blob: e466a5a5acdb4240904ea93272970c31c75f0e3a [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhb908d762009-07-08 16:54:40 +000012** $Id: btree.c,v 1.662 2009/07/08 16:54:40 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000084 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000085 #define hasSharedCacheTableLock(a,b,c,d) 1
86 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000087#endif
danielk1977aef0bf62005-12-30 16:28:01 +000088
drhe53831d2007-08-17 01:14:38 +000089#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000090
91#ifdef SQLITE_DEBUG
92/*
93** This function is only used as part of an assert() statement. It checks
94** that connection p holds the required locks to read or write to the
95** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
96** For example, when writing to a table b-tree with root-page iRoot via
97** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
101** When writing to an index b-tree that resides in a sharable database, the
102** caller should have first obtained a lock specifying the root page of
103** the corresponding table b-tree. This makes things a bit more complicated,
104** as this module treats each b-tree as a separate structure. To determine
105** the table b-tree corresponding to the index b-tree being written, this
106** function has to search through the database schema.
107**
108** Instead of a lock on the b-tree rooted at page iRoot, the caller may
109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
122 /* If this b-tree database is not shareable, or if the client is reading
123 ** and has the read-uncommitted flag set, then no lock is required.
124 ** In these cases return true immediately. If the client is reading
125 ** or writing an index b-tree, but the schema is not loaded, then return
126 ** true also. In this case the lock is required, but it is too difficult
127 ** to check if the client actually holds it. This doesn't happen very
128 ** often. */
129 if( (pBtree->sharable==0)
130 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
131 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
132 ){
133 return 1;
134 }
135
136 /* Figure out the root-page that the lock should be held on. For table
137 ** b-trees, this is just the root page of the b-tree being read or
138 ** written. For index b-trees, it is the root page of the associated
139 ** table. */
140 if( isIndex ){
141 HashElem *p;
142 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
143 Index *pIdx = (Index *)sqliteHashData(p);
144 if( pIdx->tnum==iRoot ){
145 iTab = pIdx->pTable->tnum;
146 }
147 }
148 }else{
149 iTab = iRoot;
150 }
151
152 /* Search for the required lock. Either a write-lock on root-page iTab, a
153 ** write-lock on the schema table, or (if the client is reading) a
154 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
155 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
156 if( pLock->pBtree==pBtree
157 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
158 && pLock->eLock>=eLockType
159 ){
160 return 1;
161 }
162 }
163
164 /* Failed to find the required lock. */
165 return 0;
166}
167
168/*
169** This function is also used as part of assert() statements only. It
170** returns true if there exist one or more cursors open on the table
171** with root page iRoot that do not belong to either connection pBtree
172** or some other connection that has the read-uncommitted flag set.
173**
174** For example, before writing to page iRoot:
175**
176** assert( !hasReadConflicts(pBtree, iRoot) );
177*/
178static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
179 BtCursor *p;
180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
181 if( p->pgnoRoot==iRoot
182 && p->pBtree!=pBtree
183 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
184 ){
185 return 1;
186 }
187 }
188 return 0;
189}
190#endif /* #ifdef SQLITE_DEBUG */
191
danielk1977da184232006-01-05 11:34:32 +0000192/*
danielk1977aef0bf62005-12-30 16:28:01 +0000193** Query to see if btree handle p may obtain a lock of type eLock
194** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000195** SQLITE_OK if the lock may be obtained (by calling
196** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000197*/
drhc25eabe2009-02-24 18:57:31 +0000198static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000199 BtShared *pBt = p->pBt;
200 BtLock *pIter;
201
drh1fee73e2007-08-29 04:00:57 +0000202 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000203 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
204 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000205 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000206
danielk19775b413d72009-04-01 09:41:54 +0000207 /* If requesting a write-lock, then the Btree must have an open write
208 ** transaction on this file. And, obviously, for this to be so there
209 ** must be an open write transaction on the file itself.
210 */
211 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
212 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
213
danielk1977da184232006-01-05 11:34:32 +0000214 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000215 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000216 return SQLITE_OK;
217 }
218
danielk1977641b0f42007-12-21 04:47:25 +0000219 /* If some other connection is holding an exclusive lock, the
220 ** requested lock may not be obtained.
221 */
danielk1977404ca072009-03-16 13:19:36 +0000222 if( pBt->pWriter!=p && pBt->isExclusive ){
223 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
224 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000225 }
226
danielk1977e0d9e6f2009-07-03 16:25:06 +0000227 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
228 /* The condition (pIter->eLock!=eLock) in the following if(...)
229 ** statement is a simplification of:
230 **
231 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
232 **
233 ** since we know that if eLock==WRITE_LOCK, then no other connection
234 ** may hold a WRITE_LOCK on any table in this file (since there can
235 ** only be a single writer).
236 */
237 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
238 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
239 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
240 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
241 if( eLock==WRITE_LOCK ){
242 assert( p==pBt->pWriter );
243 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000244 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000245 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000246 }
247 }
248 return SQLITE_OK;
249}
drhe53831d2007-08-17 01:14:38 +0000250#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000251
drhe53831d2007-08-17 01:14:38 +0000252#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000253/*
254** Add a lock on the table with root-page iTable to the shared-btree used
255** by Btree handle p. Parameter eLock must be either READ_LOCK or
256** WRITE_LOCK.
257**
258** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
259** SQLITE_NOMEM may also be returned.
260*/
drhc25eabe2009-02-24 18:57:31 +0000261static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000262 BtShared *pBt = p->pBt;
263 BtLock *pLock = 0;
264 BtLock *pIter;
265
drh1fee73e2007-08-29 04:00:57 +0000266 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000267 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
268 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 /* A connection with the read-uncommitted flag set will never try to
271 ** obtain a read-lock using this function. The only read-lock obtained
272 ** by a connection in read-uncommitted mode is on the sqlite_master
273 ** table, and that lock is obtained in BtreeBeginTrans(). */
274 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
275
danielk1977da184232006-01-05 11:34:32 +0000276 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000277 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000278 return SQLITE_OK;
279 }
280
drhc25eabe2009-02-24 18:57:31 +0000281 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000282
283 /* First search the list for an existing lock on this table. */
284 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
285 if( pIter->iTable==iTable && pIter->pBtree==p ){
286 pLock = pIter;
287 break;
288 }
289 }
290
291 /* If the above search did not find a BtLock struct associating Btree p
292 ** with table iTable, allocate one and link it into the list.
293 */
294 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000295 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000296 if( !pLock ){
297 return SQLITE_NOMEM;
298 }
299 pLock->iTable = iTable;
300 pLock->pBtree = p;
301 pLock->pNext = pBt->pLock;
302 pBt->pLock = pLock;
303 }
304
305 /* Set the BtLock.eLock variable to the maximum of the current lock
306 ** and the requested lock. This means if a write-lock was already held
307 ** and a read-lock requested, we don't incorrectly downgrade the lock.
308 */
309 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000310 if( eLock>pLock->eLock ){
311 pLock->eLock = eLock;
312 }
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 return SQLITE_OK;
315}
drhe53831d2007-08-17 01:14:38 +0000316#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000317
drhe53831d2007-08-17 01:14:38 +0000318#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000319/*
drhc25eabe2009-02-24 18:57:31 +0000320** Release all the table locks (locks obtained via calls to
321** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000322**
323** This function assumes that handle p has an open read or write
324** transaction. If it does not, then the BtShared.isPending variable
325** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000326*/
drhc25eabe2009-02-24 18:57:31 +0000327static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000328 BtShared *pBt = p->pBt;
329 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000330
drh1fee73e2007-08-29 04:00:57 +0000331 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000332 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000333 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000334
danielk1977aef0bf62005-12-30 16:28:01 +0000335 while( *ppIter ){
336 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000337 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000338 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000339 if( pLock->pBtree==p ){
340 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000341 assert( pLock->iTable!=1 || pLock==&p->lock );
342 if( pLock->iTable!=1 ){
343 sqlite3_free(pLock);
344 }
danielk1977aef0bf62005-12-30 16:28:01 +0000345 }else{
346 ppIter = &pLock->pNext;
347 }
348 }
danielk1977641b0f42007-12-21 04:47:25 +0000349
danielk1977404ca072009-03-16 13:19:36 +0000350 assert( pBt->isPending==0 || pBt->pWriter );
351 if( pBt->pWriter==p ){
352 pBt->pWriter = 0;
353 pBt->isExclusive = 0;
354 pBt->isPending = 0;
355 }else if( pBt->nTransaction==2 ){
356 /* This function is called when connection p is concluding its
357 ** transaction. If there currently exists a writer, and p is not
358 ** that writer, then the number of locks held by connections other
359 ** than the writer must be about to drop to zero. In this case
360 ** set the isPending flag to 0.
361 **
362 ** If there is not currently a writer, then BtShared.isPending must
363 ** be zero already. So this next line is harmless in that case.
364 */
365 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367}
danielk197794b30732009-07-02 17:21:57 +0000368
danielk1977e0d9e6f2009-07-03 16:25:06 +0000369/*
370** This function changes all write-locks held by connection p to read-locks.
371*/
danielk197794b30732009-07-02 17:21:57 +0000372static void downgradeAllSharedCacheTableLocks(Btree *p){
373 BtShared *pBt = p->pBt;
374 if( pBt->pWriter==p ){
375 BtLock *pLock;
376 pBt->pWriter = 0;
377 pBt->isExclusive = 0;
378 pBt->isPending = 0;
379 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
380 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
381 pLock->eLock = READ_LOCK;
382 }
383 }
384}
385
danielk1977aef0bf62005-12-30 16:28:01 +0000386#endif /* SQLITE_OMIT_SHARED_CACHE */
387
drh980b1a72006-08-16 16:42:48 +0000388static void releasePage(MemPage *pPage); /* Forward reference */
389
drh1fee73e2007-08-29 04:00:57 +0000390/*
391** Verify that the cursor holds a mutex on the BtShared
392*/
393#ifndef NDEBUG
394static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000395 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000396}
397#endif
398
399
danielk197792d4d7a2007-05-04 12:05:56 +0000400#ifndef SQLITE_OMIT_INCRBLOB
401/*
402** Invalidate the overflow page-list cache for cursor pCur, if any.
403*/
404static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000405 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000406 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000407 pCur->aOverflow = 0;
408}
409
410/*
411** Invalidate the overflow page-list cache for all cursors opened
412** on the shared btree structure pBt.
413*/
414static void invalidateAllOverflowCache(BtShared *pBt){
415 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000416 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000417 for(p=pBt->pCursor; p; p=p->pNext){
418 invalidateOverflowCache(p);
419 }
420}
danielk197796d48e92009-06-29 06:00:37 +0000421
422/*
423** This function is called before modifying the contents of a table
424** b-tree to invalidate any incrblob cursors that are open on the
425** row or one of the rows being modified. Argument pgnoRoot is the
426** root-page of the table b-tree.
427**
428** If argument isClearTable is true, then the entire contents of the
429** table is about to be deleted. In this case invalidate all incrblob
430** cursors open on any row within the table with root-page pgnoRoot.
431**
432** Otherwise, if argument isClearTable is false, then the row with
433** rowid iRow is being replaced or deleted. In this case invalidate
434** only those incrblob cursors open on this specific row.
435*/
436static void invalidateIncrblobCursors(
437 Btree *pBtree, /* The database file to check */
438 Pgno pgnoRoot, /* Look for read cursors on this btree */
439 i64 iRow, /* The rowid that might be changing */
440 int isClearTable /* True if all rows are being deleted */
441){
442 BtCursor *p;
443 BtShared *pBt = pBtree->pBt;
444 assert( sqlite3BtreeHoldsMutex(pBtree) );
445 for(p=pBt->pCursor; p; p=p->pNext){
446 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
447 p->eState = CURSOR_INVALID;
448 }
449 }
450}
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452#else
453 #define invalidateOverflowCache(x)
454 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000455 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000456#endif
457
drh980b1a72006-08-16 16:42:48 +0000458/*
danielk1977bea2a942009-01-20 17:06:27 +0000459** Set bit pgno of the BtShared.pHasContent bitvec. This is called
460** when a page that previously contained data becomes a free-list leaf
461** page.
462**
463** The BtShared.pHasContent bitvec exists to work around an obscure
464** bug caused by the interaction of two useful IO optimizations surrounding
465** free-list leaf pages:
466**
467** 1) When all data is deleted from a page and the page becomes
468** a free-list leaf page, the page is not written to the database
469** (as free-list leaf pages contain no meaningful data). Sometimes
470** such a page is not even journalled (as it will not be modified,
471** why bother journalling it?).
472**
473** 2) When a free-list leaf page is reused, its content is not read
474** from the database or written to the journal file (why should it
475** be, if it is not at all meaningful?).
476**
477** By themselves, these optimizations work fine and provide a handy
478** performance boost to bulk delete or insert operations. However, if
479** a page is moved to the free-list and then reused within the same
480** transaction, a problem comes up. If the page is not journalled when
481** it is moved to the free-list and it is also not journalled when it
482** is extracted from the free-list and reused, then the original data
483** may be lost. In the event of a rollback, it may not be possible
484** to restore the database to its original configuration.
485**
486** The solution is the BtShared.pHasContent bitvec. Whenever a page is
487** moved to become a free-list leaf page, the corresponding bit is
488** set in the bitvec. Whenever a leaf page is extracted from the free-list,
489** optimization 2 above is ommitted if the corresponding bit is already
490** set in BtShared.pHasContent. The contents of the bitvec are cleared
491** at the end of every transaction.
492*/
493static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
494 int rc = SQLITE_OK;
495 if( !pBt->pHasContent ){
496 int nPage;
497 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
498 if( rc==SQLITE_OK ){
499 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
500 if( !pBt->pHasContent ){
501 rc = SQLITE_NOMEM;
502 }
503 }
504 }
505 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
506 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
507 }
508 return rc;
509}
510
511/*
512** Query the BtShared.pHasContent vector.
513**
514** This function is called when a free-list leaf page is removed from the
515** free-list for reuse. It returns false if it is safe to retrieve the
516** page from the pager layer with the 'no-content' flag set. True otherwise.
517*/
518static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
519 Bitvec *p = pBt->pHasContent;
520 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
521}
522
523/*
524** Clear (destroy) the BtShared.pHasContent bitvec. This should be
525** invoked at the conclusion of each write-transaction.
526*/
527static void btreeClearHasContent(BtShared *pBt){
528 sqlite3BitvecDestroy(pBt->pHasContent);
529 pBt->pHasContent = 0;
530}
531
532/*
drh980b1a72006-08-16 16:42:48 +0000533** Save the current cursor position in the variables BtCursor.nKey
534** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
535*/
536static int saveCursorPosition(BtCursor *pCur){
537 int rc;
538
539 assert( CURSOR_VALID==pCur->eState );
540 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000541 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000542
543 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
544
545 /* If this is an intKey table, then the above call to BtreeKeySize()
546 ** stores the integer key in pCur->nKey. In this case this value is
547 ** all that is required. Otherwise, if pCur is not open on an intKey
548 ** table, then malloc space for and store the pCur->nKey bytes of key
549 ** data.
550 */
danielk197771d5d2c2008-09-29 11:49:47 +0000551 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000552 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000553 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000554 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000555 if( rc==SQLITE_OK ){
556 pCur->pKey = pKey;
557 }else{
drh17435752007-08-16 04:30:38 +0000558 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000559 }
560 }else{
561 rc = SQLITE_NOMEM;
562 }
563 }
danielk197771d5d2c2008-09-29 11:49:47 +0000564 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000565
566 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000567 int i;
568 for(i=0; i<=pCur->iPage; i++){
569 releasePage(pCur->apPage[i]);
570 pCur->apPage[i] = 0;
571 }
572 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000573 pCur->eState = CURSOR_REQUIRESEEK;
574 }
575
danielk197792d4d7a2007-05-04 12:05:56 +0000576 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000577 return rc;
578}
579
580/*
581** Save the positions of all cursors except pExcept open on the table
582** with root-page iRoot. Usually, this is called just before cursor
583** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
584*/
585static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
586 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000587 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000588 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000589 for(p=pBt->pCursor; p; p=p->pNext){
590 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
591 p->eState==CURSOR_VALID ){
592 int rc = saveCursorPosition(p);
593 if( SQLITE_OK!=rc ){
594 return rc;
595 }
596 }
597 }
598 return SQLITE_OK;
599}
600
601/*
drhbf700f32007-03-31 02:36:44 +0000602** Clear the current cursor position.
603*/
danielk1977be51a652008-10-08 17:58:48 +0000604void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000606 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000607 pCur->pKey = 0;
608 pCur->eState = CURSOR_INVALID;
609}
610
611/*
danielk19773509a652009-07-06 18:56:13 +0000612** In this version of BtreeMoveto, pKey is a packed index record
613** such as is generated by the OP_MakeRecord opcode. Unpack the
614** record and then call BtreeMovetoUnpacked() to do the work.
615*/
616static int btreeMoveto(
617 BtCursor *pCur, /* Cursor open on the btree to be searched */
618 const void *pKey, /* Packed key if the btree is an index */
619 i64 nKey, /* Integer key for tables. Size of pKey for indices */
620 int bias, /* Bias search to the high end */
621 int *pRes /* Write search results here */
622){
623 int rc; /* Status code */
624 UnpackedRecord *pIdxKey; /* Unpacked index key */
625 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
626
627 if( pKey ){
628 assert( nKey==(i64)(int)nKey );
629 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
630 aSpace, sizeof(aSpace));
631 if( pIdxKey==0 ) return SQLITE_NOMEM;
632 }else{
633 pIdxKey = 0;
634 }
635 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
636 if( pKey ){
637 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
638 }
639 return rc;
640}
641
642/*
drh980b1a72006-08-16 16:42:48 +0000643** Restore the cursor to the position it was in (or as close to as possible)
644** when saveCursorPosition() was called. Note that this call deletes the
645** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000646** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000647** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000648*/
drha3460582008-07-11 21:02:53 +0000649int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000650 int rc;
drh1fee73e2007-08-29 04:00:57 +0000651 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000652 assert( pCur->eState>=CURSOR_REQUIRESEEK );
653 if( pCur->eState==CURSOR_FAULT ){
654 return pCur->skip;
655 }
drh980b1a72006-08-16 16:42:48 +0000656 pCur->eState = CURSOR_INVALID;
danielk19773509a652009-07-06 18:56:13 +0000657 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000658 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000659 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000660 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000661 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000662 }
663 return rc;
664}
665
drha3460582008-07-11 21:02:53 +0000666#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000667 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000668 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000669 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000670
drha3460582008-07-11 21:02:53 +0000671/*
672** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000673** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000674** at is deleted out from under them.
675**
676** This routine returns an error code if something goes wrong. The
677** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
678*/
679int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
680 int rc;
681
682 rc = restoreCursorPosition(pCur);
683 if( rc ){
684 *pHasMoved = 1;
685 return rc;
686 }
687 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
688 *pHasMoved = 1;
689 }else{
690 *pHasMoved = 0;
691 }
692 return SQLITE_OK;
693}
694
danielk1977599fcba2004-11-08 07:13:13 +0000695#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000696/*
drha3152892007-05-05 11:48:52 +0000697** Given a page number of a regular database page, return the page
698** number for the pointer-map page that contains the entry for the
699** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000700*/
danielk1977266664d2006-02-10 08:24:21 +0000701static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000702 int nPagesPerMapPage;
703 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000704 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000705 nPagesPerMapPage = (pBt->usableSize/5)+1;
706 iPtrMap = (pgno-2)/nPagesPerMapPage;
707 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000708 if( ret==PENDING_BYTE_PAGE(pBt) ){
709 ret++;
710 }
711 return ret;
712}
danielk1977a19df672004-11-03 11:37:07 +0000713
danielk1977afcdd022004-10-31 16:25:42 +0000714/*
danielk1977afcdd022004-10-31 16:25:42 +0000715** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000716**
717** This routine updates the pointer map entry for page number 'key'
718** so that it maps to type 'eType' and parent page number 'pgno'.
719** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000720*/
danielk1977aef0bf62005-12-30 16:28:01 +0000721static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000722 DbPage *pDbPage; /* The pointer map page */
723 u8 *pPtrmap; /* The pointer map data */
724 Pgno iPtrmap; /* The pointer map page number */
725 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000726 int rc;
727
drh1fee73e2007-08-29 04:00:57 +0000728 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000729 /* The master-journal page number must never be used as a pointer map page */
730 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
731
danielk1977ac11ee62005-01-15 12:45:51 +0000732 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000733 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000734 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000735 }
danielk1977266664d2006-02-10 08:24:21 +0000736 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000737 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000738 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000739 return rc;
740 }
danielk19778c666b12008-07-18 09:34:57 +0000741 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000742 if( offset<0 ){
drh4925a552009-07-07 11:39:58 +0000743 rc = SQLITE_CORRUPT_BKPT;
744 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000745 }
danielk19773b8a05f2007-03-19 17:44:26 +0000746 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000747
drh615ae552005-01-16 23:21:00 +0000748 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
749 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000750 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000751 if( rc==SQLITE_OK ){
752 pPtrmap[offset] = eType;
753 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000754 }
danielk1977afcdd022004-10-31 16:25:42 +0000755 }
756
drh4925a552009-07-07 11:39:58 +0000757ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000758 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000759 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000760}
761
762/*
763** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000764**
765** This routine retrieves the pointer map entry for page 'key', writing
766** the type and parent page number to *pEType and *pPgno respectively.
767** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000768*/
danielk1977aef0bf62005-12-30 16:28:01 +0000769static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000770 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000771 int iPtrmap; /* Pointer map page index */
772 u8 *pPtrmap; /* Pointer map page data */
773 int offset; /* Offset of entry in pointer map */
774 int rc;
775
drh1fee73e2007-08-29 04:00:57 +0000776 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000777
danielk1977266664d2006-02-10 08:24:21 +0000778 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000779 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000780 if( rc!=0 ){
781 return rc;
782 }
danielk19773b8a05f2007-03-19 17:44:26 +0000783 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000784
danielk19778c666b12008-07-18 09:34:57 +0000785 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000786 assert( pEType!=0 );
787 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000788 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000789
danielk19773b8a05f2007-03-19 17:44:26 +0000790 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000791 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000792 return SQLITE_OK;
793}
794
danielk197785d90ca2008-07-19 14:25:15 +0000795#else /* if defined SQLITE_OMIT_AUTOVACUUM */
796 #define ptrmapPut(w,x,y,z) SQLITE_OK
797 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk1977325ccfa2009-07-02 05:23:25 +0000798 #define ptrmapPutOvflPtr(x, y) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000799#endif
danielk1977afcdd022004-10-31 16:25:42 +0000800
drh0d316a42002-08-11 20:10:47 +0000801/*
drh271efa52004-05-30 19:19:05 +0000802** Given a btree page and a cell index (0 means the first cell on
803** the page, 1 means the second cell, and so forth) return a pointer
804** to the cell content.
805**
806** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000807*/
drh1688c862008-07-18 02:44:17 +0000808#define findCell(P,I) \
809 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000810
811/*
drh93a960a2008-07-10 00:32:42 +0000812** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000813** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000814*/
815static u8 *findOverflowCell(MemPage *pPage, int iCell){
816 int i;
drh1fee73e2007-08-29 04:00:57 +0000817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000818 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000819 int k;
820 struct _OvflCell *pOvfl;
821 pOvfl = &pPage->aOvfl[i];
822 k = pOvfl->idx;
823 if( k<=iCell ){
824 if( k==iCell ){
825 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000826 }
827 iCell--;
828 }
829 }
danielk19771cc5ed82007-05-16 17:28:43 +0000830 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000831}
832
833/*
834** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000835** are two versions of this function. sqlite3BtreeParseCell() takes a
836** cell index as the second argument and sqlite3BtreeParseCellPtr()
837** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000838**
839** Within this file, the parseCell() macro can be called instead of
840** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000841*/
drh16a9b832007-05-05 18:39:25 +0000842void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000843 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000844 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000845 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000846){
drhf49661a2008-12-10 16:45:50 +0000847 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000848 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000849
drh1fee73e2007-08-29 04:00:57 +0000850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000851
drh43605152004-05-29 21:46:49 +0000852 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000853 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000854 n = pPage->childPtrSize;
855 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000856 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000857 if( pPage->hasData ){
858 n += getVarint32(&pCell[n], nPayload);
859 }else{
860 nPayload = 0;
861 }
drh1bd10f82008-12-10 21:19:56 +0000862 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000863 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000864 }else{
drh79df1f42008-07-18 00:57:33 +0000865 pInfo->nData = 0;
866 n += getVarint32(&pCell[n], nPayload);
867 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000868 }
drh72365832007-03-06 15:53:44 +0000869 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000870 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000871 testcase( nPayload==pPage->maxLocal );
872 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000873 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000874 /* This is the (easy) common case where the entire payload fits
875 ** on the local page. No overflow is required.
876 */
877 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000878 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000879 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000880 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000881 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000882 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000883 }
drh1bd10f82008-12-10 21:19:56 +0000884 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000885 }else{
drh271efa52004-05-30 19:19:05 +0000886 /* If the payload will not fit completely on the local page, we have
887 ** to decide how much to store locally and how much to spill onto
888 ** overflow pages. The strategy is to minimize the amount of unused
889 ** space on overflow pages while keeping the amount of local storage
890 ** in between minLocal and maxLocal.
891 **
892 ** Warning: changing the way overflow payload is distributed in any
893 ** way will result in an incompatible file format.
894 */
895 int minLocal; /* Minimum amount of payload held locally */
896 int maxLocal; /* Maximum amount of payload held locally */
897 int surplus; /* Overflow payload available for local storage */
898
899 minLocal = pPage->minLocal;
900 maxLocal = pPage->maxLocal;
901 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000902 testcase( surplus==maxLocal );
903 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000904 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000905 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000906 }else{
drhf49661a2008-12-10 16:45:50 +0000907 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000908 }
drhf49661a2008-12-10 16:45:50 +0000909 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000910 pInfo->nSize = pInfo->iOverflow + 4;
911 }
drh3aac2dd2004-04-26 14:10:20 +0000912}
danielk19771cc5ed82007-05-16 17:28:43 +0000913#define parseCell(pPage, iCell, pInfo) \
914 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000915void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000916 MemPage *pPage, /* Page containing the cell */
917 int iCell, /* The cell index. First cell is 0 */
918 CellInfo *pInfo /* Fill in this structure */
919){
danielk19771cc5ed82007-05-16 17:28:43 +0000920 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000921}
drh3aac2dd2004-04-26 14:10:20 +0000922
923/*
drh43605152004-05-29 21:46:49 +0000924** Compute the total number of bytes that a Cell needs in the cell
925** data area of the btree-page. The return number includes the cell
926** data header and the local payload, but not any overflow page or
927** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000928*/
danielk1977ae5558b2009-04-29 11:31:47 +0000929static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
930 u8 *pIter = &pCell[pPage->childPtrSize];
931 u32 nSize;
932
933#ifdef SQLITE_DEBUG
934 /* The value returned by this function should always be the same as
935 ** the (CellInfo.nSize) value found by doing a full parse of the
936 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
937 ** this function verifies that this invariant is not violated. */
938 CellInfo debuginfo;
939 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
940#endif
941
942 if( pPage->intKey ){
943 u8 *pEnd;
944 if( pPage->hasData ){
945 pIter += getVarint32(pIter, nSize);
946 }else{
947 nSize = 0;
948 }
949
950 /* pIter now points at the 64-bit integer key value, a variable length
951 ** integer. The following block moves pIter to point at the first byte
952 ** past the end of the key value. */
953 pEnd = &pIter[9];
954 while( (*pIter++)&0x80 && pIter<pEnd );
955 }else{
956 pIter += getVarint32(pIter, nSize);
957 }
958
drh0a45c272009-07-08 01:49:11 +0000959 testcase( nSize==pPage->maxLocal );
960 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000961 if( nSize>pPage->maxLocal ){
962 int minLocal = pPage->minLocal;
963 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000964 testcase( nSize==pPage->maxLocal );
965 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000966 if( nSize>pPage->maxLocal ){
967 nSize = minLocal;
968 }
969 nSize += 4;
970 }
shane75ac1de2009-06-09 18:58:52 +0000971 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000972
973 /* The minimum size of any cell is 4 bytes. */
974 if( nSize<4 ){
975 nSize = 4;
976 }
977
978 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000979 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000980}
danielk1977bc6ada42004-06-30 08:20:16 +0000981#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000982static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000983 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000984}
danielk1977bc6ada42004-06-30 08:20:16 +0000985#endif
drh3b7511c2001-05-26 13:15:44 +0000986
danielk197779a40da2005-01-16 08:00:01 +0000987#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000988/*
danielk197726836652005-01-17 01:33:13 +0000989** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000990** to an overflow page, insert an entry into the pointer-map
991** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000992*/
danielk197726836652005-01-17 01:33:13 +0000993static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000994 CellInfo info;
995 assert( pCell!=0 );
996 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
997 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +0000998 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +0000999 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1000 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00001001 }
danielk197779a40da2005-01-16 08:00:01 +00001002 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001003}
danielk197779a40da2005-01-16 08:00:01 +00001004#endif
1005
danielk1977ac11ee62005-01-15 12:45:51 +00001006
drhda200cc2004-05-09 11:51:38 +00001007/*
drh72f82862001-05-24 21:06:34 +00001008** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001009** end of the page and all free space is collected into one
1010** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001011** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001012*/
shane0af3f892008-11-12 04:55:34 +00001013static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001014 int i; /* Loop counter */
1015 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001016 int hdr; /* Offset to the page header */
1017 int size; /* Size of a cell */
1018 int usableSize; /* Number of usable bytes on a page */
1019 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001020 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001021 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001022 unsigned char *data; /* The page data */
1023 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001024 int iCellFirst; /* First allowable cell index */
1025 int iCellLast; /* Last possible cell index */
1026
drh2af926b2001-05-15 00:39:25 +00001027
danielk19773b8a05f2007-03-19 17:44:26 +00001028 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001029 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001030 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001031 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001032 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001033 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001034 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001035 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001036 cellOffset = pPage->cellOffset;
1037 nCell = pPage->nCell;
1038 assert( nCell==get2byte(&data[hdr+3]) );
1039 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001040 cbrk = get2byte(&data[hdr+5]);
1041 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1042 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001043 iCellFirst = cellOffset + 2*nCell;
1044 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001045 for(i=0; i<nCell; i++){
1046 u8 *pAddr; /* The i-th cell pointer */
1047 pAddr = &data[cellOffset + i*2];
1048 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001049 testcase( pc==iCellFirst );
1050 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001051#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1052 /* These conditions have already been verified in sqlite3BtreeInitPage()
1053 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1054 */
1055 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001056 return SQLITE_CORRUPT_BKPT;
1057 }
drh17146622009-07-07 17:38:38 +00001058#endif
1059 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001060 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001061 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001062#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1063 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001064 return SQLITE_CORRUPT_BKPT;
1065 }
drh17146622009-07-07 17:38:38 +00001066#else
1067 if( cbrk<iCellFirst || pc+size>usableSize ){
1068 return SQLITE_CORRUPT_BKPT;
1069 }
1070#endif
drh35a25da2009-07-08 15:14:50 +00001071 assert( cbrk+size<=usableSize && cbrk>iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001072 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001073 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001074 memcpy(&data[cbrk], &temp[pc], size);
1075 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001076 }
drh17146622009-07-07 17:38:38 +00001077 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001078 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001079 data[hdr+1] = 0;
1080 data[hdr+2] = 0;
1081 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001082 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001083 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001084 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001085 return SQLITE_CORRUPT_BKPT;
1086 }
shane0af3f892008-11-12 04:55:34 +00001087 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001088}
1089
drha059ad02001-04-17 20:09:11 +00001090/*
danielk19776011a752009-04-01 16:25:32 +00001091** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001092** as the first argument. Write into *pIdx the index into pPage->aData[]
1093** of the first byte of allocated space. Return either SQLITE_OK or
1094** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001095**
drh0a45c272009-07-08 01:49:11 +00001096** The caller guarantees that there is sufficient space to make the
1097** allocation. This routine might need to defragment in order to bring
1098** all the space together, however. This routine will avoid using
1099** the first two bytes past the cell pointer area since presumably this
1100** allocation is being made in order to insert a new cell, so we will
1101** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001102*/
drh0a45c272009-07-08 01:49:11 +00001103static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001104 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1105 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1106 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001107 int top; /* First byte of cell content area */
1108 int gap; /* First byte of gap between cell pointers and cell content */
1109 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001110
danielk19773b8a05f2007-03-19 17:44:26 +00001111 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001112 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001113 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001114 assert( nByte>=0 ); /* Minimum cell size is 4 */
1115 assert( pPage->nFree>=nByte );
1116 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001117
1118 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001119 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1120 gap = pPage->cellOffset + 2*pPage->nCell;
1121 top = get2byte(&data[hdr+5]);
1122 assert( gap<=top );
1123 testcase( gap+2==top );
1124 testcase( gap+1==top );
1125 testcase( gap==top );
1126
danielk19776011a752009-04-01 16:25:32 +00001127 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001128 /* Always defragment highly fragmented pages */
1129 rc = defragmentPage(pPage);
1130 if( rc ) return rc;
1131 top = get2byte(&data[hdr+5]);
1132 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001133 /* Search the freelist looking for a free slot big enough to satisfy
1134 ** the request. The allocation is made from the first free slot in
1135 ** the list that is large enough to accomadate it.
1136 */
1137 int pc, addr;
1138 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1139 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001140 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001141 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001142 testcase( x==4 );
1143 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001144 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001145 /* Remove the slot from the free-list. Update the number of
1146 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001147 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001148 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001149 }else{
danielk1977fad91942009-04-29 17:49:59 +00001150 /* The slot remains on the free-list. Reduce its size to account
1151 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001152 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001153 }
drh0a45c272009-07-08 01:49:11 +00001154 *pIdx = pc + x;
1155 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001156 }
drh9e572e62004-04-23 23:43:10 +00001157 }
1158 }
drh43605152004-05-29 21:46:49 +00001159
drh0a45c272009-07-08 01:49:11 +00001160 /* Check to make sure there is enough space in the gap to satisfy
1161 ** the allocation. If not, defragment.
1162 */
1163 testcase( gap+2+nByte==top );
1164 if( gap+2+nByte>top ){
1165 rc = defragmentPage(pPage);
1166 if( rc ) return rc;
1167 top = get2byte(&data[hdr+5]);
1168 assert( gap+nByte<=top );
1169 }
1170
1171
drh43605152004-05-29 21:46:49 +00001172 /* Allocate memory from the gap in between the cell pointer array
1173 ** and the cell content area.
1174 */
drh0a45c272009-07-08 01:49:11 +00001175 top -= nByte;
drh43605152004-05-29 21:46:49 +00001176 put2byte(&data[hdr+5], top);
drh0a45c272009-07-08 01:49:11 +00001177 *pIdx = top;
1178 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001179}
1180
1181/*
drh9e572e62004-04-23 23:43:10 +00001182** Return a section of the pPage->aData to the freelist.
1183** The first byte of the new free block is pPage->aDisk[start]
1184** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001185**
1186** Most of the effort here is involved in coalesing adjacent
1187** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001188*/
shanedcc50b72008-11-13 18:29:50 +00001189static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001190 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001191 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001192 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001193
drh9e572e62004-04-23 23:43:10 +00001194 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001195 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001196 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001197 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001198 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001199 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001200
drhfcce93f2006-02-22 03:08:32 +00001201#ifdef SQLITE_SECURE_DELETE
1202 /* Overwrite deleted information with zeros when the SECURE_DELETE
1203 ** option is enabled at compile-time */
1204 memset(&data[start], 0, size);
1205#endif
1206
drh0a45c272009-07-08 01:49:11 +00001207 /* Add the space back into the linked list of freeblocks. Note that
1208 ** even though the freeblock list was checked by sqlite3BtreeInitPage(),
drhb908d762009-07-08 16:54:40 +00001209 ** sqlite3BtreeInitPage() did not detect overlapping cells or
1210 ** freeblocks that overlapped cells. Nor does it detect when the
1211 ** cell content area exceeds the value in the page header. If these
1212 ** situations arise, then subsequent insert operations might corrupt
1213 ** the freelist. So we do need to check for corruption while scanning
1214 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001215 */
drh43605152004-05-29 21:46:49 +00001216 hdr = pPage->hdrOffset;
1217 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001218 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001219 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001220 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001221 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001222 return SQLITE_CORRUPT_BKPT;
1223 }
drh3aac2dd2004-04-26 14:10:20 +00001224 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001225 }
drh0a45c272009-07-08 01:49:11 +00001226 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001227 return SQLITE_CORRUPT_BKPT;
1228 }
drh3aac2dd2004-04-26 14:10:20 +00001229 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001230 put2byte(&data[addr], start);
1231 put2byte(&data[start], pbegin);
1232 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001233 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001234
1235 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001236 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001237 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001238 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001239 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001240 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001241 pnext = get2byte(&data[pbegin]);
1242 psize = get2byte(&data[pbegin+2]);
1243 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1244 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001245 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001246 return SQLITE_CORRUPT_BKPT;
1247 }
drh0a45c272009-07-08 01:49:11 +00001248 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001249 x = get2byte(&data[pnext]);
1250 put2byte(&data[pbegin], x);
1251 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1252 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001253 }else{
drh3aac2dd2004-04-26 14:10:20 +00001254 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001255 }
1256 }
drh7e3b0a02001-04-28 16:52:40 +00001257
drh43605152004-05-29 21:46:49 +00001258 /* If the cell content area begins with a freeblock, remove it. */
1259 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1260 int top;
1261 pbegin = get2byte(&data[hdr+1]);
1262 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001263 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1264 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001265 }
drhc5053fb2008-11-27 02:22:10 +00001266 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001267 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001268}
1269
1270/*
drh271efa52004-05-30 19:19:05 +00001271** Decode the flags byte (the first byte of the header) for a page
1272** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001273**
1274** Only the following combinations are supported. Anything different
1275** indicates a corrupt database files:
1276**
1277** PTF_ZERODATA
1278** PTF_ZERODATA | PTF_LEAF
1279** PTF_LEAFDATA | PTF_INTKEY
1280** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001281*/
drh44845222008-07-17 18:39:57 +00001282static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001283 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001284
1285 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001287 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001288 flagByte &= ~PTF_LEAF;
1289 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001290 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001291 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1292 pPage->intKey = 1;
1293 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001294 pPage->maxLocal = pBt->maxLeaf;
1295 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001296 }else if( flagByte==PTF_ZERODATA ){
1297 pPage->intKey = 0;
1298 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001299 pPage->maxLocal = pBt->maxLocal;
1300 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001301 }else{
1302 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001303 }
drh44845222008-07-17 18:39:57 +00001304 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001305}
1306
1307/*
drh7e3b0a02001-04-28 16:52:40 +00001308** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001309**
1310** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001311** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001312** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1313** guarantee that the page is well-formed. It only shows that
1314** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001315*/
danielk197771d5d2c2008-09-29 11:49:47 +00001316int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001317
danielk197771d5d2c2008-09-29 11:49:47 +00001318 assert( pPage->pBt!=0 );
1319 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001320 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001321 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1322 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001323
1324 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001325 u16 pc; /* Address of a freeblock within pPage->aData[] */
1326 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001327 u8 *data; /* Equal to pPage->aData */
1328 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001329 u16 usableSize; /* Amount of usable space on each page */
1330 u16 cellOffset; /* Offset from start of page to first cell pointer */
1331 u16 nFree; /* Number of unused bytes on the page */
1332 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001333 int iCellFirst; /* First allowable cell or freeblock offset */
1334 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001335
1336 pBt = pPage->pBt;
1337
danielk1977eaa06f62008-09-18 17:34:44 +00001338 hdr = pPage->hdrOffset;
1339 data = pPage->aData;
1340 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1341 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1342 pPage->maskPage = pBt->pageSize - 1;
1343 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001344 usableSize = pBt->usableSize;
1345 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1346 top = get2byte(&data[hdr+5]);
1347 pPage->nCell = get2byte(&data[hdr+3]);
1348 if( pPage->nCell>MX_CELL(pBt) ){
1349 /* To many cells for a single page. The page must be corrupt */
1350 return SQLITE_CORRUPT_BKPT;
1351 }
drhb908d762009-07-08 16:54:40 +00001352 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001353
1354 /* A malformed database page might cause use to read past the end
1355 ** of page when parsing a cell.
1356 **
1357 ** The following block of code checks early to see if a cell extends
1358 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1359 ** returned if it does.
1360 */
drh0a45c272009-07-08 01:49:11 +00001361 iCellFirst = cellOffset + 2*pPage->nCell;
1362 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001363#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001364 {
drh69e931e2009-06-03 21:04:35 +00001365 int i; /* Index into the cell pointer array */
1366 int sz; /* Size of a cell */
1367
drh69e931e2009-06-03 21:04:35 +00001368 if( !pPage->leaf ) iCellLast--;
1369 for(i=0; i<pPage->nCell; i++){
1370 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001371 testcase( pc==iCellFirst );
1372 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001373 if( pc<iCellFirst || pc>iCellLast ){
1374 return SQLITE_CORRUPT_BKPT;
1375 }
1376 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001377 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001378 if( pc+sz>usableSize ){
1379 return SQLITE_CORRUPT_BKPT;
1380 }
1381 }
drh0a45c272009-07-08 01:49:11 +00001382 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001383 }
1384#endif
1385
danielk1977eaa06f62008-09-18 17:34:44 +00001386 /* Compute the total free space on the page */
1387 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001388 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001389 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001390 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001391 if( pc<iCellFirst || pc>iCellLast ){
danielk1977eaa06f62008-09-18 17:34:44 +00001392 /* Free block is off the page */
1393 return SQLITE_CORRUPT_BKPT;
1394 }
1395 next = get2byte(&data[pc]);
1396 size = get2byte(&data[pc+2]);
1397 if( next>0 && next<=pc+size+3 ){
drh0a45c272009-07-08 01:49:11 +00001398 /* Free blocks must be in ascending order */
danielk1977eaa06f62008-09-18 17:34:44 +00001399 return SQLITE_CORRUPT_BKPT;
1400 }
shane85095702009-06-15 16:27:08 +00001401 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001402 pc = next;
1403 }
danielk197793c829c2009-06-03 17:26:17 +00001404
1405 /* At this point, nFree contains the sum of the offset to the start
1406 ** of the cell-content area plus the number of free bytes within
1407 ** the cell-content area. If this is greater than the usable-size
1408 ** of the page, then the page must be corrupted. This check also
1409 ** serves to verify that the offset to the start of the cell-content
1410 ** area, according to the page header, lies within the page.
1411 */
1412 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001413 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001414 }
drh0a45c272009-07-08 01:49:11 +00001415 pPage->nFree = nFree - iCellFirst;
danielk197771d5d2c2008-09-29 11:49:47 +00001416 pPage->isInit = 1;
1417 }
drh9e572e62004-04-23 23:43:10 +00001418 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001419}
1420
1421/*
drh8b2f49b2001-06-08 00:21:52 +00001422** Set up a raw page so that it looks like a database page holding
1423** no entries.
drhbd03cae2001-06-02 02:40:57 +00001424*/
drh9e572e62004-04-23 23:43:10 +00001425static void zeroPage(MemPage *pPage, int flags){
1426 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001427 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001428 u8 hdr = pPage->hdrOffset;
1429 u16 first;
drh9e572e62004-04-23 23:43:10 +00001430
danielk19773b8a05f2007-03-19 17:44:26 +00001431 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001432 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1433 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001434 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001435 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001436 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001437 data[hdr] = (char)flags;
1438 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001439 memset(&data[hdr+1], 0, 4);
1440 data[hdr+7] = 0;
1441 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001442 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001443 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001444 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001445 pPage->cellOffset = first;
1446 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001447 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1448 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001449 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001450 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001451}
1452
drh897a8202008-09-18 01:08:15 +00001453
1454/*
1455** Convert a DbPage obtained from the pager into a MemPage used by
1456** the btree layer.
1457*/
1458static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1459 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1460 pPage->aData = sqlite3PagerGetData(pDbPage);
1461 pPage->pDbPage = pDbPage;
1462 pPage->pBt = pBt;
1463 pPage->pgno = pgno;
1464 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1465 return pPage;
1466}
1467
drhbd03cae2001-06-02 02:40:57 +00001468/*
drh3aac2dd2004-04-26 14:10:20 +00001469** Get a page from the pager. Initialize the MemPage.pBt and
1470** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001471**
1472** If the noContent flag is set, it means that we do not care about
1473** the content of the page at this time. So do not go to the disk
1474** to fetch the content. Just fill in the content with zeros for now.
1475** If in the future we call sqlite3PagerWrite() on this page, that
1476** means we have started to be concerned about content and the disk
1477** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001478*/
drh16a9b832007-05-05 18:39:25 +00001479int sqlite3BtreeGetPage(
1480 BtShared *pBt, /* The btree */
1481 Pgno pgno, /* Number of the page to fetch */
1482 MemPage **ppPage, /* Return the page in this parameter */
1483 int noContent /* Do not load page content if true */
1484){
drh3aac2dd2004-04-26 14:10:20 +00001485 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001486 DbPage *pDbPage;
1487
drh1fee73e2007-08-29 04:00:57 +00001488 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001489 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001490 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001491 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001492 return SQLITE_OK;
1493}
1494
1495/*
danielk1977bea2a942009-01-20 17:06:27 +00001496** Retrieve a page from the pager cache. If the requested page is not
1497** already in the pager cache return NULL. Initialize the MemPage.pBt and
1498** MemPage.aData elements if needed.
1499*/
1500static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1501 DbPage *pDbPage;
1502 assert( sqlite3_mutex_held(pBt->mutex) );
1503 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1504 if( pDbPage ){
1505 return btreePageFromDbPage(pDbPage, pgno, pBt);
1506 }
1507 return 0;
1508}
1509
1510/*
danielk197789d40042008-11-17 14:20:56 +00001511** Return the size of the database file in pages. If there is any kind of
1512** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001513*/
danielk197789d40042008-11-17 14:20:56 +00001514static Pgno pagerPagecount(BtShared *pBt){
1515 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001516 int rc;
danielk197789d40042008-11-17 14:20:56 +00001517 assert( pBt->pPage1 );
1518 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1519 assert( rc==SQLITE_OK || nPage==-1 );
1520 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001521}
1522
1523/*
drhde647132004-05-07 17:57:49 +00001524** Get a page from the pager and initialize it. This routine
1525** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001526** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001527*/
1528static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001529 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001530 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001531 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001532){
1533 int rc;
drh897a8202008-09-18 01:08:15 +00001534 MemPage *pPage;
1535
drh1fee73e2007-08-29 04:00:57 +00001536 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001537 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001538 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001539 }
danielk19779f580ad2008-09-10 14:45:57 +00001540
drh897a8202008-09-18 01:08:15 +00001541 /* It is often the case that the page we want is already in cache.
1542 ** If so, get it directly. This saves us from having to call
1543 ** pagerPagecount() to make sure pgno is within limits, which results
1544 ** in a measureable performance improvements.
1545 */
danielk1977bea2a942009-01-20 17:06:27 +00001546 *ppPage = pPage = btreePageLookup(pBt, pgno);
1547 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001548 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001549 rc = SQLITE_OK;
1550 }else{
1551 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001552 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001553 return SQLITE_CORRUPT_BKPT;
1554 }
1555 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1556 if( rc ) return rc;
1557 pPage = *ppPage;
1558 }
danielk197771d5d2c2008-09-29 11:49:47 +00001559 if( !pPage->isInit ){
1560 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001561 }
1562 if( rc!=SQLITE_OK ){
1563 releasePage(pPage);
1564 *ppPage = 0;
1565 }
drhde647132004-05-07 17:57:49 +00001566 return rc;
1567}
1568
1569/*
drh3aac2dd2004-04-26 14:10:20 +00001570** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001571** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001572*/
drh4b70f112004-05-02 21:12:19 +00001573static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001574 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001575 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001576 assert( pPage->aData );
1577 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001578 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1579 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001580 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001581 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001582 }
1583}
1584
1585/*
drha6abd042004-06-09 17:37:22 +00001586** During a rollback, when the pager reloads information into the cache
1587** so that the cache is restored to its original state at the start of
1588** the transaction, for each page restored this routine is called.
1589**
1590** This routine needs to reset the extra data section at the end of the
1591** page to agree with the restored data.
1592*/
danielk1977eaa06f62008-09-18 17:34:44 +00001593static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001594 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001595 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001596 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001597 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001598 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001599 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001600 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001601 /* pPage might not be a btree page; it might be an overflow page
1602 ** or ptrmap page or a free page. In those cases, the following
1603 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1604 ** But no harm is done by this. And it is very important that
1605 ** sqlite3BtreeInitPage() be called on every btree page so we make
1606 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001607 sqlite3BtreeInitPage(pPage);
1608 }
drha6abd042004-06-09 17:37:22 +00001609 }
1610}
1611
1612/*
drhe5fe6902007-12-07 18:55:28 +00001613** Invoke the busy handler for a btree.
1614*/
danielk19771ceedd32008-11-19 10:22:33 +00001615static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001616 BtShared *pBt = (BtShared*)pArg;
1617 assert( pBt->db );
1618 assert( sqlite3_mutex_held(pBt->db->mutex) );
1619 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1620}
1621
1622/*
drhad3e0102004-09-03 23:32:18 +00001623** Open a database file.
1624**
drh382c0242001-10-06 16:33:02 +00001625** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001626** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001627** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001628** If zFilename is ":memory:" then an in-memory database is created
1629** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001630**
1631** If the database is already opened in the same database connection
1632** and we are in shared cache mode, then the open will fail with an
1633** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1634** objects in the same database connection since doing so will lead
1635** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001636*/
drh23e11ca2004-05-04 17:27:28 +00001637int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001638 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001639 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001640 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001641 int flags, /* Options */
1642 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001643){
drh7555d8e2009-03-20 13:15:30 +00001644 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1645 BtShared *pBt = 0; /* Shared part of btree structure */
1646 Btree *p; /* Handle to return */
1647 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1648 int rc = SQLITE_OK; /* Result code from this function */
1649 u8 nReserve; /* Byte of unused space on each page */
1650 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001651
1652 /* Set the variable isMemdb to true for an in-memory database, or
1653 ** false for a file-based database. This symbol is only required if
1654 ** either of the shared-data or autovacuum features are compiled
1655 ** into the library.
1656 */
1657#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1658 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001659 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001660 #else
drh980b1a72006-08-16 16:42:48 +00001661 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001662 #endif
1663#endif
1664
drhe5fe6902007-12-07 18:55:28 +00001665 assert( db!=0 );
1666 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001667
drhe5fe6902007-12-07 18:55:28 +00001668 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001669 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001670 if( !p ){
1671 return SQLITE_NOMEM;
1672 }
1673 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001674 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001675#ifndef SQLITE_OMIT_SHARED_CACHE
1676 p->lock.pBtree = p;
1677 p->lock.iTable = 1;
1678#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001679
drh198bf392006-01-06 21:52:49 +00001680#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001681 /*
1682 ** If this Btree is a candidate for shared cache, try to find an
1683 ** existing BtShared object that we can share with
1684 */
danielk197720c6cc22009-04-01 18:03:00 +00001685 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001686 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001687 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001688 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001689 sqlite3_mutex *mutexShared;
1690 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001691 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001692 if( !zFullPathname ){
1693 sqlite3_free(p);
1694 return SQLITE_NOMEM;
1695 }
danielk1977adfb9b02007-09-17 07:02:56 +00001696 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001697 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1698 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001699 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001700 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001701 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001702 assert( pBt->nRef>0 );
1703 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1704 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001705 int iDb;
1706 for(iDb=db->nDb-1; iDb>=0; iDb--){
1707 Btree *pExisting = db->aDb[iDb].pBt;
1708 if( pExisting && pExisting->pBt==pBt ){
1709 sqlite3_mutex_leave(mutexShared);
1710 sqlite3_mutex_leave(mutexOpen);
1711 sqlite3_free(zFullPathname);
1712 sqlite3_free(p);
1713 return SQLITE_CONSTRAINT;
1714 }
1715 }
drhff0587c2007-08-29 17:43:19 +00001716 p->pBt = pBt;
1717 pBt->nRef++;
1718 break;
1719 }
1720 }
1721 sqlite3_mutex_leave(mutexShared);
1722 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001723 }
drhff0587c2007-08-29 17:43:19 +00001724#ifdef SQLITE_DEBUG
1725 else{
1726 /* In debug mode, we mark all persistent databases as sharable
1727 ** even when they are not. This exercises the locking code and
1728 ** gives more opportunity for asserts(sqlite3_mutex_held())
1729 ** statements to find locking problems.
1730 */
1731 p->sharable = 1;
1732 }
1733#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001734 }
1735#endif
drha059ad02001-04-17 20:09:11 +00001736 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001737 /*
1738 ** The following asserts make sure that structures used by the btree are
1739 ** the right size. This is to guard against size changes that result
1740 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001741 */
drhe53831d2007-08-17 01:14:38 +00001742 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1743 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1744 assert( sizeof(u32)==4 );
1745 assert( sizeof(u16)==2 );
1746 assert( sizeof(Pgno)==4 );
1747
1748 pBt = sqlite3MallocZero( sizeof(*pBt) );
1749 if( pBt==0 ){
1750 rc = SQLITE_NOMEM;
1751 goto btree_open_out;
1752 }
danielk197771d5d2c2008-09-29 11:49:47 +00001753 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001754 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001755 if( rc==SQLITE_OK ){
1756 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1757 }
1758 if( rc!=SQLITE_OK ){
1759 goto btree_open_out;
1760 }
danielk19772a50ff02009-04-10 09:47:06 +00001761 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001762 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001763 p->pBt = pBt;
1764
drhe53831d2007-08-17 01:14:38 +00001765 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1766 pBt->pCursor = 0;
1767 pBt->pPage1 = 0;
1768 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1769 pBt->pageSize = get2byte(&zDbHeader[16]);
1770 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1771 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001772 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001773#ifndef SQLITE_OMIT_AUTOVACUUM
1774 /* If the magic name ":memory:" will create an in-memory database, then
1775 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1776 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1777 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1778 ** regular file-name. In this case the auto-vacuum applies as per normal.
1779 */
1780 if( zFilename && !isMemdb ){
1781 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1782 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1783 }
1784#endif
1785 nReserve = 0;
1786 }else{
1787 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001788 pBt->pageSizeFixed = 1;
1789#ifndef SQLITE_OMIT_AUTOVACUUM
1790 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1791 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1792#endif
1793 }
drhfa9601a2009-06-18 17:22:39 +00001794 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001795 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001796 pBt->usableSize = pBt->pageSize - nReserve;
1797 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001798
1799#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1800 /* Add the new BtShared object to the linked list sharable BtShareds.
1801 */
1802 if( p->sharable ){
1803 sqlite3_mutex *mutexShared;
1804 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001805 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001806 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001807 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001808 if( pBt->mutex==0 ){
1809 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001810 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001811 goto btree_open_out;
1812 }
drhff0587c2007-08-29 17:43:19 +00001813 }
drhe53831d2007-08-17 01:14:38 +00001814 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001815 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1816 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001817 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001818 }
drheee46cf2004-11-06 00:02:48 +00001819#endif
drh90f5ecb2004-07-22 01:19:35 +00001820 }
danielk1977aef0bf62005-12-30 16:28:01 +00001821
drhcfed7bc2006-03-13 14:28:05 +00001822#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001823 /* If the new Btree uses a sharable pBtShared, then link the new
1824 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001825 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001826 */
drhe53831d2007-08-17 01:14:38 +00001827 if( p->sharable ){
1828 int i;
1829 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001830 for(i=0; i<db->nDb; i++){
1831 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001832 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1833 if( p->pBt<pSib->pBt ){
1834 p->pNext = pSib;
1835 p->pPrev = 0;
1836 pSib->pPrev = p;
1837 }else{
drhabddb0c2007-08-20 13:14:28 +00001838 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001839 pSib = pSib->pNext;
1840 }
1841 p->pNext = pSib->pNext;
1842 p->pPrev = pSib;
1843 if( p->pNext ){
1844 p->pNext->pPrev = p;
1845 }
1846 pSib->pNext = p;
1847 }
1848 break;
1849 }
1850 }
danielk1977aef0bf62005-12-30 16:28:01 +00001851 }
danielk1977aef0bf62005-12-30 16:28:01 +00001852#endif
1853 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001854
1855btree_open_out:
1856 if( rc!=SQLITE_OK ){
1857 if( pBt && pBt->pPager ){
1858 sqlite3PagerClose(pBt->pPager);
1859 }
drh17435752007-08-16 04:30:38 +00001860 sqlite3_free(pBt);
1861 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001862 *ppBtree = 0;
1863 }
drh7555d8e2009-03-20 13:15:30 +00001864 if( mutexOpen ){
1865 assert( sqlite3_mutex_held(mutexOpen) );
1866 sqlite3_mutex_leave(mutexOpen);
1867 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001868 return rc;
drha059ad02001-04-17 20:09:11 +00001869}
1870
1871/*
drhe53831d2007-08-17 01:14:38 +00001872** Decrement the BtShared.nRef counter. When it reaches zero,
1873** remove the BtShared structure from the sharing list. Return
1874** true if the BtShared.nRef counter reaches zero and return
1875** false if it is still positive.
1876*/
1877static int removeFromSharingList(BtShared *pBt){
1878#ifndef SQLITE_OMIT_SHARED_CACHE
1879 sqlite3_mutex *pMaster;
1880 BtShared *pList;
1881 int removed = 0;
1882
drhd677b3d2007-08-20 22:48:41 +00001883 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001884 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001885 sqlite3_mutex_enter(pMaster);
1886 pBt->nRef--;
1887 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001888 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1889 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001890 }else{
drh78f82d12008-09-02 00:52:52 +00001891 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001892 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001893 pList=pList->pNext;
1894 }
drh34004ce2008-07-11 16:15:17 +00001895 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001896 pList->pNext = pBt->pNext;
1897 }
1898 }
drh3285db22007-09-03 22:00:39 +00001899 if( SQLITE_THREADSAFE ){
1900 sqlite3_mutex_free(pBt->mutex);
1901 }
drhe53831d2007-08-17 01:14:38 +00001902 removed = 1;
1903 }
1904 sqlite3_mutex_leave(pMaster);
1905 return removed;
1906#else
1907 return 1;
1908#endif
1909}
1910
1911/*
drhf7141992008-06-19 00:16:08 +00001912** Make sure pBt->pTmpSpace points to an allocation of
1913** MX_CELL_SIZE(pBt) bytes.
1914*/
1915static void allocateTempSpace(BtShared *pBt){
1916 if( !pBt->pTmpSpace ){
1917 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1918 }
1919}
1920
1921/*
1922** Free the pBt->pTmpSpace allocation
1923*/
1924static void freeTempSpace(BtShared *pBt){
1925 sqlite3PageFree( pBt->pTmpSpace);
1926 pBt->pTmpSpace = 0;
1927}
1928
1929/*
drha059ad02001-04-17 20:09:11 +00001930** Close an open database and invalidate all cursors.
1931*/
danielk1977aef0bf62005-12-30 16:28:01 +00001932int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001933 BtShared *pBt = p->pBt;
1934 BtCursor *pCur;
1935
danielk1977aef0bf62005-12-30 16:28:01 +00001936 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001937 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001938 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001939 pCur = pBt->pCursor;
1940 while( pCur ){
1941 BtCursor *pTmp = pCur;
1942 pCur = pCur->pNext;
1943 if( pTmp->pBtree==p ){
1944 sqlite3BtreeCloseCursor(pTmp);
1945 }
drha059ad02001-04-17 20:09:11 +00001946 }
danielk1977aef0bf62005-12-30 16:28:01 +00001947
danielk19778d34dfd2006-01-24 16:37:57 +00001948 /* Rollback any active transaction and free the handle structure.
1949 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1950 ** this handle.
1951 */
danielk1977b597f742006-01-15 11:39:18 +00001952 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001953 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001954
danielk1977aef0bf62005-12-30 16:28:01 +00001955 /* If there are still other outstanding references to the shared-btree
1956 ** structure, return now. The remainder of this procedure cleans
1957 ** up the shared-btree.
1958 */
drhe53831d2007-08-17 01:14:38 +00001959 assert( p->wantToLock==0 && p->locked==0 );
1960 if( !p->sharable || removeFromSharingList(pBt) ){
1961 /* The pBt is no longer on the sharing list, so we can access
1962 ** it without having to hold the mutex.
1963 **
1964 ** Clean out and delete the BtShared object.
1965 */
1966 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001967 sqlite3PagerClose(pBt->pPager);
1968 if( pBt->xFreeSchema && pBt->pSchema ){
1969 pBt->xFreeSchema(pBt->pSchema);
1970 }
1971 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001972 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001973 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001974 }
1975
drhe53831d2007-08-17 01:14:38 +00001976#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001977 assert( p->wantToLock==0 );
1978 assert( p->locked==0 );
1979 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1980 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001981#endif
1982
drhe53831d2007-08-17 01:14:38 +00001983 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001984 return SQLITE_OK;
1985}
1986
1987/*
drhda47d772002-12-02 04:25:19 +00001988** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001989**
1990** The maximum number of cache pages is set to the absolute
1991** value of mxPage. If mxPage is negative, the pager will
1992** operate asynchronously - it will not stop to do fsync()s
1993** to insure data is written to the disk surface before
1994** continuing. Transactions still work if synchronous is off,
1995** and the database cannot be corrupted if this program
1996** crashes. But if the operating system crashes or there is
1997** an abrupt power failure when synchronous is off, the database
1998** could be left in an inconsistent and unrecoverable state.
1999** Synchronous is on by default so database corruption is not
2000** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002001*/
danielk1977aef0bf62005-12-30 16:28:01 +00002002int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2003 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002004 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002005 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002006 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002007 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002008 return SQLITE_OK;
2009}
2010
2011/*
drh973b6e32003-02-12 14:09:42 +00002012** Change the way data is synced to disk in order to increase or decrease
2013** how well the database resists damage due to OS crashes and power
2014** failures. Level 1 is the same as asynchronous (no syncs() occur and
2015** there is a high probability of damage) Level 2 is the default. There
2016** is a very low but non-zero probability of damage. Level 3 reduces the
2017** probability of damage to near zero but with a write performance reduction.
2018*/
danielk197793758c82005-01-21 08:13:14 +00002019#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002020int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002021 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002022 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002023 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002024 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002025 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002026 return SQLITE_OK;
2027}
danielk197793758c82005-01-21 08:13:14 +00002028#endif
drh973b6e32003-02-12 14:09:42 +00002029
drh2c8997b2005-08-27 16:36:48 +00002030/*
2031** Return TRUE if the given btree is set to safety level 1. In other
2032** words, return TRUE if no sync() occurs on the disk files.
2033*/
danielk1977aef0bf62005-12-30 16:28:01 +00002034int sqlite3BtreeSyncDisabled(Btree *p){
2035 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002036 int rc;
drhe5fe6902007-12-07 18:55:28 +00002037 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002038 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002039 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002040 rc = sqlite3PagerNosync(pBt->pPager);
2041 sqlite3BtreeLeave(p);
2042 return rc;
drh2c8997b2005-08-27 16:36:48 +00002043}
2044
danielk1977576ec6b2005-01-21 11:55:25 +00002045#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002046/*
drh90f5ecb2004-07-22 01:19:35 +00002047** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002048** Or, if the page size has already been fixed, return SQLITE_READONLY
2049** without changing anything.
drh06f50212004-11-02 14:24:33 +00002050**
2051** The page size must be a power of 2 between 512 and 65536. If the page
2052** size supplied does not meet this constraint then the page size is not
2053** changed.
2054**
2055** Page sizes are constrained to be a power of two so that the region
2056** of the database file used for locking (beginning at PENDING_BYTE,
2057** the first byte past the 1GB boundary, 0x40000000) needs to occur
2058** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002059**
2060** If parameter nReserve is less than zero, then the number of reserved
2061** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002062**
2063** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2064** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002065*/
drhce4869f2009-04-02 20:16:58 +00002066int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002067 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002068 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002069 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002070 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002071 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002072 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002073 return SQLITE_READONLY;
2074 }
2075 if( nReserve<0 ){
2076 nReserve = pBt->pageSize - pBt->usableSize;
2077 }
drhf49661a2008-12-10 16:45:50 +00002078 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002079 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2080 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002081 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002082 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002083 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002084 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002085 }
drhfa9601a2009-06-18 17:22:39 +00002086 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002087 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002088 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002089 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002090 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002091}
2092
2093/*
2094** Return the currently defined page size
2095*/
danielk1977aef0bf62005-12-30 16:28:01 +00002096int sqlite3BtreeGetPageSize(Btree *p){
2097 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002098}
drh7f751222009-03-17 22:33:00 +00002099
2100/*
2101** Return the number of bytes of space at the end of every page that
2102** are intentually left unused. This is the "reserved" space that is
2103** sometimes used by extensions.
2104*/
danielk1977aef0bf62005-12-30 16:28:01 +00002105int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002106 int n;
2107 sqlite3BtreeEnter(p);
2108 n = p->pBt->pageSize - p->pBt->usableSize;
2109 sqlite3BtreeLeave(p);
2110 return n;
drh2011d5f2004-07-22 02:40:37 +00002111}
drhf8e632b2007-05-08 14:51:36 +00002112
2113/*
2114** Set the maximum page count for a database if mxPage is positive.
2115** No changes are made if mxPage is 0 or negative.
2116** Regardless of the value of mxPage, return the maximum page count.
2117*/
2118int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002119 int n;
2120 sqlite3BtreeEnter(p);
2121 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2122 sqlite3BtreeLeave(p);
2123 return n;
drhf8e632b2007-05-08 14:51:36 +00002124}
danielk1977576ec6b2005-01-21 11:55:25 +00002125#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002126
2127/*
danielk1977951af802004-11-05 15:45:09 +00002128** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2129** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2130** is disabled. The default value for the auto-vacuum property is
2131** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2132*/
danielk1977aef0bf62005-12-30 16:28:01 +00002133int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002134#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002135 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002136#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002137 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002138 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002139 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002140
2141 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002142 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002143 rc = SQLITE_READONLY;
2144 }else{
drh076d4662009-02-18 20:31:18 +00002145 pBt->autoVacuum = av ?1:0;
2146 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002147 }
drhd677b3d2007-08-20 22:48:41 +00002148 sqlite3BtreeLeave(p);
2149 return rc;
danielk1977951af802004-11-05 15:45:09 +00002150#endif
2151}
2152
2153/*
2154** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2155** enabled 1 is returned. Otherwise 0.
2156*/
danielk1977aef0bf62005-12-30 16:28:01 +00002157int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002158#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002159 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002160#else
drhd677b3d2007-08-20 22:48:41 +00002161 int rc;
2162 sqlite3BtreeEnter(p);
2163 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002164 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2165 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2166 BTREE_AUTOVACUUM_INCR
2167 );
drhd677b3d2007-08-20 22:48:41 +00002168 sqlite3BtreeLeave(p);
2169 return rc;
danielk1977951af802004-11-05 15:45:09 +00002170#endif
2171}
2172
2173
2174/*
drha34b6762004-05-07 13:30:42 +00002175** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002176** also acquire a readlock on that file.
2177**
2178** SQLITE_OK is returned on success. If the file is not a
2179** well-formed database file, then SQLITE_CORRUPT is returned.
2180** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002181** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002182*/
danielk1977aef0bf62005-12-30 16:28:01 +00002183static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002184 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002185 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002186 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002187
drh1fee73e2007-08-29 04:00:57 +00002188 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002189 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00002190 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002191 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002192
2193 /* Do some checking to help insure the file we opened really is
2194 ** a valid database file.
2195 */
danielk1977ad0132d2008-06-07 08:58:22 +00002196 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2197 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002198 goto page1_init_failed;
2199 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002200 int pageSize;
2201 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002202 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002203 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002204 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002205 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002206 }
drh309169a2007-04-24 17:27:51 +00002207 if( page1[18]>1 ){
2208 pBt->readOnly = 1;
2209 }
2210 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002211 goto page1_init_failed;
2212 }
drhe5ae5732008-06-15 02:51:47 +00002213
2214 /* The maximum embedded fraction must be exactly 25%. And the minimum
2215 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2216 ** The original design allowed these amounts to vary, but as of
2217 ** version 3.6.0, we require them to be fixed.
2218 */
2219 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2220 goto page1_init_failed;
2221 }
drh07d183d2005-05-01 22:52:42 +00002222 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002223 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2224 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2225 ){
drh07d183d2005-05-01 22:52:42 +00002226 goto page1_init_failed;
2227 }
2228 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002229 usableSize = pageSize - page1[20];
2230 if( pageSize!=pBt->pageSize ){
2231 /* After reading the first page of the database assuming a page size
2232 ** of BtShared.pageSize, we have discovered that the page-size is
2233 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2234 ** zero and return SQLITE_OK. The caller will call this function
2235 ** again with the correct page-size.
2236 */
2237 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002238 pBt->usableSize = (u16)usableSize;
2239 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002240 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002241 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2242 pageSize-usableSize);
drhc0b61812009-04-30 01:22:41 +00002243 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002244 return SQLITE_OK;
2245 }
drhb33e1b92009-06-18 11:29:20 +00002246 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002247 goto page1_init_failed;
2248 }
drh1bd10f82008-12-10 21:19:56 +00002249 pBt->pageSize = (u16)pageSize;
2250 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002251#ifndef SQLITE_OMIT_AUTOVACUUM
2252 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002253 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002254#endif
drh306dc212001-05-21 13:45:10 +00002255 }
drhb6f41482004-05-14 01:58:11 +00002256
2257 /* maxLocal is the maximum amount of payload to store locally for
2258 ** a cell. Make sure it is small enough so that at least minFanout
2259 ** cells can will fit on one page. We assume a 10-byte page header.
2260 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002261 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002262 ** 4-byte child pointer
2263 ** 9-byte nKey value
2264 ** 4-byte nData value
2265 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002266 ** So a cell consists of a 2-byte poiner, a header which is as much as
2267 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2268 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002269 */
drhe5ae5732008-06-15 02:51:47 +00002270 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2271 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002272 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002273 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002274 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002275 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002276 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002277
drh72f82862001-05-24 21:06:34 +00002278page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002279 releasePage(pPage1);
2280 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002281 return rc;
drh306dc212001-05-21 13:45:10 +00002282}
2283
2284/*
drhb8ca3072001-12-05 00:21:20 +00002285** If there are no outstanding cursors and we are not in the middle
2286** of a transaction but there is a read lock on the database, then
2287** this routine unrefs the first page of the database file which
2288** has the effect of releasing the read lock.
2289**
drhb8ca3072001-12-05 00:21:20 +00002290** If there is a transaction in progress, this routine is a no-op.
2291*/
danielk1977aef0bf62005-12-30 16:28:01 +00002292static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002293 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002294 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2295 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002296 assert( pBt->pPage1->aData );
2297 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2298 assert( pBt->pPage1->aData );
2299 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002300 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002301 }
2302}
2303
2304/*
drh9e572e62004-04-23 23:43:10 +00002305** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002306** file.
drh8b2f49b2001-06-08 00:21:52 +00002307*/
danielk1977aef0bf62005-12-30 16:28:01 +00002308static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002309 MemPage *pP1;
2310 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002311 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002312 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002313
drh1fee73e2007-08-29 04:00:57 +00002314 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002315 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2316 if( rc!=SQLITE_OK || nPage>0 ){
2317 return rc;
2318 }
drh3aac2dd2004-04-26 14:10:20 +00002319 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002320 assert( pP1!=0 );
2321 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002322 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002323 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002324 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2325 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002326 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002327 data[18] = 1;
2328 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002329 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2330 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002331 data[21] = 64;
2332 data[22] = 32;
2333 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002334 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002335 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002336 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002337#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002338 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002339 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002340 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002341 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002342#endif
drh8b2f49b2001-06-08 00:21:52 +00002343 return SQLITE_OK;
2344}
2345
2346/*
danielk1977ee5741e2004-05-31 10:01:34 +00002347** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002348** is started if the second argument is nonzero, otherwise a read-
2349** transaction. If the second argument is 2 or more and exclusive
2350** transaction is started, meaning that no other process is allowed
2351** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002352** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002353** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002354**
danielk1977ee5741e2004-05-31 10:01:34 +00002355** A write-transaction must be started before attempting any
2356** changes to the database. None of the following routines
2357** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002358**
drh23e11ca2004-05-04 17:27:28 +00002359** sqlite3BtreeCreateTable()
2360** sqlite3BtreeCreateIndex()
2361** sqlite3BtreeClearTable()
2362** sqlite3BtreeDropTable()
2363** sqlite3BtreeInsert()
2364** sqlite3BtreeDelete()
2365** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002366**
drhb8ef32c2005-03-14 02:01:49 +00002367** If an initial attempt to acquire the lock fails because of lock contention
2368** and the database was previously unlocked, then invoke the busy handler
2369** if there is one. But if there was previously a read-lock, do not
2370** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2371** returned when there is already a read-lock in order to avoid a deadlock.
2372**
2373** Suppose there are two processes A and B. A has a read lock and B has
2374** a reserved lock. B tries to promote to exclusive but is blocked because
2375** of A's read lock. A tries to promote to reserved but is blocked by B.
2376** One or the other of the two processes must give way or there can be
2377** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2378** when A already has a read lock, we encourage A to give up and let B
2379** proceed.
drha059ad02001-04-17 20:09:11 +00002380*/
danielk1977aef0bf62005-12-30 16:28:01 +00002381int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002382 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002383 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002384 int rc = SQLITE_OK;
2385
drhd677b3d2007-08-20 22:48:41 +00002386 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002387 btreeIntegrity(p);
2388
danielk1977ee5741e2004-05-31 10:01:34 +00002389 /* If the btree is already in a write-transaction, or it
2390 ** is already in a read-transaction and a read-transaction
2391 ** is requested, this is a no-op.
2392 */
danielk1977aef0bf62005-12-30 16:28:01 +00002393 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002394 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002395 }
drhb8ef32c2005-03-14 02:01:49 +00002396
2397 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002398 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002399 rc = SQLITE_READONLY;
2400 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002401 }
2402
danielk1977404ca072009-03-16 13:19:36 +00002403#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002404 /* If another database handle has already opened a write transaction
2405 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002406 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002407 */
danielk1977404ca072009-03-16 13:19:36 +00002408 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2409 pBlock = pBt->pWriter->db;
2410 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002411 BtLock *pIter;
2412 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2413 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002414 pBlock = pIter->pBtree->db;
2415 break;
danielk1977641b0f42007-12-21 04:47:25 +00002416 }
2417 }
2418 }
danielk1977404ca072009-03-16 13:19:36 +00002419 if( pBlock ){
2420 sqlite3ConnectionBlocked(p->db, pBlock);
2421 rc = SQLITE_LOCKED_SHAREDCACHE;
2422 goto trans_begun;
2423 }
danielk1977641b0f42007-12-21 04:47:25 +00002424#endif
2425
danielk1977602b4662009-07-02 07:47:33 +00002426 /* Any read-only or read-write transaction implies a read-lock on
2427 ** page 1. So if some other shared-cache client already has a write-lock
2428 ** on page 1, the transaction cannot be opened. */
2429 if( SQLITE_OK!=(rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK)) ){
2430 goto trans_begun;
2431 }
2432
drhb8ef32c2005-03-14 02:01:49 +00002433 do {
danielk1977295dc102009-04-01 19:07:03 +00002434 /* Call lockBtree() until either pBt->pPage1 is populated or
2435 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2436 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2437 ** reading page 1 it discovers that the page-size of the database
2438 ** file is not pBt->pageSize. In this case lockBtree() will update
2439 ** pBt->pageSize to the page-size of the file on disk.
2440 */
2441 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002442
drhb8ef32c2005-03-14 02:01:49 +00002443 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002444 if( pBt->readOnly ){
2445 rc = SQLITE_READONLY;
2446 }else{
danielk1977d8293352009-04-30 09:10:37 +00002447 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002448 if( rc==SQLITE_OK ){
2449 rc = newDatabase(pBt);
2450 }
drhb8ef32c2005-03-14 02:01:49 +00002451 }
2452 }
2453
danielk1977bd434552009-03-18 10:33:00 +00002454 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002455 unlockBtreeIfUnused(pBt);
2456 }
danielk1977aef0bf62005-12-30 16:28:01 +00002457 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002458 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002459
2460 if( rc==SQLITE_OK ){
2461 if( p->inTrans==TRANS_NONE ){
2462 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002463#ifndef SQLITE_OMIT_SHARED_CACHE
2464 if( p->sharable ){
2465 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2466 p->lock.eLock = READ_LOCK;
2467 p->lock.pNext = pBt->pLock;
2468 pBt->pLock = &p->lock;
2469 }
2470#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002471 }
2472 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2473 if( p->inTrans>pBt->inTransaction ){
2474 pBt->inTransaction = p->inTrans;
2475 }
danielk1977641b0f42007-12-21 04:47:25 +00002476#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002477 if( wrflag ){
2478 assert( !pBt->pWriter );
2479 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002480 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002481 }
2482#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002483 }
2484
drhd677b3d2007-08-20 22:48:41 +00002485
2486trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002487 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002488 /* This call makes sure that the pager has the correct number of
2489 ** open savepoints. If the second parameter is greater than 0 and
2490 ** the sub-journal is not already open, then it will be opened here.
2491 */
danielk1977fd7f0452008-12-17 17:30:26 +00002492 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2493 }
danielk197712dd5492008-12-18 15:45:07 +00002494
danielk1977aef0bf62005-12-30 16:28:01 +00002495 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002496 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002497 return rc;
drha059ad02001-04-17 20:09:11 +00002498}
2499
danielk1977687566d2004-11-02 12:56:41 +00002500#ifndef SQLITE_OMIT_AUTOVACUUM
2501
2502/*
2503** Set the pointer-map entries for all children of page pPage. Also, if
2504** pPage contains cells that point to overflow pages, set the pointer
2505** map entries for the overflow pages as well.
2506*/
2507static int setChildPtrmaps(MemPage *pPage){
2508 int i; /* Counter variable */
2509 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002510 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002511 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002512 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002513 Pgno pgno = pPage->pgno;
2514
drh1fee73e2007-08-29 04:00:57 +00002515 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002516 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002517 if( rc!=SQLITE_OK ){
2518 goto set_child_ptrmaps_out;
2519 }
danielk1977687566d2004-11-02 12:56:41 +00002520 nCell = pPage->nCell;
2521
2522 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002523 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002524
danielk197726836652005-01-17 01:33:13 +00002525 rc = ptrmapPutOvflPtr(pPage, pCell);
2526 if( rc!=SQLITE_OK ){
2527 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002528 }
danielk197726836652005-01-17 01:33:13 +00002529
danielk1977687566d2004-11-02 12:56:41 +00002530 if( !pPage->leaf ){
2531 Pgno childPgno = get4byte(pCell);
2532 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002533 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002534 }
2535 }
2536
2537 if( !pPage->leaf ){
2538 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2539 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2540 }
2541
2542set_child_ptrmaps_out:
2543 pPage->isInit = isInitOrig;
2544 return rc;
2545}
2546
2547/*
danielk1977fa542f12009-04-02 18:28:08 +00002548** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002549** page, is a pointer to page iFrom. Modify this pointer so that it points to
2550** iTo. Parameter eType describes the type of pointer to be modified, as
2551** follows:
2552**
2553** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2554** page of pPage.
2555**
2556** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2557** page pointed to by one of the cells on pPage.
2558**
2559** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2560** overflow page in the list.
2561*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002562static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002563 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002564 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002565 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002566 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002567 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002568 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002569 }
danielk1977f78fc082004-11-02 14:40:32 +00002570 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002571 }else{
drhf49661a2008-12-10 16:45:50 +00002572 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002573 int i;
2574 int nCell;
2575
danielk197771d5d2c2008-09-29 11:49:47 +00002576 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002577 nCell = pPage->nCell;
2578
danielk1977687566d2004-11-02 12:56:41 +00002579 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002580 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002581 if( eType==PTRMAP_OVERFLOW1 ){
2582 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002583 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002584 if( info.iOverflow ){
2585 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2586 put4byte(&pCell[info.iOverflow], iTo);
2587 break;
2588 }
2589 }
2590 }else{
2591 if( get4byte(pCell)==iFrom ){
2592 put4byte(pCell, iTo);
2593 break;
2594 }
2595 }
2596 }
2597
2598 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002599 if( eType!=PTRMAP_BTREE ||
2600 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002601 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002602 }
danielk1977687566d2004-11-02 12:56:41 +00002603 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2604 }
2605
2606 pPage->isInit = isInitOrig;
2607 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002608 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002609}
2610
danielk1977003ba062004-11-04 02:57:33 +00002611
danielk19777701e812005-01-10 12:59:51 +00002612/*
2613** Move the open database page pDbPage to location iFreePage in the
2614** database. The pDbPage reference remains valid.
2615*/
danielk1977003ba062004-11-04 02:57:33 +00002616static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002617 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002618 MemPage *pDbPage, /* Open page to move */
2619 u8 eType, /* Pointer map 'type' entry for pDbPage */
2620 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002621 Pgno iFreePage, /* The location to move pDbPage to */
2622 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002623){
2624 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2625 Pgno iDbPage = pDbPage->pgno;
2626 Pager *pPager = pBt->pPager;
2627 int rc;
2628
danielk1977a0bf2652004-11-04 14:30:04 +00002629 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2630 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002631 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002632 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002633
drh85b623f2007-12-13 21:54:09 +00002634 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002635 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2636 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002637 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002638 if( rc!=SQLITE_OK ){
2639 return rc;
2640 }
2641 pDbPage->pgno = iFreePage;
2642
2643 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2644 ** that point to overflow pages. The pointer map entries for all these
2645 ** pages need to be changed.
2646 **
2647 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2648 ** pointer to a subsequent overflow page. If this is the case, then
2649 ** the pointer map needs to be updated for the subsequent overflow page.
2650 */
danielk1977a0bf2652004-11-04 14:30:04 +00002651 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002652 rc = setChildPtrmaps(pDbPage);
2653 if( rc!=SQLITE_OK ){
2654 return rc;
2655 }
2656 }else{
2657 Pgno nextOvfl = get4byte(pDbPage->aData);
2658 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002659 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2660 if( rc!=SQLITE_OK ){
2661 return rc;
2662 }
2663 }
2664 }
2665
2666 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2667 ** that it points at iFreePage. Also fix the pointer map entry for
2668 ** iPtrPage.
2669 */
danielk1977a0bf2652004-11-04 14:30:04 +00002670 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002671 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002672 if( rc!=SQLITE_OK ){
2673 return rc;
2674 }
danielk19773b8a05f2007-03-19 17:44:26 +00002675 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002676 if( rc!=SQLITE_OK ){
2677 releasePage(pPtrPage);
2678 return rc;
2679 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002680 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002681 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002682 if( rc==SQLITE_OK ){
2683 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2684 }
danielk1977003ba062004-11-04 02:57:33 +00002685 }
danielk1977003ba062004-11-04 02:57:33 +00002686 return rc;
2687}
2688
danielk1977dddbcdc2007-04-26 14:42:34 +00002689/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002690static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002691
2692/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002693** Perform a single step of an incremental-vacuum. If successful,
2694** return SQLITE_OK. If there is no work to do (and therefore no
2695** point in calling this function again), return SQLITE_DONE.
2696**
2697** More specificly, this function attempts to re-organize the
2698** database so that the last page of the file currently in use
2699** is no longer in use.
2700**
2701** If the nFin parameter is non-zero, the implementation assumes
2702** that the caller will keep calling incrVacuumStep() until
2703** it returns SQLITE_DONE or an error, and that nFin is the
2704** number of pages the database file will contain after this
2705** process is complete.
2706*/
danielk19773460d192008-12-27 15:23:13 +00002707static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002708 Pgno nFreeList; /* Number of pages still on the free-list */
2709
drh1fee73e2007-08-29 04:00:57 +00002710 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002711 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002712
2713 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2714 int rc;
2715 u8 eType;
2716 Pgno iPtrPage;
2717
2718 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002719 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002720 return SQLITE_DONE;
2721 }
2722
2723 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2724 if( rc!=SQLITE_OK ){
2725 return rc;
2726 }
2727 if( eType==PTRMAP_ROOTPAGE ){
2728 return SQLITE_CORRUPT_BKPT;
2729 }
2730
2731 if( eType==PTRMAP_FREEPAGE ){
2732 if( nFin==0 ){
2733 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002734 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002735 ** truncated to zero after this function returns, so it doesn't
2736 ** matter if it still contains some garbage entries.
2737 */
2738 Pgno iFreePg;
2739 MemPage *pFreePg;
2740 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2741 if( rc!=SQLITE_OK ){
2742 return rc;
2743 }
2744 assert( iFreePg==iLastPg );
2745 releasePage(pFreePg);
2746 }
2747 } else {
2748 Pgno iFreePg; /* Index of free page to move pLastPg to */
2749 MemPage *pLastPg;
2750
drh16a9b832007-05-05 18:39:25 +00002751 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002752 if( rc!=SQLITE_OK ){
2753 return rc;
2754 }
2755
danielk1977b4626a32007-04-28 15:47:43 +00002756 /* If nFin is zero, this loop runs exactly once and page pLastPg
2757 ** is swapped with the first free page pulled off the free list.
2758 **
2759 ** On the other hand, if nFin is greater than zero, then keep
2760 ** looping until a free-page located within the first nFin pages
2761 ** of the file is found.
2762 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002763 do {
2764 MemPage *pFreePg;
2765 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2766 if( rc!=SQLITE_OK ){
2767 releasePage(pLastPg);
2768 return rc;
2769 }
2770 releasePage(pFreePg);
2771 }while( nFin!=0 && iFreePg>nFin );
2772 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002773
2774 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002775 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002776 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002777 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002778 releasePage(pLastPg);
2779 if( rc!=SQLITE_OK ){
2780 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002781 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002782 }
2783 }
2784
danielk19773460d192008-12-27 15:23:13 +00002785 if( nFin==0 ){
2786 iLastPg--;
2787 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002788 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2789 MemPage *pPg;
2790 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2791 if( rc!=SQLITE_OK ){
2792 return rc;
2793 }
2794 rc = sqlite3PagerWrite(pPg->pDbPage);
2795 releasePage(pPg);
2796 if( rc!=SQLITE_OK ){
2797 return rc;
2798 }
2799 }
danielk19773460d192008-12-27 15:23:13 +00002800 iLastPg--;
2801 }
2802 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002803 }
2804 return SQLITE_OK;
2805}
2806
2807/*
2808** A write-transaction must be opened before calling this function.
2809** It performs a single unit of work towards an incremental vacuum.
2810**
2811** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002812** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002813** SQLITE_OK is returned. Otherwise an SQLite error code.
2814*/
2815int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002816 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002817 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002818
2819 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002820 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2821 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002822 rc = SQLITE_DONE;
2823 }else{
2824 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002825 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002826 }
drhd677b3d2007-08-20 22:48:41 +00002827 sqlite3BtreeLeave(p);
2828 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002829}
2830
2831/*
danielk19773b8a05f2007-03-19 17:44:26 +00002832** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002833** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002834**
2835** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2836** the database file should be truncated to during the commit process.
2837** i.e. the database has been reorganized so that only the first *pnTrunc
2838** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002839*/
danielk19773460d192008-12-27 15:23:13 +00002840static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002841 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002842 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002843 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002844
drh1fee73e2007-08-29 04:00:57 +00002845 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002846 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002847 assert(pBt->autoVacuum);
2848 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002849 Pgno nFin;
2850 Pgno nFree;
2851 Pgno nPtrmap;
2852 Pgno iFree;
2853 const int pgsz = pBt->pageSize;
2854 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002855
danielk1977ef165ce2009-04-06 17:50:03 +00002856 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2857 /* It is not possible to create a database for which the final page
2858 ** is either a pointer-map page or the pending-byte page. If one
2859 ** is encountered, this indicates corruption.
2860 */
danielk19773460d192008-12-27 15:23:13 +00002861 return SQLITE_CORRUPT_BKPT;
2862 }
danielk1977ef165ce2009-04-06 17:50:03 +00002863
danielk19773460d192008-12-27 15:23:13 +00002864 nFree = get4byte(&pBt->pPage1->aData[36]);
2865 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2866 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002867 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002868 nFin--;
2869 }
2870 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2871 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002872 }
drhc5e47ac2009-06-04 00:11:56 +00002873 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002874
danielk19773460d192008-12-27 15:23:13 +00002875 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2876 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002877 }
danielk19773460d192008-12-27 15:23:13 +00002878 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002879 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002880 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2881 put4byte(&pBt->pPage1->aData[32], 0);
2882 put4byte(&pBt->pPage1->aData[36], 0);
2883 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002884 }
2885 if( rc!=SQLITE_OK ){
2886 sqlite3PagerRollback(pPager);
2887 }
danielk1977687566d2004-11-02 12:56:41 +00002888 }
2889
danielk19773b8a05f2007-03-19 17:44:26 +00002890 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002891 return rc;
2892}
danielk1977dddbcdc2007-04-26 14:42:34 +00002893
danielk1977a50d9aa2009-06-08 14:49:45 +00002894#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2895# define setChildPtrmaps(x) SQLITE_OK
2896#endif
danielk1977687566d2004-11-02 12:56:41 +00002897
2898/*
drh80e35f42007-03-30 14:06:34 +00002899** This routine does the first phase of a two-phase commit. This routine
2900** causes a rollback journal to be created (if it does not already exist)
2901** and populated with enough information so that if a power loss occurs
2902** the database can be restored to its original state by playing back
2903** the journal. Then the contents of the journal are flushed out to
2904** the disk. After the journal is safely on oxide, the changes to the
2905** database are written into the database file and flushed to oxide.
2906** At the end of this call, the rollback journal still exists on the
2907** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002908** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002909** commit process.
2910**
2911** This call is a no-op if no write-transaction is currently active on pBt.
2912**
2913** Otherwise, sync the database file for the btree pBt. zMaster points to
2914** the name of a master journal file that should be written into the
2915** individual journal file, or is NULL, indicating no master journal file
2916** (single database transaction).
2917**
2918** When this is called, the master journal should already have been
2919** created, populated with this journal pointer and synced to disk.
2920**
2921** Once this is routine has returned, the only thing required to commit
2922** the write-transaction for this database file is to delete the journal.
2923*/
2924int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2925 int rc = SQLITE_OK;
2926 if( p->inTrans==TRANS_WRITE ){
2927 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002928 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002929#ifndef SQLITE_OMIT_AUTOVACUUM
2930 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002931 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002932 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002933 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002934 return rc;
2935 }
2936 }
2937#endif
drh49b9d332009-01-02 18:10:42 +00002938 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002939 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002940 }
2941 return rc;
2942}
2943
2944/*
danielk197794b30732009-07-02 17:21:57 +00002945** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2946** at the conclusion of a transaction.
2947*/
2948static void btreeEndTransaction(Btree *p){
2949 BtShared *pBt = p->pBt;
2950 BtCursor *pCsr;
2951 assert( sqlite3BtreeHoldsMutex(p) );
2952
2953 /* Search for a cursor held open by this b-tree connection. If one exists,
2954 ** then the transaction will be downgraded to a read-only transaction
2955 ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
2956 ** or Rollback() will finish the transaction and unlock the database. */
2957 for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
2958 assert( pCsr==0 || p->inTrans>TRANS_NONE );
2959
2960 btreeClearHasContent(pBt);
2961 if( pCsr ){
2962 downgradeAllSharedCacheTableLocks(p);
2963 p->inTrans = TRANS_READ;
2964 }else{
2965 /* If the handle had any kind of transaction open, decrement the
2966 ** transaction count of the shared btree. If the transaction count
2967 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
2968 ** call below will unlock the pager. */
2969 if( p->inTrans!=TRANS_NONE ){
2970 clearAllSharedCacheTableLocks(p);
2971 pBt->nTransaction--;
2972 if( 0==pBt->nTransaction ){
2973 pBt->inTransaction = TRANS_NONE;
2974 }
2975 }
2976
2977 /* Set the current transaction state to TRANS_NONE and unlock the
2978 ** pager if this call closed the only read or write transaction. */
2979 p->inTrans = TRANS_NONE;
2980 unlockBtreeIfUnused(pBt);
2981 }
2982
2983 btreeIntegrity(p);
2984}
2985
2986/*
drh2aa679f2001-06-25 02:11:07 +00002987** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002988**
drh6e345992007-03-30 11:12:08 +00002989** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002990** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2991** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2992** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002993** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002994** routine has to do is delete or truncate or zero the header in the
2995** the rollback journal (which causes the transaction to commit) and
2996** drop locks.
drh6e345992007-03-30 11:12:08 +00002997**
drh5e00f6c2001-09-13 13:46:56 +00002998** This will release the write lock on the database file. If there
2999** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003000*/
drh80e35f42007-03-30 14:06:34 +00003001int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003002 BtShared *pBt = p->pBt;
3003
drhd677b3d2007-08-20 22:48:41 +00003004 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003005 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003006
3007 /* If the handle has a write-transaction open, commit the shared-btrees
3008 ** transaction and set the shared state to TRANS_READ.
3009 */
3010 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003011 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003012 assert( pBt->inTransaction==TRANS_WRITE );
3013 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003014 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003015 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003016 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003017 return rc;
3018 }
danielk1977aef0bf62005-12-30 16:28:01 +00003019 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003020 }
danielk1977aef0bf62005-12-30 16:28:01 +00003021
danielk197794b30732009-07-02 17:21:57 +00003022 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003023 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003024 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003025}
3026
drh80e35f42007-03-30 14:06:34 +00003027/*
3028** Do both phases of a commit.
3029*/
3030int sqlite3BtreeCommit(Btree *p){
3031 int rc;
drhd677b3d2007-08-20 22:48:41 +00003032 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003033 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3034 if( rc==SQLITE_OK ){
3035 rc = sqlite3BtreeCommitPhaseTwo(p);
3036 }
drhd677b3d2007-08-20 22:48:41 +00003037 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003038 return rc;
3039}
3040
danielk1977fbcd5852004-06-15 02:44:18 +00003041#ifndef NDEBUG
3042/*
3043** Return the number of write-cursors open on this handle. This is for use
3044** in assert() expressions, so it is only compiled if NDEBUG is not
3045** defined.
drhfb982642007-08-30 01:19:59 +00003046**
3047** For the purposes of this routine, a write-cursor is any cursor that
3048** is capable of writing to the databse. That means the cursor was
3049** originally opened for writing and the cursor has not be disabled
3050** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003051*/
danielk1977aef0bf62005-12-30 16:28:01 +00003052static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003053 BtCursor *pCur;
3054 int r = 0;
3055 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003056 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003057 }
3058 return r;
3059}
3060#endif
3061
drhc39e0002004-05-07 23:50:57 +00003062/*
drhfb982642007-08-30 01:19:59 +00003063** This routine sets the state to CURSOR_FAULT and the error
3064** code to errCode for every cursor on BtShared that pBtree
3065** references.
3066**
3067** Every cursor is tripped, including cursors that belong
3068** to other database connections that happen to be sharing
3069** the cache with pBtree.
3070**
3071** This routine gets called when a rollback occurs.
3072** All cursors using the same cache must be tripped
3073** to prevent them from trying to use the btree after
3074** the rollback. The rollback may have deleted tables
3075** or moved root pages, so it is not sufficient to
3076** save the state of the cursor. The cursor must be
3077** invalidated.
3078*/
3079void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3080 BtCursor *p;
3081 sqlite3BtreeEnter(pBtree);
3082 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003083 int i;
danielk1977be51a652008-10-08 17:58:48 +00003084 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003085 p->eState = CURSOR_FAULT;
3086 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003087 for(i=0; i<=p->iPage; i++){
3088 releasePage(p->apPage[i]);
3089 p->apPage[i] = 0;
3090 }
drhfb982642007-08-30 01:19:59 +00003091 }
3092 sqlite3BtreeLeave(pBtree);
3093}
3094
3095/*
drhecdc7532001-09-23 02:35:53 +00003096** Rollback the transaction in progress. All cursors will be
3097** invalided by this operation. Any attempt to use a cursor
3098** that was open at the beginning of this operation will result
3099** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003100**
3101** This will release the write lock on the database file. If there
3102** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003103*/
danielk1977aef0bf62005-12-30 16:28:01 +00003104int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003105 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003106 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003107 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003108
drhd677b3d2007-08-20 22:48:41 +00003109 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003110 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003111#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003112 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003113 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003114 ** trying to save cursor positions. If this is an automatic rollback (as
3115 ** the result of a constraint, malloc() failure or IO error) then
3116 ** the cache may be internally inconsistent (not contain valid trees) so
3117 ** we cannot simply return the error to the caller. Instead, abort
3118 ** all queries that may be using any of the cursors that failed to save.
3119 */
drhfb982642007-08-30 01:19:59 +00003120 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003121 }
danielk19778d34dfd2006-01-24 16:37:57 +00003122#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003123 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003124
3125 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003126 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003127
danielk19778d34dfd2006-01-24 16:37:57 +00003128 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003129 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003130 if( rc2!=SQLITE_OK ){
3131 rc = rc2;
3132 }
3133
drh24cd67e2004-05-10 16:18:47 +00003134 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00003135 ** call sqlite3BtreeGetPage() on page 1 again to make
3136 ** sure pPage1->aData is set correctly. */
3137 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003138 releasePage(pPage1);
3139 }
danielk1977fbcd5852004-06-15 02:44:18 +00003140 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003141 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003142 }
danielk1977aef0bf62005-12-30 16:28:01 +00003143
danielk197794b30732009-07-02 17:21:57 +00003144 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003145 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003146 return rc;
3147}
3148
3149/*
danielk1977bd434552009-03-18 10:33:00 +00003150** Start a statement subtransaction. The subtransaction can can be rolled
3151** back independently of the main transaction. You must start a transaction
3152** before starting a subtransaction. The subtransaction is ended automatically
3153** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003154**
3155** Statement subtransactions are used around individual SQL statements
3156** that are contained within a BEGIN...COMMIT block. If a constraint
3157** error occurs within the statement, the effect of that one statement
3158** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003159**
3160** A statement sub-transaction is implemented as an anonymous savepoint. The
3161** value passed as the second parameter is the total number of savepoints,
3162** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3163** are no active savepoints and no other statement-transactions open,
3164** iStatement is 1. This anonymous savepoint can be released or rolled back
3165** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003166*/
danielk1977bd434552009-03-18 10:33:00 +00003167int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003168 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003169 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003170 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003171 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003172 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003173 assert( iStatement>0 );
3174 assert( iStatement>p->db->nSavepoint );
3175 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003176 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003177 }else{
3178 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003179 /* At the pager level, a statement transaction is a savepoint with
3180 ** an index greater than all savepoints created explicitly using
3181 ** SQL statements. It is illegal to open, release or rollback any
3182 ** such savepoints while the statement transaction savepoint is active.
3183 */
danielk1977bd434552009-03-18 10:33:00 +00003184 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003185 }
drhd677b3d2007-08-20 22:48:41 +00003186 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003187 return rc;
3188}
3189
3190/*
danielk1977fd7f0452008-12-17 17:30:26 +00003191** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3192** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003193** savepoint identified by parameter iSavepoint, depending on the value
3194** of op.
3195**
3196** Normally, iSavepoint is greater than or equal to zero. However, if op is
3197** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3198** contents of the entire transaction are rolled back. This is different
3199** from a normal transaction rollback, as no locks are released and the
3200** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003201*/
3202int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3203 int rc = SQLITE_OK;
3204 if( p && p->inTrans==TRANS_WRITE ){
3205 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003206 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3207 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3208 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003209 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003210 if( rc==SQLITE_OK ){
3211 rc = newDatabase(pBt);
3212 }
danielk1977fd7f0452008-12-17 17:30:26 +00003213 sqlite3BtreeLeave(p);
3214 }
3215 return rc;
3216}
3217
3218/*
drh8b2f49b2001-06-08 00:21:52 +00003219** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003220** iTable. If a read-only cursor is requested, it is assumed that
3221** the caller already has at least a read-only transaction open
3222** on the database already. If a write-cursor is requested, then
3223** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003224**
3225** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003226** If wrFlag==1, then the cursor can be used for reading or for
3227** writing if other conditions for writing are also met. These
3228** are the conditions that must be met in order for writing to
3229** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003230**
drhf74b8d92002-09-01 23:20:45 +00003231** 1: The cursor must have been opened with wrFlag==1
3232**
drhfe5d71d2007-03-19 11:54:10 +00003233** 2: Other database connections that share the same pager cache
3234** but which are not in the READ_UNCOMMITTED state may not have
3235** cursors open with wrFlag==0 on the same table. Otherwise
3236** the changes made by this write cursor would be visible to
3237** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003238**
3239** 3: The database must be writable (not on read-only media)
3240**
3241** 4: There must be an active transaction.
3242**
drh6446c4d2001-12-15 14:22:18 +00003243** No checking is done to make sure that page iTable really is the
3244** root page of a b-tree. If it is not, then the cursor acquired
3245** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003246**
3247** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3248** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003249*/
drhd677b3d2007-08-20 22:48:41 +00003250static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003251 Btree *p, /* The btree */
3252 int iTable, /* Root page of table to open */
3253 int wrFlag, /* 1 to write. 0 read-only */
3254 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3255 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003256){
danielk19773e8add92009-07-04 17:16:00 +00003257 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003258
drh1fee73e2007-08-29 04:00:57 +00003259 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003260 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003261
danielk1977602b4662009-07-02 07:47:33 +00003262 /* The following assert statements verify that if this is a sharable
3263 ** b-tree database, the connection is holding the required table locks,
3264 ** and that no other connection has any open cursor that conflicts with
3265 ** this lock. */
3266 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003267 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3268
danielk19773e8add92009-07-04 17:16:00 +00003269 /* Assert that the caller has opened the required transaction. */
3270 assert( p->inTrans>TRANS_NONE );
3271 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3272 assert( pBt->pPage1 && pBt->pPage1->aData );
3273
danielk197796d48e92009-06-29 06:00:37 +00003274 if( NEVER(wrFlag && pBt->readOnly) ){
3275 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003276 }
danielk19773e8add92009-07-04 17:16:00 +00003277 if( iTable==1 && pagerPagecount(pBt)==0 ){
3278 return SQLITE_EMPTY;
3279 }
danielk1977aef0bf62005-12-30 16:28:01 +00003280
danielk1977aef0bf62005-12-30 16:28:01 +00003281 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003282 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003283 pCur->pgnoRoot = (Pgno)iTable;
3284 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003285 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003286 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003287 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003288 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003289 pCur->pNext = pBt->pCursor;
3290 if( pCur->pNext ){
3291 pCur->pNext->pPrev = pCur;
3292 }
3293 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003294 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003295 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003296 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003297}
drhd677b3d2007-08-20 22:48:41 +00003298int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003299 Btree *p, /* The btree */
3300 int iTable, /* Root page of table to open */
3301 int wrFlag, /* 1 to write. 0 read-only */
3302 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3303 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003304){
3305 int rc;
3306 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003307 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003308 sqlite3BtreeLeave(p);
3309 return rc;
3310}
drh7f751222009-03-17 22:33:00 +00003311
3312/*
3313** Return the size of a BtCursor object in bytes.
3314**
3315** This interfaces is needed so that users of cursors can preallocate
3316** sufficient storage to hold a cursor. The BtCursor object is opaque
3317** to users so they cannot do the sizeof() themselves - they must call
3318** this routine.
3319*/
3320int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003321 return sizeof(BtCursor);
3322}
3323
drh7f751222009-03-17 22:33:00 +00003324/*
3325** Set the cached rowid value of every cursor in the same database file
3326** as pCur and having the same root page number as pCur. The value is
3327** set to iRowid.
3328**
3329** Only positive rowid values are considered valid for this cache.
3330** The cache is initialized to zero, indicating an invalid cache.
3331** A btree will work fine with zero or negative rowids. We just cannot
3332** cache zero or negative rowids, which means tables that use zero or
3333** negative rowids might run a little slower. But in practice, zero
3334** or negative rowids are very uncommon so this should not be a problem.
3335*/
3336void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3337 BtCursor *p;
3338 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3339 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3340 }
3341 assert( pCur->cachedRowid==iRowid );
3342}
drhd677b3d2007-08-20 22:48:41 +00003343
drh7f751222009-03-17 22:33:00 +00003344/*
3345** Return the cached rowid for the given cursor. A negative or zero
3346** return value indicates that the rowid cache is invalid and should be
3347** ignored. If the rowid cache has never before been set, then a
3348** zero is returned.
3349*/
3350sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3351 return pCur->cachedRowid;
3352}
drha059ad02001-04-17 20:09:11 +00003353
3354/*
drh5e00f6c2001-09-13 13:46:56 +00003355** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003356** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003357*/
drh3aac2dd2004-04-26 14:10:20 +00003358int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003359 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003360 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003361 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003362 BtShared *pBt = pCur->pBt;
3363 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003364 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003365 if( pCur->pPrev ){
3366 pCur->pPrev->pNext = pCur->pNext;
3367 }else{
3368 pBt->pCursor = pCur->pNext;
3369 }
3370 if( pCur->pNext ){
3371 pCur->pNext->pPrev = pCur->pPrev;
3372 }
danielk197771d5d2c2008-09-29 11:49:47 +00003373 for(i=0; i<=pCur->iPage; i++){
3374 releasePage(pCur->apPage[i]);
3375 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003376 unlockBtreeIfUnused(pBt);
3377 invalidateOverflowCache(pCur);
3378 /* sqlite3_free(pCur); */
3379 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003380 }
drh8c42ca92001-06-22 19:15:00 +00003381 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003382}
3383
drh0d588bb2009-06-17 13:09:38 +00003384#ifdef SQLITE_TEST
drh7e3b0a02001-04-28 16:52:40 +00003385/*
drh5e2f8b92001-05-28 00:41:15 +00003386** Make a temporary cursor by filling in the fields of pTempCur.
3387** The temporary cursor is not on the cursor list for the Btree.
3388*/
drh16a9b832007-05-05 18:39:25 +00003389void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003390 int i;
drh1fee73e2007-08-29 04:00:57 +00003391 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003392 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003393 pTempCur->pNext = 0;
3394 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003395 for(i=0; i<=pTempCur->iPage; i++){
3396 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003397 }
danielk197736e20932008-11-26 07:40:30 +00003398 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003399}
drh0d588bb2009-06-17 13:09:38 +00003400#endif /* SQLITE_TEST */
drh5e2f8b92001-05-28 00:41:15 +00003401
drh0d588bb2009-06-17 13:09:38 +00003402#ifdef SQLITE_TEST
drh5e2f8b92001-05-28 00:41:15 +00003403/*
drhbd03cae2001-06-02 02:40:57 +00003404** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003405** function above.
3406*/
drh16a9b832007-05-05 18:39:25 +00003407void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003408 int i;
drh1fee73e2007-08-29 04:00:57 +00003409 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003410 for(i=0; i<=pCur->iPage; i++){
3411 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003412 }
danielk197736e20932008-11-26 07:40:30 +00003413 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003414}
drh0d588bb2009-06-17 13:09:38 +00003415#endif /* SQLITE_TEST */
drh7f751222009-03-17 22:33:00 +00003416
drh5e2f8b92001-05-28 00:41:15 +00003417/*
drh86057612007-06-26 01:04:48 +00003418** Make sure the BtCursor* given in the argument has a valid
3419** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003420** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003421**
3422** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003423** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003424**
3425** 2007-06-25: There is a bug in some versions of MSVC that cause the
3426** compiler to crash when getCellInfo() is implemented as a macro.
3427** But there is a measureable speed advantage to using the macro on gcc
3428** (when less compiler optimizations like -Os or -O0 are used and the
3429** compiler is not doing agressive inlining.) So we use a real function
3430** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003431*/
drh9188b382004-05-14 21:12:22 +00003432#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003433 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003434 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003435 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003436 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003437 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003438 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003439 }
danielk19771cc5ed82007-05-16 17:28:43 +00003440#else
3441 #define assertCellInfo(x)
3442#endif
drh86057612007-06-26 01:04:48 +00003443#ifdef _MSC_VER
3444 /* Use a real function in MSVC to work around bugs in that compiler. */
3445 static void getCellInfo(BtCursor *pCur){
3446 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003447 int iPage = pCur->iPage;
3448 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003449 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003450 }else{
3451 assertCellInfo(pCur);
3452 }
3453 }
3454#else /* if not _MSC_VER */
3455 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003456#define getCellInfo(pCur) \
3457 if( pCur->info.nSize==0 ){ \
3458 int iPage = pCur->iPage; \
3459 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3460 pCur->validNKey = 1; \
3461 }else{ \
3462 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003463 }
3464#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003465
3466/*
drh3aac2dd2004-04-26 14:10:20 +00003467** Set *pSize to the size of the buffer needed to hold the value of
3468** the key for the current entry. If the cursor is not pointing
3469** to a valid entry, *pSize is set to 0.
3470**
drh4b70f112004-05-02 21:12:19 +00003471** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003472** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003473*/
drh4a1c3802004-05-12 15:15:47 +00003474int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003475 int rc;
3476
drh1fee73e2007-08-29 04:00:57 +00003477 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003478 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003479 if( rc==SQLITE_OK ){
3480 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3481 if( pCur->eState==CURSOR_INVALID ){
3482 *pSize = 0;
3483 }else{
drh86057612007-06-26 01:04:48 +00003484 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003485 *pSize = pCur->info.nKey;
3486 }
drh72f82862001-05-24 21:06:34 +00003487 }
danielk1977da184232006-01-05 11:34:32 +00003488 return rc;
drha059ad02001-04-17 20:09:11 +00003489}
drh2af926b2001-05-15 00:39:25 +00003490
drh72f82862001-05-24 21:06:34 +00003491/*
drh0e1c19e2004-05-11 00:58:56 +00003492** Set *pSize to the number of bytes of data in the entry the
3493** cursor currently points to. Always return SQLITE_OK.
3494** Failure is not possible. If the cursor is not currently
3495** pointing to an entry (which can happen, for example, if
3496** the database is empty) then *pSize is set to 0.
3497*/
3498int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003499 int rc;
3500
drh1fee73e2007-08-29 04:00:57 +00003501 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003502 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003503 if( rc==SQLITE_OK ){
3504 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3505 if( pCur->eState==CURSOR_INVALID ){
3506 /* Not pointing at a valid entry - set *pSize to 0. */
3507 *pSize = 0;
3508 }else{
drh86057612007-06-26 01:04:48 +00003509 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003510 *pSize = pCur->info.nData;
3511 }
drh0e1c19e2004-05-11 00:58:56 +00003512 }
danielk1977da184232006-01-05 11:34:32 +00003513 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003514}
3515
3516/*
danielk1977d04417962007-05-02 13:16:30 +00003517** Given the page number of an overflow page in the database (parameter
3518** ovfl), this function finds the page number of the next page in the
3519** linked list of overflow pages. If possible, it uses the auto-vacuum
3520** pointer-map data instead of reading the content of page ovfl to do so.
3521**
3522** If an error occurs an SQLite error code is returned. Otherwise:
3523**
danielk1977bea2a942009-01-20 17:06:27 +00003524** The page number of the next overflow page in the linked list is
3525** written to *pPgnoNext. If page ovfl is the last page in its linked
3526** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003527**
danielk1977bea2a942009-01-20 17:06:27 +00003528** If ppPage is not NULL, and a reference to the MemPage object corresponding
3529** to page number pOvfl was obtained, then *ppPage is set to point to that
3530** reference. It is the responsibility of the caller to call releasePage()
3531** on *ppPage to free the reference. In no reference was obtained (because
3532** the pointer-map was used to obtain the value for *pPgnoNext), then
3533** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003534*/
3535static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003536 BtShared *pBt, /* The database file */
3537 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003538 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003539 Pgno *pPgnoNext /* OUT: Next overflow page number */
3540){
3541 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003542 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003543 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003544
drh1fee73e2007-08-29 04:00:57 +00003545 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003546 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003547
3548#ifndef SQLITE_OMIT_AUTOVACUUM
3549 /* Try to find the next page in the overflow list using the
3550 ** autovacuum pointer-map pages. Guess that the next page in
3551 ** the overflow list is page number (ovfl+1). If that guess turns
3552 ** out to be wrong, fall back to loading the data of page
3553 ** number ovfl to determine the next page number.
3554 */
3555 if( pBt->autoVacuum ){
3556 Pgno pgno;
3557 Pgno iGuess = ovfl+1;
3558 u8 eType;
3559
3560 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3561 iGuess++;
3562 }
3563
danielk197789d40042008-11-17 14:20:56 +00003564 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003565 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003566 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003567 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003568 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003569 }
3570 }
3571 }
3572#endif
3573
danielk1977bea2a942009-01-20 17:06:27 +00003574 if( rc==SQLITE_OK ){
3575 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003576 assert(rc==SQLITE_OK || pPage==0);
3577 if( next==0 && rc==SQLITE_OK ){
3578 next = get4byte(pPage->aData);
3579 }
danielk1977443c0592009-01-16 15:21:05 +00003580 }
danielk197745d68822009-01-16 16:23:38 +00003581
danielk1977bea2a942009-01-20 17:06:27 +00003582 *pPgnoNext = next;
3583 if( ppPage ){
3584 *ppPage = pPage;
3585 }else{
3586 releasePage(pPage);
3587 }
3588 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003589}
3590
danielk1977da107192007-05-04 08:32:13 +00003591/*
3592** Copy data from a buffer to a page, or from a page to a buffer.
3593**
3594** pPayload is a pointer to data stored on database page pDbPage.
3595** If argument eOp is false, then nByte bytes of data are copied
3596** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3597** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3598** of data are copied from the buffer pBuf to pPayload.
3599**
3600** SQLITE_OK is returned on success, otherwise an error code.
3601*/
3602static int copyPayload(
3603 void *pPayload, /* Pointer to page data */
3604 void *pBuf, /* Pointer to buffer */
3605 int nByte, /* Number of bytes to copy */
3606 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3607 DbPage *pDbPage /* Page containing pPayload */
3608){
3609 if( eOp ){
3610 /* Copy data from buffer to page (a write operation) */
3611 int rc = sqlite3PagerWrite(pDbPage);
3612 if( rc!=SQLITE_OK ){
3613 return rc;
3614 }
3615 memcpy(pPayload, pBuf, nByte);
3616 }else{
3617 /* Copy data from page to buffer (a read operation) */
3618 memcpy(pBuf, pPayload, nByte);
3619 }
3620 return SQLITE_OK;
3621}
danielk1977d04417962007-05-02 13:16:30 +00003622
3623/*
danielk19779f8d6402007-05-02 17:48:45 +00003624** This function is used to read or overwrite payload information
3625** for the entry that the pCur cursor is pointing to. If the eOp
3626** parameter is 0, this is a read operation (data copied into
3627** buffer pBuf). If it is non-zero, a write (data copied from
3628** buffer pBuf).
3629**
3630** A total of "amt" bytes are read or written beginning at "offset".
3631** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003632**
3633** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003634** It just reads or writes bytes from the payload area. Data might
3635** appear on the main page or be scattered out on multiple overflow
3636** pages.
danielk1977da107192007-05-04 08:32:13 +00003637**
danielk1977dcbb5d32007-05-04 18:36:44 +00003638** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003639** cursor entry uses one or more overflow pages, this function
3640** allocates space for and lazily popluates the overflow page-list
3641** cache array (BtCursor.aOverflow). Subsequent calls use this
3642** cache to make seeking to the supplied offset more efficient.
3643**
3644** Once an overflow page-list cache has been allocated, it may be
3645** invalidated if some other cursor writes to the same table, or if
3646** the cursor is moved to a different row. Additionally, in auto-vacuum
3647** mode, the following events may invalidate an overflow page-list cache.
3648**
3649** * An incremental vacuum,
3650** * A commit in auto_vacuum="full" mode,
3651** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003652*/
danielk19779f8d6402007-05-02 17:48:45 +00003653static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003654 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003655 u32 offset, /* Begin reading this far into payload */
3656 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003657 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003658 int skipKey, /* offset begins at data if this is true */
3659 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003660){
3661 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003662 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003663 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003664 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003665 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003666 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003667
danielk1977da107192007-05-04 08:32:13 +00003668 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003669 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003670 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003671 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003672
drh86057612007-06-26 01:04:48 +00003673 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003674 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003675 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003676
drh3aac2dd2004-04-26 14:10:20 +00003677 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003678 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003679 }
danielk19770d065412008-11-12 18:21:36 +00003680 if( offset+amt > nKey+pCur->info.nData
3681 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3682 ){
danielk1977da107192007-05-04 08:32:13 +00003683 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003684 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003685 }
danielk1977da107192007-05-04 08:32:13 +00003686
3687 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003688 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003689 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003690 if( a+offset>pCur->info.nLocal ){
3691 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003692 }
danielk1977da107192007-05-04 08:32:13 +00003693 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003694 offset = 0;
drha34b6762004-05-07 13:30:42 +00003695 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003696 amt -= a;
drhdd793422001-06-28 01:54:48 +00003697 }else{
drhfa1a98a2004-05-14 19:08:17 +00003698 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003699 }
danielk1977da107192007-05-04 08:32:13 +00003700
3701 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003702 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003703 Pgno nextPage;
3704
drhfa1a98a2004-05-14 19:08:17 +00003705 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003706
danielk19772dec9702007-05-02 16:48:37 +00003707#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003708 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003709 ** has not been allocated, allocate it now. The array is sized at
3710 ** one entry for each overflow page in the overflow chain. The
3711 ** page number of the first overflow page is stored in aOverflow[0],
3712 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3713 ** (the cache is lazily populated).
3714 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003715 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003716 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003717 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003718 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003719 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003720 }
3721 }
danielk1977da107192007-05-04 08:32:13 +00003722
3723 /* If the overflow page-list cache has been allocated and the
3724 ** entry for the first required overflow page is valid, skip
3725 ** directly to it.
3726 */
danielk19772dec9702007-05-02 16:48:37 +00003727 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3728 iIdx = (offset/ovflSize);
3729 nextPage = pCur->aOverflow[iIdx];
3730 offset = (offset%ovflSize);
3731 }
3732#endif
danielk1977da107192007-05-04 08:32:13 +00003733
3734 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3735
3736#ifndef SQLITE_OMIT_INCRBLOB
3737 /* If required, populate the overflow page-list cache. */
3738 if( pCur->aOverflow ){
3739 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3740 pCur->aOverflow[iIdx] = nextPage;
3741 }
3742#endif
3743
danielk1977d04417962007-05-02 13:16:30 +00003744 if( offset>=ovflSize ){
3745 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003746 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003747 ** data is not required. So first try to lookup the overflow
3748 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003749 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003750 */
danielk19772dec9702007-05-02 16:48:37 +00003751#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003752 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3753 nextPage = pCur->aOverflow[iIdx+1];
3754 } else
danielk19772dec9702007-05-02 16:48:37 +00003755#endif
danielk1977da107192007-05-04 08:32:13 +00003756 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003757 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003758 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003759 /* Need to read this page properly. It contains some of the
3760 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003761 */
3762 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003763 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003764 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003765 if( rc==SQLITE_OK ){
3766 aPayload = sqlite3PagerGetData(pDbPage);
3767 nextPage = get4byte(aPayload);
3768 if( a + offset > ovflSize ){
3769 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003770 }
danielk1977da107192007-05-04 08:32:13 +00003771 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3772 sqlite3PagerUnref(pDbPage);
3773 offset = 0;
3774 amt -= a;
3775 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003776 }
danielk1977cfe9a692004-06-16 12:00:29 +00003777 }
drh2af926b2001-05-15 00:39:25 +00003778 }
drh2af926b2001-05-15 00:39:25 +00003779 }
danielk1977cfe9a692004-06-16 12:00:29 +00003780
danielk1977da107192007-05-04 08:32:13 +00003781 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003782 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003783 }
danielk1977da107192007-05-04 08:32:13 +00003784 return rc;
drh2af926b2001-05-15 00:39:25 +00003785}
3786
drh72f82862001-05-24 21:06:34 +00003787/*
drh3aac2dd2004-04-26 14:10:20 +00003788** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003789** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003790** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003791**
drh3aac2dd2004-04-26 14:10:20 +00003792** Return SQLITE_OK on success or an error code if anything goes
3793** wrong. An error is returned if "offset+amt" is larger than
3794** the available payload.
drh72f82862001-05-24 21:06:34 +00003795*/
drha34b6762004-05-07 13:30:42 +00003796int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003797 int rc;
3798
drh1fee73e2007-08-29 04:00:57 +00003799 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003800 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003801 if( rc==SQLITE_OK ){
3802 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003803 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3804 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003805 return SQLITE_CORRUPT_BKPT;
3806 }
danielk197771d5d2c2008-09-29 11:49:47 +00003807 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003808 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003809 }
danielk1977da184232006-01-05 11:34:32 +00003810 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003811}
3812
3813/*
drh3aac2dd2004-04-26 14:10:20 +00003814** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003815** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003816** begins at "offset".
3817**
3818** Return SQLITE_OK on success or an error code if anything goes
3819** wrong. An error is returned if "offset+amt" is larger than
3820** the available payload.
drh72f82862001-05-24 21:06:34 +00003821*/
drh3aac2dd2004-04-26 14:10:20 +00003822int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003823 int rc;
3824
danielk19773588ceb2008-06-10 17:30:26 +00003825#ifndef SQLITE_OMIT_INCRBLOB
3826 if ( pCur->eState==CURSOR_INVALID ){
3827 return SQLITE_ABORT;
3828 }
3829#endif
3830
drh1fee73e2007-08-29 04:00:57 +00003831 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003832 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003833 if( rc==SQLITE_OK ){
3834 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003835 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3836 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003837 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003838 }
3839 return rc;
drh2af926b2001-05-15 00:39:25 +00003840}
3841
drh72f82862001-05-24 21:06:34 +00003842/*
drh0e1c19e2004-05-11 00:58:56 +00003843** Return a pointer to payload information from the entry that the
3844** pCur cursor is pointing to. The pointer is to the beginning of
3845** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003846** skipKey==1. The number of bytes of available key/data is written
3847** into *pAmt. If *pAmt==0, then the value returned will not be
3848** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003849**
3850** This routine is an optimization. It is common for the entire key
3851** and data to fit on the local page and for there to be no overflow
3852** pages. When that is so, this routine can be used to access the
3853** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003854** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003855** the key/data and copy it into a preallocated buffer.
3856**
3857** The pointer returned by this routine looks directly into the cached
3858** page of the database. The data might change or move the next time
3859** any btree routine is called.
3860*/
3861static const unsigned char *fetchPayload(
3862 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003863 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003864 int skipKey /* read beginning at data if this is true */
3865){
3866 unsigned char *aPayload;
3867 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003868 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003869 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003870
danielk197771d5d2c2008-09-29 11:49:47 +00003871 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003872 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003873 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003874 pPage = pCur->apPage[pCur->iPage];
3875 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003876 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003877 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003878 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003879 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003880 nKey = 0;
3881 }else{
drhf49661a2008-12-10 16:45:50 +00003882 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003883 }
drh0e1c19e2004-05-11 00:58:56 +00003884 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003885 aPayload += nKey;
3886 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003887 }else{
drhfa1a98a2004-05-14 19:08:17 +00003888 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003889 if( nLocal>nKey ){
3890 nLocal = nKey;
3891 }
drh0e1c19e2004-05-11 00:58:56 +00003892 }
drhe51c44f2004-05-30 20:46:09 +00003893 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003894 return aPayload;
3895}
3896
3897
3898/*
drhe51c44f2004-05-30 20:46:09 +00003899** For the entry that cursor pCur is point to, return as
3900** many bytes of the key or data as are available on the local
3901** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003902**
3903** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003904** or be destroyed on the next call to any Btree routine,
3905** including calls from other threads against the same cache.
3906** Hence, a mutex on the BtShared should be held prior to calling
3907** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003908**
3909** These routines is used to get quick access to key and data
3910** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003911*/
drhe51c44f2004-05-30 20:46:09 +00003912const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003913 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003914 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003915 if( pCur->eState==CURSOR_VALID ){
3916 return (const void*)fetchPayload(pCur, pAmt, 0);
3917 }
3918 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003919}
drhe51c44f2004-05-30 20:46:09 +00003920const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003921 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003922 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003923 if( pCur->eState==CURSOR_VALID ){
3924 return (const void*)fetchPayload(pCur, pAmt, 1);
3925 }
3926 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003927}
3928
3929
3930/*
drh8178a752003-01-05 21:41:40 +00003931** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003932** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003933*/
drh3aac2dd2004-04-26 14:10:20 +00003934static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003935 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003936 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003937 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003938 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003939
drh1fee73e2007-08-29 04:00:57 +00003940 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003941 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003942 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3943 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3944 return SQLITE_CORRUPT_BKPT;
3945 }
3946 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003947 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003948 pCur->apPage[i+1] = pNewPage;
3949 pCur->aiIdx[i+1] = 0;
3950 pCur->iPage++;
3951
drh271efa52004-05-30 19:19:05 +00003952 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003953 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003954 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003955 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003956 }
drh72f82862001-05-24 21:06:34 +00003957 return SQLITE_OK;
3958}
3959
danielk1977bf93c562008-09-29 15:53:25 +00003960#ifndef NDEBUG
3961/*
3962** Page pParent is an internal (non-leaf) tree page. This function
3963** asserts that page number iChild is the left-child if the iIdx'th
3964** cell in page pParent. Or, if iIdx is equal to the total number of
3965** cells in pParent, that page number iChild is the right-child of
3966** the page.
3967*/
3968static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3969 assert( iIdx<=pParent->nCell );
3970 if( iIdx==pParent->nCell ){
3971 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3972 }else{
3973 assert( get4byte(findCell(pParent, iIdx))==iChild );
3974 }
3975}
3976#else
3977# define assertParentIndex(x,y,z)
3978#endif
3979
drh72f82862001-05-24 21:06:34 +00003980/*
drh5e2f8b92001-05-28 00:41:15 +00003981** Move the cursor up to the parent page.
3982**
3983** pCur->idx is set to the cell index that contains the pointer
3984** to the page we are coming from. If we are coming from the
3985** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003986** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003987*/
drh16a9b832007-05-05 18:39:25 +00003988void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003989 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003990 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003991 assert( pCur->iPage>0 );
3992 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003993 assertParentIndex(
3994 pCur->apPage[pCur->iPage-1],
3995 pCur->aiIdx[pCur->iPage-1],
3996 pCur->apPage[pCur->iPage]->pgno
3997 );
danielk197771d5d2c2008-09-29 11:49:47 +00003998 releasePage(pCur->apPage[pCur->iPage]);
3999 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004000 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004001 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004002}
4003
4004/*
4005** Move the cursor to the root page
4006*/
drh5e2f8b92001-05-28 00:41:15 +00004007static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004008 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004009 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004010 Btree *p = pCur->pBtree;
4011 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004012
drh1fee73e2007-08-29 04:00:57 +00004013 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004014 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4015 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4016 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4017 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4018 if( pCur->eState==CURSOR_FAULT ){
4019 return pCur->skip;
4020 }
danielk1977be51a652008-10-08 17:58:48 +00004021 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004022 }
danielk197771d5d2c2008-09-29 11:49:47 +00004023
4024 if( pCur->iPage>=0 ){
4025 int i;
4026 for(i=1; i<=pCur->iPage; i++){
4027 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004028 }
danielk1977172114a2009-07-07 15:47:12 +00004029 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004030 }else{
4031 if(
danielk197771d5d2c2008-09-29 11:49:47 +00004032 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00004033 ){
4034 pCur->eState = CURSOR_INVALID;
4035 return rc;
4036 }
danielk1977172114a2009-07-07 15:47:12 +00004037 pCur->iPage = 0;
4038
4039 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4040 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4041 ** NULL, the caller expects a table b-tree. If this is not the case,
4042 ** return an SQLITE_CORRUPT error. */
4043 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4044 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4045 return SQLITE_CORRUPT_BKPT;
4046 }
drhc39e0002004-05-07 23:50:57 +00004047 }
danielk197771d5d2c2008-09-29 11:49:47 +00004048
4049 pRoot = pCur->apPage[0];
4050 assert( pRoot->pgno==pCur->pgnoRoot );
danielk197771d5d2c2008-09-29 11:49:47 +00004051 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004052 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004053 pCur->atLast = 0;
4054 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004055
drh8856d6a2004-04-29 14:42:46 +00004056 if( pRoot->nCell==0 && !pRoot->leaf ){
4057 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004058 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00004059 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00004060 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00004061 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00004062 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004063 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004064 }else{
4065 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004066 }
4067 return rc;
drh72f82862001-05-24 21:06:34 +00004068}
drh2af926b2001-05-15 00:39:25 +00004069
drh5e2f8b92001-05-28 00:41:15 +00004070/*
4071** Move the cursor down to the left-most leaf entry beneath the
4072** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004073**
4074** The left-most leaf is the one with the smallest key - the first
4075** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004076*/
4077static int moveToLeftmost(BtCursor *pCur){
4078 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004079 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004080 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004081
drh1fee73e2007-08-29 04:00:57 +00004082 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004083 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004084 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4085 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4086 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004087 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004088 }
drhd677b3d2007-08-20 22:48:41 +00004089 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004090}
4091
drh2dcc9aa2002-12-04 13:40:25 +00004092/*
4093** Move the cursor down to the right-most leaf entry beneath the
4094** page to which it is currently pointing. Notice the difference
4095** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4096** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4097** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004098**
4099** The right-most entry is the one with the largest key - the last
4100** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004101*/
4102static int moveToRightmost(BtCursor *pCur){
4103 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004104 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004105 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004106
drh1fee73e2007-08-29 04:00:57 +00004107 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004108 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004109 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004110 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004111 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004112 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004113 }
drhd677b3d2007-08-20 22:48:41 +00004114 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004115 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004116 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004117 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004118 }
danielk1977518002e2008-09-05 05:02:46 +00004119 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004120}
4121
drh5e00f6c2001-09-13 13:46:56 +00004122/* Move the cursor to the first entry in the table. Return SQLITE_OK
4123** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004124** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004125*/
drh3aac2dd2004-04-26 14:10:20 +00004126int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004127 int rc;
drhd677b3d2007-08-20 22:48:41 +00004128
drh1fee73e2007-08-29 04:00:57 +00004129 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004130 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004131 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004132 if( rc==SQLITE_OK ){
4133 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004134 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004135 *pRes = 1;
4136 rc = SQLITE_OK;
4137 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004138 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004139 *pRes = 0;
4140 rc = moveToLeftmost(pCur);
4141 }
drh5e00f6c2001-09-13 13:46:56 +00004142 }
drh5e00f6c2001-09-13 13:46:56 +00004143 return rc;
4144}
drh5e2f8b92001-05-28 00:41:15 +00004145
drh9562b552002-02-19 15:00:07 +00004146/* Move the cursor to the last entry in the table. Return SQLITE_OK
4147** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004148** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004149*/
drh3aac2dd2004-04-26 14:10:20 +00004150int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004151 int rc;
drhd677b3d2007-08-20 22:48:41 +00004152
drh1fee73e2007-08-29 04:00:57 +00004153 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004154 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004155
4156 /* If the cursor already points to the last entry, this is a no-op. */
4157 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4158#ifdef SQLITE_DEBUG
4159 /* This block serves to assert() that the cursor really does point
4160 ** to the last entry in the b-tree. */
4161 int ii;
4162 for(ii=0; ii<pCur->iPage; ii++){
4163 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4164 }
4165 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4166 assert( pCur->apPage[pCur->iPage]->leaf );
4167#endif
4168 return SQLITE_OK;
4169 }
4170
drh9562b552002-02-19 15:00:07 +00004171 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004172 if( rc==SQLITE_OK ){
4173 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004174 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004175 *pRes = 1;
4176 }else{
4177 assert( pCur->eState==CURSOR_VALID );
4178 *pRes = 0;
4179 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004180 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004181 }
drh9562b552002-02-19 15:00:07 +00004182 }
drh9562b552002-02-19 15:00:07 +00004183 return rc;
4184}
4185
drhe14006d2008-03-25 17:23:32 +00004186/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004187** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004188**
drhe63d9992008-08-13 19:11:48 +00004189** For INTKEY tables, the intKey parameter is used. pIdxKey
4190** must be NULL. For index tables, pIdxKey is used and intKey
4191** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004192**
drh5e2f8b92001-05-28 00:41:15 +00004193** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004194** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004195** were present. The cursor might point to an entry that comes
4196** before or after the key.
4197**
drh64022502009-01-09 14:11:04 +00004198** An integer is written into *pRes which is the result of
4199** comparing the key with the entry to which the cursor is
4200** pointing. The meaning of the integer written into
4201** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004202**
4203** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004204** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004205** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004206**
4207** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004208** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004209**
4210** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004211** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004212**
drha059ad02001-04-17 20:09:11 +00004213*/
drhe63d9992008-08-13 19:11:48 +00004214int sqlite3BtreeMovetoUnpacked(
4215 BtCursor *pCur, /* The cursor to be moved */
4216 UnpackedRecord *pIdxKey, /* Unpacked index key */
4217 i64 intKey, /* The table key */
4218 int biasRight, /* If true, bias the search to the high end */
4219 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004220){
drh72f82862001-05-24 21:06:34 +00004221 int rc;
drhd677b3d2007-08-20 22:48:41 +00004222
drh1fee73e2007-08-29 04:00:57 +00004223 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004224 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00004225
4226 /* If the cursor is already positioned at the point we are trying
4227 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004228 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4229 && pCur->apPage[0]->intKey
4230 ){
drhe63d9992008-08-13 19:11:48 +00004231 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004232 *pRes = 0;
4233 return SQLITE_OK;
4234 }
drhe63d9992008-08-13 19:11:48 +00004235 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004236 *pRes = -1;
4237 return SQLITE_OK;
4238 }
4239 }
4240
drh5e2f8b92001-05-28 00:41:15 +00004241 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004242 if( rc ){
4243 return rc;
4244 }
danielk197771d5d2c2008-09-29 11:49:47 +00004245 assert( pCur->apPage[pCur->iPage] );
4246 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004247 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004248 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004249 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004250 return SQLITE_OK;
4251 }
danielk197771d5d2c2008-09-29 11:49:47 +00004252 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004253 for(;;){
drh72f82862001-05-24 21:06:34 +00004254 int lwr, upr;
4255 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004256 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004257 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004258 lwr = 0;
4259 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004260 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004261 rc = SQLITE_CORRUPT_BKPT;
4262 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004263 }
drhe4d90812007-03-29 05:51:49 +00004264 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004265 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004266 }else{
drhf49661a2008-12-10 16:45:50 +00004267 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004268 }
drh64022502009-01-09 14:11:04 +00004269 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004270 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4271 u8 *pCell; /* Pointer to current cell in pPage */
4272
drh366fda62006-01-13 02:35:09 +00004273 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004274 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004275 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004276 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004277 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004278 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004279 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004280 }
drha2c20e42008-03-29 16:01:04 +00004281 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004282 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004283 c = 0;
drhe63d9992008-08-13 19:11:48 +00004284 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004285 c = -1;
4286 }else{
drhe63d9992008-08-13 19:11:48 +00004287 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004288 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004289 }
danielk197711c327a2009-05-04 19:01:26 +00004290 pCur->validNKey = 1;
4291 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004292 }else{
danielk197711c327a2009-05-04 19:01:26 +00004293 /* The maximum supported page-size is 32768 bytes. This means that
4294 ** the maximum number of record bytes stored on an index B-Tree
4295 ** page is at most 8198 bytes, which may be stored as a 2-byte
4296 ** varint. This information is used to attempt to avoid parsing
4297 ** the entire cell by checking for the cases where the record is
4298 ** stored entirely within the b-tree page by inspecting the first
4299 ** 2 bytes of the cell.
4300 */
4301 int nCell = pCell[0];
4302 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4303 /* This branch runs if the record-size field of the cell is a
4304 ** single byte varint and the record fits entirely on the main
4305 ** b-tree page. */
4306 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4307 }else if( !(pCell[1] & 0x80)
4308 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4309 ){
4310 /* The record-size field is a 2 byte varint and the record
4311 ** fits entirely on the main b-tree page. */
4312 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004313 }else{
danielk197711c327a2009-05-04 19:01:26 +00004314 /* The record flows over onto one or more overflow pages. In
4315 ** this case the whole cell needs to be parsed, a buffer allocated
4316 ** and accessPayload() used to retrieve the record into the
4317 ** buffer before VdbeRecordCompare() can be called. */
4318 void *pCellKey;
4319 u8 * const pCellBody = pCell - pPage->childPtrSize;
4320 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004321 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004322 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004323 if( pCellKey==0 ){
4324 rc = SQLITE_NOMEM;
4325 goto moveto_finish;
4326 }
danielk197711c327a2009-05-04 19:01:26 +00004327 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4328 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004329 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004330 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004331 }
drh3aac2dd2004-04-26 14:10:20 +00004332 }
drh72f82862001-05-24 21:06:34 +00004333 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004334 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004335 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004336 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004337 break;
4338 }else{
drh64022502009-01-09 14:11:04 +00004339 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004340 rc = SQLITE_OK;
4341 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004342 }
drh72f82862001-05-24 21:06:34 +00004343 }
4344 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004345 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004346 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004347 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004348 }
drhf1d68b32007-03-29 04:43:26 +00004349 if( lwr>upr ){
4350 break;
4351 }
drhf49661a2008-12-10 16:45:50 +00004352 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004353 }
4354 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004355 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004356 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004357 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004358 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004359 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004360 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004361 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004362 }
4363 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004364 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004365 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004366 rc = SQLITE_OK;
4367 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004368 }
drhf49661a2008-12-10 16:45:50 +00004369 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004370 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004371 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004372 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004373 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004374 }
drh1e968a02008-03-25 00:22:21 +00004375moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004376 return rc;
4377}
4378
drhd677b3d2007-08-20 22:48:41 +00004379
drh72f82862001-05-24 21:06:34 +00004380/*
drhc39e0002004-05-07 23:50:57 +00004381** Return TRUE if the cursor is not pointing at an entry of the table.
4382**
4383** TRUE will be returned after a call to sqlite3BtreeNext() moves
4384** past the last entry in the table or sqlite3BtreePrev() moves past
4385** the first entry. TRUE is also returned if the table is empty.
4386*/
4387int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004388 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4389 ** have been deleted? This API will need to change to return an error code
4390 ** as well as the boolean result value.
4391 */
4392 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004393}
4394
4395/*
drhbd03cae2001-06-02 02:40:57 +00004396** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004397** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004398** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004399** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004400*/
drhd094db12008-04-03 21:46:57 +00004401int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004402 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004403 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004404 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004405
drh1fee73e2007-08-29 04:00:57 +00004406 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004407 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004408 if( rc!=SQLITE_OK ){
4409 return rc;
4410 }
drh8c4d3a62007-04-06 01:03:32 +00004411 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004412 if( CURSOR_INVALID==pCur->eState ){
4413 *pRes = 1;
4414 return SQLITE_OK;
4415 }
danielk1977da184232006-01-05 11:34:32 +00004416 if( pCur->skip>0 ){
4417 pCur->skip = 0;
4418 *pRes = 0;
4419 return SQLITE_OK;
4420 }
4421 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004422
danielk197771d5d2c2008-09-29 11:49:47 +00004423 pPage = pCur->apPage[pCur->iPage];
4424 idx = ++pCur->aiIdx[pCur->iPage];
4425 assert( pPage->isInit );
4426 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004427
drh271efa52004-05-30 19:19:05 +00004428 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004429 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004430 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004431 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004432 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004433 if( rc ) return rc;
4434 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004435 *pRes = 0;
4436 return rc;
drh72f82862001-05-24 21:06:34 +00004437 }
drh5e2f8b92001-05-28 00:41:15 +00004438 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004439 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004440 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004441 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004442 return SQLITE_OK;
4443 }
drh16a9b832007-05-05 18:39:25 +00004444 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004445 pPage = pCur->apPage[pCur->iPage];
4446 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004447 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004448 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004449 rc = sqlite3BtreeNext(pCur, pRes);
4450 }else{
4451 rc = SQLITE_OK;
4452 }
4453 return rc;
drh8178a752003-01-05 21:41:40 +00004454 }
4455 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004456 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004457 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004458 }
drh5e2f8b92001-05-28 00:41:15 +00004459 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004460 return rc;
drh72f82862001-05-24 21:06:34 +00004461}
drhd677b3d2007-08-20 22:48:41 +00004462
drh72f82862001-05-24 21:06:34 +00004463
drh3b7511c2001-05-26 13:15:44 +00004464/*
drh2dcc9aa2002-12-04 13:40:25 +00004465** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004466** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004467** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004468** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004469*/
drhd094db12008-04-03 21:46:57 +00004470int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004471 int rc;
drh8178a752003-01-05 21:41:40 +00004472 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004473
drh1fee73e2007-08-29 04:00:57 +00004474 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004475 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004476 if( rc!=SQLITE_OK ){
4477 return rc;
4478 }
drha2c20e42008-03-29 16:01:04 +00004479 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004480 if( CURSOR_INVALID==pCur->eState ){
4481 *pRes = 1;
4482 return SQLITE_OK;
4483 }
danielk1977da184232006-01-05 11:34:32 +00004484 if( pCur->skip<0 ){
4485 pCur->skip = 0;
4486 *pRes = 0;
4487 return SQLITE_OK;
4488 }
4489 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004490
danielk197771d5d2c2008-09-29 11:49:47 +00004491 pPage = pCur->apPage[pCur->iPage];
4492 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004493 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004494 int idx = pCur->aiIdx[pCur->iPage];
4495 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004496 if( rc ){
4497 return rc;
4498 }
drh2dcc9aa2002-12-04 13:40:25 +00004499 rc = moveToRightmost(pCur);
4500 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004501 while( pCur->aiIdx[pCur->iPage]==0 ){
4502 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004503 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004504 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004505 return SQLITE_OK;
4506 }
drh16a9b832007-05-05 18:39:25 +00004507 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004508 }
drh271efa52004-05-30 19:19:05 +00004509 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004510 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004511
4512 pCur->aiIdx[pCur->iPage]--;
4513 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004514 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004515 rc = sqlite3BtreePrevious(pCur, pRes);
4516 }else{
4517 rc = SQLITE_OK;
4518 }
drh2dcc9aa2002-12-04 13:40:25 +00004519 }
drh8178a752003-01-05 21:41:40 +00004520 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004521 return rc;
4522}
4523
4524/*
drh3b7511c2001-05-26 13:15:44 +00004525** Allocate a new page from the database file.
4526**
danielk19773b8a05f2007-03-19 17:44:26 +00004527** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004528** has already been called on the new page.) The new page has also
4529** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004530** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004531**
4532** SQLITE_OK is returned on success. Any other return value indicates
4533** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004534** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004535**
drh199e3cf2002-07-18 11:01:47 +00004536** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4537** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004538** attempt to keep related pages close to each other in the database file,
4539** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004540**
4541** If the "exact" parameter is not 0, and the page-number nearby exists
4542** anywhere on the free-list, then it is guarenteed to be returned. This
4543** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004544*/
drh4f0c5872007-03-26 22:05:01 +00004545static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004546 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004547 MemPage **ppPage,
4548 Pgno *pPgno,
4549 Pgno nearby,
4550 u8 exact
4551){
drh3aac2dd2004-04-26 14:10:20 +00004552 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004553 int rc;
drh35cd6432009-06-05 14:17:21 +00004554 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004555 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004556 MemPage *pTrunk = 0;
4557 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004558 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004559
drh1fee73e2007-08-29 04:00:57 +00004560 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004561 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004562 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004563 n = get4byte(&pPage1->aData[36]);
drh1662b5a2009-06-04 19:06:09 +00004564 if( n>mxPage ){
4565 return SQLITE_CORRUPT_BKPT;
4566 }
drh3aac2dd2004-04-26 14:10:20 +00004567 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004568 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004569 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004570 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4571
4572 /* If the 'exact' parameter was true and a query of the pointer-map
4573 ** shows that the page 'nearby' is somewhere on the free-list, then
4574 ** the entire-list will be searched for that page.
4575 */
4576#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004577 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004578 u8 eType;
4579 assert( nearby>0 );
4580 assert( pBt->autoVacuum );
4581 rc = ptrmapGet(pBt, nearby, &eType, 0);
4582 if( rc ) return rc;
4583 if( eType==PTRMAP_FREEPAGE ){
4584 searchList = 1;
4585 }
4586 *pPgno = nearby;
4587 }
4588#endif
4589
4590 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4591 ** first free-list trunk page. iPrevTrunk is initially 1.
4592 */
danielk19773b8a05f2007-03-19 17:44:26 +00004593 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004594 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004595 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004596
4597 /* The code within this loop is run only once if the 'searchList' variable
4598 ** is not true. Otherwise, it runs once for each trunk-page on the
4599 ** free-list until the page 'nearby' is located.
4600 */
4601 do {
4602 pPrevTrunk = pTrunk;
4603 if( pPrevTrunk ){
4604 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004605 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004606 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004607 }
drh1662b5a2009-06-04 19:06:09 +00004608 if( iTrunk>mxPage ){
4609 rc = SQLITE_CORRUPT_BKPT;
4610 }else{
4611 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4612 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004613 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004614 pTrunk = 0;
4615 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004616 }
4617
4618 k = get4byte(&pTrunk->aData[4]);
4619 if( k==0 && !searchList ){
4620 /* The trunk has no leaves and the list is not being searched.
4621 ** So extract the trunk page itself and use it as the newly
4622 ** allocated page */
4623 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004624 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004625 if( rc ){
4626 goto end_allocate_page;
4627 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004628 *pPgno = iTrunk;
4629 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4630 *ppPage = pTrunk;
4631 pTrunk = 0;
4632 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004633 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004634 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004635 rc = SQLITE_CORRUPT_BKPT;
4636 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004637#ifndef SQLITE_OMIT_AUTOVACUUM
4638 }else if( searchList && nearby==iTrunk ){
4639 /* The list is being searched and this trunk page is the page
4640 ** to allocate, regardless of whether it has leaves.
4641 */
4642 assert( *pPgno==iTrunk );
4643 *ppPage = pTrunk;
4644 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004645 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004646 if( rc ){
4647 goto end_allocate_page;
4648 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004649 if( k==0 ){
4650 if( !pPrevTrunk ){
4651 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4652 }else{
4653 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4654 }
4655 }else{
4656 /* The trunk page is required by the caller but it contains
4657 ** pointers to free-list leaves. The first leaf becomes a trunk
4658 ** page in this case.
4659 */
4660 MemPage *pNewTrunk;
4661 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004662 if( iNewTrunk>mxPage ){
4663 rc = SQLITE_CORRUPT_BKPT;
4664 goto end_allocate_page;
4665 }
drh16a9b832007-05-05 18:39:25 +00004666 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004667 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004668 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004669 }
danielk19773b8a05f2007-03-19 17:44:26 +00004670 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004671 if( rc!=SQLITE_OK ){
4672 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004673 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004674 }
4675 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4676 put4byte(&pNewTrunk->aData[4], k-1);
4677 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004678 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004679 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004680 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004681 put4byte(&pPage1->aData[32], iNewTrunk);
4682 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004683 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004684 if( rc ){
4685 goto end_allocate_page;
4686 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004687 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4688 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004689 }
4690 pTrunk = 0;
4691 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4692#endif
danielk1977e5765212009-06-17 11:13:28 +00004693 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004694 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004695 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004696 Pgno iPage;
4697 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004698 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004699 if( rc ){
4700 goto end_allocate_page;
4701 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004702 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004703 u32 i;
4704 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004705 closest = 0;
4706 dist = get4byte(&aData[8]) - nearby;
4707 if( dist<0 ) dist = -dist;
4708 for(i=1; i<k; i++){
4709 int d2 = get4byte(&aData[8+i*4]) - nearby;
4710 if( d2<0 ) d2 = -d2;
4711 if( d2<dist ){
4712 closest = i;
4713 dist = d2;
4714 }
4715 }
4716 }else{
4717 closest = 0;
4718 }
4719
4720 iPage = get4byte(&aData[8+closest*4]);
drh1662b5a2009-06-04 19:06:09 +00004721 if( iPage>mxPage ){
4722 rc = SQLITE_CORRUPT_BKPT;
4723 goto end_allocate_page;
4724 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004725 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004726 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004727 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004728 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004729 nPage = pagerPagecount(pBt);
danielk19774dbaa892009-06-16 16:50:22 +00004730 if( iPage>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004731 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004732 rc = SQLITE_CORRUPT_BKPT;
4733 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004734 }
4735 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4736 ": %d more free pages\n",
4737 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4738 if( closest<k-1 ){
4739 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4740 }
4741 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004742 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004743 noContent = !btreeGetHasContent(pBt, *pPgno);
4744 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004745 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004746 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004747 if( rc!=SQLITE_OK ){
4748 releasePage(*ppPage);
4749 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004750 }
4751 searchList = 0;
4752 }
drhee696e22004-08-30 16:52:17 +00004753 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004754 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004755 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004756 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004757 }else{
drh3aac2dd2004-04-26 14:10:20 +00004758 /* There are no pages on the freelist, so create a new page at the
4759 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004760 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004761 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004762
danielk1977bea2a942009-01-20 17:06:27 +00004763 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4764 (*pPgno)++;
4765 }
4766
danielk1977afcdd022004-10-31 16:25:42 +00004767#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004768 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004769 /* If *pPgno refers to a pointer-map page, allocate two new pages
4770 ** at the end of the file instead of one. The first allocated page
4771 ** becomes a new pointer-map page, the second is used by the caller.
4772 */
danielk1977ac861692009-03-28 10:54:22 +00004773 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004774 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004775 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004776 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4777 if( rc==SQLITE_OK ){
4778 rc = sqlite3PagerWrite(pPg->pDbPage);
4779 releasePage(pPg);
4780 }
4781 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004782 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004783 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004784 }
4785#endif
4786
danielk1977599fcba2004-11-08 07:13:13 +00004787 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004788 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004789 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004790 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004791 if( rc!=SQLITE_OK ){
4792 releasePage(*ppPage);
4793 }
drh3a4c1412004-05-09 20:40:11 +00004794 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004795 }
danielk1977599fcba2004-11-08 07:13:13 +00004796
4797 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004798
4799end_allocate_page:
4800 releasePage(pTrunk);
4801 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004802 if( rc==SQLITE_OK ){
4803 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4804 releasePage(*ppPage);
4805 return SQLITE_CORRUPT_BKPT;
4806 }
4807 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004808 }else{
4809 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004810 }
drh3b7511c2001-05-26 13:15:44 +00004811 return rc;
4812}
4813
4814/*
danielk1977bea2a942009-01-20 17:06:27 +00004815** This function is used to add page iPage to the database file free-list.
4816** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004817**
danielk1977bea2a942009-01-20 17:06:27 +00004818** The value passed as the second argument to this function is optional.
4819** If the caller happens to have a pointer to the MemPage object
4820** corresponding to page iPage handy, it may pass it as the second value.
4821** Otherwise, it may pass NULL.
4822**
4823** If a pointer to a MemPage object is passed as the second argument,
4824** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004825*/
danielk1977bea2a942009-01-20 17:06:27 +00004826static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4827 MemPage *pTrunk = 0; /* Free-list trunk page */
4828 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4829 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4830 MemPage *pPage; /* Page being freed. May be NULL. */
4831 int rc; /* Return Code */
4832 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004833
danielk1977bea2a942009-01-20 17:06:27 +00004834 assert( sqlite3_mutex_held(pBt->mutex) );
4835 assert( iPage>1 );
4836 assert( !pMemPage || pMemPage->pgno==iPage );
4837
4838 if( pMemPage ){
4839 pPage = pMemPage;
4840 sqlite3PagerRef(pPage->pDbPage);
4841 }else{
4842 pPage = btreePageLookup(pBt, iPage);
4843 }
drh3aac2dd2004-04-26 14:10:20 +00004844
drha34b6762004-05-07 13:30:42 +00004845 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004846 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004847 if( rc ) goto freepage_out;
4848 nFree = get4byte(&pPage1->aData[36]);
4849 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004850
drhfcce93f2006-02-22 03:08:32 +00004851#ifdef SQLITE_SECURE_DELETE
4852 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4853 ** always fully overwrite deleted information with zeros.
4854 */
danielk1977bea2a942009-01-20 17:06:27 +00004855 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4856 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4857 ){
4858 goto freepage_out;
4859 }
drhfcce93f2006-02-22 03:08:32 +00004860 memset(pPage->aData, 0, pPage->pBt->pageSize);
4861#endif
4862
danielk1977687566d2004-11-02 12:56:41 +00004863 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004864 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004865 */
danielk197785d90ca2008-07-19 14:25:15 +00004866 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004867 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4868 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004869 }
danielk1977687566d2004-11-02 12:56:41 +00004870
danielk1977bea2a942009-01-20 17:06:27 +00004871 /* Now manipulate the actual database free-list structure. There are two
4872 ** possibilities. If the free-list is currently empty, or if the first
4873 ** trunk page in the free-list is full, then this page will become a
4874 ** new free-list trunk page. Otherwise, it will become a leaf of the
4875 ** first trunk page in the current free-list. This block tests if it
4876 ** is possible to add the page as a new free-list leaf.
4877 */
4878 if( nFree!=0 ){
4879 int nLeaf; /* Initial number of leaf cells on trunk page */
4880
4881 iTrunk = get4byte(&pPage1->aData[32]);
4882 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4883 if( rc!=SQLITE_OK ){
4884 goto freepage_out;
4885 }
4886
4887 nLeaf = get4byte(&pTrunk->aData[4]);
4888 if( nLeaf<0 ){
4889 rc = SQLITE_CORRUPT_BKPT;
4890 goto freepage_out;
4891 }
4892 if( nLeaf<pBt->usableSize/4 - 8 ){
4893 /* In this case there is room on the trunk page to insert the page
4894 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004895 **
4896 ** Note that the trunk page is not really full until it contains
4897 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4898 ** coded. But due to a coding error in versions of SQLite prior to
4899 ** 3.6.0, databases with freelist trunk pages holding more than
4900 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4901 ** to maintain backwards compatibility with older versions of SQLite,
4902 ** we will contain to restrict the number of entries to usableSize/4 - 8
4903 ** for now. At some point in the future (once everyone has upgraded
4904 ** to 3.6.0 or later) we should consider fixing the conditional above
4905 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4906 */
danielk19773b8a05f2007-03-19 17:44:26 +00004907 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004908 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004909 put4byte(&pTrunk->aData[4], nLeaf+1);
4910 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004911#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004912 if( pPage ){
4913 sqlite3PagerDontWrite(pPage->pDbPage);
4914 }
drhfcce93f2006-02-22 03:08:32 +00004915#endif
danielk1977bea2a942009-01-20 17:06:27 +00004916 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004917 }
drh3a4c1412004-05-09 20:40:11 +00004918 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004919 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004920 }
drh3b7511c2001-05-26 13:15:44 +00004921 }
danielk1977bea2a942009-01-20 17:06:27 +00004922
4923 /* If control flows to this point, then it was not possible to add the
4924 ** the page being freed as a leaf page of the first trunk in the free-list.
4925 ** Possibly because the free-list is empty, or possibly because the
4926 ** first trunk in the free-list is full. Either way, the page being freed
4927 ** will become the new first trunk page in the free-list.
4928 */
shane63207ab2009-02-04 01:49:30 +00004929 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4930 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004931 ){
4932 goto freepage_out;
4933 }
4934 put4byte(pPage->aData, iTrunk);
4935 put4byte(&pPage->aData[4], 0);
4936 put4byte(&pPage1->aData[32], iPage);
4937 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4938
4939freepage_out:
4940 if( pPage ){
4941 pPage->isInit = 0;
4942 }
4943 releasePage(pPage);
4944 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004945 return rc;
4946}
danielk1977bea2a942009-01-20 17:06:27 +00004947static int freePage(MemPage *pPage){
4948 return freePage2(pPage->pBt, pPage, pPage->pgno);
4949}
drh3b7511c2001-05-26 13:15:44 +00004950
4951/*
drh3aac2dd2004-04-26 14:10:20 +00004952** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004953*/
drh3aac2dd2004-04-26 14:10:20 +00004954static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004955 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004956 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004957 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004958 int rc;
drh94440812007-03-06 11:42:19 +00004959 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004960 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004961
drh1fee73e2007-08-29 04:00:57 +00004962 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004963 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004964 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004965 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004966 }
drh6f11bef2004-05-13 01:12:56 +00004967 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004968 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004969 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004970 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4971 assert( ovflPgno==0 || nOvfl>0 );
4972 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004973 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004974 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004975 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4976 /* 0 is not a legal page number and page 1 cannot be an
4977 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4978 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004979 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004980 }
danielk1977bea2a942009-01-20 17:06:27 +00004981 if( nOvfl ){
4982 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4983 if( rc ) return rc;
4984 }
4985 rc = freePage2(pBt, pOvfl, ovflPgno);
4986 if( pOvfl ){
4987 sqlite3PagerUnref(pOvfl->pDbPage);
4988 }
drh3b7511c2001-05-26 13:15:44 +00004989 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004990 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004991 }
drh5e2f8b92001-05-28 00:41:15 +00004992 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004993}
4994
4995/*
drh91025292004-05-03 19:49:32 +00004996** Create the byte sequence used to represent a cell on page pPage
4997** and write that byte sequence into pCell[]. Overflow pages are
4998** allocated and filled in as necessary. The calling procedure
4999** is responsible for making sure sufficient space has been allocated
5000** for pCell[].
5001**
5002** Note that pCell does not necessary need to point to the pPage->aData
5003** area. pCell might point to some temporary storage. The cell will
5004** be constructed in this temporary area then copied into pPage->aData
5005** later.
drh3b7511c2001-05-26 13:15:44 +00005006*/
5007static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005008 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005009 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005010 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005011 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005012 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005013 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005014){
drh3b7511c2001-05-26 13:15:44 +00005015 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005016 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005017 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005018 int spaceLeft;
5019 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005020 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005021 unsigned char *pPrior;
5022 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005023 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005024 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005025 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005026 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005027
drh1fee73e2007-08-29 04:00:57 +00005028 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005029
drhc5053fb2008-11-27 02:22:10 +00005030 /* pPage is not necessarily writeable since pCell might be auxiliary
5031 ** buffer space that is separate from the pPage buffer area */
5032 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5033 || sqlite3PagerIswriteable(pPage->pDbPage) );
5034
drh91025292004-05-03 19:49:32 +00005035 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005036 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005037 if( !pPage->leaf ){
5038 nHeader += 4;
5039 }
drh8b18dd42004-05-12 19:18:15 +00005040 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005041 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005042 }else{
drhb026e052007-05-02 01:34:31 +00005043 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005044 }
drh6f11bef2004-05-13 01:12:56 +00005045 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00005046 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005047 assert( info.nHeader==nHeader );
5048 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005049 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005050
5051 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005052 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005053 if( pPage->intKey ){
5054 pSrc = pData;
5055 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005056 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005057 }else{
drh20abac22009-01-28 20:21:17 +00005058 if( nKey>0x7fffffff || pKey==0 ){
5059 return SQLITE_CORRUPT;
5060 }
drhf49661a2008-12-10 16:45:50 +00005061 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005062 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005063 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005064 }
drh6f11bef2004-05-13 01:12:56 +00005065 *pnSize = info.nSize;
5066 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005067 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005068 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005069
drh3b7511c2001-05-26 13:15:44 +00005070 while( nPayload>0 ){
5071 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005072#ifndef SQLITE_OMIT_AUTOVACUUM
5073 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005074 if( pBt->autoVacuum ){
5075 do{
5076 pgnoOvfl++;
5077 } while(
5078 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5079 );
danielk1977b39f70b2007-05-17 18:28:11 +00005080 }
danielk1977afcdd022004-10-31 16:25:42 +00005081#endif
drhf49661a2008-12-10 16:45:50 +00005082 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005083#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005084 /* If the database supports auto-vacuum, and the second or subsequent
5085 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005086 ** for that page now.
5087 **
5088 ** If this is the first overflow page, then write a partial entry
5089 ** to the pointer-map. If we write nothing to this pointer-map slot,
5090 ** then the optimistic overflow chain processing in clearCell()
5091 ** may misinterpret the uninitialised values and delete the
5092 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005093 */
danielk19774ef24492007-05-23 09:52:41 +00005094 if( pBt->autoVacuum && rc==SQLITE_OK ){
5095 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5096 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005097 if( rc ){
5098 releasePage(pOvfl);
5099 }
danielk1977afcdd022004-10-31 16:25:42 +00005100 }
5101#endif
drh3b7511c2001-05-26 13:15:44 +00005102 if( rc ){
drh9b171272004-05-08 02:03:22 +00005103 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005104 return rc;
5105 }
drhc5053fb2008-11-27 02:22:10 +00005106
5107 /* If pToRelease is not zero than pPrior points into the data area
5108 ** of pToRelease. Make sure pToRelease is still writeable. */
5109 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5110
5111 /* If pPrior is part of the data area of pPage, then make sure pPage
5112 ** is still writeable */
5113 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5114 || sqlite3PagerIswriteable(pPage->pDbPage) );
5115
drh3aac2dd2004-04-26 14:10:20 +00005116 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005117 releasePage(pToRelease);
5118 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005119 pPrior = pOvfl->aData;
5120 put4byte(pPrior, 0);
5121 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005122 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005123 }
5124 n = nPayload;
5125 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005126
5127 /* If pToRelease is not zero than pPayload points into the data area
5128 ** of pToRelease. Make sure pToRelease is still writeable. */
5129 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5130
5131 /* If pPayload is part of the data area of pPage, then make sure pPage
5132 ** is still writeable */
5133 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5134 || sqlite3PagerIswriteable(pPage->pDbPage) );
5135
drhb026e052007-05-02 01:34:31 +00005136 if( nSrc>0 ){
5137 if( n>nSrc ) n = nSrc;
5138 assert( pSrc );
5139 memcpy(pPayload, pSrc, n);
5140 }else{
5141 memset(pPayload, 0, n);
5142 }
drh3b7511c2001-05-26 13:15:44 +00005143 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005144 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005145 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005146 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005147 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005148 if( nSrc==0 ){
5149 nSrc = nData;
5150 pSrc = pData;
5151 }
drhdd793422001-06-28 01:54:48 +00005152 }
drh9b171272004-05-08 02:03:22 +00005153 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005154 return SQLITE_OK;
5155}
5156
drh14acc042001-06-10 19:56:58 +00005157/*
5158** Remove the i-th cell from pPage. This routine effects pPage only.
5159** The cell content is not freed or deallocated. It is assumed that
5160** the cell content has been copied someplace else. This routine just
5161** removes the reference to the cell from pPage.
5162**
5163** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005164*/
shane0af3f892008-11-12 04:55:34 +00005165static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005166 int i; /* Loop counter */
5167 int pc; /* Offset to cell content of cell being deleted */
5168 u8 *data; /* pPage->aData */
5169 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005170 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005171
drh8c42ca92001-06-22 19:15:00 +00005172 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005173 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005174 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005175 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005176 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005177 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005178 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005179 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5180 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005181 return SQLITE_CORRUPT_BKPT;
5182 }
shanedcc50b72008-11-13 18:29:50 +00005183 rc = freeSpace(pPage, pc, sz);
5184 if( rc!=SQLITE_OK ){
5185 return rc;
5186 }
drh43605152004-05-29 21:46:49 +00005187 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5188 ptr[0] = ptr[2];
5189 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005190 }
5191 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005192 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5193 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005194 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005195}
5196
5197/*
5198** Insert a new cell on pPage at cell index "i". pCell points to the
5199** content of the cell.
5200**
5201** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005202** will not fit, then make a copy of the cell content into pTemp if
5203** pTemp is not null. Regardless of pTemp, allocate a new entry
5204** in pPage->aOvfl[] and make it point to the cell content (either
5205** in pTemp or the original pCell) and also record its index.
5206** Allocating a new entry in pPage->aCell[] implies that
5207** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005208**
5209** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5210** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005211** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005212** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005213*/
danielk1977e80463b2004-11-03 03:01:16 +00005214static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005215 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005216 int i, /* New cell becomes the i-th cell of the page */
5217 u8 *pCell, /* Content of the new cell */
5218 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005219 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005220 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005221){
drh43605152004-05-29 21:46:49 +00005222 int idx; /* Where to write new cell content in data[] */
5223 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005224 int end; /* First byte past the last cell pointer in data[] */
5225 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005226 int cellOffset; /* Address of first cell pointer in data[] */
5227 u8 *data; /* The content of the whole page */
5228 u8 *ptr; /* Used for moving information around in data[] */
5229
danielk19774dbaa892009-06-16 16:50:22 +00005230 int nSkip = (iChild ? 4 : 0);
5231
drh43605152004-05-29 21:46:49 +00005232 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005233 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5234 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005235 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005236 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005237 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005238 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005239 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005240 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005241 }
danielk19774dbaa892009-06-16 16:50:22 +00005242 if( iChild ){
5243 put4byte(pCell, iChild);
5244 }
drh43605152004-05-29 21:46:49 +00005245 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005246 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005247 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005248 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005249 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005250 int rc = sqlite3PagerWrite(pPage->pDbPage);
5251 if( rc!=SQLITE_OK ){
5252 return rc;
5253 }
5254 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005255 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005256 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005257 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005258 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005259 rc = allocateSpace(pPage, sz, &idx);
5260 if( rc ) return rc;
5261 assert( idx>=end+2 );
5262 if( idx+sz > pPage->pBt->usableSize ){
shane34ac18d2008-11-11 22:18:20 +00005263 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005264 }
drh43605152004-05-29 21:46:49 +00005265 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005266 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005267 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005268 if( iChild ){
5269 put4byte(&data[idx], iChild);
5270 }
drh0a45c272009-07-08 01:49:11 +00005271 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005272 ptr[0] = ptr[-2];
5273 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005274 }
drh43605152004-05-29 21:46:49 +00005275 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005276 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005277#ifndef SQLITE_OMIT_AUTOVACUUM
5278 if( pPage->pBt->autoVacuum ){
5279 /* The cell may contain a pointer to an overflow page. If so, write
5280 ** the entry for the overflow page into the pointer map.
5281 */
danielk197746aa38f2009-06-25 16:11:05 +00005282 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005283 }
5284#endif
drh14acc042001-06-10 19:56:58 +00005285 }
danielk1977e80463b2004-11-03 03:01:16 +00005286
danielk1977e80463b2004-11-03 03:01:16 +00005287 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005288}
5289
5290/*
drhfa1a98a2004-05-14 19:08:17 +00005291** Add a list of cells to a page. The page should be initially empty.
5292** The cells are guaranteed to fit on the page.
5293*/
5294static void assemblePage(
5295 MemPage *pPage, /* The page to be assemblied */
5296 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005297 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005298 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005299){
5300 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005301 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005302 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005303 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5304 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5305 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005306
drh43605152004-05-29 21:46:49 +00005307 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005308 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005309 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005310 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005311
5312 /* Check that the page has just been zeroed by zeroPage() */
5313 assert( pPage->nCell==0 );
5314 assert( get2byte(&data[hdr+5])==nUsable );
5315
5316 pCellptr = &data[pPage->cellOffset + nCell*2];
5317 cellbody = nUsable;
5318 for(i=nCell-1; i>=0; i--){
5319 pCellptr -= 2;
5320 cellbody -= aSize[i];
5321 put2byte(pCellptr, cellbody);
5322 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005323 }
danielk1977fad91942009-04-29 17:49:59 +00005324 put2byte(&data[hdr+3], nCell);
5325 put2byte(&data[hdr+5], cellbody);
5326 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005327 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005328}
5329
drh14acc042001-06-10 19:56:58 +00005330/*
drhc3b70572003-01-04 19:44:07 +00005331** The following parameters determine how many adjacent pages get involved
5332** in a balancing operation. NN is the number of neighbors on either side
5333** of the page that participate in the balancing operation. NB is the
5334** total number of pages that participate, including the target page and
5335** NN neighbors on either side.
5336**
5337** The minimum value of NN is 1 (of course). Increasing NN above 1
5338** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5339** in exchange for a larger degradation in INSERT and UPDATE performance.
5340** The value of NN appears to give the best results overall.
5341*/
5342#define NN 1 /* Number of neighbors on either side of pPage */
5343#define NB (NN*2+1) /* Total pages involved in the balance */
5344
danielk1977ac245ec2005-01-14 13:50:11 +00005345
drh615ae552005-01-16 23:21:00 +00005346#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005347/*
5348** This version of balance() handles the common special case where
5349** a new entry is being inserted on the extreme right-end of the
5350** tree, in other words, when the new entry will become the largest
5351** entry in the tree.
5352**
5353** Instead of trying balance the 3 right-most leaf pages, just add
5354** a new page to the right-hand side and put the one new entry in
5355** that page. This leaves the right side of the tree somewhat
5356** unbalanced. But odds are that we will be inserting new entries
5357** at the end soon afterwards so the nearly empty page will quickly
5358** fill up. On average.
5359**
5360** pPage is the leaf page which is the right-most page in the tree.
5361** pParent is its parent. pPage must have a single overflow entry
5362** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005363**
5364** The pSpace buffer is used to store a temporary copy of the divider
5365** cell that will be inserted into pParent. Such a cell consists of a 4
5366** byte page number followed by a variable length integer. In other
5367** words, at most 13 bytes. Hence the pSpace buffer must be at
5368** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005369*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005370static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5371 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005372 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005373 int rc; /* Return Code */
5374 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005375
drh1fee73e2007-08-29 04:00:57 +00005376 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005377 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005378 assert( pPage->nOverflow==1 );
5379
drhd46b6c22009-06-04 17:02:51 +00005380 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005381
danielk1977a50d9aa2009-06-08 14:49:45 +00005382 /* Allocate a new page. This page will become the right-sibling of
5383 ** pPage. Make the parent page writable, so that the new divider cell
5384 ** may be inserted. If both these operations are successful, proceed.
5385 */
drh4f0c5872007-03-26 22:05:01 +00005386 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005387
danielk1977eaa06f62008-09-18 17:34:44 +00005388 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005389
5390 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005391 u8 *pCell = pPage->aOvfl[0].pCell;
5392 u16 szCell = cellSizePtr(pPage, pCell);
5393 u8 *pStop;
5394
drhc5053fb2008-11-27 02:22:10 +00005395 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005396 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5397 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005398 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005399
5400 /* If this is an auto-vacuum database, update the pointer map
5401 ** with entries for the new page, and any pointer from the
5402 ** cell on the page to an overflow page. If either of these
5403 ** operations fails, the return code is set, but the contents
5404 ** of the parent page are still manipulated by thh code below.
5405 ** That is Ok, at this point the parent page is guaranteed to
5406 ** be marked as dirty. Returning an error code will cause a
5407 ** rollback, undoing any changes made to the parent page.
5408 */
5409 if( ISAUTOVACUUM ){
5410 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5411 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5412 rc = ptrmapPutOvflPtr(pNew, pCell);
5413 }
5414 }
danielk1977eaa06f62008-09-18 17:34:44 +00005415
danielk19776f235cc2009-06-04 14:46:08 +00005416 /* Create a divider cell to insert into pParent. The divider cell
5417 ** consists of a 4-byte page number (the page number of pPage) and
5418 ** a variable length key value (which must be the same value as the
5419 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005420 **
danielk19776f235cc2009-06-04 14:46:08 +00005421 ** To find the largest key value on pPage, first find the right-most
5422 ** cell on pPage. The first two fields of this cell are the
5423 ** record-length (a variable length integer at most 32-bits in size)
5424 ** and the key value (a variable length integer, may have any value).
5425 ** The first of the while(...) loops below skips over the record-length
5426 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005427 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005428 */
danielk1977eaa06f62008-09-18 17:34:44 +00005429 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005430 pStop = &pCell[9];
5431 while( (*(pCell++)&0x80) && pCell<pStop );
5432 pStop = &pCell[9];
5433 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5434
danielk19774dbaa892009-06-16 16:50:22 +00005435 /* Insert the new divider cell into pParent. */
5436 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005437
5438 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005439 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5440
danielk1977e08a3c42008-09-18 18:17:03 +00005441 /* Release the reference to the new page. */
5442 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005443 }
5444
danielk1977eaa06f62008-09-18 17:34:44 +00005445 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005446}
drh615ae552005-01-16 23:21:00 +00005447#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005448
danielk19774dbaa892009-06-16 16:50:22 +00005449#if 0
drhc3b70572003-01-04 19:44:07 +00005450/*
danielk19774dbaa892009-06-16 16:50:22 +00005451** This function does not contribute anything to the operation of SQLite.
5452** it is sometimes activated temporarily while debugging code responsible
5453** for setting pointer-map entries.
5454*/
5455static int ptrmapCheckPages(MemPage **apPage, int nPage){
5456 int i, j;
5457 for(i=0; i<nPage; i++){
5458 Pgno n;
5459 u8 e;
5460 MemPage *pPage = apPage[i];
5461 BtShared *pBt = pPage->pBt;
5462 assert( pPage->isInit );
5463
5464 for(j=0; j<pPage->nCell; j++){
5465 CellInfo info;
5466 u8 *z;
5467
5468 z = findCell(pPage, j);
5469 sqlite3BtreeParseCellPtr(pPage, z, &info);
5470 if( info.iOverflow ){
5471 Pgno ovfl = get4byte(&z[info.iOverflow]);
5472 ptrmapGet(pBt, ovfl, &e, &n);
5473 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5474 }
5475 if( !pPage->leaf ){
5476 Pgno child = get4byte(z);
5477 ptrmapGet(pBt, child, &e, &n);
5478 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5479 }
5480 }
5481 if( !pPage->leaf ){
5482 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5483 ptrmapGet(pBt, child, &e, &n);
5484 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5485 }
5486 }
5487 return 1;
5488}
5489#endif
5490
danielk1977cd581a72009-06-23 15:43:39 +00005491/*
5492** This function is used to copy the contents of the b-tree node stored
5493** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5494** the pointer-map entries for each child page are updated so that the
5495** parent page stored in the pointer map is page pTo. If pFrom contained
5496** any cells with overflow page pointers, then the corresponding pointer
5497** map entries are also updated so that the parent page is page pTo.
5498**
5499** If pFrom is currently carrying any overflow cells (entries in the
5500** MemPage.aOvfl[] array), they are not copied to pTo.
5501**
5502** Before returning, page pTo is reinitialized using sqlite3BtreeInitPage().
5503**
5504** The performance of this function is not critical. It is only used by
5505** the balance_shallower() and balance_deeper() procedures, neither of
5506** which are called often under normal circumstances.
5507*/
5508static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5509 BtShared * const pBt = pFrom->pBt;
5510 u8 * const aFrom = pFrom->aData;
5511 u8 * const aTo = pTo->aData;
5512 int const iFromHdr = pFrom->hdrOffset;
5513 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5514 int rc = SQLITE_OK;
5515 int iData;
5516
5517 assert( pFrom->isInit );
5518 assert( pFrom->nFree>=iToHdr );
5519 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5520
5521 /* Copy the b-tree node content from page pFrom to page pTo. */
5522 iData = get2byte(&aFrom[iFromHdr+5]);
5523 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5524 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5525
5526 /* Reinitialize page pTo so that the contents of the MemPage structure
5527 ** match the new data. The initialization of pTo "cannot" fail, as the
5528 ** data copied from pFrom is known to be valid. */
5529 pTo->isInit = 0;
5530 TESTONLY(rc = ) sqlite3BtreeInitPage(pTo);
5531 assert( rc==SQLITE_OK );
5532
5533 /* If this is an auto-vacuum database, update the pointer-map entries
5534 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5535 if( ISAUTOVACUUM ){
5536 rc = setChildPtrmaps(pTo);
5537 }
5538 return rc;
5539}
5540
5541/*
danielk19774dbaa892009-06-16 16:50:22 +00005542** This routine redistributes cells on the iParentIdx'th child of pParent
5543** (hereafter "the page") and up to 2 siblings so that all pages have about the
5544** same amount of free space. Usually a single sibling on either side of the
5545** page are used in the balancing, though both siblings might come from one
5546** side if the page is the first or last child of its parent. If the page
5547** has fewer than 2 siblings (something which can only happen if the page
5548** is a root page or a child of a root page) then all available siblings
5549** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005550**
danielk19774dbaa892009-06-16 16:50:22 +00005551** The number of siblings of the page might be increased or decreased by
5552** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005553**
danielk19774dbaa892009-06-16 16:50:22 +00005554** Note that when this routine is called, some of the cells on the page
5555** might not actually be stored in MemPage.aData[]. This can happen
5556** if the page is overfull. This routine ensures that all cells allocated
5557** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005558**
danielk19774dbaa892009-06-16 16:50:22 +00005559** In the course of balancing the page and its siblings, cells may be
5560** inserted into or removed from the parent page (pParent). Doing so
5561** may cause the parent page to become overfull or underfull. If this
5562** happens, it is the responsibility of the caller to invoke the correct
5563** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005564**
drh5e00f6c2001-09-13 13:46:56 +00005565** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005566** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005567** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005568**
5569** The third argument to this function, aOvflSpace, is a pointer to a
5570** buffer page-size bytes in size. If, in inserting cells into the parent
5571** page (pParent), the parent page becomes overfull, this buffer is
5572** used to store the parents overflow cells. Because this function inserts
5573** a maximum of four divider cells into the parent page, and the maximum
5574** size of a cell stored within an internal node is always less than 1/4
5575** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5576** enough for all overflow cells.
5577**
5578** If aOvflSpace is set to a null pointer, this function returns
5579** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005580*/
danielk19774dbaa892009-06-16 16:50:22 +00005581static int balance_nonroot(
5582 MemPage *pParent, /* Parent page of siblings being balanced */
5583 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005584 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5585 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005586){
drh16a9b832007-05-05 18:39:25 +00005587 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005588 int nCell = 0; /* Number of cells in apCell[] */
5589 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005590 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005591 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005592 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005593 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005594 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005595 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005596 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005597 int usableSpace; /* Bytes in pPage beyond the header */
5598 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005599 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005600 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005601 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005602 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005603 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005604 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005605 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005606 u8 *pRight; /* Location in parent of right-sibling pointer */
5607 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005608 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5609 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005610 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005611 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005612 u8 *aSpace1; /* Space for copies of dividers cells */
5613 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005614
danielk1977a50d9aa2009-06-08 14:49:45 +00005615 pBt = pParent->pBt;
5616 assert( sqlite3_mutex_held(pBt->mutex) );
5617 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005618
danielk1977e5765212009-06-17 11:13:28 +00005619#if 0
drh43605152004-05-29 21:46:49 +00005620 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005621#endif
drh2e38c322004-09-03 18:38:44 +00005622
danielk19774dbaa892009-06-16 16:50:22 +00005623 /* At this point pParent may have at most one overflow cell. And if
5624 ** this overflow cell is present, it must be the cell with
5625 ** index iParentIdx. This scenario comes about when this function
5626 ** is called (indirectly) from sqlite3BtreeDelete(). */
5627 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5628 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5629
danielk197711a8a862009-06-17 11:49:52 +00005630 if( !aOvflSpace ){
5631 return SQLITE_NOMEM;
5632 }
5633
danielk1977a50d9aa2009-06-08 14:49:45 +00005634 /* Find the sibling pages to balance. Also locate the cells in pParent
5635 ** that divide the siblings. An attempt is made to find NN siblings on
5636 ** either side of pPage. More siblings are taken from one side, however,
5637 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005638 ** has NB or fewer children then all children of pParent are taken.
5639 **
5640 ** This loop also drops the divider cells from the parent page. This
5641 ** way, the remainder of the function does not have to deal with any
5642 ** overflow cells in the parent page, as if one existed it has already
5643 ** been removed. */
5644 i = pParent->nOverflow + pParent->nCell;
5645 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005646 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005647 nOld = i+1;
5648 }else{
5649 nOld = 3;
5650 if( iParentIdx==0 ){
5651 nxDiv = 0;
5652 }else if( iParentIdx==i ){
5653 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005654 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005655 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005656 }
danielk19774dbaa892009-06-16 16:50:22 +00005657 i = 2;
5658 }
5659 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5660 pRight = &pParent->aData[pParent->hdrOffset+8];
5661 }else{
5662 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5663 }
5664 pgno = get4byte(pRight);
5665 while( 1 ){
5666 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5667 if( rc ){
5668 memset(apOld, 0, i*sizeof(MemPage*));
5669 goto balance_cleanup;
5670 }
danielk1977634f2982005-03-28 08:44:07 +00005671 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005672 if( (i--)==0 ) break;
5673
5674 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5675 apDiv[i] = pParent->aOvfl[0].pCell;
5676 pgno = get4byte(apDiv[i]);
5677 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5678 pParent->nOverflow = 0;
5679 }else{
5680 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5681 pgno = get4byte(apDiv[i]);
5682 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5683
5684 /* Drop the cell from the parent page. apDiv[i] still points to
5685 ** the cell within the parent, even though it has been dropped.
5686 ** This is safe because dropping a cell only overwrites the first
5687 ** four bytes of it, and this function does not need the first
5688 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005689 ** later on.
5690 **
5691 ** Unless SQLite is compiled in secure-delete mode. In this case,
5692 ** the dropCell() routine will overwrite the entire cell with zeroes.
5693 ** In this case, temporarily copy the cell into the aOvflSpace[]
5694 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5695 ** is allocated. */
5696#ifdef SQLITE_SECURE_DELETE
5697 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5698 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5699#endif
danielk19774dbaa892009-06-16 16:50:22 +00005700 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5701 }
drh8b2f49b2001-06-08 00:21:52 +00005702 }
5703
drha9121e42008-02-19 14:59:35 +00005704 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005705 ** alignment */
drha9121e42008-02-19 14:59:35 +00005706 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005707
drh8b2f49b2001-06-08 00:21:52 +00005708 /*
danielk1977634f2982005-03-28 08:44:07 +00005709 ** Allocate space for memory structures
5710 */
danielk19774dbaa892009-06-16 16:50:22 +00005711 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005712 szScratch =
drha9121e42008-02-19 14:59:35 +00005713 nMaxCells*sizeof(u8*) /* apCell */
5714 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005715 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005716 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005717 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005718 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005719 rc = SQLITE_NOMEM;
5720 goto balance_cleanup;
5721 }
drha9121e42008-02-19 14:59:35 +00005722 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005723 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005724 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005725
5726 /*
5727 ** Load pointers to all cells on sibling pages and the divider cells
5728 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005729 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005730 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005731 **
5732 ** If the siblings are on leaf pages, then the child pointers of the
5733 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005734 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005735 ** child pointers. If siblings are not leaves, then all cell in
5736 ** apCell[] include child pointers. Either way, all cells in apCell[]
5737 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005738 **
5739 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5740 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005741 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005742 leafCorrection = apOld[0]->leaf*4;
5743 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005744 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005745 int limit;
5746
5747 /* Before doing anything else, take a copy of the i'th original sibling
5748 ** The rest of this function will use data from the copies rather
5749 ** that the original pages since the original pages will be in the
5750 ** process of being overwritten. */
5751 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5752 memcpy(pOld, apOld[i], sizeof(MemPage));
5753 pOld->aData = (void*)&pOld[1];
5754 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5755
5756 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005757 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005758 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005759 apCell[nCell] = findOverflowCell(pOld, j);
5760 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005761 nCell++;
5762 }
5763 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005764 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005765 u8 *pTemp;
5766 assert( nCell<nMaxCells );
5767 szCell[nCell] = sz;
5768 pTemp = &aSpace1[iSpace1];
5769 iSpace1 += sz;
5770 assert( sz<=pBt->pageSize/4 );
5771 assert( iSpace1<=pBt->pageSize );
5772 memcpy(pTemp, apDiv[i], sz);
5773 apCell[nCell] = pTemp+leafCorrection;
5774 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005775 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005776 if( !pOld->leaf ){
5777 assert( leafCorrection==0 );
5778 assert( pOld->hdrOffset==0 );
5779 /* The right pointer of the child page pOld becomes the left
5780 ** pointer of the divider cell */
5781 memcpy(apCell[nCell], &pOld->aData[8], 4);
5782 }else{
5783 assert( leafCorrection==4 );
5784 if( szCell[nCell]<4 ){
5785 /* Do not allow any cells smaller than 4 bytes. */
5786 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005787 }
5788 }
drh14acc042001-06-10 19:56:58 +00005789 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005790 }
drh8b2f49b2001-06-08 00:21:52 +00005791 }
5792
5793 /*
drh6019e162001-07-02 17:51:45 +00005794 ** Figure out the number of pages needed to hold all nCell cells.
5795 ** Store this number in "k". Also compute szNew[] which is the total
5796 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005797 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005798 ** cntNew[k] should equal nCell.
5799 **
drh96f5b762004-05-16 16:24:36 +00005800 ** Values computed by this block:
5801 **
5802 ** k: The total number of sibling pages
5803 ** szNew[i]: Spaced used on the i-th sibling page.
5804 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5805 ** the right of the i-th sibling page.
5806 ** usableSpace: Number of bytes of space available on each sibling.
5807 **
drh8b2f49b2001-06-08 00:21:52 +00005808 */
drh43605152004-05-29 21:46:49 +00005809 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005810 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005811 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005812 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005813 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005814 szNew[k] = subtotal - szCell[i];
5815 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005816 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005817 subtotal = 0;
5818 k++;
drheac74422009-06-14 12:47:11 +00005819 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005820 }
5821 }
5822 szNew[k] = subtotal;
5823 cntNew[k] = nCell;
5824 k++;
drh96f5b762004-05-16 16:24:36 +00005825
5826 /*
5827 ** The packing computed by the previous block is biased toward the siblings
5828 ** on the left side. The left siblings are always nearly full, while the
5829 ** right-most sibling might be nearly empty. This block of code attempts
5830 ** to adjust the packing of siblings to get a better balance.
5831 **
5832 ** This adjustment is more than an optimization. The packing above might
5833 ** be so out of balance as to be illegal. For example, the right-most
5834 ** sibling might be completely empty. This adjustment is not optional.
5835 */
drh6019e162001-07-02 17:51:45 +00005836 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005837 int szRight = szNew[i]; /* Size of sibling on the right */
5838 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5839 int r; /* Index of right-most cell in left sibling */
5840 int d; /* Index of first cell to the left of right sibling */
5841
5842 r = cntNew[i-1] - 1;
5843 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005844 assert( d<nMaxCells );
5845 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005846 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5847 szRight += szCell[d] + 2;
5848 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005849 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005850 r = cntNew[i-1] - 1;
5851 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005852 }
drh96f5b762004-05-16 16:24:36 +00005853 szNew[i] = szRight;
5854 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005855 }
drh09d0deb2005-08-02 17:13:09 +00005856
danielk19776f235cc2009-06-04 14:46:08 +00005857 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005858 ** a virtual root page. A virtual root page is when the real root
5859 ** page is page 1 and we are the only child of that page.
5860 */
5861 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005862
danielk1977e5765212009-06-17 11:13:28 +00005863 TRACE(("BALANCE: old: %d %d %d ",
5864 apOld[0]->pgno,
5865 nOld>=2 ? apOld[1]->pgno : 0,
5866 nOld>=3 ? apOld[2]->pgno : 0
5867 ));
5868
drh8b2f49b2001-06-08 00:21:52 +00005869 /*
drh6b308672002-07-08 02:16:37 +00005870 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005871 */
drheac74422009-06-14 12:47:11 +00005872 if( apOld[0]->pgno<=1 ){
5873 rc = SQLITE_CORRUPT;
5874 goto balance_cleanup;
5875 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005876 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005877 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005878 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005879 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005880 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005881 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005882 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005883 nNew++;
danielk197728129562005-01-11 10:25:06 +00005884 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005885 }else{
drh7aa8f852006-03-28 00:24:44 +00005886 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005887 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005888 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005889 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005890 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005891
5892 /* Set the pointer-map entry for the new sibling page. */
5893 if( ISAUTOVACUUM ){
5894 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5895 if( rc!=SQLITE_OK ){
5896 goto balance_cleanup;
5897 }
5898 }
drh6b308672002-07-08 02:16:37 +00005899 }
drh8b2f49b2001-06-08 00:21:52 +00005900 }
5901
danielk1977299b1872004-11-22 10:02:10 +00005902 /* Free any old pages that were not reused as new pages.
5903 */
5904 while( i<nOld ){
5905 rc = freePage(apOld[i]);
5906 if( rc ) goto balance_cleanup;
5907 releasePage(apOld[i]);
5908 apOld[i] = 0;
5909 i++;
5910 }
5911
drh8b2f49b2001-06-08 00:21:52 +00005912 /*
drhf9ffac92002-03-02 19:00:31 +00005913 ** Put the new pages in accending order. This helps to
5914 ** keep entries in the disk file in order so that a scan
5915 ** of the table is a linear scan through the file. That
5916 ** in turn helps the operating system to deliver pages
5917 ** from the disk more rapidly.
5918 **
5919 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005920 ** n is never more than NB (a small constant), that should
5921 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005922 **
drhc3b70572003-01-04 19:44:07 +00005923 ** When NB==3, this one optimization makes the database
5924 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005925 */
5926 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005927 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005928 int minI = i;
5929 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005930 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005931 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005932 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005933 }
5934 }
5935 if( minI>i ){
5936 int t;
5937 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005938 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005939 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005940 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005941 apNew[minI] = pT;
5942 }
5943 }
danielk1977e5765212009-06-17 11:13:28 +00005944 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005945 apNew[0]->pgno, szNew[0],
5946 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5947 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5948 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5949 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5950
5951 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5952 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005953
drhf9ffac92002-03-02 19:00:31 +00005954 /*
drh14acc042001-06-10 19:56:58 +00005955 ** Evenly distribute the data in apCell[] across the new pages.
5956 ** Insert divider cells into pParent as necessary.
5957 */
5958 j = 0;
5959 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005960 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005961 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005962 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005963 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005964 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005965 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005966 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005967
danielk1977ac11ee62005-01-15 12:45:51 +00005968 j = cntNew[i];
5969
5970 /* If the sibling page assembled above was not the right-most sibling,
5971 ** insert a divider cell into the parent page.
5972 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005973 assert( i<nNew-1 || j==nCell );
5974 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005975 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005976 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005977 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005978
5979 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005980 pCell = apCell[j];
5981 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005982 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005983 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005984 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005985 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005986 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005987 ** then there is no divider cell in apCell[]. Instead, the divider
5988 ** cell consists of the integer key for the right-most cell of
5989 ** the sibling-page assembled above only.
5990 */
drh6f11bef2004-05-13 01:12:56 +00005991 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005992 j--;
drh16a9b832007-05-05 18:39:25 +00005993 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005994 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00005995 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00005996 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005997 }else{
5998 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005999 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006000 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006001 ** bytes, then it may actually be smaller than this
6002 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006003 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006004 ** insertCell(), so reparse the cell now.
6005 **
6006 ** Note that this can never happen in an SQLite data file, as all
6007 ** cells are at least 4 bytes. It only happens in b-trees used
6008 ** to evaluate "IN (SELECT ...)" and similar clauses.
6009 */
6010 if( szCell[j]==4 ){
6011 assert(leafCorrection==4);
6012 sz = cellSizePtr(pParent, pCell);
6013 }
drh4b70f112004-05-02 21:12:19 +00006014 }
danielk19776067a9b2009-06-09 09:41:00 +00006015 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006016 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006017 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006018 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006019 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006020 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006021
drh14acc042001-06-10 19:56:58 +00006022 j++;
6023 nxDiv++;
6024 }
6025 }
drh6019e162001-07-02 17:51:45 +00006026 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006027 assert( nOld>0 );
6028 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006029 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006030 u8 *zChild = &apCopy[nOld-1]->aData[8];
6031 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006032 }
6033
danielk197713bd99f2009-06-24 05:40:34 +00006034 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6035 /* The root page of the b-tree now contains no cells. The only sibling
6036 ** page is the right-child of the parent. Copy the contents of the
6037 ** child page into the parent, decreasing the overall height of the
6038 ** b-tree structure by one. This is described as the "balance-shallower"
6039 ** sub-algorithm in some documentation.
6040 **
6041 ** If this is an auto-vacuum database, the call to copyNodeContent()
6042 ** sets all pointer-map entries corresponding to database image pages
6043 ** for which the pointer is stored within the content being copied.
6044 **
6045 ** The second assert below verifies that the child page is defragmented
6046 ** (it must be, as it was just reconstructed using assemblePage()). This
6047 ** is important if the parent page happens to be page 1 of the database
6048 ** image. */
6049 assert( nNew==1 );
6050 assert( apNew[0]->nFree ==
6051 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6052 );
6053 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6054 rc = freePage(apNew[0]);
6055 }
6056 }else if( ISAUTOVACUUM ){
6057 /* Fix the pointer-map entries for all the cells that were shifted around.
6058 ** There are several different types of pointer-map entries that need to
6059 ** be dealt with by this routine. Some of these have been set already, but
6060 ** many have not. The following is a summary:
6061 **
6062 ** 1) The entries associated with new sibling pages that were not
6063 ** siblings when this function was called. These have already
6064 ** been set. We don't need to worry about old siblings that were
6065 ** moved to the free-list - the freePage() code has taken care
6066 ** of those.
6067 **
6068 ** 2) The pointer-map entries associated with the first overflow
6069 ** page in any overflow chains used by new divider cells. These
6070 ** have also already been taken care of by the insertCell() code.
6071 **
6072 ** 3) If the sibling pages are not leaves, then the child pages of
6073 ** cells stored on the sibling pages may need to be updated.
6074 **
6075 ** 4) If the sibling pages are not internal intkey nodes, then any
6076 ** overflow pages used by these cells may need to be updated
6077 ** (internal intkey nodes never contain pointers to overflow pages).
6078 **
6079 ** 5) If the sibling pages are not leaves, then the pointer-map
6080 ** entries for the right-child pages of each sibling may need
6081 ** to be updated.
6082 **
6083 ** Cases 1 and 2 are dealt with above by other code. The next
6084 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6085 ** setting a pointer map entry is a relatively expensive operation, this
6086 ** code only sets pointer map entries for child or overflow pages that have
6087 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006088 MemPage *pNew = apNew[0];
6089 MemPage *pOld = apCopy[0];
6090 int nOverflow = pOld->nOverflow;
6091 int iNextOld = pOld->nCell + nOverflow;
6092 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6093 j = 0; /* Current 'old' sibling page */
6094 k = 0; /* Current 'new' sibling page */
6095 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6096 int isDivider = 0;
6097 while( i==iNextOld ){
6098 /* Cell i is the cell immediately following the last cell on old
6099 ** sibling page j. If the siblings are not leaf pages of an
6100 ** intkey b-tree, then cell i was a divider cell. */
6101 pOld = apCopy[++j];
6102 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6103 if( pOld->nOverflow ){
6104 nOverflow = pOld->nOverflow;
6105 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6106 }
6107 isDivider = !leafData;
6108 }
6109
6110 assert(nOverflow>0 || iOverflow<i );
6111 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6112 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6113 if( i==iOverflow ){
6114 isDivider = 1;
6115 if( (--nOverflow)>0 ){
6116 iOverflow++;
6117 }
6118 }
6119
6120 if( i==cntNew[k] ){
6121 /* Cell i is the cell immediately following the last cell on new
6122 ** sibling page k. If the siblings are not leaf pages of an
6123 ** intkey b-tree, then cell i is a divider cell. */
6124 pNew = apNew[++k];
6125 if( !leafData ) continue;
6126 }
6127 assert( rc==SQLITE_OK );
6128 assert( j<nOld );
6129 assert( k<nNew );
6130
6131 /* If the cell was originally divider cell (and is not now) or
6132 ** an overflow cell, or if the cell was located on a different sibling
6133 ** page before the balancing, then the pointer map entries associated
6134 ** with any child or overflow pages need to be updated. */
6135 if( isDivider || pOld->pgno!=pNew->pgno ){
6136 if( !leafCorrection ){
6137 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6138 }
6139 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6140 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6141 }
6142 }
6143 }
6144
6145 if( !leafCorrection ){
6146 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6147 rc = ptrmapPut(
6148 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6149 }
6150 }
6151
6152#if 0
6153 /* The ptrmapCheckPages() contains assert() statements that verify that
6154 ** all pointer map pages are set correctly. This is helpful while
6155 ** debugging. This is usually disabled because a corrupt database may
6156 ** cause an assert() statement to fail. */
6157 ptrmapCheckPages(apNew, nNew);
6158 ptrmapCheckPages(&pParent, 1);
6159#endif
6160 }
6161
danielk197771d5d2c2008-09-29 11:49:47 +00006162 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006163 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6164 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006165
drh8b2f49b2001-06-08 00:21:52 +00006166 /*
drh14acc042001-06-10 19:56:58 +00006167 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006168 */
drh14acc042001-06-10 19:56:58 +00006169balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006170 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006171 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006172 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006173 }
drh14acc042001-06-10 19:56:58 +00006174 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006175 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006176 }
danielk1977eaa06f62008-09-18 17:34:44 +00006177
drh8b2f49b2001-06-08 00:21:52 +00006178 return rc;
6179}
6180
drh43605152004-05-29 21:46:49 +00006181
6182/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006183** This function is called when the root page of a b-tree structure is
6184** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006185**
danielk1977a50d9aa2009-06-08 14:49:45 +00006186** A new child page is allocated and the contents of the current root
6187** page, including overflow cells, are copied into the child. The root
6188** page is then overwritten to make it an empty page with the right-child
6189** pointer pointing to the new page.
6190**
6191** Before returning, all pointer-map entries corresponding to pages
6192** that the new child-page now contains pointers to are updated. The
6193** entry corresponding to the new right-child pointer of the root
6194** page is also updated.
6195**
6196** If successful, *ppChild is set to contain a reference to the child
6197** page and SQLITE_OK is returned. In this case the caller is required
6198** to call releasePage() on *ppChild exactly once. If an error occurs,
6199** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006200*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006201static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6202 int rc; /* Return value from subprocedures */
6203 MemPage *pChild = 0; /* Pointer to a new child page */
6204 Pgno pgnoChild; /* Page number of the new child page */
6205 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006206
danielk1977a50d9aa2009-06-08 14:49:45 +00006207 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006208 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006209
danielk1977a50d9aa2009-06-08 14:49:45 +00006210 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6211 ** page that will become the new right-child of pPage. Copy the contents
6212 ** of the node stored on pRoot into the new child page.
6213 */
6214 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6215 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6216 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6217 || (ISAUTOVACUUM &&
6218 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6219 ){
6220 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006221 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006222 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006223 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006224 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6225 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6226 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006227
danielk1977a50d9aa2009-06-08 14:49:45 +00006228 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6229
6230 /* Copy the overflow cells from pRoot to pChild */
6231 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6232 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006233
6234 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6235 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6236 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6237
6238 *ppChild = pChild;
6239 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006240}
6241
6242/*
danielk197771d5d2c2008-09-29 11:49:47 +00006243** The page that pCur currently points to has just been modified in
6244** some way. This function figures out if this modification means the
6245** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006246** routine. Balancing routines are:
6247**
6248** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006249** balance_deeper()
6250** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006251*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006252static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006253 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006254 const int nMin = pCur->pBt->usableSize * 2 / 3;
6255 u8 aBalanceQuickSpace[13];
6256 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006257
shane75ac1de2009-06-09 18:58:52 +00006258 TESTONLY( int balance_quick_called = 0 );
6259 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006260
6261 do {
6262 int iPage = pCur->iPage;
6263 MemPage *pPage = pCur->apPage[iPage];
6264
6265 if( iPage==0 ){
6266 if( pPage->nOverflow ){
6267 /* The root page of the b-tree is overfull. In this case call the
6268 ** balance_deeper() function to create a new child for the root-page
6269 ** and copy the current contents of the root-page to it. The
6270 ** next iteration of the do-loop will balance the child page.
6271 */
6272 assert( (balance_deeper_called++)==0 );
6273 rc = balance_deeper(pPage, &pCur->apPage[1]);
6274 if( rc==SQLITE_OK ){
6275 pCur->iPage = 1;
6276 pCur->aiIdx[0] = 0;
6277 pCur->aiIdx[1] = 0;
6278 assert( pCur->apPage[1]->nOverflow );
6279 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006280 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006281 break;
6282 }
6283 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6284 break;
6285 }else{
6286 MemPage * const pParent = pCur->apPage[iPage-1];
6287 int const iIdx = pCur->aiIdx[iPage-1];
6288
6289 rc = sqlite3PagerWrite(pParent->pDbPage);
6290 if( rc==SQLITE_OK ){
6291#ifndef SQLITE_OMIT_QUICKBALANCE
6292 if( pPage->hasData
6293 && pPage->nOverflow==1
6294 && pPage->aOvfl[0].idx==pPage->nCell
6295 && pParent->pgno!=1
6296 && pParent->nCell==iIdx
6297 ){
6298 /* Call balance_quick() to create a new sibling of pPage on which
6299 ** to store the overflow cell. balance_quick() inserts a new cell
6300 ** into pParent, which may cause pParent overflow. If this
6301 ** happens, the next interation of the do-loop will balance pParent
6302 ** use either balance_nonroot() or balance_deeper(). Until this
6303 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6304 ** buffer.
6305 **
6306 ** The purpose of the following assert() is to check that only a
6307 ** single call to balance_quick() is made for each call to this
6308 ** function. If this were not verified, a subtle bug involving reuse
6309 ** of the aBalanceQuickSpace[] might sneak in.
6310 */
6311 assert( (balance_quick_called++)==0 );
6312 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6313 }else
6314#endif
6315 {
6316 /* In this case, call balance_nonroot() to redistribute cells
6317 ** between pPage and up to 2 of its sibling pages. This involves
6318 ** modifying the contents of pParent, which may cause pParent to
6319 ** become overfull or underfull. The next iteration of the do-loop
6320 ** will balance the parent page to correct this.
6321 **
6322 ** If the parent page becomes overfull, the overflow cell or cells
6323 ** are stored in the pSpace buffer allocated immediately below.
6324 ** A subsequent iteration of the do-loop will deal with this by
6325 ** calling balance_nonroot() (balance_deeper() may be called first,
6326 ** but it doesn't deal with overflow cells - just moves them to a
6327 ** different page). Once this subsequent call to balance_nonroot()
6328 ** has completed, it is safe to release the pSpace buffer used by
6329 ** the previous call, as the overflow cell data will have been
6330 ** copied either into the body of a database page or into the new
6331 ** pSpace buffer passed to the latter call to balance_nonroot().
6332 */
6333 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006334 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006335 if( pFree ){
6336 /* If pFree is not NULL, it points to the pSpace buffer used
6337 ** by a previous call to balance_nonroot(). Its contents are
6338 ** now stored either on real database pages or within the
6339 ** new pSpace buffer, so it may be safely freed here. */
6340 sqlite3PageFree(pFree);
6341 }
6342
danielk19774dbaa892009-06-16 16:50:22 +00006343 /* The pSpace buffer will be freed after the next call to
6344 ** balance_nonroot(), or just before this function returns, whichever
6345 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006346 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006347 }
6348 }
6349
6350 pPage->nOverflow = 0;
6351
6352 /* The next iteration of the do-loop balances the parent page. */
6353 releasePage(pPage);
6354 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006355 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006356 }while( rc==SQLITE_OK );
6357
6358 if( pFree ){
6359 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006360 }
6361 return rc;
6362}
6363
drhf74b8d92002-09-01 23:20:45 +00006364
6365/*
drh3b7511c2001-05-26 13:15:44 +00006366** Insert a new record into the BTree. The key is given by (pKey,nKey)
6367** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006368** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006369** is left pointing at a random location.
6370**
6371** For an INTKEY table, only the nKey value of the key is used. pKey is
6372** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006373**
6374** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006375** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006376** been performed. seekResult is the search result returned (a negative
6377** number if pCur points at an entry that is smaller than (pKey, nKey), or
6378** a positive value if pCur points at an etry that is larger than
6379** (pKey, nKey)).
6380**
6381** If the seekResult parameter is 0, then cursor pCur may point to any
6382** entry or to no entry at all. In this case this function has to seek
6383** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006384*/
drh3aac2dd2004-04-26 14:10:20 +00006385int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006386 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006387 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006388 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006389 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006390 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006391 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006392){
drh3b7511c2001-05-26 13:15:44 +00006393 int rc;
danielk1977de630352009-05-04 11:42:29 +00006394 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006395 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006396 int idx;
drh3b7511c2001-05-26 13:15:44 +00006397 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006398 Btree *p = pCur->pBtree;
6399 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006400 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006401 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006402
drh1fee73e2007-08-29 04:00:57 +00006403 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006404 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006405 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006406 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006407 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6408
6409 /* If this is an insert into a table b-tree, invalidate any incrblob
6410 ** cursors open on the row being replaced (assuming this is a replace
6411 ** operation - if it is not, the following is a no-op). */
6412 if( pCur->pKeyInfo==0 ){
6413 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006414 }
danielk197796d48e92009-06-29 06:00:37 +00006415
drhfb982642007-08-30 01:19:59 +00006416 if( pCur->eState==CURSOR_FAULT ){
6417 return pCur->skip;
6418 }
danielk1977da184232006-01-05 11:34:32 +00006419
danielk19779c3acf32009-05-02 07:36:49 +00006420 /* Save the positions of any other cursors open on this table.
6421 **
danielk19773509a652009-07-06 18:56:13 +00006422 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006423 ** example, when inserting data into a table with auto-generated integer
6424 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6425 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006426 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006427 ** that the cursor is already where it needs to be and returns without
6428 ** doing any work. To avoid thwarting these optimizations, it is important
6429 ** not to clear the cursor here.
6430 */
danielk1977de630352009-05-04 11:42:29 +00006431 if(
6432 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
danielk19773509a652009-07-06 18:56:13 +00006433 SQLITE_OK!=(rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006434 )){
danielk1977da184232006-01-05 11:34:32 +00006435 return rc;
6436 }
danielk1977b980d2212009-06-22 18:03:51 +00006437 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006438
danielk197771d5d2c2008-09-29 11:49:47 +00006439 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006440 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006441 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006442 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6443 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6444 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006445 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006446 allocateTempSpace(pBt);
6447 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006448 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006449 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006450 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006451 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006452 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006453 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006454 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006455 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006456 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006457 rc = sqlite3PagerWrite(pPage->pDbPage);
6458 if( rc ){
6459 goto end_insert;
6460 }
danielk197771d5d2c2008-09-29 11:49:47 +00006461 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006462 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006463 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006464 }
drh43605152004-05-29 21:46:49 +00006465 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006466 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006467 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006468 rc = dropCell(pPage, idx, szOld);
6469 if( rc!=SQLITE_OK ) {
6470 goto end_insert;
6471 }
drh7c717f72001-06-24 20:39:41 +00006472 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006473 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006474 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006475 }else{
drh4b70f112004-05-02 21:12:19 +00006476 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006477 }
danielk197771d5d2c2008-09-29 11:49:47 +00006478 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006479 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006480
danielk1977a50d9aa2009-06-08 14:49:45 +00006481 /* If no error has occured and pPage has an overflow cell, call balance()
6482 ** to redistribute the cells within the tree. Since balance() may move
6483 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6484 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006485 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006486 ** Previous versions of SQLite called moveToRoot() to move the cursor
6487 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006488 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6489 ** set the cursor state to "invalid". This makes common insert operations
6490 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006491 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006492 ** There is a subtle but important optimization here too. When inserting
6493 ** multiple records into an intkey b-tree using a single cursor (as can
6494 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6495 ** is advantageous to leave the cursor pointing to the last entry in
6496 ** the b-tree if possible. If the cursor is left pointing to the last
6497 ** entry in the table, and the next row inserted has an integer key
6498 ** larger than the largest existing key, it is possible to insert the
6499 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006500 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006501 pCur->info.nSize = 0;
6502 pCur->validNKey = 0;
6503 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006504 rc = balance(pCur);
6505
6506 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006507 ** fails. Internal data structure corruption will result otherwise.
6508 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6509 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006510 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006511 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006512 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006513 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006514
drh2e38c322004-09-03 18:38:44 +00006515end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006516 return rc;
6517}
6518
6519/*
drh4b70f112004-05-02 21:12:19 +00006520** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006521** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006522*/
drh3aac2dd2004-04-26 14:10:20 +00006523int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006524 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006525 BtShared *pBt = p->pBt;
6526 int rc; /* Return code */
6527 MemPage *pPage; /* Page to delete cell from */
6528 unsigned char *pCell; /* Pointer to cell to delete */
6529 int iCellIdx; /* Index of cell to delete */
6530 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006531
drh1fee73e2007-08-29 04:00:57 +00006532 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006533 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006534 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006535 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006536 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6537 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6538
danielk19774dbaa892009-06-16 16:50:22 +00006539 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6540 || NEVER(pCur->eState!=CURSOR_VALID)
6541 ){
6542 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006543 }
danielk1977da184232006-01-05 11:34:32 +00006544
danielk197796d48e92009-06-29 06:00:37 +00006545 /* If this is a delete operation to remove a row from a table b-tree,
6546 ** invalidate any incrblob cursors open on the row being deleted. */
6547 if( pCur->pKeyInfo==0 ){
6548 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006549 }
6550
6551 iCellDepth = pCur->iPage;
6552 iCellIdx = pCur->aiIdx[iCellDepth];
6553 pPage = pCur->apPage[iCellDepth];
6554 pCell = findCell(pPage, iCellIdx);
6555
6556 /* If the page containing the entry to delete is not a leaf page, move
6557 ** the cursor to the largest entry in the tree that is smaller than
6558 ** the entry being deleted. This cell will replace the cell being deleted
6559 ** from the internal node. The 'previous' entry is used for this instead
6560 ** of the 'next' entry, as the previous entry is always a part of the
6561 ** sub-tree headed by the child page of the cell being deleted. This makes
6562 ** balancing the tree following the delete operation easier. */
6563 if( !pPage->leaf ){
6564 int notUsed;
6565 if( SQLITE_OK!=(rc = sqlite3BtreePrevious(pCur, &notUsed)) ){
6566 return rc;
6567 }
6568 }
6569
6570 /* Save the positions of any other cursors open on this table before
6571 ** making any modifications. Make the page containing the entry to be
6572 ** deleted writable. Then free any overflow pages associated with the
6573 ** entry and finally remove the cell itself from within the page. */
6574 if( SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))
6575 || SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage))
6576 || SQLITE_OK!=(rc = clearCell(pPage, pCell))
6577 || SQLITE_OK!=(rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell)))
danielk1977da184232006-01-05 11:34:32 +00006578 ){
6579 return rc;
6580 }
danielk1977e6efa742004-11-10 11:55:10 +00006581
danielk19774dbaa892009-06-16 16:50:22 +00006582 /* If the cell deleted was not located on a leaf page, then the cursor
6583 ** is currently pointing to the largest entry in the sub-tree headed
6584 ** by the child-page of the cell that was just deleted from an internal
6585 ** node. The cell from the leaf node needs to be moved to the internal
6586 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006587 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006588 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6589 int nCell;
6590 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6591 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006592
danielk19774dbaa892009-06-16 16:50:22 +00006593 pCell = findCell(pLeaf, pLeaf->nCell-1);
6594 nCell = cellSizePtr(pLeaf, pCell);
6595 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006596
danielk19774dbaa892009-06-16 16:50:22 +00006597 allocateTempSpace(pBt);
6598 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006599
danielk19774dbaa892009-06-16 16:50:22 +00006600 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pLeaf->pDbPage))
6601 || SQLITE_OK!=(rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n))
6602 || SQLITE_OK!=(rc = dropCell(pLeaf, pLeaf->nCell-1, nCell))
6603 ){
6604 return rc;
shanedcc50b72008-11-13 18:29:50 +00006605 }
drh5e2f8b92001-05-28 00:41:15 +00006606 }
danielk19774dbaa892009-06-16 16:50:22 +00006607
6608 /* Balance the tree. If the entry deleted was located on a leaf page,
6609 ** then the cursor still points to that page. In this case the first
6610 ** call to balance() repairs the tree, and the if(...) condition is
6611 ** never true.
6612 **
6613 ** Otherwise, if the entry deleted was on an internal node page, then
6614 ** pCur is pointing to the leaf page from which a cell was removed to
6615 ** replace the cell deleted from the internal node. This is slightly
6616 ** tricky as the leaf node may be underfull, and the internal node may
6617 ** be either under or overfull. In this case run the balancing algorithm
6618 ** on the leaf node first. If the balance proceeds far enough up the
6619 ** tree that we can be sure that any problem in the internal node has
6620 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6621 ** walk the cursor up the tree to the internal node and balance it as
6622 ** well. */
6623 rc = balance(pCur);
6624 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6625 while( pCur->iPage>iCellDepth ){
6626 releasePage(pCur->apPage[pCur->iPage--]);
6627 }
6628 rc = balance(pCur);
6629 }
6630
danielk19776b456a22005-03-21 04:04:02 +00006631 if( rc==SQLITE_OK ){
6632 moveToRoot(pCur);
6633 }
drh5e2f8b92001-05-28 00:41:15 +00006634 return rc;
drh3b7511c2001-05-26 13:15:44 +00006635}
drh8b2f49b2001-06-08 00:21:52 +00006636
6637/*
drhc6b52df2002-01-04 03:09:29 +00006638** Create a new BTree table. Write into *piTable the page
6639** number for the root page of the new table.
6640**
drhab01f612004-05-22 02:55:23 +00006641** The type of type is determined by the flags parameter. Only the
6642** following values of flags are currently in use. Other values for
6643** flags might not work:
6644**
6645** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6646** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006647*/
drhd677b3d2007-08-20 22:48:41 +00006648static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006649 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006650 MemPage *pRoot;
6651 Pgno pgnoRoot;
6652 int rc;
drhd677b3d2007-08-20 22:48:41 +00006653
drh1fee73e2007-08-29 04:00:57 +00006654 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006655 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006656 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006657
danielk1977003ba062004-11-04 02:57:33 +00006658#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006659 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006660 if( rc ){
6661 return rc;
6662 }
danielk1977003ba062004-11-04 02:57:33 +00006663#else
danielk1977687566d2004-11-02 12:56:41 +00006664 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006665 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6666 MemPage *pPageMove; /* The page to move to. */
6667
danielk197720713f32007-05-03 11:43:33 +00006668 /* Creating a new table may probably require moving an existing database
6669 ** to make room for the new tables root page. In case this page turns
6670 ** out to be an overflow page, delete all overflow page-map caches
6671 ** held by open cursors.
6672 */
danielk197792d4d7a2007-05-04 12:05:56 +00006673 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006674
danielk1977003ba062004-11-04 02:57:33 +00006675 /* Read the value of meta[3] from the database to determine where the
6676 ** root page of the new table should go. meta[3] is the largest root-page
6677 ** created so far, so the new root-page is (meta[3]+1).
6678 */
danielk1977602b4662009-07-02 07:47:33 +00006679 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006680 pgnoRoot++;
6681
danielk1977599fcba2004-11-08 07:13:13 +00006682 /* The new root-page may not be allocated on a pointer-map page, or the
6683 ** PENDING_BYTE page.
6684 */
drh72190432008-01-31 14:54:43 +00006685 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006686 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006687 pgnoRoot++;
6688 }
6689 assert( pgnoRoot>=3 );
6690
6691 /* Allocate a page. The page that currently resides at pgnoRoot will
6692 ** be moved to the allocated page (unless the allocated page happens
6693 ** to reside at pgnoRoot).
6694 */
drh4f0c5872007-03-26 22:05:01 +00006695 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006696 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006697 return rc;
6698 }
danielk1977003ba062004-11-04 02:57:33 +00006699
6700 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006701 /* pgnoRoot is the page that will be used for the root-page of
6702 ** the new table (assuming an error did not occur). But we were
6703 ** allocated pgnoMove. If required (i.e. if it was not allocated
6704 ** by extending the file), the current page at position pgnoMove
6705 ** is already journaled.
6706 */
danielk1977003ba062004-11-04 02:57:33 +00006707 u8 eType;
6708 Pgno iPtrPage;
6709
6710 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006711
6712 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006713 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006714 if( rc!=SQLITE_OK ){
6715 return rc;
6716 }
6717 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006718 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6719 rc = SQLITE_CORRUPT_BKPT;
6720 }
6721 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006722 releasePage(pRoot);
6723 return rc;
6724 }
drhccae6022005-02-26 17:31:26 +00006725 assert( eType!=PTRMAP_ROOTPAGE );
6726 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006727 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006728 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006729
6730 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006731 if( rc!=SQLITE_OK ){
6732 return rc;
6733 }
drh16a9b832007-05-05 18:39:25 +00006734 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006735 if( rc!=SQLITE_OK ){
6736 return rc;
6737 }
danielk19773b8a05f2007-03-19 17:44:26 +00006738 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006739 if( rc!=SQLITE_OK ){
6740 releasePage(pRoot);
6741 return rc;
6742 }
6743 }else{
6744 pRoot = pPageMove;
6745 }
6746
danielk197742741be2005-01-08 12:42:39 +00006747 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006748 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6749 if( rc ){
6750 releasePage(pRoot);
6751 return rc;
6752 }
danielk1977aef0bf62005-12-30 16:28:01 +00006753 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006754 if( rc ){
6755 releasePage(pRoot);
6756 return rc;
6757 }
danielk197742741be2005-01-08 12:42:39 +00006758
danielk1977003ba062004-11-04 02:57:33 +00006759 }else{
drh4f0c5872007-03-26 22:05:01 +00006760 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006761 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006762 }
6763#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006764 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006765 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006766 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006767 *piTable = (int)pgnoRoot;
6768 return SQLITE_OK;
6769}
drhd677b3d2007-08-20 22:48:41 +00006770int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6771 int rc;
6772 sqlite3BtreeEnter(p);
6773 rc = btreeCreateTable(p, piTable, flags);
6774 sqlite3BtreeLeave(p);
6775 return rc;
6776}
drh8b2f49b2001-06-08 00:21:52 +00006777
6778/*
6779** Erase the given database page and all its children. Return
6780** the page to the freelist.
6781*/
drh4b70f112004-05-02 21:12:19 +00006782static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006783 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006784 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006785 int freePageFlag, /* Deallocate page if true */
6786 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006787){
danielk19776b456a22005-03-21 04:04:02 +00006788 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006789 int rc;
drh4b70f112004-05-02 21:12:19 +00006790 unsigned char *pCell;
6791 int i;
drh8b2f49b2001-06-08 00:21:52 +00006792
drh1fee73e2007-08-29 04:00:57 +00006793 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006794 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006795 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006796 }
6797
danielk197771d5d2c2008-09-29 11:49:47 +00006798 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006799 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006800 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006801 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006802 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006803 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006804 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006805 }
drh4b70f112004-05-02 21:12:19 +00006806 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006807 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006808 }
drha34b6762004-05-07 13:30:42 +00006809 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006810 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006811 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006812 }else if( pnChange ){
6813 assert( pPage->intKey );
6814 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006815 }
6816 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006817 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006818 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006819 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006820 }
danielk19776b456a22005-03-21 04:04:02 +00006821
6822cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006823 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006824 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006825}
6826
6827/*
drhab01f612004-05-22 02:55:23 +00006828** Delete all information from a single table in the database. iTable is
6829** the page number of the root of the table. After this routine returns,
6830** the root page is empty, but still exists.
6831**
6832** This routine will fail with SQLITE_LOCKED if there are any open
6833** read cursors on the table. Open write cursors are moved to the
6834** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006835**
6836** If pnChange is not NULL, then table iTable must be an intkey table. The
6837** integer value pointed to by pnChange is incremented by the number of
6838** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006839*/
danielk1977c7af4842008-10-27 13:59:33 +00006840int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006841 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006842 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006843 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006844 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006845
6846 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6847 ** is the root of a table b-tree - if it is not, the following call is
6848 ** a no-op). */
6849 invalidateIncrblobCursors(p, iTable, 0, 1);
6850
6851 if( SQLITE_OK==(rc = saveAllCursors(pBt, (Pgno)iTable, 0)) ){
danielk197762c14b32008-11-19 09:05:26 +00006852 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006853 }
drhd677b3d2007-08-20 22:48:41 +00006854 sqlite3BtreeLeave(p);
6855 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006856}
6857
6858/*
6859** Erase all information in a table and add the root of the table to
6860** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006861** page 1) is never added to the freelist.
6862**
6863** This routine will fail with SQLITE_LOCKED if there are any open
6864** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006865**
6866** If AUTOVACUUM is enabled and the page at iTable is not the last
6867** root page in the database file, then the last root page
6868** in the database file is moved into the slot formerly occupied by
6869** iTable and that last slot formerly occupied by the last root page
6870** is added to the freelist instead of iTable. In this say, all
6871** root pages are kept at the beginning of the database file, which
6872** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6873** page number that used to be the last root page in the file before
6874** the move. If no page gets moved, *piMoved is set to 0.
6875** The last root page is recorded in meta[3] and the value of
6876** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006877*/
danielk197789d40042008-11-17 14:20:56 +00006878static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006879 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006880 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006881 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006882
drh1fee73e2007-08-29 04:00:57 +00006883 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006884 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006885
danielk1977e6efa742004-11-10 11:55:10 +00006886 /* It is illegal to drop a table if any cursors are open on the
6887 ** database. This is because in auto-vacuum mode the backend may
6888 ** need to move another root-page to fill a gap left by the deleted
6889 ** root page. If an open cursor was using this page a problem would
6890 ** occur.
6891 */
6892 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006893 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6894 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006895 }
danielk1977a0bf2652004-11-04 14:30:04 +00006896
drh16a9b832007-05-05 18:39:25 +00006897 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006898 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006899 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006900 if( rc ){
6901 releasePage(pPage);
6902 return rc;
6903 }
danielk1977a0bf2652004-11-04 14:30:04 +00006904
drh205f48e2004-11-05 00:43:11 +00006905 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006906
drh4b70f112004-05-02 21:12:19 +00006907 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006908#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006909 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006910 releasePage(pPage);
6911#else
6912 if( pBt->autoVacuum ){
6913 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006914 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006915
6916 if( iTable==maxRootPgno ){
6917 /* If the table being dropped is the table with the largest root-page
6918 ** number in the database, put the root page on the free list.
6919 */
6920 rc = freePage(pPage);
6921 releasePage(pPage);
6922 if( rc!=SQLITE_OK ){
6923 return rc;
6924 }
6925 }else{
6926 /* The table being dropped does not have the largest root-page
6927 ** number in the database. So move the page that does into the
6928 ** gap left by the deleted root-page.
6929 */
6930 MemPage *pMove;
6931 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006932 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006933 if( rc!=SQLITE_OK ){
6934 return rc;
6935 }
danielk19774c999992008-07-16 18:17:55 +00006936 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006937 releasePage(pMove);
6938 if( rc!=SQLITE_OK ){
6939 return rc;
6940 }
drh16a9b832007-05-05 18:39:25 +00006941 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006942 if( rc!=SQLITE_OK ){
6943 return rc;
6944 }
6945 rc = freePage(pMove);
6946 releasePage(pMove);
6947 if( rc!=SQLITE_OK ){
6948 return rc;
6949 }
6950 *piMoved = maxRootPgno;
6951 }
6952
danielk1977599fcba2004-11-08 07:13:13 +00006953 /* Set the new 'max-root-page' value in the database header. This
6954 ** is the old value less one, less one more if that happens to
6955 ** be a root-page number, less one again if that is the
6956 ** PENDING_BYTE_PAGE.
6957 */
danielk197787a6e732004-11-05 12:58:25 +00006958 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006959 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6960 maxRootPgno--;
6961 }
danielk1977266664d2006-02-10 08:24:21 +00006962 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006963 maxRootPgno--;
6964 }
danielk1977599fcba2004-11-08 07:13:13 +00006965 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6966
danielk1977aef0bf62005-12-30 16:28:01 +00006967 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006968 }else{
6969 rc = freePage(pPage);
6970 releasePage(pPage);
6971 }
6972#endif
drh2aa679f2001-06-25 02:11:07 +00006973 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006974 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006975 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006976 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006977 }
drh8b2f49b2001-06-08 00:21:52 +00006978 return rc;
6979}
drhd677b3d2007-08-20 22:48:41 +00006980int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6981 int rc;
6982 sqlite3BtreeEnter(p);
6983 rc = btreeDropTable(p, iTable, piMoved);
6984 sqlite3BtreeLeave(p);
6985 return rc;
6986}
drh8b2f49b2001-06-08 00:21:52 +00006987
drh001bbcb2003-03-19 03:14:00 +00006988
drh8b2f49b2001-06-08 00:21:52 +00006989/*
danielk1977602b4662009-07-02 07:47:33 +00006990** This function may only be called if the b-tree connection already
6991** has a read or write transaction open on the database.
6992**
drh23e11ca2004-05-04 17:27:28 +00006993** Read the meta-information out of a database file. Meta[0]
6994** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006995** through meta[15] are available for use by higher layers. Meta[0]
6996** is read-only, the others are read/write.
6997**
6998** The schema layer numbers meta values differently. At the schema
6999** layer (and the SetCookie and ReadCookie opcodes) the number of
7000** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007001*/
danielk1977602b4662009-07-02 07:47:33 +00007002void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007003 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007004
drhd677b3d2007-08-20 22:48:41 +00007005 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007006 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007007 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007008 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007009 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007010
danielk1977602b4662009-07-02 07:47:33 +00007011 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007012
danielk1977602b4662009-07-02 07:47:33 +00007013 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7014 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007015#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007016 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007017#endif
drhae157872004-08-14 19:20:09 +00007018
drhd677b3d2007-08-20 22:48:41 +00007019 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007020}
7021
7022/*
drh23e11ca2004-05-04 17:27:28 +00007023** Write meta-information back into the database. Meta[0] is
7024** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007025*/
danielk1977aef0bf62005-12-30 16:28:01 +00007026int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7027 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007028 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007029 int rc;
drh23e11ca2004-05-04 17:27:28 +00007030 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007031 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007032 assert( p->inTrans==TRANS_WRITE );
7033 assert( pBt->pPage1!=0 );
7034 pP1 = pBt->pPage1->aData;
7035 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7036 if( rc==SQLITE_OK ){
7037 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007038#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007039 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007040 assert( pBt->autoVacuum || iMeta==0 );
7041 assert( iMeta==0 || iMeta==1 );
7042 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007043 }
drh64022502009-01-09 14:11:04 +00007044#endif
drh5df72a52002-06-06 23:16:05 +00007045 }
drhd677b3d2007-08-20 22:48:41 +00007046 sqlite3BtreeLeave(p);
7047 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007048}
drh8c42ca92001-06-22 19:15:00 +00007049
drh35a25da2009-07-08 15:14:50 +00007050#ifndef SQLITE_TEST
drhf328bc82004-05-10 23:29:49 +00007051/*
7052** Return the flag byte at the beginning of the page that the cursor
7053** is currently pointing to.
7054*/
7055int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00007056 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00007057 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00007058 */
danielk1977e448dc42008-01-02 11:50:51 +00007059 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00007060 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00007061 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00007062 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007063 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00007064 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00007065 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00007066}
drh35a25da2009-07-08 15:14:50 +00007067#endif
drhf328bc82004-05-10 23:29:49 +00007068
danielk1977a5533162009-02-24 10:01:51 +00007069#ifndef SQLITE_OMIT_BTREECOUNT
7070/*
7071** The first argument, pCur, is a cursor opened on some b-tree. Count the
7072** number of entries in the b-tree and write the result to *pnEntry.
7073**
7074** SQLITE_OK is returned if the operation is successfully executed.
7075** Otherwise, if an error is encountered (i.e. an IO error or database
7076** corruption) an SQLite error code is returned.
7077*/
7078int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7079 i64 nEntry = 0; /* Value to return in *pnEntry */
7080 int rc; /* Return code */
7081 rc = moveToRoot(pCur);
7082
7083 /* Unless an error occurs, the following loop runs one iteration for each
7084 ** page in the B-Tree structure (not including overflow pages).
7085 */
7086 while( rc==SQLITE_OK ){
7087 int iIdx; /* Index of child node in parent */
7088 MemPage *pPage; /* Current page of the b-tree */
7089
7090 /* If this is a leaf page or the tree is not an int-key tree, then
7091 ** this page contains countable entries. Increment the entry counter
7092 ** accordingly.
7093 */
7094 pPage = pCur->apPage[pCur->iPage];
7095 if( pPage->leaf || !pPage->intKey ){
7096 nEntry += pPage->nCell;
7097 }
7098
7099 /* pPage is a leaf node. This loop navigates the cursor so that it
7100 ** points to the first interior cell that it points to the parent of
7101 ** the next page in the tree that has not yet been visited. The
7102 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7103 ** of the page, or to the number of cells in the page if the next page
7104 ** to visit is the right-child of its parent.
7105 **
7106 ** If all pages in the tree have been visited, return SQLITE_OK to the
7107 ** caller.
7108 */
7109 if( pPage->leaf ){
7110 do {
7111 if( pCur->iPage==0 ){
7112 /* All pages of the b-tree have been visited. Return successfully. */
7113 *pnEntry = nEntry;
7114 return SQLITE_OK;
7115 }
7116 sqlite3BtreeMoveToParent(pCur);
7117 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7118
7119 pCur->aiIdx[pCur->iPage]++;
7120 pPage = pCur->apPage[pCur->iPage];
7121 }
7122
7123 /* Descend to the child node of the cell that the cursor currently
7124 ** points at. This is the right-child if (iIdx==pPage->nCell).
7125 */
7126 iIdx = pCur->aiIdx[pCur->iPage];
7127 if( iIdx==pPage->nCell ){
7128 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7129 }else{
7130 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7131 }
7132 }
7133
shanebe217792009-03-05 04:20:31 +00007134 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007135 return rc;
7136}
7137#endif
drhdd793422001-06-28 01:54:48 +00007138
drhdd793422001-06-28 01:54:48 +00007139/*
drh5eddca62001-06-30 21:53:53 +00007140** Return the pager associated with a BTree. This routine is used for
7141** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007142*/
danielk1977aef0bf62005-12-30 16:28:01 +00007143Pager *sqlite3BtreePager(Btree *p){
7144 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007145}
drh5eddca62001-06-30 21:53:53 +00007146
drhb7f91642004-10-31 02:22:47 +00007147#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007148/*
7149** Append a message to the error message string.
7150*/
drh2e38c322004-09-03 18:38:44 +00007151static void checkAppendMsg(
7152 IntegrityCk *pCheck,
7153 char *zMsg1,
7154 const char *zFormat,
7155 ...
7156){
7157 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007158 if( !pCheck->mxErr ) return;
7159 pCheck->mxErr--;
7160 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007161 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007162 if( pCheck->errMsg.nChar ){
7163 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007164 }
drhf089aa42008-07-08 19:34:06 +00007165 if( zMsg1 ){
7166 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7167 }
7168 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7169 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007170 if( pCheck->errMsg.mallocFailed ){
7171 pCheck->mallocFailed = 1;
7172 }
drh5eddca62001-06-30 21:53:53 +00007173}
drhb7f91642004-10-31 02:22:47 +00007174#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007175
drhb7f91642004-10-31 02:22:47 +00007176#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007177/*
7178** Add 1 to the reference count for page iPage. If this is the second
7179** reference to the page, add an error message to pCheck->zErrMsg.
7180** Return 1 if there are 2 ore more references to the page and 0 if
7181** if this is the first reference to the page.
7182**
7183** Also check that the page number is in bounds.
7184*/
danielk197789d40042008-11-17 14:20:56 +00007185static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007186 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007187 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007188 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007189 return 1;
7190 }
7191 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007192 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007193 return 1;
7194 }
7195 return (pCheck->anRef[iPage]++)>1;
7196}
7197
danielk1977afcdd022004-10-31 16:25:42 +00007198#ifndef SQLITE_OMIT_AUTOVACUUM
7199/*
7200** Check that the entry in the pointer-map for page iChild maps to
7201** page iParent, pointer type ptrType. If not, append an error message
7202** to pCheck.
7203*/
7204static void checkPtrmap(
7205 IntegrityCk *pCheck, /* Integrity check context */
7206 Pgno iChild, /* Child page number */
7207 u8 eType, /* Expected pointer map type */
7208 Pgno iParent, /* Expected pointer map parent page number */
7209 char *zContext /* Context description (used for error msg) */
7210){
7211 int rc;
7212 u8 ePtrmapType;
7213 Pgno iPtrmapParent;
7214
7215 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7216 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007217 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007218 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7219 return;
7220 }
7221
7222 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7223 checkAppendMsg(pCheck, zContext,
7224 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7225 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7226 }
7227}
7228#endif
7229
drh5eddca62001-06-30 21:53:53 +00007230/*
7231** Check the integrity of the freelist or of an overflow page list.
7232** Verify that the number of pages on the list is N.
7233*/
drh30e58752002-03-02 20:41:57 +00007234static void checkList(
7235 IntegrityCk *pCheck, /* Integrity checking context */
7236 int isFreeList, /* True for a freelist. False for overflow page list */
7237 int iPage, /* Page number for first page in the list */
7238 int N, /* Expected number of pages in the list */
7239 char *zContext /* Context for error messages */
7240){
7241 int i;
drh3a4c1412004-05-09 20:40:11 +00007242 int expected = N;
7243 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007244 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007245 DbPage *pOvflPage;
7246 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007247 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007248 checkAppendMsg(pCheck, zContext,
7249 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007250 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007251 break;
7252 }
7253 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007254 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007255 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007256 break;
7257 }
danielk19773b8a05f2007-03-19 17:44:26 +00007258 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007259 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007260 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007261#ifndef SQLITE_OMIT_AUTOVACUUM
7262 if( pCheck->pBt->autoVacuum ){
7263 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7264 }
7265#endif
drh45b1fac2008-07-04 17:52:42 +00007266 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007267 checkAppendMsg(pCheck, zContext,
7268 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007269 N--;
7270 }else{
7271 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007272 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007273#ifndef SQLITE_OMIT_AUTOVACUUM
7274 if( pCheck->pBt->autoVacuum ){
7275 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7276 }
7277#endif
7278 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007279 }
7280 N -= n;
drh30e58752002-03-02 20:41:57 +00007281 }
drh30e58752002-03-02 20:41:57 +00007282 }
danielk1977afcdd022004-10-31 16:25:42 +00007283#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007284 else{
7285 /* If this database supports auto-vacuum and iPage is not the last
7286 ** page in this overflow list, check that the pointer-map entry for
7287 ** the following page matches iPage.
7288 */
7289 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007290 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007291 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7292 }
danielk1977afcdd022004-10-31 16:25:42 +00007293 }
7294#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007295 iPage = get4byte(pOvflData);
7296 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007297 }
7298}
drhb7f91642004-10-31 02:22:47 +00007299#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007300
drhb7f91642004-10-31 02:22:47 +00007301#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007302/*
7303** Do various sanity checks on a single page of a tree. Return
7304** the tree depth. Root pages return 0. Parents of root pages
7305** return 1, and so forth.
7306**
7307** These checks are done:
7308**
7309** 1. Make sure that cells and freeblocks do not overlap
7310** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007311** NO 2. Make sure cell keys are in order.
7312** NO 3. Make sure no key is less than or equal to zLowerBound.
7313** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007314** 5. Check the integrity of overflow pages.
7315** 6. Recursively call checkTreePage on all children.
7316** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007317** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007318** the root of the tree.
7319*/
7320static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007321 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007322 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007323 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007324){
7325 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007326 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007327 int hdr, cellStart;
7328 int nCell;
drhda200cc2004-05-09 11:51:38 +00007329 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007330 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007331 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007332 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007333 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007334
drh5bb3eb92007-05-04 13:15:55 +00007335 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007336
drh5eddca62001-06-30 21:53:53 +00007337 /* Check that the page exists
7338 */
drhd9cb6ac2005-10-20 07:28:17 +00007339 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007340 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007341 if( iPage==0 ) return 0;
7342 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007343 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007344 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007345 checkAppendMsg(pCheck, zContext,
7346 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007347 return 0;
7348 }
danielk197771d5d2c2008-09-29 11:49:47 +00007349 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007350 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007351 checkAppendMsg(pCheck, zContext,
7352 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007353 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007354 return 0;
7355 }
7356
7357 /* Check out all the cells.
7358 */
7359 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007360 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007361 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007362 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007363 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007364
7365 /* Check payload overflow pages
7366 */
drh5bb3eb92007-05-04 13:15:55 +00007367 sqlite3_snprintf(sizeof(zContext), zContext,
7368 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007369 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007370 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007371 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007372 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007373 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007374 if( (sz>info.nLocal)
7375 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7376 ){
drhb6f41482004-05-14 01:58:11 +00007377 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007378 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7379#ifndef SQLITE_OMIT_AUTOVACUUM
7380 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007381 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007382 }
7383#endif
7384 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007385 }
7386
7387 /* Check sanity of left child page.
7388 */
drhda200cc2004-05-09 11:51:38 +00007389 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007390 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007391#ifndef SQLITE_OMIT_AUTOVACUUM
7392 if( pBt->autoVacuum ){
7393 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7394 }
7395#endif
danielk197762c14b32008-11-19 09:05:26 +00007396 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007397 if( i>0 && d2!=depth ){
7398 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7399 }
7400 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007401 }
drh5eddca62001-06-30 21:53:53 +00007402 }
drhda200cc2004-05-09 11:51:38 +00007403 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007404 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007405 sqlite3_snprintf(sizeof(zContext), zContext,
7406 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007407#ifndef SQLITE_OMIT_AUTOVACUUM
7408 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007409 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007410 }
7411#endif
danielk197762c14b32008-11-19 09:05:26 +00007412 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007413 }
drh5eddca62001-06-30 21:53:53 +00007414
7415 /* Check for complete coverage of the page
7416 */
drhda200cc2004-05-09 11:51:38 +00007417 data = pPage->aData;
7418 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007419 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007420 if( hit==0 ){
7421 pCheck->mallocFailed = 1;
7422 }else{
shane5780ebd2008-11-11 17:36:30 +00007423 u16 contentOffset = get2byte(&data[hdr+5]);
7424 if (contentOffset > usableSize) {
7425 checkAppendMsg(pCheck, 0,
7426 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007427 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007428 }
7429 memset(hit+contentOffset, 0, usableSize-contentOffset);
7430 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007431 nCell = get2byte(&data[hdr+3]);
7432 cellStart = hdr + 12 - 4*pPage->leaf;
7433 for(i=0; i<nCell; i++){
7434 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007435 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007436 int j;
danielk1977daca5432008-08-25 11:57:16 +00007437 if( pc<=usableSize ){
7438 size = cellSizePtr(pPage, &data[pc]);
7439 }
danielk19777701e812005-01-10 12:59:51 +00007440 if( (pc+size-1)>=usableSize || pc<0 ){
7441 checkAppendMsg(pCheck, 0,
7442 "Corruption detected in cell %d on page %d",i,iPage,0);
7443 }else{
7444 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7445 }
drh2e38c322004-09-03 18:38:44 +00007446 }
7447 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7448 cnt++){
7449 int size = get2byte(&data[i+2]);
7450 int j;
danielk19777701e812005-01-10 12:59:51 +00007451 if( (i+size-1)>=usableSize || i<0 ){
7452 checkAppendMsg(pCheck, 0,
7453 "Corruption detected in cell %d on page %d",i,iPage,0);
7454 }else{
7455 for(j=i+size-1; j>=i; j--) hit[j]++;
7456 }
drh2e38c322004-09-03 18:38:44 +00007457 i = get2byte(&data[i]);
7458 }
7459 for(i=cnt=0; i<usableSize; i++){
7460 if( hit[i]==0 ){
7461 cnt++;
7462 }else if( hit[i]>1 ){
7463 checkAppendMsg(pCheck, 0,
7464 "Multiple uses for byte %d of page %d", i, iPage);
7465 break;
7466 }
7467 }
7468 if( cnt!=data[hdr+7] ){
7469 checkAppendMsg(pCheck, 0,
7470 "Fragmented space is %d byte reported as %d on page %d",
7471 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007472 }
7473 }
shane0af3f892008-11-12 04:55:34 +00007474check_page_abort:
7475 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007476
drh4b70f112004-05-02 21:12:19 +00007477 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007478 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007479}
drhb7f91642004-10-31 02:22:47 +00007480#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007481
drhb7f91642004-10-31 02:22:47 +00007482#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007483/*
7484** This routine does a complete check of the given BTree file. aRoot[] is
7485** an array of pages numbers were each page number is the root page of
7486** a table. nRoot is the number of entries in aRoot.
7487**
danielk19773509a652009-07-06 18:56:13 +00007488** A read-only or read-write transaction must be opened before calling
7489** this function.
7490**
drhc890fec2008-08-01 20:10:08 +00007491** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007492** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007493** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007494** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007495*/
drh1dcdbc02007-01-27 02:24:54 +00007496char *sqlite3BtreeIntegrityCheck(
7497 Btree *p, /* The btree to be checked */
7498 int *aRoot, /* An array of root pages numbers for individual trees */
7499 int nRoot, /* Number of entries in aRoot[] */
7500 int mxErr, /* Stop reporting errors after this many */
7501 int *pnErr /* Write number of errors seen to this variable */
7502){
danielk197789d40042008-11-17 14:20:56 +00007503 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007504 int nRef;
drhaaab5722002-02-19 13:39:21 +00007505 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007506 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007507 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007508
drhd677b3d2007-08-20 22:48:41 +00007509 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007510 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007511 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007512 sCheck.pBt = pBt;
7513 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007514 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007515 sCheck.mxErr = mxErr;
7516 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007517 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007518 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007519 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007520 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007521 return 0;
7522 }
drhe5ae5732008-06-15 02:51:47 +00007523 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007524 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007525 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007526 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007527 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007528 }
drhda200cc2004-05-09 11:51:38 +00007529 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007530 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007531 if( i<=sCheck.nPage ){
7532 sCheck.anRef[i] = 1;
7533 }
drhf089aa42008-07-08 19:34:06 +00007534 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007535
7536 /* Check the integrity of the freelist
7537 */
drha34b6762004-05-07 13:30:42 +00007538 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7539 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007540
7541 /* Check all the tables.
7542 */
danielk197789d40042008-11-17 14:20:56 +00007543 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007544 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007545#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007546 if( pBt->autoVacuum && aRoot[i]>1 ){
7547 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7548 }
7549#endif
danielk197762c14b32008-11-19 09:05:26 +00007550 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007551 }
7552
7553 /* Make sure every page in the file is referenced
7554 */
drh1dcdbc02007-01-27 02:24:54 +00007555 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007556#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007557 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007558 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007559 }
danielk1977afcdd022004-10-31 16:25:42 +00007560#else
7561 /* If the database supports auto-vacuum, make sure no tables contain
7562 ** references to pointer-map pages.
7563 */
7564 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007565 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007566 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7567 }
7568 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007569 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007570 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7571 }
7572#endif
drh5eddca62001-06-30 21:53:53 +00007573 }
7574
drh64022502009-01-09 14:11:04 +00007575 /* Make sure this analysis did not leave any unref() pages.
7576 ** This is an internal consistency check; an integrity check
7577 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007578 */
drh64022502009-01-09 14:11:04 +00007579 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007580 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007581 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007582 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007583 );
drh5eddca62001-06-30 21:53:53 +00007584 }
7585
7586 /* Clean up and report errors.
7587 */
drhd677b3d2007-08-20 22:48:41 +00007588 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007589 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007590 if( sCheck.mallocFailed ){
7591 sqlite3StrAccumReset(&sCheck.errMsg);
7592 *pnErr = sCheck.nErr+1;
7593 return 0;
7594 }
drh1dcdbc02007-01-27 02:24:54 +00007595 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007596 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7597 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007598}
drhb7f91642004-10-31 02:22:47 +00007599#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007600
drh73509ee2003-04-06 20:44:45 +00007601/*
7602** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007603**
7604** The pager filename is invariant as long as the pager is
7605** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007606*/
danielk1977aef0bf62005-12-30 16:28:01 +00007607const char *sqlite3BtreeGetFilename(Btree *p){
7608 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007609 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007610}
7611
7612/*
danielk19775865e3d2004-06-14 06:03:57 +00007613** Return the pathname of the journal file for this database. The return
7614** value of this routine is the same regardless of whether the journal file
7615** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007616**
7617** The pager journal filename is invariant as long as the pager is
7618** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007619*/
danielk1977aef0bf62005-12-30 16:28:01 +00007620const char *sqlite3BtreeGetJournalname(Btree *p){
7621 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007622 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007623}
7624
danielk19771d850a72004-05-31 08:26:49 +00007625/*
7626** Return non-zero if a transaction is active.
7627*/
danielk1977aef0bf62005-12-30 16:28:01 +00007628int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007629 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007630 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007631}
7632
7633/*
danielk19772372c2b2006-06-27 16:34:56 +00007634** Return non-zero if a read (or write) transaction is active.
7635*/
7636int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007637 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007638 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007639 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007640}
7641
danielk197704103022009-02-03 16:51:24 +00007642int sqlite3BtreeIsInBackup(Btree *p){
7643 assert( p );
7644 assert( sqlite3_mutex_held(p->db->mutex) );
7645 return p->nBackup!=0;
7646}
7647
danielk19772372c2b2006-06-27 16:34:56 +00007648/*
danielk1977da184232006-01-05 11:34:32 +00007649** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007650** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007651** purposes (for example, to store a high-level schema associated with
7652** the shared-btree). The btree layer manages reference counting issues.
7653**
7654** The first time this is called on a shared-btree, nBytes bytes of memory
7655** are allocated, zeroed, and returned to the caller. For each subsequent
7656** call the nBytes parameter is ignored and a pointer to the same blob
7657** of memory returned.
7658**
danielk1977171bfed2008-06-23 09:50:50 +00007659** If the nBytes parameter is 0 and the blob of memory has not yet been
7660** allocated, a null pointer is returned. If the blob has already been
7661** allocated, it is returned as normal.
7662**
danielk1977da184232006-01-05 11:34:32 +00007663** Just before the shared-btree is closed, the function passed as the
7664** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007665** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007666** on the memory, the btree layer does that.
7667*/
7668void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7669 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007670 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007671 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007672 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007673 pBt->xFreeSchema = xFree;
7674 }
drh27641702007-08-22 02:56:42 +00007675 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007676 return pBt->pSchema;
7677}
7678
danielk1977c87d34d2006-01-06 13:00:28 +00007679/*
danielk1977404ca072009-03-16 13:19:36 +00007680** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7681** btree as the argument handle holds an exclusive lock on the
7682** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007683*/
7684int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007685 int rc;
drhe5fe6902007-12-07 18:55:28 +00007686 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007687 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007688 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7689 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007690 sqlite3BtreeLeave(p);
7691 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007692}
7693
drha154dcd2006-03-22 22:10:07 +00007694
7695#ifndef SQLITE_OMIT_SHARED_CACHE
7696/*
7697** Obtain a lock on the table whose root page is iTab. The
7698** lock is a write lock if isWritelock is true or a read lock
7699** if it is false.
7700*/
danielk1977c00da102006-01-07 13:21:04 +00007701int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007702 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007703 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007704 if( p->sharable ){
7705 u8 lockType = READ_LOCK + isWriteLock;
7706 assert( READ_LOCK+1==WRITE_LOCK );
7707 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007708
drh6a9ad3d2008-04-02 16:29:30 +00007709 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007710 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007711 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007712 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007713 }
7714 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007715 }
7716 return rc;
7717}
drha154dcd2006-03-22 22:10:07 +00007718#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007719
danielk1977b4e9af92007-05-01 17:49:49 +00007720#ifndef SQLITE_OMIT_INCRBLOB
7721/*
7722** Argument pCsr must be a cursor opened for writing on an
7723** INTKEY table currently pointing at a valid table entry.
7724** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007725**
7726** Only the data content may only be modified, it is not possible to
7727** change the length of the data stored. If this function is called with
7728** parameters that attempt to write past the end of the existing data,
7729** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007730*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007731int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007732 int rc;
drh1fee73e2007-08-29 04:00:57 +00007733 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007734 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007735 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007736
danielk1977c9000e62009-07-08 13:55:28 +00007737 rc = restoreCursorPosition(pCsr);
7738 if( rc!=SQLITE_OK ){
7739 return rc;
7740 }
danielk19773588ceb2008-06-10 17:30:26 +00007741 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7742 if( pCsr->eState!=CURSOR_VALID ){
7743 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007744 }
7745
danielk1977c9000e62009-07-08 13:55:28 +00007746 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007747 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007748 ** (b) there is a read/write transaction open,
7749 ** (c) the connection holds a write-lock on the table (if required),
7750 ** (d) there are no conflicting read-locks, and
7751 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007752 */
danielk1977c9000e62009-07-08 13:55:28 +00007753 assert( pCsr->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007754 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7755 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7756 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007757 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007758
danielk19779f8d6402007-05-02 17:48:45 +00007759 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007760}
danielk19772dec9702007-05-02 16:48:37 +00007761
7762/*
7763** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007764** overflow list for the current row. This is used by cursors opened
7765** for incremental blob IO only.
7766**
7767** This function sets a flag only. The actual page location cache
7768** (stored in BtCursor.aOverflow[]) is allocated and used by function
7769** accessPayload() (the worker function for sqlite3BtreeData() and
7770** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007771*/
7772void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007773 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007774 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007775 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007776 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007777 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007778}
danielk1977b4e9af92007-05-01 17:49:49 +00007779#endif