749** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007750** starting at apCell[iNew].
7751**
7752** This routine makes the necessary adjustments to pPg so that it contains
7753** the correct cells after being balanced.
7754**
dand7b545b2014-10-13 18:03:27 +00007755** The pPg->nFree field is invalid when this function returns. It is the
7756** responsibility of the caller to set it correctly.
7757*/
drh658873b2015-06-22 20:02:04 +00007758static int editPage(
dan09c68402014-10-11 20:00:24 +00007759 MemPage *pPg, /* Edit this page */
7760 int iOld, /* Index of first cell currently on page */
7761 int iNew, /* Index of new first cell on page */
7762 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007763 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007764){
dand7b545b2014-10-13 18:03:27 +00007765 u8 * const aData = pPg->aData;
7766 const int hdr = pPg->hdrOffset;
7767 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7768 int nCell = pPg->nCell; /* Cells stored on pPg */
7769 u8 *pData;
7770 u8 *pCellptr;
7771 int i;
7772 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7773 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007774
7775#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007776 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7777 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007778#endif
7779
dand7b545b2014-10-13 18:03:27 +00007780 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007781 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007782 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007783 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drhfde25922020-05-05 19:54:02 +00007784 if( NEVER(nShift>nCell) ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007785 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7786 nCell -= nShift;
7787 }
7788 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007789 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7790 assert( nCell>=nTail );
7791 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007792 }
dan09c68402014-10-11 20:00:24 +00007793
drh5ab63772014-11-27 03:46:04 +00007794 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007795 if( pData<pBegin ) goto editpage_fail;
7796
7797 /* Add cells to the start of the page */
7798 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007799 int nAdd = MIN(nNew,iOld-iNew);
7800 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007801 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007802 pCellptr = pPg->aCellIdx;
7803 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7804 if( pageInsertArray(
7805 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007806 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007807 ) ) goto editpage_fail;
7808 nCell += nAdd;
7809 }
7810
7811 /* Add any overflow cells */
7812 for(i=0; i<pPg->nOverflow; i++){
7813 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7814 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007815 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007816 if( nCell>iCell ){
7817 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7818 }
dand7b545b2014-10-13 18:03:27 +00007819 nCell++;
dan666a42f2019-08-24 21:02:47 +00007820 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007821 if( pageInsertArray(
7822 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007823 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007824 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007825 }
dand7b545b2014-10-13 18:03:27 +00007826 }
dan09c68402014-10-11 20:00:24 +00007827
dand7b545b2014-10-13 18:03:27 +00007828 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007829 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007830 pCellptr = &pPg->aCellIdx[nCell*2];
7831 if( pageInsertArray(
7832 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007833 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007834 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007835
dand7b545b2014-10-13 18:03:27 +00007836 pPg->nCell = nNew;
7837 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007838
dand7b545b2014-10-13 18:03:27 +00007839 put2byte(&aData[hdr+3], pPg->nCell);
7840 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007841
7842#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007843 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007844 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007845 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007846 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007847 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007848 }
drh1ffd2472015-06-23 02:37:30 +00007849 assert( 0==memcmp(pCell, &aData[iOff],
7850 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007851 }
dan09c68402014-10-11 20:00:24 +00007852#endif
7853
drh658873b2015-06-22 20:02:04 +00007854 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007855 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007856 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007857 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007858 return rebuildPage(pCArray, iNew, nNew, pPg);
dan09c68402014-10-11 20:00:24 +00007859}
7860
danielk1977ac245ec2005-01-14 13:50:11 +00007861
drh615ae552005-01-16 23:21:00 +00007862#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007863/*
7864** This version of balance() handles the common special case where
7865** a new entry is being inserted on the extreme right-end of the
7866** tree, in other words, when the new entry will become the largest
7867** entry in the tree.
7868**
drhc314dc72009-07-21 11:52:34 +00007869** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007870** a new page to the right-hand side and put the one new entry in
7871** that page. This leaves the right side of the tree somewhat
7872** unbalanced. But odds are that we will be inserting new entries
7873** at the end soon afterwards so the nearly empty page will quickly
7874** fill up. On average.
7875**
7876** pPage is the leaf page which is the right-most page in the tree.
7877** pParent is its parent. pPage must have a single overflow entry
7878** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007879**
7880** The pSpace buffer is used to store a temporary copy of the divider
7881** cell that will be inserted into pParent. Such a cell consists of a 4
7882** byte page number followed by a variable length integer. In other
7883** words, at most 13 bytes. Hence the pSpace buffer must be at
7884** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007885*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007886static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7887 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007888 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007889 int rc; /* Return Code */
7890 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007891
drh1fee73e2007-08-29 04:00:57 +00007892 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007893 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007894 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007895
drh6301c432018-12-13 21:52:18 +00007896 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007897 assert( pPage->nFree>=0 );
7898 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007899
danielk1977a50d9aa2009-06-08 14:49:45 +00007900 /* Allocate a new page. This page will become the right-sibling of
7901 ** pPage. Make the parent page writable, so that the new divider cell
7902 ** may be inserted. If both these operations are successful, proceed.
7903 */
drh4f0c5872007-03-26 22:05:01 +00007904 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007905
danielk1977eaa06f62008-09-18 17:34:44 +00007906 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007907
7908 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007909 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007910 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007911 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007912 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007913
drhc5053fb2008-11-27 02:22:10 +00007914 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007915 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007916 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007917 b.nCell = 1;
7918 b.pRef = pPage;
7919 b.apCell = &pCell;
7920 b.szCell = &szCell;
7921 b.apEnd[0] = pPage->aDataEnd;
7922 b.ixNx[0] = 2;
7923 rc = rebuildPage(&b, 0, 1, pNew);
7924 if( NEVER(rc) ){
7925 releasePage(pNew);
7926 return rc;
7927 }
dan8e9ba0c2014-10-14 17:27:04 +00007928 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007929
7930 /* If this is an auto-vacuum database, update the pointer map
7931 ** with entries for the new page, and any pointer from the
7932 ** cell on the page to an overflow page. If either of these
7933 ** operations fails, the return code is set, but the contents
7934 ** of the parent page are still manipulated by thh code below.
7935 ** That is Ok, at this point the parent page is guaranteed to
7936 ** be marked as dirty. Returning an error code will cause a
7937 ** rollback, undoing any changes made to the parent page.
7938 */
dan7b3d71e2015-08-19 20:27:05 +00007939 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00007940 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7941 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007942 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007943 }
7944 }
danielk1977eaa06f62008-09-18 17:34:44 +00007945
danielk19776f235cc2009-06-04 14:46:08 +00007946 /* Create a divider cell to insert into pParent. The divider cell
7947 ** consists of a 4-byte page number (the page number of pPage) and
7948 ** a variable length key value (which must be the same value as the
7949 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007950 **
danielk19776f235cc2009-06-04 14:46:08 +00007951 ** To find the largest key value on pPage, first find the right-most
7952 ** cell on pPage. The first two fields of this cell are the
7953 ** record-length (a variable length integer at most 32-bits in size)
7954 ** and the key value (a variable length integer, may have any value).
7955 ** The first of the while(...) loops below skips over the record-length
7956 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007957 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007958 */
danielk1977eaa06f62008-09-18 17:34:44 +00007959 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007960 pStop = &pCell[9];
7961 while( (*(pCell++)&0x80) && pCell<pStop );
7962 pStop = &pCell[9];
7963 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7964
danielk19774dbaa892009-06-16 16:50:22 +00007965 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007966 if( rc==SQLITE_OK ){
7967 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7968 0, pPage->pgno, &rc);
7969 }
danielk19776f235cc2009-06-04 14:46:08 +00007970
7971 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007972 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7973
danielk1977e08a3c42008-09-18 18:17:03 +00007974 /* Release the reference to the new page. */
7975 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007976 }
7977
danielk1977eaa06f62008-09-18 17:34:44 +00007978 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007979}
drh615ae552005-01-16 23:21:00 +00007980#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007981
dane6593d82014-10-24 16:40:49 +00007982#if 0
drhc3b70572003-01-04 19:44:07 +00007983/*
danielk19774dbaa892009-06-16 16:50:22 +00007984** This function does not contribute anything to the operation of SQLite.
7985** it is sometimes activated temporarily while debugging code responsible
7986** for setting pointer-map entries.
7987*/
7988static int ptrmapCheckPages(MemPage **apPage, int nPage){
7989 int i, j;
7990 for(i=0; i<nPage; i++){
7991 Pgno n;
7992 u8 e;
7993 MemPage *pPage = apPage[i];
7994 BtShared *pBt = pPage->pBt;
7995 assert( pPage->isInit );
7996
7997 for(j=0; j<pPage->nCell; j++){
7998 CellInfo info;
7999 u8 *z;
8000
8001 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00008002 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00008003 if( info.nLocal<info.nPayload ){
8004 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00008005 ptrmapGet(pBt, ovfl, &e, &n);
8006 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
8007 }
8008 if( !pPage->leaf ){
8009 Pgno child = get4byte(z);
8010 ptrmapGet(pBt, child, &e, &n);
8011 assert( n==pPage->pgno && e==PTRMAP_BTREE );
8012 }
8013 }
8014 if( !pPage->leaf ){
8015 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
8016 ptrmapGet(pBt, child, &e, &n);
8017 assert( n==pPage->pgno && e==PTRMAP_BTREE );
8018 }
8019 }
8020 return 1;
8021}
8022#endif
8023
danielk1977cd581a72009-06-23 15:43:39 +00008024/*
8025** This function is used to copy the contents of the b-tree node stored
8026** on page pFrom to page pTo. If page pFrom was not a leaf page, then
8027** the pointer-map entries for each child page are updated so that the
8028** parent page stored in the pointer map is page pTo. If pFrom contained
8029** any cells with overflow page pointers, then the corresponding pointer
8030** map entries are also updated so that the parent page is page pTo.
8031**
8032** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00008033** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00008034**
danielk197730548662009-07-09 05:07:37 +00008035** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00008036**
8037** The performance of this function is not critical. It is only used by
8038** the balance_shallower() and balance_deeper() procedures, neither of
8039** which are called often under normal circumstances.
8040*/
drhc314dc72009-07-21 11:52:34 +00008041static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
8042 if( (*pRC)==SQLITE_OK ){
8043 BtShared * const pBt = pFrom->pBt;
8044 u8 * const aFrom = pFrom->aData;
8045 u8 * const aTo = pTo->aData;
8046 int const iFromHdr = pFrom->hdrOffset;
8047 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00008048 int rc;
drhc314dc72009-07-21 11:52:34 +00008049 int iData;
8050
8051
8052 assert( pFrom->isInit );
8053 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00008054 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00008055
8056 /* Copy the b-tree node content from page pFrom to page pTo. */
8057 iData = get2byte(&aFrom[iFromHdr+5]);
8058 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
8059 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
8060
8061 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00008062 ** match the new data. The initialization of pTo can actually fail under
8063 ** fairly obscure circumstances, even though it is a copy of initialized
8064 ** page pFrom.
8065 */
drhc314dc72009-07-21 11:52:34 +00008066 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00008067 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00008068 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00008069 if( rc!=SQLITE_OK ){
8070 *pRC = rc;
8071 return;
8072 }
drhc314dc72009-07-21 11:52:34 +00008073
8074 /* If this is an auto-vacuum database, update the pointer-map entries
8075 ** for any b-tree or overflow pages that pTo now contains the pointers to.
8076 */
dan7b3d71e2015-08-19 20:27:05 +00008077 if( REQUIRE_PTRMAP ){
drhc314dc72009-07-21 11:52:34 +00008078 *pRC = setChildPtrmaps(pTo);
8079 }
danielk1977cd581a72009-06-23 15:43:39 +00008080 }
danielk1977cd581a72009-06-23 15:43:39 +00008081}
8082
8083/*
danielk19774dbaa892009-06-16 16:50:22 +00008084** This routine redistributes cells on the iParentIdx'th child of pParent
8085** (hereafter "the page") and up to 2 siblings so that all pages have about the
8086** same amount of free space. Usually a single sibling on either side of the
8087** page are used in the balancing, though both siblings might come from one
8088** side if the page is the first or last child of its parent. If the page
8089** has fewer than 2 siblings (something which can only happen if the page
8090** is a root page or a child of a root page) then all available siblings
8091** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00008092**
danielk19774dbaa892009-06-16 16:50:22 +00008093** The number of siblings of the page might be increased or decreased by
8094** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00008095**
danielk19774dbaa892009-06-16 16:50:22 +00008096** Note that when this routine is called, some of the cells on the page
8097** might not actually be stored in MemPage.aData[]. This can happen
8098** if the page is overfull. This routine ensures that all cells allocated
8099** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00008100**
danielk19774dbaa892009-06-16 16:50:22 +00008101** In the course of balancing the page and its siblings, cells may be
8102** inserted into or removed from the parent page (pParent). Doing so
8103** may cause the parent page to become overfull or underfull. If this
8104** happens, it is the responsibility of the caller to invoke the correct
8105** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00008106**
drh5e00f6c2001-09-13 13:46:56 +00008107** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00008108** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00008109** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00008110**
8111** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00008112** buffer big enough to hold one page. If while inserting cells into the parent
8113** page (pParent) the parent page becomes overfull, this buffer is
8114** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00008115** a maximum of four divider cells into the parent page, and the maximum
8116** size of a cell stored within an internal node is always less than 1/4
8117** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
8118** enough for all overflow cells.
8119**
8120** If aOvflSpace is set to a null pointer, this function returns
8121** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00008122*/
danielk19774dbaa892009-06-16 16:50:22 +00008123static int balance_nonroot(
8124 MemPage *pParent, /* Parent page of siblings being balanced */
8125 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00008126 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00008127 int isRoot, /* True if pParent is a root-page */
dan7fff2e12017-05-29 14:27:37 +00008128 int bBulk, /* True if this call is part of a bulk load */
8129 Pgno pgnoRoot /* Root page of b-tree being balanced */
danielk19774dbaa892009-06-16 16:50:22 +00008130){
drh16a9b832007-05-05 18:39:25 +00008131 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00008132 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00008133 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00008134 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00008135 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00008136 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00008137 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00008138 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00008139 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00008140 int usableSpace; /* Bytes in pPage beyond the header */
8141 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00008142 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00008143 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00008144 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00008145 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00008146 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00008147 u8 *pRight; /* Location in parent of right-sibling pointer */
8148 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00008149 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
8150 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00008151 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00008152 u8 *aSpace1; /* Space for copies of dividers cells */
8153 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00008154 u8 abDone[NB+2]; /* True after i'th new page is populated */
8155 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00008156 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00008157 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00008158 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00008159
8160 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00008161 b.nCell = 0;
8162 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008163 pBt = pParent->pBt;
8164 assert( sqlite3_mutex_held(pBt->mutex) );
8165 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00008166
danielk19774dbaa892009-06-16 16:50:22 +00008167 /* At this point pParent may have at most one overflow cell. And if
8168 ** this overflow cell is present, it must be the cell with
8169 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00008170 ** is called (indirectly) from sqlite3BtreeDelete().
8171 */
danielk19774dbaa892009-06-16 16:50:22 +00008172 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00008173 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00008174
danielk197711a8a862009-06-17 11:49:52 +00008175 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00008176 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00008177 }
drh68133502019-02-11 17:22:30 +00008178 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00008179
danielk1977a50d9aa2009-06-08 14:49:45 +00008180 /* Find the sibling pages to balance. Also locate the cells in pParent
8181 ** that divide the siblings. An attempt is made to find NN siblings on
8182 ** either side of pPage. More siblings are taken from one side, however,
8183 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00008184 ** has NB or fewer children then all children of pParent are taken.
8185 **
8186 ** This loop also drops the divider cells from the parent page. This
8187 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00008188 ** overflow cells in the parent page, since if any existed they will
8189 ** have already been removed.
8190 */
danielk19774dbaa892009-06-16 16:50:22 +00008191 i = pParent->nOverflow + pParent->nCell;
8192 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00008193 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00008194 }else{
dan7d6885a2012-08-08 14:04:56 +00008195 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00008196 if( iParentIdx==0 ){
8197 nxDiv = 0;
8198 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00008199 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00008200 }else{
danielk19774dbaa892009-06-16 16:50:22 +00008201 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00008202 }
dan7d6885a2012-08-08 14:04:56 +00008203 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00008204 }
dan7d6885a2012-08-08 14:04:56 +00008205 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00008206 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
8207 pRight = &pParent->aData[pParent->hdrOffset+8];
8208 }else{
8209 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
8210 }
8211 pgno = get4byte(pRight);
8212 while( 1 ){
dan1f9f5762021-03-01 16:15:41 +00008213 if( rc==SQLITE_OK ){
8214 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
8215 }
danielk19774dbaa892009-06-16 16:50:22 +00008216 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00008217 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00008218 goto balance_cleanup;
8219 }
dan7fff2e12017-05-29 14:27:37 +00008220 setMempageRoot(apOld[i], pgnoRoot);
drh85a379b2019-02-09 22:33:44 +00008221 if( apOld[i]->nFree<0 ){
8222 rc = btreeComputeFreeSpace(apOld[i]);
8223 if( rc ){
8224 memset(apOld, 0, (i)*sizeof(MemPage*));
8225 goto balance_cleanup;
8226 }
8227 }
danb9f8a182021-06-22 14:59:34 +00008228 nMaxCells += apOld[i]->nCell + ArraySize(pParent->apOvfl);
danielk19774dbaa892009-06-16 16:50:22 +00008229 if( (i--)==0 ) break;
8230
drh9cc5b4e2016-12-26 01:41:33 +00008231 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00008232 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00008233 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00008234 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00008235 pParent->nOverflow = 0;
8236 }else{
8237 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
8238 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00008239 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00008240
8241 /* Drop the cell from the parent page. apDiv[i] still points to
8242 ** the cell within the parent, even though it has been dropped.
8243 ** This is safe because dropping a cell only overwrites the first
8244 ** four bytes of it, and this function does not need the first
8245 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00008246 ** later on.
8247 **
drh8a575d92011-10-12 17:00:28 +00008248 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00008249 ** the dropCell() routine will overwrite the entire cell with zeroes.
8250 ** In this case, temporarily copy the cell into the aOvflSpace[]
8251 ** buffer. It will be copied out again as soon as the aSpace[] buffer
8252 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00008253 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00008254 int iOff;
8255
dan1f9f5762021-03-01 16:15:41 +00008256 /* If the following if() condition is not true, the db is corrupted.
8257 ** The call to dropCell() below will detect this. */
drh8a575d92011-10-12 17:00:28 +00008258 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan1f9f5762021-03-01 16:15:41 +00008259 if( (iOff+szNew[i])<=(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00008260 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
8261 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
8262 }
drh5b47efa2010-02-12 18:18:39 +00008263 }
drh98add2e2009-07-20 17:11:49 +00008264 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008265 }
drh8b2f49b2001-06-08 00:21:52 +00008266 }
8267
drha9121e42008-02-19 14:59:35 +00008268 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00008269 ** alignment */
drha9121e42008-02-19 14:59:35 +00008270 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00008271
drh8b2f49b2001-06-08 00:21:52 +00008272 /*
danielk1977634f2982005-03-28 08:44:07 +00008273 ** Allocate space for memory structures
8274 */
drhfacf0302008-06-17 15:12:00 +00008275 szScratch =
drh1ffd2472015-06-23 02:37:30 +00008276 nMaxCells*sizeof(u8*) /* b.apCell */
8277 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00008278 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00008279
drhf012dc42019-03-19 15:36:46 +00008280 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00008281 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00008282 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00008283 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00008284 goto balance_cleanup;
8285 }
drh1ffd2472015-06-23 02:37:30 +00008286 b.szCell = (u16*)&b.apCell[nMaxCells];
8287 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00008288 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00008289
8290 /*
8291 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00008292 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00008293 ** into space obtained from aSpace1[]. The divider cells have already
8294 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00008295 **
8296 ** If the siblings are on leaf pages, then the child pointers of the
8297 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00008298 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00008299 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00008300 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00008301 ** are alike.
drh96f5b762004-05-16 16:24:36 +00008302 **
8303 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8304 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00008305 */
drh1ffd2472015-06-23 02:37:30 +00008306 b.pRef = apOld[0];
8307 leafCorrection = b.pRef->leaf*4;
8308 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00008309 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00008310 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00008311 int limit = pOld->nCell;
8312 u8 *aData = pOld->aData;
8313 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00008314 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00008315 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00008316 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00008317
drh73d340a2015-05-28 11:23:11 +00008318 /* Verify that all sibling pages are of the same "type" (table-leaf,
8319 ** table-interior, index-leaf, or index-interior).
8320 */
8321 if( pOld->aData[0]!=apOld[0]->aData[0] ){
8322 rc = SQLITE_CORRUPT_BKPT;
8323 goto balance_cleanup;
8324 }
8325
drhfe647dc2015-06-23 18:24:25 +00008326 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00008327 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00008328 ** in the correct spot.
8329 **
8330 ** Note that when there are multiple overflow cells, it is always the
8331 ** case that they are sequential and adjacent. This invariant arises
8332 ** because multiple overflows can only occurs when inserting divider
8333 ** cells into a parent on a prior balance, and divider cells are always
8334 ** adjacent and are inserted in order. There is an assert() tagged
8335 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8336 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00008337 **
8338 ** This must be done in advance. Once the balance starts, the cell
8339 ** offset section of the btree page will be overwritten and we will no
8340 ** long be able to find the cells if a pointer to each cell is not saved
8341 ** first.
8342 */
drh36b78ee2016-01-20 01:32:00 +00008343 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00008344 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00008345 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00008346 rc = SQLITE_CORRUPT_BKPT;
8347 goto balance_cleanup;
8348 }
drhfe647dc2015-06-23 18:24:25 +00008349 limit = pOld->aiOvfl[0];
8350 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00008351 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00008352 piCell += 2;
8353 b.nCell++;
8354 }
8355 for(k=0; k<pOld->nOverflow; k++){
8356 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00008357 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00008358 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00008359 }
drh1ffd2472015-06-23 02:37:30 +00008360 }
drhfe647dc2015-06-23 18:24:25 +00008361 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
8362 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00008363 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00008364 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00008365 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00008366 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00008367 }
drhe12ca5a2019-05-02 15:56:39 +00008368 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00008369
drh1ffd2472015-06-23 02:37:30 +00008370 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008371 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00008372 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00008373 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00008374 assert( b.nCell<nMaxCells );
8375 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00008376 pTemp = &aSpace1[iSpace1];
8377 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00008378 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00008379 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00008380 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00008381 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008382 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008383 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00008384 if( !pOld->leaf ){
8385 assert( leafCorrection==0 );
dan5b482a92021-04-20 13:31:51 +00008386 assert( pOld->hdrOffset==0 || CORRUPT_DB );
danielk19774dbaa892009-06-16 16:50:22 +00008387 /* The right pointer of the child page pOld becomes the left
8388 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00008389 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00008390 }else{
8391 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00008392 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00008393 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8394 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00008395 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
8396 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00008397 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00008398 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00008399 }
8400 }
drh1ffd2472015-06-23 02:37:30 +00008401 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00008402 }
drh8b2f49b2001-06-08 00:21:52 +00008403 }
8404
8405 /*
drh1ffd2472015-06-23 02:37:30 +00008406 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00008407 ** Store this number in "k". Also compute szNew[] which is the total
8408 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00008409 ** in b.apCell[] of the cell that divides page i from page i+1.
8410 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00008411 **
drh96f5b762004-05-16 16:24:36 +00008412 ** Values computed by this block:
8413 **
8414 ** k: The total number of sibling pages
8415 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00008416 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00008417 ** the right of the i-th sibling page.
8418 ** usableSpace: Number of bytes of space available on each sibling.
8419 **
drh8b2f49b2001-06-08 00:21:52 +00008420 */
drh43605152004-05-29 21:46:49 +00008421 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00008422 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00008423 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00008424 b.apEnd[k] = p->aDataEnd;
8425 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00008426 if( k && b.ixNx[k]==b.ixNx[k-1] ){
8427 k--; /* Omit b.ixNx[] entry for child pages with no cells */
8428 }
drh26b7ec82019-02-01 14:50:43 +00008429 if( !leafData ){
8430 k++;
8431 b.apEnd[k] = pParent->aDataEnd;
8432 b.ixNx[k] = cntOld[i]+1;
8433 }
drhb0ea9432019-02-09 21:06:40 +00008434 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00008435 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00008436 for(j=0; j<p->nOverflow; j++){
8437 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
8438 }
8439 cntNew[i] = cntOld[i];
8440 }
8441 k = nOld;
8442 for(i=0; i<k; i++){
8443 int sz;
8444 while( szNew[i]>usableSpace ){
8445 if( i+1>=k ){
8446 k = i+2;
8447 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
8448 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00008449 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00008450 }
drh1ffd2472015-06-23 02:37:30 +00008451 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00008452 szNew[i] -= sz;
8453 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008454 if( cntNew[i]<b.nCell ){
8455 sz = 2 + cachedCellSize(&b, cntNew[i]);
8456 }else{
8457 sz = 0;
8458 }
drh658873b2015-06-22 20:02:04 +00008459 }
8460 szNew[i+1] += sz;
8461 cntNew[i]--;
8462 }
drh1ffd2472015-06-23 02:37:30 +00008463 while( cntNew[i]<b.nCell ){
8464 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00008465 if( szNew[i]+sz>usableSpace ) break;
8466 szNew[i] += sz;
8467 cntNew[i]++;
8468 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00008469 if( cntNew[i]<b.nCell ){
8470 sz = 2 + cachedCellSize(&b, cntNew[i]);
8471 }else{
8472 sz = 0;
8473 }
drh658873b2015-06-22 20:02:04 +00008474 }
8475 szNew[i+1] -= sz;
8476 }
drh1ffd2472015-06-23 02:37:30 +00008477 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00008478 k = i+1;
drh672073a2015-06-24 12:07:40 +00008479 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00008480 rc = SQLITE_CORRUPT_BKPT;
8481 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00008482 }
8483 }
drh96f5b762004-05-16 16:24:36 +00008484
8485 /*
8486 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00008487 ** on the left side (siblings with smaller keys). The left siblings are
8488 ** always nearly full, while the right-most sibling might be nearly empty.
8489 ** The next block of code attempts to adjust the packing of siblings to
8490 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00008491 **
8492 ** This adjustment is more than an optimization. The packing above might
8493 ** be so out of balance as to be illegal. For example, the right-most
8494 ** sibling might be completely empty. This adjustment is not optional.
8495 */
drh6019e162001-07-02 17:51:45 +00008496 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00008497 int szRight = szNew[i]; /* Size of sibling on the right */
8498 int szLeft = szNew[i-1]; /* Size of sibling on the left */
8499 int r; /* Index of right-most cell in left sibling */
8500 int d; /* Index of first cell to the left of right sibling */
8501
drh008d64c2015-06-23 16:00:24 +00008502 r = cntNew[i-1] - 1;
8503 d = r + 1 - leafData;
8504 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00008505 do{
drh1ffd2472015-06-23 02:37:30 +00008506 assert( d<nMaxCells );
8507 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008508 (void)cachedCellSize(&b, r);
8509 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00008510 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00008511 break;
8512 }
8513 szRight += b.szCell[d] + 2;
8514 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00008515 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00008516 r--;
8517 d--;
drh672073a2015-06-24 12:07:40 +00008518 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00008519 szNew[i] = szRight;
8520 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00008521 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
8522 rc = SQLITE_CORRUPT_BKPT;
8523 goto balance_cleanup;
8524 }
drh6019e162001-07-02 17:51:45 +00008525 }
drh09d0deb2005-08-02 17:13:09 +00008526
drh2a0df922014-10-30 23:14:56 +00008527 /* Sanity check: For a non-corrupt database file one of the follwing
8528 ** must be true:
8529 ** (1) We found one or more cells (cntNew[0])>0), or
8530 ** (2) pPage is a virtual root page. A virtual root page is when
8531 ** the real root page is page 1 and we are the only child of
8532 ** that page.
drh09d0deb2005-08-02 17:13:09 +00008533 */
drh2a0df922014-10-30 23:14:56 +00008534 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00008535 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
8536 apOld[0]->pgno, apOld[0]->nCell,
8537 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
8538 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00008539 ));
8540
drh8b2f49b2001-06-08 00:21:52 +00008541 /*
drh6b308672002-07-08 02:16:37 +00008542 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00008543 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008544 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00008545 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00008546 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00008547 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00008548 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00008549 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00008550 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00008551 nNew++;
drh41d26392021-06-20 22:17:49 +00008552 if( sqlite3PagerPageRefcount(pNew->pDbPage)!=1+(i==(iParentIdx-nxDiv))
8553 && rc==SQLITE_OK
8554 ){
drh9e673ac2021-02-01 12:39:50 +00008555 rc = SQLITE_CORRUPT_BKPT;
8556 }
danielk197728129562005-01-11 10:25:06 +00008557 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00008558 }else{
drh7aa8f852006-03-28 00:24:44 +00008559 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00008560 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00008561 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008562 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00008563 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00008564 nNew++;
drh1ffd2472015-06-23 02:37:30 +00008565 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00008566
8567 /* Set the pointer-map entry for the new sibling page. */
dan7b3d71e2015-08-19 20:27:05 +00008568 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00008569 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008570 if( rc!=SQLITE_OK ){
8571 goto balance_cleanup;
8572 }
8573 }
drh6b308672002-07-08 02:16:37 +00008574 }
drh8b2f49b2001-06-08 00:21:52 +00008575 }
8576
8577 /*
dan33ea4862014-10-09 19:35:37 +00008578 ** Reassign page numbers so that the new pages are in ascending order.
8579 ** This helps to keep entries in the disk file in order so that a scan
8580 ** of the table is closer to a linear scan through the file. That in turn
8581 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00008582 **
dan33ea4862014-10-09 19:35:37 +00008583 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8584 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00008585 **
dan33ea4862014-10-09 19:35:37 +00008586 ** When NB==3, this one optimization makes the database about 25% faster
8587 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00008588 */
dan33ea4862014-10-09 19:35:37 +00008589 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00008590 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00008591 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00008592 for(j=0; j<i; j++){
drh8ab79d62021-02-04 13:52:34 +00008593 if( NEVER(aPgno[j]==aPgno[i]) ){
dan89ca0b32014-10-25 20:36:28 +00008594 /* This branch is taken if the set of sibling pages somehow contains
8595 ** duplicate entries. This can happen if the database is corrupt.
8596 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00008597 ** we do the detection here in order to avoid populating the pager
8598 ** cache with two separate objects associated with the same
8599 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00008600 assert( CORRUPT_DB );
8601 rc = SQLITE_CORRUPT_BKPT;
8602 goto balance_cleanup;
8603 }
8604 }
dan33ea4862014-10-09 19:35:37 +00008605 }
8606 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00008607 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00008608 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00008609 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00008610 }
drh00fe08a2014-10-31 00:05:23 +00008611 pgno = aPgOrder[iBest];
8612 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00008613 if( iBest!=i ){
8614 if( iBest>i ){
8615 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
8616 }
8617 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
8618 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00008619 }
8620 }
dan33ea4862014-10-09 19:35:37 +00008621
8622 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8623 "%d(%d nc=%d) %d(%d nc=%d)\n",
8624 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00008625 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00008626 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008627 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00008628 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00008629 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00008630 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
8631 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
8632 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8633 ));
danielk19774dbaa892009-06-16 16:50:22 +00008634
8635 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008636 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8637 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008638 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008639
dan33ea4862014-10-09 19:35:37 +00008640 /* If the sibling pages are not leaves, ensure that the right-child pointer
8641 ** of the right-most new sibling page is set to the value that was
8642 ** originally in the same field of the right-most old sibling page. */
8643 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8644 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8645 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8646 }
danielk1977ac11ee62005-01-15 12:45:51 +00008647
dan33ea4862014-10-09 19:35:37 +00008648 /* Make any required updates to pointer map entries associated with
8649 ** cells stored on sibling pages following the balance operation. Pointer
8650 ** map entries associated with divider cells are set by the insertCell()
8651 ** routine. The associated pointer map entries are:
8652 **
8653 ** a) if the cell contains a reference to an overflow chain, the
8654 ** entry associated with the first page in the overflow chain, and
8655 **
8656 ** b) if the sibling pages are not leaves, the child page associated
8657 ** with the cell.
8658 **
8659 ** If the sibling pages are not leaves, then the pointer map entry
8660 ** associated with the right-child of each sibling may also need to be
8661 ** updated. This happens below, after the sibling pages have been
8662 ** populated, not here.
8663 */
dan7b3d71e2015-08-19 20:27:05 +00008664 if( REQUIRE_PTRMAP ){
drh0f1bf4c2019-01-13 20:17:21 +00008665 MemPage *pOld;
8666 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008667 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008668 int iNew = 0;
8669 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00008670
drh1ffd2472015-06-23 02:37:30 +00008671 for(i=0; i<b.nCell; i++){
8672 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008673 while( i==cntOldNext ){
8674 iOld++;
8675 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008676 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008677 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008678 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
dan33ea4862014-10-09 19:35:37 +00008679 }
8680 if( i==cntNew[iNew] ){
8681 pNew = apNew[++iNew];
8682 if( !leafData ) continue;
8683 }
8684
8685 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008686 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008687 ** or else the divider cell to the left of sibling page iOld. So,
8688 ** if sibling page iOld had the same page number as pNew, and if
8689 ** pCell really was a part of sibling page iOld (not a divider or
8690 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008691 if( iOld>=nNew
8692 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008693 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008694 ){
dan33ea4862014-10-09 19:35:37 +00008695 if( !leafCorrection ){
8696 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8697 }
drh1ffd2472015-06-23 02:37:30 +00008698 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008699 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00008700 }
drhea82b372015-06-23 21:35:28 +00008701 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00008702 }
drh14acc042001-06-10 19:56:58 +00008703 }
8704 }
dan33ea4862014-10-09 19:35:37 +00008705
8706 /* Insert new divider cells into pParent. */
8707 for(i=0; i<nNew-1; i++){
8708 u8 *pCell;
8709 u8 *pTemp;
8710 int sz;
drhc3c23f32021-05-06 11:02:55 +00008711 u8 *pSrcEnd;
dan33ea4862014-10-09 19:35:37 +00008712 MemPage *pNew = apNew[i];
8713 j = cntNew[i];
8714
8715 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008716 assert( b.apCell[j]!=0 );
8717 pCell = b.apCell[j];
8718 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008719 pTemp = &aOvflSpace[iOvflSpace];
8720 if( !pNew->leaf ){
8721 memcpy(&pNew->aData[8], pCell, 4);
8722 }else if( leafData ){
8723 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008724 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008725 ** cell consists of the integer key for the right-most cell of
8726 ** the sibling-page assembled above only.
8727 */
8728 CellInfo info;
8729 j--;
drh1ffd2472015-06-23 02:37:30 +00008730 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008731 pCell = pTemp;
8732 sz = 4 + putVarint(&pCell[4], info.nKey);
8733 pTemp = 0;
8734 }else{
8735 pCell -= 4;
8736 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8737 ** previously stored on a leaf node, and its reported size was 4
8738 ** bytes, then it may actually be smaller than this
8739 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8740 ** any cell). But it is important to pass the correct size to
8741 ** insertCell(), so reparse the cell now.
8742 **
drhc1fb2b82016-03-09 03:29:27 +00008743 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8744 ** and WITHOUT ROWID tables with exactly one column which is the
8745 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008746 */
drh1ffd2472015-06-23 02:37:30 +00008747 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008748 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008749 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008750 }
8751 }
8752 iOvflSpace += sz;
8753 assert( sz<=pBt->maxLocal+23 );
8754 assert( iOvflSpace <= (int)pBt->pageSize );
drhc3c23f32021-05-06 11:02:55 +00008755 for(k=0; b.ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
8756 pSrcEnd = b.apEnd[k];
8757 if( SQLITE_WITHIN(pSrcEnd, pCell, pCell+sz) ){
8758 rc = SQLITE_CORRUPT_BKPT;
8759 goto balance_cleanup;
8760 }
dan33ea4862014-10-09 19:35:37 +00008761 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
8762 if( rc!=SQLITE_OK ) goto balance_cleanup;
8763 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8764 }
8765
8766 /* Now update the actual sibling pages. The order in which they are updated
8767 ** is important, as this code needs to avoid disrupting any page from which
8768 ** cells may still to be read. In practice, this means:
8769 **
drhd836d422014-10-31 14:26:36 +00008770 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8771 ** then it is not safe to update page apNew[iPg] until after
8772 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008773 **
drhd836d422014-10-31 14:26:36 +00008774 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8775 ** then it is not safe to update page apNew[iPg] until after
8776 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008777 **
8778 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008779 **
8780 ** The iPg value in the following loop starts at nNew-1 goes down
8781 ** to 0, then back up to nNew-1 again, thus making two passes over
8782 ** the pages. On the initial downward pass, only condition (1) above
8783 ** needs to be tested because (2) will always be true from the previous
8784 ** step. On the upward pass, both conditions are always true, so the
8785 ** upwards pass simply processes pages that were missed on the downward
8786 ** pass.
dan33ea4862014-10-09 19:35:37 +00008787 */
drhbec021b2014-10-31 12:22:00 +00008788 for(i=1-nNew; i<nNew; i++){
8789 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008790 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008791 if( abDone[iPg] ) continue; /* Skip pages already processed */
8792 if( i>=0 /* On the upwards pass, or... */
8793 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008794 ){
dan09c68402014-10-11 20:00:24 +00008795 int iNew;
8796 int iOld;
8797 int nNewCell;
8798
drhd836d422014-10-31 14:26:36 +00008799 /* Verify condition (1): If cells are moving left, update iPg
8800 ** only after iPg-1 has already been updated. */
8801 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8802
8803 /* Verify condition (2): If cells are moving right, update iPg
8804 ** only after iPg+1 has already been updated. */
8805 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8806
dan09c68402014-10-11 20:00:24 +00008807 if( iPg==0 ){
8808 iNew = iOld = 0;
8809 nNewCell = cntNew[0];
8810 }else{
drh1ffd2472015-06-23 02:37:30 +00008811 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008812 iNew = cntNew[iPg-1] + !leafData;
8813 nNewCell = cntNew[iPg] - iNew;
8814 }
8815
drh1ffd2472015-06-23 02:37:30 +00008816 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008817 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008818 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008819 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008820 assert( apNew[iPg]->nOverflow==0 );
8821 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008822 }
8823 }
drhd836d422014-10-31 14:26:36 +00008824
8825 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008826 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8827
drh7aa8f852006-03-28 00:24:44 +00008828 assert( nOld>0 );
8829 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008830
danielk197713bd99f2009-06-24 05:40:34 +00008831 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8832 /* The root page of the b-tree now contains no cells. The only sibling
8833 ** page is the right-child of the parent. Copy the contents of the
8834 ** child page into the parent, decreasing the overall height of the
8835 ** b-tree structure by one. This is described as the "balance-shallower"
8836 ** sub-algorithm in some documentation.
8837 **
8838 ** If this is an auto-vacuum database, the call to copyNodeContent()
8839 ** sets all pointer-map entries corresponding to database image pages
8840 ** for which the pointer is stored within the content being copied.
8841 **
drh768f2902014-10-31 02:51:41 +00008842 ** It is critical that the child page be defragmented before being
8843 ** copied into the parent, because if the parent is page 1 then it will
8844 ** by smaller than the child due to the database header, and so all the
8845 ** free space needs to be up front.
8846 */
drh9b5351d2015-09-30 14:19:08 +00008847 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008848 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008849 testcase( rc!=SQLITE_OK );
8850 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008851 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8852 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008853 || rc!=SQLITE_OK
8854 );
8855 copyNodeContent(apNew[0], pParent, &rc);
8856 freePage(apNew[0], &rc);
dan7b3d71e2015-08-19 20:27:05 +00008857 }else if( REQUIRE_PTRMAP && !leafCorrection ){
dan33ea4862014-10-09 19:35:37 +00008858 /* Fix the pointer map entries associated with the right-child of each
8859 ** sibling page. All other pointer map entries have already been taken
8860 ** care of. */
8861 for(i=0; i<nNew; i++){
8862 u32 key = get4byte(&apNew[i]->aData[8]);
8863 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008864 }
dan33ea4862014-10-09 19:35:37 +00008865 }
danielk19774dbaa892009-06-16 16:50:22 +00008866
dan33ea4862014-10-09 19:35:37 +00008867 assert( pParent->isInit );
8868 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008869 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008870
dan33ea4862014-10-09 19:35:37 +00008871 /* Free any old pages that were not reused as new pages.
8872 */
8873 for(i=nNew; i<nOld; i++){
8874 freePage(apOld[i], &rc);
8875 }
8876
dane6593d82014-10-24 16:40:49 +00008877#if 0
dan33ea4862014-10-09 19:35:37 +00008878 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008879 /* The ptrmapCheckPages() contains assert() statements that verify that
8880 ** all pointer map pages are set correctly. This is helpful while
8881 ** debugging. This is usually disabled because a corrupt database may
8882 ** cause an assert() statement to fail. */
8883 ptrmapCheckPages(apNew, nNew);
8884 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008885 }
dan33ea4862014-10-09 19:35:37 +00008886#endif
danielk1977cd581a72009-06-23 15:43:39 +00008887
drh8b2f49b2001-06-08 00:21:52 +00008888 /*
drh14acc042001-06-10 19:56:58 +00008889 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008890 */
drh14acc042001-06-10 19:56:58 +00008891balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008892 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008893 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008894 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008895 }
drh14acc042001-06-10 19:56:58 +00008896 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008897 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008898 }
danielk1977eaa06f62008-09-18 17:34:44 +00008899
drh8b2f49b2001-06-08 00:21:52 +00008900 return rc;
8901}
8902
drh43605152004-05-29 21:46:49 +00008903
8904/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008905** This function is called when the root page of a b-tree structure is
8906** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008907**
danielk1977a50d9aa2009-06-08 14:49:45 +00008908** A new child page is allocated and the contents of the current root
8909** page, including overflow cells, are copied into the child. The root
8910** page is then overwritten to make it an empty page with the right-child
8911** pointer pointing to the new page.
8912**
8913** Before returning, all pointer-map entries corresponding to pages
8914** that the new child-page now contains pointers to are updated. The
8915** entry corresponding to the new right-child pointer of the root
8916** page is also updated.
8917**
8918** If successful, *ppChild is set to contain a reference to the child
8919** page and SQLITE_OK is returned. In this case the caller is required
8920** to call releasePage() on *ppChild exactly once. If an error occurs,
8921** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008922*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008923static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8924 int rc; /* Return value from subprocedures */
8925 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008926 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008927 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008928
danielk1977a50d9aa2009-06-08 14:49:45 +00008929 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008930 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008931
danielk1977a50d9aa2009-06-08 14:49:45 +00008932 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8933 ** page that will become the new right-child of pPage. Copy the contents
8934 ** of the node stored on pRoot into the new child page.
8935 */
drh98add2e2009-07-20 17:11:49 +00008936 rc = sqlite3PagerWrite(pRoot->pDbPage);
8937 if( rc==SQLITE_OK ){
8938 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008939 copyNodeContent(pRoot, pChild, &rc);
dan7b3d71e2015-08-19 20:27:05 +00008940 if( REQUIRE_PTRMAP ){
drhc314dc72009-07-21 11:52:34 +00008941 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008942 }
8943 }
8944 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008945 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008946 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008947 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008948 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008949 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8950 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008951 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008952
danielk1977a50d9aa2009-06-08 14:49:45 +00008953 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8954
8955 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008956 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8957 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8958 memcpy(pChild->apOvfl, pRoot->apOvfl,
8959 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008960 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008961
8962 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8963 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8964 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8965
8966 *ppChild = pChild;
8967 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008968}
8969
8970/*
drha2d50282019-12-23 18:02:15 +00008971** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8972** on the same B-tree as pCur.
8973**
8974** This can if a database is corrupt with two or more SQL tables
8975** pointing to the same b-tree. If an insert occurs on one SQL table
8976** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8977** table linked to the same b-tree. If the secondary insert causes a
8978** rebalance, that can change content out from under the cursor on the
8979** first SQL table, violating invariants on the first insert.
8980*/
8981static int anotherValidCursor(BtCursor *pCur){
8982 BtCursor *pOther;
8983 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8984 if( pOther!=pCur
8985 && pOther->eState==CURSOR_VALID
8986 && pOther->pPage==pCur->pPage
8987 ){
8988 return SQLITE_CORRUPT_BKPT;
8989 }
8990 }
8991 return SQLITE_OK;
8992}
8993
8994/*
danielk197771d5d2c2008-09-29 11:49:47 +00008995** The page that pCur currently points to has just been modified in
8996** some way. This function figures out if this modification means the
8997** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008998** routine. Balancing routines are:
8999**
9000** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00009001** balance_deeper()
9002** balance_nonroot()
drh43605152004-05-29 21:46:49 +00009003*/
danielk1977a50d9aa2009-06-08 14:49:45 +00009004static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00009005 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00009006 const int nMin = pCur->pBt->usableSize * 2 / 3;
9007 u8 aBalanceQuickSpace[13];
9008 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00009009
drhcc5f8a42016-02-06 22:32:06 +00009010 VVA_ONLY( int balance_quick_called = 0 );
9011 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00009012
9013 do {
dan01fd42b2019-07-13 09:55:33 +00009014 int iPage;
drh352a35a2017-08-15 03:46:47 +00009015 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00009016
drha941ff72019-02-12 00:58:10 +00009017 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00009018 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
9019 break;
9020 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00009021 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00009022 /* The root page of the b-tree is overfull. In this case call the
9023 ** balance_deeper() function to create a new child for the root-page
9024 ** and copy the current contents of the root-page to it. The
9025 ** next iteration of the do-loop will balance the child page.
9026 */
drhcc5f8a42016-02-06 22:32:06 +00009027 assert( balance_deeper_called==0 );
9028 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00009029 rc = balance_deeper(pPage, &pCur->apPage[1]);
9030 if( rc==SQLITE_OK ){
9031 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00009032 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00009033 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00009034 pCur->apPage[0] = pPage;
9035 pCur->pPage = pCur->apPage[1];
9036 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00009037 }
danielk1977a50d9aa2009-06-08 14:49:45 +00009038 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00009039 break;
9040 }
danielk1977a50d9aa2009-06-08 14:49:45 +00009041 }else{
9042 MemPage * const pParent = pCur->apPage[iPage-1];
9043 int const iIdx = pCur->aiIdx[iPage-1];
9044
9045 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00009046 if( rc==SQLITE_OK && pParent->nFree<0 ){
9047 rc = btreeComputeFreeSpace(pParent);
9048 }
danielk1977a50d9aa2009-06-08 14:49:45 +00009049 if( rc==SQLITE_OK ){
9050#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00009051 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00009052 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00009053 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00009054 && pParent->pgno!=1
9055 && pParent->nCell==iIdx
9056 ){
9057 /* Call balance_quick() to create a new sibling of pPage on which
9058 ** to store the overflow cell. balance_quick() inserts a new cell
9059 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00009060 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00009061 ** use either balance_nonroot() or balance_deeper(). Until this
9062 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
9063 ** buffer.
9064 **
9065 ** The purpose of the following assert() is to check that only a
9066 ** single call to balance_quick() is made for each call to this
9067 ** function. If this were not verified, a subtle bug involving reuse
9068 ** of the aBalanceQuickSpace[] might sneak in.
9069 */
drhcc5f8a42016-02-06 22:32:06 +00009070 assert( balance_quick_called==0 );
9071 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00009072 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
9073 }else
9074#endif
9075 {
9076 /* In this case, call balance_nonroot() to redistribute cells
9077 ** between pPage and up to 2 of its sibling pages. This involves
9078 ** modifying the contents of pParent, which may cause pParent to
9079 ** become overfull or underfull. The next iteration of the do-loop
9080 ** will balance the parent page to correct this.
9081 **
9082 ** If the parent page becomes overfull, the overflow cell or cells
9083 ** are stored in the pSpace buffer allocated immediately below.
9084 ** A subsequent iteration of the do-loop will deal with this by
9085 ** calling balance_nonroot() (balance_deeper() may be called first,
9086 ** but it doesn't deal with overflow cells - just moves them to a
9087 ** different page). Once this subsequent call to balance_nonroot()
9088 ** has completed, it is safe to release the pSpace buffer used by
9089 ** the previous call, as the overflow cell data will have been
9090 ** copied either into the body of a database page or into the new
9091 ** pSpace buffer passed to the latter call to balance_nonroot().
9092 */
9093 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00009094 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
dan7fff2e12017-05-29 14:27:37 +00009095 pCur->hints&BTREE_BULKLOAD, pCur->pgnoRoot);
danielk1977a50d9aa2009-06-08 14:49:45 +00009096 if( pFree ){
9097 /* If pFree is not NULL, it points to the pSpace buffer used
9098 ** by a previous call to balance_nonroot(). Its contents are
9099 ** now stored either on real database pages or within the
9100 ** new pSpace buffer, so it may be safely freed here. */
9101 sqlite3PageFree(pFree);
9102 }
9103
danielk19774dbaa892009-06-16 16:50:22 +00009104 /* The pSpace buffer will be freed after the next call to
9105 ** balance_nonroot(), or just before this function returns, whichever
9106 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00009107 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00009108 }
9109 }
9110
9111 pPage->nOverflow = 0;
9112
9113 /* The next iteration of the do-loop balances the parent page. */
9114 releasePage(pPage);
9115 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00009116 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00009117 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00009118 }
danielk1977a50d9aa2009-06-08 14:49:45 +00009119 }while( rc==SQLITE_OK );
9120
9121 if( pFree ){
9122 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00009123 }
9124 return rc;
9125}
9126
drh3de5d162018-05-03 03:59:02 +00009127/* Overwrite content from pX into pDest. Only do the write if the
9128** content is different from what is already there.
9129*/
9130static int btreeOverwriteContent(
9131 MemPage *pPage, /* MemPage on which writing will occur */
9132 u8 *pDest, /* Pointer to the place to start writing */
9133 const BtreePayload *pX, /* Source of data to write */
9134 int iOffset, /* Offset of first byte to write */
9135 int iAmt /* Number of bytes to be written */
9136){
9137 int nData = pX->nData - iOffset;
9138 if( nData<=0 ){
9139 /* Overwritting with zeros */
9140 int i;
9141 for(i=0; i<iAmt && pDest[i]==0; i++){}
9142 if( i<iAmt ){
9143 int rc = sqlite3PagerWrite(pPage->pDbPage);
9144 if( rc ) return rc;
9145 memset(pDest + i, 0, iAmt - i);
9146 }
9147 }else{
9148 if( nData<iAmt ){
9149 /* Mixed read data and zeros at the end. Make a recursive call
9150 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00009151 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
9152 iAmt-nData);
9153 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00009154 iAmt = nData;
9155 }
9156 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
9157 int rc = sqlite3PagerWrite(pPage->pDbPage);
9158 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00009159 /* In a corrupt database, it is possible for the source and destination
9160 ** buffers to overlap. This is harmless since the database is already
9161 ** corrupt but it does cause valgrind and ASAN warnings. So use
9162 ** memmove(). */
9163 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00009164 }
9165 }
9166 return SQLITE_OK;
9167}
9168
9169/*
9170** Overwrite the cell that cursor pCur is pointing to with fresh content
9171** contained in pX.
9172*/
9173static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
9174 int iOffset; /* Next byte of pX->pData to write */
9175 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
9176 int rc; /* Return code */
9177 MemPage *pPage = pCur->pPage; /* Page being written */
9178 BtShared *pBt; /* Btree */
9179 Pgno ovflPgno; /* Next overflow page to write */
9180 u32 ovflPageSize; /* Size to write on overflow page */
9181
drh27e80a32019-08-15 13:17:49 +00009182 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
9183 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
9184 ){
drh4f84e9c2018-05-03 13:56:23 +00009185 return SQLITE_CORRUPT_BKPT;
9186 }
drh3de5d162018-05-03 03:59:02 +00009187 /* Overwrite the local portion first */
9188 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
9189 0, pCur->info.nLocal);
9190 if( rc ) return rc;
9191 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
9192
9193 /* Now overwrite the overflow pages */
9194 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00009195 assert( nTotal>=0 );
9196 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00009197 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
9198 pBt = pPage->pBt;
9199 ovflPageSize = pBt->usableSize - 4;
9200 do{
9201 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
9202 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00009203 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00009204 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00009205 }else{
drh30f7a252018-05-07 11:29:59 +00009206 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00009207 ovflPgno = get4byte(pPage->aData);
9208 }else{
9209 ovflPageSize = nTotal - iOffset;
9210 }
9211 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
9212 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00009213 }
drhd5aa9262018-05-03 16:56:06 +00009214 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00009215 if( rc ) return rc;
9216 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00009217 }while( iOffset<nTotal );
9218 return SQLITE_OK;
9219}
9220
drhf74b8d92002-09-01 23:20:45 +00009221
9222/*
drh8eeb4462016-05-21 20:03:42 +00009223** Insert a new record into the BTree. The content of the new record
9224** is described by the pX object. The pCur cursor is used only to
9225** define what table the record should be inserted into, and is left
9226** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00009227**
drh8eeb4462016-05-21 20:03:42 +00009228** For a table btree (used for rowid tables), only the pX.nKey value of
9229** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
9230** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
9231** hold the content of the row.
9232**
9233** For an index btree (used for indexes and WITHOUT ROWID tables), the
9234** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
9235** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00009236**
9237** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00009238** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
9239** been performed. In other words, if seekResult!=0 then the cursor
9240** is currently pointing to a cell that will be adjacent to the cell
9241** to be inserted. If seekResult<0 then pCur points to a cell that is
9242** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
9243** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00009244**
drheaf6ae22016-11-09 20:14:34 +00009245** If seekResult==0, that means pCur is pointing at some unknown location.
9246** In that case, this routine must seek the cursor to the correct insertion
9247** point for (pKey,nKey) before doing the insertion. For index btrees,
9248** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
9249** key values and pX->aMem can be used instead of pX->pKey to avoid having
9250** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00009251*/
drh3aac2dd2004-04-26 14:10:20 +00009252int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00009253 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00009254 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00009255 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00009256 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00009257){
drh3b7511c2001-05-26 13:15:44 +00009258 int rc;
drh3e9ca092009-09-08 01:14:48 +00009259 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00009260 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00009261 int idx;
drh3b7511c2001-05-26 13:15:44 +00009262 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00009263 Btree *p = pCur->pBtree;
9264 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00009265 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00009266 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00009267
dancd1b2d02020-12-09 20:33:51 +00009268 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND|BTREE_PREFORMAT))==flags );
dan7aae7352020-12-10 18:06:24 +00009269 assert( (flags & BTREE_PREFORMAT)==0 || seekResult || pCur->pKeyInfo==0 );
danf91c1312017-01-10 20:04:38 +00009270
drh98add2e2009-07-20 17:11:49 +00009271 if( pCur->eState==CURSOR_FAULT ){
9272 assert( pCur->skipNext!=SQLITE_OK );
9273 return pCur->skipNext;
9274 }
9275
dan7a2347e2016-01-07 16:43:54 +00009276 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00009277 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
9278 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00009279 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00009280 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9281
danielk197731d31b82009-07-13 13:18:07 +00009282 /* Assert that the caller has been consistent. If this cursor was opened
9283 ** expecting an index b-tree, then the caller should be inserting blob
9284 ** keys with no associated data. If the cursor was opened expecting an
9285 ** intkey table, the caller should be inserting integer keys with a
9286 ** blob of associated data. */
dan855aed12020-12-11 19:01:24 +00009287 assert( (flags & BTREE_PREFORMAT) || (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00009288
danielk19779c3acf32009-05-02 07:36:49 +00009289 /* Save the positions of any other cursors open on this table.
9290 **
danielk19773509a652009-07-06 18:56:13 +00009291 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00009292 ** example, when inserting data into a table with auto-generated integer
9293 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9294 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00009295 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00009296 ** that the cursor is already where it needs to be and returns without
9297 ** doing any work. To avoid thwarting these optimizations, it is important
9298 ** not to clear the cursor here.
9299 */
drh27fb7462015-06-30 02:47:36 +00009300 if( pCur->curFlags & BTCF_Multiple ){
9301 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9302 if( rc ) return rc;
danf5ea93b2021-04-08 19:39:00 +00009303 if( loc && pCur->iPage<0 ){
9304 /* This can only happen if the schema is corrupt such that there is more
9305 ** than one table or index with the same root page as used by the cursor.
9306 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9307 ** the schema was loaded. This cannot be asserted though, as a user might
9308 ** set the flag, load the schema, and then unset the flag. */
9309 return SQLITE_CORRUPT_BKPT;
9310 }
drh27fb7462015-06-30 02:47:36 +00009311 }
drhd60f4f42012-03-23 14:23:52 +00009312
drhd60f4f42012-03-23 14:23:52 +00009313 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00009314 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00009315 /* If this is an insert into a table b-tree, invalidate any incrblob
9316 ** cursors open on the row being replaced */
drh49bb56e2021-05-14 20:01:36 +00009317 if( p->hasIncrblobCur ){
9318 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
9319 }
drhe0670b62014-02-12 21:31:12 +00009320
danf91c1312017-01-10 20:04:38 +00009321 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00009322 ** to a row with the same key as the new entry being inserted.
9323 */
9324#ifdef SQLITE_DEBUG
9325 if( flags & BTREE_SAVEPOSITION ){
9326 assert( pCur->curFlags & BTCF_ValidNKey );
9327 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00009328 assert( loc==0 );
9329 }
9330#endif
danf91c1312017-01-10 20:04:38 +00009331
drhd720d392018-05-07 17:27:04 +00009332 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9333 ** that the cursor is not pointing to a row to be overwritten.
9334 ** So do a complete check.
9335 */
drh7a1c28d2016-11-10 20:42:08 +00009336 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00009337 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00009338 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00009339 assert( pX->nData>=0 && pX->nZero>=0 );
9340 if( pCur->info.nSize!=0
9341 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
9342 ){
drhd720d392018-05-07 17:27:04 +00009343 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00009344 return btreeOverwriteCell(pCur, pX);
9345 }
drhd720d392018-05-07 17:27:04 +00009346 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00009347 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00009348 /* The cursor is *not* pointing to the cell to be overwritten, nor
9349 ** to an adjacent cell. Move the cursor so that it is pointing either
9350 ** to the cell to be overwritten or an adjacent cell.
9351 */
drh42a410d2021-06-19 18:32:20 +00009352 rc = sqlite3BtreeTableMoveto(pCur, pX->nKey,
9353 (flags & BTREE_APPEND)!=0, &loc);
drh207c8172015-06-29 23:01:32 +00009354 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00009355 }
drhd720d392018-05-07 17:27:04 +00009356 }else{
9357 /* This is an index or a WITHOUT ROWID table */
9358
9359 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9360 ** to a row with the same key as the new entry being inserted.
9361 */
9362 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
9363
9364 /* If the cursor is not already pointing either to the cell to be
9365 ** overwritten, or if a new cell is being inserted, if the cursor is
9366 ** not pointing to an immediately adjacent cell, then move the cursor
9367 ** so that it does.
9368 */
9369 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
9370 if( pX->nMem ){
9371 UnpackedRecord r;
9372 r.pKeyInfo = pCur->pKeyInfo;
9373 r.aMem = pX->aMem;
9374 r.nField = pX->nMem;
9375 r.default_rc = 0;
drhd720d392018-05-07 17:27:04 +00009376 r.eqSeen = 0;
drh42a410d2021-06-19 18:32:20 +00009377 rc = sqlite3BtreeIndexMoveto(pCur, &r, &loc);
drhd720d392018-05-07 17:27:04 +00009378 }else{
drh42a410d2021-06-19 18:32:20 +00009379 rc = btreeMoveto(pCur, pX->pKey, pX->nKey,
9380 (flags & BTREE_APPEND)!=0, &loc);
drhd720d392018-05-07 17:27:04 +00009381 }
9382 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00009383 }
drh89ee2292018-05-07 18:41:19 +00009384
9385 /* If the cursor is currently pointing to an entry to be overwritten
9386 ** and the new content is the same as as the old, then use the
9387 ** overwrite optimization.
9388 */
9389 if( loc==0 ){
9390 getCellInfo(pCur);
9391 if( pCur->info.nKey==pX->nKey ){
9392 BtreePayload x2;
9393 x2.pData = pX->pKey;
9394 x2.nData = pX->nKey;
9395 x2.nZero = 0;
9396 return btreeOverwriteCell(pCur, &x2);
9397 }
9398 }
danielk1977da184232006-01-05 11:34:32 +00009399 }
drh0e5ce802019-12-20 12:33:17 +00009400 assert( pCur->eState==CURSOR_VALID
9401 || (pCur->eState==CURSOR_INVALID && loc)
9402 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00009403
drh352a35a2017-08-15 03:46:47 +00009404 pPage = pCur->pPage;
dancd1b2d02020-12-09 20:33:51 +00009405 assert( pPage->intKey || pX->nKey>=0 || (flags & BTREE_PREFORMAT) );
drh44845222008-07-17 18:39:57 +00009406 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00009407 if( pPage->nFree<0 ){
drh21c7ccb2021-04-10 20:21:28 +00009408 if( NEVER(pCur->eState>CURSOR_INVALID) ){
drha1085f02020-07-11 16:42:28 +00009409 rc = SQLITE_CORRUPT_BKPT;
9410 }else{
9411 rc = btreeComputeFreeSpace(pPage);
9412 }
drhb0ea9432019-02-09 21:06:40 +00009413 if( rc ) return rc;
9414 }
danielk19778f880a82009-07-13 09:41:45 +00009415
drh3a4c1412004-05-09 20:40:11 +00009416 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00009417 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00009418 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00009419 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00009420 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009421 assert( newCell!=0 );
dancd1b2d02020-12-09 20:33:51 +00009422 if( flags & BTREE_PREFORMAT ){
dancd1b2d02020-12-09 20:33:51 +00009423 rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009424 szNew = pBt->nPreformatSize;
9425 if( szNew<4 ) szNew = 4;
9426 if( ISAUTOVACUUM && szNew>pPage->maxLocal ){
9427 CellInfo info;
9428 pPage->xParseCell(pPage, newCell, &info);
dan9257ddb2020-12-10 19:54:13 +00009429 if( info.nPayload!=info.nLocal ){
dan7aae7352020-12-10 18:06:24 +00009430 Pgno ovfl = get4byte(&newCell[szNew-4]);
9431 ptrmapPut(pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, &rc);
9432 }
9433 }
dancd1b2d02020-12-09 20:33:51 +00009434 }else{
9435 rc = fillInCell(pPage, newCell, pX, &szNew);
dancd1b2d02020-12-09 20:33:51 +00009436 }
drh2e38c322004-09-03 18:38:44 +00009437 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00009438 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00009439 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00009440 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00009441 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00009442 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00009443 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00009444 rc = sqlite3PagerWrite(pPage->pDbPage);
9445 if( rc ){
9446 goto end_insert;
9447 }
danielk197771d5d2c2008-09-29 11:49:47 +00009448 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00009449 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00009450 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00009451 }
drh86c779f2021-05-15 13:08:44 +00009452 BTREE_CLEAR_CELL(rc, pPage, oldCell, info);
drh554a19d2019-08-12 18:26:46 +00009453 testcase( pCur->curFlags & BTCF_ValidOvfl );
9454 invalidateOverflowCache(pCur);
drh50179f92017-06-08 11:26:13 +00009455 if( info.nSize==szNew && info.nLocal==info.nPayload
dan4956bd52017-06-08 16:23:55 +00009456 && (!REQUIRE_PTRMAP || szNew<pPage->minLocal)
drh50179f92017-06-08 11:26:13 +00009457 ){
drhf9238252016-12-09 18:09:42 +00009458 /* Overwrite the old cell with the new if they are the same size.
9459 ** We could also try to do this if the old cell is smaller, then add
9460 ** the leftover space to the free list. But experiments show that
9461 ** doing that is no faster then skipping this optimization and just
drh50179f92017-06-08 11:26:13 +00009462 ** calling dropCell() and insertCell().
9463 **
9464 ** This optimization cannot be used on an autovacuum database if the
9465 ** new entry uses overflow pages, as the insertCell() call below is
9466 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00009467 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00009468 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
9469 return SQLITE_CORRUPT_BKPT;
9470 }
9471 if( oldCell+szNew > pPage->aDataEnd ){
9472 return SQLITE_CORRUPT_BKPT;
9473 }
drh80159da2016-12-09 17:32:51 +00009474 memcpy(oldCell, newCell, szNew);
9475 return SQLITE_OK;
9476 }
9477 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00009478 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00009479 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00009480 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00009481 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00009482 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00009483 }else{
drh4b70f112004-05-02 21:12:19 +00009484 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00009485 }
drh98add2e2009-07-20 17:11:49 +00009486 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00009487 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00009488 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00009489
mistachkin48864df2013-03-21 21:20:32 +00009490 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00009491 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00009492 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00009493 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00009494 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009495 ** Previous versions of SQLite called moveToRoot() to move the cursor
9496 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00009497 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9498 ** set the cursor state to "invalid". This makes common insert operations
9499 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00009500 **
danielk1977a50d9aa2009-06-08 14:49:45 +00009501 ** There is a subtle but important optimization here too. When inserting
9502 ** multiple records into an intkey b-tree using a single cursor (as can
9503 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9504 ** is advantageous to leave the cursor pointing to the last entry in
9505 ** the b-tree if possible. If the cursor is left pointing to the last
9506 ** entry in the table, and the next row inserted has an integer key
9507 ** larger than the largest existing key, it is possible to insert the
9508 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00009509 */
danielk1977a50d9aa2009-06-08 14:49:45 +00009510 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00009511 if( pPage->nOverflow ){
9512 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00009513 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00009514 rc = balance(pCur);
9515
9516 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00009517 ** fails. Internal data structure corruption will result otherwise.
9518 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9519 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00009520 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00009521 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00009522 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00009523 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00009524 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00009525 assert( pCur->pKey==0 );
9526 pCur->pKey = sqlite3Malloc( pX->nKey );
9527 if( pCur->pKey==0 ){
9528 rc = SQLITE_NOMEM;
9529 }else{
9530 memcpy(pCur->pKey, pX->pKey, pX->nKey);
9531 }
9532 }
9533 pCur->eState = CURSOR_REQUIRESEEK;
9534 pCur->nKey = pX->nKey;
9535 }
danielk19773f632d52009-05-02 10:03:09 +00009536 }
drh352a35a2017-08-15 03:46:47 +00009537 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00009538
drh2e38c322004-09-03 18:38:44 +00009539end_insert:
drh5e2f8b92001-05-28 00:41:15 +00009540 return rc;
9541}
9542
9543/*
dand2ffc972020-12-10 19:20:15 +00009544** This function is used as part of copying the current row from cursor
9545** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9546** parameter iKey is used as the rowid value when the record is copied
9547** into pDest. Otherwise, the record is copied verbatim.
9548**
9549** This function does not actually write the new value to cursor pDest.
9550** Instead, it creates and populates any required overflow pages and
9551** writes the data for the new cell into the BtShared.pTmpSpace buffer
9552** for the destination database. The size of the cell, in bytes, is left
9553** in BtShared.nPreformatSize. The caller completes the insertion by
9554** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9555**
9556** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9557*/
dan7aae7352020-12-10 18:06:24 +00009558int sqlite3BtreeTransferRow(BtCursor *pDest, BtCursor *pSrc, i64 iKey){
dan036e0672020-12-08 20:19:07 +00009559 int rc = SQLITE_OK;
dan7aae7352020-12-10 18:06:24 +00009560 BtShared *pBt = pDest->pBt;
9561 u8 *aOut = pBt->pTmpSpace; /* Pointer to next output buffer */
danebbf3682020-12-09 16:32:11 +00009562 const u8 *aIn; /* Pointer to next input buffer */
drhe5baf5c2020-12-16 14:20:45 +00009563 u32 nIn; /* Size of input buffer aIn[] */
dan7f607062020-12-15 19:27:20 +00009564 u32 nRem; /* Bytes of data still to copy */
dan036e0672020-12-08 20:19:07 +00009565
dan036e0672020-12-08 20:19:07 +00009566 getCellInfo(pSrc);
dan7aae7352020-12-10 18:06:24 +00009567 aOut += putVarint32(aOut, pSrc->info.nPayload);
9568 if( pDest->pKeyInfo==0 ) aOut += putVarint(aOut, iKey);
danebbf3682020-12-09 16:32:11 +00009569 nIn = pSrc->info.nLocal;
9570 aIn = pSrc->info.pPayload;
drh0a8b6a92020-12-16 21:09:45 +00009571 if( aIn+nIn>pSrc->pPage->aDataEnd ){
9572 return SQLITE_CORRUPT_BKPT;
9573 }
danebbf3682020-12-09 16:32:11 +00009574 nRem = pSrc->info.nPayload;
dan7aae7352020-12-10 18:06:24 +00009575 if( nIn==nRem && nIn<pDest->pPage->maxLocal ){
9576 memcpy(aOut, aIn, nIn);
9577 pBt->nPreformatSize = nIn + (aOut - pBt->pTmpSpace);
9578 }else{
9579 Pager *pSrcPager = pSrc->pBt->pPager;
9580 u8 *pPgnoOut = 0;
9581 Pgno ovflIn = 0;
9582 DbPage *pPageIn = 0;
9583 MemPage *pPageOut = 0;
drhe5baf5c2020-12-16 14:20:45 +00009584 u32 nOut; /* Size of output buffer aOut[] */
danebbf3682020-12-09 16:32:11 +00009585
dan7aae7352020-12-10 18:06:24 +00009586 nOut = btreePayloadToLocal(pDest->pPage, pSrc->info.nPayload);
9587 pBt->nPreformatSize = nOut + (aOut - pBt->pTmpSpace);
9588 if( nOut<pSrc->info.nPayload ){
9589 pPgnoOut = &aOut[nOut];
9590 pBt->nPreformatSize += 4;
9591 }
9592
9593 if( nRem>nIn ){
drh0a8b6a92020-12-16 21:09:45 +00009594 if( aIn+nIn+4>pSrc->pPage->aDataEnd ){
9595 return SQLITE_CORRUPT_BKPT;
9596 }
dan7aae7352020-12-10 18:06:24 +00009597 ovflIn = get4byte(&pSrc->info.pPayload[nIn]);
9598 }
9599
9600 do {
9601 nRem -= nOut;
9602 do{
9603 assert( nOut>0 );
9604 if( nIn>0 ){
9605 int nCopy = MIN(nOut, nIn);
9606 memcpy(aOut, aIn, nCopy);
9607 nOut -= nCopy;
9608 nIn -= nCopy;
9609 aOut += nCopy;
9610 aIn += nCopy;
9611 }
9612 if( nOut>0 ){
9613 sqlite3PagerUnref(pPageIn);
9614 pPageIn = 0;
9615 rc = sqlite3PagerGet(pSrcPager, ovflIn, &pPageIn, PAGER_GET_READONLY);
9616 if( rc==SQLITE_OK ){
9617 aIn = (const u8*)sqlite3PagerGetData(pPageIn);
9618 ovflIn = get4byte(aIn);
9619 aIn += 4;
9620 nIn = pSrc->pBt->usableSize - 4;
9621 }
9622 }
9623 }while( rc==SQLITE_OK && nOut>0 );
9624
9625 if( rc==SQLITE_OK && nRem>0 ){
9626 Pgno pgnoNew;
9627 MemPage *pNew = 0;
9628 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
9629 put4byte(pPgnoOut, pgnoNew);
9630 if( ISAUTOVACUUM && pPageOut ){
9631 ptrmapPut(pBt, pgnoNew, PTRMAP_OVERFLOW2, pPageOut->pgno, &rc);
9632 }
9633 releasePage(pPageOut);
9634 pPageOut = pNew;
9635 if( pPageOut ){
9636 pPgnoOut = pPageOut->aData;
9637 put4byte(pPgnoOut, 0);
9638 aOut = &pPgnoOut[4];
9639 nOut = MIN(pBt->usableSize - 4, nRem);
danebbf3682020-12-09 16:32:11 +00009640 }
9641 }
dan7aae7352020-12-10 18:06:24 +00009642 }while( nRem>0 && rc==SQLITE_OK );
9643
9644 releasePage(pPageOut);
9645 sqlite3PagerUnref(pPageIn);
dan036e0672020-12-08 20:19:07 +00009646 }
9647
9648 return rc;
9649}
9650
drh5e2f8b92001-05-28 00:41:15 +00009651/*
danf0ee1d32015-09-12 19:26:11 +00009652** Delete the entry that the cursor is pointing to.
9653**
drhe807bdb2016-01-21 17:06:33 +00009654** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9655** the cursor is left pointing at an arbitrary location after the delete.
9656** But if that bit is set, then the cursor is left in a state such that
9657** the next call to BtreeNext() or BtreePrev() moves it to the same row
9658** as it would have been on if the call to BtreeDelete() had been omitted.
9659**
drhdef19e32016-01-27 16:26:25 +00009660** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9661** associated with a single table entry and its indexes. Only one of those
9662** deletes is considered the "primary" delete. The primary delete occurs
9663** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9664** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9665** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00009666** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00009667*/
drhe807bdb2016-01-21 17:06:33 +00009668int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00009669 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00009670 BtShared *pBt = p->pBt;
9671 int rc; /* Return code */
9672 MemPage *pPage; /* Page to delete cell from */
9673 unsigned char *pCell; /* Pointer to cell to delete */
9674 int iCellIdx; /* Index of cell to delete */
9675 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00009676 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00009677 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00009678 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00009679
dan7a2347e2016-01-07 16:43:54 +00009680 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00009681 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009682 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00009683 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00009684 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
9685 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00009686 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00009687 if( pCur->eState==CURSOR_REQUIRESEEK ){
9688 rc = btreeRestoreCursorPosition(pCur);
danf0ac2902021-04-26 15:32:36 +00009689 assert( rc!=SQLITE_OK || CORRUPT_DB || pCur->eState==CURSOR_VALID );
9690 if( rc || pCur->eState!=CURSOR_VALID ) return rc;
danb560a712019-03-13 15:29:14 +00009691 }
dan112501f2021-04-06 18:02:17 +00009692 assert( CORRUPT_DB || pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00009693
danielk19774dbaa892009-06-16 16:50:22 +00009694 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00009695 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00009696 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009697 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00009698 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00009699
drhbfc7a8b2016-04-09 17:04:05 +00009700 /* If the bPreserve flag is set to true, then the cursor position must
9701 ** be preserved following this delete operation. If the current delete
9702 ** will cause a b-tree rebalance, then this is done by saving the cursor
9703 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9704 ** returning.
9705 **
9706 ** Or, if the current delete will not cause a rebalance, then the cursor
9707 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9708 ** before or after the deleted entry. In this case set bSkipnext to true. */
9709 if( bPreserve ){
9710 if( !pPage->leaf
9711 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00009712 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00009713 ){
9714 /* A b-tree rebalance will be required after deleting this entry.
9715 ** Save the cursor key. */
9716 rc = saveCursorKey(pCur);
9717 if( rc ) return rc;
9718 }else{
9719 bSkipnext = 1;
9720 }
9721 }
9722
danielk19774dbaa892009-06-16 16:50:22 +00009723 /* If the page containing the entry to delete is not a leaf page, move
9724 ** the cursor to the largest entry in the tree that is smaller than
9725 ** the entry being deleted. This cell will replace the cell being deleted
9726 ** from the internal node. The 'previous' entry is used for this instead
9727 ** of the 'next' entry, as the previous entry is always a part of the
9728 ** sub-tree headed by the child page of the cell being deleted. This makes
9729 ** balancing the tree following the delete operation easier. */
9730 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00009731 rc = sqlite3BtreePrevious(pCur, 0);
9732 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00009733 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00009734 }
9735
9736 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00009737 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00009738 if( pCur->curFlags & BTCF_Multiple ){
9739 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
9740 if( rc ) return rc;
9741 }
drhd60f4f42012-03-23 14:23:52 +00009742
9743 /* If this is a delete operation to remove a row from a table b-tree,
9744 ** invalidate any incrblob cursors open on the row being deleted. */
drh49bb56e2021-05-14 20:01:36 +00009745 if( pCur->pKeyInfo==0 && p->hasIncrblobCur ){
drh9ca431a2017-03-29 18:03:50 +00009746 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00009747 }
9748
danf0ee1d32015-09-12 19:26:11 +00009749 /* Make the page containing the entry to be deleted writable. Then free any
9750 ** overflow pages associated with the entry and finally remove the cell
9751 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00009752 rc = sqlite3PagerWrite(pPage->pDbPage);
9753 if( rc ) return rc;
drh86c779f2021-05-15 13:08:44 +00009754 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
drh80159da2016-12-09 17:32:51 +00009755 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00009756 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00009757
danielk19774dbaa892009-06-16 16:50:22 +00009758 /* If the cell deleted was not located on a leaf page, then the cursor
9759 ** is currently pointing to the largest entry in the sub-tree headed
9760 ** by the child-page of the cell that was just deleted from an internal
9761 ** node. The cell from the leaf node needs to be moved to the internal
9762 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00009763 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00009764 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00009765 int nCell;
drh352a35a2017-08-15 03:46:47 +00009766 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00009767 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00009768
drhb0ea9432019-02-09 21:06:40 +00009769 if( pLeaf->nFree<0 ){
9770 rc = btreeComputeFreeSpace(pLeaf);
9771 if( rc ) return rc;
9772 }
drh352a35a2017-08-15 03:46:47 +00009773 if( iCellDepth<pCur->iPage-1 ){
9774 n = pCur->apPage[iCellDepth+1]->pgno;
9775 }else{
9776 n = pCur->pPage->pgno;
9777 }
danielk19774dbaa892009-06-16 16:50:22 +00009778 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009779 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009780 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009781 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009782 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009783 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009784 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009785 if( rc==SQLITE_OK ){
9786 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9787 }
drh98add2e2009-07-20 17:11:49 +00009788 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009789 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009790 }
danielk19774dbaa892009-06-16 16:50:22 +00009791
9792 /* Balance the tree. If the entry deleted was located on a leaf page,
9793 ** then the cursor still points to that page. In this case the first
9794 ** call to balance() repairs the tree, and the if(...) condition is
9795 ** never true.
9796 **
9797 ** Otherwise, if the entry deleted was on an internal node page, then
9798 ** pCur is pointing to the leaf page from which a cell was removed to
9799 ** replace the cell deleted from the internal node. This is slightly
9800 ** tricky as the leaf node may be underfull, and the internal node may
9801 ** be either under or overfull. In this case run the balancing algorithm
9802 ** on the leaf node first. If the balance proceeds far enough up the
9803 ** tree that we can be sure that any problem in the internal node has
9804 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9805 ** walk the cursor up the tree to the internal node and balance it as
9806 ** well. */
9807 rc = balance(pCur);
9808 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009809 releasePageNotNull(pCur->pPage);
9810 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009811 while( pCur->iPage>iCellDepth ){
9812 releasePage(pCur->apPage[pCur->iPage--]);
9813 }
drh352a35a2017-08-15 03:46:47 +00009814 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009815 rc = balance(pCur);
9816 }
9817
danielk19776b456a22005-03-21 04:04:02 +00009818 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009819 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009820 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009821 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009822 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009823 pCur->eState = CURSOR_SKIPNEXT;
9824 if( iCellIdx>=pPage->nCell ){
9825 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009826 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009827 }else{
9828 pCur->skipNext = 1;
9829 }
9830 }else{
9831 rc = moveToRoot(pCur);
9832 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009833 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009834 pCur->eState = CURSOR_REQUIRESEEK;
9835 }
drh44548e72017-08-14 18:13:52 +00009836 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009837 }
danielk19776b456a22005-03-21 04:04:02 +00009838 }
drh5e2f8b92001-05-28 00:41:15 +00009839 return rc;
drh3b7511c2001-05-26 13:15:44 +00009840}
drh8b2f49b2001-06-08 00:21:52 +00009841
9842/*
drhc6b52df2002-01-04 03:09:29 +00009843** Create a new BTree table. Write into *piTable the page
9844** number for the root page of the new table.
9845**
drhab01f612004-05-22 02:55:23 +00009846** The type of type is determined by the flags parameter. Only the
9847** following values of flags are currently in use. Other values for
9848** flags might not work:
9849**
9850** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9851** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009852*/
drhabc38152020-07-22 13:38:04 +00009853static int btreeCreateTable(Btree *p, Pgno *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009854 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009855 MemPage *pRoot;
9856 Pgno pgnoRoot;
9857 int rc;
drhd4187c72010-08-30 22:15:45 +00009858 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009859
drh1fee73e2007-08-29 04:00:57 +00009860 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009861 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009862 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009863
danielk1977003ba062004-11-04 02:57:33 +00009864#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009865 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009866 if( rc ){
9867 return rc;
9868 }
danielk1977003ba062004-11-04 02:57:33 +00009869#else
danielk1977687566d2004-11-02 12:56:41 +00009870 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009871 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9872 MemPage *pPageMove; /* The page to move to. */
9873
danielk197720713f32007-05-03 11:43:33 +00009874 /* Creating a new table may probably require moving an existing database
9875 ** to make room for the new tables root page. In case this page turns
9876 ** out to be an overflow page, delete all overflow page-map caches
9877 ** held by open cursors.
9878 */
danielk197792d4d7a2007-05-04 12:05:56 +00009879 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009880
danielk1977003ba062004-11-04 02:57:33 +00009881 /* Read the value of meta[3] from the database to determine where the
9882 ** root page of the new table should go. meta[3] is the largest root-page
9883 ** created so far, so the new root-page is (meta[3]+1).
9884 */
danielk1977602b4662009-07-02 07:47:33 +00009885 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drh10248222020-07-28 20:32:12 +00009886 if( pgnoRoot>btreePagecount(pBt) ){
9887 return SQLITE_CORRUPT_BKPT;
9888 }
danielk1977003ba062004-11-04 02:57:33 +00009889 pgnoRoot++;
9890
danielk1977599fcba2004-11-08 07:13:13 +00009891 /* The new root-page may not be allocated on a pointer-map page, or the
9892 ** PENDING_BYTE page.
9893 */
drh72190432008-01-31 14:54:43 +00009894 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009895 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009896 pgnoRoot++;
9897 }
drh48bf2d72020-07-30 17:14:55 +00009898 assert( pgnoRoot>=3 );
danielk1977003ba062004-11-04 02:57:33 +00009899
9900 /* Allocate a page. The page that currently resides at pgnoRoot will
9901 ** be moved to the allocated page (unless the allocated page happens
9902 ** to reside at pgnoRoot).
9903 */
dan51f0b6d2013-02-22 20:16:34 +00009904 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009905 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009906 return rc;
9907 }
danielk1977003ba062004-11-04 02:57:33 +00009908
9909 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009910 /* pgnoRoot is the page that will be used for the root-page of
9911 ** the new table (assuming an error did not occur). But we were
9912 ** allocated pgnoMove. If required (i.e. if it was not allocated
9913 ** by extending the file), the current page at position pgnoMove
9914 ** is already journaled.
9915 */
drheeb844a2009-08-08 18:01:07 +00009916 u8 eType = 0;
9917 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009918
danf7679ad2013-04-03 11:38:36 +00009919 /* Save the positions of any open cursors. This is required in
9920 ** case they are holding a reference to an xFetch reference
9921 ** corresponding to page pgnoRoot. */
9922 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009923 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009924 if( rc!=SQLITE_OK ){
9925 return rc;
9926 }
danielk1977f35843b2007-04-07 15:03:17 +00009927
9928 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009929 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009930 if( rc!=SQLITE_OK ){
9931 return rc;
9932 }
9933 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009934 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9935 rc = SQLITE_CORRUPT_BKPT;
9936 }
9937 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009938 releasePage(pRoot);
9939 return rc;
9940 }
drhccae6022005-02-26 17:31:26 +00009941 assert( eType!=PTRMAP_ROOTPAGE );
9942 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009943 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009944 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009945
9946 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009947 if( rc!=SQLITE_OK ){
9948 return rc;
9949 }
drhb00fc3b2013-08-21 23:42:32 +00009950 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009951 if( rc!=SQLITE_OK ){
9952 return rc;
9953 }
danielk19773b8a05f2007-03-19 17:44:26 +00009954 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009955 if( rc!=SQLITE_OK ){
9956 releasePage(pRoot);
9957 return rc;
9958 }
9959 }else{
9960 pRoot = pPageMove;
9961 }
9962
danielk197742741be2005-01-08 12:42:39 +00009963 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009964 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009965 if( rc ){
9966 releasePage(pRoot);
9967 return rc;
9968 }
drhbf592832010-03-30 15:51:12 +00009969
9970 /* When the new root page was allocated, page 1 was made writable in
9971 ** order either to increase the database filesize, or to decrement the
9972 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9973 */
9974 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009975 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009976 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009977 releasePage(pRoot);
9978 return rc;
9979 }
danielk197742741be2005-01-08 12:42:39 +00009980
danielk1977003ba062004-11-04 02:57:33 +00009981 }else{
drh4f0c5872007-03-26 22:05:01 +00009982 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009983 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009984 }
9985#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009986 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009987 if( createTabFlags & BTREE_INTKEY ){
9988 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9989 }else{
9990 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9991 }
9992 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009993 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009994 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drhabc38152020-07-22 13:38:04 +00009995 *piTable = pgnoRoot;
drh8b2f49b2001-06-08 00:21:52 +00009996 return SQLITE_OK;
9997}
drhabc38152020-07-22 13:38:04 +00009998int sqlite3BtreeCreateTable(Btree *p, Pgno *piTable, int flags){
drhd677b3d2007-08-20 22:48:41 +00009999 int rc;
10000 sqlite3BtreeEnter(p);
10001 rc = btreeCreateTable(p, piTable, flags);
10002 sqlite3BtreeLeave(p);
10003 return rc;
10004}
drh8b2f49b2001-06-08 00:21:52 +000010005
10006/*
10007** Erase the given database page and all its children. Return
10008** the page to the freelist.
10009*/
drh4b70f112004-05-02 21:12:19 +000010010static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +000010011 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +000010012 Pgno pgno, /* Page number to clear */
10013 int freePageFlag, /* Deallocate page if true */
drhdb7959d2021-08-03 16:31:54 +000010014 i64 *pnChange, /* Add number of Cells freed to this counter */
dan7fff2e12017-05-29 14:27:37 +000010015 Pgno pgnoRoot
drh4b70f112004-05-02 21:12:19 +000010016){
danielk1977146ba992009-07-22 14:08:13 +000010017 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +000010018 int rc;
drh4b70f112004-05-02 21:12:19 +000010019 unsigned char *pCell;
10020 int i;
dan8ce71842014-01-14 20:14:09 +000010021 int hdr;
drh80159da2016-12-09 17:32:51 +000010022 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +000010023
drh1fee73e2007-08-29 04:00:57 +000010024 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +000010025 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +000010026 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +000010027 }
drh28f58dd2015-06-27 19:45:03 +000010028 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +000010029 if( rc ) return rc;
dan7fff2e12017-05-29 14:27:37 +000010030 setMempageRoot(pPage, pgnoRoot);
drhccf46d02015-04-01 13:21:33 +000010031 if( pPage->bBusy ){
10032 rc = SQLITE_CORRUPT_BKPT;
10033 goto cleardatabasepage_out;
10034 }
10035 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +000010036 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +000010037 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +000010038 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +000010039 if( !pPage->leaf ){
dan7fff2e12017-05-29 14:27:37 +000010040 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange, pgnoRoot);
danielk19776b456a22005-03-21 04:04:02 +000010041 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +000010042 }
drh86c779f2021-05-15 13:08:44 +000010043 BTREE_CLEAR_CELL(rc, pPage, pCell, info);
danielk19776b456a22005-03-21 04:04:02 +000010044 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +000010045 }
drhccf46d02015-04-01 13:21:33 +000010046 if( !pPage->leaf ){
dan7fff2e12017-05-29 14:27:37 +000010047 rc = clearDatabasePage(
10048 pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange, pgnoRoot
10049 );
danielk19776b456a22005-03-21 04:04:02 +000010050 if( rc ) goto cleardatabasepage_out;
dan020c4f32021-06-22 18:06:23 +000010051 if( pPage->intKey ) pnChange = 0;
drha6df0e62021-06-03 18:51:51 +000010052 }
10053 if( pnChange ){
drhafe028a2015-05-22 13:09:50 +000010054 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +000010055 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +000010056 }
10057 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +000010058 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +000010059 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +000010060 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +000010061 }
danielk19776b456a22005-03-21 04:04:02 +000010062
10063cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +000010064 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +000010065 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +000010066 return rc;
drh8b2f49b2001-06-08 00:21:52 +000010067}
10068
10069/*
drhab01f612004-05-22 02:55:23 +000010070** Delete all information from a single table in the database. iTable is
10071** the page number of the root of the table. After this routine returns,
10072** the root page is empty, but still exists.
10073**
10074** This routine will fail with SQLITE_LOCKED if there are any open
10075** read cursors on the table. Open write cursors are moved to the
10076** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +000010077**
drha6df0e62021-06-03 18:51:51 +000010078** If pnChange is not NULL, then the integer value pointed to by pnChange
10079** is incremented by the number of entries in the table.
drh8b2f49b2001-06-08 00:21:52 +000010080*/
dan2c718872021-06-22 18:32:05 +000010081int sqlite3BtreeClearTable(Btree *p, int iTable, i64 *pnChange){
drh8b2f49b2001-06-08 00:21:52 +000010082 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +000010083 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +000010084 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +000010085 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010086
drhc046e3e2009-07-15 11:26:44 +000010087 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +000010088
drhc046e3e2009-07-15 11:26:44 +000010089 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +000010090 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
10091 ** is the root of a table b-tree - if it is not, the following call is
10092 ** a no-op). */
drh49bb56e2021-05-14 20:01:36 +000010093 if( p->hasIncrblobCur ){
10094 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
10095 }
dan7fff2e12017-05-29 14:27:37 +000010096 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange, (Pgno)iTable);
drh8b2f49b2001-06-08 00:21:52 +000010097 }
drhd677b3d2007-08-20 22:48:41 +000010098 sqlite3BtreeLeave(p);
10099 return rc;
drh8b2f49b2001-06-08 00:21:52 +000010100}
10101
10102/*
drh079a3072014-03-19 14:10:55 +000010103** Delete all information from the single table that pCur is open on.
10104**
10105** This routine only work for pCur on an ephemeral table.
10106*/
10107int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
10108 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
10109}
10110
10111/*
drh8b2f49b2001-06-08 00:21:52 +000010112** Erase all information in a table and add the root of the table to
10113** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +000010114** page 1) is never added to the freelist.
10115**
10116** This routine will fail with SQLITE_LOCKED if there are any open
10117** cursors on the table.
drh205f48e2004-11-05 00:43:11 +000010118**
10119** If AUTOVACUUM is enabled and the page at iTable is not the last
10120** root page in the database file, then the last root page
10121** in the database file is moved into the slot formerly occupied by
10122** iTable and that last slot formerly occupied by the last root page
10123** is added to the freelist instead of iTable. In this say, all
10124** root pages are kept at the beginning of the database file, which
10125** is necessary for AUTOVACUUM to work right. *piMoved is set to the
10126** page number that used to be the last root page in the file before
10127** the move. If no page gets moved, *piMoved is set to 0.
10128** The last root page is recorded in meta[3] and the value of
10129** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +000010130*/
danielk197789d40042008-11-17 14:20:56 +000010131static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +000010132 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +000010133 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +000010134 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +000010135
drh1fee73e2007-08-29 04:00:57 +000010136 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +000010137 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +000010138 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +000010139 if( iTable>btreePagecount(pBt) ){
10140 return SQLITE_CORRUPT_BKPT;
10141 }
drh055f2982016-01-15 15:06:41 +000010142
drhb00fc3b2013-08-21 23:42:32 +000010143 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +000010144 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +000010145 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +000010146 if( rc ){
10147 releasePage(pPage);
10148 return rc;
10149 }
danielk1977a0bf2652004-11-04 14:30:04 +000010150
drh205f48e2004-11-05 00:43:11 +000010151 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +000010152
danielk1977a0bf2652004-11-04 14:30:04 +000010153#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +000010154 freePage(pPage, &rc);
10155 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +000010156#else
drh055f2982016-01-15 15:06:41 +000010157 if( pBt->autoVacuum ){
10158 Pgno maxRootPgno;
10159 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +000010160
drh055f2982016-01-15 15:06:41 +000010161 if( iTable==maxRootPgno ){
10162 /* If the table being dropped is the table with the largest root-page
10163 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +000010164 */
drhc314dc72009-07-21 11:52:34 +000010165 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +000010166 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +000010167 if( rc!=SQLITE_OK ){
10168 return rc;
10169 }
10170 }else{
10171 /* The table being dropped does not have the largest root-page
10172 ** number in the database. So move the page that does into the
10173 ** gap left by the deleted root-page.
10174 */
10175 MemPage *pMove;
10176 releasePage(pPage);
10177 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
10178 if( rc!=SQLITE_OK ){
10179 return rc;
10180 }
10181 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
10182 releasePage(pMove);
10183 if( rc!=SQLITE_OK ){
10184 return rc;
10185 }
10186 pMove = 0;
10187 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
10188 freePage(pMove, &rc);
10189 releasePage(pMove);
10190 if( rc!=SQLITE_OK ){
10191 return rc;
10192 }
10193 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +000010194 }
drh055f2982016-01-15 15:06:41 +000010195
10196 /* Set the new 'max-root-page' value in the database header. This
10197 ** is the old value less one, less one more if that happens to
10198 ** be a root-page number, less one again if that is the
10199 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +000010200 */
drh055f2982016-01-15 15:06:41 +000010201 maxRootPgno--;
10202 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
10203 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
10204 maxRootPgno--;
10205 }
10206 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
10207
10208 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
10209 }else{
10210 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +000010211 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +000010212 }
drh055f2982016-01-15 15:06:41 +000010213#endif
drh8b2f49b2001-06-08 00:21:52 +000010214 return rc;
10215}
drhd677b3d2007-08-20 22:48:41 +000010216int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
10217 int rc;
10218 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +000010219 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +000010220 sqlite3BtreeLeave(p);
10221 return rc;
10222}
drh8b2f49b2001-06-08 00:21:52 +000010223
drh001bbcb2003-03-19 03:14:00 +000010224
drh8b2f49b2001-06-08 00:21:52 +000010225/*
danielk1977602b4662009-07-02 07:47:33 +000010226** This function may only be called if the b-tree connection already
10227** has a read or write transaction open on the database.
10228**
drh23e11ca2004-05-04 17:27:28 +000010229** Read the meta-information out of a database file. Meta[0]
10230** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +000010231** through meta[15] are available for use by higher layers. Meta[0]
10232** is read-only, the others are read/write.
10233**
10234** The schema layer numbers meta values differently. At the schema
10235** layer (and the SetCookie and ReadCookie opcodes) the number of
10236** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +000010237**
10238** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10239** of reading the value out of the header, it instead loads the "DataVersion"
10240** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10241** database file. It is a number computed by the pager. But its access
10242** pattern is the same as header meta values, and so it is convenient to
10243** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +000010244*/
danielk1977602b4662009-07-02 07:47:33 +000010245void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +000010246 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +000010247
drhd677b3d2007-08-20 22:48:41 +000010248 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +000010249 assert( p->inTrans>TRANS_NONE );
drh346a70c2020-06-15 20:27:35 +000010250 assert( SQLITE_OK==querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +000010251 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +000010252 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +000010253
drh91618562014-12-19 19:28:02 +000010254 if( idx==BTREE_DATA_VERSION ){
drh2b994ce2021-03-18 12:36:09 +000010255 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iBDataVersion;
drh91618562014-12-19 19:28:02 +000010256 }else{
10257 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
10258 }
drhae157872004-08-14 19:20:09 +000010259
danielk1977602b4662009-07-02 07:47:33 +000010260 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10261 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +000010262#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +000010263 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
10264 pBt->btsFlags |= BTS_READ_ONLY;
10265 }
danielk1977003ba062004-11-04 02:57:33 +000010266#endif
drhae157872004-08-14 19:20:09 +000010267
drhd677b3d2007-08-20 22:48:41 +000010268 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +000010269}
10270
10271/*
drh23e11ca2004-05-04 17:27:28 +000010272** Write meta-information back into the database. Meta[0] is
10273** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +000010274*/
danielk1977aef0bf62005-12-30 16:28:01 +000010275int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
10276 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +000010277 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +000010278 int rc;
drh23e11ca2004-05-04 17:27:28 +000010279 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +000010280 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +000010281 assert( p->inTrans==TRANS_WRITE );
10282 assert( pBt->pPage1!=0 );
10283 pP1 = pBt->pPage1->aData;
10284 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10285 if( rc==SQLITE_OK ){
10286 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +000010287#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +000010288 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +000010289 assert( pBt->autoVacuum || iMeta==0 );
10290 assert( iMeta==0 || iMeta==1 );
10291 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +000010292 }
drh64022502009-01-09 14:11:04 +000010293#endif
drh5df72a52002-06-06 23:16:05 +000010294 }
drhd677b3d2007-08-20 22:48:41 +000010295 sqlite3BtreeLeave(p);
10296 return rc;
drh8b2f49b2001-06-08 00:21:52 +000010297}
drh8c42ca92001-06-22 19:15:00 +000010298
danielk1977a5533162009-02-24 10:01:51 +000010299/*
10300** The first argument, pCur, is a cursor opened on some b-tree. Count the
10301** number of entries in the b-tree and write the result to *pnEntry.
10302**
10303** SQLITE_OK is returned if the operation is successfully executed.
10304** Otherwise, if an error is encountered (i.e. an IO error or database
10305** corruption) an SQLite error code is returned.
10306*/
drh21f6daa2019-10-11 14:21:48 +000010307int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +000010308 i64 nEntry = 0; /* Value to return in *pnEntry */
10309 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +000010310
drh44548e72017-08-14 18:13:52 +000010311 rc = moveToRoot(pCur);
10312 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +000010313 *pnEntry = 0;
10314 return SQLITE_OK;
10315 }
danielk1977a5533162009-02-24 10:01:51 +000010316
10317 /* Unless an error occurs, the following loop runs one iteration for each
10318 ** page in the B-Tree structure (not including overflow pages).
10319 */
dan892edb62020-03-30 13:35:05 +000010320 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +000010321 int iIdx; /* Index of child node in parent */
10322 MemPage *pPage; /* Current page of the b-tree */
10323
10324 /* If this is a leaf page or the tree is not an int-key tree, then
10325 ** this page contains countable entries. Increment the entry counter
10326 ** accordingly.
10327 */
drh352a35a2017-08-15 03:46:47 +000010328 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010329 if( pPage->leaf || !pPage->intKey ){
10330 nEntry += pPage->nCell;
10331 }
10332
10333 /* pPage is a leaf node. This loop navigates the cursor so that it
10334 ** points to the first interior cell that it points to the parent of
10335 ** the next page in the tree that has not yet been visited. The
10336 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10337 ** of the page, or to the number of cells in the page if the next page
10338 ** to visit is the right-child of its parent.
10339 **
10340 ** If all pages in the tree have been visited, return SQLITE_OK to the
10341 ** caller.
10342 */
10343 if( pPage->leaf ){
10344 do {
10345 if( pCur->iPage==0 ){
10346 /* All pages of the b-tree have been visited. Return successfully. */
10347 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +000010348 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +000010349 }
danielk197730548662009-07-09 05:07:37 +000010350 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +000010351 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +000010352
drh75e96b32017-04-01 00:20:06 +000010353 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +000010354 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +000010355 }
10356
10357 /* Descend to the child node of the cell that the cursor currently
10358 ** points at. This is the right-child if (iIdx==pPage->nCell).
10359 */
drh75e96b32017-04-01 00:20:06 +000010360 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +000010361 if( iIdx==pPage->nCell ){
10362 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
10363 }else{
10364 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
10365 }
10366 }
10367
shanebe217792009-03-05 04:20:31 +000010368 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +000010369 return rc;
10370}
drhdd793422001-06-28 01:54:48 +000010371
drhdd793422001-06-28 01:54:48 +000010372/*
drh5eddca62001-06-30 21:53:53 +000010373** Return the pager associated with a BTree. This routine is used for
10374** testing and debugging only.
drhdd793422001-06-28 01:54:48 +000010375*/
danielk1977aef0bf62005-12-30 16:28:01 +000010376Pager *sqlite3BtreePager(Btree *p){
10377 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +000010378}
drh5eddca62001-06-30 21:53:53 +000010379
drhb7f91642004-10-31 02:22:47 +000010380#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010381/*
10382** Append a message to the error message string.
10383*/
drh2e38c322004-09-03 18:38:44 +000010384static void checkAppendMsg(
10385 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +000010386 const char *zFormat,
10387 ...
10388){
10389 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +000010390 if( !pCheck->mxErr ) return;
10391 pCheck->mxErr--;
10392 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +000010393 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +000010394 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +000010395 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +000010396 }
drh867db832014-09-26 02:41:05 +000010397 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +000010398 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +000010399 }
drh0cdbe1a2018-05-09 13:46:26 +000010400 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +000010401 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +000010402 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drh8ddf6352020-06-29 18:30:49 +000010403 pCheck->bOomFault = 1;
drhc890fec2008-08-01 20:10:08 +000010404 }
drh5eddca62001-06-30 21:53:53 +000010405}
drhb7f91642004-10-31 02:22:47 +000010406#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010407
drhb7f91642004-10-31 02:22:47 +000010408#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +000010409
10410/*
10411** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10412** corresponds to page iPg is already set.
10413*/
10414static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10415 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10416 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
10417}
10418
10419/*
10420** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10421*/
10422static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
10423 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
10424 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
10425}
10426
10427
drh5eddca62001-06-30 21:53:53 +000010428/*
10429** Add 1 to the reference count for page iPage. If this is the second
10430** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +000010431** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +000010432** if this is the first reference to the page.
10433**
10434** Also check that the page number is in bounds.
10435*/
drh867db832014-09-26 02:41:05 +000010436static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +000010437 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +000010438 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010439 return 1;
10440 }
dan1235bb12012-04-03 17:43:28 +000010441 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +000010442 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010443 return 1;
10444 }
dan892edb62020-03-30 13:35:05 +000010445 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +000010446 setPageReferenced(pCheck, iPage);
10447 return 0;
drh5eddca62001-06-30 21:53:53 +000010448}
10449
danielk1977afcdd022004-10-31 16:25:42 +000010450#ifndef SQLITE_OMIT_AUTOVACUUM
10451/*
10452** Check that the entry in the pointer-map for page iChild maps to
10453** page iParent, pointer type ptrType. If not, append an error message
10454** to pCheck.
10455*/
10456static void checkPtrmap(
10457 IntegrityCk *pCheck, /* Integrity check context */
10458 Pgno iChild, /* Child page number */
10459 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +000010460 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +000010461){
10462 int rc;
10463 u8 ePtrmapType;
10464 Pgno iPtrmapParent;
10465
10466 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
10467 if( rc!=SQLITE_OK ){
drh8ddf6352020-06-29 18:30:49 +000010468 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->bOomFault = 1;
drh867db832014-09-26 02:41:05 +000010469 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +000010470 return;
10471 }
10472
10473 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +000010474 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +000010475 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
10476 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
10477 }
10478}
10479#endif
10480
drh5eddca62001-06-30 21:53:53 +000010481/*
10482** Check the integrity of the freelist or of an overflow page list.
10483** Verify that the number of pages on the list is N.
10484*/
drh30e58752002-03-02 20:41:57 +000010485static void checkList(
10486 IntegrityCk *pCheck, /* Integrity checking context */
10487 int isFreeList, /* True for a freelist. False for overflow page list */
drhabc38152020-07-22 13:38:04 +000010488 Pgno iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +000010489 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +000010490){
10491 int i;
drheaac9992019-02-26 16:17:06 +000010492 u32 expected = N;
drh91d58662018-07-20 13:39:28 +000010493 int nErrAtStart = pCheck->nErr;
10494 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +000010495 DbPage *pOvflPage;
10496 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +000010497 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +000010498 N--;
drh9584f582015-11-04 20:22:37 +000010499 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +000010500 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +000010501 break;
10502 }
danielk19773b8a05f2007-03-19 17:44:26 +000010503 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +000010504 if( isFreeList ){
drhae104742018-12-14 17:57:01 +000010505 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +000010506#ifndef SQLITE_OMIT_AUTOVACUUM
10507 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010508 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010509 }
10510#endif
drhae104742018-12-14 17:57:01 +000010511 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +000010512 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010513 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +000010514 N--;
10515 }else{
drhae104742018-12-14 17:57:01 +000010516 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +000010517 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +000010518#ifndef SQLITE_OMIT_AUTOVACUUM
10519 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010520 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010521 }
10522#endif
drh867db832014-09-26 02:41:05 +000010523 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +000010524 }
10525 N -= n;
drh30e58752002-03-02 20:41:57 +000010526 }
drh30e58752002-03-02 20:41:57 +000010527 }
danielk1977afcdd022004-10-31 16:25:42 +000010528#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010529 else{
10530 /* If this database supports auto-vacuum and iPage is not the last
10531 ** page in this overflow list, check that the pointer-map entry for
10532 ** the following page matches iPage.
10533 */
10534 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +000010535 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +000010536 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +000010537 }
danielk1977afcdd022004-10-31 16:25:42 +000010538 }
10539#endif
danielk19773b8a05f2007-03-19 17:44:26 +000010540 iPage = get4byte(pOvflData);
10541 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +000010542 }
10543 if( N && nErrAtStart==pCheck->nErr ){
10544 checkAppendMsg(pCheck,
10545 "%s is %d but should be %d",
10546 isFreeList ? "size" : "overflow list length",
10547 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +000010548 }
10549}
drhb7f91642004-10-31 02:22:47 +000010550#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010551
drh67731a92015-04-16 11:56:03 +000010552/*
10553** An implementation of a min-heap.
10554**
10555** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +000010556** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +000010557** and aHeap[N*2+1].
10558**
10559** The heap property is this: Every node is less than or equal to both
10560** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +000010561** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +000010562**
10563** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10564** the heap, preserving the heap property. The btreeHeapPull() routine
10565** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +000010566** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +000010567** property.
10568**
10569** This heap is used for cell overlap and coverage testing. Each u32
10570** entry represents the span of a cell or freeblock on a btree page.
10571** The upper 16 bits are the index of the first byte of a range and the
10572** lower 16 bits are the index of the last byte of that range.
10573*/
10574static void btreeHeapInsert(u32 *aHeap, u32 x){
10575 u32 j, i = ++aHeap[0];
10576 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +000010577 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +000010578 x = aHeap[j];
10579 aHeap[j] = aHeap[i];
10580 aHeap[i] = x;
10581 i = j;
10582 }
10583}
10584static int btreeHeapPull(u32 *aHeap, u32 *pOut){
10585 u32 j, i, x;
10586 if( (x = aHeap[0])==0 ) return 0;
10587 *pOut = aHeap[1];
10588 aHeap[1] = aHeap[x];
10589 aHeap[x] = 0xffffffff;
10590 aHeap[0]--;
10591 i = 1;
10592 while( (j = i*2)<=aHeap[0] ){
10593 if( aHeap[j]>aHeap[j+1] ) j++;
10594 if( aHeap[i]<aHeap[j] ) break;
10595 x = aHeap[i];
10596 aHeap[i] = aHeap[j];
10597 aHeap[j] = x;
10598 i = j;
10599 }
10600 return 1;
10601}
10602
drhb7f91642004-10-31 02:22:47 +000010603#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010604/*
10605** Do various sanity checks on a single page of a tree. Return
10606** the tree depth. Root pages return 0. Parents of root pages
10607** return 1, and so forth.
10608**
10609** These checks are done:
10610**
10611** 1. Make sure that cells and freeblocks do not overlap
10612** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +000010613** 2. Make sure integer cell keys are in order.
10614** 3. Check the integrity of overflow pages.
10615** 4. Recursively call checkTreePage on all children.
10616** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +000010617*/
10618static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +000010619 IntegrityCk *pCheck, /* Context for the sanity check */
drhabc38152020-07-22 13:38:04 +000010620 Pgno iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +000010621 i64 *piMinKey, /* Write minimum integer primary key here */
10622 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +000010623){
drhcbc6b712015-07-02 16:17:30 +000010624 MemPage *pPage = 0; /* The page being analyzed */
10625 int i; /* Loop counter */
10626 int rc; /* Result code from subroutine call */
10627 int depth = -1, d2; /* Depth of a subtree */
10628 int pgno; /* Page number */
10629 int nFrag; /* Number of fragmented bytes on the page */
10630 int hdr; /* Offset to the page header */
10631 int cellStart; /* Offset to the start of the cell pointer array */
10632 int nCell; /* Number of cells */
10633 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
10634 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
10635 ** False if IPK must be strictly less than maxKey */
10636 u8 *data; /* Page content */
10637 u8 *pCell; /* Cell content */
10638 u8 *pCellIdx; /* Next element of the cell pointer array */
10639 BtShared *pBt; /* The BtShared object that owns pPage */
10640 u32 pc; /* Address of a cell */
10641 u32 usableSize; /* Usable size of the page */
10642 u32 contentOffset; /* Offset to the start of the cell content area */
10643 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +000010644 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +000010645 const char *saved_zPfx = pCheck->zPfx;
10646 int saved_v1 = pCheck->v1;
10647 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +000010648 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +000010649
drh5eddca62001-06-30 21:53:53 +000010650 /* Check that the page exists
10651 */
drhd9cb6ac2005-10-20 07:28:17 +000010652 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +000010653 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +000010654 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +000010655 if( checkRef(pCheck, iPage) ) return 0;
drhabc38152020-07-22 13:38:04 +000010656 pCheck->zPfx = "Page %u: ";
drh867db832014-09-26 02:41:05 +000010657 pCheck->v1 = iPage;
drhabc38152020-07-22 13:38:04 +000010658 if( (rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +000010659 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +000010660 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +000010661 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010662 }
danielk197793caf5a2009-07-11 06:55:33 +000010663
10664 /* Clear MemPage.isInit to make sure the corruption detection code in
10665 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +000010666 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +000010667 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +000010668 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +000010669 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +000010670 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +000010671 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +000010672 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +000010673 }
drhb0ea9432019-02-09 21:06:40 +000010674 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
10675 assert( rc==SQLITE_CORRUPT );
10676 checkAppendMsg(pCheck, "free space corruption", rc);
10677 goto end_of_check;
10678 }
drhcbc6b712015-07-02 16:17:30 +000010679 data = pPage->aData;
10680 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +000010681
drhcbc6b712015-07-02 16:17:30 +000010682 /* Set up for cell analysis */
drhabc38152020-07-22 13:38:04 +000010683 pCheck->zPfx = "On tree page %u cell %d: ";
drhcbc6b712015-07-02 16:17:30 +000010684 contentOffset = get2byteNotZero(&data[hdr+5]);
10685 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
10686
10687 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10688 ** number of cells on the page. */
10689 nCell = get2byte(&data[hdr+3]);
10690 assert( pPage->nCell==nCell );
10691
10692 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10693 ** immediately follows the b-tree page header. */
10694 cellStart = hdr + 12 - 4*pPage->leaf;
10695 assert( pPage->aCellIdx==&data[cellStart] );
10696 pCellIdx = &data[cellStart + 2*(nCell-1)];
10697
10698 if( !pPage->leaf ){
10699 /* Analyze the right-child page of internal pages */
10700 pgno = get4byte(&data[hdr+8]);
10701#ifndef SQLITE_OMIT_AUTOVACUUM
10702 if( pBt->autoVacuum ){
drhabc38152020-07-22 13:38:04 +000010703 pCheck->zPfx = "On page %u at right child: ";
drhcbc6b712015-07-02 16:17:30 +000010704 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
10705 }
10706#endif
10707 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10708 keyCanBeEqual = 0;
10709 }else{
10710 /* For leaf pages, the coverage check will occur in the same loop
10711 ** as the other cell checks, so initialize the heap. */
10712 heap = pCheck->heap;
10713 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010714 }
10715
10716 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10717 ** integer offsets to the cell contents. */
10718 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +000010719 CellInfo info;
drh5eddca62001-06-30 21:53:53 +000010720
drhcbc6b712015-07-02 16:17:30 +000010721 /* Check cell size */
drh867db832014-09-26 02:41:05 +000010722 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +000010723 assert( pCellIdx==&data[cellStart + i*2] );
10724 pc = get2byteAligned(pCellIdx);
10725 pCellIdx -= 2;
10726 if( pc<contentOffset || pc>usableSize-4 ){
10727 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
10728 pc, contentOffset, usableSize-4);
10729 doCoverageCheck = 0;
10730 continue;
shaneh195475d2010-02-19 04:28:08 +000010731 }
drhcbc6b712015-07-02 16:17:30 +000010732 pCell = &data[pc];
10733 pPage->xParseCell(pPage, pCell, &info);
10734 if( pc+info.nSize>usableSize ){
10735 checkAppendMsg(pCheck, "Extends off end of page");
10736 doCoverageCheck = 0;
10737 continue;
10738 }
10739
10740 /* Check for integer primary key out of range */
10741 if( pPage->intKey ){
10742 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
10743 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
10744 }
10745 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +000010746 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +000010747 }
10748
10749 /* Check the content overflow list */
10750 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +000010751 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +000010752 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +000010753 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +000010754 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +000010755 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
danielk1977afcdd022004-10-31 16:25:42 +000010756#ifndef SQLITE_OMIT_AUTOVACUUM
10757 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010758 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010759 }
10760#endif
drh867db832014-09-26 02:41:05 +000010761 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +000010762 }
10763
drhda200cc2004-05-09 11:51:38 +000010764 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +000010765 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +000010766 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +000010767#ifndef SQLITE_OMIT_AUTOVACUUM
10768 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +000010769 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +000010770 }
10771#endif
drhcbc6b712015-07-02 16:17:30 +000010772 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
10773 keyCanBeEqual = 0;
10774 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +000010775 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +000010776 depth = d2;
drhda200cc2004-05-09 11:51:38 +000010777 }
drhcbc6b712015-07-02 16:17:30 +000010778 }else{
10779 /* Populate the coverage-checking heap for leaf pages */
10780 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +000010781 }
drh5eddca62001-06-30 21:53:53 +000010782 }
drhcbc6b712015-07-02 16:17:30 +000010783 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010784
drh5eddca62001-06-30 21:53:53 +000010785 /* Check for complete coverage of the page
10786 */
drh867db832014-09-26 02:41:05 +000010787 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010788 if( doCoverageCheck && pCheck->mxErr>0 ){
10789 /* For leaf pages, the min-heap has already been initialized and the
10790 ** cells have already been inserted. But for internal pages, that has
10791 ** not yet been done, so do it now */
10792 if( !pPage->leaf ){
10793 heap = pCheck->heap;
10794 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010795 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010796 u32 size;
10797 pc = get2byteAligned(&data[cellStart+i*2]);
10798 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010799 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010800 }
drh2e38c322004-09-03 18:38:44 +000010801 }
drhcbc6b712015-07-02 16:17:30 +000010802 /* Add the freeblocks to the min-heap
10803 **
10804 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010805 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010806 ** freeblocks on the page.
10807 */
drh8c2bbb62009-07-10 02:52:20 +000010808 i = get2byte(&data[hdr+1]);
10809 while( i>0 ){
10810 int size, j;
drh5860a612019-02-12 16:58:26 +000010811 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010812 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010813 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010814 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010815 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10816 ** big-endian integer which is the offset in the b-tree page of the next
10817 ** freeblock in the chain, or zero if the freeblock is the last on the
10818 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010819 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010820 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10821 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010822 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10823 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010824 i = j;
drh2e38c322004-09-03 18:38:44 +000010825 }
drhcbc6b712015-07-02 16:17:30 +000010826 /* Analyze the min-heap looking for overlap between cells and/or
10827 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010828 **
10829 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10830 ** There is an implied first entry the covers the page header, the cell
10831 ** pointer index, and the gap between the cell pointer index and the start
10832 ** of cell content.
10833 **
10834 ** The loop below pulls entries from the min-heap in order and compares
10835 ** the start_address against the previous end_address. If there is an
10836 ** overlap, that means bytes are used multiple times. If there is a gap,
10837 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010838 */
10839 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010840 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010841 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010842 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010843 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010844 "Multiple uses for byte %u of page %u", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010845 break;
drh67731a92015-04-16 11:56:03 +000010846 }else{
drhcbc6b712015-07-02 16:17:30 +000010847 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010848 prev = x;
drh2e38c322004-09-03 18:38:44 +000010849 }
10850 }
drhcbc6b712015-07-02 16:17:30 +000010851 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010852 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10853 ** is stored in the fifth field of the b-tree page header.
10854 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10855 ** number of fragmented free bytes within the cell content area.
10856 */
drhcbc6b712015-07-02 16:17:30 +000010857 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010858 checkAppendMsg(pCheck,
drhabc38152020-07-22 13:38:04 +000010859 "Fragmentation of %d bytes reported as %d on page %u",
drhcbc6b712015-07-02 16:17:30 +000010860 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010861 }
10862 }
drh867db832014-09-26 02:41:05 +000010863
10864end_of_check:
drh72e191e2015-07-04 11:14:20 +000010865 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +000010866 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010867 pCheck->zPfx = saved_zPfx;
10868 pCheck->v1 = saved_v1;
10869 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010870 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010871}
drhb7f91642004-10-31 02:22:47 +000010872#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010873
drhb7f91642004-10-31 02:22:47 +000010874#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010875/*
10876** This routine does a complete check of the given BTree file. aRoot[] is
10877** an array of pages numbers were each page number is the root page of
10878** a table. nRoot is the number of entries in aRoot.
10879**
danielk19773509a652009-07-06 18:56:13 +000010880** A read-only or read-write transaction must be opened before calling
10881** this function.
10882**
drhc890fec2008-08-01 20:10:08 +000010883** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010884** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010885** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010886** returned. If a memory allocation error occurs, NULL is returned.
drh17d2d592020-07-23 00:45:06 +000010887**
10888** If the first entry in aRoot[] is 0, that indicates that the list of
10889** root pages is incomplete. This is a "partial integrity-check". This
10890** happens when performing an integrity check on a single table. The
10891** zero is skipped, of course. But in addition, the freelist checks
10892** and the checks to make sure every page is referenced are also skipped,
10893** since obviously it is not possible to know which pages are covered by
10894** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10895** checks are still performed.
drh5eddca62001-06-30 21:53:53 +000010896*/
drh1dcdbc02007-01-27 02:24:54 +000010897char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010898 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010899 Btree *p, /* The btree to be checked */
drhabc38152020-07-22 13:38:04 +000010900 Pgno *aRoot, /* An array of root pages numbers for individual trees */
drh1dcdbc02007-01-27 02:24:54 +000010901 int nRoot, /* Number of entries in aRoot[] */
10902 int mxErr, /* Stop reporting errors after this many */
10903 int *pnErr /* Write number of errors seen to this variable */
10904){
danielk197789d40042008-11-17 14:20:56 +000010905 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010906 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010907 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010908 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010909 char zErr[100];
drh17d2d592020-07-23 00:45:06 +000010910 int bPartial = 0; /* True if not checking all btrees */
10911 int bCkFreelist = 1; /* True to scan the freelist */
drhcbc6b712015-07-02 16:17:30 +000010912 VVA_ONLY( int nRef );
drh17d2d592020-07-23 00:45:06 +000010913 assert( nRoot>0 );
10914
10915 /* aRoot[0]==0 means this is a partial check */
10916 if( aRoot[0]==0 ){
10917 assert( nRoot>1 );
10918 bPartial = 1;
10919 if( aRoot[1]!=1 ) bCkFreelist = 0;
10920 }
drh5eddca62001-06-30 21:53:53 +000010921
drhd677b3d2007-08-20 22:48:41 +000010922 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010923 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010924 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10925 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010926 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010927 sCheck.pBt = pBt;
10928 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010929 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010930 sCheck.mxErr = mxErr;
10931 sCheck.nErr = 0;
drh8ddf6352020-06-29 18:30:49 +000010932 sCheck.bOomFault = 0;
drh867db832014-09-26 02:41:05 +000010933 sCheck.zPfx = 0;
10934 sCheck.v1 = 0;
10935 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010936 sCheck.aPgRef = 0;
10937 sCheck.heap = 0;
10938 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010939 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010940 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010941 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010942 }
dan1235bb12012-04-03 17:43:28 +000010943
10944 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10945 if( !sCheck.aPgRef ){
drh8ddf6352020-06-29 18:30:49 +000010946 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010947 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010948 }
drhe05b3f82015-07-01 17:53:49 +000010949 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10950 if( sCheck.heap==0 ){
drh8ddf6352020-06-29 18:30:49 +000010951 sCheck.bOomFault = 1;
drhe05b3f82015-07-01 17:53:49 +000010952 goto integrity_ck_cleanup;
10953 }
10954
drh42cac6d2004-11-20 20:31:11 +000010955 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010956 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010957
10958 /* Check the integrity of the freelist
10959 */
drh17d2d592020-07-23 00:45:06 +000010960 if( bCkFreelist ){
10961 sCheck.zPfx = "Main freelist: ";
10962 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
10963 get4byte(&pBt->pPage1->aData[36]));
10964 sCheck.zPfx = 0;
10965 }
drh5eddca62001-06-30 21:53:53 +000010966
10967 /* Check all the tables.
10968 */
drh040d77a2018-07-20 15:44:09 +000010969#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010970 if( !bPartial ){
10971 if( pBt->autoVacuum ){
drhed109c02020-07-23 09:14:25 +000010972 Pgno mx = 0;
10973 Pgno mxInHdr;
drh17d2d592020-07-23 00:45:06 +000010974 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10975 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10976 if( mx!=mxInHdr ){
10977 checkAppendMsg(&sCheck,
10978 "max rootpage (%d) disagrees with header (%d)",
10979 mx, mxInHdr
10980 );
10981 }
10982 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
drh040d77a2018-07-20 15:44:09 +000010983 checkAppendMsg(&sCheck,
drh17d2d592020-07-23 00:45:06 +000010984 "incremental_vacuum enabled with a max rootpage of zero"
drh040d77a2018-07-20 15:44:09 +000010985 );
10986 }
drh040d77a2018-07-20 15:44:09 +000010987 }
10988#endif
drhcbc6b712015-07-02 16:17:30 +000010989 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010990 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010991 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010992 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010993 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010994#ifndef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000010995 if( pBt->autoVacuum && aRoot[i]>1 && !bPartial ){
drh867db832014-09-26 02:41:05 +000010996 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010997 }
10998#endif
drhcbc6b712015-07-02 16:17:30 +000010999 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000011000 }
drhcbc6b712015-07-02 16:17:30 +000011001 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000011002
drh17d2d592020-07-23 00:45:06 +000011003 if( !bPartial ){
dan1098bdb2020-07-30 19:19:12 +000011004 /* Make sure every page in the file is referenced. Skip this if the
11005 ** database is currently being written by a CONCURRENT transaction (it
11006 ** may fail as pages that were part of the free-list when the transaction
11007 ** was opened cannot be counted). */
11008 for(i=1; ISCONCURRENT==0 && i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000011009#ifdef SQLITE_OMIT_AUTOVACUUM
drh17d2d592020-07-23 00:45:06 +000011010 if( getPageReferenced(&sCheck, i)==0 ){
11011 checkAppendMsg(&sCheck, "Page %d is never used", i);
11012 }
danielk1977afcdd022004-10-31 16:25:42 +000011013#else
drh17d2d592020-07-23 00:45:06 +000011014 /* If the database supports auto-vacuum, make sure no tables contain
11015 ** references to pointer-map pages.
11016 */
11017 if( getPageReferenced(&sCheck, i)==0 &&
11018 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
11019 checkAppendMsg(&sCheck, "Page %d is never used", i);
11020 }
11021 if( getPageReferenced(&sCheck, i)!=0 &&
11022 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
11023 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
11024 }
danielk1977afcdd022004-10-31 16:25:42 +000011025#endif
drh47eb5612020-08-10 21:01:32 +000011026 }
drh5eddca62001-06-30 21:53:53 +000011027 }
11028
drh5eddca62001-06-30 21:53:53 +000011029 /* Clean up and report errors.
11030 */
drhe05b3f82015-07-01 17:53:49 +000011031integrity_ck_cleanup:
11032 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000011033 sqlite3_free(sCheck.aPgRef);
drh8ddf6352020-06-29 18:30:49 +000011034 if( sCheck.bOomFault ){
drh0cdbe1a2018-05-09 13:46:26 +000011035 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000011036 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000011037 }
drh1dcdbc02007-01-27 02:24:54 +000011038 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000011039 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000011040 /* Make sure this analysis did not leave any unref() pages. */
11041 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
11042 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000011043 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000011044}
drhb7f91642004-10-31 02:22:47 +000011045#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000011046
drh73509ee2003-04-06 20:44:45 +000011047/*
drhd4e0bb02012-05-27 01:19:04 +000011048** Return the full pathname of the underlying database file. Return
11049** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000011050**
11051** The pager filename is invariant as long as the pager is
11052** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000011053*/
danielk1977aef0bf62005-12-30 16:28:01 +000011054const char *sqlite3BtreeGetFilename(Btree *p){
11055 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000011056 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000011057}
11058
11059/*
danielk19775865e3d2004-06-14 06:03:57 +000011060** Return the pathname of the journal file for this database. The return
11061** value of this routine is the same regardless of whether the journal file
11062** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000011063**
11064** The pager journal filename is invariant as long as the pager is
11065** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000011066*/
danielk1977aef0bf62005-12-30 16:28:01 +000011067const char *sqlite3BtreeGetJournalname(Btree *p){
11068 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000011069 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000011070}
11071
danielk19771d850a72004-05-31 08:26:49 +000011072/*
drh99744fa2020-08-25 19:09:07 +000011073** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
11074** to describe the current transaction state of Btree p.
danielk19771d850a72004-05-31 08:26:49 +000011075*/
drh99744fa2020-08-25 19:09:07 +000011076int sqlite3BtreeTxnState(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000011077 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
drh99744fa2020-08-25 19:09:07 +000011078 return p ? p->inTrans : 0;
danielk19771d850a72004-05-31 08:26:49 +000011079}
11080
dana550f2d2010-08-02 10:47:05 +000011081#ifndef SQLITE_OMIT_WAL
11082/*
11083** Run a checkpoint on the Btree passed as the first argument.
11084**
11085** Return SQLITE_LOCKED if this or any other connection has an open
11086** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000011087**
dancdc1f042010-11-18 12:11:05 +000011088** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000011089*/
dancdc1f042010-11-18 12:11:05 +000011090int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000011091 int rc = SQLITE_OK;
11092 if( p ){
11093 BtShared *pBt = p->pBt;
11094 sqlite3BtreeEnter(p);
11095 if( pBt->inTransaction!=TRANS_NONE ){
11096 rc = SQLITE_LOCKED;
11097 }else{
dan7fb89902016-08-12 16:21:15 +000011098 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000011099 }
11100 sqlite3BtreeLeave(p);
11101 }
11102 return rc;
11103}
11104#endif
11105
danielk19771d850a72004-05-31 08:26:49 +000011106/*
drh99744fa2020-08-25 19:09:07 +000011107** Return true if there is currently a backup running on Btree p.
danielk19772372c2b2006-06-27 16:34:56 +000011108*/
danielk197704103022009-02-03 16:51:24 +000011109int sqlite3BtreeIsInBackup(Btree *p){
11110 assert( p );
11111 assert( sqlite3_mutex_held(p->db->mutex) );
11112 return p->nBackup!=0;
11113}
11114
danielk19772372c2b2006-06-27 16:34:56 +000011115/*
danielk1977da184232006-01-05 11:34:32 +000011116** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000011117** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000011118** purposes (for example, to store a high-level schema associated with
11119** the shared-btree). The btree layer manages reference counting issues.
11120**
11121** The first time this is called on a shared-btree, nBytes bytes of memory
11122** are allocated, zeroed, and returned to the caller. For each subsequent
11123** call the nBytes parameter is ignored and a pointer to the same blob
11124** of memory returned.
11125**
danielk1977171bfed2008-06-23 09:50:50 +000011126** If the nBytes parameter is 0 and the blob of memory has not yet been
11127** allocated, a null pointer is returned. If the blob has already been
11128** allocated, it is returned as normal.
11129**
danielk1977da184232006-01-05 11:34:32 +000011130** Just before the shared-btree is closed, the function passed as the
11131** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000011132** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000011133** on the memory, the btree layer does that.
11134*/
11135void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
11136 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000011137 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000011138 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000011139 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000011140 pBt->xFreeSchema = xFree;
11141 }
drh27641702007-08-22 02:56:42 +000011142 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000011143 return pBt->pSchema;
11144}
11145
danielk1977c87d34d2006-01-06 13:00:28 +000011146/*
danielk1977404ca072009-03-16 13:19:36 +000011147** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
11148** btree as the argument handle holds an exclusive lock on the
drh1e32bed2020-06-19 13:33:53 +000011149** sqlite_schema table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000011150*/
11151int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000011152 int rc;
drhe5fe6902007-12-07 18:55:28 +000011153 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000011154 sqlite3BtreeEnter(p);
drh346a70c2020-06-15 20:27:35 +000011155 rc = querySharedCacheTableLock(p, SCHEMA_ROOT, READ_LOCK);
danielk1977404ca072009-03-16 13:19:36 +000011156 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000011157 sqlite3BtreeLeave(p);
11158 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000011159}
11160
drha154dcd2006-03-22 22:10:07 +000011161
11162#ifndef SQLITE_OMIT_SHARED_CACHE
11163/*
11164** Obtain a lock on the table whose root page is iTab. The
11165** lock is a write lock if isWritelock is true or a read lock
11166** if it is false.
11167*/
danielk1977c00da102006-01-07 13:21:04 +000011168int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000011169 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000011170 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000011171 if( p->sharable ){
11172 u8 lockType = READ_LOCK + isWriteLock;
11173 assert( READ_LOCK+1==WRITE_LOCK );
11174 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000011175
drh6a9ad3d2008-04-02 16:29:30 +000011176 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000011177 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000011178 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000011179 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000011180 }
11181 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000011182 }
11183 return rc;
11184}
drha154dcd2006-03-22 22:10:07 +000011185#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000011186
danielk1977b4e9af92007-05-01 17:49:49 +000011187#ifndef SQLITE_OMIT_INCRBLOB
11188/*
11189** Argument pCsr must be a cursor opened for writing on an
11190** INTKEY table currently pointing at a valid table entry.
11191** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000011192**
11193** Only the data content may only be modified, it is not possible to
11194** change the length of the data stored. If this function is called with
11195** parameters that attempt to write past the end of the existing data,
11196** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000011197*/
danielk1977dcbb5d32007-05-04 18:36:44 +000011198int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000011199 int rc;
dan7a2347e2016-01-07 16:43:54 +000011200 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000011201 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000011202 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000011203
danielk1977c9000e62009-07-08 13:55:28 +000011204 rc = restoreCursorPosition(pCsr);
11205 if( rc!=SQLITE_OK ){
11206 return rc;
11207 }
danielk19773588ceb2008-06-10 17:30:26 +000011208 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
11209 if( pCsr->eState!=CURSOR_VALID ){
11210 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000011211 }
11212
dan227a1c42013-04-03 11:17:39 +000011213 /* Save the positions of all other cursors open on this table. This is
11214 ** required in case any of them are holding references to an xFetch
11215 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000011216 **
drh3f387402014-09-24 01:23:00 +000011217 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000011218 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
11219 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000011220 */
drh370c9f42013-04-03 20:04:04 +000011221 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
11222 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000011223
danielk1977c9000e62009-07-08 13:55:28 +000011224 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000011225 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000011226 ** (b) there is a read/write transaction open,
11227 ** (c) the connection holds a write-lock on the table (if required),
11228 ** (d) there are no conflicting read-locks, and
11229 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000011230 */
drh036dbec2014-03-11 23:40:44 +000011231 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000011232 return SQLITE_READONLY;
11233 }
drhc9166342012-01-05 23:32:06 +000011234 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
11235 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000011236 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
11237 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000011238 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000011239
drhfb192682009-07-11 18:26:28 +000011240 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000011241}
danielk19772dec9702007-05-02 16:48:37 +000011242
11243/*
dan5a500af2014-03-11 20:33:04 +000011244** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000011245*/
dan5a500af2014-03-11 20:33:04 +000011246void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000011247 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000011248 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000011249}
danielk1977b4e9af92007-05-01 17:49:49 +000011250#endif
dane04dc882010-04-20 18:53:15 +000011251
11252/*
11253** Set both the "read version" (single byte at byte offset 18) and
11254** "write version" (single byte at byte offset 19) fields in the database
11255** header to iVersion.
11256*/
11257int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
11258 BtShared *pBt = pBtree->pBt;
11259 int rc; /* Return code */
11260
dane04dc882010-04-20 18:53:15 +000011261 assert( iVersion==1 || iVersion==2 );
11262
danb9780022010-04-21 18:37:57 +000011263 /* If setting the version fields to 1, do not automatically open the
11264 ** WAL connection, even if the version fields are currently set to 2.
11265 */
drhc9166342012-01-05 23:32:06 +000011266 pBt->btsFlags &= ~BTS_NO_WAL;
11267 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000011268
drhbb2d9b12018-06-06 16:28:40 +000011269 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000011270 if( rc==SQLITE_OK ){
11271 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000011272 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000011273 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000011274 if( rc==SQLITE_OK ){
11275 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
11276 if( rc==SQLITE_OK ){
11277 aData[18] = (u8)iVersion;
11278 aData[19] = (u8)iVersion;
11279 }
11280 }
11281 }
dane04dc882010-04-20 18:53:15 +000011282 }
11283
drhc9166342012-01-05 23:32:06 +000011284 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000011285 return rc;
11286}
dan428c2182012-08-06 18:50:11 +000011287
drhe0997b32015-03-20 14:57:50 +000011288/*
11289** Return true if the cursor has a hint specified. This routine is
11290** only used from within assert() statements
11291*/
11292int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
11293 return (pCsr->hints & mask)!=0;
11294}
drhe0997b32015-03-20 14:57:50 +000011295
drh781597f2014-05-21 08:21:07 +000011296/*
11297** Return true if the given Btree is read-only.
11298*/
11299int sqlite3BtreeIsReadonly(Btree *p){
11300 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
11301}
drhdef68892014-11-04 12:11:23 +000011302
11303/*
11304** Return the size of the header added to each page by this module.
11305*/
drh37c057b2014-12-30 00:57:29 +000011306int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan7b3d71e2015-08-19 20:27:05 +000011307
danf5cebf72015-08-22 17:28:55 +000011308/*
11309** This function is called to ensure that all locks required to commit the
11310** current write-transaction to the database file are held. If the db is
11311** in rollback mode, this means the EXCLUSIVE lock on the database file.
11312**
danbf3cf572015-08-24 19:56:04 +000011313** Or, if this is an CONCURRENT transaction on a wal-mode database, the WRITER
danf5cebf72015-08-22 17:28:55 +000011314** lock on the wal file. In this case this function also checks that the
danbf3cf572015-08-24 19:56:04 +000011315** CONCURRENT transaction can be safely committed (does not commit with any
danf5cebf72015-08-22 17:28:55 +000011316** other transaction committed since it was opened).
11317**
11318** SQLITE_OK is returned if successful. SQLITE_BUSY if the required locks
11319** cannot be obtained due to a conflicting lock. If the locks cannot be
danbf3cf572015-08-24 19:56:04 +000011320** obtained for an CONCURRENT transaction due to a conflict with an already
danf5cebf72015-08-22 17:28:55 +000011321** committed transaction, SQLITE_BUSY_SNAPSHOT is returned. Otherwise, if
11322** some other error (OOM, IO, etc.) occurs, the relevant SQLite error code
11323** is returned.
11324*/
dan7b3d71e2015-08-19 20:27:05 +000011325int sqlite3BtreeExclusiveLock(Btree *p){
11326 int rc;
dan995b2452017-05-29 19:23:56 +000011327 Pgno pgno = 0;
dan7b3d71e2015-08-19 20:27:05 +000011328 BtShared *pBt = p->pBt;
11329 assert( p->inTrans==TRANS_WRITE && pBt->pPage1 );
11330 sqlite3BtreeEnter(p);
dan9a477712020-07-16 20:24:11 +000011331 rc = sqlite3PagerExclusiveLock(pBt->pPager,
11332 (p->db->eConcurrent==CONCURRENT_SCHEMA) ? 0 : pBt->pPage1->pDbPage,
11333 &pgno
11334 );
drh7365bcd2017-07-20 18:28:33 +000011335#ifdef SQLITE_OMIT_CONCURRENT
11336 assert( pgno==0 );
11337#else
dan995b2452017-05-29 19:23:56 +000011338 if( rc==SQLITE_BUSY_SNAPSHOT && pgno ){
11339 PgHdr *pPg = 0;
11340 int rc2 = sqlite3PagerGet(pBt->pPager, pgno, &pPg, 0);
11341 if( rc2==SQLITE_OK ){
11342 int bWrite = -1;
11343 const char *zObj = 0;
11344 const char *zTab = 0;
danb7ee5662018-05-15 11:28:36 +000011345 char zContent[17];
dan995b2452017-05-29 19:23:56 +000011346
11347 if( pPg ){
11348 Pgno pgnoRoot = 0;
11349 HashElem *pE;
11350 Schema *pSchema;
danb7ee5662018-05-15 11:28:36 +000011351 u8 *aData = (u8*)sqlite3PagerGetData(pPg);
11352 int i;
11353 for(i=0; i<8; i++){
11354 static const char hexdigits[] = {
11355 '0', '1', '2', '3', '4', '5', '6', '7',
11356 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
11357 };
11358 zContent[i*2] = hexdigits[(aData[i] >> 4)];
11359 zContent[i*2+1] = hexdigits[(aData[i] & 0xF)];
11360 }
11361 zContent[16] = '\0';
dan995b2452017-05-29 19:23:56 +000011362
11363 pgnoRoot = ((MemPage*)sqlite3PagerGetExtra(pPg))->pgnoRoot;
11364 bWrite = sqlite3PagerIswriteable(pPg);
11365 sqlite3PagerUnref(pPg);
11366
11367 pSchema = sqlite3SchemaGet(p->db, p);
11368 if( pSchema ){
11369 for(pE=sqliteHashFirst(&pSchema->tblHash); pE; pE=sqliteHashNext(pE)){
11370 Table *pTab = (Table *)sqliteHashData(pE);
11371 if( pTab->tnum==(int)pgnoRoot ){
11372 zObj = pTab->zName;
11373 zTab = 0;
11374 }else{
11375 Index *pIdx;
11376 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
11377 if( pIdx->tnum==(int)pgnoRoot ){
11378 zObj = pIdx->zName;
11379 zTab = pTab->zName;
11380 }
11381 }
11382 }
11383 }
11384 }
11385 }
11386
11387 sqlite3_log(SQLITE_OK,
11388 "cannot commit CONCURRENT transaction "
11389 "- conflict at page %d "
danb7ee5662018-05-15 11:28:36 +000011390 "(%s page; part of db %s %s%s%s; content=%s...)",
dan995b2452017-05-29 19:23:56 +000011391 (int)pgno,
11392 (bWrite==0?"read-only":(bWrite>0?"read/write":"unknown")),
11393 (zTab ? "index" : "table"),
danbfbe2b82018-05-15 08:51:05 +000011394 (zTab ? zTab : ""), (zTab ? "." : ""), (zObj ? zObj : "UNKNOWN"),
danb7ee5662018-05-15 11:28:36 +000011395 zContent
dan995b2452017-05-29 19:23:56 +000011396 );
11397 }
11398 }
drh7365bcd2017-07-20 18:28:33 +000011399#endif
dan7b3d71e2015-08-19 20:27:05 +000011400 sqlite3BtreeLeave(p);
11401 return rc;
11402}
danf687ba52016-01-14 15:46:31 +000011403
drh5a1fb182016-01-08 19:34:39 +000011404#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000011405/*
11406** Return true if the Btree passed as the only argument is sharable.
11407*/
11408int sqlite3BtreeSharable(Btree *p){
11409 return p->sharable;
11410}
dan272989b2016-07-06 10:12:02 +000011411
11412/*
11413** Return the number of connections to the BtShared object accessed by
11414** the Btree handle passed as the only argument. For private caches
11415** this is always 1. For shared caches it may be 1 or greater.
11416*/
11417int sqlite3BtreeConnectionCount(Btree *p){
11418 testcase( p->sharable );
11419 return p->pBt->nRef;
11420}
drh5a1fb182016-01-08 19:34:39 +000011421#endif