blob: 0bd34c7439d45ee0a529760cfec231c4de0bb498 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
dan7b3d71e2015-08-19 20:27:05 +0000442/*
443** The following structure stores the in-memory pointer map used for newly
444** allocated pages in UNLOCKED transactions. Such pages are always allocated
445** in a contiguous block (from the end of the file) starting with page
446** BtreePtrmap.iFirst.
447**
448** The page number for the parent page iFirst is stored in aPtr[0]. For
449** (iFirst+1), aPtr[1]. A zero value indicates that the page has not
450** been allocated.
451**
452**
453*/
454
455typedef struct RollbackEntry RollbackEntry;
456typedef struct PtrmapEntry PtrmapEntry;
457struct PtrmapEntry {
458 Pgno parent;
459 u8 eType;
460};
461struct RollbackEntry {
462 Pgno pgno;
463 Pgno parent;
464 u8 eType;
465};
466
467struct BtreePtrmap {
468 Pgno iFirst; /* First new page number aPtr[0] */
469
470 int nPtrAlloc; /* Allocated size of aPtr[] array */
471 PtrmapEntry *aPtr; /* Array of parent page numbers */
472
473 int nSvpt; /* Used size of aSvpt[] array */
474 int nSvptAlloc; /* Allocated size of aSvpt[] */
475 int *aSvpt; /* First aRollback[] entry for savepoint i */
476
477 int nRollback; /* Used size of aRollback[] array */
478 int nRollbackAlloc; /* Allocated size of aRollback[] array */
479 RollbackEntry *aRollback; /* Array of rollback entries */
480};
481
482static int btreePtrmapStore(
483 BtreePtrmap *pMap,
484 Pgno pgno,
485 u8 eType,
486 Pgno parent
487){
488 if( pgno>=pMap->iFirst ){
489 int iEntry = pgno - pMap->iFirst;
490
491 /* Grow the aPtr[] array if required */
492 if( iEntry>=pMap->nPtrAlloc ){
493 int nNew = pMap->nPtrAlloc ? pMap->nPtrAlloc*2 : 16;
494 PtrmapEntry *aNew = (PtrmapEntry*)sqlite3_realloc(
495 pMap->aPtr, nNew*sizeof(PtrmapEntry)
496 );
497 if( aNew==0 ){
498 return SQLITE_NOMEM;
499 }else{
500 int nByte = (nNew-pMap->nPtrAlloc)*sizeof(PtrmapEntry);
501 memset(&aNew[pMap->nPtrAlloc], 0, nByte);
502 pMap->aPtr = aNew;
503 pMap->nPtrAlloc = nNew;
504 }
505 }
506
507 /* Add an entry to the rollback log if required */
508 if( pMap->nSvpt>0 && pMap->aPtr[iEntry].parent ){
509 if( pMap->nRollback>=pMap->nRollbackAlloc ){
510 int nNew = pMap->nRollback ? pMap->nRollback*2 : 16;
511 RollbackEntry *aNew = (RollbackEntry*)sqlite3_realloc(
512 pMap->aRollback, nNew*sizeof(RollbackEntry)
513 );
514 if( aNew==0 ){
515 return SQLITE_NOMEM;
516 }else{
517 pMap->aRollback = aNew;
518 pMap->nRollbackAlloc = nNew;
519 }
520 }
521
522 pMap->aRollback[pMap->nRollback].pgno = pgno;
523 pMap->aRollback[pMap->nRollback].parent = pMap->aPtr[iEntry].parent;
524 pMap->aRollback[pMap->nRollback].eType = pMap->aPtr[iEntry].eType;
525 }
526
527 /* Update the aPtr[] array */
528 pMap->aPtr[iEntry].parent = parent;
529 pMap->aPtr[iEntry].eType = eType;
530 }
531
532 return SQLITE_OK;
533}
534
535/*
536** Open savepoint iSavepoint, if it is not already open.
537*/
538static int btreePtrmapBegin(BtreePtrmap *pMap, int nSvpt){
539 if( nSvpt<pMap->nSvpt ){
540 int i;
541 if( nSvpt>=pMap->nSvptAlloc ){
542 int nNew = pMap->nSvptAlloc ? pMap->nSvptAlloc*2 : 16;
543 int *aNew = sqlite3_realloc(pMap->aSvpt, sizeof(int) * nNew);
544 if( aNew==0 ){
545 return SQLITE_NOMEM;
546 }else{
547 pMap->aSvpt = aNew;
548 pMap->nSvptAlloc = nNew;
549 }
550 }
551
552 for(i=pMap->nSvpt; i<nSvpt; i++){
553 pMap->aSvpt[i] = pMap->nRollback;
554 }
555 pMap->nSvpt = nSvpt;
556 }
557
558 return SQLITE_OK;
559}
560
561/*
562** Rollback (if op==SAVEPOINT_ROLLBACK) or release (if op==SAVEPOINT_RELEASE)
563** savepoint iSvpt.
564*/
565static void btreePtrmapEnd(BtreePtrmap *pMap, int op, int iSvpt){
566 assert( op==SAVEPOINT_ROLLBACK || op==SAVEPOINT_RELEASE );
567 assert( iSvpt>=0 || (iSvpt==-1 && op==SAVEPOINT_ROLLBACK) );
568 if( iSvpt<0 ){
569 pMap->nSvpt = 0;
570 pMap->nRollback = 0;
571 memset(pMap->aPtr, 0, sizeof(Pgno) * pMap->nPtrAlloc);
572 }else if( iSvpt<pMap->nSvpt ){
573 if( op==SAVEPOINT_ROLLBACK ){
574 int ii;
575 for(ii=pMap->nRollback-1; ii>=pMap->aSvpt[iSvpt]; ii--){
576 RollbackEntry *p = &pMap->aRollback[ii];
577 PtrmapEntry *pEntry = &pMap->aPtr[p->pgno - pMap->iFirst];
578 pEntry->parent = p->parent;
579 pEntry->eType = p->eType;
580 }
581 }
582 pMap->nSvpt = iSvpt + (op==SAVEPOINT_ROLLBACK);
583 pMap->nRollback = pMap->aSvpt[iSvpt];
584 }
585}
586
587
drh980b1a72006-08-16 16:42:48 +0000588static void releasePage(MemPage *pPage); /* Forward reference */
589
drh1fee73e2007-08-29 04:00:57 +0000590/*
drh0ee3dbe2009-10-16 15:05:18 +0000591***** This routine is used inside of assert() only ****
592**
593** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000594*/
drh0ee3dbe2009-10-16 15:05:18 +0000595#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000596static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000597 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000598}
599#endif
600
danielk197792d4d7a2007-05-04 12:05:56 +0000601/*
dan5a500af2014-03-11 20:33:04 +0000602** Invalidate the overflow cache of the cursor passed as the first argument.
603** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000604*/
drh036dbec2014-03-11 23:40:44 +0000605#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000606
607/*
608** Invalidate the overflow page-list cache for all cursors opened
609** on the shared btree structure pBt.
610*/
611static void invalidateAllOverflowCache(BtShared *pBt){
612 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000613 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000614 for(p=pBt->pCursor; p; p=p->pNext){
615 invalidateOverflowCache(p);
616 }
617}
danielk197796d48e92009-06-29 06:00:37 +0000618
dan5a500af2014-03-11 20:33:04 +0000619#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000620/*
621** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000622** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000623** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000624**
625** If argument isClearTable is true, then the entire contents of the
626** table is about to be deleted. In this case invalidate all incrblob
627** cursors open on any row within the table with root-page pgnoRoot.
628**
629** Otherwise, if argument isClearTable is false, then the row with
630** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000631** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000632*/
633static void invalidateIncrblobCursors(
634 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000635 i64 iRow, /* The rowid that might be changing */
636 int isClearTable /* True if all rows are being deleted */
637){
638 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000639 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000640 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000641 pBtree->hasIncrblobCur = 0;
642 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
643 if( (p->curFlags & BTCF_Incrblob)!=0 ){
644 pBtree->hasIncrblobCur = 1;
645 if( isClearTable || p->info.nKey==iRow ){
646 p->eState = CURSOR_INVALID;
647 }
danielk197796d48e92009-06-29 06:00:37 +0000648 }
649 }
650}
651
danielk197792d4d7a2007-05-04 12:05:56 +0000652#else
dan5a500af2014-03-11 20:33:04 +0000653 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000654 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000655#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000656
drh980b1a72006-08-16 16:42:48 +0000657/*
danielk1977bea2a942009-01-20 17:06:27 +0000658** Set bit pgno of the BtShared.pHasContent bitvec. This is called
659** when a page that previously contained data becomes a free-list leaf
660** page.
661**
662** The BtShared.pHasContent bitvec exists to work around an obscure
663** bug caused by the interaction of two useful IO optimizations surrounding
664** free-list leaf pages:
665**
666** 1) When all data is deleted from a page and the page becomes
667** a free-list leaf page, the page is not written to the database
668** (as free-list leaf pages contain no meaningful data). Sometimes
669** such a page is not even journalled (as it will not be modified,
670** why bother journalling it?).
671**
672** 2) When a free-list leaf page is reused, its content is not read
673** from the database or written to the journal file (why should it
674** be, if it is not at all meaningful?).
675**
676** By themselves, these optimizations work fine and provide a handy
677** performance boost to bulk delete or insert operations. However, if
678** a page is moved to the free-list and then reused within the same
679** transaction, a problem comes up. If the page is not journalled when
680** it is moved to the free-list and it is also not journalled when it
681** is extracted from the free-list and reused, then the original data
682** may be lost. In the event of a rollback, it may not be possible
683** to restore the database to its original configuration.
684**
685** The solution is the BtShared.pHasContent bitvec. Whenever a page is
686** moved to become a free-list leaf page, the corresponding bit is
687** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000688** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000689** set in BtShared.pHasContent. The contents of the bitvec are cleared
690** at the end of every transaction.
691*/
692static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
693 int rc = SQLITE_OK;
694 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000695 assert( pgno<=pBt->nPage );
696 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000697 if( !pBt->pHasContent ){
698 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000699 }
700 }
701 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
702 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
703 }
704 return rc;
705}
706
707/*
708** Query the BtShared.pHasContent vector.
709**
710** This function is called when a free-list leaf page is removed from the
711** free-list for reuse. It returns false if it is safe to retrieve the
712** page from the pager layer with the 'no-content' flag set. True otherwise.
713*/
714static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
715 Bitvec *p = pBt->pHasContent;
716 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
717}
718
719/*
720** Clear (destroy) the BtShared.pHasContent bitvec. This should be
721** invoked at the conclusion of each write-transaction.
722*/
723static void btreeClearHasContent(BtShared *pBt){
724 sqlite3BitvecDestroy(pBt->pHasContent);
725 pBt->pHasContent = 0;
726}
727
728/*
drh138eeeb2013-03-27 03:15:23 +0000729** Release all of the apPage[] pages for a cursor.
730*/
731static void btreeReleaseAllCursorPages(BtCursor *pCur){
732 int i;
733 for(i=0; i<=pCur->iPage; i++){
734 releasePage(pCur->apPage[i]);
735 pCur->apPage[i] = 0;
736 }
737 pCur->iPage = -1;
738}
739
740
741/*
drh980b1a72006-08-16 16:42:48 +0000742** Save the current cursor position in the variables BtCursor.nKey
743** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000744**
745** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
746** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000747*/
748static int saveCursorPosition(BtCursor *pCur){
749 int rc;
750
drhd2f83132015-03-25 17:35:01 +0000751 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000752 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000753 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000754
drhd2f83132015-03-25 17:35:01 +0000755 if( pCur->eState==CURSOR_SKIPNEXT ){
756 pCur->eState = CURSOR_VALID;
757 }else{
758 pCur->skipNext = 0;
759 }
drh980b1a72006-08-16 16:42:48 +0000760 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000761 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000762
763 /* If this is an intKey table, then the above call to BtreeKeySize()
764 ** stores the integer key in pCur->nKey. In this case this value is
765 ** all that is required. Otherwise, if pCur is not open on an intKey
766 ** table, then malloc space for and store the pCur->nKey bytes of key
767 ** data.
768 */
drhc75d8862015-06-27 23:55:20 +0000769 if( 0==pCur->curIntKey ){
drhda4ca9d2014-09-09 17:27:35 +0000770 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000771 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000772 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000773 if( rc==SQLITE_OK ){
774 pCur->pKey = pKey;
775 }else{
drh17435752007-08-16 04:30:38 +0000776 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000777 }
778 }else{
779 rc = SQLITE_NOMEM;
780 }
781 }
drhc75d8862015-06-27 23:55:20 +0000782 assert( !pCur->curIntKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000783
784 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000785 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000786 pCur->eState = CURSOR_REQUIRESEEK;
787 }
788
danielk197792d4d7a2007-05-04 12:05:56 +0000789 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000790 return rc;
791}
792
drh637f3d82014-08-22 22:26:07 +0000793/* Forward reference */
794static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
795
drh980b1a72006-08-16 16:42:48 +0000796/*
drh0ee3dbe2009-10-16 15:05:18 +0000797** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000798** the table with root-page iRoot. "Saving the cursor position" means that
799** the location in the btree is remembered in such a way that it can be
800** moved back to the same spot after the btree has been modified. This
801** routine is called just before cursor pExcept is used to modify the
802** table, for example in BtreeDelete() or BtreeInsert().
803**
drh27fb7462015-06-30 02:47:36 +0000804** If there are two or more cursors on the same btree, then all such
805** cursors should have their BTCF_Multiple flag set. The btreeCursor()
806** routine enforces that rule. This routine only needs to be called in
807** the uncommon case when pExpect has the BTCF_Multiple flag set.
808**
809** If pExpect!=NULL and if no other cursors are found on the same root-page,
810** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
811** pointless call to this routine.
812**
drh637f3d82014-08-22 22:26:07 +0000813** Implementation note: This routine merely checks to see if any cursors
814** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
815** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000816*/
817static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000818 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000819 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000820 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000821 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000822 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
823 }
drh27fb7462015-06-30 02:47:36 +0000824 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
825 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
826 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000827}
828
829/* This helper routine to saveAllCursors does the actual work of saving
830** the cursors if and when a cursor is found that actually requires saving.
831** The common case is that no cursors need to be saved, so this routine is
832** broken out from its caller to avoid unnecessary stack pointer movement.
833*/
834static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000835 BtCursor *p, /* The first cursor that needs saving */
836 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
837 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000838){
839 do{
drh138eeeb2013-03-27 03:15:23 +0000840 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000841 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000842 int rc = saveCursorPosition(p);
843 if( SQLITE_OK!=rc ){
844 return rc;
845 }
846 }else{
847 testcase( p->iPage>0 );
848 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000849 }
850 }
drh637f3d82014-08-22 22:26:07 +0000851 p = p->pNext;
852 }while( p );
drh980b1a72006-08-16 16:42:48 +0000853 return SQLITE_OK;
854}
855
856/*
drhbf700f32007-03-31 02:36:44 +0000857** Clear the current cursor position.
858*/
danielk1977be51a652008-10-08 17:58:48 +0000859void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000860 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000861 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000862 pCur->pKey = 0;
863 pCur->eState = CURSOR_INVALID;
864}
865
866/*
danielk19773509a652009-07-06 18:56:13 +0000867** In this version of BtreeMoveto, pKey is a packed index record
868** such as is generated by the OP_MakeRecord opcode. Unpack the
869** record and then call BtreeMovetoUnpacked() to do the work.
870*/
871static int btreeMoveto(
872 BtCursor *pCur, /* Cursor open on the btree to be searched */
873 const void *pKey, /* Packed key if the btree is an index */
874 i64 nKey, /* Integer key for tables. Size of pKey for indices */
875 int bias, /* Bias search to the high end */
876 int *pRes /* Write search results here */
877){
878 int rc; /* Status code */
879 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000880 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000881 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000882
883 if( pKey ){
884 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000885 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
886 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
887 );
danielk19773509a652009-07-06 18:56:13 +0000888 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000889 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000890 if( pIdxKey->nField==0 ){
891 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
892 return SQLITE_CORRUPT_BKPT;
893 }
danielk19773509a652009-07-06 18:56:13 +0000894 }else{
895 pIdxKey = 0;
896 }
897 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000898 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000899 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000900 }
901 return rc;
902}
903
904/*
drh980b1a72006-08-16 16:42:48 +0000905** Restore the cursor to the position it was in (or as close to as possible)
906** when saveCursorPosition() was called. Note that this call deletes the
907** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000908** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000909** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000910*/
danielk197730548662009-07-09 05:07:37 +0000911static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000912 int rc;
drhd2f83132015-03-25 17:35:01 +0000913 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000914 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000915 assert( pCur->eState>=CURSOR_REQUIRESEEK );
916 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000917 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000918 }
drh980b1a72006-08-16 16:42:48 +0000919 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000920 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000921 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000922 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000923 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000924 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000925 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000926 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
927 pCur->eState = CURSOR_SKIPNEXT;
928 }
drh980b1a72006-08-16 16:42:48 +0000929 }
930 return rc;
931}
932
drha3460582008-07-11 21:02:53 +0000933#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000934 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000935 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000936 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000937
drha3460582008-07-11 21:02:53 +0000938/*
drh6848dad2014-08-22 23:33:03 +0000939** Determine whether or not a cursor has moved from the position where
940** it was last placed, or has been invalidated for any other reason.
941** Cursors can move when the row they are pointing at is deleted out
942** from under them, for example. Cursor might also move if a btree
943** is rebalanced.
drha3460582008-07-11 21:02:53 +0000944**
drh6848dad2014-08-22 23:33:03 +0000945** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000946**
drh6848dad2014-08-22 23:33:03 +0000947** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
948** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000949*/
drh6848dad2014-08-22 23:33:03 +0000950int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000951 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000952}
953
954/*
955** This routine restores a cursor back to its original position after it
956** has been moved by some outside activity (such as a btree rebalance or
957** a row having been deleted out from under the cursor).
958**
959** On success, the *pDifferentRow parameter is false if the cursor is left
960** pointing at exactly the same row. *pDifferntRow is the row the cursor
961** was pointing to has been deleted, forcing the cursor to point to some
962** nearby row.
963**
964** This routine should only be called for a cursor that just returned
965** TRUE from sqlite3BtreeCursorHasMoved().
966*/
967int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000968 int rc;
969
drh6848dad2014-08-22 23:33:03 +0000970 assert( pCur!=0 );
971 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000972 rc = restoreCursorPosition(pCur);
973 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000974 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000975 return rc;
976 }
drh606a3572015-03-25 18:29:10 +0000977 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000978 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000979 }else{
drh606a3572015-03-25 18:29:10 +0000980 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000981 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000982 }
983 return SQLITE_OK;
984}
985
danielk1977599fcba2004-11-08 07:13:13 +0000986#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000987/*
drha3152892007-05-05 11:48:52 +0000988** Given a page number of a regular database page, return the page
989** number for the pointer-map page that contains the entry for the
990** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000991**
992** Return 0 (not a valid page) for pgno==1 since there is
993** no pointer map associated with page 1. The integrity_check logic
994** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000995*/
danielk1977266664d2006-02-10 08:24:21 +0000996static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000997 int nPagesPerMapPage;
998 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000999 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +00001000 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +00001001 nPagesPerMapPage = (pBt->usableSize/5)+1;
1002 iPtrMap = (pgno-2)/nPagesPerMapPage;
1003 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +00001004 if( ret==PENDING_BYTE_PAGE(pBt) ){
1005 ret++;
1006 }
1007 return ret;
1008}
danielk1977a19df672004-11-03 11:37:07 +00001009
danielk1977afcdd022004-10-31 16:25:42 +00001010/*
danielk1977afcdd022004-10-31 16:25:42 +00001011** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001012**
1013** This routine updates the pointer map entry for page number 'key'
1014** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +00001015**
1016** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
1017** a no-op. If an error occurs, the appropriate error code is written
1018** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +00001019*/
drh98add2e2009-07-20 17:11:49 +00001020static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +00001021 DbPage *pDbPage; /* The pointer map page */
1022 u8 *pPtrmap; /* The pointer map data */
1023 Pgno iPtrmap; /* The pointer map page number */
1024 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +00001025 int rc; /* Return code from subfunctions */
1026
dan7b3d71e2015-08-19 20:27:05 +00001027 assert( sqlite3_mutex_held(pBt->mutex) );
drh98add2e2009-07-20 17:11:49 +00001028 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +00001029
dan7b3d71e2015-08-19 20:27:05 +00001030 if( pBt->pMap ){
1031 *pRC = btreePtrmapStore(pBt->pMap, key, eType, parent);
1032 }else{
1033 /* The master-journal page number must never be used as a ptr map page */
1034 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
danielk1977266664d2006-02-10 08:24:21 +00001035
dan7b3d71e2015-08-19 20:27:05 +00001036 assert( pBt->autoVacuum );
1037 if( key==0 ){
1038 *pRC = SQLITE_CORRUPT_BKPT;
1039 return;
danielk1977afcdd022004-10-31 16:25:42 +00001040 }
dan7b3d71e2015-08-19 20:27:05 +00001041 iPtrmap = PTRMAP_PAGENO(pBt, key);
1042 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
1043 if( rc!=SQLITE_OK ){
1044 *pRC = rc;
1045 return;
1046 }
1047 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1048 if( offset<0 ){
1049 *pRC = SQLITE_CORRUPT_BKPT;
1050 }else{
1051 assert( offset <= (int)pBt->usableSize-5 );
1052 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001053
dan7b3d71e2015-08-19 20:27:05 +00001054 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1055 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1056 *pRC= rc = sqlite3PagerWrite(pDbPage);
1057 if( rc==SQLITE_OK ){
1058 pPtrmap[offset] = eType;
1059 put4byte(&pPtrmap[offset+1], parent);
1060 }
1061 }
1062 }
1063 sqlite3PagerUnref(pDbPage);
1064 }
danielk1977afcdd022004-10-31 16:25:42 +00001065}
1066
1067/*
1068** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001069**
1070** This routine retrieves the pointer map entry for page 'key', writing
1071** the type and parent page number to *pEType and *pPgno respectively.
1072** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001073*/
danielk1977aef0bf62005-12-30 16:28:01 +00001074static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001075 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001076 int iPtrmap; /* Pointer map page index */
1077 u8 *pPtrmap; /* Pointer map page data */
1078 int offset; /* Offset of entry in pointer map */
1079 int rc;
1080
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001082
danielk1977266664d2006-02-10 08:24:21 +00001083 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +00001084 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001085 if( rc!=0 ){
1086 return rc;
1087 }
danielk19773b8a05f2007-03-19 17:44:26 +00001088 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001089
danielk19778c666b12008-07-18 09:34:57 +00001090 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001091 if( offset<0 ){
1092 sqlite3PagerUnref(pDbPage);
1093 return SQLITE_CORRUPT_BKPT;
1094 }
1095 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001096 assert( pEType!=0 );
1097 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001098 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001099
danielk19773b8a05f2007-03-19 17:44:26 +00001100 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001101 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001102 return SQLITE_OK;
1103}
1104
danielk197785d90ca2008-07-19 14:25:15 +00001105#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001106 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001107 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001108 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001109#endif
danielk1977afcdd022004-10-31 16:25:42 +00001110
drh0d316a42002-08-11 20:10:47 +00001111/*
drh271efa52004-05-30 19:19:05 +00001112** Given a btree page and a cell index (0 means the first cell on
1113** the page, 1 means the second cell, and so forth) return a pointer
1114** to the cell content.
1115**
drhf44890a2015-06-27 03:58:15 +00001116** findCellPastPtr() does the same except it skips past the initial
1117** 4-byte child pointer found on interior pages, if there is one.
1118**
drh271efa52004-05-30 19:19:05 +00001119** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001120*/
drh1688c862008-07-18 02:44:17 +00001121#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001122 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001123#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001124 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001125
drh68f2a572011-06-03 17:50:49 +00001126
drh43605152004-05-29 21:46:49 +00001127/*
drh5fa60512015-06-19 17:19:34 +00001128** This is common tail processing for btreeParseCellPtr() and
1129** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1130** on a single B-tree page. Make necessary adjustments to the CellInfo
1131** structure.
drh43605152004-05-29 21:46:49 +00001132*/
drh5fa60512015-06-19 17:19:34 +00001133static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1134 MemPage *pPage, /* Page containing the cell */
1135 u8 *pCell, /* Pointer to the cell text. */
1136 CellInfo *pInfo /* Fill in this structure */
1137){
1138 /* If the payload will not fit completely on the local page, we have
1139 ** to decide how much to store locally and how much to spill onto
1140 ** overflow pages. The strategy is to minimize the amount of unused
1141 ** space on overflow pages while keeping the amount of local storage
1142 ** in between minLocal and maxLocal.
1143 **
1144 ** Warning: changing the way overflow payload is distributed in any
1145 ** way will result in an incompatible file format.
1146 */
1147 int minLocal; /* Minimum amount of payload held locally */
1148 int maxLocal; /* Maximum amount of payload held locally */
1149 int surplus; /* Overflow payload available for local storage */
1150
1151 minLocal = pPage->minLocal;
1152 maxLocal = pPage->maxLocal;
1153 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1154 testcase( surplus==maxLocal );
1155 testcase( surplus==maxLocal+1 );
1156 if( surplus <= maxLocal ){
1157 pInfo->nLocal = (u16)surplus;
1158 }else{
1159 pInfo->nLocal = (u16)minLocal;
1160 }
1161 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1162 pInfo->nSize = pInfo->iOverflow + 4;
1163}
1164
1165/*
1166** The following routines are implementations of the MemPage.xParseCell()
1167** method.
1168**
1169** Parse a cell content block and fill in the CellInfo structure.
1170**
1171** btreeParseCellPtr() => table btree leaf nodes
1172** btreeParseCellNoPayload() => table btree internal nodes
1173** btreeParseCellPtrIndex() => index btree nodes
1174**
1175** There is also a wrapper function btreeParseCell() that works for
1176** all MemPage types and that references the cell by index rather than
1177** by pointer.
1178*/
1179static void btreeParseCellPtrNoPayload(
1180 MemPage *pPage, /* Page containing the cell */
1181 u8 *pCell, /* Pointer to the cell text. */
1182 CellInfo *pInfo /* Fill in this structure */
1183){
1184 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1185 assert( pPage->leaf==0 );
1186 assert( pPage->noPayload );
1187 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001188#ifndef SQLITE_DEBUG
1189 UNUSED_PARAMETER(pPage);
1190#endif
drh5fa60512015-06-19 17:19:34 +00001191 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1192 pInfo->nPayload = 0;
1193 pInfo->nLocal = 0;
1194 pInfo->iOverflow = 0;
1195 pInfo->pPayload = 0;
1196 return;
1197}
danielk197730548662009-07-09 05:07:37 +00001198static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001199 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001200 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001201 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001202){
drh3e28ff52014-09-24 00:59:08 +00001203 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001204 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001205 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001206
drh1fee73e2007-08-29 04:00:57 +00001207 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001208 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001209 assert( pPage->intKeyLeaf || pPage->noPayload );
1210 assert( pPage->noPayload==0 );
1211 assert( pPage->intKeyLeaf );
1212 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001213 pIter = pCell;
1214
1215 /* The next block of code is equivalent to:
1216 **
1217 ** pIter += getVarint32(pIter, nPayload);
1218 **
1219 ** The code is inlined to avoid a function call.
1220 */
1221 nPayload = *pIter;
1222 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001223 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001224 nPayload &= 0x7f;
1225 do{
1226 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1227 }while( (*pIter)>=0x80 && pIter<pEnd );
1228 }
1229 pIter++;
1230
1231 /* The next block of code is equivalent to:
1232 **
1233 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1234 **
1235 ** The code is inlined to avoid a function call.
1236 */
1237 iKey = *pIter;
1238 if( iKey>=0x80 ){
1239 u8 *pEnd = &pIter[7];
1240 iKey &= 0x7f;
1241 while(1){
1242 iKey = (iKey<<7) | (*++pIter & 0x7f);
1243 if( (*pIter)<0x80 ) break;
1244 if( pIter>=pEnd ){
1245 iKey = (iKey<<8) | *++pIter;
1246 break;
1247 }
1248 }
1249 }
1250 pIter++;
1251
1252 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001253 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001254 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001255 testcase( nPayload==pPage->maxLocal );
1256 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001257 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001258 /* This is the (easy) common case where the entire payload fits
1259 ** on the local page. No overflow is required.
1260 */
drhab1cc582014-09-23 21:25:19 +00001261 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1262 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001263 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001264 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001265 }else{
drh5fa60512015-06-19 17:19:34 +00001266 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1267 }
1268}
1269static void btreeParseCellPtrIndex(
1270 MemPage *pPage, /* Page containing the cell */
1271 u8 *pCell, /* Pointer to the cell text. */
1272 CellInfo *pInfo /* Fill in this structure */
1273){
1274 u8 *pIter; /* For scanning through pCell */
1275 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001276
drh5fa60512015-06-19 17:19:34 +00001277 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1278 assert( pPage->leaf==0 || pPage->leaf==1 );
1279 assert( pPage->intKeyLeaf==0 );
1280 assert( pPage->noPayload==0 );
1281 pIter = pCell + pPage->childPtrSize;
1282 nPayload = *pIter;
1283 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001284 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001285 nPayload &= 0x7f;
1286 do{
1287 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1288 }while( *(pIter)>=0x80 && pIter<pEnd );
1289 }
1290 pIter++;
1291 pInfo->nKey = nPayload;
1292 pInfo->nPayload = nPayload;
1293 pInfo->pPayload = pIter;
1294 testcase( nPayload==pPage->maxLocal );
1295 testcase( nPayload==pPage->maxLocal+1 );
1296 if( nPayload<=pPage->maxLocal ){
1297 /* This is the (easy) common case where the entire payload fits
1298 ** on the local page. No overflow is required.
1299 */
1300 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1301 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1302 pInfo->nLocal = (u16)nPayload;
1303 pInfo->iOverflow = 0;
1304 }else{
1305 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001306 }
drh3aac2dd2004-04-26 14:10:20 +00001307}
danielk197730548662009-07-09 05:07:37 +00001308static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001309 MemPage *pPage, /* Page containing the cell */
1310 int iCell, /* The cell index. First cell is 0 */
1311 CellInfo *pInfo /* Fill in this structure */
1312){
drh5fa60512015-06-19 17:19:34 +00001313 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001314}
drh3aac2dd2004-04-26 14:10:20 +00001315
1316/*
drh5fa60512015-06-19 17:19:34 +00001317** The following routines are implementations of the MemPage.xCellSize
1318** method.
1319**
drh43605152004-05-29 21:46:49 +00001320** Compute the total number of bytes that a Cell needs in the cell
1321** data area of the btree-page. The return number includes the cell
1322** data header and the local payload, but not any overflow page or
1323** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001324**
drh5fa60512015-06-19 17:19:34 +00001325** cellSizePtrNoPayload() => table internal nodes
1326** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001327*/
danielk1977ae5558b2009-04-29 11:31:47 +00001328static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001329 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1330 u8 *pEnd; /* End mark for a varint */
1331 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001332
1333#ifdef SQLITE_DEBUG
1334 /* The value returned by this function should always be the same as
1335 ** the (CellInfo.nSize) value found by doing a full parse of the
1336 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1337 ** this function verifies that this invariant is not violated. */
1338 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001339 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001340#endif
1341
drh25ada072015-06-19 15:07:14 +00001342 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001343 nSize = *pIter;
1344 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001345 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001346 nSize &= 0x7f;
1347 do{
1348 nSize = (nSize<<7) | (*++pIter & 0x7f);
1349 }while( *(pIter)>=0x80 && pIter<pEnd );
1350 }
1351 pIter++;
drhdc41d602014-09-22 19:51:35 +00001352 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001353 /* pIter now points at the 64-bit integer key value, a variable length
1354 ** integer. The following block moves pIter to point at the first byte
1355 ** past the end of the key value. */
1356 pEnd = &pIter[9];
1357 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001358 }
drh0a45c272009-07-08 01:49:11 +00001359 testcase( nSize==pPage->maxLocal );
1360 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001361 if( nSize<=pPage->maxLocal ){
1362 nSize += (u32)(pIter - pCell);
1363 if( nSize<4 ) nSize = 4;
1364 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001365 int minLocal = pPage->minLocal;
1366 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001367 testcase( nSize==pPage->maxLocal );
1368 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001369 if( nSize>pPage->maxLocal ){
1370 nSize = minLocal;
1371 }
drh3e28ff52014-09-24 00:59:08 +00001372 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001373 }
drhdc41d602014-09-22 19:51:35 +00001374 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001375 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001376}
drh25ada072015-06-19 15:07:14 +00001377static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1378 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1379 u8 *pEnd; /* End mark for a varint */
1380
1381#ifdef SQLITE_DEBUG
1382 /* The value returned by this function should always be the same as
1383 ** the (CellInfo.nSize) value found by doing a full parse of the
1384 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1385 ** this function verifies that this invariant is not violated. */
1386 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001387 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001388#else
1389 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001390#endif
1391
1392 assert( pPage->childPtrSize==4 );
1393 pEnd = pIter + 9;
1394 while( (*pIter++)&0x80 && pIter<pEnd );
1395 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1396 return (u16)(pIter - pCell);
1397}
1398
drh0ee3dbe2009-10-16 15:05:18 +00001399
1400#ifdef SQLITE_DEBUG
1401/* This variation on cellSizePtr() is used inside of assert() statements
1402** only. */
drha9121e42008-02-19 14:59:35 +00001403static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001404 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001405}
danielk1977bc6ada42004-06-30 08:20:16 +00001406#endif
drh3b7511c2001-05-26 13:15:44 +00001407
danielk197779a40da2005-01-16 08:00:01 +00001408#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001409/*
danielk197726836652005-01-17 01:33:13 +00001410** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001411** to an overflow page, insert an entry into the pointer-map
1412** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001413*/
drh98add2e2009-07-20 17:11:49 +00001414static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001415 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001416 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001417 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001418 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001419 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001420 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001421 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001422 }
danielk1977ac11ee62005-01-15 12:45:51 +00001423}
danielk197779a40da2005-01-16 08:00:01 +00001424#endif
1425
danielk1977ac11ee62005-01-15 12:45:51 +00001426
drhda200cc2004-05-09 11:51:38 +00001427/*
drh72f82862001-05-24 21:06:34 +00001428** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001429** end of the page and all free space is collected into one
1430** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001431** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001432**
1433** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1434** b-tree page so that there are no freeblocks or fragment bytes, all
1435** unused bytes are contained in the unallocated space region, and all
1436** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001437*/
shane0af3f892008-11-12 04:55:34 +00001438static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001439 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001440 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001441 int hdr; /* Offset to the page header */
1442 int size; /* Size of a cell */
1443 int usableSize; /* Number of usable bytes on a page */
1444 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001445 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001446 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001447 unsigned char *data; /* The page data */
1448 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001449 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001450 int iCellFirst; /* First allowable cell index */
1451 int iCellLast; /* Last possible cell index */
1452
drh2af926b2001-05-15 00:39:25 +00001453
danielk19773b8a05f2007-03-19 17:44:26 +00001454 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001455 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001456 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001457 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001458 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001459 temp = 0;
1460 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001461 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001462 cellOffset = pPage->cellOffset;
1463 nCell = pPage->nCell;
1464 assert( nCell==get2byte(&data[hdr+3]) );
1465 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001466 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001467 iCellFirst = cellOffset + 2*nCell;
1468 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001469 for(i=0; i<nCell; i++){
1470 u8 *pAddr; /* The i-th cell pointer */
1471 pAddr = &data[cellOffset + i*2];
1472 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001473 testcase( pc==iCellFirst );
1474 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001475 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001476 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001477 */
1478 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001479 return SQLITE_CORRUPT_BKPT;
1480 }
drh17146622009-07-07 17:38:38 +00001481 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001482 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001483 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001484 if( cbrk<iCellFirst || pc+size>usableSize ){
1485 return SQLITE_CORRUPT_BKPT;
1486 }
drh7157e1d2009-07-09 13:25:32 +00001487 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001488 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001489 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001490 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001491 if( temp==0 ){
1492 int x;
1493 if( cbrk==pc ) continue;
1494 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1495 x = get2byte(&data[hdr+5]);
1496 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1497 src = temp;
1498 }
1499 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001500 }
drh17146622009-07-07 17:38:38 +00001501 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001502 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001503 data[hdr+1] = 0;
1504 data[hdr+2] = 0;
1505 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001506 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001507 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001508 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001509 return SQLITE_CORRUPT_BKPT;
1510 }
shane0af3f892008-11-12 04:55:34 +00001511 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001512}
1513
drha059ad02001-04-17 20:09:11 +00001514/*
dan8e9ba0c2014-10-14 17:27:04 +00001515** Search the free-list on page pPg for space to store a cell nByte bytes in
1516** size. If one can be found, return a pointer to the space and remove it
1517** from the free-list.
1518**
1519** If no suitable space can be found on the free-list, return NULL.
1520**
drhba0f9992014-10-30 20:48:44 +00001521** This function may detect corruption within pPg. If corruption is
1522** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001523**
drhb7580e82015-06-25 18:36:13 +00001524** Slots on the free list that are between 1 and 3 bytes larger than nByte
1525** will be ignored if adding the extra space to the fragmentation count
1526** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001527*/
drhb7580e82015-06-25 18:36:13 +00001528static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001529 const int hdr = pPg->hdrOffset;
1530 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001531 int iAddr = hdr + 1;
1532 int pc = get2byte(&aData[iAddr]);
1533 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001534 int usableSize = pPg->pBt->usableSize;
1535
drhb7580e82015-06-25 18:36:13 +00001536 assert( pc>0 );
1537 do{
dan8e9ba0c2014-10-14 17:27:04 +00001538 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001539 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1540 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001541 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001542 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001543 return 0;
1544 }
drh113762a2014-11-19 16:36:25 +00001545 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1546 ** freeblock form a big-endian integer which is the size of the freeblock
1547 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001548 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001549 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001550 testcase( x==4 );
1551 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001552 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1553 *pRc = SQLITE_CORRUPT_BKPT;
1554 return 0;
1555 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001556 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1557 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001558 if( aData[hdr+7]>57 ) return 0;
1559
dan8e9ba0c2014-10-14 17:27:04 +00001560 /* Remove the slot from the free-list. Update the number of
1561 ** fragmented bytes within the page. */
1562 memcpy(&aData[iAddr], &aData[pc], 2);
1563 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001564 }else{
1565 /* The slot remains on the free-list. Reduce its size to account
1566 ** for the portion used by the new allocation. */
1567 put2byte(&aData[pc+2], x);
1568 }
1569 return &aData[pc + x];
1570 }
drhb7580e82015-06-25 18:36:13 +00001571 iAddr = pc;
1572 pc = get2byte(&aData[pc]);
1573 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001574
1575 return 0;
1576}
1577
1578/*
danielk19776011a752009-04-01 16:25:32 +00001579** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001580** as the first argument. Write into *pIdx the index into pPage->aData[]
1581** of the first byte of allocated space. Return either SQLITE_OK or
1582** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001583**
drh0a45c272009-07-08 01:49:11 +00001584** The caller guarantees that there is sufficient space to make the
1585** allocation. This routine might need to defragment in order to bring
1586** all the space together, however. This routine will avoid using
1587** the first two bytes past the cell pointer area since presumably this
1588** allocation is being made in order to insert a new cell, so we will
1589** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001590*/
drh0a45c272009-07-08 01:49:11 +00001591static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001592 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1593 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001594 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001595 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001596 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001597
danielk19773b8a05f2007-03-19 17:44:26 +00001598 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001599 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001600 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001601 assert( nByte>=0 ); /* Minimum cell size is 4 */
1602 assert( pPage->nFree>=nByte );
1603 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001604 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001605
drh0a45c272009-07-08 01:49:11 +00001606 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1607 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001608 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001609 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1610 ** and the reserved space is zero (the usual value for reserved space)
1611 ** then the cell content offset of an empty page wants to be 65536.
1612 ** However, that integer is too large to be stored in a 2-byte unsigned
1613 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001614 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001615 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001616 if( gap>top ){
1617 if( top==0 && pPage->pBt->usableSize==65536 ){
1618 top = 65536;
1619 }else{
1620 return SQLITE_CORRUPT_BKPT;
1621 }
drhe7266222015-05-29 17:51:16 +00001622 }
drh4c04f3c2014-08-20 11:56:14 +00001623
1624 /* If there is enough space between gap and top for one more cell pointer
1625 ** array entry offset, and if the freelist is not empty, then search the
1626 ** freelist looking for a free slot big enough to satisfy the request.
1627 */
drh0a45c272009-07-08 01:49:11 +00001628 testcase( gap+2==top );
1629 testcase( gap+1==top );
1630 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001631 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001632 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001633 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001634 assert( pSpace>=data && (pSpace - data)<65536 );
1635 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001636 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001637 }else if( rc ){
1638 return rc;
drh9e572e62004-04-23 23:43:10 +00001639 }
1640 }
drh43605152004-05-29 21:46:49 +00001641
drh4c04f3c2014-08-20 11:56:14 +00001642 /* The request could not be fulfilled using a freelist slot. Check
1643 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001644 */
1645 testcase( gap+2+nByte==top );
1646 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001647 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001648 rc = defragmentPage(pPage);
1649 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001650 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001651 assert( gap+nByte<=top );
1652 }
1653
1654
drh43605152004-05-29 21:46:49 +00001655 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001656 ** and the cell content area. The btreeInitPage() call has already
1657 ** validated the freelist. Given that the freelist is valid, there
1658 ** is no way that the allocation can extend off the end of the page.
1659 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001660 */
drh0a45c272009-07-08 01:49:11 +00001661 top -= nByte;
drh43605152004-05-29 21:46:49 +00001662 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001663 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001664 *pIdx = top;
1665 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001666}
1667
1668/*
drh9e572e62004-04-23 23:43:10 +00001669** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001670** The first byte of the new free block is pPage->aData[iStart]
1671** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001672**
drh5f5c7532014-08-20 17:56:27 +00001673** Adjacent freeblocks are coalesced.
1674**
1675** Note that even though the freeblock list was checked by btreeInitPage(),
1676** that routine will not detect overlap between cells or freeblocks. Nor
1677** does it detect cells or freeblocks that encrouch into the reserved bytes
1678** at the end of the page. So do additional corruption checks inside this
1679** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001680*/
drh5f5c7532014-08-20 17:56:27 +00001681static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001682 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001683 u16 iFreeBlk; /* Address of the next freeblock */
1684 u8 hdr; /* Page header size. 0 or 100 */
1685 u8 nFrag = 0; /* Reduction in fragmentation */
1686 u16 iOrigSize = iSize; /* Original value of iSize */
1687 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1688 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001689 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001690
drh9e572e62004-04-23 23:43:10 +00001691 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001692 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001693 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001694 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001695 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001696 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001697 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001698
drh5f5c7532014-08-20 17:56:27 +00001699 /* Overwrite deleted information with zeros when the secure_delete
1700 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001701 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001702 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001703 }
drhfcce93f2006-02-22 03:08:32 +00001704
drh5f5c7532014-08-20 17:56:27 +00001705 /* The list of freeblocks must be in ascending order. Find the
1706 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001707 */
drh43605152004-05-29 21:46:49 +00001708 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001709 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001710 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1711 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1712 }else{
1713 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1714 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1715 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001716 }
drh7bc4c452014-08-20 18:43:44 +00001717 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1718 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1719
1720 /* At this point:
1721 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001722 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001723 **
1724 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1725 */
1726 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1727 nFrag = iFreeBlk - iEnd;
1728 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1729 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001730 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001731 iSize = iEnd - iStart;
1732 iFreeBlk = get2byte(&data[iFreeBlk]);
1733 }
1734
drh3f387402014-09-24 01:23:00 +00001735 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1736 ** pointer in the page header) then check to see if iStart should be
1737 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001738 */
1739 if( iPtr>hdr+1 ){
1740 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1741 if( iPtrEnd+3>=iStart ){
1742 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1743 nFrag += iStart - iPtrEnd;
1744 iSize = iEnd - iPtr;
1745 iStart = iPtr;
1746 }
1747 }
1748 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1749 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001750 }
drh7bc4c452014-08-20 18:43:44 +00001751 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001752 /* The new freeblock is at the beginning of the cell content area,
1753 ** so just extend the cell content area rather than create another
1754 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001755 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001756 put2byte(&data[hdr+1], iFreeBlk);
1757 put2byte(&data[hdr+5], iEnd);
1758 }else{
1759 /* Insert the new freeblock into the freelist */
1760 put2byte(&data[iPtr], iStart);
1761 put2byte(&data[iStart], iFreeBlk);
1762 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001763 }
drh5f5c7532014-08-20 17:56:27 +00001764 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001765 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001766}
1767
1768/*
drh271efa52004-05-30 19:19:05 +00001769** Decode the flags byte (the first byte of the header) for a page
1770** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001771**
1772** Only the following combinations are supported. Anything different
1773** indicates a corrupt database files:
1774**
1775** PTF_ZERODATA
1776** PTF_ZERODATA | PTF_LEAF
1777** PTF_LEAFDATA | PTF_INTKEY
1778** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001779*/
drh44845222008-07-17 18:39:57 +00001780static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001781 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001782
1783 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001784 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001785 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001786 flagByte &= ~PTF_LEAF;
1787 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001788 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001789 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001790 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001791 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1792 ** table b-tree page. */
1793 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1794 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1795 ** table b-tree page. */
1796 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001797 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001798 if( pPage->leaf ){
1799 pPage->intKeyLeaf = 1;
1800 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001801 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001802 }else{
1803 pPage->intKeyLeaf = 0;
1804 pPage->noPayload = 1;
1805 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001806 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001807 }
drh271efa52004-05-30 19:19:05 +00001808 pPage->maxLocal = pBt->maxLeaf;
1809 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001810 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001811 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1812 ** index b-tree page. */
1813 assert( (PTF_ZERODATA)==2 );
1814 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1815 ** index b-tree page. */
1816 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001817 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001818 pPage->intKeyLeaf = 0;
1819 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001820 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001821 pPage->maxLocal = pBt->maxLocal;
1822 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001823 }else{
drhfdab0262014-11-20 15:30:50 +00001824 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1825 ** an error. */
drh44845222008-07-17 18:39:57 +00001826 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001827 }
drhc9166342012-01-05 23:32:06 +00001828 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001829 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001830}
1831
1832/*
drh7e3b0a02001-04-28 16:52:40 +00001833** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001834**
1835** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001836** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001837** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1838** guarantee that the page is well-formed. It only shows that
1839** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001840*/
danielk197730548662009-07-09 05:07:37 +00001841static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001842
danielk197771d5d2c2008-09-29 11:49:47 +00001843 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001844 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001845 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001846 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001847 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1848 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001849
1850 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001851 u16 pc; /* Address of a freeblock within pPage->aData[] */
1852 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001853 u8 *data; /* Equal to pPage->aData */
1854 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001855 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001856 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001857 int nFree; /* Number of unused bytes on the page */
1858 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001859 int iCellFirst; /* First allowable cell or freeblock offset */
1860 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001861
1862 pBt = pPage->pBt;
1863
danielk1977eaa06f62008-09-18 17:34:44 +00001864 hdr = pPage->hdrOffset;
1865 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001866 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1867 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001868 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001869 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1870 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001871 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001872 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001873 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001874 pPage->aDataEnd = &data[usableSize];
1875 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001876 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001877 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1878 ** the start of the cell content area. A zero value for this integer is
1879 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001880 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001881 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1882 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001883 pPage->nCell = get2byte(&data[hdr+3]);
1884 if( pPage->nCell>MX_CELL(pBt) ){
1885 /* To many cells for a single page. The page must be corrupt */
1886 return SQLITE_CORRUPT_BKPT;
1887 }
drhb908d762009-07-08 16:54:40 +00001888 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001889 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1890 ** possible for a root page of a table that contains no rows) then the
1891 ** offset to the cell content area will equal the page size minus the
1892 ** bytes of reserved space. */
1893 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001894
shane5eff7cf2009-08-10 03:57:58 +00001895 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001896 ** of page when parsing a cell.
1897 **
1898 ** The following block of code checks early to see if a cell extends
1899 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1900 ** returned if it does.
1901 */
drh0a45c272009-07-08 01:49:11 +00001902 iCellFirst = cellOffset + 2*pPage->nCell;
1903 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001904 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001905 int i; /* Index into the cell pointer array */
1906 int sz; /* Size of a cell */
1907
drh69e931e2009-06-03 21:04:35 +00001908 if( !pPage->leaf ) iCellLast--;
1909 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001910 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001911 testcase( pc==iCellFirst );
1912 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001913 if( pc<iCellFirst || pc>iCellLast ){
1914 return SQLITE_CORRUPT_BKPT;
1915 }
drh25ada072015-06-19 15:07:14 +00001916 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001917 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001918 if( pc+sz>usableSize ){
1919 return SQLITE_CORRUPT_BKPT;
1920 }
1921 }
drh0a45c272009-07-08 01:49:11 +00001922 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001923 }
drh69e931e2009-06-03 21:04:35 +00001924
drhfdab0262014-11-20 15:30:50 +00001925 /* Compute the total free space on the page
1926 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1927 ** start of the first freeblock on the page, or is zero if there are no
1928 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001929 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001930 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001931 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001932 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001933 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001934 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1935 ** always be at least one cell before the first freeblock.
1936 **
1937 ** Or, the freeblock is off the end of the page
1938 */
danielk1977eaa06f62008-09-18 17:34:44 +00001939 return SQLITE_CORRUPT_BKPT;
1940 }
1941 next = get2byte(&data[pc]);
1942 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001943 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1944 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001945 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001946 return SQLITE_CORRUPT_BKPT;
1947 }
shane85095702009-06-15 16:27:08 +00001948 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001949 pc = next;
1950 }
danielk197793c829c2009-06-03 17:26:17 +00001951
1952 /* At this point, nFree contains the sum of the offset to the start
1953 ** of the cell-content area plus the number of free bytes within
1954 ** the cell-content area. If this is greater than the usable-size
1955 ** of the page, then the page must be corrupted. This check also
1956 ** serves to verify that the offset to the start of the cell-content
1957 ** area, according to the page header, lies within the page.
1958 */
1959 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001960 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001961 }
shane5eff7cf2009-08-10 03:57:58 +00001962 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001963 pPage->isInit = 1;
1964 }
drh9e572e62004-04-23 23:43:10 +00001965 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001966}
1967
1968/*
drh8b2f49b2001-06-08 00:21:52 +00001969** Set up a raw page so that it looks like a database page holding
1970** no entries.
drhbd03cae2001-06-02 02:40:57 +00001971*/
drh9e572e62004-04-23 23:43:10 +00001972static void zeroPage(MemPage *pPage, int flags){
1973 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001974 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001975 u8 hdr = pPage->hdrOffset;
1976 u16 first;
drh9e572e62004-04-23 23:43:10 +00001977
danielk19773b8a05f2007-03-19 17:44:26 +00001978 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001979 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1980 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001981 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001982 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001983 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001984 memset(&data[hdr], 0, pBt->usableSize - hdr);
1985 }
drh1bd10f82008-12-10 21:19:56 +00001986 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001987 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001988 memset(&data[hdr+1], 0, 4);
1989 data[hdr+7] = 0;
1990 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001991 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001992 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001993 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001994 pPage->aDataEnd = &data[pBt->usableSize];
1995 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001996 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001997 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001998 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1999 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002000 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002001 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002002}
2003
drh897a8202008-09-18 01:08:15 +00002004
2005/*
2006** Convert a DbPage obtained from the pager into a MemPage used by
2007** the btree layer.
2008*/
2009static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2010 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2011 pPage->aData = sqlite3PagerGetData(pDbPage);
2012 pPage->pDbPage = pDbPage;
2013 pPage->pBt = pBt;
2014 pPage->pgno = pgno;
drh375beb02015-06-27 15:51:06 +00002015 pPage->hdrOffset = pgno==1 ? 100 : 0;
drh897a8202008-09-18 01:08:15 +00002016 return pPage;
2017}
2018
drhbd03cae2001-06-02 02:40:57 +00002019/*
drh3aac2dd2004-04-26 14:10:20 +00002020** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002021** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002022**
drh7e8c6f12015-05-28 03:28:27 +00002023** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2024** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002025** to fetch the content. Just fill in the content with zeros for now.
2026** If in the future we call sqlite3PagerWrite() on this page, that
2027** means we have started to be concerned about content and the disk
2028** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002029*/
danielk197730548662009-07-09 05:07:37 +00002030static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002031 BtShared *pBt, /* The btree */
2032 Pgno pgno, /* Number of the page to fetch */
2033 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002034 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002035){
drh3aac2dd2004-04-26 14:10:20 +00002036 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002037 DbPage *pDbPage;
2038
drhb00fc3b2013-08-21 23:42:32 +00002039 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002040 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00002041 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002042 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002043 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002044 return SQLITE_OK;
2045}
2046
2047/*
danielk1977bea2a942009-01-20 17:06:27 +00002048** Retrieve a page from the pager cache. If the requested page is not
2049** already in the pager cache return NULL. Initialize the MemPage.pBt and
2050** MemPage.aData elements if needed.
2051*/
2052static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2053 DbPage *pDbPage;
2054 assert( sqlite3_mutex_held(pBt->mutex) );
2055 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2056 if( pDbPage ){
2057 return btreePageFromDbPage(pDbPage, pgno, pBt);
2058 }
2059 return 0;
2060}
2061
2062/*
danielk197789d40042008-11-17 14:20:56 +00002063** Return the size of the database file in pages. If there is any kind of
2064** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002065*/
drhb1299152010-03-30 22:58:33 +00002066static Pgno btreePagecount(BtShared *pBt){
2067 return pBt->nPage;
2068}
2069u32 sqlite3BtreeLastPage(Btree *p){
2070 assert( sqlite3BtreeHoldsMutex(p) );
2071 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002072 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002073}
2074
dan7b3d71e2015-08-19 20:27:05 +00002075#ifdef SQLITE_ENABLE_UNLOCKED
2076/*
2077** This function is called before allocating or freeing a b-tree page. If
2078** the current transaction is UNLOCKED, it allocates the BtreePtrmap
2079** structure and zeroes the nFree/iTrunk fields in the database header
2080** on page 1.
2081*/
2082static int allocatePtrmap(BtShared *pBt){
2083 int rc = SQLITE_OK;
2084 if( pBt->pMap==0 && sqlite3PagerIsUnlocked(pBt->pPager) ){
2085 /* If this is an unlocked transaction, set the header values
2086 ** identifying the size of the free-list and the page number
2087 ** of the first trunk page to zero. */
2088 BtreePtrmap *pMap = sqlite3_malloc(sizeof(BtreePtrmap));
2089 if( pMap==0 ){
2090 rc = SQLITE_NOMEM;
2091 }else{
2092 memset(&pBt->pPage1->aData[32], 0, sizeof(u32)*2);
2093 memset(pMap, 0, sizeof(BtreePtrmap));
2094 pMap->iFirst = btreePagecount(pBt) + 1;
2095 pBt->pMap = pMap;
2096 }
2097 }
2098 return rc;
2099}
2100
2101/*
2102** Free a pointer-map allocated by allocatePtrmap.
2103*/
2104static void deletePtrmap(BtShared *pBt){
2105 BtreePtrmap *pMap = pBt->pMap;
2106 if( pMap ){
2107 sqlite3_free(pMap->aRollback);
2108 sqlite3_free(pMap->aPtr);
2109 sqlite3_free(pMap->aSvpt);
2110 sqlite3_free(pMap);
2111 pBt->pMap = 0;
2112 }
2113}
2114#else
2115#define allocatePtrmap(x) SQLITE_OK
2116#define deletePtrmap(x)
2117#endif
2118
danielk197767fd7a92008-09-10 17:53:35 +00002119/*
drh28f58dd2015-06-27 19:45:03 +00002120** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002121**
drh15a00212015-06-27 20:55:00 +00002122** If pCur!=0 then the page is being fetched as part of a moveToChild()
2123** call. Do additional sanity checking on the page in this case.
2124** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002125**
2126** The page is fetched as read-write unless pCur is not NULL and is
2127** a read-only cursor.
2128**
2129** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002130** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002131*/
2132static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002133 BtShared *pBt, /* The database file */
2134 Pgno pgno, /* Number of the page to get */
2135 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002136 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2137 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002138){
2139 int rc;
drh28f58dd2015-06-27 19:45:03 +00002140 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002141 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002142 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2143 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002144 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002145
danba3cbf32010-06-30 04:29:03 +00002146 if( pgno>btreePagecount(pBt) ){
2147 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002148 goto getAndInitPage_error;
2149 }
2150 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2151 if( rc ){
2152 goto getAndInitPage_error;
2153 }
2154 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2155 if( (*ppPage)->isInit==0 ){
2156 rc = btreeInitPage(*ppPage);
2157 if( rc!=SQLITE_OK ){
2158 releasePage(*ppPage);
2159 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002160 }
drhee696e22004-08-30 16:52:17 +00002161 }
danba3cbf32010-06-30 04:29:03 +00002162
drh15a00212015-06-27 20:55:00 +00002163 /* If obtaining a child page for a cursor, we must verify that the page is
2164 ** compatible with the root page. */
2165 if( pCur
drh408efc02015-06-27 22:49:10 +00002166 && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
drh28f58dd2015-06-27 19:45:03 +00002167 ){
2168 rc = SQLITE_CORRUPT_BKPT;
2169 releasePage(*ppPage);
2170 goto getAndInitPage_error;
2171 }
drh28f58dd2015-06-27 19:45:03 +00002172 return SQLITE_OK;
2173
2174getAndInitPage_error:
2175 if( pCur ) pCur->iPage--;
drh325d0872015-06-29 00:52:33 +00002176 testcase( pgno==0 );
2177 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002178 return rc;
2179}
2180
2181/*
drh3aac2dd2004-04-26 14:10:20 +00002182** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002183** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002184*/
drhbbf0f862015-06-27 14:59:26 +00002185static void releasePageNotNull(MemPage *pPage){
2186 assert( pPage->aData );
2187 assert( pPage->pBt );
2188 assert( pPage->pDbPage!=0 );
2189 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2190 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2191 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2192 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2193}
drh4b70f112004-05-02 21:12:19 +00002194static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002195 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002196}
2197
2198/*
drh7e8c6f12015-05-28 03:28:27 +00002199** Get an unused page.
2200**
2201** This works just like btreeGetPage() with the addition:
2202**
2203** * If the page is already in use for some other purpose, immediately
2204** release it and return an SQLITE_CURRUPT error.
2205** * Make sure the isInit flag is clear
2206*/
2207static int btreeGetUnusedPage(
2208 BtShared *pBt, /* The btree */
2209 Pgno pgno, /* Number of the page to fetch */
2210 MemPage **ppPage, /* Return the page in this parameter */
2211 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2212){
2213 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2214 if( rc==SQLITE_OK ){
2215 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2216 releasePage(*ppPage);
2217 *ppPage = 0;
2218 return SQLITE_CORRUPT_BKPT;
2219 }
2220 (*ppPage)->isInit = 0;
2221 }else{
2222 *ppPage = 0;
2223 }
2224 return rc;
2225}
2226
2227
2228/*
drha6abd042004-06-09 17:37:22 +00002229** During a rollback, when the pager reloads information into the cache
2230** so that the cache is restored to its original state at the start of
2231** the transaction, for each page restored this routine is called.
2232**
2233** This routine needs to reset the extra data section at the end of the
2234** page to agree with the restored data.
2235*/
danielk1977eaa06f62008-09-18 17:34:44 +00002236static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002237 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002238 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002239 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002240 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002241 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002242 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002243 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002244 /* pPage might not be a btree page; it might be an overflow page
2245 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002246 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002247 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002248 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002249 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002250 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002251 }
drha6abd042004-06-09 17:37:22 +00002252 }
2253}
2254
2255/*
drhe5fe6902007-12-07 18:55:28 +00002256** Invoke the busy handler for a btree.
2257*/
danielk19771ceedd32008-11-19 10:22:33 +00002258static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002259 BtShared *pBt = (BtShared*)pArg;
2260 assert( pBt->db );
2261 assert( sqlite3_mutex_held(pBt->db->mutex) );
2262 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2263}
2264
2265/*
drhad3e0102004-09-03 23:32:18 +00002266** Open a database file.
2267**
drh382c0242001-10-06 16:33:02 +00002268** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002269** then an ephemeral database is created. The ephemeral database might
2270** be exclusively in memory, or it might use a disk-based memory cache.
2271** Either way, the ephemeral database will be automatically deleted
2272** when sqlite3BtreeClose() is called.
2273**
drhe53831d2007-08-17 01:14:38 +00002274** If zFilename is ":memory:" then an in-memory database is created
2275** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002276**
drh33f111d2012-01-17 15:29:14 +00002277** The "flags" parameter is a bitmask that might contain bits like
2278** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002279**
drhc47fd8e2009-04-30 13:30:32 +00002280** If the database is already opened in the same database connection
2281** and we are in shared cache mode, then the open will fail with an
2282** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2283** objects in the same database connection since doing so will lead
2284** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002285*/
drh23e11ca2004-05-04 17:27:28 +00002286int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002287 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002288 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002289 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002290 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002291 int flags, /* Options */
2292 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002293){
drh7555d8e2009-03-20 13:15:30 +00002294 BtShared *pBt = 0; /* Shared part of btree structure */
2295 Btree *p; /* Handle to return */
2296 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2297 int rc = SQLITE_OK; /* Result code from this function */
2298 u8 nReserve; /* Byte of unused space on each page */
2299 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002300
drh75c014c2010-08-30 15:02:28 +00002301 /* True if opening an ephemeral, temporary database */
2302 const int isTempDb = zFilename==0 || zFilename[0]==0;
2303
danielk1977aef0bf62005-12-30 16:28:01 +00002304 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002305 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002306 */
drhb0a7c9c2010-12-06 21:09:59 +00002307#ifdef SQLITE_OMIT_MEMORYDB
2308 const int isMemdb = 0;
2309#else
2310 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002311 || (isTempDb && sqlite3TempInMemory(db))
2312 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002313#endif
2314
drhe5fe6902007-12-07 18:55:28 +00002315 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002316 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002317 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002318 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2319
2320 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2321 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2322
2323 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2324 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002325
drh75c014c2010-08-30 15:02:28 +00002326 if( isMemdb ){
2327 flags |= BTREE_MEMORY;
2328 }
2329 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2330 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2331 }
drh17435752007-08-16 04:30:38 +00002332 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002333 if( !p ){
2334 return SQLITE_NOMEM;
2335 }
2336 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002337 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002338#ifndef SQLITE_OMIT_SHARED_CACHE
2339 p->lock.pBtree = p;
2340 p->lock.iTable = 1;
2341#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002342
drh198bf392006-01-06 21:52:49 +00002343#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002344 /*
2345 ** If this Btree is a candidate for shared cache, try to find an
2346 ** existing BtShared object that we can share with
2347 */
drh4ab9d252012-05-26 20:08:49 +00002348 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002349 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002350 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002351 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002352 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002353 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002354
drhff0587c2007-08-29 17:43:19 +00002355 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002356 if( !zFullPathname ){
2357 sqlite3_free(p);
2358 return SQLITE_NOMEM;
2359 }
drhafc8b7f2012-05-26 18:06:38 +00002360 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002361 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002362 }else{
2363 rc = sqlite3OsFullPathname(pVfs, zFilename,
2364 nFullPathname, zFullPathname);
2365 if( rc ){
2366 sqlite3_free(zFullPathname);
2367 sqlite3_free(p);
2368 return rc;
2369 }
drh070ad6b2011-11-17 11:43:19 +00002370 }
drh30ddce62011-10-15 00:16:30 +00002371#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002372 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2373 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002374 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002375 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002376#endif
drh78f82d12008-09-02 00:52:52 +00002377 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002378 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002379 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002380 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002381 int iDb;
2382 for(iDb=db->nDb-1; iDb>=0; iDb--){
2383 Btree *pExisting = db->aDb[iDb].pBt;
2384 if( pExisting && pExisting->pBt==pBt ){
2385 sqlite3_mutex_leave(mutexShared);
2386 sqlite3_mutex_leave(mutexOpen);
2387 sqlite3_free(zFullPathname);
2388 sqlite3_free(p);
2389 return SQLITE_CONSTRAINT;
2390 }
2391 }
drhff0587c2007-08-29 17:43:19 +00002392 p->pBt = pBt;
2393 pBt->nRef++;
2394 break;
2395 }
2396 }
2397 sqlite3_mutex_leave(mutexShared);
2398 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002399 }
drhff0587c2007-08-29 17:43:19 +00002400#ifdef SQLITE_DEBUG
2401 else{
2402 /* In debug mode, we mark all persistent databases as sharable
2403 ** even when they are not. This exercises the locking code and
2404 ** gives more opportunity for asserts(sqlite3_mutex_held())
2405 ** statements to find locking problems.
2406 */
2407 p->sharable = 1;
2408 }
2409#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002410 }
2411#endif
drha059ad02001-04-17 20:09:11 +00002412 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002413 /*
2414 ** The following asserts make sure that structures used by the btree are
2415 ** the right size. This is to guard against size changes that result
2416 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002417 */
drh062cf272015-03-23 19:03:51 +00002418 assert( sizeof(i64)==8 );
2419 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002420 assert( sizeof(u32)==4 );
2421 assert( sizeof(u16)==2 );
2422 assert( sizeof(Pgno)==4 );
2423
2424 pBt = sqlite3MallocZero( sizeof(*pBt) );
2425 if( pBt==0 ){
2426 rc = SQLITE_NOMEM;
2427 goto btree_open_out;
2428 }
danielk197771d5d2c2008-09-29 11:49:47 +00002429 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002430 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002431 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002432 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002433 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2434 }
2435 if( rc!=SQLITE_OK ){
2436 goto btree_open_out;
2437 }
shanehbd2aaf92010-09-01 02:38:21 +00002438 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002439 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002440 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002441 p->pBt = pBt;
2442
drhe53831d2007-08-17 01:14:38 +00002443 pBt->pCursor = 0;
2444 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002445 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002446#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002447 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002448#endif
drh113762a2014-11-19 16:36:25 +00002449 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2450 ** determined by the 2-byte integer located at an offset of 16 bytes from
2451 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002452 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002453 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2454 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002455 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002456#ifndef SQLITE_OMIT_AUTOVACUUM
2457 /* If the magic name ":memory:" will create an in-memory database, then
2458 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2459 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2460 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2461 ** regular file-name. In this case the auto-vacuum applies as per normal.
2462 */
2463 if( zFilename && !isMemdb ){
2464 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2465 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2466 }
2467#endif
2468 nReserve = 0;
2469 }else{
drh113762a2014-11-19 16:36:25 +00002470 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2471 ** determined by the one-byte unsigned integer found at an offset of 20
2472 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002473 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002474 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002475#ifndef SQLITE_OMIT_AUTOVACUUM
2476 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2477 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2478#endif
2479 }
drhfa9601a2009-06-18 17:22:39 +00002480 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002481 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002482 pBt->usableSize = pBt->pageSize - nReserve;
2483 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002484
2485#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2486 /* Add the new BtShared object to the linked list sharable BtShareds.
2487 */
2488 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002489 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002490 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002491 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002492 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002493 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002494 if( pBt->mutex==0 ){
2495 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002496 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002497 goto btree_open_out;
2498 }
drhff0587c2007-08-29 17:43:19 +00002499 }
drhe53831d2007-08-17 01:14:38 +00002500 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002501 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2502 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002503 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002504 }
drheee46cf2004-11-06 00:02:48 +00002505#endif
drh90f5ecb2004-07-22 01:19:35 +00002506 }
danielk1977aef0bf62005-12-30 16:28:01 +00002507
drhcfed7bc2006-03-13 14:28:05 +00002508#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002509 /* If the new Btree uses a sharable pBtShared, then link the new
2510 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002511 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002512 */
drhe53831d2007-08-17 01:14:38 +00002513 if( p->sharable ){
2514 int i;
2515 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002516 for(i=0; i<db->nDb; i++){
2517 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002518 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2519 if( p->pBt<pSib->pBt ){
2520 p->pNext = pSib;
2521 p->pPrev = 0;
2522 pSib->pPrev = p;
2523 }else{
drhabddb0c2007-08-20 13:14:28 +00002524 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002525 pSib = pSib->pNext;
2526 }
2527 p->pNext = pSib->pNext;
2528 p->pPrev = pSib;
2529 if( p->pNext ){
2530 p->pNext->pPrev = p;
2531 }
2532 pSib->pNext = p;
2533 }
2534 break;
2535 }
2536 }
danielk1977aef0bf62005-12-30 16:28:01 +00002537 }
danielk1977aef0bf62005-12-30 16:28:01 +00002538#endif
2539 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002540
2541btree_open_out:
2542 if( rc!=SQLITE_OK ){
2543 if( pBt && pBt->pPager ){
2544 sqlite3PagerClose(pBt->pPager);
2545 }
drh17435752007-08-16 04:30:38 +00002546 sqlite3_free(pBt);
2547 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002548 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002549 }else{
2550 /* If the B-Tree was successfully opened, set the pager-cache size to the
2551 ** default value. Except, when opening on an existing shared pager-cache,
2552 ** do not change the pager-cache size.
2553 */
2554 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2555 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2556 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002557 }
drh7555d8e2009-03-20 13:15:30 +00002558 if( mutexOpen ){
2559 assert( sqlite3_mutex_held(mutexOpen) );
2560 sqlite3_mutex_leave(mutexOpen);
2561 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002562 return rc;
drha059ad02001-04-17 20:09:11 +00002563}
2564
2565/*
drhe53831d2007-08-17 01:14:38 +00002566** Decrement the BtShared.nRef counter. When it reaches zero,
2567** remove the BtShared structure from the sharing list. Return
2568** true if the BtShared.nRef counter reaches zero and return
2569** false if it is still positive.
2570*/
2571static int removeFromSharingList(BtShared *pBt){
2572#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002573 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002574 BtShared *pList;
2575 int removed = 0;
2576
drhd677b3d2007-08-20 22:48:41 +00002577 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002578 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002579 sqlite3_mutex_enter(pMaster);
2580 pBt->nRef--;
2581 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002582 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2583 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002584 }else{
drh78f82d12008-09-02 00:52:52 +00002585 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002586 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002587 pList=pList->pNext;
2588 }
drh34004ce2008-07-11 16:15:17 +00002589 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002590 pList->pNext = pBt->pNext;
2591 }
2592 }
drh3285db22007-09-03 22:00:39 +00002593 if( SQLITE_THREADSAFE ){
2594 sqlite3_mutex_free(pBt->mutex);
2595 }
drhe53831d2007-08-17 01:14:38 +00002596 removed = 1;
2597 }
2598 sqlite3_mutex_leave(pMaster);
2599 return removed;
2600#else
2601 return 1;
2602#endif
2603}
2604
2605/*
drhf7141992008-06-19 00:16:08 +00002606** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002607** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2608** pointer.
drhf7141992008-06-19 00:16:08 +00002609*/
2610static void allocateTempSpace(BtShared *pBt){
2611 if( !pBt->pTmpSpace ){
2612 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002613
2614 /* One of the uses of pBt->pTmpSpace is to format cells before
2615 ** inserting them into a leaf page (function fillInCell()). If
2616 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2617 ** by the various routines that manipulate binary cells. Which
2618 ** can mean that fillInCell() only initializes the first 2 or 3
2619 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2620 ** it into a database page. This is not actually a problem, but it
2621 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2622 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002623 ** zero the first 4 bytes of temp space here.
2624 **
2625 ** Also: Provide four bytes of initialized space before the
2626 ** beginning of pTmpSpace as an area available to prepend the
2627 ** left-child pointer to the beginning of a cell.
2628 */
2629 if( pBt->pTmpSpace ){
2630 memset(pBt->pTmpSpace, 0, 8);
2631 pBt->pTmpSpace += 4;
2632 }
drhf7141992008-06-19 00:16:08 +00002633 }
2634}
2635
2636/*
2637** Free the pBt->pTmpSpace allocation
2638*/
2639static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002640 if( pBt->pTmpSpace ){
2641 pBt->pTmpSpace -= 4;
2642 sqlite3PageFree(pBt->pTmpSpace);
2643 pBt->pTmpSpace = 0;
2644 }
drhf7141992008-06-19 00:16:08 +00002645}
2646
2647/*
drha059ad02001-04-17 20:09:11 +00002648** Close an open database and invalidate all cursors.
2649*/
danielk1977aef0bf62005-12-30 16:28:01 +00002650int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002651 BtShared *pBt = p->pBt;
2652 BtCursor *pCur;
2653
danielk1977aef0bf62005-12-30 16:28:01 +00002654 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002655 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002656 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002657 pCur = pBt->pCursor;
2658 while( pCur ){
2659 BtCursor *pTmp = pCur;
2660 pCur = pCur->pNext;
2661 if( pTmp->pBtree==p ){
2662 sqlite3BtreeCloseCursor(pTmp);
2663 }
drha059ad02001-04-17 20:09:11 +00002664 }
danielk1977aef0bf62005-12-30 16:28:01 +00002665
danielk19778d34dfd2006-01-24 16:37:57 +00002666 /* Rollback any active transaction and free the handle structure.
2667 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2668 ** this handle.
2669 */
drh47b7fc72014-11-11 01:33:57 +00002670 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002671 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002672
danielk1977aef0bf62005-12-30 16:28:01 +00002673 /* If there are still other outstanding references to the shared-btree
2674 ** structure, return now. The remainder of this procedure cleans
2675 ** up the shared-btree.
2676 */
drhe53831d2007-08-17 01:14:38 +00002677 assert( p->wantToLock==0 && p->locked==0 );
2678 if( !p->sharable || removeFromSharingList(pBt) ){
2679 /* The pBt is no longer on the sharing list, so we can access
2680 ** it without having to hold the mutex.
2681 **
2682 ** Clean out and delete the BtShared object.
2683 */
2684 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002685 sqlite3PagerClose(pBt->pPager);
2686 if( pBt->xFreeSchema && pBt->pSchema ){
2687 pBt->xFreeSchema(pBt->pSchema);
2688 }
drhb9755982010-07-24 16:34:37 +00002689 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002690 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002691 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002692 }
2693
drhe53831d2007-08-17 01:14:38 +00002694#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002695 assert( p->wantToLock==0 );
2696 assert( p->locked==0 );
2697 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2698 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002699#endif
2700
drhe53831d2007-08-17 01:14:38 +00002701 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002702 return SQLITE_OK;
2703}
2704
2705/*
drhda47d772002-12-02 04:25:19 +00002706** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002707**
2708** The maximum number of cache pages is set to the absolute
2709** value of mxPage. If mxPage is negative, the pager will
2710** operate asynchronously - it will not stop to do fsync()s
2711** to insure data is written to the disk surface before
2712** continuing. Transactions still work if synchronous is off,
2713** and the database cannot be corrupted if this program
2714** crashes. But if the operating system crashes or there is
2715** an abrupt power failure when synchronous is off, the database
2716** could be left in an inconsistent and unrecoverable state.
2717** Synchronous is on by default so database corruption is not
2718** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002719*/
danielk1977aef0bf62005-12-30 16:28:01 +00002720int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2721 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002722 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002723 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002724 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002725 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002726 return SQLITE_OK;
2727}
2728
drh18c7e402014-03-14 11:46:10 +00002729#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002730/*
dan5d8a1372013-03-19 19:28:06 +00002731** Change the limit on the amount of the database file that may be
2732** memory mapped.
2733*/
drh9b4c59f2013-04-15 17:03:42 +00002734int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002735 BtShared *pBt = p->pBt;
2736 assert( sqlite3_mutex_held(p->db->mutex) );
2737 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002738 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002739 sqlite3BtreeLeave(p);
2740 return SQLITE_OK;
2741}
drh18c7e402014-03-14 11:46:10 +00002742#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002743
2744/*
drh973b6e32003-02-12 14:09:42 +00002745** Change the way data is synced to disk in order to increase or decrease
2746** how well the database resists damage due to OS crashes and power
2747** failures. Level 1 is the same as asynchronous (no syncs() occur and
2748** there is a high probability of damage) Level 2 is the default. There
2749** is a very low but non-zero probability of damage. Level 3 reduces the
2750** probability of damage to near zero but with a write performance reduction.
2751*/
danielk197793758c82005-01-21 08:13:14 +00002752#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002753int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002754 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002755 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002756){
danielk1977aef0bf62005-12-30 16:28:01 +00002757 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002758 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002759 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002760 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002761 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002762 return SQLITE_OK;
2763}
danielk197793758c82005-01-21 08:13:14 +00002764#endif
drh973b6e32003-02-12 14:09:42 +00002765
drh2c8997b2005-08-27 16:36:48 +00002766/*
2767** Return TRUE if the given btree is set to safety level 1. In other
2768** words, return TRUE if no sync() occurs on the disk files.
2769*/
danielk1977aef0bf62005-12-30 16:28:01 +00002770int sqlite3BtreeSyncDisabled(Btree *p){
2771 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002772 int rc;
drhe5fe6902007-12-07 18:55:28 +00002773 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002774 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002775 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002776 rc = sqlite3PagerNosync(pBt->pPager);
2777 sqlite3BtreeLeave(p);
2778 return rc;
drh2c8997b2005-08-27 16:36:48 +00002779}
2780
drh973b6e32003-02-12 14:09:42 +00002781/*
drh90f5ecb2004-07-22 01:19:35 +00002782** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002783** Or, if the page size has already been fixed, return SQLITE_READONLY
2784** without changing anything.
drh06f50212004-11-02 14:24:33 +00002785**
2786** The page size must be a power of 2 between 512 and 65536. If the page
2787** size supplied does not meet this constraint then the page size is not
2788** changed.
2789**
2790** Page sizes are constrained to be a power of two so that the region
2791** of the database file used for locking (beginning at PENDING_BYTE,
2792** the first byte past the 1GB boundary, 0x40000000) needs to occur
2793** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002794**
2795** If parameter nReserve is less than zero, then the number of reserved
2796** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002797**
drhc9166342012-01-05 23:32:06 +00002798** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002799** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002800*/
drhce4869f2009-04-02 20:16:58 +00002801int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002802 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002803 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002804 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002805 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002806#if SQLITE_HAS_CODEC
2807 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2808#endif
drhc9166342012-01-05 23:32:06 +00002809 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002810 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002811 return SQLITE_READONLY;
2812 }
2813 if( nReserve<0 ){
2814 nReserve = pBt->pageSize - pBt->usableSize;
2815 }
drhf49661a2008-12-10 16:45:50 +00002816 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002817 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2818 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002819 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002820 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002821 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002822 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002823 }
drhfa9601a2009-06-18 17:22:39 +00002824 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002825 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002826 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002827 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002828 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002829}
2830
2831/*
2832** Return the currently defined page size
2833*/
danielk1977aef0bf62005-12-30 16:28:01 +00002834int sqlite3BtreeGetPageSize(Btree *p){
2835 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002836}
drh7f751222009-03-17 22:33:00 +00002837
dan0094f372012-09-28 20:23:42 +00002838/*
2839** This function is similar to sqlite3BtreeGetReserve(), except that it
2840** may only be called if it is guaranteed that the b-tree mutex is already
2841** held.
2842**
2843** This is useful in one special case in the backup API code where it is
2844** known that the shared b-tree mutex is held, but the mutex on the
2845** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2846** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002847** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002848*/
2849int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002850 int n;
dan0094f372012-09-28 20:23:42 +00002851 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002852 n = p->pBt->pageSize - p->pBt->usableSize;
2853 return n;
dan0094f372012-09-28 20:23:42 +00002854}
2855
drh7f751222009-03-17 22:33:00 +00002856/*
2857** Return the number of bytes of space at the end of every page that
2858** are intentually left unused. This is the "reserved" space that is
2859** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002860**
2861** If SQLITE_HAS_MUTEX is defined then the number returned is the
2862** greater of the current reserved space and the maximum requested
2863** reserve space.
drh7f751222009-03-17 22:33:00 +00002864*/
drhad0961b2015-02-21 00:19:25 +00002865int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002866 int n;
2867 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002868 n = sqlite3BtreeGetReserveNoMutex(p);
2869#ifdef SQLITE_HAS_CODEC
2870 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2871#endif
drhd677b3d2007-08-20 22:48:41 +00002872 sqlite3BtreeLeave(p);
2873 return n;
drh2011d5f2004-07-22 02:40:37 +00002874}
drhf8e632b2007-05-08 14:51:36 +00002875
drhad0961b2015-02-21 00:19:25 +00002876
drhf8e632b2007-05-08 14:51:36 +00002877/*
2878** Set the maximum page count for a database if mxPage is positive.
2879** No changes are made if mxPage is 0 or negative.
2880** Regardless of the value of mxPage, return the maximum page count.
2881*/
2882int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002883 int n;
2884 sqlite3BtreeEnter(p);
2885 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2886 sqlite3BtreeLeave(p);
2887 return n;
drhf8e632b2007-05-08 14:51:36 +00002888}
drh5b47efa2010-02-12 18:18:39 +00002889
2890/*
drhc9166342012-01-05 23:32:06 +00002891** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2892** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002893** setting after the change.
2894*/
2895int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2896 int b;
drhaf034ed2010-02-12 19:46:26 +00002897 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002898 sqlite3BtreeEnter(p);
2899 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002900 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2901 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002902 }
drhc9166342012-01-05 23:32:06 +00002903 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002904 sqlite3BtreeLeave(p);
2905 return b;
2906}
drh90f5ecb2004-07-22 01:19:35 +00002907
2908/*
danielk1977951af802004-11-05 15:45:09 +00002909** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2910** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2911** is disabled. The default value for the auto-vacuum property is
2912** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2913*/
danielk1977aef0bf62005-12-30 16:28:01 +00002914int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002915#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002916 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002917#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002918 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002919 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002920 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002921
2922 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002923 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002924 rc = SQLITE_READONLY;
2925 }else{
drh076d4662009-02-18 20:31:18 +00002926 pBt->autoVacuum = av ?1:0;
2927 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002928 }
drhd677b3d2007-08-20 22:48:41 +00002929 sqlite3BtreeLeave(p);
2930 return rc;
danielk1977951af802004-11-05 15:45:09 +00002931#endif
2932}
2933
2934/*
2935** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2936** enabled 1 is returned. Otherwise 0.
2937*/
danielk1977aef0bf62005-12-30 16:28:01 +00002938int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002939#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002940 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002941#else
drhd677b3d2007-08-20 22:48:41 +00002942 int rc;
2943 sqlite3BtreeEnter(p);
2944 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002945 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2946 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2947 BTREE_AUTOVACUUM_INCR
2948 );
drhd677b3d2007-08-20 22:48:41 +00002949 sqlite3BtreeLeave(p);
2950 return rc;
danielk1977951af802004-11-05 15:45:09 +00002951#endif
2952}
2953
2954
2955/*
drha34b6762004-05-07 13:30:42 +00002956** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002957** also acquire a readlock on that file.
2958**
2959** SQLITE_OK is returned on success. If the file is not a
2960** well-formed database file, then SQLITE_CORRUPT is returned.
2961** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002962** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002963*/
danielk1977aef0bf62005-12-30 16:28:01 +00002964static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002965 int rc; /* Result code from subfunctions */
2966 MemPage *pPage1; /* Page 1 of the database file */
2967 int nPage; /* Number of pages in the database */
2968 int nPageFile = 0; /* Number of pages in the database file */
2969 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002970
drh1fee73e2007-08-29 04:00:57 +00002971 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002972 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002973 rc = sqlite3PagerSharedLock(pBt->pPager);
2974 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002975 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002976 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002977
2978 /* Do some checking to help insure the file we opened really is
2979 ** a valid database file.
2980 */
drhc2a4bab2010-04-02 12:46:45 +00002981 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002982 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002983 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002984 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002985 }
2986 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002987 u32 pageSize;
2988 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002989 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002990 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002991 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2992 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2993 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002994 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002995 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002996 }
dan5cf53532010-05-01 16:40:20 +00002997
2998#ifdef SQLITE_OMIT_WAL
2999 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003000 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003001 }
3002 if( page1[19]>1 ){
3003 goto page1_init_failed;
3004 }
3005#else
dane04dc882010-04-20 18:53:15 +00003006 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003007 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003008 }
dane04dc882010-04-20 18:53:15 +00003009 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003010 goto page1_init_failed;
3011 }
drhe5ae5732008-06-15 02:51:47 +00003012
dana470aeb2010-04-21 11:43:38 +00003013 /* If the write version is set to 2, this database should be accessed
3014 ** in WAL mode. If the log is not already open, open it now. Then
3015 ** return SQLITE_OK and return without populating BtShared.pPage1.
3016 ** The caller detects this and calls this function again. This is
3017 ** required as the version of page 1 currently in the page1 buffer
3018 ** may not be the latest version - there may be a newer one in the log
3019 ** file.
3020 */
drhc9166342012-01-05 23:32:06 +00003021 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003022 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003023 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003024 if( rc!=SQLITE_OK ){
3025 goto page1_init_failed;
3026 }else if( isOpen==0 ){
3027 releasePage(pPage1);
3028 return SQLITE_OK;
3029 }
dan8b5444b2010-04-27 14:37:47 +00003030 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00003031 }
dan5cf53532010-05-01 16:40:20 +00003032#endif
dane04dc882010-04-20 18:53:15 +00003033
drh113762a2014-11-19 16:36:25 +00003034 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3035 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3036 **
drhe5ae5732008-06-15 02:51:47 +00003037 ** The original design allowed these amounts to vary, but as of
3038 ** version 3.6.0, we require them to be fixed.
3039 */
3040 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3041 goto page1_init_failed;
3042 }
drh113762a2014-11-19 16:36:25 +00003043 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3044 ** determined by the 2-byte integer located at an offset of 16 bytes from
3045 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003046 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003047 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3048 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003049 if( ((pageSize-1)&pageSize)!=0
3050 || pageSize>SQLITE_MAX_PAGE_SIZE
3051 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003052 ){
drh07d183d2005-05-01 22:52:42 +00003053 goto page1_init_failed;
3054 }
3055 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003056 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3057 ** integer at offset 20 is the number of bytes of space at the end of
3058 ** each page to reserve for extensions.
3059 **
3060 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3061 ** determined by the one-byte unsigned integer found at an offset of 20
3062 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003063 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003064 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003065 /* After reading the first page of the database assuming a page size
3066 ** of BtShared.pageSize, we have discovered that the page-size is
3067 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3068 ** zero and return SQLITE_OK. The caller will call this function
3069 ** again with the correct page-size.
3070 */
3071 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00003072 pBt->usableSize = usableSize;
3073 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003074 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003075 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3076 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003077 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003078 }
danecac6702011-02-09 18:19:20 +00003079 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003080 rc = SQLITE_CORRUPT_BKPT;
3081 goto page1_init_failed;
3082 }
drh113762a2014-11-19 16:36:25 +00003083 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3084 ** be less than 480. In other words, if the page size is 512, then the
3085 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003086 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003087 goto page1_init_failed;
3088 }
drh43b18e12010-08-17 19:40:08 +00003089 pBt->pageSize = pageSize;
3090 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003091#ifndef SQLITE_OMIT_AUTOVACUUM
3092 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003093 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003094#endif
drh306dc212001-05-21 13:45:10 +00003095 }
drhb6f41482004-05-14 01:58:11 +00003096
3097 /* maxLocal is the maximum amount of payload to store locally for
3098 ** a cell. Make sure it is small enough so that at least minFanout
3099 ** cells can will fit on one page. We assume a 10-byte page header.
3100 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003101 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003102 ** 4-byte child pointer
3103 ** 9-byte nKey value
3104 ** 4-byte nData value
3105 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003106 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003107 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3108 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003109 */
shaneh1df2db72010-08-18 02:28:48 +00003110 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3111 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3112 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3113 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003114 if( pBt->maxLocal>127 ){
3115 pBt->max1bytePayload = 127;
3116 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003117 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003118 }
drh2e38c322004-09-03 18:38:44 +00003119 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003120 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003121 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003122 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003123
drh72f82862001-05-24 21:06:34 +00003124page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003125 releasePage(pPage1);
3126 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003127 return rc;
drh306dc212001-05-21 13:45:10 +00003128}
3129
drh85ec3b62013-05-14 23:12:06 +00003130#ifndef NDEBUG
3131/*
3132** Return the number of cursors open on pBt. This is for use
3133** in assert() expressions, so it is only compiled if NDEBUG is not
3134** defined.
3135**
3136** Only write cursors are counted if wrOnly is true. If wrOnly is
3137** false then all cursors are counted.
3138**
3139** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003140** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003141** have been tripped into the CURSOR_FAULT state are not counted.
3142*/
3143static int countValidCursors(BtShared *pBt, int wrOnly){
3144 BtCursor *pCur;
3145 int r = 0;
3146 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003147 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3148 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003149 }
3150 return r;
3151}
3152#endif
3153
drh306dc212001-05-21 13:45:10 +00003154/*
drhb8ca3072001-12-05 00:21:20 +00003155** If there are no outstanding cursors and we are not in the middle
3156** of a transaction but there is a read lock on the database, then
3157** this routine unrefs the first page of the database file which
3158** has the effect of releasing the read lock.
3159**
drhb8ca3072001-12-05 00:21:20 +00003160** If there is a transaction in progress, this routine is a no-op.
3161*/
danielk1977aef0bf62005-12-30 16:28:01 +00003162static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003163 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003164 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003165 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003166 MemPage *pPage1 = pBt->pPage1;
3167 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003168 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003169 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003170 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003171 }
3172}
3173
3174/*
drhe39f2f92009-07-23 01:43:59 +00003175** If pBt points to an empty file then convert that empty file
3176** into a new empty database by initializing the first page of
3177** the database.
drh8b2f49b2001-06-08 00:21:52 +00003178*/
danielk1977aef0bf62005-12-30 16:28:01 +00003179static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003180 MemPage *pP1;
3181 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003182 int rc;
drhd677b3d2007-08-20 22:48:41 +00003183
drh1fee73e2007-08-29 04:00:57 +00003184 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003185 if( pBt->nPage>0 ){
3186 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003187 }
drh3aac2dd2004-04-26 14:10:20 +00003188 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003189 assert( pP1!=0 );
3190 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003191 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003192 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003193 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3194 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003195 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3196 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003197 data[18] = 1;
3198 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003199 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3200 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003201 data[21] = 64;
3202 data[22] = 32;
3203 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003204 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003205 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003206 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003207#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003208 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003209 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003210 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003211 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003212#endif
drhdd3cd972010-03-27 17:12:36 +00003213 pBt->nPage = 1;
3214 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003215 return SQLITE_OK;
3216}
3217
3218/*
danb483eba2012-10-13 19:58:11 +00003219** Initialize the first page of the database file (creating a database
3220** consisting of a single page and no schema objects). Return SQLITE_OK
3221** if successful, or an SQLite error code otherwise.
3222*/
3223int sqlite3BtreeNewDb(Btree *p){
3224 int rc;
3225 sqlite3BtreeEnter(p);
3226 p->pBt->nPage = 0;
3227 rc = newDatabase(p->pBt);
3228 sqlite3BtreeLeave(p);
3229 return rc;
3230}
3231
3232/*
danielk1977ee5741e2004-05-31 10:01:34 +00003233** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003234** is started if the second argument is nonzero, otherwise a read-
3235** transaction. If the second argument is 2 or more and exclusive
3236** transaction is started, meaning that no other process is allowed
3237** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003238** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003239** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003240**
danielk1977ee5741e2004-05-31 10:01:34 +00003241** A write-transaction must be started before attempting any
3242** changes to the database. None of the following routines
3243** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003244**
drh23e11ca2004-05-04 17:27:28 +00003245** sqlite3BtreeCreateTable()
3246** sqlite3BtreeCreateIndex()
3247** sqlite3BtreeClearTable()
3248** sqlite3BtreeDropTable()
3249** sqlite3BtreeInsert()
3250** sqlite3BtreeDelete()
3251** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003252**
drhb8ef32c2005-03-14 02:01:49 +00003253** If an initial attempt to acquire the lock fails because of lock contention
3254** and the database was previously unlocked, then invoke the busy handler
3255** if there is one. But if there was previously a read-lock, do not
3256** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3257** returned when there is already a read-lock in order to avoid a deadlock.
3258**
3259** Suppose there are two processes A and B. A has a read lock and B has
3260** a reserved lock. B tries to promote to exclusive but is blocked because
3261** of A's read lock. A tries to promote to reserved but is blocked by B.
3262** One or the other of the two processes must give way or there can be
3263** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3264** when A already has a read lock, we encourage A to give up and let B
3265** proceed.
drha059ad02001-04-17 20:09:11 +00003266*/
danielk1977aef0bf62005-12-30 16:28:01 +00003267int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003268 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003269 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003270 int rc = SQLITE_OK;
3271
drhd677b3d2007-08-20 22:48:41 +00003272 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003273 btreeIntegrity(p);
3274
danielk1977ee5741e2004-05-31 10:01:34 +00003275 /* If the btree is already in a write-transaction, or it
3276 ** is already in a read-transaction and a read-transaction
3277 ** is requested, this is a no-op.
3278 */
danielk1977aef0bf62005-12-30 16:28:01 +00003279 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003280 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003281 }
dan56c517a2013-09-26 11:04:33 +00003282 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003283
3284 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003285 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003286 rc = SQLITE_READONLY;
3287 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003288 }
3289
danielk1977404ca072009-03-16 13:19:36 +00003290#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003291 /* If another database handle has already opened a write transaction
3292 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003293 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003294 */
drhc9166342012-01-05 23:32:06 +00003295 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3296 || (pBt->btsFlags & BTS_PENDING)!=0
3297 ){
danielk1977404ca072009-03-16 13:19:36 +00003298 pBlock = pBt->pWriter->db;
3299 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003300 BtLock *pIter;
3301 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3302 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003303 pBlock = pIter->pBtree->db;
3304 break;
danielk1977641b0f42007-12-21 04:47:25 +00003305 }
3306 }
3307 }
danielk1977404ca072009-03-16 13:19:36 +00003308 if( pBlock ){
3309 sqlite3ConnectionBlocked(p->db, pBlock);
3310 rc = SQLITE_LOCKED_SHAREDCACHE;
3311 goto trans_begun;
3312 }
danielk1977641b0f42007-12-21 04:47:25 +00003313#endif
3314
danielk1977602b4662009-07-02 07:47:33 +00003315 /* Any read-only or read-write transaction implies a read-lock on
3316 ** page 1. So if some other shared-cache client already has a write-lock
3317 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003318 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3319 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003320
drhc9166342012-01-05 23:32:06 +00003321 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3322 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003323 do {
danielk1977295dc102009-04-01 19:07:03 +00003324 /* Call lockBtree() until either pBt->pPage1 is populated or
3325 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3326 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3327 ** reading page 1 it discovers that the page-size of the database
3328 ** file is not pBt->pageSize. In this case lockBtree() will update
3329 ** pBt->pageSize to the page-size of the file on disk.
3330 */
3331 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003332
drhb8ef32c2005-03-14 02:01:49 +00003333 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003334 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003335 rc = SQLITE_READONLY;
3336 }else{
dan1a9cde32015-08-15 18:16:46 +00003337 int exFlag = (p->db->bUnlocked && !ISAUTOVACUUM) ? -1 : (wrflag>1);
dan3d394342015-07-27 19:31:45 +00003338 int bSubjInMem = sqlite3TempInMemory(p->db);
dan3d394342015-07-27 19:31:45 +00003339 assert( p->db->bUnlocked==0 || wrflag==1 );
3340 rc = sqlite3PagerBegin(pBt->pPager, exFlag, bSubjInMem);
drh309169a2007-04-24 17:27:51 +00003341 if( rc==SQLITE_OK ){
3342 rc = newDatabase(pBt);
3343 }
dan7b3d71e2015-08-19 20:27:05 +00003344 if( rc==SQLITE_OK ){
3345 rc = allocatePtrmap(pBt);
3346 }
drhb8ef32c2005-03-14 02:01:49 +00003347 }
3348 }
3349
danielk1977bd434552009-03-18 10:33:00 +00003350 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003351 unlockBtreeIfUnused(pBt);
3352 }
danf9b76712010-06-01 14:12:45 +00003353 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003354 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003355
3356 if( rc==SQLITE_OK ){
3357 if( p->inTrans==TRANS_NONE ){
3358 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003359#ifndef SQLITE_OMIT_SHARED_CACHE
3360 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003361 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003362 p->lock.eLock = READ_LOCK;
3363 p->lock.pNext = pBt->pLock;
3364 pBt->pLock = &p->lock;
3365 }
3366#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003367 }
3368 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3369 if( p->inTrans>pBt->inTransaction ){
3370 pBt->inTransaction = p->inTrans;
3371 }
danielk1977404ca072009-03-16 13:19:36 +00003372 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003373 MemPage *pPage1 = pBt->pPage1;
3374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003375 assert( !pBt->pWriter );
3376 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003377 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3378 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003379#endif
dan59257dc2010-08-04 11:34:31 +00003380
3381 /* If the db-size header field is incorrect (as it may be if an old
3382 ** client has been writing the database file), update it now. Doing
3383 ** this sooner rather than later means the database size can safely
3384 ** re-read the database size from page 1 if a savepoint or transaction
3385 ** rollback occurs within the transaction.
3386 */
3387 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3388 rc = sqlite3PagerWrite(pPage1->pDbPage);
3389 if( rc==SQLITE_OK ){
3390 put4byte(&pPage1->aData[28], pBt->nPage);
3391 }
3392 }
3393 }
danielk1977aef0bf62005-12-30 16:28:01 +00003394 }
3395
drhd677b3d2007-08-20 22:48:41 +00003396
3397trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003398 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003399 /* This call makes sure that the pager has the correct number of
3400 ** open savepoints. If the second parameter is greater than 0 and
3401 ** the sub-journal is not already open, then it will be opened here.
3402 */
dan7b3d71e2015-08-19 20:27:05 +00003403 int nSavepoint = p->db->nSavepoint;
3404 rc = sqlite3PagerOpenSavepoint(pBt->pPager, nSavepoint);
3405 if( pBt->pMap && rc==SQLITE_OK && nSavepoint ){
3406 rc = btreePtrmapBegin(pBt->pMap, nSavepoint);
3407 }
danielk1977fd7f0452008-12-17 17:30:26 +00003408 }
danielk197712dd5492008-12-18 15:45:07 +00003409
danielk1977aef0bf62005-12-30 16:28:01 +00003410 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003411 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003412 return rc;
drha059ad02001-04-17 20:09:11 +00003413}
3414
danielk1977687566d2004-11-02 12:56:41 +00003415#ifndef SQLITE_OMIT_AUTOVACUUM
3416
3417/*
3418** Set the pointer-map entries for all children of page pPage. Also, if
3419** pPage contains cells that point to overflow pages, set the pointer
3420** map entries for the overflow pages as well.
3421*/
3422static int setChildPtrmaps(MemPage *pPage){
3423 int i; /* Counter variable */
3424 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003425 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003426 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003427 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003428 Pgno pgno = pPage->pgno;
3429
drh1fee73e2007-08-29 04:00:57 +00003430 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003431 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003432 if( rc!=SQLITE_OK ){
3433 goto set_child_ptrmaps_out;
3434 }
danielk1977687566d2004-11-02 12:56:41 +00003435 nCell = pPage->nCell;
3436
3437 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003438 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003439
drh98add2e2009-07-20 17:11:49 +00003440 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003441
danielk1977687566d2004-11-02 12:56:41 +00003442 if( !pPage->leaf ){
3443 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003444 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003445 }
3446 }
3447
3448 if( !pPage->leaf ){
3449 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003450 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003451 }
3452
3453set_child_ptrmaps_out:
3454 pPage->isInit = isInitOrig;
3455 return rc;
3456}
3457
3458/*
drhf3aed592009-07-08 18:12:49 +00003459** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3460** that it points to iTo. Parameter eType describes the type of pointer to
3461** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003462**
3463** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3464** page of pPage.
3465**
3466** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3467** page pointed to by one of the cells on pPage.
3468**
3469** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3470** overflow page in the list.
3471*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003472static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003473 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003474 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003475 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003476 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003477 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003478 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003479 }
danielk1977f78fc082004-11-02 14:40:32 +00003480 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003481 }else{
drhf49661a2008-12-10 16:45:50 +00003482 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003483 int i;
3484 int nCell;
drha1f75d92015-05-24 10:18:12 +00003485 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003486
drha1f75d92015-05-24 10:18:12 +00003487 rc = btreeInitPage(pPage);
3488 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003489 nCell = pPage->nCell;
3490
danielk1977687566d2004-11-02 12:56:41 +00003491 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003492 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003493 if( eType==PTRMAP_OVERFLOW1 ){
3494 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003495 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003496 if( info.iOverflow
3497 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3498 && iFrom==get4byte(&pCell[info.iOverflow])
3499 ){
3500 put4byte(&pCell[info.iOverflow], iTo);
3501 break;
danielk1977687566d2004-11-02 12:56:41 +00003502 }
3503 }else{
3504 if( get4byte(pCell)==iFrom ){
3505 put4byte(pCell, iTo);
3506 break;
3507 }
3508 }
3509 }
3510
3511 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003512 if( eType!=PTRMAP_BTREE ||
3513 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003514 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003515 }
danielk1977687566d2004-11-02 12:56:41 +00003516 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3517 }
3518
3519 pPage->isInit = isInitOrig;
3520 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003521 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003522}
3523
danielk1977003ba062004-11-04 02:57:33 +00003524
danielk19777701e812005-01-10 12:59:51 +00003525/*
3526** Move the open database page pDbPage to location iFreePage in the
3527** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003528**
3529** The isCommit flag indicates that there is no need to remember that
3530** the journal needs to be sync()ed before database page pDbPage->pgno
3531** can be written to. The caller has already promised not to write to that
3532** page.
danielk19777701e812005-01-10 12:59:51 +00003533*/
danielk1977003ba062004-11-04 02:57:33 +00003534static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003535 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003536 MemPage *pDbPage, /* Open page to move */
3537 u8 eType, /* Pointer map 'type' entry for pDbPage */
3538 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003539 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003540 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003541){
3542 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3543 Pgno iDbPage = pDbPage->pgno;
3544 Pager *pPager = pBt->pPager;
3545 int rc;
3546
danielk1977a0bf2652004-11-04 14:30:04 +00003547 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3548 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003549 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003550 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003551
drh85b623f2007-12-13 21:54:09 +00003552 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003553 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3554 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003555 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003556 if( rc!=SQLITE_OK ){
3557 return rc;
3558 }
3559 pDbPage->pgno = iFreePage;
3560
3561 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3562 ** that point to overflow pages. The pointer map entries for all these
3563 ** pages need to be changed.
3564 **
3565 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3566 ** pointer to a subsequent overflow page. If this is the case, then
3567 ** the pointer map needs to be updated for the subsequent overflow page.
3568 */
danielk1977a0bf2652004-11-04 14:30:04 +00003569 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003570 rc = setChildPtrmaps(pDbPage);
3571 if( rc!=SQLITE_OK ){
3572 return rc;
3573 }
3574 }else{
3575 Pgno nextOvfl = get4byte(pDbPage->aData);
3576 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003577 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003578 if( rc!=SQLITE_OK ){
3579 return rc;
3580 }
3581 }
3582 }
3583
3584 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3585 ** that it points at iFreePage. Also fix the pointer map entry for
3586 ** iPtrPage.
3587 */
danielk1977a0bf2652004-11-04 14:30:04 +00003588 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003589 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003590 if( rc!=SQLITE_OK ){
3591 return rc;
3592 }
danielk19773b8a05f2007-03-19 17:44:26 +00003593 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003594 if( rc!=SQLITE_OK ){
3595 releasePage(pPtrPage);
3596 return rc;
3597 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003598 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003599 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003600 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003601 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003602 }
danielk1977003ba062004-11-04 02:57:33 +00003603 }
danielk1977003ba062004-11-04 02:57:33 +00003604 return rc;
3605}
3606
danielk1977dddbcdc2007-04-26 14:42:34 +00003607/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003608static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003609
3610/*
dan51f0b6d2013-02-22 20:16:34 +00003611** Perform a single step of an incremental-vacuum. If successful, return
3612** SQLITE_OK. If there is no work to do (and therefore no point in
3613** calling this function again), return SQLITE_DONE. Or, if an error
3614** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003615**
peter.d.reid60ec9142014-09-06 16:39:46 +00003616** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003617** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003618**
dan51f0b6d2013-02-22 20:16:34 +00003619** Parameter nFin is the number of pages that this database would contain
3620** were this function called until it returns SQLITE_DONE.
3621**
3622** If the bCommit parameter is non-zero, this function assumes that the
3623** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003624** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003625** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003626*/
dan51f0b6d2013-02-22 20:16:34 +00003627static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003628 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003629 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003630
drh1fee73e2007-08-29 04:00:57 +00003631 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003632 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003633
3634 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003635 u8 eType;
3636 Pgno iPtrPage;
3637
3638 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003639 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 return SQLITE_DONE;
3641 }
3642
3643 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3644 if( rc!=SQLITE_OK ){
3645 return rc;
3646 }
3647 if( eType==PTRMAP_ROOTPAGE ){
3648 return SQLITE_CORRUPT_BKPT;
3649 }
3650
3651 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003652 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003653 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003654 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003655 ** truncated to zero after this function returns, so it doesn't
3656 ** matter if it still contains some garbage entries.
3657 */
3658 Pgno iFreePg;
3659 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003660 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003661 if( rc!=SQLITE_OK ){
3662 return rc;
3663 }
3664 assert( iFreePg==iLastPg );
3665 releasePage(pFreePg);
3666 }
3667 } else {
3668 Pgno iFreePg; /* Index of free page to move pLastPg to */
3669 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003670 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3671 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003672
drhb00fc3b2013-08-21 23:42:32 +00003673 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003674 if( rc!=SQLITE_OK ){
3675 return rc;
3676 }
3677
dan51f0b6d2013-02-22 20:16:34 +00003678 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003679 ** is swapped with the first free page pulled off the free list.
3680 **
dan51f0b6d2013-02-22 20:16:34 +00003681 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003682 ** looping until a free-page located within the first nFin pages
3683 ** of the file is found.
3684 */
dan51f0b6d2013-02-22 20:16:34 +00003685 if( bCommit==0 ){
3686 eMode = BTALLOC_LE;
3687 iNear = nFin;
3688 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003689 do {
3690 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003691 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003692 if( rc!=SQLITE_OK ){
3693 releasePage(pLastPg);
3694 return rc;
3695 }
3696 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003697 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003698 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003699
dane1df4e32013-03-05 11:27:04 +00003700 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003701 releasePage(pLastPg);
3702 if( rc!=SQLITE_OK ){
3703 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003704 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003705 }
3706 }
3707
dan51f0b6d2013-02-22 20:16:34 +00003708 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003709 do {
danielk19773460d192008-12-27 15:23:13 +00003710 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003711 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3712 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003713 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003714 }
3715 return SQLITE_OK;
3716}
3717
3718/*
dan51f0b6d2013-02-22 20:16:34 +00003719** The database opened by the first argument is an auto-vacuum database
3720** nOrig pages in size containing nFree free pages. Return the expected
3721** size of the database in pages following an auto-vacuum operation.
3722*/
3723static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3724 int nEntry; /* Number of entries on one ptrmap page */
3725 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3726 Pgno nFin; /* Return value */
3727
3728 nEntry = pBt->usableSize/5;
3729 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3730 nFin = nOrig - nFree - nPtrmap;
3731 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3732 nFin--;
3733 }
3734 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3735 nFin--;
3736 }
dan51f0b6d2013-02-22 20:16:34 +00003737
3738 return nFin;
3739}
3740
3741/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003742** A write-transaction must be opened before calling this function.
3743** It performs a single unit of work towards an incremental vacuum.
3744**
3745** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003746** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003747** SQLITE_OK is returned. Otherwise an SQLite error code.
3748*/
3749int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003750 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003751 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003752
3753 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003754 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3755 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003756 rc = SQLITE_DONE;
3757 }else{
dan51f0b6d2013-02-22 20:16:34 +00003758 Pgno nOrig = btreePagecount(pBt);
3759 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3760 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3761
dan91384712013-02-24 11:50:43 +00003762 if( nOrig<nFin ){
3763 rc = SQLITE_CORRUPT_BKPT;
3764 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003765 rc = saveAllCursors(pBt, 0, 0);
3766 if( rc==SQLITE_OK ){
3767 invalidateAllOverflowCache(pBt);
3768 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3769 }
dan51f0b6d2013-02-22 20:16:34 +00003770 if( rc==SQLITE_OK ){
3771 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3772 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3773 }
3774 }else{
3775 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003776 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003777 }
drhd677b3d2007-08-20 22:48:41 +00003778 sqlite3BtreeLeave(p);
3779 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003780}
3781
3782/*
danielk19773b8a05f2007-03-19 17:44:26 +00003783** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003784** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003785**
3786** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3787** the database file should be truncated to during the commit process.
3788** i.e. the database has been reorganized so that only the first *pnTrunc
3789** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003790*/
danielk19773460d192008-12-27 15:23:13 +00003791static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003792 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003793 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003794 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003795
drh1fee73e2007-08-29 04:00:57 +00003796 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003797 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003798 assert(pBt->autoVacuum);
3799 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003800 Pgno nFin; /* Number of pages in database after autovacuuming */
3801 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003802 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003803 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003804
drhb1299152010-03-30 22:58:33 +00003805 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003806 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3807 /* It is not possible to create a database for which the final page
3808 ** is either a pointer-map page or the pending-byte page. If one
3809 ** is encountered, this indicates corruption.
3810 */
danielk19773460d192008-12-27 15:23:13 +00003811 return SQLITE_CORRUPT_BKPT;
3812 }
danielk1977ef165ce2009-04-06 17:50:03 +00003813
danielk19773460d192008-12-27 15:23:13 +00003814 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003815 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003816 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003817 if( nFin<nOrig ){
3818 rc = saveAllCursors(pBt, 0, 0);
3819 }
danielk19773460d192008-12-27 15:23:13 +00003820 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003821 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003822 }
danielk19773460d192008-12-27 15:23:13 +00003823 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003824 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3825 put4byte(&pBt->pPage1->aData[32], 0);
3826 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003827 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003828 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003829 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003830 }
3831 if( rc!=SQLITE_OK ){
3832 sqlite3PagerRollback(pPager);
3833 }
danielk1977687566d2004-11-02 12:56:41 +00003834 }
3835
dan0aed84d2013-03-26 14:16:20 +00003836 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003837 return rc;
3838}
danielk1977dddbcdc2007-04-26 14:42:34 +00003839
danielk1977a50d9aa2009-06-08 14:49:45 +00003840#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3841# define setChildPtrmaps(x) SQLITE_OK
3842#endif
danielk1977687566d2004-11-02 12:56:41 +00003843
3844/*
dan7b3d71e2015-08-19 20:27:05 +00003845** The b-tree handle passed as the only argument is about to commit an
3846** UNLOCKED transaction. At this point it is guaranteed that this is
3847** possible - the wal WRITER lock is held and it is known that there are
3848** no conflicts with committed transactions.
3849*/
3850static int btreeFixUnlocked(Btree *p){
3851 BtShared *pBt = p->pBt;
3852 MemPage *pPage1 = pBt->pPage1;
3853 u8 *p1 = pPage1->aData;
3854 Pager *pPager = pBt->pPager;
3855 int rc = SQLITE_OK;
3856
3857 /* If page 1 of the database is not writable, then no pages were allocated
3858 ** or freed by this transaction. In this case no special handling is
3859 ** required. Otherwise, if page 1 is dirty, proceed. */
3860 BtreePtrmap *pMap = pBt->pMap;
3861 Pgno iTrunk = get4byte(&p1[32]);
3862 Pgno nPage = btreePagecount(pBt);
3863 Pgno nOrig = pMap->iFirst-1;
3864 u32 nFree = get4byte(&p1[36]);
3865
3866 assert( sqlite3PagerIsUnlocked(pPager) );
3867 assert( pBt->pMap );
3868 rc = sqlite3PagerUpgradeSnapshot(pPager, pPage1->pDbPage);
3869 assert( p1==pPage1->aData );
3870
3871 if( rc==SQLITE_OK ){
3872 Pgno nHPage = get4byte(&p1[28]);
dan70af25d2015-08-21 17:57:16 +00003873 Pgno nFinal = nHPage; /* Size of db after transaction merge */
dan7b3d71e2015-08-19 20:27:05 +00003874
3875 if( sqlite3PagerIswriteable(pPage1->pDbPage) ){
3876 Pgno iHTrunk = get4byte(&p1[32]);
3877 u32 nHFree = get4byte(&p1[36]);
3878
3879 /* Attach the head database free list to the end of the current
3880 ** transactions free-list (if any). */
3881 if( iTrunk!=0 ){
3882 put4byte(&p1[36], nHFree + nFree);
3883 put4byte(&p1[32], iTrunk);
3884 while( iTrunk ){
3885 DbPage *pTrunk = sqlite3PagerLookup(pPager, iTrunk);
3886 iTrunk = get4byte((u8*)pTrunk->pData);
3887 if( iTrunk==0 ){
3888 put4byte((u8*)pTrunk->pData, iHTrunk);
3889 }
3890 sqlite3PagerUnref(pTrunk);
3891 };
3892 }
3893
3894 if( nHPage<nOrig ){
dan70af25d2015-08-21 17:57:16 +00003895 /* An unlocked transaction may not be executed on an auto-vacuum
3896 ** database. Therefore the db should not have shrunk since the
3897 ** transaction was opened. */
dan7b3d71e2015-08-19 20:27:05 +00003898 rc = SQLITE_CORRUPT_BKPT;
3899 }else{
3900 /* The current transaction allocated pages pMap->iFirst through
3901 ** nPage (inclusive) at the end of the database file. Meanwhile,
3902 ** other transactions have allocated (iFirst..nHPage). So move
3903 ** pages (iFirst..MIN(nPage,nHPage)) to (MAX(nPage,nHPage)+1).
3904 */
3905 Pgno iLast = MIN(nPage, nHPage); /* Last page to move */
3906 Pgno iPg;
3907
dan70af25d2015-08-21 17:57:16 +00003908 nFinal = MAX(nPage, nHPage);
dan7b3d71e2015-08-19 20:27:05 +00003909 for(iPg=pMap->iFirst; iPg<=iLast && rc==SQLITE_OK; iPg++){
3910 MemPage *pPg = 0;
3911 Pgno iNew; /* New page number for pPg */
3912 PtrmapEntry *pEntry; /* Pointer map entry for page iPg */
3913
dan7b3d71e2015-08-19 20:27:05 +00003914 pEntry = &pMap->aPtr[iPg - pMap->iFirst];
dan70af25d2015-08-21 17:57:16 +00003915 if( pEntry->eType==PTRMAP_FREEPAGE ){
3916 MemPage *pFree = 0;
3917 Pgno dummy;
3918 rc = allocateBtreePage(pBt, &pFree, &dummy, iPg, BTALLOC_EXACT);
3919 releasePage(pFree);
3920 assert( rc!=SQLITE_OK || dummy==iPg );
3921 }else{
3922 btreeGetPage(pBt, iPg, &pPg, 0);
3923 assert( sqlite3PagerIswriteable(pPg->pDbPage) );
3924 assert( sqlite3PagerPageRefcount(pPg->pDbPage)==1 );
3925 iNew = ++nFinal;
3926 rc = relocatePage(pBt, pPg, pEntry->eType, pEntry->parent, iNew, 1);
3927 releasePageNotNull(pPg);
3928 }
dan7b3d71e2015-08-19 20:27:05 +00003929 }
dan7b3d71e2015-08-19 20:27:05 +00003930 put4byte(&p1[28], nFinal);
3931 }
3932 }
3933 sqlite3PagerSetDbsize(pPager, nFinal);
3934 }
3935
3936 return rc;
3937}
3938
3939/*
drh80e35f42007-03-30 14:06:34 +00003940** This routine does the first phase of a two-phase commit. This routine
3941** causes a rollback journal to be created (if it does not already exist)
3942** and populated with enough information so that if a power loss occurs
3943** the database can be restored to its original state by playing back
3944** the journal. Then the contents of the journal are flushed out to
3945** the disk. After the journal is safely on oxide, the changes to the
3946** database are written into the database file and flushed to oxide.
3947** At the end of this call, the rollback journal still exists on the
3948** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003949** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003950** commit process.
3951**
3952** This call is a no-op if no write-transaction is currently active on pBt.
3953**
3954** Otherwise, sync the database file for the btree pBt. zMaster points to
3955** the name of a master journal file that should be written into the
3956** individual journal file, or is NULL, indicating no master journal file
3957** (single database transaction).
3958**
3959** When this is called, the master journal should already have been
3960** created, populated with this journal pointer and synced to disk.
3961**
3962** Once this is routine has returned, the only thing required to commit
3963** the write-transaction for this database file is to delete the journal.
3964*/
3965int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3966 int rc = SQLITE_OK;
3967 if( p->inTrans==TRANS_WRITE ){
3968 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003969 sqlite3BtreeEnter(p);
dan3d394342015-07-27 19:31:45 +00003970
drh80e35f42007-03-30 14:06:34 +00003971#ifndef SQLITE_OMIT_AUTOVACUUM
dan3d394342015-07-27 19:31:45 +00003972 /* Figure out if this is a commit of an UNLOCKED transaction that
3973 ** requires a snapshot upgrade. If so, skip any auto-vacuum
3974 ** processing. */
dan7b3d71e2015-08-19 20:27:05 +00003975 if( pBt->autoVacuum ){
3976 assert( sqlite3PagerIsUnlocked(pBt->pPager)==0 );
danielk19773460d192008-12-27 15:23:13 +00003977 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003978 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003979 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003980 return rc;
3981 }
3982 }
danbc1a3c62013-02-23 16:40:46 +00003983 if( pBt->bDoTruncate ){
3984 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3985 }
drh80e35f42007-03-30 14:06:34 +00003986#endif
dan7b3d71e2015-08-19 20:27:05 +00003987 if( rc==SQLITE_OK && sqlite3PagerIsUnlocked(pBt->pPager) ){
3988 rc = btreeFixUnlocked(p);
3989 }
dan3d394342015-07-27 19:31:45 +00003990 if( rc==SQLITE_OK ){
3991 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3992 }
drhd677b3d2007-08-20 22:48:41 +00003993 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003994 }
3995 return rc;
3996}
3997
3998/*
danielk197794b30732009-07-02 17:21:57 +00003999** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4000** at the conclusion of a transaction.
4001*/
4002static void btreeEndTransaction(Btree *p){
4003 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004004 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004005 assert( sqlite3BtreeHoldsMutex(p) );
4006
danbc1a3c62013-02-23 16:40:46 +00004007#ifndef SQLITE_OMIT_AUTOVACUUM
4008 pBt->bDoTruncate = 0;
4009#endif
danc0537fe2013-06-28 19:41:43 +00004010 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004011 /* If there are other active statements that belong to this database
4012 ** handle, downgrade to a read-only transaction. The other statements
4013 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004014 downgradeAllSharedCacheTableLocks(p);
4015 p->inTrans = TRANS_READ;
4016 }else{
4017 /* If the handle had any kind of transaction open, decrement the
4018 ** transaction count of the shared btree. If the transaction count
4019 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4020 ** call below will unlock the pager. */
4021 if( p->inTrans!=TRANS_NONE ){
4022 clearAllSharedCacheTableLocks(p);
4023 pBt->nTransaction--;
4024 if( 0==pBt->nTransaction ){
4025 pBt->inTransaction = TRANS_NONE;
4026 }
4027 }
4028
4029 /* Set the current transaction state to TRANS_NONE and unlock the
4030 ** pager if this call closed the only read or write transaction. */
4031 p->inTrans = TRANS_NONE;
4032 unlockBtreeIfUnused(pBt);
4033 }
4034
dan7b3d71e2015-08-19 20:27:05 +00004035 /* If this was an UNLOCKED transaction, delete the pBt->pMap object */
4036 deletePtrmap(pBt);
danielk197794b30732009-07-02 17:21:57 +00004037 btreeIntegrity(p);
4038}
4039
4040/*
drh2aa679f2001-06-25 02:11:07 +00004041** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004042**
drh6e345992007-03-30 11:12:08 +00004043** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004044** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4045** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4046** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004047** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004048** routine has to do is delete or truncate or zero the header in the
4049** the rollback journal (which causes the transaction to commit) and
4050** drop locks.
drh6e345992007-03-30 11:12:08 +00004051**
dan60939d02011-03-29 15:40:55 +00004052** Normally, if an error occurs while the pager layer is attempting to
4053** finalize the underlying journal file, this function returns an error and
4054** the upper layer will attempt a rollback. However, if the second argument
4055** is non-zero then this b-tree transaction is part of a multi-file
4056** transaction. In this case, the transaction has already been committed
4057** (by deleting a master journal file) and the caller will ignore this
4058** functions return code. So, even if an error occurs in the pager layer,
4059** reset the b-tree objects internal state to indicate that the write
4060** transaction has been closed. This is quite safe, as the pager will have
4061** transitioned to the error state.
4062**
drh5e00f6c2001-09-13 13:46:56 +00004063** This will release the write lock on the database file. If there
4064** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004065*/
dan60939d02011-03-29 15:40:55 +00004066int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004067
drh075ed302010-10-14 01:17:30 +00004068 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004069 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004070 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004071
4072 /* If the handle has a write-transaction open, commit the shared-btrees
4073 ** transaction and set the shared state to TRANS_READ.
4074 */
4075 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004076 int rc;
drh075ed302010-10-14 01:17:30 +00004077 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004078 assert( pBt->inTransaction==TRANS_WRITE );
4079 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004080 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004081 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004082 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004083 return rc;
4084 }
drh3da9c042014-12-22 18:41:21 +00004085 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004086 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004087 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004088 }
danielk1977aef0bf62005-12-30 16:28:01 +00004089
danielk197794b30732009-07-02 17:21:57 +00004090 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004091 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004092 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004093}
4094
drh80e35f42007-03-30 14:06:34 +00004095/*
4096** Do both phases of a commit.
4097*/
4098int sqlite3BtreeCommit(Btree *p){
4099 int rc;
drhd677b3d2007-08-20 22:48:41 +00004100 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004101 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4102 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004103 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004104 }
drhd677b3d2007-08-20 22:48:41 +00004105 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004106 return rc;
4107}
4108
drhc39e0002004-05-07 23:50:57 +00004109/*
drhfb982642007-08-30 01:19:59 +00004110** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004111** code to errCode for every cursor on any BtShared that pBtree
4112** references. Or if the writeOnly flag is set to 1, then only
4113** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004114**
drh47b7fc72014-11-11 01:33:57 +00004115** Every cursor is a candidate to be tripped, including cursors
4116** that belong to other database connections that happen to be
4117** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004118**
dan80231042014-11-12 14:56:02 +00004119** This routine gets called when a rollback occurs. If the writeOnly
4120** flag is true, then only write-cursors need be tripped - read-only
4121** cursors save their current positions so that they may continue
4122** following the rollback. Or, if writeOnly is false, all cursors are
4123** tripped. In general, writeOnly is false if the transaction being
4124** rolled back modified the database schema. In this case b-tree root
4125** pages may be moved or deleted from the database altogether, making
4126** it unsafe for read cursors to continue.
4127**
4128** If the writeOnly flag is true and an error is encountered while
4129** saving the current position of a read-only cursor, all cursors,
4130** including all read-cursors are tripped.
4131**
4132** SQLITE_OK is returned if successful, or if an error occurs while
4133** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004134*/
dan80231042014-11-12 14:56:02 +00004135int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004136 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004137 int rc = SQLITE_OK;
4138
drh47b7fc72014-11-11 01:33:57 +00004139 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004140 if( pBtree ){
4141 sqlite3BtreeEnter(pBtree);
4142 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4143 int i;
4144 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004145 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004146 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004147 if( rc!=SQLITE_OK ){
4148 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4149 break;
4150 }
4151 }
4152 }else{
4153 sqlite3BtreeClearCursor(p);
4154 p->eState = CURSOR_FAULT;
4155 p->skipNext = errCode;
4156 }
4157 for(i=0; i<=p->iPage; i++){
4158 releasePage(p->apPage[i]);
4159 p->apPage[i] = 0;
4160 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00004161 }
dan80231042014-11-12 14:56:02 +00004162 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004163 }
dan80231042014-11-12 14:56:02 +00004164 return rc;
drhfb982642007-08-30 01:19:59 +00004165}
4166
4167/*
drh47b7fc72014-11-11 01:33:57 +00004168** Rollback the transaction in progress.
4169**
4170** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4171** Only write cursors are tripped if writeOnly is true but all cursors are
4172** tripped if writeOnly is false. Any attempt to use
4173** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004174**
4175** This will release the write lock on the database file. If there
4176** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004177*/
drh47b7fc72014-11-11 01:33:57 +00004178int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004179 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004180 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004181 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004182
drh47b7fc72014-11-11 01:33:57 +00004183 assert( writeOnly==1 || writeOnly==0 );
4184 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004185 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004186 if( tripCode==SQLITE_OK ){
4187 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004188 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004189 }else{
4190 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004191 }
drh0f198a72012-02-13 16:43:16 +00004192 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004193 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4194 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4195 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004196 }
danielk1977aef0bf62005-12-30 16:28:01 +00004197 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004198
4199 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004200 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004201
danielk19778d34dfd2006-01-24 16:37:57 +00004202 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004203 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004204 if( rc2!=SQLITE_OK ){
4205 rc = rc2;
4206 }
4207
drh24cd67e2004-05-10 16:18:47 +00004208 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004209 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004210 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004211 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004212 int nPage = get4byte(28+(u8*)pPage1->aData);
4213 testcase( nPage==0 );
4214 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4215 testcase( pBt->nPage!=nPage );
4216 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00004217 releasePage(pPage1);
4218 }
drh85ec3b62013-05-14 23:12:06 +00004219 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004220 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004221 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004222 }
danielk1977aef0bf62005-12-30 16:28:01 +00004223
danielk197794b30732009-07-02 17:21:57 +00004224 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004225 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004226 return rc;
4227}
4228
4229/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004230** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004231** back independently of the main transaction. You must start a transaction
4232** before starting a subtransaction. The subtransaction is ended automatically
4233** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004234**
4235** Statement subtransactions are used around individual SQL statements
4236** that are contained within a BEGIN...COMMIT block. If a constraint
4237** error occurs within the statement, the effect of that one statement
4238** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004239**
4240** A statement sub-transaction is implemented as an anonymous savepoint. The
4241** value passed as the second parameter is the total number of savepoints,
4242** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4243** are no active savepoints and no other statement-transactions open,
4244** iStatement is 1. This anonymous savepoint can be released or rolled back
4245** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004246*/
danielk1977bd434552009-03-18 10:33:00 +00004247int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004248 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004249 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004250 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004251 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004252 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004253 assert( iStatement>0 );
4254 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004255 assert( pBt->inTransaction==TRANS_WRITE );
4256 /* At the pager level, a statement transaction is a savepoint with
4257 ** an index greater than all savepoints created explicitly using
4258 ** SQL statements. It is illegal to open, release or rollback any
4259 ** such savepoints while the statement transaction savepoint is active.
4260 */
4261 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
dan7b3d71e2015-08-19 20:27:05 +00004262 if( rc==SQLITE_OK && pBt->pMap ){
4263 rc = btreePtrmapBegin(pBt->pMap, iStatement);
4264 }
drhd677b3d2007-08-20 22:48:41 +00004265 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004266 return rc;
4267}
4268
4269/*
danielk1977fd7f0452008-12-17 17:30:26 +00004270** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4271** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004272** savepoint identified by parameter iSavepoint, depending on the value
4273** of op.
4274**
4275** Normally, iSavepoint is greater than or equal to zero. However, if op is
4276** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4277** contents of the entire transaction are rolled back. This is different
4278** from a normal transaction rollback, as no locks are released and the
4279** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004280*/
4281int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4282 int rc = SQLITE_OK;
4283 if( p && p->inTrans==TRANS_WRITE ){
4284 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004285 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4286 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4287 sqlite3BtreeEnter(p);
dan7b3d71e2015-08-19 20:27:05 +00004288 if( pBt->pMap ) btreePtrmapEnd(pBt->pMap, op, iSavepoint);
danielk1977fd7f0452008-12-17 17:30:26 +00004289 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004290 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004291 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4292 pBt->nPage = 0;
4293 }
drh9f0bbf92009-01-02 21:08:09 +00004294 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004295 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004296
4297 /* The database size was written into the offset 28 of the header
4298 ** when the transaction started, so we know that the value at offset
4299 ** 28 is nonzero. */
4300 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004301 }
danielk1977fd7f0452008-12-17 17:30:26 +00004302 sqlite3BtreeLeave(p);
4303 }
4304 return rc;
4305}
4306
4307/*
drh8b2f49b2001-06-08 00:21:52 +00004308** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004309** iTable. If a read-only cursor is requested, it is assumed that
4310** the caller already has at least a read-only transaction open
4311** on the database already. If a write-cursor is requested, then
4312** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004313**
4314** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004315** If wrFlag==1, then the cursor can be used for reading or for
4316** writing if other conditions for writing are also met. These
4317** are the conditions that must be met in order for writing to
4318** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004319**
drhf74b8d92002-09-01 23:20:45 +00004320** 1: The cursor must have been opened with wrFlag==1
4321**
drhfe5d71d2007-03-19 11:54:10 +00004322** 2: Other database connections that share the same pager cache
4323** but which are not in the READ_UNCOMMITTED state may not have
4324** cursors open with wrFlag==0 on the same table. Otherwise
4325** the changes made by this write cursor would be visible to
4326** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004327**
4328** 3: The database must be writable (not on read-only media)
4329**
4330** 4: There must be an active transaction.
4331**
drh6446c4d2001-12-15 14:22:18 +00004332** No checking is done to make sure that page iTable really is the
4333** root page of a b-tree. If it is not, then the cursor acquired
4334** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004335**
drhf25a5072009-11-18 23:01:25 +00004336** It is assumed that the sqlite3BtreeCursorZero() has been called
4337** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004338*/
drhd677b3d2007-08-20 22:48:41 +00004339static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004340 Btree *p, /* The btree */
4341 int iTable, /* Root page of table to open */
4342 int wrFlag, /* 1 to write. 0 read-only */
4343 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4344 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004345){
danielk19773e8add92009-07-04 17:16:00 +00004346 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004347 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004348
drh1fee73e2007-08-29 04:00:57 +00004349 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00004350 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00004351
danielk1977602b4662009-07-02 07:47:33 +00004352 /* The following assert statements verify that if this is a sharable
4353 ** b-tree database, the connection is holding the required table locks,
4354 ** and that no other connection has any open cursor that conflicts with
4355 ** this lock. */
4356 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00004357 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4358
danielk19773e8add92009-07-04 17:16:00 +00004359 /* Assert that the caller has opened the required transaction. */
4360 assert( p->inTrans>TRANS_NONE );
4361 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4362 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004363 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004364
drh3fbb0222014-09-24 19:47:27 +00004365 if( wrFlag ){
4366 allocateTempSpace(pBt);
4367 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4368 }
drhb1299152010-03-30 22:58:33 +00004369 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004370 assert( wrFlag==0 );
4371 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004372 }
danielk1977aef0bf62005-12-30 16:28:01 +00004373
danielk1977aef0bf62005-12-30 16:28:01 +00004374 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004375 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004376 pCur->pgnoRoot = (Pgno)iTable;
4377 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004378 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004379 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004380 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004381 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4382 pCur->curFlags = wrFlag;
drh28f58dd2015-06-27 19:45:03 +00004383 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004384 /* If there are two or more cursors on the same btree, then all such
4385 ** cursors *must* have the BTCF_Multiple flag set. */
4386 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4387 if( pX->pgnoRoot==(Pgno)iTable ){
4388 pX->curFlags |= BTCF_Multiple;
4389 pCur->curFlags |= BTCF_Multiple;
4390 }
drha059ad02001-04-17 20:09:11 +00004391 }
drh27fb7462015-06-30 02:47:36 +00004392 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004393 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004394 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004395 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004396}
drhd677b3d2007-08-20 22:48:41 +00004397int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004398 Btree *p, /* The btree */
4399 int iTable, /* Root page of table to open */
4400 int wrFlag, /* 1 to write. 0 read-only */
4401 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4402 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004403){
4404 int rc;
dan08f901b2015-05-25 19:24:36 +00004405 if( iTable<1 ){
4406 rc = SQLITE_CORRUPT_BKPT;
4407 }else{
4408 sqlite3BtreeEnter(p);
4409 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4410 sqlite3BtreeLeave(p);
4411 }
drhd677b3d2007-08-20 22:48:41 +00004412 return rc;
4413}
drh7f751222009-03-17 22:33:00 +00004414
4415/*
4416** Return the size of a BtCursor object in bytes.
4417**
4418** This interfaces is needed so that users of cursors can preallocate
4419** sufficient storage to hold a cursor. The BtCursor object is opaque
4420** to users so they cannot do the sizeof() themselves - they must call
4421** this routine.
4422*/
4423int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004424 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004425}
4426
drh7f751222009-03-17 22:33:00 +00004427/*
drhf25a5072009-11-18 23:01:25 +00004428** Initialize memory that will be converted into a BtCursor object.
4429**
4430** The simple approach here would be to memset() the entire object
4431** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4432** do not need to be zeroed and they are large, so we can save a lot
4433** of run-time by skipping the initialization of those elements.
4434*/
4435void sqlite3BtreeCursorZero(BtCursor *p){
4436 memset(p, 0, offsetof(BtCursor, iPage));
4437}
4438
4439/*
drh5e00f6c2001-09-13 13:46:56 +00004440** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004441** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004442*/
drh3aac2dd2004-04-26 14:10:20 +00004443int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004444 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004445 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004446 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004447 BtShared *pBt = pCur->pBt;
4448 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004449 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004450 assert( pBt->pCursor!=0 );
4451 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004452 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004453 }else{
4454 BtCursor *pPrev = pBt->pCursor;
4455 do{
4456 if( pPrev->pNext==pCur ){
4457 pPrev->pNext = pCur->pNext;
4458 break;
4459 }
4460 pPrev = pPrev->pNext;
4461 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004462 }
danielk197771d5d2c2008-09-29 11:49:47 +00004463 for(i=0; i<=pCur->iPage; i++){
4464 releasePage(pCur->apPage[i]);
4465 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004466 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004467 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004468 /* sqlite3_free(pCur); */
4469 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004470 }
drh8c42ca92001-06-22 19:15:00 +00004471 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004472}
4473
drh5e2f8b92001-05-28 00:41:15 +00004474/*
drh86057612007-06-26 01:04:48 +00004475** Make sure the BtCursor* given in the argument has a valid
4476** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004477** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004478**
4479** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004480** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004481*/
drh9188b382004-05-14 21:12:22 +00004482#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004483 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004484 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004485 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004486 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004487 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004488 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004489 }
danielk19771cc5ed82007-05-16 17:28:43 +00004490#else
4491 #define assertCellInfo(x)
4492#endif
drhc5b41ac2015-06-17 02:11:46 +00004493static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4494 if( pCur->info.nSize==0 ){
4495 int iPage = pCur->iPage;
4496 pCur->curFlags |= BTCF_ValidNKey;
4497 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4498 }else{
4499 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004500 }
drhc5b41ac2015-06-17 02:11:46 +00004501}
drh9188b382004-05-14 21:12:22 +00004502
drhea8ffdf2009-07-22 00:35:23 +00004503#ifndef NDEBUG /* The next routine used only within assert() statements */
4504/*
4505** Return true if the given BtCursor is valid. A valid cursor is one
4506** that is currently pointing to a row in a (non-empty) table.
4507** This is a verification routine is used only within assert() statements.
4508*/
4509int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4510 return pCur && pCur->eState==CURSOR_VALID;
4511}
4512#endif /* NDEBUG */
4513
drh9188b382004-05-14 21:12:22 +00004514/*
drh3aac2dd2004-04-26 14:10:20 +00004515** Set *pSize to the size of the buffer needed to hold the value of
4516** the key for the current entry. If the cursor is not pointing
4517** to a valid entry, *pSize is set to 0.
4518**
drh4b70f112004-05-02 21:12:19 +00004519** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004520** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004521**
4522** The caller must position the cursor prior to invoking this routine.
4523**
4524** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004525*/
drh4a1c3802004-05-12 15:15:47 +00004526int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004527 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004528 assert( pCur->eState==CURSOR_VALID );
4529 getCellInfo(pCur);
4530 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004531 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004532}
drh2af926b2001-05-15 00:39:25 +00004533
drh72f82862001-05-24 21:06:34 +00004534/*
drh0e1c19e2004-05-11 00:58:56 +00004535** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004536** cursor currently points to.
4537**
4538** The caller must guarantee that the cursor is pointing to a non-NULL
4539** valid entry. In other words, the calling procedure must guarantee
4540** that the cursor has Cursor.eState==CURSOR_VALID.
4541**
4542** Failure is not possible. This function always returns SQLITE_OK.
4543** It might just as well be a procedure (returning void) but we continue
4544** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004545*/
4546int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004547 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004548 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004549 assert( pCur->iPage>=0 );
4550 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004551 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004552 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004553 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004554 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004555}
4556
4557/*
danielk1977d04417962007-05-02 13:16:30 +00004558** Given the page number of an overflow page in the database (parameter
4559** ovfl), this function finds the page number of the next page in the
4560** linked list of overflow pages. If possible, it uses the auto-vacuum
4561** pointer-map data instead of reading the content of page ovfl to do so.
4562**
4563** If an error occurs an SQLite error code is returned. Otherwise:
4564**
danielk1977bea2a942009-01-20 17:06:27 +00004565** The page number of the next overflow page in the linked list is
4566** written to *pPgnoNext. If page ovfl is the last page in its linked
4567** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004568**
danielk1977bea2a942009-01-20 17:06:27 +00004569** If ppPage is not NULL, and a reference to the MemPage object corresponding
4570** to page number pOvfl was obtained, then *ppPage is set to point to that
4571** reference. It is the responsibility of the caller to call releasePage()
4572** on *ppPage to free the reference. In no reference was obtained (because
4573** the pointer-map was used to obtain the value for *pPgnoNext), then
4574** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004575*/
4576static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004577 BtShared *pBt, /* The database file */
4578 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004579 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004580 Pgno *pPgnoNext /* OUT: Next overflow page number */
4581){
4582 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004583 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004584 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004585
drh1fee73e2007-08-29 04:00:57 +00004586 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004587 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004588
4589#ifndef SQLITE_OMIT_AUTOVACUUM
4590 /* Try to find the next page in the overflow list using the
4591 ** autovacuum pointer-map pages. Guess that the next page in
4592 ** the overflow list is page number (ovfl+1). If that guess turns
4593 ** out to be wrong, fall back to loading the data of page
4594 ** number ovfl to determine the next page number.
4595 */
4596 if( pBt->autoVacuum ){
4597 Pgno pgno;
4598 Pgno iGuess = ovfl+1;
4599 u8 eType;
4600
4601 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4602 iGuess++;
4603 }
4604
drhb1299152010-03-30 22:58:33 +00004605 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004606 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004607 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004608 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004609 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004610 }
4611 }
4612 }
4613#endif
4614
danielk1977d8a3f3d2009-07-11 11:45:23 +00004615 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004616 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004617 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004618 assert( rc==SQLITE_OK || pPage==0 );
4619 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004620 next = get4byte(pPage->aData);
4621 }
danielk1977443c0592009-01-16 15:21:05 +00004622 }
danielk197745d68822009-01-16 16:23:38 +00004623
danielk1977bea2a942009-01-20 17:06:27 +00004624 *pPgnoNext = next;
4625 if( ppPage ){
4626 *ppPage = pPage;
4627 }else{
4628 releasePage(pPage);
4629 }
4630 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004631}
4632
danielk1977da107192007-05-04 08:32:13 +00004633/*
4634** Copy data from a buffer to a page, or from a page to a buffer.
4635**
4636** pPayload is a pointer to data stored on database page pDbPage.
4637** If argument eOp is false, then nByte bytes of data are copied
4638** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4639** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4640** of data are copied from the buffer pBuf to pPayload.
4641**
4642** SQLITE_OK is returned on success, otherwise an error code.
4643*/
4644static int copyPayload(
4645 void *pPayload, /* Pointer to page data */
4646 void *pBuf, /* Pointer to buffer */
4647 int nByte, /* Number of bytes to copy */
4648 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4649 DbPage *pDbPage /* Page containing pPayload */
4650){
4651 if( eOp ){
4652 /* Copy data from buffer to page (a write operation) */
4653 int rc = sqlite3PagerWrite(pDbPage);
4654 if( rc!=SQLITE_OK ){
4655 return rc;
4656 }
4657 memcpy(pPayload, pBuf, nByte);
4658 }else{
4659 /* Copy data from page to buffer (a read operation) */
4660 memcpy(pBuf, pPayload, nByte);
4661 }
4662 return SQLITE_OK;
4663}
danielk1977d04417962007-05-02 13:16:30 +00004664
4665/*
danielk19779f8d6402007-05-02 17:48:45 +00004666** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004667** for the entry that the pCur cursor is pointing to. The eOp
4668** argument is interpreted as follows:
4669**
4670** 0: The operation is a read. Populate the overflow cache.
4671** 1: The operation is a write. Populate the overflow cache.
4672** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004673**
4674** A total of "amt" bytes are read or written beginning at "offset".
4675** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004676**
drh3bcdfd22009-07-12 02:32:21 +00004677** The content being read or written might appear on the main page
4678** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004679**
dan5a500af2014-03-11 20:33:04 +00004680** If the current cursor entry uses one or more overflow pages and the
4681** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004682** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004683** Subsequent calls use this cache to make seeking to the supplied offset
4684** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004685**
4686** Once an overflow page-list cache has been allocated, it may be
4687** invalidated if some other cursor writes to the same table, or if
4688** the cursor is moved to a different row. Additionally, in auto-vacuum
4689** mode, the following events may invalidate an overflow page-list cache.
4690**
4691** * An incremental vacuum,
4692** * A commit in auto_vacuum="full" mode,
4693** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004694*/
danielk19779f8d6402007-05-02 17:48:45 +00004695static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004696 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004697 u32 offset, /* Begin reading this far into payload */
4698 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004699 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004700 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004701){
4702 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004703 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004704 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004705 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004706 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004707#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004708 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004709 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004710#endif
drh3aac2dd2004-04-26 14:10:20 +00004711
danielk1977da107192007-05-04 08:32:13 +00004712 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004713 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004714 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004715 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004716 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004717
drh86057612007-06-26 01:04:48 +00004718 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004719 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004720#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004721 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004722#endif
drhab1cc582014-09-23 21:25:19 +00004723 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004724
drhab1cc582014-09-23 21:25:19 +00004725 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004726 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004727 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004728 }
danielk1977da107192007-05-04 08:32:13 +00004729
4730 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004731 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004732 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004733 if( a+offset>pCur->info.nLocal ){
4734 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004735 }
dan5a500af2014-03-11 20:33:04 +00004736 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004737 offset = 0;
drha34b6762004-05-07 13:30:42 +00004738 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004739 amt -= a;
drhdd793422001-06-28 01:54:48 +00004740 }else{
drhfa1a98a2004-05-14 19:08:17 +00004741 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004742 }
danielk1977da107192007-05-04 08:32:13 +00004743
dan85753662014-12-11 16:38:18 +00004744
danielk1977da107192007-05-04 08:32:13 +00004745 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004746 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004747 Pgno nextPage;
4748
drhfa1a98a2004-05-14 19:08:17 +00004749 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004750
drha38c9512014-04-01 01:24:34 +00004751 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4752 ** Except, do not allocate aOverflow[] for eOp==2.
4753 **
4754 ** The aOverflow[] array is sized at one entry for each overflow page
4755 ** in the overflow chain. The page number of the first overflow page is
4756 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4757 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004758 */
drh036dbec2014-03-11 23:40:44 +00004759 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004760 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004761 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004762 Pgno *aNew = (Pgno*)sqlite3Realloc(
4763 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004764 );
4765 if( aNew==0 ){
4766 rc = SQLITE_NOMEM;
4767 }else{
4768 pCur->nOvflAlloc = nOvfl*2;
4769 pCur->aOverflow = aNew;
4770 }
4771 }
4772 if( rc==SQLITE_OK ){
4773 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004774 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004775 }
4776 }
danielk1977da107192007-05-04 08:32:13 +00004777
4778 /* If the overflow page-list cache has been allocated and the
4779 ** entry for the first required overflow page is valid, skip
4780 ** directly to it.
4781 */
drh3f387402014-09-24 01:23:00 +00004782 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4783 && pCur->aOverflow[offset/ovflSize]
4784 ){
danielk19772dec9702007-05-02 16:48:37 +00004785 iIdx = (offset/ovflSize);
4786 nextPage = pCur->aOverflow[iIdx];
4787 offset = (offset%ovflSize);
4788 }
danielk1977da107192007-05-04 08:32:13 +00004789
4790 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4791
danielk1977da107192007-05-04 08:32:13 +00004792 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004793 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004794 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4795 pCur->aOverflow[iIdx] = nextPage;
4796 }
danielk1977da107192007-05-04 08:32:13 +00004797
danielk1977d04417962007-05-02 13:16:30 +00004798 if( offset>=ovflSize ){
4799 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004800 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004801 ** data is not required. So first try to lookup the overflow
4802 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004803 ** function.
drha38c9512014-04-01 01:24:34 +00004804 **
4805 ** Note that the aOverflow[] array must be allocated because eOp!=2
4806 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004807 */
drha38c9512014-04-01 01:24:34 +00004808 assert( eOp!=2 );
4809 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004810 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004811 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004812 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004813 }else{
danielk1977da107192007-05-04 08:32:13 +00004814 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004815 }
danielk1977da107192007-05-04 08:32:13 +00004816 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004817 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004818 /* Need to read this page properly. It contains some of the
4819 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004820 */
danf4ba1092011-10-08 14:57:07 +00004821#ifdef SQLITE_DIRECT_OVERFLOW_READ
4822 sqlite3_file *fd;
4823#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004824 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004825 if( a + offset > ovflSize ){
4826 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004827 }
danf4ba1092011-10-08 14:57:07 +00004828
4829#ifdef SQLITE_DIRECT_OVERFLOW_READ
4830 /* If all the following are true:
4831 **
4832 ** 1) this is a read operation, and
4833 ** 2) data is required from the start of this overflow page, and
4834 ** 3) the database is file-backed, and
4835 ** 4) there is no open write-transaction, and
4836 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004837 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004838 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004839 **
4840 ** then data can be read directly from the database file into the
4841 ** output buffer, bypassing the page-cache altogether. This speeds
4842 ** up loading large records that span many overflow pages.
4843 */
dan5a500af2014-03-11 20:33:04 +00004844 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004845 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004846 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004847 && pBt->inTransaction==TRANS_READ /* (4) */
4848 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4849 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004850 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004851 ){
4852 u8 aSave[4];
4853 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004854 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004855 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004856 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004857 nextPage = get4byte(aWrite);
4858 memcpy(aWrite, aSave, 4);
4859 }else
4860#endif
4861
4862 {
4863 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004864 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004865 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004866 );
danf4ba1092011-10-08 14:57:07 +00004867 if( rc==SQLITE_OK ){
4868 aPayload = sqlite3PagerGetData(pDbPage);
4869 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004870 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004871 sqlite3PagerUnref(pDbPage);
4872 offset = 0;
4873 }
4874 }
4875 amt -= a;
4876 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004877 }
drh2af926b2001-05-15 00:39:25 +00004878 }
drh2af926b2001-05-15 00:39:25 +00004879 }
danielk1977cfe9a692004-06-16 12:00:29 +00004880
danielk1977da107192007-05-04 08:32:13 +00004881 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004882 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004883 }
danielk1977da107192007-05-04 08:32:13 +00004884 return rc;
drh2af926b2001-05-15 00:39:25 +00004885}
4886
drh72f82862001-05-24 21:06:34 +00004887/*
drh3aac2dd2004-04-26 14:10:20 +00004888** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004889** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004890** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004891**
drh5d1a8722009-07-22 18:07:40 +00004892** The caller must ensure that pCur is pointing to a valid row
4893** in the table.
4894**
drh3aac2dd2004-04-26 14:10:20 +00004895** Return SQLITE_OK on success or an error code if anything goes
4896** wrong. An error is returned if "offset+amt" is larger than
4897** the available payload.
drh72f82862001-05-24 21:06:34 +00004898*/
drha34b6762004-05-07 13:30:42 +00004899int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004900 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004901 assert( pCur->eState==CURSOR_VALID );
4902 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4903 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4904 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004905}
4906
4907/*
drh3aac2dd2004-04-26 14:10:20 +00004908** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004909** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004910** begins at "offset".
4911**
4912** Return SQLITE_OK on success or an error code if anything goes
4913** wrong. An error is returned if "offset+amt" is larger than
4914** the available payload.
drh72f82862001-05-24 21:06:34 +00004915*/
drh3aac2dd2004-04-26 14:10:20 +00004916int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004917 int rc;
4918
danielk19773588ceb2008-06-10 17:30:26 +00004919#ifndef SQLITE_OMIT_INCRBLOB
4920 if ( pCur->eState==CURSOR_INVALID ){
4921 return SQLITE_ABORT;
4922 }
4923#endif
4924
drh1fee73e2007-08-29 04:00:57 +00004925 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004926 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004927 if( rc==SQLITE_OK ){
4928 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004929 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4930 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004931 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004932 }
4933 return rc;
drh2af926b2001-05-15 00:39:25 +00004934}
4935
drh72f82862001-05-24 21:06:34 +00004936/*
drh0e1c19e2004-05-11 00:58:56 +00004937** Return a pointer to payload information from the entry that the
4938** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004939** the key if index btrees (pPage->intKey==0) and is the data for
4940** table btrees (pPage->intKey==1). The number of bytes of available
4941** key/data is written into *pAmt. If *pAmt==0, then the value
4942** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004943**
4944** This routine is an optimization. It is common for the entire key
4945** and data to fit on the local page and for there to be no overflow
4946** pages. When that is so, this routine can be used to access the
4947** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004948** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004949** the key/data and copy it into a preallocated buffer.
4950**
4951** The pointer returned by this routine looks directly into the cached
4952** page of the database. The data might change or move the next time
4953** any btree routine is called.
4954*/
drh2a8d2262013-12-09 20:43:22 +00004955static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004956 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004957 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004958){
drhf3392e32015-04-15 17:26:55 +00004959 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004960 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004961 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004962 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004963 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004964 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004965 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004966 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4967 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4968 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4969 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4970 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004971 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004972}
4973
4974
4975/*
drhe51c44f2004-05-30 20:46:09 +00004976** For the entry that cursor pCur is point to, return as
4977** many bytes of the key or data as are available on the local
4978** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004979**
4980** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004981** or be destroyed on the next call to any Btree routine,
4982** including calls from other threads against the same cache.
4983** Hence, a mutex on the BtShared should be held prior to calling
4984** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004985**
4986** These routines is used to get quick access to key and data
4987** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004988*/
drh501932c2013-11-21 21:59:53 +00004989const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004990 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004991}
drh501932c2013-11-21 21:59:53 +00004992const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004993 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004994}
4995
4996
4997/*
drh8178a752003-01-05 21:41:40 +00004998** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004999** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005000**
5001** This function returns SQLITE_CORRUPT if the page-header flags field of
5002** the new child page does not match the flags field of the parent (i.e.
5003** if an intkey page appears to be the parent of a non-intkey page, or
5004** vice-versa).
drh72f82862001-05-24 21:06:34 +00005005*/
drh3aac2dd2004-04-26 14:10:20 +00005006static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005007 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005008
drh1fee73e2007-08-29 04:00:57 +00005009 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005010 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005011 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005012 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005013 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5014 return SQLITE_CORRUPT_BKPT;
5015 }
drh271efa52004-05-30 19:19:05 +00005016 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005017 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00005018 pCur->iPage++;
5019 pCur->aiIdx[pCur->iPage] = 0;
5020 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
5021 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005022}
5023
drhcbd33492015-03-25 13:06:54 +00005024#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005025/*
5026** Page pParent is an internal (non-leaf) tree page. This function
5027** asserts that page number iChild is the left-child if the iIdx'th
5028** cell in page pParent. Or, if iIdx is equal to the total number of
5029** cells in pParent, that page number iChild is the right-child of
5030** the page.
5031*/
5032static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005033 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5034 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005035 assert( iIdx<=pParent->nCell );
5036 if( iIdx==pParent->nCell ){
5037 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5038 }else{
5039 assert( get4byte(findCell(pParent, iIdx))==iChild );
5040 }
5041}
5042#else
5043# define assertParentIndex(x,y,z)
5044#endif
5045
drh72f82862001-05-24 21:06:34 +00005046/*
drh5e2f8b92001-05-28 00:41:15 +00005047** Move the cursor up to the parent page.
5048**
5049** pCur->idx is set to the cell index that contains the pointer
5050** to the page we are coming from. If we are coming from the
5051** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005052** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005053*/
danielk197730548662009-07-09 05:07:37 +00005054static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00005055 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005056 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005057 assert( pCur->iPage>0 );
5058 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00005059 assertParentIndex(
5060 pCur->apPage[pCur->iPage-1],
5061 pCur->aiIdx[pCur->iPage-1],
5062 pCur->apPage[pCur->iPage]->pgno
5063 );
dan6c2688c2012-01-12 15:05:03 +00005064 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005065 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005066 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00005067 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00005068}
5069
5070/*
danielk19778f880a82009-07-13 09:41:45 +00005071** Move the cursor to point to the root page of its b-tree structure.
5072**
5073** If the table has a virtual root page, then the cursor is moved to point
5074** to the virtual root page instead of the actual root page. A table has a
5075** virtual root page when the actual root page contains no cells and a
5076** single child page. This can only happen with the table rooted at page 1.
5077**
5078** If the b-tree structure is empty, the cursor state is set to
5079** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
5080** cell located on the root (or virtual root) page and the cursor state
5081** is set to CURSOR_VALID.
5082**
5083** If this function returns successfully, it may be assumed that the
5084** page-header flags indicate that the [virtual] root-page is the expected
5085** kind of b-tree page (i.e. if when opening the cursor the caller did not
5086** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5087** indicating a table b-tree, or if the caller did specify a KeyInfo
5088** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5089** b-tree).
drh72f82862001-05-24 21:06:34 +00005090*/
drh5e2f8b92001-05-28 00:41:15 +00005091static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005092 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005093 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005094
drh1fee73e2007-08-29 04:00:57 +00005095 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00005096 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5097 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5098 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
5099 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5100 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00005101 assert( pCur->skipNext!=SQLITE_OK );
5102 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00005103 }
danielk1977be51a652008-10-08 17:58:48 +00005104 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00005105 }
danielk197771d5d2c2008-09-29 11:49:47 +00005106
5107 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00005108 while( pCur->iPage ){
5109 assert( pCur->apPage[pCur->iPage]!=0 );
5110 releasePageNotNull(pCur->apPage[pCur->iPage--]);
5111 }
dana205a482011-08-27 18:48:57 +00005112 }else if( pCur->pgnoRoot==0 ){
5113 pCur->eState = CURSOR_INVALID;
5114 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00005115 }else{
drh28f58dd2015-06-27 19:45:03 +00005116 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00005117 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00005118 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005119 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005120 pCur->eState = CURSOR_INVALID;
5121 return rc;
5122 }
danielk1977172114a2009-07-07 15:47:12 +00005123 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00005124 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00005125 }
danielk197771d5d2c2008-09-29 11:49:47 +00005126 pRoot = pCur->apPage[0];
5127 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005128
5129 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5130 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5131 ** NULL, the caller expects a table b-tree. If this is not the case,
5132 ** return an SQLITE_CORRUPT error.
5133 **
5134 ** Earlier versions of SQLite assumed that this test could not fail
5135 ** if the root page was already loaded when this function was called (i.e.
5136 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5137 ** in such a way that page pRoot is linked into a second b-tree table
5138 ** (or the freelist). */
5139 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5140 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5141 return SQLITE_CORRUPT_BKPT;
5142 }
danielk19778f880a82009-07-13 09:41:45 +00005143
danielk197771d5d2c2008-09-29 11:49:47 +00005144 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00005145 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005146 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005147
drh4e8fe3f2013-12-06 23:25:27 +00005148 if( pRoot->nCell>0 ){
5149 pCur->eState = CURSOR_VALID;
5150 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005151 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005152 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005153 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005154 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005155 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005156 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005157 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00005158 }
5159 return rc;
drh72f82862001-05-24 21:06:34 +00005160}
drh2af926b2001-05-15 00:39:25 +00005161
drh5e2f8b92001-05-28 00:41:15 +00005162/*
5163** Move the cursor down to the left-most leaf entry beneath the
5164** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005165**
5166** The left-most leaf is the one with the smallest key - the first
5167** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005168*/
5169static int moveToLeftmost(BtCursor *pCur){
5170 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005171 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005172 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005173
drh1fee73e2007-08-29 04:00:57 +00005174 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005175 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005176 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
5177 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
5178 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00005179 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005180 }
drhd677b3d2007-08-20 22:48:41 +00005181 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005182}
5183
drh2dcc9aa2002-12-04 13:40:25 +00005184/*
5185** Move the cursor down to the right-most leaf entry beneath the
5186** page to which it is currently pointing. Notice the difference
5187** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5188** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5189** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005190**
5191** The right-most entry is the one with the largest key - the last
5192** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005193*/
5194static int moveToRightmost(BtCursor *pCur){
5195 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005196 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005197 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005198
drh1fee73e2007-08-29 04:00:57 +00005199 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005200 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005201 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00005202 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00005203 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005204 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005205 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005206 }
drhee6438d2014-09-01 13:29:32 +00005207 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
5208 assert( pCur->info.nSize==0 );
5209 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5210 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005211}
5212
drh5e00f6c2001-09-13 13:46:56 +00005213/* Move the cursor to the first entry in the table. Return SQLITE_OK
5214** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005215** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005216*/
drh3aac2dd2004-04-26 14:10:20 +00005217int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005218 int rc;
drhd677b3d2007-08-20 22:48:41 +00005219
drh1fee73e2007-08-29 04:00:57 +00005220 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005221 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005222 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005223 if( rc==SQLITE_OK ){
5224 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00005225 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005226 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00005227 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005228 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005229 *pRes = 0;
5230 rc = moveToLeftmost(pCur);
5231 }
drh5e00f6c2001-09-13 13:46:56 +00005232 }
drh5e00f6c2001-09-13 13:46:56 +00005233 return rc;
5234}
drh5e2f8b92001-05-28 00:41:15 +00005235
drh9562b552002-02-19 15:00:07 +00005236/* Move the cursor to the last entry in the table. Return SQLITE_OK
5237** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005238** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005239*/
drh3aac2dd2004-04-26 14:10:20 +00005240int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005241 int rc;
drhd677b3d2007-08-20 22:48:41 +00005242
drh1fee73e2007-08-29 04:00:57 +00005243 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005244 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005245
5246 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005247 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005248#ifdef SQLITE_DEBUG
5249 /* This block serves to assert() that the cursor really does point
5250 ** to the last entry in the b-tree. */
5251 int ii;
5252 for(ii=0; ii<pCur->iPage; ii++){
5253 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5254 }
5255 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5256 assert( pCur->apPage[pCur->iPage]->leaf );
5257#endif
5258 return SQLITE_OK;
5259 }
5260
drh9562b552002-02-19 15:00:07 +00005261 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005262 if( rc==SQLITE_OK ){
5263 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005264 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005265 *pRes = 1;
5266 }else{
5267 assert( pCur->eState==CURSOR_VALID );
5268 *pRes = 0;
5269 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005270 if( rc==SQLITE_OK ){
5271 pCur->curFlags |= BTCF_AtLast;
5272 }else{
5273 pCur->curFlags &= ~BTCF_AtLast;
5274 }
5275
drhd677b3d2007-08-20 22:48:41 +00005276 }
drh9562b552002-02-19 15:00:07 +00005277 }
drh9562b552002-02-19 15:00:07 +00005278 return rc;
5279}
5280
drhe14006d2008-03-25 17:23:32 +00005281/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005282** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005283**
drhe63d9992008-08-13 19:11:48 +00005284** For INTKEY tables, the intKey parameter is used. pIdxKey
5285** must be NULL. For index tables, pIdxKey is used and intKey
5286** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005287**
drh5e2f8b92001-05-28 00:41:15 +00005288** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005289** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005290** were present. The cursor might point to an entry that comes
5291** before or after the key.
5292**
drh64022502009-01-09 14:11:04 +00005293** An integer is written into *pRes which is the result of
5294** comparing the key with the entry to which the cursor is
5295** pointing. The meaning of the integer written into
5296** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005297**
5298** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005299** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005300** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005301**
5302** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005303** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005304**
5305** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005306** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005307**
drha059ad02001-04-17 20:09:11 +00005308*/
drhe63d9992008-08-13 19:11:48 +00005309int sqlite3BtreeMovetoUnpacked(
5310 BtCursor *pCur, /* The cursor to be moved */
5311 UnpackedRecord *pIdxKey, /* Unpacked index key */
5312 i64 intKey, /* The table key */
5313 int biasRight, /* If true, bias the search to the high end */
5314 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005315){
drh72f82862001-05-24 21:06:34 +00005316 int rc;
dan3b9330f2014-02-27 20:44:18 +00005317 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005318
drh1fee73e2007-08-29 04:00:57 +00005319 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005320 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005321 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005322 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005323
5324 /* If the cursor is already positioned at the point we are trying
5325 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005326 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005327 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005328 ){
drhe63d9992008-08-13 19:11:48 +00005329 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005330 *pRes = 0;
5331 return SQLITE_OK;
5332 }
drh036dbec2014-03-11 23:40:44 +00005333 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005334 *pRes = -1;
5335 return SQLITE_OK;
5336 }
5337 }
5338
dan1fed5da2014-02-25 21:01:25 +00005339 if( pIdxKey ){
5340 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005341 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005342 assert( pIdxKey->default_rc==1
5343 || pIdxKey->default_rc==0
5344 || pIdxKey->default_rc==-1
5345 );
drh13a747e2014-03-03 21:46:55 +00005346 }else{
drhb6e8fd12014-03-06 01:56:33 +00005347 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005348 }
5349
drh5e2f8b92001-05-28 00:41:15 +00005350 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005351 if( rc ){
5352 return rc;
5353 }
dana205a482011-08-27 18:48:57 +00005354 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5355 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5356 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005357 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005358 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005359 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005360 return SQLITE_OK;
5361 }
drhc75d8862015-06-27 23:55:20 +00005362 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5363 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005364 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005365 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005366 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005367 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005368 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005369
5370 /* pPage->nCell must be greater than zero. If this is the root-page
5371 ** the cursor would have been INVALID above and this for(;;) loop
5372 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005373 ** would have already detected db corruption. Similarly, pPage must
5374 ** be the right kind (index or table) of b-tree page. Otherwise
5375 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005376 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005377 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005378 lwr = 0;
5379 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005380 assert( biasRight==0 || biasRight==1 );
5381 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005382 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005383 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005384 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005385 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005386 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005387 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005388 while( 0x80 <= *(pCell++) ){
5389 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5390 }
drhd172f862006-01-12 15:01:15 +00005391 }
drha2c20e42008-03-29 16:01:04 +00005392 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005393 if( nCellKey<intKey ){
5394 lwr = idx+1;
5395 if( lwr>upr ){ c = -1; break; }
5396 }else if( nCellKey>intKey ){
5397 upr = idx-1;
5398 if( lwr>upr ){ c = +1; break; }
5399 }else{
5400 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005401 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005402 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005403 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005404 if( !pPage->leaf ){
5405 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005406 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005407 }else{
5408 *pRes = 0;
5409 rc = SQLITE_OK;
5410 goto moveto_finish;
5411 }
drhd793f442013-11-25 14:10:15 +00005412 }
drhebf10b12013-11-25 17:38:26 +00005413 assert( lwr+upr>=0 );
5414 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005415 }
5416 }else{
5417 for(;;){
drhc6827502015-05-28 15:14:32 +00005418 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005419 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005420
drhb2eced52010-08-12 02:41:12 +00005421 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005422 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005423 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005424 ** varint. This information is used to attempt to avoid parsing
5425 ** the entire cell by checking for the cases where the record is
5426 ** stored entirely within the b-tree page by inspecting the first
5427 ** 2 bytes of the cell.
5428 */
drhec3e6b12013-11-25 02:38:55 +00005429 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005430 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005431 /* This branch runs if the record-size field of the cell is a
5432 ** single byte varint and the record fits entirely on the main
5433 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005434 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005435 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005436 }else if( !(pCell[1] & 0x80)
5437 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5438 ){
5439 /* The record-size field is a 2 byte varint and the record
5440 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005441 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005442 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005443 }else{
danielk197711c327a2009-05-04 19:01:26 +00005444 /* The record flows over onto one or more overflow pages. In
5445 ** this case the whole cell needs to be parsed, a buffer allocated
5446 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005447 ** buffer before VdbeRecordCompare() can be called.
5448 **
5449 ** If the record is corrupt, the xRecordCompare routine may read
5450 ** up to two varints past the end of the buffer. An extra 18
5451 ** bytes of padding is allocated at the end of the buffer in
5452 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005453 void *pCellKey;
5454 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005455 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005456 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005457 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5458 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5459 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5460 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005461 if( nCell<2 ){
5462 rc = SQLITE_CORRUPT_BKPT;
5463 goto moveto_finish;
5464 }
5465 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005466 if( pCellKey==0 ){
5467 rc = SQLITE_NOMEM;
5468 goto moveto_finish;
5469 }
drhd793f442013-11-25 14:10:15 +00005470 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005471 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005472 if( rc ){
5473 sqlite3_free(pCellKey);
5474 goto moveto_finish;
5475 }
drh75179de2014-09-16 14:37:35 +00005476 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005477 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005478 }
dan38fdead2014-04-01 10:19:02 +00005479 assert(
5480 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005481 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005482 );
drhbb933ef2013-11-25 15:01:38 +00005483 if( c<0 ){
5484 lwr = idx+1;
5485 }else if( c>0 ){
5486 upr = idx-1;
5487 }else{
5488 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005489 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005490 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005491 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005492 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005493 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005494 }
drhebf10b12013-11-25 17:38:26 +00005495 if( lwr>upr ) break;
5496 assert( lwr+upr>=0 );
5497 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005498 }
drh72f82862001-05-24 21:06:34 +00005499 }
drhb07028f2011-10-14 21:49:18 +00005500 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005501 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005502 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005503 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005504 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005505 *pRes = c;
5506 rc = SQLITE_OK;
5507 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005508 }
5509moveto_next_layer:
5510 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005511 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005512 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005513 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005514 }
drhf49661a2008-12-10 16:45:50 +00005515 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005516 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005517 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005518 }
drh1e968a02008-03-25 00:22:21 +00005519moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005520 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005521 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005522 return rc;
5523}
5524
drhd677b3d2007-08-20 22:48:41 +00005525
drh72f82862001-05-24 21:06:34 +00005526/*
drhc39e0002004-05-07 23:50:57 +00005527** Return TRUE if the cursor is not pointing at an entry of the table.
5528**
5529** TRUE will be returned after a call to sqlite3BtreeNext() moves
5530** past the last entry in the table or sqlite3BtreePrev() moves past
5531** the first entry. TRUE is also returned if the table is empty.
5532*/
5533int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005534 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5535 ** have been deleted? This API will need to change to return an error code
5536 ** as well as the boolean result value.
5537 */
5538 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005539}
5540
5541/*
drhbd03cae2001-06-02 02:40:57 +00005542** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005543** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005544** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005545** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005546**
drhee6438d2014-09-01 13:29:32 +00005547** The main entry point is sqlite3BtreeNext(). That routine is optimized
5548** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5549** to the next cell on the current page. The (slower) btreeNext() helper
5550** routine is called when it is necessary to move to a different page or
5551** to restore the cursor.
5552**
drhe39a7322014-02-03 14:04:11 +00005553** The calling function will set *pRes to 0 or 1. The initial *pRes value
5554** will be 1 if the cursor being stepped corresponds to an SQL index and
5555** if this routine could have been skipped if that SQL index had been
5556** a unique index. Otherwise the caller will have set *pRes to zero.
5557** Zero is the common case. The btree implementation is free to use the
5558** initial *pRes value as a hint to improve performance, but the current
5559** SQLite btree implementation does not. (Note that the comdb2 btree
5560** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005561*/
drhee6438d2014-09-01 13:29:32 +00005562static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005563 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005564 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005565 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005566
drh1fee73e2007-08-29 04:00:57 +00005567 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005568 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005569 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005570 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005571 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005572 rc = restoreCursorPosition(pCur);
5573 if( rc!=SQLITE_OK ){
5574 return rc;
5575 }
5576 if( CURSOR_INVALID==pCur->eState ){
5577 *pRes = 1;
5578 return SQLITE_OK;
5579 }
drh9b47ee32013-08-20 03:13:51 +00005580 if( pCur->skipNext ){
5581 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5582 pCur->eState = CURSOR_VALID;
5583 if( pCur->skipNext>0 ){
5584 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005585 return SQLITE_OK;
5586 }
drhf66f26a2013-08-19 20:04:10 +00005587 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005588 }
danielk1977da184232006-01-05 11:34:32 +00005589 }
danielk1977da184232006-01-05 11:34:32 +00005590
danielk197771d5d2c2008-09-29 11:49:47 +00005591 pPage = pCur->apPage[pCur->iPage];
5592 idx = ++pCur->aiIdx[pCur->iPage];
5593 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005594
5595 /* If the database file is corrupt, it is possible for the value of idx
5596 ** to be invalid here. This can only occur if a second cursor modifies
5597 ** the page while cursor pCur is holding a reference to it. Which can
5598 ** only happen if the database is corrupt in such a way as to link the
5599 ** page into more than one b-tree structure. */
5600 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005601
danielk197771d5d2c2008-09-29 11:49:47 +00005602 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005603 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005604 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005605 if( rc ) return rc;
5606 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005607 }
drh5e2f8b92001-05-28 00:41:15 +00005608 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005609 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005610 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005611 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005612 return SQLITE_OK;
5613 }
danielk197730548662009-07-09 05:07:37 +00005614 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005615 pPage = pCur->apPage[pCur->iPage];
5616 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005617 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005618 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005619 }else{
drhee6438d2014-09-01 13:29:32 +00005620 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005621 }
drh8178a752003-01-05 21:41:40 +00005622 }
drh3aac2dd2004-04-26 14:10:20 +00005623 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005624 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005625 }else{
5626 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005627 }
drh72f82862001-05-24 21:06:34 +00005628}
drhee6438d2014-09-01 13:29:32 +00005629int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5630 MemPage *pPage;
5631 assert( cursorHoldsMutex(pCur) );
5632 assert( pRes!=0 );
5633 assert( *pRes==0 || *pRes==1 );
5634 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5635 pCur->info.nSize = 0;
5636 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5637 *pRes = 0;
5638 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5639 pPage = pCur->apPage[pCur->iPage];
5640 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5641 pCur->aiIdx[pCur->iPage]--;
5642 return btreeNext(pCur, pRes);
5643 }
5644 if( pPage->leaf ){
5645 return SQLITE_OK;
5646 }else{
5647 return moveToLeftmost(pCur);
5648 }
5649}
drh72f82862001-05-24 21:06:34 +00005650
drh3b7511c2001-05-26 13:15:44 +00005651/*
drh2dcc9aa2002-12-04 13:40:25 +00005652** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005653** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005654** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005655** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005656**
drhee6438d2014-09-01 13:29:32 +00005657** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5658** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005659** to the previous cell on the current page. The (slower) btreePrevious()
5660** helper routine is called when it is necessary to move to a different page
5661** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005662**
drhe39a7322014-02-03 14:04:11 +00005663** The calling function will set *pRes to 0 or 1. The initial *pRes value
5664** will be 1 if the cursor being stepped corresponds to an SQL index and
5665** if this routine could have been skipped if that SQL index had been
5666** a unique index. Otherwise the caller will have set *pRes to zero.
5667** Zero is the common case. The btree implementation is free to use the
5668** initial *pRes value as a hint to improve performance, but the current
5669** SQLite btree implementation does not. (Note that the comdb2 btree
5670** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005671*/
drhee6438d2014-09-01 13:29:32 +00005672static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005673 int rc;
drh8178a752003-01-05 21:41:40 +00005674 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005675
drh1fee73e2007-08-29 04:00:57 +00005676 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005677 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005678 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005679 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005680 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5681 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005682 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005683 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005684 if( rc!=SQLITE_OK ){
5685 return rc;
drhf66f26a2013-08-19 20:04:10 +00005686 }
5687 if( CURSOR_INVALID==pCur->eState ){
5688 *pRes = 1;
5689 return SQLITE_OK;
5690 }
drh9b47ee32013-08-20 03:13:51 +00005691 if( pCur->skipNext ){
5692 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5693 pCur->eState = CURSOR_VALID;
5694 if( pCur->skipNext<0 ){
5695 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005696 return SQLITE_OK;
5697 }
drhf66f26a2013-08-19 20:04:10 +00005698 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005699 }
danielk1977da184232006-01-05 11:34:32 +00005700 }
danielk1977da184232006-01-05 11:34:32 +00005701
danielk197771d5d2c2008-09-29 11:49:47 +00005702 pPage = pCur->apPage[pCur->iPage];
5703 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005704 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005705 int idx = pCur->aiIdx[pCur->iPage];
5706 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005707 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005708 rc = moveToRightmost(pCur);
5709 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005710 while( pCur->aiIdx[pCur->iPage]==0 ){
5711 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005712 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005713 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005714 return SQLITE_OK;
5715 }
danielk197730548662009-07-09 05:07:37 +00005716 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005717 }
drhee6438d2014-09-01 13:29:32 +00005718 assert( pCur->info.nSize==0 );
5719 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005720
5721 pCur->aiIdx[pCur->iPage]--;
5722 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005723 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005724 rc = sqlite3BtreePrevious(pCur, pRes);
5725 }else{
5726 rc = SQLITE_OK;
5727 }
drh2dcc9aa2002-12-04 13:40:25 +00005728 }
drh2dcc9aa2002-12-04 13:40:25 +00005729 return rc;
5730}
drhee6438d2014-09-01 13:29:32 +00005731int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5732 assert( cursorHoldsMutex(pCur) );
5733 assert( pRes!=0 );
5734 assert( *pRes==0 || *pRes==1 );
5735 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5736 *pRes = 0;
5737 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5738 pCur->info.nSize = 0;
5739 if( pCur->eState!=CURSOR_VALID
5740 || pCur->aiIdx[pCur->iPage]==0
5741 || pCur->apPage[pCur->iPage]->leaf==0
5742 ){
5743 return btreePrevious(pCur, pRes);
5744 }
5745 pCur->aiIdx[pCur->iPage]--;
5746 return SQLITE_OK;
5747}
drh2dcc9aa2002-12-04 13:40:25 +00005748
5749/*
drh3b7511c2001-05-26 13:15:44 +00005750** Allocate a new page from the database file.
5751**
danielk19773b8a05f2007-03-19 17:44:26 +00005752** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005753** has already been called on the new page.) The new page has also
5754** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005755** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005756**
5757** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005758** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005759**
drh82e647d2013-03-02 03:25:55 +00005760** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005761** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005762** attempt to keep related pages close to each other in the database file,
5763** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005764**
drh82e647d2013-03-02 03:25:55 +00005765** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5766** anywhere on the free-list, then it is guaranteed to be returned. If
5767** eMode is BTALLOC_LT then the page returned will be less than or equal
5768** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5769** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005770*/
drh4f0c5872007-03-26 22:05:01 +00005771static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005772 BtShared *pBt, /* The btree */
5773 MemPage **ppPage, /* Store pointer to the allocated page here */
5774 Pgno *pPgno, /* Store the page number here */
5775 Pgno nearby, /* Search for a page near this one */
5776 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005777){
drh3aac2dd2004-04-26 14:10:20 +00005778 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005779 int rc;
drh35cd6432009-06-05 14:17:21 +00005780 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005781 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005782 MemPage *pTrunk = 0;
5783 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005784 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005785
drh1fee73e2007-08-29 04:00:57 +00005786 assert( sqlite3_mutex_held(pBt->mutex) );
dan70af25d2015-08-21 17:57:16 +00005787 assert( eMode==BTALLOC_ANY || (nearby>0 && ISAUTOVACUUM)
5788 || (eMode==BTALLOC_EXACT && sqlite3PagerIsUnlocked(pBt->pPager))
5789 );
drh3aac2dd2004-04-26 14:10:20 +00005790 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005791 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005792 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5793 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005794 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005795 testcase( n==mxPage-1 );
dan70af25d2015-08-21 17:57:16 +00005796 if( sqlite3PagerIsUnlocked(pBt->pPager)==0 && n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005797 return SQLITE_CORRUPT_BKPT;
5798 }
dan7b3d71e2015-08-19 20:27:05 +00005799
5800 /* Ensure page 1 is writable. This function will either change the number
5801 ** of pages in the free-list or the size of the database file. Since both
5802 ** of these operations involve modifying page 1 header fields, page 1
5803 ** will definitely be written by this transaction. If this is an UNLOCKED
5804 ** transaction, ensure the BtreePtrmap structure has been allocated. */
dan7b3d71e2015-08-19 20:27:05 +00005805 rc = sqlite3PagerWrite(pPage1->pDbPage);
5806 if( rc ) return rc;
5807
drh3aac2dd2004-04-26 14:10:20 +00005808 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005809 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005810 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005811 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005812 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005813
drh82e647d2013-03-02 03:25:55 +00005814 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005815 ** shows that the page 'nearby' is somewhere on the free-list, then
5816 ** the entire-list will be searched for that page.
5817 */
dan51f0b6d2013-02-22 20:16:34 +00005818 if( eMode==BTALLOC_EXACT ){
dan70af25d2015-08-21 17:57:16 +00005819 assert( ISAUTOVACUUM==!sqlite3PagerIsUnlocked(pBt->pPager) );
5820 if( ISAUTOVACUUM ){
5821 if( nearby<=mxPage ){
5822 u8 eType;
5823 assert( nearby>0 );
5824 assert( pBt->autoVacuum );
5825 rc = ptrmapGet(pBt, nearby, &eType, 0);
5826 if( rc ) return rc;
5827 if( eType==PTRMAP_FREEPAGE ){
5828 searchList = 1;
5829 }
dan51f0b6d2013-02-22 20:16:34 +00005830 }
dan70af25d2015-08-21 17:57:16 +00005831 }else{
5832 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005833 }
dan70af25d2015-08-21 17:57:16 +00005834 }
5835#ifndef SQLITE_OMIT_AUTOVACUUM
5836 else if( eMode==BTALLOC_LE ){
dan51f0b6d2013-02-22 20:16:34 +00005837 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005838 }
5839#endif
5840
5841 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5842 ** first free-list trunk page. iPrevTrunk is initially 1.
5843 */
drh3aac2dd2004-04-26 14:10:20 +00005844 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005845
5846 /* The code within this loop is run only once if the 'searchList' variable
5847 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005848 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5849 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005850 */
5851 do {
5852 pPrevTrunk = pTrunk;
5853 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005854 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5855 ** is the page number of the next freelist trunk page in the list or
5856 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005857 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005858 }else{
drh113762a2014-11-19 16:36:25 +00005859 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5860 ** stores the page number of the first page of the freelist, or zero if
5861 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005862 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005863 }
drhdf35a082009-07-09 02:24:35 +00005864 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005865 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005866 rc = SQLITE_CORRUPT_BKPT;
5867 }else{
drh7e8c6f12015-05-28 03:28:27 +00005868 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005869 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005870 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005871 pTrunk = 0;
5872 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005873 }
drhb07028f2011-10-14 21:49:18 +00005874 assert( pTrunk!=0 );
5875 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005876 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5877 ** is the number of leaf page pointers to follow. */
5878 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005879 if( k==0 && !searchList ){
5880 /* The trunk has no leaves and the list is not being searched.
5881 ** So extract the trunk page itself and use it as the newly
5882 ** allocated page */
5883 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005884 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005885 if( rc ){
5886 goto end_allocate_page;
5887 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005888 *pPgno = iTrunk;
5889 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5890 *ppPage = pTrunk;
5891 pTrunk = 0;
5892 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005893 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005894 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005895 rc = SQLITE_CORRUPT_BKPT;
5896 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005897#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005898 }else if( searchList
5899 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5900 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005901 /* The list is being searched and this trunk page is the page
5902 ** to allocate, regardless of whether it has leaves.
5903 */
dan51f0b6d2013-02-22 20:16:34 +00005904 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005905 *ppPage = pTrunk;
5906 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005907 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005908 if( rc ){
5909 goto end_allocate_page;
5910 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005911 if( k==0 ){
5912 if( !pPrevTrunk ){
5913 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5914 }else{
danf48c3552010-08-23 15:41:24 +00005915 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5916 if( rc!=SQLITE_OK ){
5917 goto end_allocate_page;
5918 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005919 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5920 }
5921 }else{
5922 /* The trunk page is required by the caller but it contains
5923 ** pointers to free-list leaves. The first leaf becomes a trunk
5924 ** page in this case.
5925 */
5926 MemPage *pNewTrunk;
5927 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005928 if( iNewTrunk>mxPage ){
5929 rc = SQLITE_CORRUPT_BKPT;
5930 goto end_allocate_page;
5931 }
drhdf35a082009-07-09 02:24:35 +00005932 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005933 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005934 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005935 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005936 }
danielk19773b8a05f2007-03-19 17:44:26 +00005937 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005938 if( rc!=SQLITE_OK ){
5939 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005940 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005941 }
5942 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5943 put4byte(&pNewTrunk->aData[4], k-1);
5944 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005945 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005946 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005947 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005948 put4byte(&pPage1->aData[32], iNewTrunk);
5949 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005950 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005951 if( rc ){
5952 goto end_allocate_page;
5953 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005954 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5955 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005956 }
5957 pTrunk = 0;
5958 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5959#endif
danielk1977e5765212009-06-17 11:13:28 +00005960 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005961 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005962 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005963 Pgno iPage;
5964 unsigned char *aData = pTrunk->aData;
5965 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005966 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005967 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005968 if( eMode==BTALLOC_LE ){
5969 for(i=0; i<k; i++){
5970 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005971 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005972 closest = i;
5973 break;
5974 }
5975 }
5976 }else{
5977 int dist;
5978 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5979 for(i=1; i<k; i++){
5980 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5981 if( d2<dist ){
5982 closest = i;
5983 dist = d2;
5984 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005985 }
5986 }
5987 }else{
5988 closest = 0;
5989 }
5990
5991 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005992 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005993 if( iPage>mxPage ){
5994 rc = SQLITE_CORRUPT_BKPT;
5995 goto end_allocate_page;
5996 }
drhdf35a082009-07-09 02:24:35 +00005997 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005998 if( !searchList
5999 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6000 ){
danielk1977bea2a942009-01-20 17:06:27 +00006001 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006002 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006003 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6004 ": %d more free pages\n",
6005 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006006 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6007 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006008 if( closest<k-1 ){
6009 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6010 }
6011 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006012 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006013 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006014 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006015 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006016 if( rc!=SQLITE_OK ){
6017 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006018 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006019 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006020 }
6021 searchList = 0;
6022 }
drhee696e22004-08-30 16:52:17 +00006023 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006024 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006025 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006026 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006027 }else{
danbc1a3c62013-02-23 16:40:46 +00006028 /* There are no pages on the freelist, so append a new page to the
6029 ** database image.
6030 **
6031 ** Normally, new pages allocated by this block can be requested from the
6032 ** pager layer with the 'no-content' flag set. This prevents the pager
6033 ** from trying to read the pages content from disk. However, if the
6034 ** current transaction has already run one or more incremental-vacuum
6035 ** steps, then the page we are about to allocate may contain content
6036 ** that is required in the event of a rollback. In this case, do
6037 ** not set the no-content flag. This causes the pager to load and journal
6038 ** the current page content before overwriting it.
6039 **
6040 ** Note that the pager will not actually attempt to load or journal
6041 ** content for any page that really does lie past the end of the database
6042 ** file on disk. So the effects of disabling the no-content optimization
6043 ** here are confined to those pages that lie between the end of the
6044 ** database image and the end of the database file.
6045 */
drh3f387402014-09-24 01:23:00 +00006046 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006047
drhdd3cd972010-03-27 17:12:36 +00006048 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6049 if( rc ) return rc;
6050 pBt->nPage++;
6051 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006052
danielk1977afcdd022004-10-31 16:25:42 +00006053#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006054 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006055 /* If *pPgno refers to a pointer-map page, allocate two new pages
6056 ** at the end of the file instead of one. The first allocated page
6057 ** becomes a new pointer-map page, the second is used by the caller.
6058 */
danielk1977ac861692009-03-28 10:54:22 +00006059 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006060 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6061 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006062 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006063 if( rc==SQLITE_OK ){
6064 rc = sqlite3PagerWrite(pPg->pDbPage);
6065 releasePage(pPg);
6066 }
6067 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006068 pBt->nPage++;
6069 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006070 }
6071#endif
drhdd3cd972010-03-27 17:12:36 +00006072 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6073 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006074
danielk1977599fcba2004-11-08 07:13:13 +00006075 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006076 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006077 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006078 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006079 if( rc!=SQLITE_OK ){
6080 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006081 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006082 }
drh3a4c1412004-05-09 20:40:11 +00006083 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006084 }
danielk1977599fcba2004-11-08 07:13:13 +00006085
6086 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006087
6088end_allocate_page:
6089 releasePage(pTrunk);
6090 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006091 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6092 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006093 return rc;
6094}
6095
6096/*
danielk1977bea2a942009-01-20 17:06:27 +00006097** This function is used to add page iPage to the database file free-list.
6098** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006099**
danielk1977bea2a942009-01-20 17:06:27 +00006100** The value passed as the second argument to this function is optional.
6101** If the caller happens to have a pointer to the MemPage object
6102** corresponding to page iPage handy, it may pass it as the second value.
6103** Otherwise, it may pass NULL.
6104**
6105** If a pointer to a MemPage object is passed as the second argument,
6106** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006107*/
danielk1977bea2a942009-01-20 17:06:27 +00006108static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6109 MemPage *pTrunk = 0; /* Free-list trunk page */
6110 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6111 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6112 MemPage *pPage; /* Page being freed. May be NULL. */
6113 int rc; /* Return Code */
6114 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006115
danielk1977bea2a942009-01-20 17:06:27 +00006116 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006117 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006118 assert( !pMemPage || pMemPage->pgno==iPage );
6119
danfb0246b2015-05-26 12:18:17 +00006120 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006121 if( pMemPage ){
6122 pPage = pMemPage;
6123 sqlite3PagerRef(pPage->pDbPage);
6124 }else{
6125 pPage = btreePageLookup(pBt, iPage);
6126 }
drh3aac2dd2004-04-26 14:10:20 +00006127
drha34b6762004-05-07 13:30:42 +00006128 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006129 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006130 if( rc ) goto freepage_out;
6131 nFree = get4byte(&pPage1->aData[36]);
6132 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006133
drhc9166342012-01-05 23:32:06 +00006134 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006135 /* If the secure_delete option is enabled, then
6136 ** always fully overwrite deleted information with zeros.
6137 */
drhb00fc3b2013-08-21 23:42:32 +00006138 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006139 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006140 ){
6141 goto freepage_out;
6142 }
6143 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006144 }
drhfcce93f2006-02-22 03:08:32 +00006145
danielk1977687566d2004-11-02 12:56:41 +00006146 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006147 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006148 */
dan7b3d71e2015-08-19 20:27:05 +00006149 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00006150 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006151 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006152 }
danielk1977687566d2004-11-02 12:56:41 +00006153
danielk1977bea2a942009-01-20 17:06:27 +00006154 /* Now manipulate the actual database free-list structure. There are two
6155 ** possibilities. If the free-list is currently empty, or if the first
6156 ** trunk page in the free-list is full, then this page will become a
6157 ** new free-list trunk page. Otherwise, it will become a leaf of the
6158 ** first trunk page in the current free-list. This block tests if it
6159 ** is possible to add the page as a new free-list leaf.
6160 */
6161 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006162 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006163
6164 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006165 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006166 if( rc!=SQLITE_OK ){
6167 goto freepage_out;
6168 }
6169
6170 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006171 assert( pBt->usableSize>32 );
6172 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006173 rc = SQLITE_CORRUPT_BKPT;
6174 goto freepage_out;
6175 }
drheeb844a2009-08-08 18:01:07 +00006176 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006177 /* In this case there is room on the trunk page to insert the page
6178 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006179 **
6180 ** Note that the trunk page is not really full until it contains
6181 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6182 ** coded. But due to a coding error in versions of SQLite prior to
6183 ** 3.6.0, databases with freelist trunk pages holding more than
6184 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6185 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006186 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006187 ** for now. At some point in the future (once everyone has upgraded
6188 ** to 3.6.0 or later) we should consider fixing the conditional above
6189 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006190 **
6191 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6192 ** avoid using the last six entries in the freelist trunk page array in
6193 ** order that database files created by newer versions of SQLite can be
6194 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006195 */
danielk19773b8a05f2007-03-19 17:44:26 +00006196 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006197 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006198 put4byte(&pTrunk->aData[4], nLeaf+1);
6199 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006200 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006201 sqlite3PagerDontWrite(pPage->pDbPage);
6202 }
danielk1977bea2a942009-01-20 17:06:27 +00006203 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006204 }
drh3a4c1412004-05-09 20:40:11 +00006205 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006206 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006207 }
drh3b7511c2001-05-26 13:15:44 +00006208 }
danielk1977bea2a942009-01-20 17:06:27 +00006209
6210 /* If control flows to this point, then it was not possible to add the
6211 ** the page being freed as a leaf page of the first trunk in the free-list.
6212 ** Possibly because the free-list is empty, or possibly because the
6213 ** first trunk in the free-list is full. Either way, the page being freed
6214 ** will become the new first trunk page in the free-list.
6215 */
drhb00fc3b2013-08-21 23:42:32 +00006216 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006217 goto freepage_out;
6218 }
6219 rc = sqlite3PagerWrite(pPage->pDbPage);
6220 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006221 goto freepage_out;
6222 }
6223 put4byte(pPage->aData, iTrunk);
6224 put4byte(&pPage->aData[4], 0);
6225 put4byte(&pPage1->aData[32], iPage);
6226 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6227
6228freepage_out:
6229 if( pPage ){
6230 pPage->isInit = 0;
6231 }
6232 releasePage(pPage);
6233 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006234 return rc;
6235}
drhc314dc72009-07-21 11:52:34 +00006236static void freePage(MemPage *pPage, int *pRC){
6237 if( (*pRC)==SQLITE_OK ){
6238 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6239 }
danielk1977bea2a942009-01-20 17:06:27 +00006240}
drh3b7511c2001-05-26 13:15:44 +00006241
6242/*
drh9bfdc252014-09-24 02:05:41 +00006243** Free any overflow pages associated with the given Cell. Write the
6244** local Cell size (the number of bytes on the original page, omitting
6245** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006246*/
drh9bfdc252014-09-24 02:05:41 +00006247static int clearCell(
6248 MemPage *pPage, /* The page that contains the Cell */
6249 unsigned char *pCell, /* First byte of the Cell */
6250 u16 *pnSize /* Write the size of the Cell here */
6251){
danielk1977aef0bf62005-12-30 16:28:01 +00006252 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00006253 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00006254 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006255 int rc;
drh94440812007-03-06 11:42:19 +00006256 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006257 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006258
drh1fee73e2007-08-29 04:00:57 +00006259 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00006260 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00006261 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00006262 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00006263 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006264 }
drhe42a9b42011-08-31 13:27:19 +00006265 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006266 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006267 }
drh6f11bef2004-05-13 01:12:56 +00006268 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00006269 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006270 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006271 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006272 assert( nOvfl>0 ||
6273 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6274 );
drh72365832007-03-06 15:53:44 +00006275 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006276 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006277 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006278 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006279 /* 0 is not a legal page number and page 1 cannot be an
6280 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6281 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006282 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006283 }
danielk1977bea2a942009-01-20 17:06:27 +00006284 if( nOvfl ){
6285 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6286 if( rc ) return rc;
6287 }
dan887d4b22010-02-25 12:09:16 +00006288
shaneh1da207e2010-03-09 14:41:12 +00006289 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006290 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6291 ){
6292 /* There is no reason any cursor should have an outstanding reference
6293 ** to an overflow page belonging to a cell that is being deleted/updated.
6294 ** So if there exists more than one reference to this page, then it
6295 ** must not really be an overflow page and the database must be corrupt.
6296 ** It is helpful to detect this before calling freePage2(), as
6297 ** freePage2() may zero the page contents if secure-delete mode is
6298 ** enabled. If this 'overflow' page happens to be a page that the
6299 ** caller is iterating through or using in some other way, this
6300 ** can be problematic.
6301 */
6302 rc = SQLITE_CORRUPT_BKPT;
6303 }else{
6304 rc = freePage2(pBt, pOvfl, ovflPgno);
6305 }
6306
danielk1977bea2a942009-01-20 17:06:27 +00006307 if( pOvfl ){
6308 sqlite3PagerUnref(pOvfl->pDbPage);
6309 }
drh3b7511c2001-05-26 13:15:44 +00006310 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006311 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006312 }
drh5e2f8b92001-05-28 00:41:15 +00006313 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006314}
6315
6316/*
drh91025292004-05-03 19:49:32 +00006317** Create the byte sequence used to represent a cell on page pPage
6318** and write that byte sequence into pCell[]. Overflow pages are
6319** allocated and filled in as necessary. The calling procedure
6320** is responsible for making sure sufficient space has been allocated
6321** for pCell[].
6322**
6323** Note that pCell does not necessary need to point to the pPage->aData
6324** area. pCell might point to some temporary storage. The cell will
6325** be constructed in this temporary area then copied into pPage->aData
6326** later.
drh3b7511c2001-05-26 13:15:44 +00006327*/
6328static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006329 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006330 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006331 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006332 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006333 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006334 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006335){
drh3b7511c2001-05-26 13:15:44 +00006336 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006337 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006338 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006339 int spaceLeft;
6340 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006341 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006342 unsigned char *pPrior;
6343 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006344 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006345 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006346 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006347
drh1fee73e2007-08-29 04:00:57 +00006348 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006349
drhc5053fb2008-11-27 02:22:10 +00006350 /* pPage is not necessarily writeable since pCell might be auxiliary
6351 ** buffer space that is separate from the pPage buffer area */
6352 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6353 || sqlite3PagerIswriteable(pPage->pDbPage) );
6354
drh91025292004-05-03 19:49:32 +00006355 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006356 nHeader = pPage->childPtrSize;
6357 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006358 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006359 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006360 }else{
drh6200c882014-09-23 22:36:25 +00006361 assert( nData==0 );
6362 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006363 }
drh6f11bef2004-05-13 01:12:56 +00006364 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006365
drh6200c882014-09-23 22:36:25 +00006366 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006367 if( pPage->intKey ){
6368 pSrc = pData;
6369 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006370 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006371 }else{
drh98ef0f62015-06-30 01:25:52 +00006372 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006373 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006374 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006375 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006376 }
drh6200c882014-09-23 22:36:25 +00006377 if( nPayload<=pPage->maxLocal ){
6378 n = nHeader + nPayload;
6379 testcase( n==3 );
6380 testcase( n==4 );
6381 if( n<4 ) n = 4;
6382 *pnSize = n;
6383 spaceLeft = nPayload;
6384 pPrior = pCell;
6385 }else{
6386 int mn = pPage->minLocal;
6387 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6388 testcase( n==pPage->maxLocal );
6389 testcase( n==pPage->maxLocal+1 );
6390 if( n > pPage->maxLocal ) n = mn;
6391 spaceLeft = n;
6392 *pnSize = n + nHeader + 4;
6393 pPrior = &pCell[nHeader+n];
6394 }
drh3aac2dd2004-04-26 14:10:20 +00006395 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006396
drh6200c882014-09-23 22:36:25 +00006397 /* At this point variables should be set as follows:
6398 **
6399 ** nPayload Total payload size in bytes
6400 ** pPayload Begin writing payload here
6401 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6402 ** that means content must spill into overflow pages.
6403 ** *pnSize Size of the local cell (not counting overflow pages)
6404 ** pPrior Where to write the pgno of the first overflow page
6405 **
6406 ** Use a call to btreeParseCellPtr() to verify that the values above
6407 ** were computed correctly.
6408 */
6409#if SQLITE_DEBUG
6410 {
6411 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006412 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006413 assert( nHeader=(int)(info.pPayload - pCell) );
6414 assert( info.nKey==nKey );
6415 assert( *pnSize == info.nSize );
6416 assert( spaceLeft == info.nLocal );
6417 assert( pPrior == &pCell[info.iOverflow] );
6418 }
6419#endif
6420
6421 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006422 while( nPayload>0 ){
6423 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006424#ifndef SQLITE_OMIT_AUTOVACUUM
6425 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006426 if( pBt->autoVacuum ){
6427 do{
6428 pgnoOvfl++;
6429 } while(
6430 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6431 );
danielk1977b39f70b2007-05-17 18:28:11 +00006432 }
danielk1977afcdd022004-10-31 16:25:42 +00006433#endif
drhf49661a2008-12-10 16:45:50 +00006434 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
dan7b3d71e2015-08-19 20:27:05 +00006435
danielk1977a19df672004-11-03 11:37:07 +00006436 /* If the database supports auto-vacuum, and the second or subsequent
6437 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006438 ** for that page now.
6439 **
6440 ** If this is the first overflow page, then write a partial entry
6441 ** to the pointer-map. If we write nothing to this pointer-map slot,
6442 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006443 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006444 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006445 */
dan7b3d71e2015-08-19 20:27:05 +00006446 if( REQUIRE_PTRMAP && rc==SQLITE_OK ){
danielk19774ef24492007-05-23 09:52:41 +00006447 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006448 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006449 if( rc ){
6450 releasePage(pOvfl);
6451 }
danielk1977afcdd022004-10-31 16:25:42 +00006452 }
drh3b7511c2001-05-26 13:15:44 +00006453 if( rc ){
drh9b171272004-05-08 02:03:22 +00006454 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006455 return rc;
6456 }
drhc5053fb2008-11-27 02:22:10 +00006457
6458 /* If pToRelease is not zero than pPrior points into the data area
6459 ** of pToRelease. Make sure pToRelease is still writeable. */
6460 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6461
6462 /* If pPrior is part of the data area of pPage, then make sure pPage
6463 ** is still writeable */
6464 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6465 || sqlite3PagerIswriteable(pPage->pDbPage) );
6466
drh3aac2dd2004-04-26 14:10:20 +00006467 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006468 releasePage(pToRelease);
6469 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006470 pPrior = pOvfl->aData;
6471 put4byte(pPrior, 0);
6472 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006473 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006474 }
6475 n = nPayload;
6476 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006477
6478 /* If pToRelease is not zero than pPayload points into the data area
6479 ** of pToRelease. Make sure pToRelease is still writeable. */
6480 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6481
6482 /* If pPayload is part of the data area of pPage, then make sure pPage
6483 ** is still writeable */
6484 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6485 || sqlite3PagerIswriteable(pPage->pDbPage) );
6486
drhb026e052007-05-02 01:34:31 +00006487 if( nSrc>0 ){
6488 if( n>nSrc ) n = nSrc;
6489 assert( pSrc );
6490 memcpy(pPayload, pSrc, n);
6491 }else{
6492 memset(pPayload, 0, n);
6493 }
drh3b7511c2001-05-26 13:15:44 +00006494 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006495 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006496 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006497 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006498 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006499 if( nSrc==0 ){
6500 nSrc = nData;
6501 pSrc = pData;
6502 }
drhdd793422001-06-28 01:54:48 +00006503 }
drh9b171272004-05-08 02:03:22 +00006504 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006505 return SQLITE_OK;
6506}
6507
drh14acc042001-06-10 19:56:58 +00006508/*
6509** Remove the i-th cell from pPage. This routine effects pPage only.
6510** The cell content is not freed or deallocated. It is assumed that
6511** the cell content has been copied someplace else. This routine just
6512** removes the reference to the cell from pPage.
6513**
6514** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006515*/
drh98add2e2009-07-20 17:11:49 +00006516static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006517 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006518 u8 *data; /* pPage->aData */
6519 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006520 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006521 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006522
drh98add2e2009-07-20 17:11:49 +00006523 if( *pRC ) return;
6524
drh8c42ca92001-06-22 19:15:00 +00006525 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006526 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006527 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006528 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006529 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006530 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006531 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006532 hdr = pPage->hdrOffset;
6533 testcase( pc==get2byte(&data[hdr+5]) );
6534 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006535 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006536 *pRC = SQLITE_CORRUPT_BKPT;
6537 return;
shane0af3f892008-11-12 04:55:34 +00006538 }
shanedcc50b72008-11-13 18:29:50 +00006539 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006540 if( rc ){
6541 *pRC = rc;
6542 return;
shanedcc50b72008-11-13 18:29:50 +00006543 }
drh14acc042001-06-10 19:56:58 +00006544 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006545 if( pPage->nCell==0 ){
6546 memset(&data[hdr+1], 0, 4);
6547 data[hdr+7] = 0;
6548 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6549 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6550 - pPage->childPtrSize - 8;
6551 }else{
6552 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6553 put2byte(&data[hdr+3], pPage->nCell);
6554 pPage->nFree += 2;
6555 }
drh14acc042001-06-10 19:56:58 +00006556}
6557
6558/*
6559** Insert a new cell on pPage at cell index "i". pCell points to the
6560** content of the cell.
6561**
6562** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006563** will not fit, then make a copy of the cell content into pTemp if
6564** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006565** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006566** in pTemp or the original pCell) and also record its index.
6567** Allocating a new entry in pPage->aCell[] implies that
6568** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006569*/
drh98add2e2009-07-20 17:11:49 +00006570static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006571 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006572 int i, /* New cell becomes the i-th cell of the page */
6573 u8 *pCell, /* Content of the new cell */
6574 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006575 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006576 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6577 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006578){
drh383d30f2010-02-26 13:07:37 +00006579 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006580 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006581 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006582 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006583
drh98add2e2009-07-20 17:11:49 +00006584 if( *pRC ) return;
6585
drh43605152004-05-29 21:46:49 +00006586 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006587 assert( MX_CELL(pPage->pBt)<=10921 );
6588 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006589 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6590 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006591 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006592 /* The cell should normally be sized correctly. However, when moving a
6593 ** malformed cell from a leaf page to an interior page, if the cell size
6594 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6595 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6596 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006597 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006598 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006599 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006600 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006601 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006602 }
danielk19774dbaa892009-06-16 16:50:22 +00006603 if( iChild ){
6604 put4byte(pCell, iChild);
6605 }
drh43605152004-05-29 21:46:49 +00006606 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006607 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6608 pPage->apOvfl[j] = pCell;
6609 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006610
6611 /* When multiple overflows occur, they are always sequential and in
6612 ** sorted order. This invariants arise because multiple overflows can
6613 ** only occur when inserting divider cells into the parent page during
6614 ** balancing, and the dividers are adjacent and sorted.
6615 */
6616 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6617 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006618 }else{
dan7b3d71e2015-08-19 20:27:05 +00006619 BtShared *pBt = pPage->pBt;
danielk19776e465eb2007-08-21 13:11:00 +00006620 int rc = sqlite3PagerWrite(pPage->pDbPage);
6621 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006622 *pRC = rc;
6623 return;
danielk19776e465eb2007-08-21 13:11:00 +00006624 }
6625 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006626 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006627 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006628 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006629 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006630 /* The allocateSpace() routine guarantees the following properties
6631 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006632 assert( idx >= 0 );
6633 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
dan7b3d71e2015-08-19 20:27:05 +00006634 assert( idx+sz <= (int)pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006635 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006636 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006637 if( iChild ){
6638 put4byte(&data[idx], iChild);
6639 }
drh2c8fb922015-06-25 19:53:48 +00006640 pIns = pPage->aCellIdx + i*2;
6641 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6642 put2byte(pIns, idx);
6643 pPage->nCell++;
6644 /* increment the cell count */
6645 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6646 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
dan7b3d71e2015-08-19 20:27:05 +00006647 if( REQUIRE_PTRMAP ){
danielk1977a19df672004-11-03 11:37:07 +00006648 /* The cell may contain a pointer to an overflow page. If so, write
6649 ** the entry for the overflow page into the pointer map.
6650 */
drh98add2e2009-07-20 17:11:49 +00006651 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006652 }
drh14acc042001-06-10 19:56:58 +00006653 }
6654}
6655
6656/*
drh1ffd2472015-06-23 02:37:30 +00006657** A CellArray object contains a cache of pointers and sizes for a
6658** consecutive sequence of cells that might be held multiple pages.
6659*/
6660typedef struct CellArray CellArray;
6661struct CellArray {
6662 int nCell; /* Number of cells in apCell[] */
6663 MemPage *pRef; /* Reference page */
6664 u8 **apCell; /* All cells begin balanced */
6665 u16 *szCell; /* Local size of all cells in apCell[] */
6666};
6667
6668/*
6669** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6670** computed.
6671*/
6672static void populateCellCache(CellArray *p, int idx, int N){
6673 assert( idx>=0 && idx+N<=p->nCell );
6674 while( N>0 ){
6675 assert( p->apCell[idx]!=0 );
6676 if( p->szCell[idx]==0 ){
6677 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6678 }else{
6679 assert( CORRUPT_DB ||
6680 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6681 }
6682 idx++;
6683 N--;
6684 }
6685}
6686
6687/*
6688** Return the size of the Nth element of the cell array
6689*/
6690static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6691 assert( N>=0 && N<p->nCell );
6692 assert( p->szCell[N]==0 );
6693 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6694 return p->szCell[N];
6695}
6696static u16 cachedCellSize(CellArray *p, int N){
6697 assert( N>=0 && N<p->nCell );
6698 if( p->szCell[N] ) return p->szCell[N];
6699 return computeCellSize(p, N);
6700}
6701
6702/*
dan8e9ba0c2014-10-14 17:27:04 +00006703** Array apCell[] contains pointers to nCell b-tree page cells. The
6704** szCell[] array contains the size in bytes of each cell. This function
6705** replaces the current contents of page pPg with the contents of the cell
6706** array.
6707**
6708** Some of the cells in apCell[] may currently be stored in pPg. This
6709** function works around problems caused by this by making a copy of any
6710** such cells before overwriting the page data.
6711**
6712** The MemPage.nFree field is invalidated by this function. It is the
6713** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006714*/
drh658873b2015-06-22 20:02:04 +00006715static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006716 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006717 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006718 u8 **apCell, /* Array of cells */
6719 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006720){
6721 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6722 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6723 const int usableSize = pPg->pBt->usableSize;
6724 u8 * const pEnd = &aData[usableSize];
6725 int i;
6726 u8 *pCellptr = pPg->aCellIdx;
6727 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6728 u8 *pData;
6729
6730 i = get2byte(&aData[hdr+5]);
6731 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006732
dan8e9ba0c2014-10-14 17:27:04 +00006733 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006734 for(i=0; i<nCell; i++){
6735 u8 *pCell = apCell[i];
6736 if( pCell>aData && pCell<pEnd ){
6737 pCell = &pTmp[pCell - aData];
6738 }
6739 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006740 put2byte(pCellptr, (pData - aData));
6741 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006742 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6743 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006744 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006745 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006746 }
6747
dand7b545b2014-10-13 18:03:27 +00006748 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006749 pPg->nCell = nCell;
6750 pPg->nOverflow = 0;
6751
6752 put2byte(&aData[hdr+1], 0);
6753 put2byte(&aData[hdr+3], pPg->nCell);
6754 put2byte(&aData[hdr+5], pData - aData);
6755 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006756 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006757}
6758
dan8e9ba0c2014-10-14 17:27:04 +00006759/*
6760** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6761** contains the size in bytes of each such cell. This function attempts to
6762** add the cells stored in the array to page pPg. If it cannot (because
6763** the page needs to be defragmented before the cells will fit), non-zero
6764** is returned. Otherwise, if the cells are added successfully, zero is
6765** returned.
6766**
6767** Argument pCellptr points to the first entry in the cell-pointer array
6768** (part of page pPg) to populate. After cell apCell[0] is written to the
6769** page body, a 16-bit offset is written to pCellptr. And so on, for each
6770** cell in the array. It is the responsibility of the caller to ensure
6771** that it is safe to overwrite this part of the cell-pointer array.
6772**
6773** When this function is called, *ppData points to the start of the
6774** content area on page pPg. If the size of the content area is extended,
6775** *ppData is updated to point to the new start of the content area
6776** before returning.
6777**
6778** Finally, argument pBegin points to the byte immediately following the
6779** end of the space required by this page for the cell-pointer area (for
6780** all cells - not just those inserted by the current call). If the content
6781** area must be extended to before this point in order to accomodate all
6782** cells in apCell[], then the cells do not fit and non-zero is returned.
6783*/
dand7b545b2014-10-13 18:03:27 +00006784static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006785 MemPage *pPg, /* Page to add cells to */
6786 u8 *pBegin, /* End of cell-pointer array */
6787 u8 **ppData, /* IN/OUT: Page content -area pointer */
6788 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006789 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006790 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006791 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006792){
6793 int i;
6794 u8 *aData = pPg->aData;
6795 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006796 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006797 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006798 for(i=iFirst; i<iEnd; i++){
6799 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006800 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006801 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006802 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006803 pData -= sz;
6804 if( pData<pBegin ) return 1;
6805 pSlot = pData;
6806 }
drhf7838932015-06-23 15:36:34 +00006807 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006808 put2byte(pCellptr, (pSlot - aData));
6809 pCellptr += 2;
6810 }
6811 *ppData = pData;
6812 return 0;
6813}
6814
dan8e9ba0c2014-10-14 17:27:04 +00006815/*
6816** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6817** contains the size in bytes of each such cell. This function adds the
6818** space associated with each cell in the array that is currently stored
6819** within the body of pPg to the pPg free-list. The cell-pointers and other
6820** fields of the page are not updated.
6821**
6822** This function returns the total number of cells added to the free-list.
6823*/
dand7b545b2014-10-13 18:03:27 +00006824static int pageFreeArray(
6825 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006826 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006827 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006828 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006829){
6830 u8 * const aData = pPg->aData;
6831 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006832 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006833 int nRet = 0;
6834 int i;
drhf7838932015-06-23 15:36:34 +00006835 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006836 u8 *pFree = 0;
6837 int szFree = 0;
6838
drhf7838932015-06-23 15:36:34 +00006839 for(i=iFirst; i<iEnd; i++){
6840 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006841 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006842 int sz;
6843 /* No need to use cachedCellSize() here. The sizes of all cells that
6844 ** are to be freed have already been computing while deciding which
6845 ** cells need freeing */
6846 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006847 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006848 if( pFree ){
6849 assert( pFree>aData && (pFree - aData)<65536 );
6850 freeSpace(pPg, (u16)(pFree - aData), szFree);
6851 }
dand7b545b2014-10-13 18:03:27 +00006852 pFree = pCell;
6853 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006854 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006855 }else{
6856 pFree = pCell;
6857 szFree += sz;
6858 }
6859 nRet++;
6860 }
6861 }
drhfefa0942014-11-05 21:21:08 +00006862 if( pFree ){
6863 assert( pFree>aData && (pFree - aData)<65536 );
6864 freeSpace(pPg, (u16)(pFree - aData), szFree);
6865 }
dand7b545b2014-10-13 18:03:27 +00006866 return nRet;
6867}
6868
dand7b545b2014-10-13 18:03:27 +00006869/*
drh5ab63772014-11-27 03:46:04 +00006870** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6871** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6872** with apCell[iOld]. After balancing, this page should hold nNew cells
6873** starting at apCell[iNew].
6874**
6875** This routine makes the necessary adjustments to pPg so that it contains
6876** the correct cells after being balanced.
6877**
dand7b545b2014-10-13 18:03:27 +00006878** The pPg->nFree field is invalid when this function returns. It is the
6879** responsibility of the caller to set it correctly.
6880*/
drh658873b2015-06-22 20:02:04 +00006881static int editPage(
dan09c68402014-10-11 20:00:24 +00006882 MemPage *pPg, /* Edit this page */
6883 int iOld, /* Index of first cell currently on page */
6884 int iNew, /* Index of new first cell on page */
6885 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006886 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006887){
dand7b545b2014-10-13 18:03:27 +00006888 u8 * const aData = pPg->aData;
6889 const int hdr = pPg->hdrOffset;
6890 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6891 int nCell = pPg->nCell; /* Cells stored on pPg */
6892 u8 *pData;
6893 u8 *pCellptr;
6894 int i;
6895 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6896 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006897
6898#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006899 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6900 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006901#endif
6902
dand7b545b2014-10-13 18:03:27 +00006903 /* Remove cells from the start and end of the page */
6904 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006905 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006906 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6907 nCell -= nShift;
6908 }
6909 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006910 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006911 }
dan09c68402014-10-11 20:00:24 +00006912
drh5ab63772014-11-27 03:46:04 +00006913 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006914 if( pData<pBegin ) goto editpage_fail;
6915
6916 /* Add cells to the start of the page */
6917 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006918 int nAdd = MIN(nNew,iOld-iNew);
6919 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006920 pCellptr = pPg->aCellIdx;
6921 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6922 if( pageInsertArray(
6923 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006924 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006925 ) ) goto editpage_fail;
6926 nCell += nAdd;
6927 }
6928
6929 /* Add any overflow cells */
6930 for(i=0; i<pPg->nOverflow; i++){
6931 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6932 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006933 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006934 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6935 nCell++;
6936 if( pageInsertArray(
6937 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006938 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006939 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006940 }
dand7b545b2014-10-13 18:03:27 +00006941 }
dan09c68402014-10-11 20:00:24 +00006942
dand7b545b2014-10-13 18:03:27 +00006943 /* Append cells to the end of the page */
6944 pCellptr = &pPg->aCellIdx[nCell*2];
6945 if( pageInsertArray(
6946 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006947 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006948 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006949
dand7b545b2014-10-13 18:03:27 +00006950 pPg->nCell = nNew;
6951 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006952
dand7b545b2014-10-13 18:03:27 +00006953 put2byte(&aData[hdr+3], pPg->nCell);
6954 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006955
6956#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006957 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006958 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006959 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006960 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6961 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006962 }
drh1ffd2472015-06-23 02:37:30 +00006963 assert( 0==memcmp(pCell, &aData[iOff],
6964 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006965 }
dan09c68402014-10-11 20:00:24 +00006966#endif
6967
drh658873b2015-06-22 20:02:04 +00006968 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006969 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006970 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006971 populateCellCache(pCArray, iNew, nNew);
6972 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006973}
6974
drh14acc042001-06-10 19:56:58 +00006975/*
drhc3b70572003-01-04 19:44:07 +00006976** The following parameters determine how many adjacent pages get involved
6977** in a balancing operation. NN is the number of neighbors on either side
6978** of the page that participate in the balancing operation. NB is the
6979** total number of pages that participate, including the target page and
6980** NN neighbors on either side.
6981**
6982** The minimum value of NN is 1 (of course). Increasing NN above 1
6983** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6984** in exchange for a larger degradation in INSERT and UPDATE performance.
6985** The value of NN appears to give the best results overall.
6986*/
6987#define NN 1 /* Number of neighbors on either side of pPage */
6988#define NB (NN*2+1) /* Total pages involved in the balance */
6989
danielk1977ac245ec2005-01-14 13:50:11 +00006990
drh615ae552005-01-16 23:21:00 +00006991#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006992/*
6993** This version of balance() handles the common special case where
6994** a new entry is being inserted on the extreme right-end of the
6995** tree, in other words, when the new entry will become the largest
6996** entry in the tree.
6997**
drhc314dc72009-07-21 11:52:34 +00006998** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006999** a new page to the right-hand side and put the one new entry in
7000** that page. This leaves the right side of the tree somewhat
7001** unbalanced. But odds are that we will be inserting new entries
7002** at the end soon afterwards so the nearly empty page will quickly
7003** fill up. On average.
7004**
7005** pPage is the leaf page which is the right-most page in the tree.
7006** pParent is its parent. pPage must have a single overflow entry
7007** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007008**
7009** The pSpace buffer is used to store a temporary copy of the divider
7010** cell that will be inserted into pParent. Such a cell consists of a 4
7011** byte page number followed by a variable length integer. In other
7012** words, at most 13 bytes. Hence the pSpace buffer must be at
7013** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007014*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007015static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7016 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007017 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007018 int rc; /* Return Code */
7019 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007020
drh1fee73e2007-08-29 04:00:57 +00007021 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007022 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007023 assert( pPage->nOverflow==1 );
7024
drh5d433ce2010-08-14 16:02:52 +00007025 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00007026 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00007027
danielk1977a50d9aa2009-06-08 14:49:45 +00007028 /* Allocate a new page. This page will become the right-sibling of
7029 ** pPage. Make the parent page writable, so that the new divider cell
7030 ** may be inserted. If both these operations are successful, proceed.
7031 */
drh4f0c5872007-03-26 22:05:01 +00007032 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007033
danielk1977eaa06f62008-09-18 17:34:44 +00007034 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007035
7036 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007037 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007038 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007039 u8 *pStop;
7040
drhc5053fb2008-11-27 02:22:10 +00007041 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007042 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7043 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00007044 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00007045 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00007046 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007047
7048 /* If this is an auto-vacuum database, update the pointer map
7049 ** with entries for the new page, and any pointer from the
7050 ** cell on the page to an overflow page. If either of these
7051 ** operations fails, the return code is set, but the contents
7052 ** of the parent page are still manipulated by thh code below.
7053 ** That is Ok, at this point the parent page is guaranteed to
7054 ** be marked as dirty. Returning an error code will cause a
7055 ** rollback, undoing any changes made to the parent page.
7056 */
dan7b3d71e2015-08-19 20:27:05 +00007057 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00007058 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7059 if( szCell>pNew->minLocal ){
7060 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007061 }
7062 }
danielk1977eaa06f62008-09-18 17:34:44 +00007063
danielk19776f235cc2009-06-04 14:46:08 +00007064 /* Create a divider cell to insert into pParent. The divider cell
7065 ** consists of a 4-byte page number (the page number of pPage) and
7066 ** a variable length key value (which must be the same value as the
7067 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007068 **
danielk19776f235cc2009-06-04 14:46:08 +00007069 ** To find the largest key value on pPage, first find the right-most
7070 ** cell on pPage. The first two fields of this cell are the
7071 ** record-length (a variable length integer at most 32-bits in size)
7072 ** and the key value (a variable length integer, may have any value).
7073 ** The first of the while(...) loops below skips over the record-length
7074 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007075 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007076 */
danielk1977eaa06f62008-09-18 17:34:44 +00007077 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007078 pStop = &pCell[9];
7079 while( (*(pCell++)&0x80) && pCell<pStop );
7080 pStop = &pCell[9];
7081 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7082
danielk19774dbaa892009-06-16 16:50:22 +00007083 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00007084 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7085 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00007086
7087 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007088 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7089
danielk1977e08a3c42008-09-18 18:17:03 +00007090 /* Release the reference to the new page. */
7091 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007092 }
7093
danielk1977eaa06f62008-09-18 17:34:44 +00007094 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007095}
drh615ae552005-01-16 23:21:00 +00007096#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007097
dane6593d82014-10-24 16:40:49 +00007098#if 0
drhc3b70572003-01-04 19:44:07 +00007099/*
danielk19774dbaa892009-06-16 16:50:22 +00007100** This function does not contribute anything to the operation of SQLite.
7101** it is sometimes activated temporarily while debugging code responsible
7102** for setting pointer-map entries.
7103*/
7104static int ptrmapCheckPages(MemPage **apPage, int nPage){
7105 int i, j;
7106 for(i=0; i<nPage; i++){
7107 Pgno n;
7108 u8 e;
7109 MemPage *pPage = apPage[i];
7110 BtShared *pBt = pPage->pBt;
7111 assert( pPage->isInit );
7112
7113 for(j=0; j<pPage->nCell; j++){
7114 CellInfo info;
7115 u8 *z;
7116
7117 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007118 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00007119 if( info.iOverflow ){
7120 Pgno ovfl = get4byte(&z[info.iOverflow]);
7121 ptrmapGet(pBt, ovfl, &e, &n);
7122 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7123 }
7124 if( !pPage->leaf ){
7125 Pgno child = get4byte(z);
7126 ptrmapGet(pBt, child, &e, &n);
7127 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7128 }
7129 }
7130 if( !pPage->leaf ){
7131 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7132 ptrmapGet(pBt, child, &e, &n);
7133 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7134 }
7135 }
7136 return 1;
7137}
7138#endif
7139
danielk1977cd581a72009-06-23 15:43:39 +00007140/*
7141** This function is used to copy the contents of the b-tree node stored
7142** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7143** the pointer-map entries for each child page are updated so that the
7144** parent page stored in the pointer map is page pTo. If pFrom contained
7145** any cells with overflow page pointers, then the corresponding pointer
7146** map entries are also updated so that the parent page is page pTo.
7147**
7148** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007149** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007150**
danielk197730548662009-07-09 05:07:37 +00007151** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007152**
7153** The performance of this function is not critical. It is only used by
7154** the balance_shallower() and balance_deeper() procedures, neither of
7155** which are called often under normal circumstances.
7156*/
drhc314dc72009-07-21 11:52:34 +00007157static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7158 if( (*pRC)==SQLITE_OK ){
7159 BtShared * const pBt = pFrom->pBt;
7160 u8 * const aFrom = pFrom->aData;
7161 u8 * const aTo = pTo->aData;
7162 int const iFromHdr = pFrom->hdrOffset;
7163 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007164 int rc;
drhc314dc72009-07-21 11:52:34 +00007165 int iData;
7166
7167
7168 assert( pFrom->isInit );
7169 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007170 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007171
7172 /* Copy the b-tree node content from page pFrom to page pTo. */
7173 iData = get2byte(&aFrom[iFromHdr+5]);
7174 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7175 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7176
7177 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007178 ** match the new data. The initialization of pTo can actually fail under
7179 ** fairly obscure circumstances, even though it is a copy of initialized
7180 ** page pFrom.
7181 */
drhc314dc72009-07-21 11:52:34 +00007182 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007183 rc = btreeInitPage(pTo);
7184 if( rc!=SQLITE_OK ){
7185 *pRC = rc;
7186 return;
7187 }
drhc314dc72009-07-21 11:52:34 +00007188
7189 /* If this is an auto-vacuum database, update the pointer-map entries
7190 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7191 */
dan7b3d71e2015-08-19 20:27:05 +00007192 if( REQUIRE_PTRMAP ){
drhc314dc72009-07-21 11:52:34 +00007193 *pRC = setChildPtrmaps(pTo);
7194 }
danielk1977cd581a72009-06-23 15:43:39 +00007195 }
danielk1977cd581a72009-06-23 15:43:39 +00007196}
7197
7198/*
danielk19774dbaa892009-06-16 16:50:22 +00007199** This routine redistributes cells on the iParentIdx'th child of pParent
7200** (hereafter "the page") and up to 2 siblings so that all pages have about the
7201** same amount of free space. Usually a single sibling on either side of the
7202** page are used in the balancing, though both siblings might come from one
7203** side if the page is the first or last child of its parent. If the page
7204** has fewer than 2 siblings (something which can only happen if the page
7205** is a root page or a child of a root page) then all available siblings
7206** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007207**
danielk19774dbaa892009-06-16 16:50:22 +00007208** The number of siblings of the page might be increased or decreased by
7209** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007210**
danielk19774dbaa892009-06-16 16:50:22 +00007211** Note that when this routine is called, some of the cells on the page
7212** might not actually be stored in MemPage.aData[]. This can happen
7213** if the page is overfull. This routine ensures that all cells allocated
7214** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007215**
danielk19774dbaa892009-06-16 16:50:22 +00007216** In the course of balancing the page and its siblings, cells may be
7217** inserted into or removed from the parent page (pParent). Doing so
7218** may cause the parent page to become overfull or underfull. If this
7219** happens, it is the responsibility of the caller to invoke the correct
7220** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007221**
drh5e00f6c2001-09-13 13:46:56 +00007222** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007223** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007224** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007225**
7226** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007227** buffer big enough to hold one page. If while inserting cells into the parent
7228** page (pParent) the parent page becomes overfull, this buffer is
7229** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007230** a maximum of four divider cells into the parent page, and the maximum
7231** size of a cell stored within an internal node is always less than 1/4
7232** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7233** enough for all overflow cells.
7234**
7235** If aOvflSpace is set to a null pointer, this function returns
7236** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007237*/
mistachkine7c54162012-10-02 22:54:27 +00007238#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7239#pragma optimize("", off)
7240#endif
danielk19774dbaa892009-06-16 16:50:22 +00007241static int balance_nonroot(
7242 MemPage *pParent, /* Parent page of siblings being balanced */
7243 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007244 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007245 int isRoot, /* True if pParent is a root-page */
7246 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007247){
drh16a9b832007-05-05 18:39:25 +00007248 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007249 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007250 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007251 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007252 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007253 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007254 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007255 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007256 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007257 int usableSpace; /* Bytes in pPage beyond the header */
7258 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007259 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007260 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007261 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007262 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007263 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007264 u8 *pRight; /* Location in parent of right-sibling pointer */
7265 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007266 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7267 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007268 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007269 u8 *aSpace1; /* Space for copies of dividers cells */
7270 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007271 u8 abDone[NB+2]; /* True after i'th new page is populated */
7272 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007273 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007274 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007275 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00007276
7277 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007278 b.nCell = 0;
7279 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007280 pBt = pParent->pBt;
7281 assert( sqlite3_mutex_held(pBt->mutex) );
7282 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007283
danielk1977e5765212009-06-17 11:13:28 +00007284#if 0
drh43605152004-05-29 21:46:49 +00007285 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007286#endif
drh2e38c322004-09-03 18:38:44 +00007287
danielk19774dbaa892009-06-16 16:50:22 +00007288 /* At this point pParent may have at most one overflow cell. And if
7289 ** this overflow cell is present, it must be the cell with
7290 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007291 ** is called (indirectly) from sqlite3BtreeDelete().
7292 */
danielk19774dbaa892009-06-16 16:50:22 +00007293 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007294 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007295
danielk197711a8a862009-06-17 11:49:52 +00007296 if( !aOvflSpace ){
7297 return SQLITE_NOMEM;
7298 }
7299
danielk1977a50d9aa2009-06-08 14:49:45 +00007300 /* Find the sibling pages to balance. Also locate the cells in pParent
7301 ** that divide the siblings. An attempt is made to find NN siblings on
7302 ** either side of pPage. More siblings are taken from one side, however,
7303 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007304 ** has NB or fewer children then all children of pParent are taken.
7305 **
7306 ** This loop also drops the divider cells from the parent page. This
7307 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007308 ** overflow cells in the parent page, since if any existed they will
7309 ** have already been removed.
7310 */
danielk19774dbaa892009-06-16 16:50:22 +00007311 i = pParent->nOverflow + pParent->nCell;
7312 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007313 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007314 }else{
dan7d6885a2012-08-08 14:04:56 +00007315 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007316 if( iParentIdx==0 ){
7317 nxDiv = 0;
7318 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007319 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007320 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007321 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007322 }
dan7d6885a2012-08-08 14:04:56 +00007323 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007324 }
dan7d6885a2012-08-08 14:04:56 +00007325 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007326 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7327 pRight = &pParent->aData[pParent->hdrOffset+8];
7328 }else{
7329 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7330 }
7331 pgno = get4byte(pRight);
7332 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007333 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007334 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007335 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007336 goto balance_cleanup;
7337 }
danielk1977634f2982005-03-28 08:44:07 +00007338 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007339 if( (i--)==0 ) break;
7340
drh2cbd78b2012-02-02 19:37:18 +00007341 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7342 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007343 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007344 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007345 pParent->nOverflow = 0;
7346 }else{
7347 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7348 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007349 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007350
7351 /* Drop the cell from the parent page. apDiv[i] still points to
7352 ** the cell within the parent, even though it has been dropped.
7353 ** This is safe because dropping a cell only overwrites the first
7354 ** four bytes of it, and this function does not need the first
7355 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007356 ** later on.
7357 **
drh8a575d92011-10-12 17:00:28 +00007358 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007359 ** the dropCell() routine will overwrite the entire cell with zeroes.
7360 ** In this case, temporarily copy the cell into the aOvflSpace[]
7361 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7362 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007363 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007364 int iOff;
7365
7366 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007367 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007368 rc = SQLITE_CORRUPT_BKPT;
7369 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7370 goto balance_cleanup;
7371 }else{
7372 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7373 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7374 }
drh5b47efa2010-02-12 18:18:39 +00007375 }
drh98add2e2009-07-20 17:11:49 +00007376 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007377 }
drh8b2f49b2001-06-08 00:21:52 +00007378 }
7379
drha9121e42008-02-19 14:59:35 +00007380 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007381 ** alignment */
drha9121e42008-02-19 14:59:35 +00007382 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007383
drh8b2f49b2001-06-08 00:21:52 +00007384 /*
danielk1977634f2982005-03-28 08:44:07 +00007385 ** Allocate space for memory structures
7386 */
drhfacf0302008-06-17 15:12:00 +00007387 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007388 nMaxCells*sizeof(u8*) /* b.apCell */
7389 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007390 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007391
drhcbd55b02014-11-04 14:22:27 +00007392 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7393 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007394 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007395 b.apCell = sqlite3ScratchMalloc( szScratch );
7396 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007397 rc = SQLITE_NOMEM;
7398 goto balance_cleanup;
7399 }
drh1ffd2472015-06-23 02:37:30 +00007400 b.szCell = (u16*)&b.apCell[nMaxCells];
7401 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007402 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007403
7404 /*
7405 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007406 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007407 ** into space obtained from aSpace1[]. The divider cells have already
7408 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007409 **
7410 ** If the siblings are on leaf pages, then the child pointers of the
7411 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007412 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007413 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007414 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007415 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007416 **
7417 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7418 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007419 */
drh1ffd2472015-06-23 02:37:30 +00007420 b.pRef = apOld[0];
7421 leafCorrection = b.pRef->leaf*4;
7422 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007423 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007424 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007425 int limit = pOld->nCell;
7426 u8 *aData = pOld->aData;
7427 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007428 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007429 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007430
drh73d340a2015-05-28 11:23:11 +00007431 /* Verify that all sibling pages are of the same "type" (table-leaf,
7432 ** table-interior, index-leaf, or index-interior).
7433 */
7434 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7435 rc = SQLITE_CORRUPT_BKPT;
7436 goto balance_cleanup;
7437 }
7438
drhfe647dc2015-06-23 18:24:25 +00007439 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7440 ** constains overflow cells, include them in the b.apCell[] array
7441 ** in the correct spot.
7442 **
7443 ** Note that when there are multiple overflow cells, it is always the
7444 ** case that they are sequential and adjacent. This invariant arises
7445 ** because multiple overflows can only occurs when inserting divider
7446 ** cells into a parent on a prior balance, and divider cells are always
7447 ** adjacent and are inserted in order. There is an assert() tagged
7448 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7449 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007450 **
7451 ** This must be done in advance. Once the balance starts, the cell
7452 ** offset section of the btree page will be overwritten and we will no
7453 ** long be able to find the cells if a pointer to each cell is not saved
7454 ** first.
7455 */
drh1ffd2472015-06-23 02:37:30 +00007456 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007457 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007458 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007459 limit = pOld->aiOvfl[0];
7460 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007461 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007462 piCell += 2;
7463 b.nCell++;
7464 }
7465 for(k=0; k<pOld->nOverflow; k++){
7466 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007467 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007468 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007469 }
drh1ffd2472015-06-23 02:37:30 +00007470 }
drhfe647dc2015-06-23 18:24:25 +00007471 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7472 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007473 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007474 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007475 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007476 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007477 }
7478
drh1ffd2472015-06-23 02:37:30 +00007479 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007480 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007481 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007482 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007483 assert( b.nCell<nMaxCells );
7484 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007485 pTemp = &aSpace1[iSpace1];
7486 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007487 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007488 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007489 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007490 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007491 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007492 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007493 if( !pOld->leaf ){
7494 assert( leafCorrection==0 );
7495 assert( pOld->hdrOffset==0 );
7496 /* The right pointer of the child page pOld becomes the left
7497 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007498 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007499 }else{
7500 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007501 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007502 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7503 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007504 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7505 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007506 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007507 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007508 }
7509 }
drh1ffd2472015-06-23 02:37:30 +00007510 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007511 }
drh8b2f49b2001-06-08 00:21:52 +00007512 }
7513
7514 /*
drh1ffd2472015-06-23 02:37:30 +00007515 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007516 ** Store this number in "k". Also compute szNew[] which is the total
7517 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007518 ** in b.apCell[] of the cell that divides page i from page i+1.
7519 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007520 **
drh96f5b762004-05-16 16:24:36 +00007521 ** Values computed by this block:
7522 **
7523 ** k: The total number of sibling pages
7524 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007525 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007526 ** the right of the i-th sibling page.
7527 ** usableSpace: Number of bytes of space available on each sibling.
7528 **
drh8b2f49b2001-06-08 00:21:52 +00007529 */
drh43605152004-05-29 21:46:49 +00007530 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007531 for(i=0; i<nOld; i++){
7532 MemPage *p = apOld[i];
7533 szNew[i] = usableSpace - p->nFree;
7534 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7535 for(j=0; j<p->nOverflow; j++){
7536 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7537 }
7538 cntNew[i] = cntOld[i];
7539 }
7540 k = nOld;
7541 for(i=0; i<k; i++){
7542 int sz;
7543 while( szNew[i]>usableSpace ){
7544 if( i+1>=k ){
7545 k = i+2;
7546 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7547 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007548 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007549 }
drh1ffd2472015-06-23 02:37:30 +00007550 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007551 szNew[i] -= sz;
7552 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007553 if( cntNew[i]<b.nCell ){
7554 sz = 2 + cachedCellSize(&b, cntNew[i]);
7555 }else{
7556 sz = 0;
7557 }
drh658873b2015-06-22 20:02:04 +00007558 }
7559 szNew[i+1] += sz;
7560 cntNew[i]--;
7561 }
drh1ffd2472015-06-23 02:37:30 +00007562 while( cntNew[i]<b.nCell ){
7563 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007564 if( szNew[i]+sz>usableSpace ) break;
7565 szNew[i] += sz;
7566 cntNew[i]++;
7567 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007568 if( cntNew[i]<b.nCell ){
7569 sz = 2 + cachedCellSize(&b, cntNew[i]);
7570 }else{
7571 sz = 0;
7572 }
drh658873b2015-06-22 20:02:04 +00007573 }
7574 szNew[i+1] -= sz;
7575 }
drh1ffd2472015-06-23 02:37:30 +00007576 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007577 k = i+1;
drh672073a2015-06-24 12:07:40 +00007578 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007579 rc = SQLITE_CORRUPT_BKPT;
7580 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007581 }
7582 }
drh96f5b762004-05-16 16:24:36 +00007583
7584 /*
7585 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007586 ** on the left side (siblings with smaller keys). The left siblings are
7587 ** always nearly full, while the right-most sibling might be nearly empty.
7588 ** The next block of code attempts to adjust the packing of siblings to
7589 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007590 **
7591 ** This adjustment is more than an optimization. The packing above might
7592 ** be so out of balance as to be illegal. For example, the right-most
7593 ** sibling might be completely empty. This adjustment is not optional.
7594 */
drh6019e162001-07-02 17:51:45 +00007595 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007596 int szRight = szNew[i]; /* Size of sibling on the right */
7597 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7598 int r; /* Index of right-most cell in left sibling */
7599 int d; /* Index of first cell to the left of right sibling */
7600
drh008d64c2015-06-23 16:00:24 +00007601 r = cntNew[i-1] - 1;
7602 d = r + 1 - leafData;
7603 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007604 do{
drh1ffd2472015-06-23 02:37:30 +00007605 assert( d<nMaxCells );
7606 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007607 (void)cachedCellSize(&b, r);
7608 if( szRight!=0
7609 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7610 break;
7611 }
7612 szRight += b.szCell[d] + 2;
7613 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007614 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007615 r--;
7616 d--;
drh672073a2015-06-24 12:07:40 +00007617 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007618 szNew[i] = szRight;
7619 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007620 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7621 rc = SQLITE_CORRUPT_BKPT;
7622 goto balance_cleanup;
7623 }
drh6019e162001-07-02 17:51:45 +00007624 }
drh09d0deb2005-08-02 17:13:09 +00007625
drh2a0df922014-10-30 23:14:56 +00007626 /* Sanity check: For a non-corrupt database file one of the follwing
7627 ** must be true:
7628 ** (1) We found one or more cells (cntNew[0])>0), or
7629 ** (2) pPage is a virtual root page. A virtual root page is when
7630 ** the real root page is page 1 and we are the only child of
7631 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007632 */
drh2a0df922014-10-30 23:14:56 +00007633 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007634 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7635 apOld[0]->pgno, apOld[0]->nCell,
7636 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7637 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007638 ));
7639
drh8b2f49b2001-06-08 00:21:52 +00007640 /*
drh6b308672002-07-08 02:16:37 +00007641 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007642 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007643 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007644 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007645 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007646 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007647 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007648 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007649 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007650 nNew++;
danielk197728129562005-01-11 10:25:06 +00007651 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007652 }else{
drh7aa8f852006-03-28 00:24:44 +00007653 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007654 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007655 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007656 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007657 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007658 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007659 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007660
7661 /* Set the pointer-map entry for the new sibling page. */
dan7b3d71e2015-08-19 20:27:05 +00007662 if( REQUIRE_PTRMAP ){
drh98add2e2009-07-20 17:11:49 +00007663 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007664 if( rc!=SQLITE_OK ){
7665 goto balance_cleanup;
7666 }
7667 }
drh6b308672002-07-08 02:16:37 +00007668 }
drh8b2f49b2001-06-08 00:21:52 +00007669 }
7670
7671 /*
dan33ea4862014-10-09 19:35:37 +00007672 ** Reassign page numbers so that the new pages are in ascending order.
7673 ** This helps to keep entries in the disk file in order so that a scan
7674 ** of the table is closer to a linear scan through the file. That in turn
7675 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007676 **
dan33ea4862014-10-09 19:35:37 +00007677 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7678 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007679 **
dan33ea4862014-10-09 19:35:37 +00007680 ** When NB==3, this one optimization makes the database about 25% faster
7681 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007682 */
dan33ea4862014-10-09 19:35:37 +00007683 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007684 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007685 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007686 for(j=0; j<i; j++){
7687 if( aPgno[j]==aPgno[i] ){
7688 /* This branch is taken if the set of sibling pages somehow contains
7689 ** duplicate entries. This can happen if the database is corrupt.
7690 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007691 ** we do the detection here in order to avoid populating the pager
7692 ** cache with two separate objects associated with the same
7693 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007694 assert( CORRUPT_DB );
7695 rc = SQLITE_CORRUPT_BKPT;
7696 goto balance_cleanup;
7697 }
7698 }
dan33ea4862014-10-09 19:35:37 +00007699 }
7700 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007701 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007702 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007703 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007704 }
drh00fe08a2014-10-31 00:05:23 +00007705 pgno = aPgOrder[iBest];
7706 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007707 if( iBest!=i ){
7708 if( iBest>i ){
7709 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7710 }
7711 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7712 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007713 }
7714 }
dan33ea4862014-10-09 19:35:37 +00007715
7716 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7717 "%d(%d nc=%d) %d(%d nc=%d)\n",
7718 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007719 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007720 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007721 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007722 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007723 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007724 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7725 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7726 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7727 ));
danielk19774dbaa892009-06-16 16:50:22 +00007728
7729 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7730 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007731
dan33ea4862014-10-09 19:35:37 +00007732 /* If the sibling pages are not leaves, ensure that the right-child pointer
7733 ** of the right-most new sibling page is set to the value that was
7734 ** originally in the same field of the right-most old sibling page. */
7735 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7736 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7737 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7738 }
danielk1977ac11ee62005-01-15 12:45:51 +00007739
dan33ea4862014-10-09 19:35:37 +00007740 /* Make any required updates to pointer map entries associated with
7741 ** cells stored on sibling pages following the balance operation. Pointer
7742 ** map entries associated with divider cells are set by the insertCell()
7743 ** routine. The associated pointer map entries are:
7744 **
7745 ** a) if the cell contains a reference to an overflow chain, the
7746 ** entry associated with the first page in the overflow chain, and
7747 **
7748 ** b) if the sibling pages are not leaves, the child page associated
7749 ** with the cell.
7750 **
7751 ** If the sibling pages are not leaves, then the pointer map entry
7752 ** associated with the right-child of each sibling may also need to be
7753 ** updated. This happens below, after the sibling pages have been
7754 ** populated, not here.
7755 */
dan7b3d71e2015-08-19 20:27:05 +00007756 if( REQUIRE_PTRMAP ){
dan33ea4862014-10-09 19:35:37 +00007757 MemPage *pNew = apNew[0];
7758 u8 *aOld = pNew->aData;
7759 int cntOldNext = pNew->nCell + pNew->nOverflow;
7760 int usableSize = pBt->usableSize;
7761 int iNew = 0;
7762 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007763
drh1ffd2472015-06-23 02:37:30 +00007764 for(i=0; i<b.nCell; i++){
7765 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007766 if( i==cntOldNext ){
7767 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7768 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7769 aOld = pOld->aData;
7770 }
7771 if( i==cntNew[iNew] ){
7772 pNew = apNew[++iNew];
7773 if( !leafData ) continue;
7774 }
7775
7776 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007777 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007778 ** or else the divider cell to the left of sibling page iOld. So,
7779 ** if sibling page iOld had the same page number as pNew, and if
7780 ** pCell really was a part of sibling page iOld (not a divider or
7781 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007782 if( iOld>=nNew
7783 || pNew->pgno!=aPgno[iOld]
7784 || pCell<aOld
7785 || pCell>=&aOld[usableSize]
7786 ){
dan33ea4862014-10-09 19:35:37 +00007787 if( !leafCorrection ){
7788 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7789 }
drh1ffd2472015-06-23 02:37:30 +00007790 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007791 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007792 }
drhea82b372015-06-23 21:35:28 +00007793 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007794 }
drh14acc042001-06-10 19:56:58 +00007795 }
7796 }
dan33ea4862014-10-09 19:35:37 +00007797
7798 /* Insert new divider cells into pParent. */
7799 for(i=0; i<nNew-1; i++){
7800 u8 *pCell;
7801 u8 *pTemp;
7802 int sz;
7803 MemPage *pNew = apNew[i];
7804 j = cntNew[i];
7805
7806 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007807 assert( b.apCell[j]!=0 );
7808 pCell = b.apCell[j];
7809 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007810 pTemp = &aOvflSpace[iOvflSpace];
7811 if( !pNew->leaf ){
7812 memcpy(&pNew->aData[8], pCell, 4);
7813 }else if( leafData ){
7814 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007815 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007816 ** cell consists of the integer key for the right-most cell of
7817 ** the sibling-page assembled above only.
7818 */
7819 CellInfo info;
7820 j--;
drh1ffd2472015-06-23 02:37:30 +00007821 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007822 pCell = pTemp;
7823 sz = 4 + putVarint(&pCell[4], info.nKey);
7824 pTemp = 0;
7825 }else{
7826 pCell -= 4;
7827 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7828 ** previously stored on a leaf node, and its reported size was 4
7829 ** bytes, then it may actually be smaller than this
7830 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7831 ** any cell). But it is important to pass the correct size to
7832 ** insertCell(), so reparse the cell now.
7833 **
7834 ** Note that this can never happen in an SQLite data file, as all
7835 ** cells are at least 4 bytes. It only happens in b-trees used
7836 ** to evaluate "IN (SELECT ...)" and similar clauses.
7837 */
drh1ffd2472015-06-23 02:37:30 +00007838 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007839 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007840 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007841 }
7842 }
7843 iOvflSpace += sz;
7844 assert( sz<=pBt->maxLocal+23 );
7845 assert( iOvflSpace <= (int)pBt->pageSize );
7846 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7847 if( rc!=SQLITE_OK ) goto balance_cleanup;
7848 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7849 }
7850
7851 /* Now update the actual sibling pages. The order in which they are updated
7852 ** is important, as this code needs to avoid disrupting any page from which
7853 ** cells may still to be read. In practice, this means:
7854 **
drhd836d422014-10-31 14:26:36 +00007855 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7856 ** then it is not safe to update page apNew[iPg] until after
7857 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007858 **
drhd836d422014-10-31 14:26:36 +00007859 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7860 ** then it is not safe to update page apNew[iPg] until after
7861 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007862 **
7863 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007864 **
7865 ** The iPg value in the following loop starts at nNew-1 goes down
7866 ** to 0, then back up to nNew-1 again, thus making two passes over
7867 ** the pages. On the initial downward pass, only condition (1) above
7868 ** needs to be tested because (2) will always be true from the previous
7869 ** step. On the upward pass, both conditions are always true, so the
7870 ** upwards pass simply processes pages that were missed on the downward
7871 ** pass.
dan33ea4862014-10-09 19:35:37 +00007872 */
drhbec021b2014-10-31 12:22:00 +00007873 for(i=1-nNew; i<nNew; i++){
7874 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007875 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007876 if( abDone[iPg] ) continue; /* Skip pages already processed */
7877 if( i>=0 /* On the upwards pass, or... */
7878 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007879 ){
dan09c68402014-10-11 20:00:24 +00007880 int iNew;
7881 int iOld;
7882 int nNewCell;
7883
drhd836d422014-10-31 14:26:36 +00007884 /* Verify condition (1): If cells are moving left, update iPg
7885 ** only after iPg-1 has already been updated. */
7886 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7887
7888 /* Verify condition (2): If cells are moving right, update iPg
7889 ** only after iPg+1 has already been updated. */
7890 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7891
dan09c68402014-10-11 20:00:24 +00007892 if( iPg==0 ){
7893 iNew = iOld = 0;
7894 nNewCell = cntNew[0];
7895 }else{
drh1ffd2472015-06-23 02:37:30 +00007896 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007897 iNew = cntNew[iPg-1] + !leafData;
7898 nNewCell = cntNew[iPg] - iNew;
7899 }
7900
drh1ffd2472015-06-23 02:37:30 +00007901 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007902 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007903 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007904 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007905 assert( apNew[iPg]->nOverflow==0 );
7906 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007907 }
7908 }
drhd836d422014-10-31 14:26:36 +00007909
7910 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007911 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7912
drh7aa8f852006-03-28 00:24:44 +00007913 assert( nOld>0 );
7914 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007915
danielk197713bd99f2009-06-24 05:40:34 +00007916 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7917 /* The root page of the b-tree now contains no cells. The only sibling
7918 ** page is the right-child of the parent. Copy the contents of the
7919 ** child page into the parent, decreasing the overall height of the
7920 ** b-tree structure by one. This is described as the "balance-shallower"
7921 ** sub-algorithm in some documentation.
7922 **
7923 ** If this is an auto-vacuum database, the call to copyNodeContent()
7924 ** sets all pointer-map entries corresponding to database image pages
7925 ** for which the pointer is stored within the content being copied.
7926 **
drh768f2902014-10-31 02:51:41 +00007927 ** It is critical that the child page be defragmented before being
7928 ** copied into the parent, because if the parent is page 1 then it will
7929 ** by smaller than the child due to the database header, and so all the
7930 ** free space needs to be up front.
7931 */
danielk197713bd99f2009-06-24 05:40:34 +00007932 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007933 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007934 testcase( rc!=SQLITE_OK );
7935 assert( apNew[0]->nFree ==
7936 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7937 || rc!=SQLITE_OK
7938 );
7939 copyNodeContent(apNew[0], pParent, &rc);
7940 freePage(apNew[0], &rc);
dan7b3d71e2015-08-19 20:27:05 +00007941 }else if( REQUIRE_PTRMAP && !leafCorrection ){
dan33ea4862014-10-09 19:35:37 +00007942 /* Fix the pointer map entries associated with the right-child of each
7943 ** sibling page. All other pointer map entries have already been taken
7944 ** care of. */
7945 for(i=0; i<nNew; i++){
7946 u32 key = get4byte(&apNew[i]->aData[8]);
7947 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007948 }
dan33ea4862014-10-09 19:35:37 +00007949 }
danielk19774dbaa892009-06-16 16:50:22 +00007950
dan33ea4862014-10-09 19:35:37 +00007951 assert( pParent->isInit );
7952 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007953 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007954
dan33ea4862014-10-09 19:35:37 +00007955 /* Free any old pages that were not reused as new pages.
7956 */
7957 for(i=nNew; i<nOld; i++){
7958 freePage(apOld[i], &rc);
7959 }
7960
dane6593d82014-10-24 16:40:49 +00007961#if 0
dan33ea4862014-10-09 19:35:37 +00007962 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007963 /* The ptrmapCheckPages() contains assert() statements that verify that
7964 ** all pointer map pages are set correctly. This is helpful while
7965 ** debugging. This is usually disabled because a corrupt database may
7966 ** cause an assert() statement to fail. */
7967 ptrmapCheckPages(apNew, nNew);
7968 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007969 }
dan33ea4862014-10-09 19:35:37 +00007970#endif
danielk1977cd581a72009-06-23 15:43:39 +00007971
drh8b2f49b2001-06-08 00:21:52 +00007972 /*
drh14acc042001-06-10 19:56:58 +00007973 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007974 */
drh14acc042001-06-10 19:56:58 +00007975balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007976 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007977 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007978 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007979 }
drh14acc042001-06-10 19:56:58 +00007980 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007981 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007982 }
danielk1977eaa06f62008-09-18 17:34:44 +00007983
drh8b2f49b2001-06-08 00:21:52 +00007984 return rc;
7985}
mistachkine7c54162012-10-02 22:54:27 +00007986#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7987#pragma optimize("", on)
7988#endif
drh8b2f49b2001-06-08 00:21:52 +00007989
drh43605152004-05-29 21:46:49 +00007990
7991/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007992** This function is called when the root page of a b-tree structure is
7993** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007994**
danielk1977a50d9aa2009-06-08 14:49:45 +00007995** A new child page is allocated and the contents of the current root
7996** page, including overflow cells, are copied into the child. The root
7997** page is then overwritten to make it an empty page with the right-child
7998** pointer pointing to the new page.
7999**
8000** Before returning, all pointer-map entries corresponding to pages
8001** that the new child-page now contains pointers to are updated. The
8002** entry corresponding to the new right-child pointer of the root
8003** page is also updated.
8004**
8005** If successful, *ppChild is set to contain a reference to the child
8006** page and SQLITE_OK is returned. In this case the caller is required
8007** to call releasePage() on *ppChild exactly once. If an error occurs,
8008** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008009*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008010static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8011 int rc; /* Return value from subprocedures */
8012 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008013 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008014 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008015
danielk1977a50d9aa2009-06-08 14:49:45 +00008016 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008017 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008018
danielk1977a50d9aa2009-06-08 14:49:45 +00008019 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8020 ** page that will become the new right-child of pPage. Copy the contents
8021 ** of the node stored on pRoot into the new child page.
8022 */
drh98add2e2009-07-20 17:11:49 +00008023 rc = sqlite3PagerWrite(pRoot->pDbPage);
8024 if( rc==SQLITE_OK ){
8025 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008026 copyNodeContent(pRoot, pChild, &rc);
dan7b3d71e2015-08-19 20:27:05 +00008027 if( REQUIRE_PTRMAP ){
drhc314dc72009-07-21 11:52:34 +00008028 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008029 }
8030 }
8031 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008032 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008033 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008034 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008035 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008036 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8037 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8038 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00008039
danielk1977a50d9aa2009-06-08 14:49:45 +00008040 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8041
8042 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008043 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8044 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8045 memcpy(pChild->apOvfl, pRoot->apOvfl,
8046 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008047 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008048
8049 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8050 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8051 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8052
8053 *ppChild = pChild;
8054 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008055}
8056
8057/*
danielk197771d5d2c2008-09-29 11:49:47 +00008058** The page that pCur currently points to has just been modified in
8059** some way. This function figures out if this modification means the
8060** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008061** routine. Balancing routines are:
8062**
8063** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008064** balance_deeper()
8065** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008066*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008067static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008068 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008069 const int nMin = pCur->pBt->usableSize * 2 / 3;
8070 u8 aBalanceQuickSpace[13];
8071 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008072
shane75ac1de2009-06-09 18:58:52 +00008073 TESTONLY( int balance_quick_called = 0 );
8074 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008075
8076 do {
8077 int iPage = pCur->iPage;
8078 MemPage *pPage = pCur->apPage[iPage];
8079
8080 if( iPage==0 ){
8081 if( pPage->nOverflow ){
8082 /* The root page of the b-tree is overfull. In this case call the
8083 ** balance_deeper() function to create a new child for the root-page
8084 ** and copy the current contents of the root-page to it. The
8085 ** next iteration of the do-loop will balance the child page.
8086 */
8087 assert( (balance_deeper_called++)==0 );
8088 rc = balance_deeper(pPage, &pCur->apPage[1]);
8089 if( rc==SQLITE_OK ){
8090 pCur->iPage = 1;
8091 pCur->aiIdx[0] = 0;
8092 pCur->aiIdx[1] = 0;
8093 assert( pCur->apPage[1]->nOverflow );
8094 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008095 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008096 break;
8097 }
8098 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8099 break;
8100 }else{
8101 MemPage * const pParent = pCur->apPage[iPage-1];
8102 int const iIdx = pCur->aiIdx[iPage-1];
8103
8104 rc = sqlite3PagerWrite(pParent->pDbPage);
8105 if( rc==SQLITE_OK ){
8106#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008107 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008108 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008109 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008110 && pParent->pgno!=1
8111 && pParent->nCell==iIdx
8112 ){
8113 /* Call balance_quick() to create a new sibling of pPage on which
8114 ** to store the overflow cell. balance_quick() inserts a new cell
8115 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008116 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008117 ** use either balance_nonroot() or balance_deeper(). Until this
8118 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8119 ** buffer.
8120 **
8121 ** The purpose of the following assert() is to check that only a
8122 ** single call to balance_quick() is made for each call to this
8123 ** function. If this were not verified, a subtle bug involving reuse
8124 ** of the aBalanceQuickSpace[] might sneak in.
8125 */
8126 assert( (balance_quick_called++)==0 );
8127 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8128 }else
8129#endif
8130 {
8131 /* In this case, call balance_nonroot() to redistribute cells
8132 ** between pPage and up to 2 of its sibling pages. This involves
8133 ** modifying the contents of pParent, which may cause pParent to
8134 ** become overfull or underfull. The next iteration of the do-loop
8135 ** will balance the parent page to correct this.
8136 **
8137 ** If the parent page becomes overfull, the overflow cell or cells
8138 ** are stored in the pSpace buffer allocated immediately below.
8139 ** A subsequent iteration of the do-loop will deal with this by
8140 ** calling balance_nonroot() (balance_deeper() may be called first,
8141 ** but it doesn't deal with overflow cells - just moves them to a
8142 ** different page). Once this subsequent call to balance_nonroot()
8143 ** has completed, it is safe to release the pSpace buffer used by
8144 ** the previous call, as the overflow cell data will have been
8145 ** copied either into the body of a database page or into the new
8146 ** pSpace buffer passed to the latter call to balance_nonroot().
8147 */
8148 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008149 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8150 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008151 if( pFree ){
8152 /* If pFree is not NULL, it points to the pSpace buffer used
8153 ** by a previous call to balance_nonroot(). Its contents are
8154 ** now stored either on real database pages or within the
8155 ** new pSpace buffer, so it may be safely freed here. */
8156 sqlite3PageFree(pFree);
8157 }
8158
danielk19774dbaa892009-06-16 16:50:22 +00008159 /* The pSpace buffer will be freed after the next call to
8160 ** balance_nonroot(), or just before this function returns, whichever
8161 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008162 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008163 }
8164 }
8165
8166 pPage->nOverflow = 0;
8167
8168 /* The next iteration of the do-loop balances the parent page. */
8169 releasePage(pPage);
8170 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008171 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00008172 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008173 }while( rc==SQLITE_OK );
8174
8175 if( pFree ){
8176 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008177 }
8178 return rc;
8179}
8180
drhf74b8d92002-09-01 23:20:45 +00008181
8182/*
drh3b7511c2001-05-26 13:15:44 +00008183** Insert a new record into the BTree. The key is given by (pKey,nKey)
8184** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00008185** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00008186** is left pointing at a random location.
8187**
8188** For an INTKEY table, only the nKey value of the key is used. pKey is
8189** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00008190**
8191** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00008192** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00008193** been performed. seekResult is the search result returned (a negative
8194** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00008195** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00008196** (pKey, nKey)).
8197**
drh3e9ca092009-09-08 01:14:48 +00008198** If the seekResult parameter is non-zero, then the caller guarantees that
8199** cursor pCur is pointing at the existing copy of a row that is to be
8200** overwritten. If the seekResult parameter is 0, then cursor pCur may
8201** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00008202** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00008203*/
drh3aac2dd2004-04-26 14:10:20 +00008204int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008205 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00008206 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00008207 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00008208 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00008209 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008210 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008211){
drh3b7511c2001-05-26 13:15:44 +00008212 int rc;
drh3e9ca092009-09-08 01:14:48 +00008213 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008214 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008215 int idx;
drh3b7511c2001-05-26 13:15:44 +00008216 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008217 Btree *p = pCur->pBtree;
8218 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008219 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008220 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008221
drh98add2e2009-07-20 17:11:49 +00008222 if( pCur->eState==CURSOR_FAULT ){
8223 assert( pCur->skipNext!=SQLITE_OK );
8224 return pCur->skipNext;
8225 }
8226
drh1fee73e2007-08-29 04:00:57 +00008227 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00008228 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8229 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008230 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008231 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8232
danielk197731d31b82009-07-13 13:18:07 +00008233 /* Assert that the caller has been consistent. If this cursor was opened
8234 ** expecting an index b-tree, then the caller should be inserting blob
8235 ** keys with no associated data. If the cursor was opened expecting an
8236 ** intkey table, the caller should be inserting integer keys with a
8237 ** blob of associated data. */
8238 assert( (pKey==0)==(pCur->pKeyInfo==0) );
8239
danielk19779c3acf32009-05-02 07:36:49 +00008240 /* Save the positions of any other cursors open on this table.
8241 **
danielk19773509a652009-07-06 18:56:13 +00008242 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008243 ** example, when inserting data into a table with auto-generated integer
8244 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8245 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008246 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008247 ** that the cursor is already where it needs to be and returns without
8248 ** doing any work. To avoid thwarting these optimizations, it is important
8249 ** not to clear the cursor here.
8250 */
drh27fb7462015-06-30 02:47:36 +00008251 if( pCur->curFlags & BTCF_Multiple ){
8252 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8253 if( rc ) return rc;
8254 }
drhd60f4f42012-03-23 14:23:52 +00008255
drhd60f4f42012-03-23 14:23:52 +00008256 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00008257 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008258 /* If this is an insert into a table b-tree, invalidate any incrblob
8259 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00008260 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008261
8262 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008263 ** new row onto the end, set the "loc" to avoid an unnecessary
8264 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00008265 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
8266 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008267 loc = -1;
8268 }else if( loc==0 ){
8269 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
8270 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008271 }
drh207c8172015-06-29 23:01:32 +00008272 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00008273 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8274 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008275 }
danielk1977b980d2212009-06-22 18:03:51 +00008276 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008277
danielk197771d5d2c2008-09-29 11:49:47 +00008278 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00008279 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008280 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008281
drh3a4c1412004-05-09 20:40:11 +00008282 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8283 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8284 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008285 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008286 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008287 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008288 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008289 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008290 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008291 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008292 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008293 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008294 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008295 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008296 rc = sqlite3PagerWrite(pPage->pDbPage);
8297 if( rc ){
8298 goto end_insert;
8299 }
danielk197771d5d2c2008-09-29 11:49:47 +00008300 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008301 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008302 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008303 }
drh9bfdc252014-09-24 02:05:41 +00008304 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008305 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008306 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008307 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008308 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008309 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008310 }else{
drh4b70f112004-05-02 21:12:19 +00008311 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008312 }
drh98add2e2009-07-20 17:11:49 +00008313 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008314 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008315
mistachkin48864df2013-03-21 21:20:32 +00008316 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008317 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008318 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008319 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008320 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008321 ** Previous versions of SQLite called moveToRoot() to move the cursor
8322 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008323 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8324 ** set the cursor state to "invalid". This makes common insert operations
8325 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008326 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008327 ** There is a subtle but important optimization here too. When inserting
8328 ** multiple records into an intkey b-tree using a single cursor (as can
8329 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8330 ** is advantageous to leave the cursor pointing to the last entry in
8331 ** the b-tree if possible. If the cursor is left pointing to the last
8332 ** entry in the table, and the next row inserted has an integer key
8333 ** larger than the largest existing key, it is possible to insert the
8334 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008335 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008336 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008337 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008338 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008339 rc = balance(pCur);
8340
8341 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008342 ** fails. Internal data structure corruption will result otherwise.
8343 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8344 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008345 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008346 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008347 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008348 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008349
drh2e38c322004-09-03 18:38:44 +00008350end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008351 return rc;
8352}
8353
8354/*
drh4b70f112004-05-02 21:12:19 +00008355** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00008356** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00008357*/
drh3aac2dd2004-04-26 14:10:20 +00008358int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00008359 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008360 BtShared *pBt = p->pBt;
8361 int rc; /* Return code */
8362 MemPage *pPage; /* Page to delete cell from */
8363 unsigned char *pCell; /* Pointer to cell to delete */
8364 int iCellIdx; /* Index of cell to delete */
8365 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008366 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00008367
drh1fee73e2007-08-29 04:00:57 +00008368 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008369 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008370 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008371 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008372 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8373 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008374 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8375 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008376
danielk19774dbaa892009-06-16 16:50:22 +00008377 iCellDepth = pCur->iPage;
8378 iCellIdx = pCur->aiIdx[iCellDepth];
8379 pPage = pCur->apPage[iCellDepth];
8380 pCell = findCell(pPage, iCellIdx);
8381
8382 /* If the page containing the entry to delete is not a leaf page, move
8383 ** the cursor to the largest entry in the tree that is smaller than
8384 ** the entry being deleted. This cell will replace the cell being deleted
8385 ** from the internal node. The 'previous' entry is used for this instead
8386 ** of the 'next' entry, as the previous entry is always a part of the
8387 ** sub-tree headed by the child page of the cell being deleted. This makes
8388 ** balancing the tree following the delete operation easier. */
8389 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008390 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008391 rc = sqlite3BtreePrevious(pCur, &notUsed);
8392 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008393 }
8394
8395 /* Save the positions of any other cursors open on this table before
8396 ** making any modifications. Make the page containing the entry to be
8397 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008398 ** entry and finally remove the cell itself from within the page.
8399 */
drh27fb7462015-06-30 02:47:36 +00008400 if( pCur->curFlags & BTCF_Multiple ){
8401 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8402 if( rc ) return rc;
8403 }
drhd60f4f42012-03-23 14:23:52 +00008404
8405 /* If this is a delete operation to remove a row from a table b-tree,
8406 ** invalidate any incrblob cursors open on the row being deleted. */
8407 if( pCur->pKeyInfo==0 ){
8408 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8409 }
8410
drha4ec1d42009-07-11 13:13:11 +00008411 rc = sqlite3PagerWrite(pPage->pDbPage);
8412 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008413 rc = clearCell(pPage, pCell, &szCell);
8414 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008415 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008416
danielk19774dbaa892009-06-16 16:50:22 +00008417 /* If the cell deleted was not located on a leaf page, then the cursor
8418 ** is currently pointing to the largest entry in the sub-tree headed
8419 ** by the child-page of the cell that was just deleted from an internal
8420 ** node. The cell from the leaf node needs to be moved to the internal
8421 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008422 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008423 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8424 int nCell;
8425 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8426 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008427
danielk19774dbaa892009-06-16 16:50:22 +00008428 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008429 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008430 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008431 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008432 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008433 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008434 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008435 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8436 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008437 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008438 }
danielk19774dbaa892009-06-16 16:50:22 +00008439
8440 /* Balance the tree. If the entry deleted was located on a leaf page,
8441 ** then the cursor still points to that page. In this case the first
8442 ** call to balance() repairs the tree, and the if(...) condition is
8443 ** never true.
8444 **
8445 ** Otherwise, if the entry deleted was on an internal node page, then
8446 ** pCur is pointing to the leaf page from which a cell was removed to
8447 ** replace the cell deleted from the internal node. This is slightly
8448 ** tricky as the leaf node may be underfull, and the internal node may
8449 ** be either under or overfull. In this case run the balancing algorithm
8450 ** on the leaf node first. If the balance proceeds far enough up the
8451 ** tree that we can be sure that any problem in the internal node has
8452 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8453 ** walk the cursor up the tree to the internal node and balance it as
8454 ** well. */
8455 rc = balance(pCur);
8456 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8457 while( pCur->iPage>iCellDepth ){
8458 releasePage(pCur->apPage[pCur->iPage--]);
8459 }
8460 rc = balance(pCur);
8461 }
8462
danielk19776b456a22005-03-21 04:04:02 +00008463 if( rc==SQLITE_OK ){
8464 moveToRoot(pCur);
8465 }
drh5e2f8b92001-05-28 00:41:15 +00008466 return rc;
drh3b7511c2001-05-26 13:15:44 +00008467}
drh8b2f49b2001-06-08 00:21:52 +00008468
8469/*
drhc6b52df2002-01-04 03:09:29 +00008470** Create a new BTree table. Write into *piTable the page
8471** number for the root page of the new table.
8472**
drhab01f612004-05-22 02:55:23 +00008473** The type of type is determined by the flags parameter. Only the
8474** following values of flags are currently in use. Other values for
8475** flags might not work:
8476**
8477** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8478** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008479*/
drhd4187c72010-08-30 22:15:45 +00008480static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008481 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008482 MemPage *pRoot;
8483 Pgno pgnoRoot;
8484 int rc;
drhd4187c72010-08-30 22:15:45 +00008485 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008486
drh1fee73e2007-08-29 04:00:57 +00008487 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008488 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008489 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008490
danielk1977003ba062004-11-04 02:57:33 +00008491#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008492 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008493 if( rc ){
8494 return rc;
8495 }
danielk1977003ba062004-11-04 02:57:33 +00008496#else
danielk1977687566d2004-11-02 12:56:41 +00008497 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008498 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8499 MemPage *pPageMove; /* The page to move to. */
8500
danielk197720713f32007-05-03 11:43:33 +00008501 /* Creating a new table may probably require moving an existing database
8502 ** to make room for the new tables root page. In case this page turns
8503 ** out to be an overflow page, delete all overflow page-map caches
8504 ** held by open cursors.
8505 */
danielk197792d4d7a2007-05-04 12:05:56 +00008506 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008507
danielk1977003ba062004-11-04 02:57:33 +00008508 /* Read the value of meta[3] from the database to determine where the
8509 ** root page of the new table should go. meta[3] is the largest root-page
8510 ** created so far, so the new root-page is (meta[3]+1).
8511 */
danielk1977602b4662009-07-02 07:47:33 +00008512 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008513 pgnoRoot++;
8514
danielk1977599fcba2004-11-08 07:13:13 +00008515 /* The new root-page may not be allocated on a pointer-map page, or the
8516 ** PENDING_BYTE page.
8517 */
drh72190432008-01-31 14:54:43 +00008518 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008519 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008520 pgnoRoot++;
8521 }
drh499e15b2015-05-22 12:37:37 +00008522 assert( pgnoRoot>=3 || CORRUPT_DB );
8523 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008524
8525 /* Allocate a page. The page that currently resides at pgnoRoot will
8526 ** be moved to the allocated page (unless the allocated page happens
8527 ** to reside at pgnoRoot).
8528 */
dan51f0b6d2013-02-22 20:16:34 +00008529 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008530 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008531 return rc;
8532 }
danielk1977003ba062004-11-04 02:57:33 +00008533
8534 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008535 /* pgnoRoot is the page that will be used for the root-page of
8536 ** the new table (assuming an error did not occur). But we were
8537 ** allocated pgnoMove. If required (i.e. if it was not allocated
8538 ** by extending the file), the current page at position pgnoMove
8539 ** is already journaled.
8540 */
drheeb844a2009-08-08 18:01:07 +00008541 u8 eType = 0;
8542 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008543
danf7679ad2013-04-03 11:38:36 +00008544 /* Save the positions of any open cursors. This is required in
8545 ** case they are holding a reference to an xFetch reference
8546 ** corresponding to page pgnoRoot. */
8547 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008548 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008549 if( rc!=SQLITE_OK ){
8550 return rc;
8551 }
danielk1977f35843b2007-04-07 15:03:17 +00008552
8553 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008554 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008555 if( rc!=SQLITE_OK ){
8556 return rc;
8557 }
8558 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008559 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8560 rc = SQLITE_CORRUPT_BKPT;
8561 }
8562 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008563 releasePage(pRoot);
8564 return rc;
8565 }
drhccae6022005-02-26 17:31:26 +00008566 assert( eType!=PTRMAP_ROOTPAGE );
8567 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008568 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008569 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008570
8571 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008572 if( rc!=SQLITE_OK ){
8573 return rc;
8574 }
drhb00fc3b2013-08-21 23:42:32 +00008575 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008576 if( rc!=SQLITE_OK ){
8577 return rc;
8578 }
danielk19773b8a05f2007-03-19 17:44:26 +00008579 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008580 if( rc!=SQLITE_OK ){
8581 releasePage(pRoot);
8582 return rc;
8583 }
8584 }else{
8585 pRoot = pPageMove;
8586 }
8587
danielk197742741be2005-01-08 12:42:39 +00008588 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008589 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008590 if( rc ){
8591 releasePage(pRoot);
8592 return rc;
8593 }
drhbf592832010-03-30 15:51:12 +00008594
8595 /* When the new root page was allocated, page 1 was made writable in
8596 ** order either to increase the database filesize, or to decrement the
8597 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8598 */
8599 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008600 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008601 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008602 releasePage(pRoot);
8603 return rc;
8604 }
danielk197742741be2005-01-08 12:42:39 +00008605
danielk1977003ba062004-11-04 02:57:33 +00008606 }else{
drh4f0c5872007-03-26 22:05:01 +00008607 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008608 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008609 }
8610#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008611 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008612 if( createTabFlags & BTREE_INTKEY ){
8613 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8614 }else{
8615 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8616 }
8617 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008618 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008619 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008620 *piTable = (int)pgnoRoot;
8621 return SQLITE_OK;
8622}
drhd677b3d2007-08-20 22:48:41 +00008623int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8624 int rc;
8625 sqlite3BtreeEnter(p);
8626 rc = btreeCreateTable(p, piTable, flags);
8627 sqlite3BtreeLeave(p);
8628 return rc;
8629}
drh8b2f49b2001-06-08 00:21:52 +00008630
8631/*
8632** Erase the given database page and all its children. Return
8633** the page to the freelist.
8634*/
drh4b70f112004-05-02 21:12:19 +00008635static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008636 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008637 Pgno pgno, /* Page number to clear */
8638 int freePageFlag, /* Deallocate page if true */
8639 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008640){
danielk1977146ba992009-07-22 14:08:13 +00008641 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008642 int rc;
drh4b70f112004-05-02 21:12:19 +00008643 unsigned char *pCell;
8644 int i;
dan8ce71842014-01-14 20:14:09 +00008645 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008646 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008647
drh1fee73e2007-08-29 04:00:57 +00008648 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008649 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008650 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008651 }
drh28f58dd2015-06-27 19:45:03 +00008652 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008653 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008654 if( pPage->bBusy ){
8655 rc = SQLITE_CORRUPT_BKPT;
8656 goto cleardatabasepage_out;
8657 }
8658 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008659 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008660 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008661 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008662 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008663 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008664 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008665 }
drh9bfdc252014-09-24 02:05:41 +00008666 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008667 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008668 }
drhccf46d02015-04-01 13:21:33 +00008669 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008670 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008671 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008672 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008673 assert( pPage->intKey || CORRUPT_DB );
8674 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008675 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008676 }
8677 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008678 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008679 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008680 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008681 }
danielk19776b456a22005-03-21 04:04:02 +00008682
8683cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008684 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008685 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008686 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008687}
8688
8689/*
drhab01f612004-05-22 02:55:23 +00008690** Delete all information from a single table in the database. iTable is
8691** the page number of the root of the table. After this routine returns,
8692** the root page is empty, but still exists.
8693**
8694** This routine will fail with SQLITE_LOCKED if there are any open
8695** read cursors on the table. Open write cursors are moved to the
8696** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008697**
8698** If pnChange is not NULL, then table iTable must be an intkey table. The
8699** integer value pointed to by pnChange is incremented by the number of
8700** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008701*/
danielk1977c7af4842008-10-27 13:59:33 +00008702int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008703 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008704 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008705 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008706 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008707
drhc046e3e2009-07-15 11:26:44 +00008708 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008709
drhc046e3e2009-07-15 11:26:44 +00008710 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008711 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8712 ** is the root of a table b-tree - if it is not, the following call is
8713 ** a no-op). */
8714 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008715 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008716 }
drhd677b3d2007-08-20 22:48:41 +00008717 sqlite3BtreeLeave(p);
8718 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008719}
8720
8721/*
drh079a3072014-03-19 14:10:55 +00008722** Delete all information from the single table that pCur is open on.
8723**
8724** This routine only work for pCur on an ephemeral table.
8725*/
8726int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8727 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8728}
8729
8730/*
drh8b2f49b2001-06-08 00:21:52 +00008731** Erase all information in a table and add the root of the table to
8732** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008733** page 1) is never added to the freelist.
8734**
8735** This routine will fail with SQLITE_LOCKED if there are any open
8736** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008737**
8738** If AUTOVACUUM is enabled and the page at iTable is not the last
8739** root page in the database file, then the last root page
8740** in the database file is moved into the slot formerly occupied by
8741** iTable and that last slot formerly occupied by the last root page
8742** is added to the freelist instead of iTable. In this say, all
8743** root pages are kept at the beginning of the database file, which
8744** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8745** page number that used to be the last root page in the file before
8746** the move. If no page gets moved, *piMoved is set to 0.
8747** The last root page is recorded in meta[3] and the value of
8748** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008749*/
danielk197789d40042008-11-17 14:20:56 +00008750static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008751 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008752 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008753 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008754
drh1fee73e2007-08-29 04:00:57 +00008755 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008756 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008757
danielk1977e6efa742004-11-10 11:55:10 +00008758 /* It is illegal to drop a table if any cursors are open on the
8759 ** database. This is because in auto-vacuum mode the backend may
8760 ** need to move another root-page to fill a gap left by the deleted
8761 ** root page. If an open cursor was using this page a problem would
8762 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008763 **
8764 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008765 */
drhc046e3e2009-07-15 11:26:44 +00008766 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008767 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8768 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008769 }
danielk1977a0bf2652004-11-04 14:30:04 +00008770
drhb00fc3b2013-08-21 23:42:32 +00008771 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008772 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008773 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008774 if( rc ){
8775 releasePage(pPage);
8776 return rc;
8777 }
danielk1977a0bf2652004-11-04 14:30:04 +00008778
drh205f48e2004-11-05 00:43:11 +00008779 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008780
drh4b70f112004-05-02 21:12:19 +00008781 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008782#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008783 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008784 releasePage(pPage);
8785#else
8786 if( pBt->autoVacuum ){
8787 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008788 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008789
8790 if( iTable==maxRootPgno ){
8791 /* If the table being dropped is the table with the largest root-page
8792 ** number in the database, put the root page on the free list.
8793 */
drhc314dc72009-07-21 11:52:34 +00008794 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008795 releasePage(pPage);
8796 if( rc!=SQLITE_OK ){
8797 return rc;
8798 }
8799 }else{
8800 /* The table being dropped does not have the largest root-page
8801 ** number in the database. So move the page that does into the
8802 ** gap left by the deleted root-page.
8803 */
8804 MemPage *pMove;
8805 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008806 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008807 if( rc!=SQLITE_OK ){
8808 return rc;
8809 }
danielk19774c999992008-07-16 18:17:55 +00008810 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008811 releasePage(pMove);
8812 if( rc!=SQLITE_OK ){
8813 return rc;
8814 }
drhfe3313f2009-07-21 19:02:20 +00008815 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008816 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008817 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008818 releasePage(pMove);
8819 if( rc!=SQLITE_OK ){
8820 return rc;
8821 }
8822 *piMoved = maxRootPgno;
8823 }
8824
danielk1977599fcba2004-11-08 07:13:13 +00008825 /* Set the new 'max-root-page' value in the database header. This
8826 ** is the old value less one, less one more if that happens to
8827 ** be a root-page number, less one again if that is the
8828 ** PENDING_BYTE_PAGE.
8829 */
danielk197787a6e732004-11-05 12:58:25 +00008830 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008831 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8832 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008833 maxRootPgno--;
8834 }
danielk1977599fcba2004-11-08 07:13:13 +00008835 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8836
danielk1977aef0bf62005-12-30 16:28:01 +00008837 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008838 }else{
drhc314dc72009-07-21 11:52:34 +00008839 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008840 releasePage(pPage);
8841 }
8842#endif
drh2aa679f2001-06-25 02:11:07 +00008843 }else{
drhc046e3e2009-07-15 11:26:44 +00008844 /* If sqlite3BtreeDropTable was called on page 1.
8845 ** This really never should happen except in a corrupt
8846 ** database.
8847 */
drha34b6762004-05-07 13:30:42 +00008848 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008849 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008850 }
drh8b2f49b2001-06-08 00:21:52 +00008851 return rc;
8852}
drhd677b3d2007-08-20 22:48:41 +00008853int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8854 int rc;
8855 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008856 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008857 sqlite3BtreeLeave(p);
8858 return rc;
8859}
drh8b2f49b2001-06-08 00:21:52 +00008860
drh001bbcb2003-03-19 03:14:00 +00008861
drh8b2f49b2001-06-08 00:21:52 +00008862/*
danielk1977602b4662009-07-02 07:47:33 +00008863** This function may only be called if the b-tree connection already
8864** has a read or write transaction open on the database.
8865**
drh23e11ca2004-05-04 17:27:28 +00008866** Read the meta-information out of a database file. Meta[0]
8867** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008868** through meta[15] are available for use by higher layers. Meta[0]
8869** is read-only, the others are read/write.
8870**
8871** The schema layer numbers meta values differently. At the schema
8872** layer (and the SetCookie and ReadCookie opcodes) the number of
8873** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008874**
8875** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8876** of reading the value out of the header, it instead loads the "DataVersion"
8877** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8878** database file. It is a number computed by the pager. But its access
8879** pattern is the same as header meta values, and so it is convenient to
8880** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008881*/
danielk1977602b4662009-07-02 07:47:33 +00008882void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008883 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008884
drhd677b3d2007-08-20 22:48:41 +00008885 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008886 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008887 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008888 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008889 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008890
drh91618562014-12-19 19:28:02 +00008891 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008892 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008893 }else{
8894 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8895 }
drhae157872004-08-14 19:20:09 +00008896
danielk1977602b4662009-07-02 07:47:33 +00008897 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8898 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008899#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008900 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8901 pBt->btsFlags |= BTS_READ_ONLY;
8902 }
danielk1977003ba062004-11-04 02:57:33 +00008903#endif
drhae157872004-08-14 19:20:09 +00008904
drhd677b3d2007-08-20 22:48:41 +00008905 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008906}
8907
8908/*
drh23e11ca2004-05-04 17:27:28 +00008909** Write meta-information back into the database. Meta[0] is
8910** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008911*/
danielk1977aef0bf62005-12-30 16:28:01 +00008912int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8913 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008914 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008915 int rc;
drh23e11ca2004-05-04 17:27:28 +00008916 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008917 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008918 assert( p->inTrans==TRANS_WRITE );
8919 assert( pBt->pPage1!=0 );
8920 pP1 = pBt->pPage1->aData;
8921 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8922 if( rc==SQLITE_OK ){
8923 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008924#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008925 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008926 assert( pBt->autoVacuum || iMeta==0 );
8927 assert( iMeta==0 || iMeta==1 );
8928 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008929 }
drh64022502009-01-09 14:11:04 +00008930#endif
drh5df72a52002-06-06 23:16:05 +00008931 }
drhd677b3d2007-08-20 22:48:41 +00008932 sqlite3BtreeLeave(p);
8933 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008934}
drh8c42ca92001-06-22 19:15:00 +00008935
danielk1977a5533162009-02-24 10:01:51 +00008936#ifndef SQLITE_OMIT_BTREECOUNT
8937/*
8938** The first argument, pCur, is a cursor opened on some b-tree. Count the
8939** number of entries in the b-tree and write the result to *pnEntry.
8940**
8941** SQLITE_OK is returned if the operation is successfully executed.
8942** Otherwise, if an error is encountered (i.e. an IO error or database
8943** corruption) an SQLite error code is returned.
8944*/
8945int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8946 i64 nEntry = 0; /* Value to return in *pnEntry */
8947 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008948
8949 if( pCur->pgnoRoot==0 ){
8950 *pnEntry = 0;
8951 return SQLITE_OK;
8952 }
danielk1977a5533162009-02-24 10:01:51 +00008953 rc = moveToRoot(pCur);
8954
8955 /* Unless an error occurs, the following loop runs one iteration for each
8956 ** page in the B-Tree structure (not including overflow pages).
8957 */
8958 while( rc==SQLITE_OK ){
8959 int iIdx; /* Index of child node in parent */
8960 MemPage *pPage; /* Current page of the b-tree */
8961
8962 /* If this is a leaf page or the tree is not an int-key tree, then
8963 ** this page contains countable entries. Increment the entry counter
8964 ** accordingly.
8965 */
8966 pPage = pCur->apPage[pCur->iPage];
8967 if( pPage->leaf || !pPage->intKey ){
8968 nEntry += pPage->nCell;
8969 }
8970
8971 /* pPage is a leaf node. This loop navigates the cursor so that it
8972 ** points to the first interior cell that it points to the parent of
8973 ** the next page in the tree that has not yet been visited. The
8974 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8975 ** of the page, or to the number of cells in the page if the next page
8976 ** to visit is the right-child of its parent.
8977 **
8978 ** If all pages in the tree have been visited, return SQLITE_OK to the
8979 ** caller.
8980 */
8981 if( pPage->leaf ){
8982 do {
8983 if( pCur->iPage==0 ){
8984 /* All pages of the b-tree have been visited. Return successfully. */
8985 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008986 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008987 }
danielk197730548662009-07-09 05:07:37 +00008988 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008989 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8990
8991 pCur->aiIdx[pCur->iPage]++;
8992 pPage = pCur->apPage[pCur->iPage];
8993 }
8994
8995 /* Descend to the child node of the cell that the cursor currently
8996 ** points at. This is the right-child if (iIdx==pPage->nCell).
8997 */
8998 iIdx = pCur->aiIdx[pCur->iPage];
8999 if( iIdx==pPage->nCell ){
9000 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9001 }else{
9002 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9003 }
9004 }
9005
shanebe217792009-03-05 04:20:31 +00009006 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009007 return rc;
9008}
9009#endif
drhdd793422001-06-28 01:54:48 +00009010
drhdd793422001-06-28 01:54:48 +00009011/*
drh5eddca62001-06-30 21:53:53 +00009012** Return the pager associated with a BTree. This routine is used for
9013** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009014*/
danielk1977aef0bf62005-12-30 16:28:01 +00009015Pager *sqlite3BtreePager(Btree *p){
9016 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009017}
drh5eddca62001-06-30 21:53:53 +00009018
drhb7f91642004-10-31 02:22:47 +00009019#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009020/*
9021** Append a message to the error message string.
9022*/
drh2e38c322004-09-03 18:38:44 +00009023static void checkAppendMsg(
9024 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009025 const char *zFormat,
9026 ...
9027){
9028 va_list ap;
drh867db832014-09-26 02:41:05 +00009029 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00009030 if( !pCheck->mxErr ) return;
9031 pCheck->mxErr--;
9032 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009033 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009034 if( pCheck->errMsg.nChar ){
9035 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009036 }
drh867db832014-09-26 02:41:05 +00009037 if( pCheck->zPfx ){
9038 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
9039 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00009040 }
9041 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
9042 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00009043 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009044 pCheck->mallocFailed = 1;
9045 }
drh5eddca62001-06-30 21:53:53 +00009046}
drhb7f91642004-10-31 02:22:47 +00009047#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009048
drhb7f91642004-10-31 02:22:47 +00009049#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009050
9051/*
9052** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9053** corresponds to page iPg is already set.
9054*/
9055static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9056 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9057 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9058}
9059
9060/*
9061** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9062*/
9063static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9064 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9065 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9066}
9067
9068
drh5eddca62001-06-30 21:53:53 +00009069/*
9070** Add 1 to the reference count for page iPage. If this is the second
9071** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009072** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009073** if this is the first reference to the page.
9074**
9075** Also check that the page number is in bounds.
9076*/
drh867db832014-09-26 02:41:05 +00009077static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009078 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009079 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009080 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009081 return 1;
9082 }
dan1235bb12012-04-03 17:43:28 +00009083 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009084 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009085 return 1;
9086 }
dan1235bb12012-04-03 17:43:28 +00009087 setPageReferenced(pCheck, iPage);
9088 return 0;
drh5eddca62001-06-30 21:53:53 +00009089}
9090
danielk1977afcdd022004-10-31 16:25:42 +00009091#ifndef SQLITE_OMIT_AUTOVACUUM
9092/*
9093** Check that the entry in the pointer-map for page iChild maps to
9094** page iParent, pointer type ptrType. If not, append an error message
9095** to pCheck.
9096*/
9097static void checkPtrmap(
9098 IntegrityCk *pCheck, /* Integrity check context */
9099 Pgno iChild, /* Child page number */
9100 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009101 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009102){
9103 int rc;
9104 u8 ePtrmapType;
9105 Pgno iPtrmapParent;
9106
9107 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9108 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009109 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009110 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009111 return;
9112 }
9113
9114 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009115 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009116 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9117 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9118 }
9119}
9120#endif
9121
drh5eddca62001-06-30 21:53:53 +00009122/*
9123** Check the integrity of the freelist or of an overflow page list.
9124** Verify that the number of pages on the list is N.
9125*/
drh30e58752002-03-02 20:41:57 +00009126static void checkList(
9127 IntegrityCk *pCheck, /* Integrity checking context */
9128 int isFreeList, /* True for a freelist. False for overflow page list */
9129 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009130 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009131){
9132 int i;
drh3a4c1412004-05-09 20:40:11 +00009133 int expected = N;
9134 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009135 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009136 DbPage *pOvflPage;
9137 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009138 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009139 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009140 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009141 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009142 break;
9143 }
drh867db832014-09-26 02:41:05 +00009144 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00009145 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00009146 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009147 break;
9148 }
danielk19773b8a05f2007-03-19 17:44:26 +00009149 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009150 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009151 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009152#ifndef SQLITE_OMIT_AUTOVACUUM
9153 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009154 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009155 }
9156#endif
drh43b18e12010-08-17 19:40:08 +00009157 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009158 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009159 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009160 N--;
9161 }else{
9162 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009163 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009164#ifndef SQLITE_OMIT_AUTOVACUUM
9165 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009166 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009167 }
9168#endif
drh867db832014-09-26 02:41:05 +00009169 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009170 }
9171 N -= n;
drh30e58752002-03-02 20:41:57 +00009172 }
drh30e58752002-03-02 20:41:57 +00009173 }
danielk1977afcdd022004-10-31 16:25:42 +00009174#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009175 else{
9176 /* If this database supports auto-vacuum and iPage is not the last
9177 ** page in this overflow list, check that the pointer-map entry for
9178 ** the following page matches iPage.
9179 */
9180 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009181 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009182 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009183 }
danielk1977afcdd022004-10-31 16:25:42 +00009184 }
9185#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009186 iPage = get4byte(pOvflData);
9187 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00009188 }
9189}
drhb7f91642004-10-31 02:22:47 +00009190#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009191
drh67731a92015-04-16 11:56:03 +00009192/*
9193** An implementation of a min-heap.
9194**
9195** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009196** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009197** and aHeap[N*2+1].
9198**
9199** The heap property is this: Every node is less than or equal to both
9200** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009201** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009202**
9203** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9204** the heap, preserving the heap property. The btreeHeapPull() routine
9205** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009206** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009207** property.
9208**
9209** This heap is used for cell overlap and coverage testing. Each u32
9210** entry represents the span of a cell or freeblock on a btree page.
9211** The upper 16 bits are the index of the first byte of a range and the
9212** lower 16 bits are the index of the last byte of that range.
9213*/
9214static void btreeHeapInsert(u32 *aHeap, u32 x){
9215 u32 j, i = ++aHeap[0];
9216 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009217 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009218 x = aHeap[j];
9219 aHeap[j] = aHeap[i];
9220 aHeap[i] = x;
9221 i = j;
9222 }
9223}
9224static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9225 u32 j, i, x;
9226 if( (x = aHeap[0])==0 ) return 0;
9227 *pOut = aHeap[1];
9228 aHeap[1] = aHeap[x];
9229 aHeap[x] = 0xffffffff;
9230 aHeap[0]--;
9231 i = 1;
9232 while( (j = i*2)<=aHeap[0] ){
9233 if( aHeap[j]>aHeap[j+1] ) j++;
9234 if( aHeap[i]<aHeap[j] ) break;
9235 x = aHeap[i];
9236 aHeap[i] = aHeap[j];
9237 aHeap[j] = x;
9238 i = j;
9239 }
9240 return 1;
9241}
9242
drhb7f91642004-10-31 02:22:47 +00009243#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009244/*
9245** Do various sanity checks on a single page of a tree. Return
9246** the tree depth. Root pages return 0. Parents of root pages
9247** return 1, and so forth.
9248**
9249** These checks are done:
9250**
9251** 1. Make sure that cells and freeblocks do not overlap
9252** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009253** 2. Make sure integer cell keys are in order.
9254** 3. Check the integrity of overflow pages.
9255** 4. Recursively call checkTreePage on all children.
9256** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009257*/
9258static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009259 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009260 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009261 i64 *piMinKey, /* Write minimum integer primary key here */
9262 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009263){
drhcbc6b712015-07-02 16:17:30 +00009264 MemPage *pPage = 0; /* The page being analyzed */
9265 int i; /* Loop counter */
9266 int rc; /* Result code from subroutine call */
9267 int depth = -1, d2; /* Depth of a subtree */
9268 int pgno; /* Page number */
9269 int nFrag; /* Number of fragmented bytes on the page */
9270 int hdr; /* Offset to the page header */
9271 int cellStart; /* Offset to the start of the cell pointer array */
9272 int nCell; /* Number of cells */
9273 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9274 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9275 ** False if IPK must be strictly less than maxKey */
9276 u8 *data; /* Page content */
9277 u8 *pCell; /* Cell content */
9278 u8 *pCellIdx; /* Next element of the cell pointer array */
9279 BtShared *pBt; /* The BtShared object that owns pPage */
9280 u32 pc; /* Address of a cell */
9281 u32 usableSize; /* Usable size of the page */
9282 u32 contentOffset; /* Offset to the start of the cell content area */
9283 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009284 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009285 const char *saved_zPfx = pCheck->zPfx;
9286 int saved_v1 = pCheck->v1;
9287 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009288 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009289
drh5eddca62001-06-30 21:53:53 +00009290 /* Check that the page exists
9291 */
drhd9cb6ac2005-10-20 07:28:17 +00009292 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009293 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009294 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009295 if( checkRef(pCheck, iPage) ) return 0;
9296 pCheck->zPfx = "Page %d: ";
9297 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009298 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009299 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009300 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009301 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009302 }
danielk197793caf5a2009-07-11 06:55:33 +00009303
9304 /* Clear MemPage.isInit to make sure the corruption detection code in
9305 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009306 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009307 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009308 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009309 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009310 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009311 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009312 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009313 }
drhcbc6b712015-07-02 16:17:30 +00009314 data = pPage->aData;
9315 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009316
drhcbc6b712015-07-02 16:17:30 +00009317 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009318 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009319 contentOffset = get2byteNotZero(&data[hdr+5]);
9320 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9321
9322 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9323 ** number of cells on the page. */
9324 nCell = get2byte(&data[hdr+3]);
9325 assert( pPage->nCell==nCell );
9326
9327 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9328 ** immediately follows the b-tree page header. */
9329 cellStart = hdr + 12 - 4*pPage->leaf;
9330 assert( pPage->aCellIdx==&data[cellStart] );
9331 pCellIdx = &data[cellStart + 2*(nCell-1)];
9332
9333 if( !pPage->leaf ){
9334 /* Analyze the right-child page of internal pages */
9335 pgno = get4byte(&data[hdr+8]);
9336#ifndef SQLITE_OMIT_AUTOVACUUM
9337 if( pBt->autoVacuum ){
9338 pCheck->zPfx = "On page %d at right child: ";
9339 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9340 }
9341#endif
9342 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9343 keyCanBeEqual = 0;
9344 }else{
9345 /* For leaf pages, the coverage check will occur in the same loop
9346 ** as the other cell checks, so initialize the heap. */
9347 heap = pCheck->heap;
9348 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009349 }
9350
9351 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9352 ** integer offsets to the cell contents. */
9353 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009354 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009355
drhcbc6b712015-07-02 16:17:30 +00009356 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009357 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009358 assert( pCellIdx==&data[cellStart + i*2] );
9359 pc = get2byteAligned(pCellIdx);
9360 pCellIdx -= 2;
9361 if( pc<contentOffset || pc>usableSize-4 ){
9362 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9363 pc, contentOffset, usableSize-4);
9364 doCoverageCheck = 0;
9365 continue;
shaneh195475d2010-02-19 04:28:08 +00009366 }
drhcbc6b712015-07-02 16:17:30 +00009367 pCell = &data[pc];
9368 pPage->xParseCell(pPage, pCell, &info);
9369 if( pc+info.nSize>usableSize ){
9370 checkAppendMsg(pCheck, "Extends off end of page");
9371 doCoverageCheck = 0;
9372 continue;
9373 }
9374
9375 /* Check for integer primary key out of range */
9376 if( pPage->intKey ){
9377 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9378 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9379 }
9380 maxKey = info.nKey;
9381 }
9382
9383 /* Check the content overflow list */
9384 if( info.nPayload>info.nLocal ){
9385 int nPage; /* Number of pages on the overflow chain */
9386 Pgno pgnoOvfl; /* First page of the overflow chain */
9387 assert( pc + info.iOverflow <= usableSize );
9388 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9389 pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk1977afcdd022004-10-31 16:25:42 +00009390#ifndef SQLITE_OMIT_AUTOVACUUM
9391 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009392 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009393 }
9394#endif
drh867db832014-09-26 02:41:05 +00009395 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009396 }
9397
drhda200cc2004-05-09 11:51:38 +00009398 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009399 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009400 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009401#ifndef SQLITE_OMIT_AUTOVACUUM
9402 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009403 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009404 }
9405#endif
drhcbc6b712015-07-02 16:17:30 +00009406 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9407 keyCanBeEqual = 0;
9408 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009409 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009410 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009411 }
drhcbc6b712015-07-02 16:17:30 +00009412 }else{
9413 /* Populate the coverage-checking heap for leaf pages */
9414 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009415 }
drh5eddca62001-06-30 21:53:53 +00009416 }
drhcbc6b712015-07-02 16:17:30 +00009417 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009418
drh5eddca62001-06-30 21:53:53 +00009419 /* Check for complete coverage of the page
9420 */
drh867db832014-09-26 02:41:05 +00009421 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009422 if( doCoverageCheck && pCheck->mxErr>0 ){
9423 /* For leaf pages, the min-heap has already been initialized and the
9424 ** cells have already been inserted. But for internal pages, that has
9425 ** not yet been done, so do it now */
9426 if( !pPage->leaf ){
9427 heap = pCheck->heap;
9428 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009429 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009430 u32 size;
9431 pc = get2byteAligned(&data[cellStart+i*2]);
9432 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009433 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009434 }
drh2e38c322004-09-03 18:38:44 +00009435 }
drhcbc6b712015-07-02 16:17:30 +00009436 /* Add the freeblocks to the min-heap
9437 **
9438 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009439 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009440 ** freeblocks on the page.
9441 */
drh8c2bbb62009-07-10 02:52:20 +00009442 i = get2byte(&data[hdr+1]);
9443 while( i>0 ){
9444 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009445 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009446 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009447 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009448 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009449 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9450 ** big-endian integer which is the offset in the b-tree page of the next
9451 ** freeblock in the chain, or zero if the freeblock is the last on the
9452 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009453 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009454 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9455 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009456 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009457 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009458 i = j;
drh2e38c322004-09-03 18:38:44 +00009459 }
drhcbc6b712015-07-02 16:17:30 +00009460 /* Analyze the min-heap looking for overlap between cells and/or
9461 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009462 **
9463 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9464 ** There is an implied first entry the covers the page header, the cell
9465 ** pointer index, and the gap between the cell pointer index and the start
9466 ** of cell content.
9467 **
9468 ** The loop below pulls entries from the min-heap in order and compares
9469 ** the start_address against the previous end_address. If there is an
9470 ** overlap, that means bytes are used multiple times. If there is a gap,
9471 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009472 */
9473 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009474 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009475 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009476 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009477 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009478 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009479 break;
drh67731a92015-04-16 11:56:03 +00009480 }else{
drhcbc6b712015-07-02 16:17:30 +00009481 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009482 prev = x;
drh2e38c322004-09-03 18:38:44 +00009483 }
9484 }
drhcbc6b712015-07-02 16:17:30 +00009485 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009486 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9487 ** is stored in the fifth field of the b-tree page header.
9488 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9489 ** number of fragmented free bytes within the cell content area.
9490 */
drhcbc6b712015-07-02 16:17:30 +00009491 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009492 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009493 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009494 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009495 }
9496 }
drh867db832014-09-26 02:41:05 +00009497
9498end_of_check:
drh72e191e2015-07-04 11:14:20 +00009499 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009500 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009501 pCheck->zPfx = saved_zPfx;
9502 pCheck->v1 = saved_v1;
9503 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009504 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009505}
drhb7f91642004-10-31 02:22:47 +00009506#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009507
drhb7f91642004-10-31 02:22:47 +00009508#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009509/*
9510** This routine does a complete check of the given BTree file. aRoot[] is
9511** an array of pages numbers were each page number is the root page of
9512** a table. nRoot is the number of entries in aRoot.
9513**
danielk19773509a652009-07-06 18:56:13 +00009514** A read-only or read-write transaction must be opened before calling
9515** this function.
9516**
drhc890fec2008-08-01 20:10:08 +00009517** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009518** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009519** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009520** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009521*/
drh1dcdbc02007-01-27 02:24:54 +00009522char *sqlite3BtreeIntegrityCheck(
9523 Btree *p, /* The btree to be checked */
9524 int *aRoot, /* An array of root pages numbers for individual trees */
9525 int nRoot, /* Number of entries in aRoot[] */
9526 int mxErr, /* Stop reporting errors after this many */
9527 int *pnErr /* Write number of errors seen to this variable */
9528){
danielk197789d40042008-11-17 14:20:56 +00009529 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009530 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009531 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009532 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009533 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009534 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009535
drhd677b3d2007-08-20 22:48:41 +00009536 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009537 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009538 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009539 sCheck.pBt = pBt;
9540 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009541 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009542 sCheck.mxErr = mxErr;
9543 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009544 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009545 sCheck.zPfx = 0;
9546 sCheck.v1 = 0;
9547 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009548 sCheck.aPgRef = 0;
9549 sCheck.heap = 0;
9550 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009551 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009552 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009553 }
dan1235bb12012-04-03 17:43:28 +00009554
9555 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9556 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009557 sCheck.mallocFailed = 1;
9558 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009559 }
drhe05b3f82015-07-01 17:53:49 +00009560 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9561 if( sCheck.heap==0 ){
9562 sCheck.mallocFailed = 1;
9563 goto integrity_ck_cleanup;
9564 }
9565
drh42cac6d2004-11-20 20:31:11 +00009566 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009567 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009568
9569 /* Check the integrity of the freelist
9570 */
drh867db832014-09-26 02:41:05 +00009571 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009572 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009573 get4byte(&pBt->pPage1->aData[36]));
9574 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009575
9576 /* Check all the tables.
9577 */
drhcbc6b712015-07-02 16:17:30 +00009578 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9579 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009580 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009581 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009582 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009583#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009584 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009585 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009586 }
9587#endif
drhcbc6b712015-07-02 16:17:30 +00009588 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009589 }
drhcbc6b712015-07-02 16:17:30 +00009590 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009591
9592 /* Make sure every page in the file is referenced
9593 */
drh1dcdbc02007-01-27 02:24:54 +00009594 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009595#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009596 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009597 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009598 }
danielk1977afcdd022004-10-31 16:25:42 +00009599#else
9600 /* If the database supports auto-vacuum, make sure no tables contain
9601 ** references to pointer-map pages.
9602 */
dan1235bb12012-04-03 17:43:28 +00009603 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009604 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009605 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009606 }
dan1235bb12012-04-03 17:43:28 +00009607 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009608 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009609 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009610 }
9611#endif
drh5eddca62001-06-30 21:53:53 +00009612 }
9613
drh5eddca62001-06-30 21:53:53 +00009614 /* Clean up and report errors.
9615 */
drhe05b3f82015-07-01 17:53:49 +00009616integrity_ck_cleanup:
9617 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009618 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009619 if( sCheck.mallocFailed ){
9620 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009621 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009622 }
drh1dcdbc02007-01-27 02:24:54 +00009623 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009624 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009625 /* Make sure this analysis did not leave any unref() pages. */
9626 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9627 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009628 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009629}
drhb7f91642004-10-31 02:22:47 +00009630#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009631
drh73509ee2003-04-06 20:44:45 +00009632/*
drhd4e0bb02012-05-27 01:19:04 +00009633** Return the full pathname of the underlying database file. Return
9634** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009635**
9636** The pager filename is invariant as long as the pager is
9637** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009638*/
danielk1977aef0bf62005-12-30 16:28:01 +00009639const char *sqlite3BtreeGetFilename(Btree *p){
9640 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009641 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009642}
9643
9644/*
danielk19775865e3d2004-06-14 06:03:57 +00009645** Return the pathname of the journal file for this database. The return
9646** value of this routine is the same regardless of whether the journal file
9647** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009648**
9649** The pager journal filename is invariant as long as the pager is
9650** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009651*/
danielk1977aef0bf62005-12-30 16:28:01 +00009652const char *sqlite3BtreeGetJournalname(Btree *p){
9653 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009654 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009655}
9656
danielk19771d850a72004-05-31 08:26:49 +00009657/*
9658** Return non-zero if a transaction is active.
9659*/
danielk1977aef0bf62005-12-30 16:28:01 +00009660int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009661 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009662 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009663}
9664
dana550f2d2010-08-02 10:47:05 +00009665#ifndef SQLITE_OMIT_WAL
9666/*
9667** Run a checkpoint on the Btree passed as the first argument.
9668**
9669** Return SQLITE_LOCKED if this or any other connection has an open
9670** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009671**
dancdc1f042010-11-18 12:11:05 +00009672** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009673*/
dancdc1f042010-11-18 12:11:05 +00009674int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009675 int rc = SQLITE_OK;
9676 if( p ){
9677 BtShared *pBt = p->pBt;
9678 sqlite3BtreeEnter(p);
9679 if( pBt->inTransaction!=TRANS_NONE ){
9680 rc = SQLITE_LOCKED;
9681 }else{
dancdc1f042010-11-18 12:11:05 +00009682 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009683 }
9684 sqlite3BtreeLeave(p);
9685 }
9686 return rc;
9687}
9688#endif
9689
danielk19771d850a72004-05-31 08:26:49 +00009690/*
danielk19772372c2b2006-06-27 16:34:56 +00009691** Return non-zero if a read (or write) transaction is active.
9692*/
9693int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009694 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009695 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009696 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009697}
9698
danielk197704103022009-02-03 16:51:24 +00009699int sqlite3BtreeIsInBackup(Btree *p){
9700 assert( p );
9701 assert( sqlite3_mutex_held(p->db->mutex) );
9702 return p->nBackup!=0;
9703}
9704
danielk19772372c2b2006-06-27 16:34:56 +00009705/*
danielk1977da184232006-01-05 11:34:32 +00009706** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009707** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009708** purposes (for example, to store a high-level schema associated with
9709** the shared-btree). The btree layer manages reference counting issues.
9710**
9711** The first time this is called on a shared-btree, nBytes bytes of memory
9712** are allocated, zeroed, and returned to the caller. For each subsequent
9713** call the nBytes parameter is ignored and a pointer to the same blob
9714** of memory returned.
9715**
danielk1977171bfed2008-06-23 09:50:50 +00009716** If the nBytes parameter is 0 and the blob of memory has not yet been
9717** allocated, a null pointer is returned. If the blob has already been
9718** allocated, it is returned as normal.
9719**
danielk1977da184232006-01-05 11:34:32 +00009720** Just before the shared-btree is closed, the function passed as the
9721** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009722** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009723** on the memory, the btree layer does that.
9724*/
9725void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9726 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009727 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009728 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009729 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009730 pBt->xFreeSchema = xFree;
9731 }
drh27641702007-08-22 02:56:42 +00009732 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009733 return pBt->pSchema;
9734}
9735
danielk1977c87d34d2006-01-06 13:00:28 +00009736/*
danielk1977404ca072009-03-16 13:19:36 +00009737** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9738** btree as the argument handle holds an exclusive lock on the
9739** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009740*/
9741int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009742 int rc;
drhe5fe6902007-12-07 18:55:28 +00009743 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009744 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009745 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9746 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009747 sqlite3BtreeLeave(p);
9748 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009749}
9750
drha154dcd2006-03-22 22:10:07 +00009751
9752#ifndef SQLITE_OMIT_SHARED_CACHE
9753/*
9754** Obtain a lock on the table whose root page is iTab. The
9755** lock is a write lock if isWritelock is true or a read lock
9756** if it is false.
9757*/
danielk1977c00da102006-01-07 13:21:04 +00009758int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009759 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009760 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009761 if( p->sharable ){
9762 u8 lockType = READ_LOCK + isWriteLock;
9763 assert( READ_LOCK+1==WRITE_LOCK );
9764 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009765
drh6a9ad3d2008-04-02 16:29:30 +00009766 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009767 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009768 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009769 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009770 }
9771 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009772 }
9773 return rc;
9774}
drha154dcd2006-03-22 22:10:07 +00009775#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009776
danielk1977b4e9af92007-05-01 17:49:49 +00009777#ifndef SQLITE_OMIT_INCRBLOB
9778/*
9779** Argument pCsr must be a cursor opened for writing on an
9780** INTKEY table currently pointing at a valid table entry.
9781** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009782**
9783** Only the data content may only be modified, it is not possible to
9784** change the length of the data stored. If this function is called with
9785** parameters that attempt to write past the end of the existing data,
9786** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009787*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009788int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009789 int rc;
drh1fee73e2007-08-29 04:00:57 +00009790 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009791 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009792 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009793
danielk1977c9000e62009-07-08 13:55:28 +00009794 rc = restoreCursorPosition(pCsr);
9795 if( rc!=SQLITE_OK ){
9796 return rc;
9797 }
danielk19773588ceb2008-06-10 17:30:26 +00009798 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9799 if( pCsr->eState!=CURSOR_VALID ){
9800 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009801 }
9802
dan227a1c42013-04-03 11:17:39 +00009803 /* Save the positions of all other cursors open on this table. This is
9804 ** required in case any of them are holding references to an xFetch
9805 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009806 **
drh3f387402014-09-24 01:23:00 +00009807 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009808 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9809 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009810 */
drh370c9f42013-04-03 20:04:04 +00009811 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9812 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009813
danielk1977c9000e62009-07-08 13:55:28 +00009814 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009815 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009816 ** (b) there is a read/write transaction open,
9817 ** (c) the connection holds a write-lock on the table (if required),
9818 ** (d) there are no conflicting read-locks, and
9819 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009820 */
drh036dbec2014-03-11 23:40:44 +00009821 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009822 return SQLITE_READONLY;
9823 }
drhc9166342012-01-05 23:32:06 +00009824 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9825 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009826 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9827 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009828 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009829
drhfb192682009-07-11 18:26:28 +00009830 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009831}
danielk19772dec9702007-05-02 16:48:37 +00009832
9833/*
dan5a500af2014-03-11 20:33:04 +00009834** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009835*/
dan5a500af2014-03-11 20:33:04 +00009836void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009837 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009838 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009839}
danielk1977b4e9af92007-05-01 17:49:49 +00009840#endif
dane04dc882010-04-20 18:53:15 +00009841
9842/*
9843** Set both the "read version" (single byte at byte offset 18) and
9844** "write version" (single byte at byte offset 19) fields in the database
9845** header to iVersion.
9846*/
9847int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9848 BtShared *pBt = pBtree->pBt;
9849 int rc; /* Return code */
9850
dane04dc882010-04-20 18:53:15 +00009851 assert( iVersion==1 || iVersion==2 );
9852
danb9780022010-04-21 18:37:57 +00009853 /* If setting the version fields to 1, do not automatically open the
9854 ** WAL connection, even if the version fields are currently set to 2.
9855 */
drhc9166342012-01-05 23:32:06 +00009856 pBt->btsFlags &= ~BTS_NO_WAL;
9857 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009858
9859 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009860 if( rc==SQLITE_OK ){
9861 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009862 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009863 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009864 if( rc==SQLITE_OK ){
9865 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9866 if( rc==SQLITE_OK ){
9867 aData[18] = (u8)iVersion;
9868 aData[19] = (u8)iVersion;
9869 }
9870 }
9871 }
dane04dc882010-04-20 18:53:15 +00009872 }
9873
drhc9166342012-01-05 23:32:06 +00009874 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009875 return rc;
9876}
dan428c2182012-08-06 18:50:11 +00009877
9878/*
drhe0997b32015-03-20 14:57:50 +00009879** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009880*/
9881void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009882 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009883 pCsr->hints = mask;
9884}
drh781597f2014-05-21 08:21:07 +00009885
drhe0997b32015-03-20 14:57:50 +00009886#ifdef SQLITE_DEBUG
9887/*
9888** Return true if the cursor has a hint specified. This routine is
9889** only used from within assert() statements
9890*/
9891int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9892 return (pCsr->hints & mask)!=0;
9893}
9894#endif
9895
drh781597f2014-05-21 08:21:07 +00009896/*
9897** Return true if the given Btree is read-only.
9898*/
9899int sqlite3BtreeIsReadonly(Btree *p){
9900 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9901}
drhdef68892014-11-04 12:11:23 +00009902
9903/*
9904** Return the size of the header added to each page by this module.
9905*/
drh37c057b2014-12-30 00:57:29 +00009906int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan7b3d71e2015-08-19 20:27:05 +00009907
9908int sqlite3BtreeExclusiveLock(Btree *p){
9909 int rc;
9910 BtShared *pBt = p->pBt;
9911 assert( p->inTrans==TRANS_WRITE && pBt->pPage1 );
9912 sqlite3BtreeEnter(p);
9913 rc = sqlite3PagerExclusiveLock(pBt->pPager, pBt->pPage1->pDbPage);
9914 sqlite3BtreeLeave(p);
9915 return rc;
9916}