blob: e93eeffb360fb147a2a7d0a59b01b397aee28424 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000687 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000697 if( pIdxKey->nField==0 ){
698 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
699 return SQLITE_CORRUPT_BKPT;
700 }
danielk19773509a652009-07-06 18:56:13 +0000701 }else{
702 pIdxKey = 0;
703 }
704 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000705 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000706 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000707 }
708 return rc;
709}
710
711/*
drh980b1a72006-08-16 16:42:48 +0000712** Restore the cursor to the position it was in (or as close to as possible)
713** when saveCursorPosition() was called. Note that this call deletes the
714** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000715** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000716** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000717*/
danielk197730548662009-07-09 05:07:37 +0000718static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000719 int rc;
drh1fee73e2007-08-29 04:00:57 +0000720 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000721 assert( pCur->eState>=CURSOR_REQUIRESEEK );
722 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000723 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000724 }
drh980b1a72006-08-16 16:42:48 +0000725 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000726 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000727 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000728 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000729 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000730 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000731 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
732 pCur->eState = CURSOR_SKIPNEXT;
733 }
drh980b1a72006-08-16 16:42:48 +0000734 }
735 return rc;
736}
737
drha3460582008-07-11 21:02:53 +0000738#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000739 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000740 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000741 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000742
drha3460582008-07-11 21:02:53 +0000743/*
744** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000745** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000746** at is deleted out from under them.
747**
748** This routine returns an error code if something goes wrong. The
749** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
750*/
751int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
752 int rc;
753
754 rc = restoreCursorPosition(pCur);
755 if( rc ){
756 *pHasMoved = 1;
757 return rc;
758 }
drh9b47ee32013-08-20 03:13:51 +0000759 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drha3460582008-07-11 21:02:53 +0000760 *pHasMoved = 1;
761 }else{
762 *pHasMoved = 0;
763 }
764 return SQLITE_OK;
765}
766
danielk1977599fcba2004-11-08 07:13:13 +0000767#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000768/*
drha3152892007-05-05 11:48:52 +0000769** Given a page number of a regular database page, return the page
770** number for the pointer-map page that contains the entry for the
771** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000772**
773** Return 0 (not a valid page) for pgno==1 since there is
774** no pointer map associated with page 1. The integrity_check logic
775** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000776*/
danielk1977266664d2006-02-10 08:24:21 +0000777static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000778 int nPagesPerMapPage;
779 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000780 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000781 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000782 nPagesPerMapPage = (pBt->usableSize/5)+1;
783 iPtrMap = (pgno-2)/nPagesPerMapPage;
784 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000785 if( ret==PENDING_BYTE_PAGE(pBt) ){
786 ret++;
787 }
788 return ret;
789}
danielk1977a19df672004-11-03 11:37:07 +0000790
danielk1977afcdd022004-10-31 16:25:42 +0000791/*
danielk1977afcdd022004-10-31 16:25:42 +0000792** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000793**
794** This routine updates the pointer map entry for page number 'key'
795** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000796**
797** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
798** a no-op. If an error occurs, the appropriate error code is written
799** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000800*/
drh98add2e2009-07-20 17:11:49 +0000801static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000802 DbPage *pDbPage; /* The pointer map page */
803 u8 *pPtrmap; /* The pointer map data */
804 Pgno iPtrmap; /* The pointer map page number */
805 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000806 int rc; /* Return code from subfunctions */
807
808 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000809
drh1fee73e2007-08-29 04:00:57 +0000810 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000811 /* The master-journal page number must never be used as a pointer map page */
812 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
813
danielk1977ac11ee62005-01-15 12:45:51 +0000814 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000815 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000816 *pRC = SQLITE_CORRUPT_BKPT;
817 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000818 }
danielk1977266664d2006-02-10 08:24:21 +0000819 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000820 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000821 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000822 *pRC = rc;
823 return;
danielk1977afcdd022004-10-31 16:25:42 +0000824 }
danielk19778c666b12008-07-18 09:34:57 +0000825 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000826 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000827 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000828 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000829 }
drhfc243732011-05-17 15:21:56 +0000830 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000831 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000832
drh615ae552005-01-16 23:21:00 +0000833 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
834 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000835 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000836 if( rc==SQLITE_OK ){
837 pPtrmap[offset] = eType;
838 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000839 }
danielk1977afcdd022004-10-31 16:25:42 +0000840 }
841
drh4925a552009-07-07 11:39:58 +0000842ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000843 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000844}
845
846/*
847** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000848**
849** This routine retrieves the pointer map entry for page 'key', writing
850** the type and parent page number to *pEType and *pPgno respectively.
851** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000852*/
danielk1977aef0bf62005-12-30 16:28:01 +0000853static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000854 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000855 int iPtrmap; /* Pointer map page index */
856 u8 *pPtrmap; /* Pointer map page data */
857 int offset; /* Offset of entry in pointer map */
858 int rc;
859
drh1fee73e2007-08-29 04:00:57 +0000860 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000861
danielk1977266664d2006-02-10 08:24:21 +0000862 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000863 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000864 if( rc!=0 ){
865 return rc;
866 }
danielk19773b8a05f2007-03-19 17:44:26 +0000867 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000868
danielk19778c666b12008-07-18 09:34:57 +0000869 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000870 if( offset<0 ){
871 sqlite3PagerUnref(pDbPage);
872 return SQLITE_CORRUPT_BKPT;
873 }
874 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000875 assert( pEType!=0 );
876 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000877 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000878
danielk19773b8a05f2007-03-19 17:44:26 +0000879 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000880 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000881 return SQLITE_OK;
882}
883
danielk197785d90ca2008-07-19 14:25:15 +0000884#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000885 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000886 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000887 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000888#endif
danielk1977afcdd022004-10-31 16:25:42 +0000889
drh0d316a42002-08-11 20:10:47 +0000890/*
drh271efa52004-05-30 19:19:05 +0000891** Given a btree page and a cell index (0 means the first cell on
892** the page, 1 means the second cell, and so forth) return a pointer
893** to the cell content.
894**
895** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000896*/
drh1688c862008-07-18 02:44:17 +0000897#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000898 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000899#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
900
drh43605152004-05-29 21:46:49 +0000901
902/*
drh93a960a2008-07-10 00:32:42 +0000903** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000904** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000905*/
906static u8 *findOverflowCell(MemPage *pPage, int iCell){
907 int i;
drh1fee73e2007-08-29 04:00:57 +0000908 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000909 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000910 int k;
drh2cbd78b2012-02-02 19:37:18 +0000911 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000912 if( k<=iCell ){
913 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000914 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000915 }
916 iCell--;
917 }
918 }
danielk19771cc5ed82007-05-16 17:28:43 +0000919 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000920}
921
922/*
923** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000924** are two versions of this function. btreeParseCell() takes a
925** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000926** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000927**
928** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000929** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000930*/
danielk197730548662009-07-09 05:07:37 +0000931static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000932 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000933 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000934 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000935){
drhf49661a2008-12-10 16:45:50 +0000936 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000937 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000938
drh1fee73e2007-08-29 04:00:57 +0000939 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000940
drh43605152004-05-29 21:46:49 +0000941 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000942 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000943 n = pPage->childPtrSize;
944 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000945 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000946 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000947 assert( n==0 );
948 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000949 }else{
950 nPayload = 0;
951 }
drh1bd10f82008-12-10 21:19:56 +0000952 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000953 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000954 }else{
drh79df1f42008-07-18 00:57:33 +0000955 pInfo->nData = 0;
956 n += getVarint32(&pCell[n], nPayload);
957 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000958 }
drh72365832007-03-06 15:53:44 +0000959 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000960 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000961 testcase( nPayload==pPage->maxLocal );
962 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000963 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000964 /* This is the (easy) common case where the entire payload fits
965 ** on the local page. No overflow is required.
966 */
drh41692e92011-01-25 04:34:51 +0000967 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000968 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000969 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000970 }else{
drh271efa52004-05-30 19:19:05 +0000971 /* If the payload will not fit completely on the local page, we have
972 ** to decide how much to store locally and how much to spill onto
973 ** overflow pages. The strategy is to minimize the amount of unused
974 ** space on overflow pages while keeping the amount of local storage
975 ** in between minLocal and maxLocal.
976 **
977 ** Warning: changing the way overflow payload is distributed in any
978 ** way will result in an incompatible file format.
979 */
980 int minLocal; /* Minimum amount of payload held locally */
981 int maxLocal; /* Maximum amount of payload held locally */
982 int surplus; /* Overflow payload available for local storage */
983
984 minLocal = pPage->minLocal;
985 maxLocal = pPage->maxLocal;
986 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000987 testcase( surplus==maxLocal );
988 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000989 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000990 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000991 }else{
drhf49661a2008-12-10 16:45:50 +0000992 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000993 }
drhf49661a2008-12-10 16:45:50 +0000994 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000995 pInfo->nSize = pInfo->iOverflow + 4;
996 }
drh3aac2dd2004-04-26 14:10:20 +0000997}
danielk19771cc5ed82007-05-16 17:28:43 +0000998#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000999 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1000static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001001 MemPage *pPage, /* Page containing the cell */
1002 int iCell, /* The cell index. First cell is 0 */
1003 CellInfo *pInfo /* Fill in this structure */
1004){
danielk19771cc5ed82007-05-16 17:28:43 +00001005 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001006}
drh3aac2dd2004-04-26 14:10:20 +00001007
1008/*
drh43605152004-05-29 21:46:49 +00001009** Compute the total number of bytes that a Cell needs in the cell
1010** data area of the btree-page. The return number includes the cell
1011** data header and the local payload, but not any overflow page or
1012** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001013*/
danielk1977ae5558b2009-04-29 11:31:47 +00001014static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1015 u8 *pIter = &pCell[pPage->childPtrSize];
1016 u32 nSize;
1017
1018#ifdef SQLITE_DEBUG
1019 /* The value returned by this function should always be the same as
1020 ** the (CellInfo.nSize) value found by doing a full parse of the
1021 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1022 ** this function verifies that this invariant is not violated. */
1023 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001024 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001025#endif
1026
1027 if( pPage->intKey ){
1028 u8 *pEnd;
1029 if( pPage->hasData ){
1030 pIter += getVarint32(pIter, nSize);
1031 }else{
1032 nSize = 0;
1033 }
1034
1035 /* pIter now points at the 64-bit integer key value, a variable length
1036 ** integer. The following block moves pIter to point at the first byte
1037 ** past the end of the key value. */
1038 pEnd = &pIter[9];
1039 while( (*pIter++)&0x80 && pIter<pEnd );
1040 }else{
1041 pIter += getVarint32(pIter, nSize);
1042 }
1043
drh0a45c272009-07-08 01:49:11 +00001044 testcase( nSize==pPage->maxLocal );
1045 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001046 if( nSize>pPage->maxLocal ){
1047 int minLocal = pPage->minLocal;
1048 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001049 testcase( nSize==pPage->maxLocal );
1050 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001051 if( nSize>pPage->maxLocal ){
1052 nSize = minLocal;
1053 }
1054 nSize += 4;
1055 }
shane75ac1de2009-06-09 18:58:52 +00001056 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001057
1058 /* The minimum size of any cell is 4 bytes. */
1059 if( nSize<4 ){
1060 nSize = 4;
1061 }
1062
1063 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001064 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001065}
drh0ee3dbe2009-10-16 15:05:18 +00001066
1067#ifdef SQLITE_DEBUG
1068/* This variation on cellSizePtr() is used inside of assert() statements
1069** only. */
drha9121e42008-02-19 14:59:35 +00001070static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001071 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001072}
danielk1977bc6ada42004-06-30 08:20:16 +00001073#endif
drh3b7511c2001-05-26 13:15:44 +00001074
danielk197779a40da2005-01-16 08:00:01 +00001075#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001076/*
danielk197726836652005-01-17 01:33:13 +00001077** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001078** to an overflow page, insert an entry into the pointer-map
1079** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001080*/
drh98add2e2009-07-20 17:11:49 +00001081static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001082 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001083 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001084 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001085 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001086 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001087 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001088 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001089 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001090 }
danielk1977ac11ee62005-01-15 12:45:51 +00001091}
danielk197779a40da2005-01-16 08:00:01 +00001092#endif
1093
danielk1977ac11ee62005-01-15 12:45:51 +00001094
drhda200cc2004-05-09 11:51:38 +00001095/*
drh72f82862001-05-24 21:06:34 +00001096** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001097** end of the page and all free space is collected into one
1098** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001099** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001100*/
shane0af3f892008-11-12 04:55:34 +00001101static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001102 int i; /* Loop counter */
1103 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001104 int hdr; /* Offset to the page header */
1105 int size; /* Size of a cell */
1106 int usableSize; /* Number of usable bytes on a page */
1107 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001108 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001109 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001110 unsigned char *data; /* The page data */
1111 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001112 int iCellFirst; /* First allowable cell index */
1113 int iCellLast; /* Last possible cell index */
1114
drh2af926b2001-05-15 00:39:25 +00001115
danielk19773b8a05f2007-03-19 17:44:26 +00001116 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001117 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001118 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001119 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001120 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001121 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001122 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001123 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001124 cellOffset = pPage->cellOffset;
1125 nCell = pPage->nCell;
1126 assert( nCell==get2byte(&data[hdr+3]) );
1127 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001128 cbrk = get2byte(&data[hdr+5]);
1129 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1130 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001131 iCellFirst = cellOffset + 2*nCell;
1132 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001133 for(i=0; i<nCell; i++){
1134 u8 *pAddr; /* The i-th cell pointer */
1135 pAddr = &data[cellOffset + i*2];
1136 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001137 testcase( pc==iCellFirst );
1138 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001139#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001140 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001141 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1142 */
1143 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001144 return SQLITE_CORRUPT_BKPT;
1145 }
drh17146622009-07-07 17:38:38 +00001146#endif
1147 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001148 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001149 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001150#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1151 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001152 return SQLITE_CORRUPT_BKPT;
1153 }
drh17146622009-07-07 17:38:38 +00001154#else
1155 if( cbrk<iCellFirst || pc+size>usableSize ){
1156 return SQLITE_CORRUPT_BKPT;
1157 }
1158#endif
drh7157e1d2009-07-09 13:25:32 +00001159 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001160 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001161 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001162 memcpy(&data[cbrk], &temp[pc], size);
1163 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001164 }
drh17146622009-07-07 17:38:38 +00001165 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001166 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001167 data[hdr+1] = 0;
1168 data[hdr+2] = 0;
1169 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001170 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001171 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001172 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001173 return SQLITE_CORRUPT_BKPT;
1174 }
shane0af3f892008-11-12 04:55:34 +00001175 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001176}
1177
drha059ad02001-04-17 20:09:11 +00001178/*
danielk19776011a752009-04-01 16:25:32 +00001179** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001180** as the first argument. Write into *pIdx the index into pPage->aData[]
1181** of the first byte of allocated space. Return either SQLITE_OK or
1182** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001183**
drh0a45c272009-07-08 01:49:11 +00001184** The caller guarantees that there is sufficient space to make the
1185** allocation. This routine might need to defragment in order to bring
1186** all the space together, however. This routine will avoid using
1187** the first two bytes past the cell pointer area since presumably this
1188** allocation is being made in order to insert a new cell, so we will
1189** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001190*/
drh0a45c272009-07-08 01:49:11 +00001191static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001192 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1193 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1194 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001195 int top; /* First byte of cell content area */
1196 int gap; /* First byte of gap between cell pointers and cell content */
1197 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001198 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001199
danielk19773b8a05f2007-03-19 17:44:26 +00001200 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001201 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001203 assert( nByte>=0 ); /* Minimum cell size is 4 */
1204 assert( pPage->nFree>=nByte );
1205 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001206 usableSize = pPage->pBt->usableSize;
1207 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001208
1209 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001210 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1211 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001212 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001213 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001214 testcase( gap+2==top );
1215 testcase( gap+1==top );
1216 testcase( gap==top );
1217
danielk19776011a752009-04-01 16:25:32 +00001218 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001219 /* Always defragment highly fragmented pages */
1220 rc = defragmentPage(pPage);
1221 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001222 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001223 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001224 /* Search the freelist looking for a free slot big enough to satisfy
1225 ** the request. The allocation is made from the first free slot in
drhf7b54962013-05-28 12:11:54 +00001226 ** the list that is large enough to accommodate it.
danielk19776011a752009-04-01 16:25:32 +00001227 */
1228 int pc, addr;
1229 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001230 int size; /* Size of the free slot */
1231 if( pc>usableSize-4 || pc<addr+4 ){
1232 return SQLITE_CORRUPT_BKPT;
1233 }
1234 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001235 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001236 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001237 testcase( x==4 );
1238 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001239 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001240 /* Remove the slot from the free-list. Update the number of
1241 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001242 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001243 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001244 }else if( size+pc > usableSize ){
1245 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001246 }else{
danielk1977fad91942009-04-29 17:49:59 +00001247 /* The slot remains on the free-list. Reduce its size to account
1248 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001249 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001250 }
drh0a45c272009-07-08 01:49:11 +00001251 *pIdx = pc + x;
1252 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001253 }
drh9e572e62004-04-23 23:43:10 +00001254 }
1255 }
drh43605152004-05-29 21:46:49 +00001256
drh0a45c272009-07-08 01:49:11 +00001257 /* Check to make sure there is enough space in the gap to satisfy
1258 ** the allocation. If not, defragment.
1259 */
1260 testcase( gap+2+nByte==top );
1261 if( gap+2+nByte>top ){
1262 rc = defragmentPage(pPage);
1263 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001264 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001265 assert( gap+nByte<=top );
1266 }
1267
1268
drh43605152004-05-29 21:46:49 +00001269 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001270 ** and the cell content area. The btreeInitPage() call has already
1271 ** validated the freelist. Given that the freelist is valid, there
1272 ** is no way that the allocation can extend off the end of the page.
1273 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001274 */
drh0a45c272009-07-08 01:49:11 +00001275 top -= nByte;
drh43605152004-05-29 21:46:49 +00001276 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001277 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001278 *pIdx = top;
1279 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001280}
1281
1282/*
drh9e572e62004-04-23 23:43:10 +00001283** Return a section of the pPage->aData to the freelist.
1284** The first byte of the new free block is pPage->aDisk[start]
1285** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001286**
1287** Most of the effort here is involved in coalesing adjacent
1288** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001289*/
shanedcc50b72008-11-13 18:29:50 +00001290static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001291 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001292 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001293 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001294
drh9e572e62004-04-23 23:43:10 +00001295 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001296 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001297 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001298 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001299 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001300 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001301
drhc9166342012-01-05 23:32:06 +00001302 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001303 /* Overwrite deleted information with zeros when the secure_delete
1304 ** option is enabled */
1305 memset(&data[start], 0, size);
1306 }
drhfcce93f2006-02-22 03:08:32 +00001307
drh0a45c272009-07-08 01:49:11 +00001308 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001309 ** even though the freeblock list was checked by btreeInitPage(),
1310 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001311 ** freeblocks that overlapped cells. Nor does it detect when the
1312 ** cell content area exceeds the value in the page header. If these
1313 ** situations arise, then subsequent insert operations might corrupt
1314 ** the freelist. So we do need to check for corruption while scanning
1315 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001316 */
drh43605152004-05-29 21:46:49 +00001317 hdr = pPage->hdrOffset;
1318 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001319 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001320 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001321 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001322 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001323 return SQLITE_CORRUPT_BKPT;
1324 }
drh3aac2dd2004-04-26 14:10:20 +00001325 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001326 }
drh0a45c272009-07-08 01:49:11 +00001327 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001328 return SQLITE_CORRUPT_BKPT;
1329 }
drh3aac2dd2004-04-26 14:10:20 +00001330 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001331 put2byte(&data[addr], start);
1332 put2byte(&data[start], pbegin);
1333 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001334 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001335
1336 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001337 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001338 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001339 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001340 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001341 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001342 pnext = get2byte(&data[pbegin]);
1343 psize = get2byte(&data[pbegin+2]);
1344 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1345 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001346 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001347 return SQLITE_CORRUPT_BKPT;
1348 }
drh0a45c272009-07-08 01:49:11 +00001349 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001350 x = get2byte(&data[pnext]);
1351 put2byte(&data[pbegin], x);
1352 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1353 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001354 }else{
drh3aac2dd2004-04-26 14:10:20 +00001355 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001356 }
1357 }
drh7e3b0a02001-04-28 16:52:40 +00001358
drh43605152004-05-29 21:46:49 +00001359 /* If the cell content area begins with a freeblock, remove it. */
1360 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1361 int top;
1362 pbegin = get2byte(&data[hdr+1]);
1363 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001364 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1365 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001366 }
drhc5053fb2008-11-27 02:22:10 +00001367 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001368 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001369}
1370
1371/*
drh271efa52004-05-30 19:19:05 +00001372** Decode the flags byte (the first byte of the header) for a page
1373** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001374**
1375** Only the following combinations are supported. Anything different
1376** indicates a corrupt database files:
1377**
1378** PTF_ZERODATA
1379** PTF_ZERODATA | PTF_LEAF
1380** PTF_LEAFDATA | PTF_INTKEY
1381** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001382*/
drh44845222008-07-17 18:39:57 +00001383static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001384 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001385
1386 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001387 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001388 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001389 flagByte &= ~PTF_LEAF;
1390 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001391 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001392 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1393 pPage->intKey = 1;
1394 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001395 pPage->maxLocal = pBt->maxLeaf;
1396 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001397 }else if( flagByte==PTF_ZERODATA ){
1398 pPage->intKey = 0;
1399 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001400 pPage->maxLocal = pBt->maxLocal;
1401 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001402 }else{
1403 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001404 }
drhc9166342012-01-05 23:32:06 +00001405 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001406 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001407}
1408
1409/*
drh7e3b0a02001-04-28 16:52:40 +00001410** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001411**
1412** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001413** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001414** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1415** guarantee that the page is well-formed. It only shows that
1416** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001417*/
danielk197730548662009-07-09 05:07:37 +00001418static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001419
danielk197771d5d2c2008-09-29 11:49:47 +00001420 assert( pPage->pBt!=0 );
1421 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001422 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001423 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1424 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001425
1426 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001427 u16 pc; /* Address of a freeblock within pPage->aData[] */
1428 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001429 u8 *data; /* Equal to pPage->aData */
1430 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001431 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001432 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001433 int nFree; /* Number of unused bytes on the page */
1434 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001435 int iCellFirst; /* First allowable cell or freeblock offset */
1436 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001437
1438 pBt = pPage->pBt;
1439
danielk1977eaa06f62008-09-18 17:34:44 +00001440 hdr = pPage->hdrOffset;
1441 data = pPage->aData;
1442 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001443 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1444 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001445 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001446 usableSize = pBt->usableSize;
1447 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001448 pPage->aDataEnd = &data[usableSize];
1449 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001450 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001451 pPage->nCell = get2byte(&data[hdr+3]);
1452 if( pPage->nCell>MX_CELL(pBt) ){
1453 /* To many cells for a single page. The page must be corrupt */
1454 return SQLITE_CORRUPT_BKPT;
1455 }
drhb908d762009-07-08 16:54:40 +00001456 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001457
shane5eff7cf2009-08-10 03:57:58 +00001458 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001459 ** of page when parsing a cell.
1460 **
1461 ** The following block of code checks early to see if a cell extends
1462 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1463 ** returned if it does.
1464 */
drh0a45c272009-07-08 01:49:11 +00001465 iCellFirst = cellOffset + 2*pPage->nCell;
1466 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001467#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001468 {
drh69e931e2009-06-03 21:04:35 +00001469 int i; /* Index into the cell pointer array */
1470 int sz; /* Size of a cell */
1471
drh69e931e2009-06-03 21:04:35 +00001472 if( !pPage->leaf ) iCellLast--;
1473 for(i=0; i<pPage->nCell; i++){
1474 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001475 testcase( pc==iCellFirst );
1476 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001477 if( pc<iCellFirst || pc>iCellLast ){
1478 return SQLITE_CORRUPT_BKPT;
1479 }
1480 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001481 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001482 if( pc+sz>usableSize ){
1483 return SQLITE_CORRUPT_BKPT;
1484 }
1485 }
drh0a45c272009-07-08 01:49:11 +00001486 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001487 }
1488#endif
1489
danielk1977eaa06f62008-09-18 17:34:44 +00001490 /* Compute the total free space on the page */
1491 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001492 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001493 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001494 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001495 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001496 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001497 return SQLITE_CORRUPT_BKPT;
1498 }
1499 next = get2byte(&data[pc]);
1500 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001501 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1502 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001503 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001504 return SQLITE_CORRUPT_BKPT;
1505 }
shane85095702009-06-15 16:27:08 +00001506 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001507 pc = next;
1508 }
danielk197793c829c2009-06-03 17:26:17 +00001509
1510 /* At this point, nFree contains the sum of the offset to the start
1511 ** of the cell-content area plus the number of free bytes within
1512 ** the cell-content area. If this is greater than the usable-size
1513 ** of the page, then the page must be corrupted. This check also
1514 ** serves to verify that the offset to the start of the cell-content
1515 ** area, according to the page header, lies within the page.
1516 */
1517 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001518 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001519 }
shane5eff7cf2009-08-10 03:57:58 +00001520 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001521 pPage->isInit = 1;
1522 }
drh9e572e62004-04-23 23:43:10 +00001523 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001524}
1525
1526/*
drh8b2f49b2001-06-08 00:21:52 +00001527** Set up a raw page so that it looks like a database page holding
1528** no entries.
drhbd03cae2001-06-02 02:40:57 +00001529*/
drh9e572e62004-04-23 23:43:10 +00001530static void zeroPage(MemPage *pPage, int flags){
1531 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001532 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001533 u8 hdr = pPage->hdrOffset;
1534 u16 first;
drh9e572e62004-04-23 23:43:10 +00001535
danielk19773b8a05f2007-03-19 17:44:26 +00001536 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001537 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1538 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001539 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001540 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001541 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001542 memset(&data[hdr], 0, pBt->usableSize - hdr);
1543 }
drh1bd10f82008-12-10 21:19:56 +00001544 data[hdr] = (char)flags;
1545 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001546 memset(&data[hdr+1], 0, 4);
1547 data[hdr+7] = 0;
1548 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001549 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001550 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001551 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001552 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001553 pPage->aDataEnd = &data[pBt->usableSize];
1554 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001555 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001556 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1557 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001558 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001559 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001560}
1561
drh897a8202008-09-18 01:08:15 +00001562
1563/*
1564** Convert a DbPage obtained from the pager into a MemPage used by
1565** the btree layer.
1566*/
1567static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1568 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1569 pPage->aData = sqlite3PagerGetData(pDbPage);
1570 pPage->pDbPage = pDbPage;
1571 pPage->pBt = pBt;
1572 pPage->pgno = pgno;
1573 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1574 return pPage;
1575}
1576
drhbd03cae2001-06-02 02:40:57 +00001577/*
drh3aac2dd2004-04-26 14:10:20 +00001578** Get a page from the pager. Initialize the MemPage.pBt and
1579** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001580**
1581** If the noContent flag is set, it means that we do not care about
1582** the content of the page at this time. So do not go to the disk
1583** to fetch the content. Just fill in the content with zeros for now.
1584** If in the future we call sqlite3PagerWrite() on this page, that
1585** means we have started to be concerned about content and the disk
1586** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001587*/
danielk197730548662009-07-09 05:07:37 +00001588static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001589 BtShared *pBt, /* The btree */
1590 Pgno pgno, /* Number of the page to fetch */
1591 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001592 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001593){
drh3aac2dd2004-04-26 14:10:20 +00001594 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001595 DbPage *pDbPage;
1596
drhb00fc3b2013-08-21 23:42:32 +00001597 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001598 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001599 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001600 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001601 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001602 return SQLITE_OK;
1603}
1604
1605/*
danielk1977bea2a942009-01-20 17:06:27 +00001606** Retrieve a page from the pager cache. If the requested page is not
1607** already in the pager cache return NULL. Initialize the MemPage.pBt and
1608** MemPage.aData elements if needed.
1609*/
1610static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1611 DbPage *pDbPage;
1612 assert( sqlite3_mutex_held(pBt->mutex) );
1613 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1614 if( pDbPage ){
1615 return btreePageFromDbPage(pDbPage, pgno, pBt);
1616 }
1617 return 0;
1618}
1619
1620/*
danielk197789d40042008-11-17 14:20:56 +00001621** Return the size of the database file in pages. If there is any kind of
1622** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001623*/
drhb1299152010-03-30 22:58:33 +00001624static Pgno btreePagecount(BtShared *pBt){
1625 return pBt->nPage;
1626}
1627u32 sqlite3BtreeLastPage(Btree *p){
1628 assert( sqlite3BtreeHoldsMutex(p) );
1629 assert( ((p->pBt->nPage)&0x8000000)==0 );
1630 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001631}
1632
1633/*
danielk197789bc4bc2009-07-21 19:25:24 +00001634** Get a page from the pager and initialize it. This routine is just a
1635** convenience wrapper around separate calls to btreeGetPage() and
1636** btreeInitPage().
1637**
1638** If an error occurs, then the value *ppPage is set to is undefined. It
1639** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001640*/
1641static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001642 BtShared *pBt, /* The database file */
1643 Pgno pgno, /* Number of the page to get */
1644 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001645 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001646){
1647 int rc;
drh1fee73e2007-08-29 04:00:57 +00001648 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001649 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001650
danba3cbf32010-06-30 04:29:03 +00001651 if( pgno>btreePagecount(pBt) ){
1652 rc = SQLITE_CORRUPT_BKPT;
1653 }else{
drhb00fc3b2013-08-21 23:42:32 +00001654 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
danba3cbf32010-06-30 04:29:03 +00001655 if( rc==SQLITE_OK ){
1656 rc = btreeInitPage(*ppPage);
1657 if( rc!=SQLITE_OK ){
1658 releasePage(*ppPage);
1659 }
danielk197789bc4bc2009-07-21 19:25:24 +00001660 }
drhee696e22004-08-30 16:52:17 +00001661 }
danba3cbf32010-06-30 04:29:03 +00001662
1663 testcase( pgno==0 );
1664 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001665 return rc;
1666}
1667
1668/*
drh3aac2dd2004-04-26 14:10:20 +00001669** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001670** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001671*/
drh4b70f112004-05-02 21:12:19 +00001672static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001673 if( pPage ){
1674 assert( pPage->aData );
1675 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001676 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1677 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001678 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001679 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001680 }
1681}
1682
1683/*
drha6abd042004-06-09 17:37:22 +00001684** During a rollback, when the pager reloads information into the cache
1685** so that the cache is restored to its original state at the start of
1686** the transaction, for each page restored this routine is called.
1687**
1688** This routine needs to reset the extra data section at the end of the
1689** page to agree with the restored data.
1690*/
danielk1977eaa06f62008-09-18 17:34:44 +00001691static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001692 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001693 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001694 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001695 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001696 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001697 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001698 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001699 /* pPage might not be a btree page; it might be an overflow page
1700 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001701 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001702 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001703 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001704 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001705 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001706 }
drha6abd042004-06-09 17:37:22 +00001707 }
1708}
1709
1710/*
drhe5fe6902007-12-07 18:55:28 +00001711** Invoke the busy handler for a btree.
1712*/
danielk19771ceedd32008-11-19 10:22:33 +00001713static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001714 BtShared *pBt = (BtShared*)pArg;
1715 assert( pBt->db );
1716 assert( sqlite3_mutex_held(pBt->db->mutex) );
1717 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1718}
1719
1720/*
drhad3e0102004-09-03 23:32:18 +00001721** Open a database file.
1722**
drh382c0242001-10-06 16:33:02 +00001723** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001724** then an ephemeral database is created. The ephemeral database might
1725** be exclusively in memory, or it might use a disk-based memory cache.
1726** Either way, the ephemeral database will be automatically deleted
1727** when sqlite3BtreeClose() is called.
1728**
drhe53831d2007-08-17 01:14:38 +00001729** If zFilename is ":memory:" then an in-memory database is created
1730** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001731**
drh33f111d2012-01-17 15:29:14 +00001732** The "flags" parameter is a bitmask that might contain bits like
1733** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001734**
drhc47fd8e2009-04-30 13:30:32 +00001735** If the database is already opened in the same database connection
1736** and we are in shared cache mode, then the open will fail with an
1737** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1738** objects in the same database connection since doing so will lead
1739** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001740*/
drh23e11ca2004-05-04 17:27:28 +00001741int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001742 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001743 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001744 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001745 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001746 int flags, /* Options */
1747 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001748){
drh7555d8e2009-03-20 13:15:30 +00001749 BtShared *pBt = 0; /* Shared part of btree structure */
1750 Btree *p; /* Handle to return */
1751 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1752 int rc = SQLITE_OK; /* Result code from this function */
1753 u8 nReserve; /* Byte of unused space on each page */
1754 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001755
drh75c014c2010-08-30 15:02:28 +00001756 /* True if opening an ephemeral, temporary database */
1757 const int isTempDb = zFilename==0 || zFilename[0]==0;
1758
danielk1977aef0bf62005-12-30 16:28:01 +00001759 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001760 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001761 */
drhb0a7c9c2010-12-06 21:09:59 +00001762#ifdef SQLITE_OMIT_MEMORYDB
1763 const int isMemdb = 0;
1764#else
1765 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001766 || (isTempDb && sqlite3TempInMemory(db))
1767 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001768#endif
1769
drhe5fe6902007-12-07 18:55:28 +00001770 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001771 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001772 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001773 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1774
1775 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1776 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1777
1778 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1779 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001780
drh75c014c2010-08-30 15:02:28 +00001781 if( isMemdb ){
1782 flags |= BTREE_MEMORY;
1783 }
1784 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1785 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1786 }
drh17435752007-08-16 04:30:38 +00001787 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001788 if( !p ){
1789 return SQLITE_NOMEM;
1790 }
1791 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001792 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001793#ifndef SQLITE_OMIT_SHARED_CACHE
1794 p->lock.pBtree = p;
1795 p->lock.iTable = 1;
1796#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001797
drh198bf392006-01-06 21:52:49 +00001798#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001799 /*
1800 ** If this Btree is a candidate for shared cache, try to find an
1801 ** existing BtShared object that we can share with
1802 */
drh4ab9d252012-05-26 20:08:49 +00001803 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001804 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001805 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001806 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001807 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001808 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001809 if( !zFullPathname ){
1810 sqlite3_free(p);
1811 return SQLITE_NOMEM;
1812 }
drhafc8b7f2012-05-26 18:06:38 +00001813 if( isMemdb ){
1814 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1815 }else{
1816 rc = sqlite3OsFullPathname(pVfs, zFilename,
1817 nFullPathname, zFullPathname);
1818 if( rc ){
1819 sqlite3_free(zFullPathname);
1820 sqlite3_free(p);
1821 return rc;
1822 }
drh070ad6b2011-11-17 11:43:19 +00001823 }
drh30ddce62011-10-15 00:16:30 +00001824#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001825 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1826 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001827 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001828 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001829#endif
drh78f82d12008-09-02 00:52:52 +00001830 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001831 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001832 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001833 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001834 int iDb;
1835 for(iDb=db->nDb-1; iDb>=0; iDb--){
1836 Btree *pExisting = db->aDb[iDb].pBt;
1837 if( pExisting && pExisting->pBt==pBt ){
1838 sqlite3_mutex_leave(mutexShared);
1839 sqlite3_mutex_leave(mutexOpen);
1840 sqlite3_free(zFullPathname);
1841 sqlite3_free(p);
1842 return SQLITE_CONSTRAINT;
1843 }
1844 }
drhff0587c2007-08-29 17:43:19 +00001845 p->pBt = pBt;
1846 pBt->nRef++;
1847 break;
1848 }
1849 }
1850 sqlite3_mutex_leave(mutexShared);
1851 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001852 }
drhff0587c2007-08-29 17:43:19 +00001853#ifdef SQLITE_DEBUG
1854 else{
1855 /* In debug mode, we mark all persistent databases as sharable
1856 ** even when they are not. This exercises the locking code and
1857 ** gives more opportunity for asserts(sqlite3_mutex_held())
1858 ** statements to find locking problems.
1859 */
1860 p->sharable = 1;
1861 }
1862#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001863 }
1864#endif
drha059ad02001-04-17 20:09:11 +00001865 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001866 /*
1867 ** The following asserts make sure that structures used by the btree are
1868 ** the right size. This is to guard against size changes that result
1869 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001870 */
drhe53831d2007-08-17 01:14:38 +00001871 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1872 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1873 assert( sizeof(u32)==4 );
1874 assert( sizeof(u16)==2 );
1875 assert( sizeof(Pgno)==4 );
1876
1877 pBt = sqlite3MallocZero( sizeof(*pBt) );
1878 if( pBt==0 ){
1879 rc = SQLITE_NOMEM;
1880 goto btree_open_out;
1881 }
danielk197771d5d2c2008-09-29 11:49:47 +00001882 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001883 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001884 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001885 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001886 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1887 }
1888 if( rc!=SQLITE_OK ){
1889 goto btree_open_out;
1890 }
shanehbd2aaf92010-09-01 02:38:21 +00001891 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001892 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001893 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001894 p->pBt = pBt;
1895
drhe53831d2007-08-17 01:14:38 +00001896 pBt->pCursor = 0;
1897 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001898 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001899#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001900 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001901#endif
drhb2eced52010-08-12 02:41:12 +00001902 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001903 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1904 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001905 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001906#ifndef SQLITE_OMIT_AUTOVACUUM
1907 /* If the magic name ":memory:" will create an in-memory database, then
1908 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1909 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1910 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1911 ** regular file-name. In this case the auto-vacuum applies as per normal.
1912 */
1913 if( zFilename && !isMemdb ){
1914 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1915 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1916 }
1917#endif
1918 nReserve = 0;
1919 }else{
1920 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001921 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001922#ifndef SQLITE_OMIT_AUTOVACUUM
1923 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1924 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1925#endif
1926 }
drhfa9601a2009-06-18 17:22:39 +00001927 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001928 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001929 pBt->usableSize = pBt->pageSize - nReserve;
1930 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001931
1932#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1933 /* Add the new BtShared object to the linked list sharable BtShareds.
1934 */
1935 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001936 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001937 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001938 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001939 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001940 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001941 if( pBt->mutex==0 ){
1942 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001943 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001944 goto btree_open_out;
1945 }
drhff0587c2007-08-29 17:43:19 +00001946 }
drhe53831d2007-08-17 01:14:38 +00001947 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001948 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1949 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001950 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001951 }
drheee46cf2004-11-06 00:02:48 +00001952#endif
drh90f5ecb2004-07-22 01:19:35 +00001953 }
danielk1977aef0bf62005-12-30 16:28:01 +00001954
drhcfed7bc2006-03-13 14:28:05 +00001955#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001956 /* If the new Btree uses a sharable pBtShared, then link the new
1957 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001958 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001959 */
drhe53831d2007-08-17 01:14:38 +00001960 if( p->sharable ){
1961 int i;
1962 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001963 for(i=0; i<db->nDb; i++){
1964 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001965 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1966 if( p->pBt<pSib->pBt ){
1967 p->pNext = pSib;
1968 p->pPrev = 0;
1969 pSib->pPrev = p;
1970 }else{
drhabddb0c2007-08-20 13:14:28 +00001971 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001972 pSib = pSib->pNext;
1973 }
1974 p->pNext = pSib->pNext;
1975 p->pPrev = pSib;
1976 if( p->pNext ){
1977 p->pNext->pPrev = p;
1978 }
1979 pSib->pNext = p;
1980 }
1981 break;
1982 }
1983 }
danielk1977aef0bf62005-12-30 16:28:01 +00001984 }
danielk1977aef0bf62005-12-30 16:28:01 +00001985#endif
1986 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001987
1988btree_open_out:
1989 if( rc!=SQLITE_OK ){
1990 if( pBt && pBt->pPager ){
1991 sqlite3PagerClose(pBt->pPager);
1992 }
drh17435752007-08-16 04:30:38 +00001993 sqlite3_free(pBt);
1994 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001995 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001996 }else{
1997 /* If the B-Tree was successfully opened, set the pager-cache size to the
1998 ** default value. Except, when opening on an existing shared pager-cache,
1999 ** do not change the pager-cache size.
2000 */
2001 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2002 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2003 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002004 }
drh7555d8e2009-03-20 13:15:30 +00002005 if( mutexOpen ){
2006 assert( sqlite3_mutex_held(mutexOpen) );
2007 sqlite3_mutex_leave(mutexOpen);
2008 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002009 return rc;
drha059ad02001-04-17 20:09:11 +00002010}
2011
2012/*
drhe53831d2007-08-17 01:14:38 +00002013** Decrement the BtShared.nRef counter. When it reaches zero,
2014** remove the BtShared structure from the sharing list. Return
2015** true if the BtShared.nRef counter reaches zero and return
2016** false if it is still positive.
2017*/
2018static int removeFromSharingList(BtShared *pBt){
2019#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002020 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002021 BtShared *pList;
2022 int removed = 0;
2023
drhd677b3d2007-08-20 22:48:41 +00002024 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002025 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002026 sqlite3_mutex_enter(pMaster);
2027 pBt->nRef--;
2028 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002029 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2030 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002031 }else{
drh78f82d12008-09-02 00:52:52 +00002032 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002033 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002034 pList=pList->pNext;
2035 }
drh34004ce2008-07-11 16:15:17 +00002036 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002037 pList->pNext = pBt->pNext;
2038 }
2039 }
drh3285db22007-09-03 22:00:39 +00002040 if( SQLITE_THREADSAFE ){
2041 sqlite3_mutex_free(pBt->mutex);
2042 }
drhe53831d2007-08-17 01:14:38 +00002043 removed = 1;
2044 }
2045 sqlite3_mutex_leave(pMaster);
2046 return removed;
2047#else
2048 return 1;
2049#endif
2050}
2051
2052/*
drhf7141992008-06-19 00:16:08 +00002053** Make sure pBt->pTmpSpace points to an allocation of
2054** MX_CELL_SIZE(pBt) bytes.
2055*/
2056static void allocateTempSpace(BtShared *pBt){
2057 if( !pBt->pTmpSpace ){
2058 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002059
2060 /* One of the uses of pBt->pTmpSpace is to format cells before
2061 ** inserting them into a leaf page (function fillInCell()). If
2062 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2063 ** by the various routines that manipulate binary cells. Which
2064 ** can mean that fillInCell() only initializes the first 2 or 3
2065 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2066 ** it into a database page. This is not actually a problem, but it
2067 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2068 ** data is passed to system call write(). So to avoid this error,
2069 ** zero the first 4 bytes of temp space here. */
2070 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002071 }
2072}
2073
2074/*
2075** Free the pBt->pTmpSpace allocation
2076*/
2077static void freeTempSpace(BtShared *pBt){
2078 sqlite3PageFree( pBt->pTmpSpace);
2079 pBt->pTmpSpace = 0;
2080}
2081
2082/*
drha059ad02001-04-17 20:09:11 +00002083** Close an open database and invalidate all cursors.
2084*/
danielk1977aef0bf62005-12-30 16:28:01 +00002085int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002086 BtShared *pBt = p->pBt;
2087 BtCursor *pCur;
2088
danielk1977aef0bf62005-12-30 16:28:01 +00002089 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002090 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002091 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002092 pCur = pBt->pCursor;
2093 while( pCur ){
2094 BtCursor *pTmp = pCur;
2095 pCur = pCur->pNext;
2096 if( pTmp->pBtree==p ){
2097 sqlite3BtreeCloseCursor(pTmp);
2098 }
drha059ad02001-04-17 20:09:11 +00002099 }
danielk1977aef0bf62005-12-30 16:28:01 +00002100
danielk19778d34dfd2006-01-24 16:37:57 +00002101 /* Rollback any active transaction and free the handle structure.
2102 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2103 ** this handle.
2104 */
drh0f198a72012-02-13 16:43:16 +00002105 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002106 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002107
danielk1977aef0bf62005-12-30 16:28:01 +00002108 /* If there are still other outstanding references to the shared-btree
2109 ** structure, return now. The remainder of this procedure cleans
2110 ** up the shared-btree.
2111 */
drhe53831d2007-08-17 01:14:38 +00002112 assert( p->wantToLock==0 && p->locked==0 );
2113 if( !p->sharable || removeFromSharingList(pBt) ){
2114 /* The pBt is no longer on the sharing list, so we can access
2115 ** it without having to hold the mutex.
2116 **
2117 ** Clean out and delete the BtShared object.
2118 */
2119 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002120 sqlite3PagerClose(pBt->pPager);
2121 if( pBt->xFreeSchema && pBt->pSchema ){
2122 pBt->xFreeSchema(pBt->pSchema);
2123 }
drhb9755982010-07-24 16:34:37 +00002124 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002125 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002126 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002127 }
2128
drhe53831d2007-08-17 01:14:38 +00002129#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002130 assert( p->wantToLock==0 );
2131 assert( p->locked==0 );
2132 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2133 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002134#endif
2135
drhe53831d2007-08-17 01:14:38 +00002136 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002137 return SQLITE_OK;
2138}
2139
2140/*
drhda47d772002-12-02 04:25:19 +00002141** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002142**
2143** The maximum number of cache pages is set to the absolute
2144** value of mxPage. If mxPage is negative, the pager will
2145** operate asynchronously - it will not stop to do fsync()s
2146** to insure data is written to the disk surface before
2147** continuing. Transactions still work if synchronous is off,
2148** and the database cannot be corrupted if this program
2149** crashes. But if the operating system crashes or there is
2150** an abrupt power failure when synchronous is off, the database
2151** could be left in an inconsistent and unrecoverable state.
2152** Synchronous is on by default so database corruption is not
2153** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002154*/
danielk1977aef0bf62005-12-30 16:28:01 +00002155int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2156 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002157 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002158 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002159 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002160 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002161 return SQLITE_OK;
2162}
2163
2164/*
dan5d8a1372013-03-19 19:28:06 +00002165** Change the limit on the amount of the database file that may be
2166** memory mapped.
2167*/
drh9b4c59f2013-04-15 17:03:42 +00002168int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002169 BtShared *pBt = p->pBt;
2170 assert( sqlite3_mutex_held(p->db->mutex) );
2171 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002172 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002173 sqlite3BtreeLeave(p);
2174 return SQLITE_OK;
2175}
2176
2177/*
drh973b6e32003-02-12 14:09:42 +00002178** Change the way data is synced to disk in order to increase or decrease
2179** how well the database resists damage due to OS crashes and power
2180** failures. Level 1 is the same as asynchronous (no syncs() occur and
2181** there is a high probability of damage) Level 2 is the default. There
2182** is a very low but non-zero probability of damage. Level 3 reduces the
2183** probability of damage to near zero but with a write performance reduction.
2184*/
danielk197793758c82005-01-21 08:13:14 +00002185#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002186int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002187 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002188 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002189){
danielk1977aef0bf62005-12-30 16:28:01 +00002190 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002191 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002192 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002193 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002194 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002195 return SQLITE_OK;
2196}
danielk197793758c82005-01-21 08:13:14 +00002197#endif
drh973b6e32003-02-12 14:09:42 +00002198
drh2c8997b2005-08-27 16:36:48 +00002199/*
2200** Return TRUE if the given btree is set to safety level 1. In other
2201** words, return TRUE if no sync() occurs on the disk files.
2202*/
danielk1977aef0bf62005-12-30 16:28:01 +00002203int sqlite3BtreeSyncDisabled(Btree *p){
2204 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002205 int rc;
drhe5fe6902007-12-07 18:55:28 +00002206 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002207 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002208 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002209 rc = sqlite3PagerNosync(pBt->pPager);
2210 sqlite3BtreeLeave(p);
2211 return rc;
drh2c8997b2005-08-27 16:36:48 +00002212}
2213
drh973b6e32003-02-12 14:09:42 +00002214/*
drh90f5ecb2004-07-22 01:19:35 +00002215** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002216** Or, if the page size has already been fixed, return SQLITE_READONLY
2217** without changing anything.
drh06f50212004-11-02 14:24:33 +00002218**
2219** The page size must be a power of 2 between 512 and 65536. If the page
2220** size supplied does not meet this constraint then the page size is not
2221** changed.
2222**
2223** Page sizes are constrained to be a power of two so that the region
2224** of the database file used for locking (beginning at PENDING_BYTE,
2225** the first byte past the 1GB boundary, 0x40000000) needs to occur
2226** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002227**
2228** If parameter nReserve is less than zero, then the number of reserved
2229** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002230**
drhc9166342012-01-05 23:32:06 +00002231** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002232** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002233*/
drhce4869f2009-04-02 20:16:58 +00002234int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002235 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002236 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002237 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002238 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002239 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002240 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002241 return SQLITE_READONLY;
2242 }
2243 if( nReserve<0 ){
2244 nReserve = pBt->pageSize - pBt->usableSize;
2245 }
drhf49661a2008-12-10 16:45:50 +00002246 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002247 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2248 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002249 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002250 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002251 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002252 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002253 }
drhfa9601a2009-06-18 17:22:39 +00002254 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002255 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002256 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002257 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002258 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002259}
2260
2261/*
2262** Return the currently defined page size
2263*/
danielk1977aef0bf62005-12-30 16:28:01 +00002264int sqlite3BtreeGetPageSize(Btree *p){
2265 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002266}
drh7f751222009-03-17 22:33:00 +00002267
drha1f38532012-10-01 12:44:26 +00002268#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002269/*
2270** This function is similar to sqlite3BtreeGetReserve(), except that it
2271** may only be called if it is guaranteed that the b-tree mutex is already
2272** held.
2273**
2274** This is useful in one special case in the backup API code where it is
2275** known that the shared b-tree mutex is held, but the mutex on the
2276** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2277** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002278** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002279*/
2280int sqlite3BtreeGetReserveNoMutex(Btree *p){
2281 assert( sqlite3_mutex_held(p->pBt->mutex) );
2282 return p->pBt->pageSize - p->pBt->usableSize;
2283}
drha1f38532012-10-01 12:44:26 +00002284#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002285
danbb2b4412011-04-06 17:54:31 +00002286#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002287/*
2288** Return the number of bytes of space at the end of every page that
2289** are intentually left unused. This is the "reserved" space that is
2290** sometimes used by extensions.
2291*/
danielk1977aef0bf62005-12-30 16:28:01 +00002292int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002293 int n;
2294 sqlite3BtreeEnter(p);
2295 n = p->pBt->pageSize - p->pBt->usableSize;
2296 sqlite3BtreeLeave(p);
2297 return n;
drh2011d5f2004-07-22 02:40:37 +00002298}
drhf8e632b2007-05-08 14:51:36 +00002299
2300/*
2301** Set the maximum page count for a database if mxPage is positive.
2302** No changes are made if mxPage is 0 or negative.
2303** Regardless of the value of mxPage, return the maximum page count.
2304*/
2305int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002306 int n;
2307 sqlite3BtreeEnter(p);
2308 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2309 sqlite3BtreeLeave(p);
2310 return n;
drhf8e632b2007-05-08 14:51:36 +00002311}
drh5b47efa2010-02-12 18:18:39 +00002312
2313/*
drhc9166342012-01-05 23:32:06 +00002314** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2315** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002316** setting after the change.
2317*/
2318int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2319 int b;
drhaf034ed2010-02-12 19:46:26 +00002320 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002321 sqlite3BtreeEnter(p);
2322 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002323 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2324 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002325 }
drhc9166342012-01-05 23:32:06 +00002326 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002327 sqlite3BtreeLeave(p);
2328 return b;
2329}
danielk1977576ec6b2005-01-21 11:55:25 +00002330#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002331
2332/*
danielk1977951af802004-11-05 15:45:09 +00002333** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2334** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2335** is disabled. The default value for the auto-vacuum property is
2336** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2337*/
danielk1977aef0bf62005-12-30 16:28:01 +00002338int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002339#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002340 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002341#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002342 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002343 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002344 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002345
2346 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002347 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002348 rc = SQLITE_READONLY;
2349 }else{
drh076d4662009-02-18 20:31:18 +00002350 pBt->autoVacuum = av ?1:0;
2351 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002352 }
drhd677b3d2007-08-20 22:48:41 +00002353 sqlite3BtreeLeave(p);
2354 return rc;
danielk1977951af802004-11-05 15:45:09 +00002355#endif
2356}
2357
2358/*
2359** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2360** enabled 1 is returned. Otherwise 0.
2361*/
danielk1977aef0bf62005-12-30 16:28:01 +00002362int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002363#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002364 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002365#else
drhd677b3d2007-08-20 22:48:41 +00002366 int rc;
2367 sqlite3BtreeEnter(p);
2368 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002369 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2370 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2371 BTREE_AUTOVACUUM_INCR
2372 );
drhd677b3d2007-08-20 22:48:41 +00002373 sqlite3BtreeLeave(p);
2374 return rc;
danielk1977951af802004-11-05 15:45:09 +00002375#endif
2376}
2377
2378
2379/*
drha34b6762004-05-07 13:30:42 +00002380** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002381** also acquire a readlock on that file.
2382**
2383** SQLITE_OK is returned on success. If the file is not a
2384** well-formed database file, then SQLITE_CORRUPT is returned.
2385** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002386** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002387*/
danielk1977aef0bf62005-12-30 16:28:01 +00002388static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002389 int rc; /* Result code from subfunctions */
2390 MemPage *pPage1; /* Page 1 of the database file */
2391 int nPage; /* Number of pages in the database */
2392 int nPageFile = 0; /* Number of pages in the database file */
2393 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002394
drh1fee73e2007-08-29 04:00:57 +00002395 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002396 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002397 rc = sqlite3PagerSharedLock(pBt->pPager);
2398 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002399 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002400 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002401
2402 /* Do some checking to help insure the file we opened really is
2403 ** a valid database file.
2404 */
drhc2a4bab2010-04-02 12:46:45 +00002405 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002406 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002407 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002408 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002409 }
2410 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002411 u32 pageSize;
2412 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002413 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002414 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002415 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002416 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002417 }
dan5cf53532010-05-01 16:40:20 +00002418
2419#ifdef SQLITE_OMIT_WAL
2420 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002421 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002422 }
2423 if( page1[19]>1 ){
2424 goto page1_init_failed;
2425 }
2426#else
dane04dc882010-04-20 18:53:15 +00002427 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002428 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002429 }
dane04dc882010-04-20 18:53:15 +00002430 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002431 goto page1_init_failed;
2432 }
drhe5ae5732008-06-15 02:51:47 +00002433
dana470aeb2010-04-21 11:43:38 +00002434 /* If the write version is set to 2, this database should be accessed
2435 ** in WAL mode. If the log is not already open, open it now. Then
2436 ** return SQLITE_OK and return without populating BtShared.pPage1.
2437 ** The caller detects this and calls this function again. This is
2438 ** required as the version of page 1 currently in the page1 buffer
2439 ** may not be the latest version - there may be a newer one in the log
2440 ** file.
2441 */
drhc9166342012-01-05 23:32:06 +00002442 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002443 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002444 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002445 if( rc!=SQLITE_OK ){
2446 goto page1_init_failed;
2447 }else if( isOpen==0 ){
2448 releasePage(pPage1);
2449 return SQLITE_OK;
2450 }
dan8b5444b2010-04-27 14:37:47 +00002451 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002452 }
dan5cf53532010-05-01 16:40:20 +00002453#endif
dane04dc882010-04-20 18:53:15 +00002454
drhe5ae5732008-06-15 02:51:47 +00002455 /* The maximum embedded fraction must be exactly 25%. And the minimum
2456 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2457 ** The original design allowed these amounts to vary, but as of
2458 ** version 3.6.0, we require them to be fixed.
2459 */
2460 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2461 goto page1_init_failed;
2462 }
drhb2eced52010-08-12 02:41:12 +00002463 pageSize = (page1[16]<<8) | (page1[17]<<16);
2464 if( ((pageSize-1)&pageSize)!=0
2465 || pageSize>SQLITE_MAX_PAGE_SIZE
2466 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002467 ){
drh07d183d2005-05-01 22:52:42 +00002468 goto page1_init_failed;
2469 }
2470 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002471 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002472 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002473 /* After reading the first page of the database assuming a page size
2474 ** of BtShared.pageSize, we have discovered that the page-size is
2475 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2476 ** zero and return SQLITE_OK. The caller will call this function
2477 ** again with the correct page-size.
2478 */
2479 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002480 pBt->usableSize = usableSize;
2481 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002482 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002483 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2484 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002485 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002486 }
danecac6702011-02-09 18:19:20 +00002487 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002488 rc = SQLITE_CORRUPT_BKPT;
2489 goto page1_init_failed;
2490 }
drhb33e1b92009-06-18 11:29:20 +00002491 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002492 goto page1_init_failed;
2493 }
drh43b18e12010-08-17 19:40:08 +00002494 pBt->pageSize = pageSize;
2495 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002496#ifndef SQLITE_OMIT_AUTOVACUUM
2497 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002498 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002499#endif
drh306dc212001-05-21 13:45:10 +00002500 }
drhb6f41482004-05-14 01:58:11 +00002501
2502 /* maxLocal is the maximum amount of payload to store locally for
2503 ** a cell. Make sure it is small enough so that at least minFanout
2504 ** cells can will fit on one page. We assume a 10-byte page header.
2505 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002506 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002507 ** 4-byte child pointer
2508 ** 9-byte nKey value
2509 ** 4-byte nData value
2510 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002511 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002512 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2513 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002514 */
shaneh1df2db72010-08-18 02:28:48 +00002515 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2516 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2517 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2518 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002519 if( pBt->maxLocal>127 ){
2520 pBt->max1bytePayload = 127;
2521 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002522 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002523 }
drh2e38c322004-09-03 18:38:44 +00002524 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002525 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002526 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002527 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002528
drh72f82862001-05-24 21:06:34 +00002529page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002530 releasePage(pPage1);
2531 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002532 return rc;
drh306dc212001-05-21 13:45:10 +00002533}
2534
drh85ec3b62013-05-14 23:12:06 +00002535#ifndef NDEBUG
2536/*
2537** Return the number of cursors open on pBt. This is for use
2538** in assert() expressions, so it is only compiled if NDEBUG is not
2539** defined.
2540**
2541** Only write cursors are counted if wrOnly is true. If wrOnly is
2542** false then all cursors are counted.
2543**
2544** For the purposes of this routine, a cursor is any cursor that
2545** is capable of reading or writing to the databse. Cursors that
2546** have been tripped into the CURSOR_FAULT state are not counted.
2547*/
2548static int countValidCursors(BtShared *pBt, int wrOnly){
2549 BtCursor *pCur;
2550 int r = 0;
2551 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2552 if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2553 }
2554 return r;
2555}
2556#endif
2557
drh306dc212001-05-21 13:45:10 +00002558/*
drhb8ca3072001-12-05 00:21:20 +00002559** If there are no outstanding cursors and we are not in the middle
2560** of a transaction but there is a read lock on the database, then
2561** this routine unrefs the first page of the database file which
2562** has the effect of releasing the read lock.
2563**
drhb8ca3072001-12-05 00:21:20 +00002564** If there is a transaction in progress, this routine is a no-op.
2565*/
danielk1977aef0bf62005-12-30 16:28:01 +00002566static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002567 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002568 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002569 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002570 assert( pBt->pPage1->aData );
2571 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2572 assert( pBt->pPage1->aData );
2573 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002574 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002575 }
2576}
2577
2578/*
drhe39f2f92009-07-23 01:43:59 +00002579** If pBt points to an empty file then convert that empty file
2580** into a new empty database by initializing the first page of
2581** the database.
drh8b2f49b2001-06-08 00:21:52 +00002582*/
danielk1977aef0bf62005-12-30 16:28:01 +00002583static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002584 MemPage *pP1;
2585 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002586 int rc;
drhd677b3d2007-08-20 22:48:41 +00002587
drh1fee73e2007-08-29 04:00:57 +00002588 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002589 if( pBt->nPage>0 ){
2590 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002591 }
drh3aac2dd2004-04-26 14:10:20 +00002592 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002593 assert( pP1!=0 );
2594 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002595 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002596 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002597 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2598 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002599 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2600 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002601 data[18] = 1;
2602 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002603 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2604 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002605 data[21] = 64;
2606 data[22] = 32;
2607 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002608 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002609 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002610 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002611#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002612 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002613 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002614 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002615 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002616#endif
drhdd3cd972010-03-27 17:12:36 +00002617 pBt->nPage = 1;
2618 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002619 return SQLITE_OK;
2620}
2621
2622/*
danb483eba2012-10-13 19:58:11 +00002623** Initialize the first page of the database file (creating a database
2624** consisting of a single page and no schema objects). Return SQLITE_OK
2625** if successful, or an SQLite error code otherwise.
2626*/
2627int sqlite3BtreeNewDb(Btree *p){
2628 int rc;
2629 sqlite3BtreeEnter(p);
2630 p->pBt->nPage = 0;
2631 rc = newDatabase(p->pBt);
2632 sqlite3BtreeLeave(p);
2633 return rc;
2634}
2635
2636/*
danielk1977ee5741e2004-05-31 10:01:34 +00002637** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002638** is started if the second argument is nonzero, otherwise a read-
2639** transaction. If the second argument is 2 or more and exclusive
2640** transaction is started, meaning that no other process is allowed
2641** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002642** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002643** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002644**
danielk1977ee5741e2004-05-31 10:01:34 +00002645** A write-transaction must be started before attempting any
2646** changes to the database. None of the following routines
2647** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002648**
drh23e11ca2004-05-04 17:27:28 +00002649** sqlite3BtreeCreateTable()
2650** sqlite3BtreeCreateIndex()
2651** sqlite3BtreeClearTable()
2652** sqlite3BtreeDropTable()
2653** sqlite3BtreeInsert()
2654** sqlite3BtreeDelete()
2655** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002656**
drhb8ef32c2005-03-14 02:01:49 +00002657** If an initial attempt to acquire the lock fails because of lock contention
2658** and the database was previously unlocked, then invoke the busy handler
2659** if there is one. But if there was previously a read-lock, do not
2660** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2661** returned when there is already a read-lock in order to avoid a deadlock.
2662**
2663** Suppose there are two processes A and B. A has a read lock and B has
2664** a reserved lock. B tries to promote to exclusive but is blocked because
2665** of A's read lock. A tries to promote to reserved but is blocked by B.
2666** One or the other of the two processes must give way or there can be
2667** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2668** when A already has a read lock, we encourage A to give up and let B
2669** proceed.
drha059ad02001-04-17 20:09:11 +00002670*/
danielk1977aef0bf62005-12-30 16:28:01 +00002671int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002672 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002673 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002674 int rc = SQLITE_OK;
2675
drhd677b3d2007-08-20 22:48:41 +00002676 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002677 btreeIntegrity(p);
2678
danielk1977ee5741e2004-05-31 10:01:34 +00002679 /* If the btree is already in a write-transaction, or it
2680 ** is already in a read-transaction and a read-transaction
2681 ** is requested, this is a no-op.
2682 */
danielk1977aef0bf62005-12-30 16:28:01 +00002683 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002684 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002685 }
dan56c517a2013-09-26 11:04:33 +00002686 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002687
2688 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002689 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002690 rc = SQLITE_READONLY;
2691 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002692 }
2693
danielk1977404ca072009-03-16 13:19:36 +00002694#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002695 /* If another database handle has already opened a write transaction
2696 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002697 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002698 */
drhc9166342012-01-05 23:32:06 +00002699 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2700 || (pBt->btsFlags & BTS_PENDING)!=0
2701 ){
danielk1977404ca072009-03-16 13:19:36 +00002702 pBlock = pBt->pWriter->db;
2703 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002704 BtLock *pIter;
2705 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2706 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002707 pBlock = pIter->pBtree->db;
2708 break;
danielk1977641b0f42007-12-21 04:47:25 +00002709 }
2710 }
2711 }
danielk1977404ca072009-03-16 13:19:36 +00002712 if( pBlock ){
2713 sqlite3ConnectionBlocked(p->db, pBlock);
2714 rc = SQLITE_LOCKED_SHAREDCACHE;
2715 goto trans_begun;
2716 }
danielk1977641b0f42007-12-21 04:47:25 +00002717#endif
2718
danielk1977602b4662009-07-02 07:47:33 +00002719 /* Any read-only or read-write transaction implies a read-lock on
2720 ** page 1. So if some other shared-cache client already has a write-lock
2721 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002722 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2723 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002724
drhc9166342012-01-05 23:32:06 +00002725 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2726 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002727 do {
danielk1977295dc102009-04-01 19:07:03 +00002728 /* Call lockBtree() until either pBt->pPage1 is populated or
2729 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2730 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2731 ** reading page 1 it discovers that the page-size of the database
2732 ** file is not pBt->pageSize. In this case lockBtree() will update
2733 ** pBt->pageSize to the page-size of the file on disk.
2734 */
2735 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002736
drhb8ef32c2005-03-14 02:01:49 +00002737 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002738 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002739 rc = SQLITE_READONLY;
2740 }else{
danielk1977d8293352009-04-30 09:10:37 +00002741 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002742 if( rc==SQLITE_OK ){
2743 rc = newDatabase(pBt);
2744 }
drhb8ef32c2005-03-14 02:01:49 +00002745 }
2746 }
2747
danielk1977bd434552009-03-18 10:33:00 +00002748 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002749 unlockBtreeIfUnused(pBt);
2750 }
danf9b76712010-06-01 14:12:45 +00002751 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002752 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002753
2754 if( rc==SQLITE_OK ){
2755 if( p->inTrans==TRANS_NONE ){
2756 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002757#ifndef SQLITE_OMIT_SHARED_CACHE
2758 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002759 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002760 p->lock.eLock = READ_LOCK;
2761 p->lock.pNext = pBt->pLock;
2762 pBt->pLock = &p->lock;
2763 }
2764#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002765 }
2766 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2767 if( p->inTrans>pBt->inTransaction ){
2768 pBt->inTransaction = p->inTrans;
2769 }
danielk1977404ca072009-03-16 13:19:36 +00002770 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002771 MemPage *pPage1 = pBt->pPage1;
2772#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002773 assert( !pBt->pWriter );
2774 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002775 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2776 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002777#endif
dan59257dc2010-08-04 11:34:31 +00002778
2779 /* If the db-size header field is incorrect (as it may be if an old
2780 ** client has been writing the database file), update it now. Doing
2781 ** this sooner rather than later means the database size can safely
2782 ** re-read the database size from page 1 if a savepoint or transaction
2783 ** rollback occurs within the transaction.
2784 */
2785 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2786 rc = sqlite3PagerWrite(pPage1->pDbPage);
2787 if( rc==SQLITE_OK ){
2788 put4byte(&pPage1->aData[28], pBt->nPage);
2789 }
2790 }
2791 }
danielk1977aef0bf62005-12-30 16:28:01 +00002792 }
2793
drhd677b3d2007-08-20 22:48:41 +00002794
2795trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002796 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002797 /* This call makes sure that the pager has the correct number of
2798 ** open savepoints. If the second parameter is greater than 0 and
2799 ** the sub-journal is not already open, then it will be opened here.
2800 */
danielk1977fd7f0452008-12-17 17:30:26 +00002801 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2802 }
danielk197712dd5492008-12-18 15:45:07 +00002803
danielk1977aef0bf62005-12-30 16:28:01 +00002804 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002805 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002806 return rc;
drha059ad02001-04-17 20:09:11 +00002807}
2808
danielk1977687566d2004-11-02 12:56:41 +00002809#ifndef SQLITE_OMIT_AUTOVACUUM
2810
2811/*
2812** Set the pointer-map entries for all children of page pPage. Also, if
2813** pPage contains cells that point to overflow pages, set the pointer
2814** map entries for the overflow pages as well.
2815*/
2816static int setChildPtrmaps(MemPage *pPage){
2817 int i; /* Counter variable */
2818 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002819 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002820 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002821 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002822 Pgno pgno = pPage->pgno;
2823
drh1fee73e2007-08-29 04:00:57 +00002824 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002825 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002826 if( rc!=SQLITE_OK ){
2827 goto set_child_ptrmaps_out;
2828 }
danielk1977687566d2004-11-02 12:56:41 +00002829 nCell = pPage->nCell;
2830
2831 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002832 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002833
drh98add2e2009-07-20 17:11:49 +00002834 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002835
danielk1977687566d2004-11-02 12:56:41 +00002836 if( !pPage->leaf ){
2837 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002838 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002839 }
2840 }
2841
2842 if( !pPage->leaf ){
2843 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002844 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002845 }
2846
2847set_child_ptrmaps_out:
2848 pPage->isInit = isInitOrig;
2849 return rc;
2850}
2851
2852/*
drhf3aed592009-07-08 18:12:49 +00002853** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2854** that it points to iTo. Parameter eType describes the type of pointer to
2855** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002856**
2857** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2858** page of pPage.
2859**
2860** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2861** page pointed to by one of the cells on pPage.
2862**
2863** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2864** overflow page in the list.
2865*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002866static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002867 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002868 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002869 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002870 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002871 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002872 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002873 }
danielk1977f78fc082004-11-02 14:40:32 +00002874 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002875 }else{
drhf49661a2008-12-10 16:45:50 +00002876 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002877 int i;
2878 int nCell;
2879
danielk197730548662009-07-09 05:07:37 +00002880 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002881 nCell = pPage->nCell;
2882
danielk1977687566d2004-11-02 12:56:41 +00002883 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002884 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002885 if( eType==PTRMAP_OVERFLOW1 ){
2886 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002887 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002888 if( info.iOverflow
2889 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2890 && iFrom==get4byte(&pCell[info.iOverflow])
2891 ){
2892 put4byte(&pCell[info.iOverflow], iTo);
2893 break;
danielk1977687566d2004-11-02 12:56:41 +00002894 }
2895 }else{
2896 if( get4byte(pCell)==iFrom ){
2897 put4byte(pCell, iTo);
2898 break;
2899 }
2900 }
2901 }
2902
2903 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002904 if( eType!=PTRMAP_BTREE ||
2905 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002906 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002907 }
danielk1977687566d2004-11-02 12:56:41 +00002908 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2909 }
2910
2911 pPage->isInit = isInitOrig;
2912 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002913 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002914}
2915
danielk1977003ba062004-11-04 02:57:33 +00002916
danielk19777701e812005-01-10 12:59:51 +00002917/*
2918** Move the open database page pDbPage to location iFreePage in the
2919** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002920**
2921** The isCommit flag indicates that there is no need to remember that
2922** the journal needs to be sync()ed before database page pDbPage->pgno
2923** can be written to. The caller has already promised not to write to that
2924** page.
danielk19777701e812005-01-10 12:59:51 +00002925*/
danielk1977003ba062004-11-04 02:57:33 +00002926static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002927 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002928 MemPage *pDbPage, /* Open page to move */
2929 u8 eType, /* Pointer map 'type' entry for pDbPage */
2930 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002931 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002932 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002933){
2934 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2935 Pgno iDbPage = pDbPage->pgno;
2936 Pager *pPager = pBt->pPager;
2937 int rc;
2938
danielk1977a0bf2652004-11-04 14:30:04 +00002939 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2940 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002941 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002942 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002943
drh85b623f2007-12-13 21:54:09 +00002944 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002945 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2946 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002947 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002948 if( rc!=SQLITE_OK ){
2949 return rc;
2950 }
2951 pDbPage->pgno = iFreePage;
2952
2953 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2954 ** that point to overflow pages. The pointer map entries for all these
2955 ** pages need to be changed.
2956 **
2957 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2958 ** pointer to a subsequent overflow page. If this is the case, then
2959 ** the pointer map needs to be updated for the subsequent overflow page.
2960 */
danielk1977a0bf2652004-11-04 14:30:04 +00002961 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002962 rc = setChildPtrmaps(pDbPage);
2963 if( rc!=SQLITE_OK ){
2964 return rc;
2965 }
2966 }else{
2967 Pgno nextOvfl = get4byte(pDbPage->aData);
2968 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002969 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002970 if( rc!=SQLITE_OK ){
2971 return rc;
2972 }
2973 }
2974 }
2975
2976 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2977 ** that it points at iFreePage. Also fix the pointer map entry for
2978 ** iPtrPage.
2979 */
danielk1977a0bf2652004-11-04 14:30:04 +00002980 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002981 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002982 if( rc!=SQLITE_OK ){
2983 return rc;
2984 }
danielk19773b8a05f2007-03-19 17:44:26 +00002985 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002986 if( rc!=SQLITE_OK ){
2987 releasePage(pPtrPage);
2988 return rc;
2989 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002990 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002991 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002992 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002993 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002994 }
danielk1977003ba062004-11-04 02:57:33 +00002995 }
danielk1977003ba062004-11-04 02:57:33 +00002996 return rc;
2997}
2998
danielk1977dddbcdc2007-04-26 14:42:34 +00002999/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003000static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003001
3002/*
dan51f0b6d2013-02-22 20:16:34 +00003003** Perform a single step of an incremental-vacuum. If successful, return
3004** SQLITE_OK. If there is no work to do (and therefore no point in
3005** calling this function again), return SQLITE_DONE. Or, if an error
3006** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003007**
dan51f0b6d2013-02-22 20:16:34 +00003008** More specificly, this function attempts to re-organize the database so
3009** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003010**
dan51f0b6d2013-02-22 20:16:34 +00003011** Parameter nFin is the number of pages that this database would contain
3012** were this function called until it returns SQLITE_DONE.
3013**
3014** If the bCommit parameter is non-zero, this function assumes that the
3015** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3016** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3017** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003018*/
dan51f0b6d2013-02-22 20:16:34 +00003019static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003020 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003021 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003022
drh1fee73e2007-08-29 04:00:57 +00003023 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003024 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003025
3026 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003027 u8 eType;
3028 Pgno iPtrPage;
3029
3030 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003031 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003032 return SQLITE_DONE;
3033 }
3034
3035 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3036 if( rc!=SQLITE_OK ){
3037 return rc;
3038 }
3039 if( eType==PTRMAP_ROOTPAGE ){
3040 return SQLITE_CORRUPT_BKPT;
3041 }
3042
3043 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003044 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003045 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003046 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003047 ** truncated to zero after this function returns, so it doesn't
3048 ** matter if it still contains some garbage entries.
3049 */
3050 Pgno iFreePg;
3051 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003052 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003053 if( rc!=SQLITE_OK ){
3054 return rc;
3055 }
3056 assert( iFreePg==iLastPg );
3057 releasePage(pFreePg);
3058 }
3059 } else {
3060 Pgno iFreePg; /* Index of free page to move pLastPg to */
3061 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003062 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3063 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003064
drhb00fc3b2013-08-21 23:42:32 +00003065 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003066 if( rc!=SQLITE_OK ){
3067 return rc;
3068 }
3069
dan51f0b6d2013-02-22 20:16:34 +00003070 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003071 ** is swapped with the first free page pulled off the free list.
3072 **
dan51f0b6d2013-02-22 20:16:34 +00003073 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003074 ** looping until a free-page located within the first nFin pages
3075 ** of the file is found.
3076 */
dan51f0b6d2013-02-22 20:16:34 +00003077 if( bCommit==0 ){
3078 eMode = BTALLOC_LE;
3079 iNear = nFin;
3080 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003081 do {
3082 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003083 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003084 if( rc!=SQLITE_OK ){
3085 releasePage(pLastPg);
3086 return rc;
3087 }
3088 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003089 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003090 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003091
dane1df4e32013-03-05 11:27:04 +00003092 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003093 releasePage(pLastPg);
3094 if( rc!=SQLITE_OK ){
3095 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003096 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003097 }
3098 }
3099
dan51f0b6d2013-02-22 20:16:34 +00003100 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003101 do {
danielk19773460d192008-12-27 15:23:13 +00003102 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003103 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3104 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003105 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003106 }
3107 return SQLITE_OK;
3108}
3109
3110/*
dan51f0b6d2013-02-22 20:16:34 +00003111** The database opened by the first argument is an auto-vacuum database
3112** nOrig pages in size containing nFree free pages. Return the expected
3113** size of the database in pages following an auto-vacuum operation.
3114*/
3115static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3116 int nEntry; /* Number of entries on one ptrmap page */
3117 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3118 Pgno nFin; /* Return value */
3119
3120 nEntry = pBt->usableSize/5;
3121 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3122 nFin = nOrig - nFree - nPtrmap;
3123 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3124 nFin--;
3125 }
3126 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3127 nFin--;
3128 }
dan51f0b6d2013-02-22 20:16:34 +00003129
3130 return nFin;
3131}
3132
3133/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003134** A write-transaction must be opened before calling this function.
3135** It performs a single unit of work towards an incremental vacuum.
3136**
3137** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003138** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003139** SQLITE_OK is returned. Otherwise an SQLite error code.
3140*/
3141int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003142 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003143 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003144
3145 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003146 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3147 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003148 rc = SQLITE_DONE;
3149 }else{
dan51f0b6d2013-02-22 20:16:34 +00003150 Pgno nOrig = btreePagecount(pBt);
3151 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3152 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3153
dan91384712013-02-24 11:50:43 +00003154 if( nOrig<nFin ){
3155 rc = SQLITE_CORRUPT_BKPT;
3156 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003157 rc = saveAllCursors(pBt, 0, 0);
3158 if( rc==SQLITE_OK ){
3159 invalidateAllOverflowCache(pBt);
3160 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3161 }
dan51f0b6d2013-02-22 20:16:34 +00003162 if( rc==SQLITE_OK ){
3163 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3164 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3165 }
3166 }else{
3167 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003168 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003169 }
drhd677b3d2007-08-20 22:48:41 +00003170 sqlite3BtreeLeave(p);
3171 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003172}
3173
3174/*
danielk19773b8a05f2007-03-19 17:44:26 +00003175** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003176** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003177**
3178** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3179** the database file should be truncated to during the commit process.
3180** i.e. the database has been reorganized so that only the first *pnTrunc
3181** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003182*/
danielk19773460d192008-12-27 15:23:13 +00003183static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003184 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003185 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003186 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003187
drh1fee73e2007-08-29 04:00:57 +00003188 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003189 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003190 assert(pBt->autoVacuum);
3191 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003192 Pgno nFin; /* Number of pages in database after autovacuuming */
3193 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003194 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003195 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003196
drhb1299152010-03-30 22:58:33 +00003197 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003198 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3199 /* It is not possible to create a database for which the final page
3200 ** is either a pointer-map page or the pending-byte page. If one
3201 ** is encountered, this indicates corruption.
3202 */
danielk19773460d192008-12-27 15:23:13 +00003203 return SQLITE_CORRUPT_BKPT;
3204 }
danielk1977ef165ce2009-04-06 17:50:03 +00003205
danielk19773460d192008-12-27 15:23:13 +00003206 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003207 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003208 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003209 if( nFin<nOrig ){
3210 rc = saveAllCursors(pBt, 0, 0);
3211 }
danielk19773460d192008-12-27 15:23:13 +00003212 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003213 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003214 }
danielk19773460d192008-12-27 15:23:13 +00003215 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003216 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3217 put4byte(&pBt->pPage1->aData[32], 0);
3218 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003219 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003220 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003221 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003222 }
3223 if( rc!=SQLITE_OK ){
3224 sqlite3PagerRollback(pPager);
3225 }
danielk1977687566d2004-11-02 12:56:41 +00003226 }
3227
dan0aed84d2013-03-26 14:16:20 +00003228 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003229 return rc;
3230}
danielk1977dddbcdc2007-04-26 14:42:34 +00003231
danielk1977a50d9aa2009-06-08 14:49:45 +00003232#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3233# define setChildPtrmaps(x) SQLITE_OK
3234#endif
danielk1977687566d2004-11-02 12:56:41 +00003235
3236/*
drh80e35f42007-03-30 14:06:34 +00003237** This routine does the first phase of a two-phase commit. This routine
3238** causes a rollback journal to be created (if it does not already exist)
3239** and populated with enough information so that if a power loss occurs
3240** the database can be restored to its original state by playing back
3241** the journal. Then the contents of the journal are flushed out to
3242** the disk. After the journal is safely on oxide, the changes to the
3243** database are written into the database file and flushed to oxide.
3244** At the end of this call, the rollback journal still exists on the
3245** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003246** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003247** commit process.
3248**
3249** This call is a no-op if no write-transaction is currently active on pBt.
3250**
3251** Otherwise, sync the database file for the btree pBt. zMaster points to
3252** the name of a master journal file that should be written into the
3253** individual journal file, or is NULL, indicating no master journal file
3254** (single database transaction).
3255**
3256** When this is called, the master journal should already have been
3257** created, populated with this journal pointer and synced to disk.
3258**
3259** Once this is routine has returned, the only thing required to commit
3260** the write-transaction for this database file is to delete the journal.
3261*/
3262int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3263 int rc = SQLITE_OK;
3264 if( p->inTrans==TRANS_WRITE ){
3265 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003266 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003267#ifndef SQLITE_OMIT_AUTOVACUUM
3268 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003269 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003270 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003271 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003272 return rc;
3273 }
3274 }
danbc1a3c62013-02-23 16:40:46 +00003275 if( pBt->bDoTruncate ){
3276 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3277 }
drh80e35f42007-03-30 14:06:34 +00003278#endif
drh49b9d332009-01-02 18:10:42 +00003279 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003280 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003281 }
3282 return rc;
3283}
3284
3285/*
danielk197794b30732009-07-02 17:21:57 +00003286** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3287** at the conclusion of a transaction.
3288*/
3289static void btreeEndTransaction(Btree *p){
3290 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003291 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003292 assert( sqlite3BtreeHoldsMutex(p) );
3293
danbc1a3c62013-02-23 16:40:46 +00003294#ifndef SQLITE_OMIT_AUTOVACUUM
3295 pBt->bDoTruncate = 0;
3296#endif
danc0537fe2013-06-28 19:41:43 +00003297 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003298 /* If there are other active statements that belong to this database
3299 ** handle, downgrade to a read-only transaction. The other statements
3300 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003301 downgradeAllSharedCacheTableLocks(p);
3302 p->inTrans = TRANS_READ;
3303 }else{
3304 /* If the handle had any kind of transaction open, decrement the
3305 ** transaction count of the shared btree. If the transaction count
3306 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3307 ** call below will unlock the pager. */
3308 if( p->inTrans!=TRANS_NONE ){
3309 clearAllSharedCacheTableLocks(p);
3310 pBt->nTransaction--;
3311 if( 0==pBt->nTransaction ){
3312 pBt->inTransaction = TRANS_NONE;
3313 }
3314 }
3315
3316 /* Set the current transaction state to TRANS_NONE and unlock the
3317 ** pager if this call closed the only read or write transaction. */
3318 p->inTrans = TRANS_NONE;
3319 unlockBtreeIfUnused(pBt);
3320 }
3321
3322 btreeIntegrity(p);
3323}
3324
3325/*
drh2aa679f2001-06-25 02:11:07 +00003326** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003327**
drh6e345992007-03-30 11:12:08 +00003328** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003329** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3330** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3331** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003332** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003333** routine has to do is delete or truncate or zero the header in the
3334** the rollback journal (which causes the transaction to commit) and
3335** drop locks.
drh6e345992007-03-30 11:12:08 +00003336**
dan60939d02011-03-29 15:40:55 +00003337** Normally, if an error occurs while the pager layer is attempting to
3338** finalize the underlying journal file, this function returns an error and
3339** the upper layer will attempt a rollback. However, if the second argument
3340** is non-zero then this b-tree transaction is part of a multi-file
3341** transaction. In this case, the transaction has already been committed
3342** (by deleting a master journal file) and the caller will ignore this
3343** functions return code. So, even if an error occurs in the pager layer,
3344** reset the b-tree objects internal state to indicate that the write
3345** transaction has been closed. This is quite safe, as the pager will have
3346** transitioned to the error state.
3347**
drh5e00f6c2001-09-13 13:46:56 +00003348** This will release the write lock on the database file. If there
3349** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003350*/
dan60939d02011-03-29 15:40:55 +00003351int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003352
drh075ed302010-10-14 01:17:30 +00003353 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003354 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003355 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003356
3357 /* If the handle has a write-transaction open, commit the shared-btrees
3358 ** transaction and set the shared state to TRANS_READ.
3359 */
3360 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003361 int rc;
drh075ed302010-10-14 01:17:30 +00003362 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003363 assert( pBt->inTransaction==TRANS_WRITE );
3364 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003365 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003366 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003367 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003368 return rc;
3369 }
danielk1977aef0bf62005-12-30 16:28:01 +00003370 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003371 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003372 }
danielk1977aef0bf62005-12-30 16:28:01 +00003373
danielk197794b30732009-07-02 17:21:57 +00003374 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003375 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003376 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003377}
3378
drh80e35f42007-03-30 14:06:34 +00003379/*
3380** Do both phases of a commit.
3381*/
3382int sqlite3BtreeCommit(Btree *p){
3383 int rc;
drhd677b3d2007-08-20 22:48:41 +00003384 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003385 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3386 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003387 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003388 }
drhd677b3d2007-08-20 22:48:41 +00003389 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003390 return rc;
3391}
3392
drhc39e0002004-05-07 23:50:57 +00003393/*
drhfb982642007-08-30 01:19:59 +00003394** This routine sets the state to CURSOR_FAULT and the error
3395** code to errCode for every cursor on BtShared that pBtree
3396** references.
3397**
3398** Every cursor is tripped, including cursors that belong
3399** to other database connections that happen to be sharing
3400** the cache with pBtree.
3401**
3402** This routine gets called when a rollback occurs.
3403** All cursors using the same cache must be tripped
3404** to prevent them from trying to use the btree after
3405** the rollback. The rollback may have deleted tables
3406** or moved root pages, so it is not sufficient to
3407** save the state of the cursor. The cursor must be
3408** invalidated.
3409*/
3410void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3411 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003412 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003413 sqlite3BtreeEnter(pBtree);
3414 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003415 int i;
danielk1977be51a652008-10-08 17:58:48 +00003416 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003417 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003418 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003419 for(i=0; i<=p->iPage; i++){
3420 releasePage(p->apPage[i]);
3421 p->apPage[i] = 0;
3422 }
drhfb982642007-08-30 01:19:59 +00003423 }
3424 sqlite3BtreeLeave(pBtree);
3425}
3426
3427/*
drhecdc7532001-09-23 02:35:53 +00003428** Rollback the transaction in progress. All cursors will be
3429** invalided by this operation. Any attempt to use a cursor
3430** that was open at the beginning of this operation will result
3431** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003432**
3433** This will release the write lock on the database file. If there
3434** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003435*/
drh0f198a72012-02-13 16:43:16 +00003436int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003437 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003438 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003439 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003440
drhd677b3d2007-08-20 22:48:41 +00003441 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003442 if( tripCode==SQLITE_OK ){
3443 rc = tripCode = saveAllCursors(pBt, 0, 0);
3444 }else{
3445 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003446 }
drh0f198a72012-02-13 16:43:16 +00003447 if( tripCode ){
3448 sqlite3BtreeTripAllCursors(p, tripCode);
3449 }
danielk1977aef0bf62005-12-30 16:28:01 +00003450 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003451
3452 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003453 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003454
danielk19778d34dfd2006-01-24 16:37:57 +00003455 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003456 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003457 if( rc2!=SQLITE_OK ){
3458 rc = rc2;
3459 }
3460
drh24cd67e2004-05-10 16:18:47 +00003461 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003462 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003463 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003464 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003465 int nPage = get4byte(28+(u8*)pPage1->aData);
3466 testcase( nPage==0 );
3467 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3468 testcase( pBt->nPage!=nPage );
3469 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003470 releasePage(pPage1);
3471 }
drh85ec3b62013-05-14 23:12:06 +00003472 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003473 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003474 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003475 }
danielk1977aef0bf62005-12-30 16:28:01 +00003476
danielk197794b30732009-07-02 17:21:57 +00003477 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003478 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003479 return rc;
3480}
3481
3482/*
danielk1977bd434552009-03-18 10:33:00 +00003483** Start a statement subtransaction. The subtransaction can can be rolled
3484** back independently of the main transaction. You must start a transaction
3485** before starting a subtransaction. The subtransaction is ended automatically
3486** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003487**
3488** Statement subtransactions are used around individual SQL statements
3489** that are contained within a BEGIN...COMMIT block. If a constraint
3490** error occurs within the statement, the effect of that one statement
3491** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003492**
3493** A statement sub-transaction is implemented as an anonymous savepoint. The
3494** value passed as the second parameter is the total number of savepoints,
3495** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3496** are no active savepoints and no other statement-transactions open,
3497** iStatement is 1. This anonymous savepoint can be released or rolled back
3498** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003499*/
danielk1977bd434552009-03-18 10:33:00 +00003500int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003501 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003502 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003503 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003504 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003505 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003506 assert( iStatement>0 );
3507 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003508 assert( pBt->inTransaction==TRANS_WRITE );
3509 /* At the pager level, a statement transaction is a savepoint with
3510 ** an index greater than all savepoints created explicitly using
3511 ** SQL statements. It is illegal to open, release or rollback any
3512 ** such savepoints while the statement transaction savepoint is active.
3513 */
3514 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003515 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003516 return rc;
3517}
3518
3519/*
danielk1977fd7f0452008-12-17 17:30:26 +00003520** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3521** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003522** savepoint identified by parameter iSavepoint, depending on the value
3523** of op.
3524**
3525** Normally, iSavepoint is greater than or equal to zero. However, if op is
3526** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3527** contents of the entire transaction are rolled back. This is different
3528** from a normal transaction rollback, as no locks are released and the
3529** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003530*/
3531int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3532 int rc = SQLITE_OK;
3533 if( p && p->inTrans==TRANS_WRITE ){
3534 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003535 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3536 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3537 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003538 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003539 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003540 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3541 pBt->nPage = 0;
3542 }
drh9f0bbf92009-01-02 21:08:09 +00003543 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003544 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003545
3546 /* The database size was written into the offset 28 of the header
3547 ** when the transaction started, so we know that the value at offset
3548 ** 28 is nonzero. */
3549 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003550 }
danielk1977fd7f0452008-12-17 17:30:26 +00003551 sqlite3BtreeLeave(p);
3552 }
3553 return rc;
3554}
3555
3556/*
drh8b2f49b2001-06-08 00:21:52 +00003557** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003558** iTable. If a read-only cursor is requested, it is assumed that
3559** the caller already has at least a read-only transaction open
3560** on the database already. If a write-cursor is requested, then
3561** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003562**
3563** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003564** If wrFlag==1, then the cursor can be used for reading or for
3565** writing if other conditions for writing are also met. These
3566** are the conditions that must be met in order for writing to
3567** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003568**
drhf74b8d92002-09-01 23:20:45 +00003569** 1: The cursor must have been opened with wrFlag==1
3570**
drhfe5d71d2007-03-19 11:54:10 +00003571** 2: Other database connections that share the same pager cache
3572** but which are not in the READ_UNCOMMITTED state may not have
3573** cursors open with wrFlag==0 on the same table. Otherwise
3574** the changes made by this write cursor would be visible to
3575** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003576**
3577** 3: The database must be writable (not on read-only media)
3578**
3579** 4: There must be an active transaction.
3580**
drh6446c4d2001-12-15 14:22:18 +00003581** No checking is done to make sure that page iTable really is the
3582** root page of a b-tree. If it is not, then the cursor acquired
3583** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003584**
drhf25a5072009-11-18 23:01:25 +00003585** It is assumed that the sqlite3BtreeCursorZero() has been called
3586** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003587*/
drhd677b3d2007-08-20 22:48:41 +00003588static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003589 Btree *p, /* The btree */
3590 int iTable, /* Root page of table to open */
3591 int wrFlag, /* 1 to write. 0 read-only */
3592 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3593 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003594){
danielk19773e8add92009-07-04 17:16:00 +00003595 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003596
drh1fee73e2007-08-29 04:00:57 +00003597 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003598 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003599
danielk1977602b4662009-07-02 07:47:33 +00003600 /* The following assert statements verify that if this is a sharable
3601 ** b-tree database, the connection is holding the required table locks,
3602 ** and that no other connection has any open cursor that conflicts with
3603 ** this lock. */
3604 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003605 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3606
danielk19773e8add92009-07-04 17:16:00 +00003607 /* Assert that the caller has opened the required transaction. */
3608 assert( p->inTrans>TRANS_NONE );
3609 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3610 assert( pBt->pPage1 && pBt->pPage1->aData );
3611
drhc9166342012-01-05 23:32:06 +00003612 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003613 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003614 }
drhb1299152010-03-30 22:58:33 +00003615 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003616 assert( wrFlag==0 );
3617 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003618 }
danielk1977aef0bf62005-12-30 16:28:01 +00003619
danielk1977aef0bf62005-12-30 16:28:01 +00003620 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003621 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003622 pCur->pgnoRoot = (Pgno)iTable;
3623 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003624 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003625 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003626 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003627 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003628 pCur->pNext = pBt->pCursor;
3629 if( pCur->pNext ){
3630 pCur->pNext->pPrev = pCur;
3631 }
3632 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003633 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003634 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003635 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003636}
drhd677b3d2007-08-20 22:48:41 +00003637int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003638 Btree *p, /* The btree */
3639 int iTable, /* Root page of table to open */
3640 int wrFlag, /* 1 to write. 0 read-only */
3641 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3642 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003643){
3644 int rc;
3645 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003646 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003647 sqlite3BtreeLeave(p);
3648 return rc;
3649}
drh7f751222009-03-17 22:33:00 +00003650
3651/*
3652** Return the size of a BtCursor object in bytes.
3653**
3654** This interfaces is needed so that users of cursors can preallocate
3655** sufficient storage to hold a cursor. The BtCursor object is opaque
3656** to users so they cannot do the sizeof() themselves - they must call
3657** this routine.
3658*/
3659int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003660 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003661}
3662
drh7f751222009-03-17 22:33:00 +00003663/*
drhf25a5072009-11-18 23:01:25 +00003664** Initialize memory that will be converted into a BtCursor object.
3665**
3666** The simple approach here would be to memset() the entire object
3667** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3668** do not need to be zeroed and they are large, so we can save a lot
3669** of run-time by skipping the initialization of those elements.
3670*/
3671void sqlite3BtreeCursorZero(BtCursor *p){
3672 memset(p, 0, offsetof(BtCursor, iPage));
3673}
3674
3675/*
drh7f751222009-03-17 22:33:00 +00003676** Set the cached rowid value of every cursor in the same database file
3677** as pCur and having the same root page number as pCur. The value is
3678** set to iRowid.
3679**
3680** Only positive rowid values are considered valid for this cache.
3681** The cache is initialized to zero, indicating an invalid cache.
3682** A btree will work fine with zero or negative rowids. We just cannot
3683** cache zero or negative rowids, which means tables that use zero or
3684** negative rowids might run a little slower. But in practice, zero
3685** or negative rowids are very uncommon so this should not be a problem.
3686*/
3687void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3688 BtCursor *p;
3689 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3690 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3691 }
3692 assert( pCur->cachedRowid==iRowid );
3693}
drhd677b3d2007-08-20 22:48:41 +00003694
drh7f751222009-03-17 22:33:00 +00003695/*
3696** Return the cached rowid for the given cursor. A negative or zero
3697** return value indicates that the rowid cache is invalid and should be
3698** ignored. If the rowid cache has never before been set, then a
3699** zero is returned.
3700*/
3701sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3702 return pCur->cachedRowid;
3703}
drha059ad02001-04-17 20:09:11 +00003704
3705/*
drh5e00f6c2001-09-13 13:46:56 +00003706** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003707** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003708*/
drh3aac2dd2004-04-26 14:10:20 +00003709int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003710 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003711 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003712 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003713 BtShared *pBt = pCur->pBt;
3714 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003715 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003716 if( pCur->pPrev ){
3717 pCur->pPrev->pNext = pCur->pNext;
3718 }else{
3719 pBt->pCursor = pCur->pNext;
3720 }
3721 if( pCur->pNext ){
3722 pCur->pNext->pPrev = pCur->pPrev;
3723 }
danielk197771d5d2c2008-09-29 11:49:47 +00003724 for(i=0; i<=pCur->iPage; i++){
3725 releasePage(pCur->apPage[i]);
3726 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003727 unlockBtreeIfUnused(pBt);
3728 invalidateOverflowCache(pCur);
3729 /* sqlite3_free(pCur); */
3730 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003731 }
drh8c42ca92001-06-22 19:15:00 +00003732 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003733}
3734
drh5e2f8b92001-05-28 00:41:15 +00003735/*
drh86057612007-06-26 01:04:48 +00003736** Make sure the BtCursor* given in the argument has a valid
3737** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003738** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003739**
3740** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003741** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003742**
3743** 2007-06-25: There is a bug in some versions of MSVC that cause the
3744** compiler to crash when getCellInfo() is implemented as a macro.
3745** But there is a measureable speed advantage to using the macro on gcc
3746** (when less compiler optimizations like -Os or -O0 are used and the
3747** compiler is not doing agressive inlining.) So we use a real function
3748** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003749*/
drh9188b382004-05-14 21:12:22 +00003750#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003751 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003752 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003753 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003754 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003755 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003756 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003757 }
danielk19771cc5ed82007-05-16 17:28:43 +00003758#else
3759 #define assertCellInfo(x)
3760#endif
drh86057612007-06-26 01:04:48 +00003761#ifdef _MSC_VER
3762 /* Use a real function in MSVC to work around bugs in that compiler. */
3763 static void getCellInfo(BtCursor *pCur){
3764 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003765 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003766 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003767 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003768 }else{
3769 assertCellInfo(pCur);
3770 }
3771 }
3772#else /* if not _MSC_VER */
3773 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003774#define getCellInfo(pCur) \
3775 if( pCur->info.nSize==0 ){ \
3776 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003777 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003778 pCur->validNKey = 1; \
3779 }else{ \
3780 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003781 }
3782#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003783
drhea8ffdf2009-07-22 00:35:23 +00003784#ifndef NDEBUG /* The next routine used only within assert() statements */
3785/*
3786** Return true if the given BtCursor is valid. A valid cursor is one
3787** that is currently pointing to a row in a (non-empty) table.
3788** This is a verification routine is used only within assert() statements.
3789*/
3790int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3791 return pCur && pCur->eState==CURSOR_VALID;
3792}
3793#endif /* NDEBUG */
3794
drh9188b382004-05-14 21:12:22 +00003795/*
drh3aac2dd2004-04-26 14:10:20 +00003796** Set *pSize to the size of the buffer needed to hold the value of
3797** the key for the current entry. If the cursor is not pointing
3798** to a valid entry, *pSize is set to 0.
3799**
drh4b70f112004-05-02 21:12:19 +00003800** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003801** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003802**
3803** The caller must position the cursor prior to invoking this routine.
3804**
3805** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003806*/
drh4a1c3802004-05-12 15:15:47 +00003807int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003808 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003809 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3810 if( pCur->eState!=CURSOR_VALID ){
3811 *pSize = 0;
3812 }else{
3813 getCellInfo(pCur);
3814 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003815 }
drhea8ffdf2009-07-22 00:35:23 +00003816 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003817}
drh2af926b2001-05-15 00:39:25 +00003818
drh72f82862001-05-24 21:06:34 +00003819/*
drh0e1c19e2004-05-11 00:58:56 +00003820** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003821** cursor currently points to.
3822**
3823** The caller must guarantee that the cursor is pointing to a non-NULL
3824** valid entry. In other words, the calling procedure must guarantee
3825** that the cursor has Cursor.eState==CURSOR_VALID.
3826**
3827** Failure is not possible. This function always returns SQLITE_OK.
3828** It might just as well be a procedure (returning void) but we continue
3829** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003830*/
3831int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003832 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003833 assert( pCur->eState==CURSOR_VALID );
3834 getCellInfo(pCur);
3835 *pSize = pCur->info.nData;
3836 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003837}
3838
3839/*
danielk1977d04417962007-05-02 13:16:30 +00003840** Given the page number of an overflow page in the database (parameter
3841** ovfl), this function finds the page number of the next page in the
3842** linked list of overflow pages. If possible, it uses the auto-vacuum
3843** pointer-map data instead of reading the content of page ovfl to do so.
3844**
3845** If an error occurs an SQLite error code is returned. Otherwise:
3846**
danielk1977bea2a942009-01-20 17:06:27 +00003847** The page number of the next overflow page in the linked list is
3848** written to *pPgnoNext. If page ovfl is the last page in its linked
3849** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003850**
danielk1977bea2a942009-01-20 17:06:27 +00003851** If ppPage is not NULL, and a reference to the MemPage object corresponding
3852** to page number pOvfl was obtained, then *ppPage is set to point to that
3853** reference. It is the responsibility of the caller to call releasePage()
3854** on *ppPage to free the reference. In no reference was obtained (because
3855** the pointer-map was used to obtain the value for *pPgnoNext), then
3856** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003857*/
3858static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003859 BtShared *pBt, /* The database file */
3860 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003861 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003862 Pgno *pPgnoNext /* OUT: Next overflow page number */
3863){
3864 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003865 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003866 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003867
drh1fee73e2007-08-29 04:00:57 +00003868 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003869 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003870
3871#ifndef SQLITE_OMIT_AUTOVACUUM
3872 /* Try to find the next page in the overflow list using the
3873 ** autovacuum pointer-map pages. Guess that the next page in
3874 ** the overflow list is page number (ovfl+1). If that guess turns
3875 ** out to be wrong, fall back to loading the data of page
3876 ** number ovfl to determine the next page number.
3877 */
3878 if( pBt->autoVacuum ){
3879 Pgno pgno;
3880 Pgno iGuess = ovfl+1;
3881 u8 eType;
3882
3883 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3884 iGuess++;
3885 }
3886
drhb1299152010-03-30 22:58:33 +00003887 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003888 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003889 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003890 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003891 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003892 }
3893 }
3894 }
3895#endif
3896
danielk1977d8a3f3d2009-07-11 11:45:23 +00003897 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003898 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003899 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003900 assert( rc==SQLITE_OK || pPage==0 );
3901 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003902 next = get4byte(pPage->aData);
3903 }
danielk1977443c0592009-01-16 15:21:05 +00003904 }
danielk197745d68822009-01-16 16:23:38 +00003905
danielk1977bea2a942009-01-20 17:06:27 +00003906 *pPgnoNext = next;
3907 if( ppPage ){
3908 *ppPage = pPage;
3909 }else{
3910 releasePage(pPage);
3911 }
3912 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003913}
3914
danielk1977da107192007-05-04 08:32:13 +00003915/*
3916** Copy data from a buffer to a page, or from a page to a buffer.
3917**
3918** pPayload is a pointer to data stored on database page pDbPage.
3919** If argument eOp is false, then nByte bytes of data are copied
3920** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3921** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3922** of data are copied from the buffer pBuf to pPayload.
3923**
3924** SQLITE_OK is returned on success, otherwise an error code.
3925*/
3926static int copyPayload(
3927 void *pPayload, /* Pointer to page data */
3928 void *pBuf, /* Pointer to buffer */
3929 int nByte, /* Number of bytes to copy */
3930 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3931 DbPage *pDbPage /* Page containing pPayload */
3932){
3933 if( eOp ){
3934 /* Copy data from buffer to page (a write operation) */
3935 int rc = sqlite3PagerWrite(pDbPage);
3936 if( rc!=SQLITE_OK ){
3937 return rc;
3938 }
3939 memcpy(pPayload, pBuf, nByte);
3940 }else{
3941 /* Copy data from page to buffer (a read operation) */
3942 memcpy(pBuf, pPayload, nByte);
3943 }
3944 return SQLITE_OK;
3945}
danielk1977d04417962007-05-02 13:16:30 +00003946
3947/*
danielk19779f8d6402007-05-02 17:48:45 +00003948** This function is used to read or overwrite payload information
3949** for the entry that the pCur cursor is pointing to. If the eOp
3950** parameter is 0, this is a read operation (data copied into
3951** buffer pBuf). If it is non-zero, a write (data copied from
3952** buffer pBuf).
3953**
3954** A total of "amt" bytes are read or written beginning at "offset".
3955** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003956**
drh3bcdfd22009-07-12 02:32:21 +00003957** The content being read or written might appear on the main page
3958** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003959**
danielk1977dcbb5d32007-05-04 18:36:44 +00003960** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003961** cursor entry uses one or more overflow pages, this function
3962** allocates space for and lazily popluates the overflow page-list
3963** cache array (BtCursor.aOverflow). Subsequent calls use this
3964** cache to make seeking to the supplied offset more efficient.
3965**
3966** Once an overflow page-list cache has been allocated, it may be
3967** invalidated if some other cursor writes to the same table, or if
3968** the cursor is moved to a different row. Additionally, in auto-vacuum
3969** mode, the following events may invalidate an overflow page-list cache.
3970**
3971** * An incremental vacuum,
3972** * A commit in auto_vacuum="full" mode,
3973** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003974*/
danielk19779f8d6402007-05-02 17:48:45 +00003975static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003976 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003977 u32 offset, /* Begin reading this far into payload */
3978 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003979 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003980 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003981){
3982 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003983 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003984 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003985 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003986 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003987 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003988
danielk1977da107192007-05-04 08:32:13 +00003989 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003990 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003991 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003992 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003993
drh86057612007-06-26 01:04:48 +00003994 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003995 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003996 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003997
drh3bcdfd22009-07-12 02:32:21 +00003998 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003999 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4000 ){
danielk1977da107192007-05-04 08:32:13 +00004001 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004002 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004003 }
danielk1977da107192007-05-04 08:32:13 +00004004
4005 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004006 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004007 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004008 if( a+offset>pCur->info.nLocal ){
4009 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004010 }
danielk1977da107192007-05-04 08:32:13 +00004011 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004012 offset = 0;
drha34b6762004-05-07 13:30:42 +00004013 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004014 amt -= a;
drhdd793422001-06-28 01:54:48 +00004015 }else{
drhfa1a98a2004-05-14 19:08:17 +00004016 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004017 }
danielk1977da107192007-05-04 08:32:13 +00004018
4019 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004020 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004021 Pgno nextPage;
4022
drhfa1a98a2004-05-14 19:08:17 +00004023 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004024
danielk19772dec9702007-05-02 16:48:37 +00004025#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00004026 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00004027 ** has not been allocated, allocate it now. The array is sized at
4028 ** one entry for each overflow page in the overflow chain. The
4029 ** page number of the first overflow page is stored in aOverflow[0],
4030 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4031 ** (the cache is lazily populated).
4032 */
danielk1977dcbb5d32007-05-04 18:36:44 +00004033 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00004034 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00004035 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00004036 /* nOvfl is always positive. If it were zero, fetchPayload would have
4037 ** been used instead of this routine. */
4038 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00004039 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00004040 }
4041 }
danielk1977da107192007-05-04 08:32:13 +00004042
4043 /* If the overflow page-list cache has been allocated and the
4044 ** entry for the first required overflow page is valid, skip
4045 ** directly to it.
4046 */
danielk19772dec9702007-05-02 16:48:37 +00004047 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4048 iIdx = (offset/ovflSize);
4049 nextPage = pCur->aOverflow[iIdx];
4050 offset = (offset%ovflSize);
4051 }
4052#endif
danielk1977da107192007-05-04 08:32:13 +00004053
4054 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4055
4056#ifndef SQLITE_OMIT_INCRBLOB
4057 /* If required, populate the overflow page-list cache. */
4058 if( pCur->aOverflow ){
4059 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4060 pCur->aOverflow[iIdx] = nextPage;
4061 }
4062#endif
4063
danielk1977d04417962007-05-02 13:16:30 +00004064 if( offset>=ovflSize ){
4065 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004066 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004067 ** data is not required. So first try to lookup the overflow
4068 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004069 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004070 */
danielk19772dec9702007-05-02 16:48:37 +00004071#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004072 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4073 nextPage = pCur->aOverflow[iIdx+1];
4074 } else
danielk19772dec9702007-05-02 16:48:37 +00004075#endif
danielk1977da107192007-05-04 08:32:13 +00004076 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004077 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004078 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004079 /* Need to read this page properly. It contains some of the
4080 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004081 */
danf4ba1092011-10-08 14:57:07 +00004082#ifdef SQLITE_DIRECT_OVERFLOW_READ
4083 sqlite3_file *fd;
4084#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004085 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004086 if( a + offset > ovflSize ){
4087 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004088 }
danf4ba1092011-10-08 14:57:07 +00004089
4090#ifdef SQLITE_DIRECT_OVERFLOW_READ
4091 /* If all the following are true:
4092 **
4093 ** 1) this is a read operation, and
4094 ** 2) data is required from the start of this overflow page, and
4095 ** 3) the database is file-backed, and
4096 ** 4) there is no open write-transaction, and
4097 ** 5) the database is not a WAL database,
4098 **
4099 ** then data can be read directly from the database file into the
4100 ** output buffer, bypassing the page-cache altogether. This speeds
4101 ** up loading large records that span many overflow pages.
4102 */
4103 if( eOp==0 /* (1) */
4104 && offset==0 /* (2) */
4105 && pBt->inTransaction==TRANS_READ /* (4) */
4106 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4107 && pBt->pPage1->aData[19]==0x01 /* (5) */
4108 ){
4109 u8 aSave[4];
4110 u8 *aWrite = &pBuf[-4];
4111 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004112 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004113 nextPage = get4byte(aWrite);
4114 memcpy(aWrite, aSave, 4);
4115 }else
4116#endif
4117
4118 {
4119 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004120 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
drhb00fc3b2013-08-21 23:42:32 +00004121 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004122 );
danf4ba1092011-10-08 14:57:07 +00004123 if( rc==SQLITE_OK ){
4124 aPayload = sqlite3PagerGetData(pDbPage);
4125 nextPage = get4byte(aPayload);
4126 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4127 sqlite3PagerUnref(pDbPage);
4128 offset = 0;
4129 }
4130 }
4131 amt -= a;
4132 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004133 }
drh2af926b2001-05-15 00:39:25 +00004134 }
drh2af926b2001-05-15 00:39:25 +00004135 }
danielk1977cfe9a692004-06-16 12:00:29 +00004136
danielk1977da107192007-05-04 08:32:13 +00004137 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004138 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004139 }
danielk1977da107192007-05-04 08:32:13 +00004140 return rc;
drh2af926b2001-05-15 00:39:25 +00004141}
4142
drh72f82862001-05-24 21:06:34 +00004143/*
drh3aac2dd2004-04-26 14:10:20 +00004144** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004145** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004146** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004147**
drh5d1a8722009-07-22 18:07:40 +00004148** The caller must ensure that pCur is pointing to a valid row
4149** in the table.
4150**
drh3aac2dd2004-04-26 14:10:20 +00004151** Return SQLITE_OK on success or an error code if anything goes
4152** wrong. An error is returned if "offset+amt" is larger than
4153** the available payload.
drh72f82862001-05-24 21:06:34 +00004154*/
drha34b6762004-05-07 13:30:42 +00004155int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004156 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004157 assert( pCur->eState==CURSOR_VALID );
4158 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4159 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4160 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004161}
4162
4163/*
drh3aac2dd2004-04-26 14:10:20 +00004164** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004165** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004166** begins at "offset".
4167**
4168** Return SQLITE_OK on success or an error code if anything goes
4169** wrong. An error is returned if "offset+amt" is larger than
4170** the available payload.
drh72f82862001-05-24 21:06:34 +00004171*/
drh3aac2dd2004-04-26 14:10:20 +00004172int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004173 int rc;
4174
danielk19773588ceb2008-06-10 17:30:26 +00004175#ifndef SQLITE_OMIT_INCRBLOB
4176 if ( pCur->eState==CURSOR_INVALID ){
4177 return SQLITE_ABORT;
4178 }
4179#endif
4180
drh1fee73e2007-08-29 04:00:57 +00004181 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004182 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004183 if( rc==SQLITE_OK ){
4184 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004185 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4186 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004187 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004188 }
4189 return rc;
drh2af926b2001-05-15 00:39:25 +00004190}
4191
drh72f82862001-05-24 21:06:34 +00004192/*
drh0e1c19e2004-05-11 00:58:56 +00004193** Return a pointer to payload information from the entry that the
4194** pCur cursor is pointing to. The pointer is to the beginning of
4195** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004196** skipKey==1. The number of bytes of available key/data is written
4197** into *pAmt. If *pAmt==0, then the value returned will not be
4198** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004199**
4200** This routine is an optimization. It is common for the entire key
4201** and data to fit on the local page and for there to be no overflow
4202** pages. When that is so, this routine can be used to access the
4203** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004204** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004205** the key/data and copy it into a preallocated buffer.
4206**
4207** The pointer returned by this routine looks directly into the cached
4208** page of the database. The data might change or move the next time
4209** any btree routine is called.
4210*/
4211static const unsigned char *fetchPayload(
4212 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh501932c2013-11-21 21:59:53 +00004213 u32 *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004214 int skipKey /* read beginning at data if this is true */
4215){
4216 unsigned char *aPayload;
4217 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004218 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004219 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004220
danielk197771d5d2c2008-09-29 11:49:47 +00004221 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004222 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004223 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004224 pPage = pCur->apPage[pCur->iPage];
4225 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhd16546d2013-11-25 21:41:24 +00004226 if( pCur->info.nSize==0 ){
drhfe3313f2009-07-21 19:02:20 +00004227 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4228 &pCur->info);
4229 }
drh43605152004-05-29 21:46:49 +00004230 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004231 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004232 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004233 nKey = 0;
4234 }else{
drhf49661a2008-12-10 16:45:50 +00004235 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004236 }
drh0e1c19e2004-05-11 00:58:56 +00004237 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004238 aPayload += nKey;
4239 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004240 }else{
drhfa1a98a2004-05-14 19:08:17 +00004241 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004242 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004243 }
drhe51c44f2004-05-30 20:46:09 +00004244 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004245 return aPayload;
4246}
4247
4248
4249/*
drhe51c44f2004-05-30 20:46:09 +00004250** For the entry that cursor pCur is point to, return as
4251** many bytes of the key or data as are available on the local
4252** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004253**
4254** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004255** or be destroyed on the next call to any Btree routine,
4256** including calls from other threads against the same cache.
4257** Hence, a mutex on the BtShared should be held prior to calling
4258** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004259**
4260** These routines is used to get quick access to key and data
4261** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004262*/
drh501932c2013-11-21 21:59:53 +00004263const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004264 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004265 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004266 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004267 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4268 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004269 }
drhfe3313f2009-07-21 19:02:20 +00004270 return p;
drh0e1c19e2004-05-11 00:58:56 +00004271}
drh501932c2013-11-21 21:59:53 +00004272const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004273 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004274 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004275 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004276 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4277 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004278 }
drhfe3313f2009-07-21 19:02:20 +00004279 return p;
drh0e1c19e2004-05-11 00:58:56 +00004280}
4281
4282
4283/*
drh8178a752003-01-05 21:41:40 +00004284** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004285** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004286**
4287** This function returns SQLITE_CORRUPT if the page-header flags field of
4288** the new child page does not match the flags field of the parent (i.e.
4289** if an intkey page appears to be the parent of a non-intkey page, or
4290** vice-versa).
drh72f82862001-05-24 21:06:34 +00004291*/
drh3aac2dd2004-04-26 14:10:20 +00004292static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004293 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004294 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004295 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004296 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004297
drh1fee73e2007-08-29 04:00:57 +00004298 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004299 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004300 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004301 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004302 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4303 return SQLITE_CORRUPT_BKPT;
4304 }
drhb00fc3b2013-08-21 23:42:32 +00004305 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4306 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004307 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004308 pCur->apPage[i+1] = pNewPage;
4309 pCur->aiIdx[i+1] = 0;
4310 pCur->iPage++;
4311
drh271efa52004-05-30 19:19:05 +00004312 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004313 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004314 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004315 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004316 }
drh72f82862001-05-24 21:06:34 +00004317 return SQLITE_OK;
4318}
4319
danbb246c42012-01-12 14:25:55 +00004320#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004321/*
4322** Page pParent is an internal (non-leaf) tree page. This function
4323** asserts that page number iChild is the left-child if the iIdx'th
4324** cell in page pParent. Or, if iIdx is equal to the total number of
4325** cells in pParent, that page number iChild is the right-child of
4326** the page.
4327*/
4328static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4329 assert( iIdx<=pParent->nCell );
4330 if( iIdx==pParent->nCell ){
4331 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4332 }else{
4333 assert( get4byte(findCell(pParent, iIdx))==iChild );
4334 }
4335}
4336#else
4337# define assertParentIndex(x,y,z)
4338#endif
4339
drh72f82862001-05-24 21:06:34 +00004340/*
drh5e2f8b92001-05-28 00:41:15 +00004341** Move the cursor up to the parent page.
4342**
4343** pCur->idx is set to the cell index that contains the pointer
4344** to the page we are coming from. If we are coming from the
4345** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004346** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004347*/
danielk197730548662009-07-09 05:07:37 +00004348static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004349 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004350 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004351 assert( pCur->iPage>0 );
4352 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004353
4354 /* UPDATE: It is actually possible for the condition tested by the assert
4355 ** below to be untrue if the database file is corrupt. This can occur if
4356 ** one cursor has modified page pParent while a reference to it is held
4357 ** by a second cursor. Which can only happen if a single page is linked
4358 ** into more than one b-tree structure in a corrupt database. */
4359#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004360 assertParentIndex(
4361 pCur->apPage[pCur->iPage-1],
4362 pCur->aiIdx[pCur->iPage-1],
4363 pCur->apPage[pCur->iPage]->pgno
4364 );
danbb246c42012-01-12 14:25:55 +00004365#endif
dan6c2688c2012-01-12 15:05:03 +00004366 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004367
danielk197771d5d2c2008-09-29 11:49:47 +00004368 releasePage(pCur->apPage[pCur->iPage]);
4369 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004370 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004371 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004372}
4373
4374/*
danielk19778f880a82009-07-13 09:41:45 +00004375** Move the cursor to point to the root page of its b-tree structure.
4376**
4377** If the table has a virtual root page, then the cursor is moved to point
4378** to the virtual root page instead of the actual root page. A table has a
4379** virtual root page when the actual root page contains no cells and a
4380** single child page. This can only happen with the table rooted at page 1.
4381**
4382** If the b-tree structure is empty, the cursor state is set to
4383** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4384** cell located on the root (or virtual root) page and the cursor state
4385** is set to CURSOR_VALID.
4386**
4387** If this function returns successfully, it may be assumed that the
4388** page-header flags indicate that the [virtual] root-page is the expected
4389** kind of b-tree page (i.e. if when opening the cursor the caller did not
4390** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4391** indicating a table b-tree, or if the caller did specify a KeyInfo
4392** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4393** b-tree).
drh72f82862001-05-24 21:06:34 +00004394*/
drh5e2f8b92001-05-28 00:41:15 +00004395static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004396 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004397 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004398 Btree *p = pCur->pBtree;
4399 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004400
drh1fee73e2007-08-29 04:00:57 +00004401 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004402 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4403 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4404 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4405 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4406 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004407 assert( pCur->skipNext!=SQLITE_OK );
4408 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004409 }
danielk1977be51a652008-10-08 17:58:48 +00004410 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004411 }
danielk197771d5d2c2008-09-29 11:49:47 +00004412
4413 if( pCur->iPage>=0 ){
4414 int i;
4415 for(i=1; i<=pCur->iPage; i++){
4416 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004417 }
danielk1977172114a2009-07-07 15:47:12 +00004418 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004419 }else if( pCur->pgnoRoot==0 ){
4420 pCur->eState = CURSOR_INVALID;
4421 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004422 }else{
drhb00fc3b2013-08-21 23:42:32 +00004423 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0],
4424 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004425 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004426 pCur->eState = CURSOR_INVALID;
4427 return rc;
4428 }
danielk1977172114a2009-07-07 15:47:12 +00004429 pCur->iPage = 0;
4430
4431 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4432 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4433 ** NULL, the caller expects a table b-tree. If this is not the case,
4434 ** return an SQLITE_CORRUPT error. */
4435 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4436 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4437 return SQLITE_CORRUPT_BKPT;
4438 }
drhc39e0002004-05-07 23:50:57 +00004439 }
danielk197771d5d2c2008-09-29 11:49:47 +00004440
danielk19778f880a82009-07-13 09:41:45 +00004441 /* Assert that the root page is of the correct type. This must be the
4442 ** case as the call to this function that loaded the root-page (either
4443 ** this call or a previous invocation) would have detected corruption
4444 ** if the assumption were not true, and it is not possible for the flags
4445 ** byte to have been modified while this cursor is holding a reference
4446 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004447 pRoot = pCur->apPage[0];
4448 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004449 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4450
danielk197771d5d2c2008-09-29 11:49:47 +00004451 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004452 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004453 pCur->atLast = 0;
4454 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004455
drh8856d6a2004-04-29 14:42:46 +00004456 if( pRoot->nCell==0 && !pRoot->leaf ){
4457 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004458 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004459 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004460 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004461 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004462 }else{
4463 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004464 }
4465 return rc;
drh72f82862001-05-24 21:06:34 +00004466}
drh2af926b2001-05-15 00:39:25 +00004467
drh5e2f8b92001-05-28 00:41:15 +00004468/*
4469** Move the cursor down to the left-most leaf entry beneath the
4470** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004471**
4472** The left-most leaf is the one with the smallest key - the first
4473** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004474*/
4475static int moveToLeftmost(BtCursor *pCur){
4476 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004477 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004478 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004479
drh1fee73e2007-08-29 04:00:57 +00004480 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004481 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004482 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4483 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4484 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004485 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004486 }
drhd677b3d2007-08-20 22:48:41 +00004487 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004488}
4489
drh2dcc9aa2002-12-04 13:40:25 +00004490/*
4491** Move the cursor down to the right-most leaf entry beneath the
4492** page to which it is currently pointing. Notice the difference
4493** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4494** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4495** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004496**
4497** The right-most entry is the one with the largest key - the last
4498** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004499*/
4500static int moveToRightmost(BtCursor *pCur){
4501 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004502 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004503 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004504
drh1fee73e2007-08-29 04:00:57 +00004505 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004506 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004507 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004508 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004509 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004510 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004511 }
drhd677b3d2007-08-20 22:48:41 +00004512 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004513 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004514 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004515 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004516 }
danielk1977518002e2008-09-05 05:02:46 +00004517 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004518}
4519
drh5e00f6c2001-09-13 13:46:56 +00004520/* Move the cursor to the first entry in the table. Return SQLITE_OK
4521** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004522** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004523*/
drh3aac2dd2004-04-26 14:10:20 +00004524int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004525 int rc;
drhd677b3d2007-08-20 22:48:41 +00004526
drh1fee73e2007-08-29 04:00:57 +00004527 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004528 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004529 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004530 if( rc==SQLITE_OK ){
4531 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004532 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004533 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004534 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004535 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004536 *pRes = 0;
4537 rc = moveToLeftmost(pCur);
4538 }
drh5e00f6c2001-09-13 13:46:56 +00004539 }
drh5e00f6c2001-09-13 13:46:56 +00004540 return rc;
4541}
drh5e2f8b92001-05-28 00:41:15 +00004542
drh9562b552002-02-19 15:00:07 +00004543/* Move the cursor to the last entry in the table. Return SQLITE_OK
4544** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004545** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004546*/
drh3aac2dd2004-04-26 14:10:20 +00004547int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004548 int rc;
drhd677b3d2007-08-20 22:48:41 +00004549
drh1fee73e2007-08-29 04:00:57 +00004550 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004551 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004552
4553 /* If the cursor already points to the last entry, this is a no-op. */
4554 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4555#ifdef SQLITE_DEBUG
4556 /* This block serves to assert() that the cursor really does point
4557 ** to the last entry in the b-tree. */
4558 int ii;
4559 for(ii=0; ii<pCur->iPage; ii++){
4560 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4561 }
4562 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4563 assert( pCur->apPage[pCur->iPage]->leaf );
4564#endif
4565 return SQLITE_OK;
4566 }
4567
drh9562b552002-02-19 15:00:07 +00004568 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004569 if( rc==SQLITE_OK ){
4570 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004571 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004572 *pRes = 1;
4573 }else{
4574 assert( pCur->eState==CURSOR_VALID );
4575 *pRes = 0;
4576 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004577 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004578 }
drh9562b552002-02-19 15:00:07 +00004579 }
drh9562b552002-02-19 15:00:07 +00004580 return rc;
4581}
4582
drhe14006d2008-03-25 17:23:32 +00004583/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004584** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004585**
drhe63d9992008-08-13 19:11:48 +00004586** For INTKEY tables, the intKey parameter is used. pIdxKey
4587** must be NULL. For index tables, pIdxKey is used and intKey
4588** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004589**
drh5e2f8b92001-05-28 00:41:15 +00004590** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004591** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004592** were present. The cursor might point to an entry that comes
4593** before or after the key.
4594**
drh64022502009-01-09 14:11:04 +00004595** An integer is written into *pRes which is the result of
4596** comparing the key with the entry to which the cursor is
4597** pointing. The meaning of the integer written into
4598** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004599**
4600** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004601** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004602** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004603**
4604** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004605** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004606**
4607** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004608** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004609**
drha059ad02001-04-17 20:09:11 +00004610*/
drhe63d9992008-08-13 19:11:48 +00004611int sqlite3BtreeMovetoUnpacked(
4612 BtCursor *pCur, /* The cursor to be moved */
4613 UnpackedRecord *pIdxKey, /* Unpacked index key */
4614 i64 intKey, /* The table key */
4615 int biasRight, /* If true, bias the search to the high end */
4616 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004617){
drh72f82862001-05-24 21:06:34 +00004618 int rc;
drhd677b3d2007-08-20 22:48:41 +00004619
drh1fee73e2007-08-29 04:00:57 +00004620 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004621 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004622 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004623 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004624
4625 /* If the cursor is already positioned at the point we are trying
4626 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004627 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4628 && pCur->apPage[0]->intKey
4629 ){
drhe63d9992008-08-13 19:11:48 +00004630 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004631 *pRes = 0;
4632 return SQLITE_OK;
4633 }
drhe63d9992008-08-13 19:11:48 +00004634 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004635 *pRes = -1;
4636 return SQLITE_OK;
4637 }
4638 }
4639
drh5e2f8b92001-05-28 00:41:15 +00004640 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004641 if( rc ){
4642 return rc;
4643 }
dana205a482011-08-27 18:48:57 +00004644 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4645 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4646 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004647 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004648 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004649 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004650 return SQLITE_OK;
4651 }
danielk197771d5d2c2008-09-29 11:49:47 +00004652 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004653 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004654 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004655 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004656 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004657 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004658
4659 /* pPage->nCell must be greater than zero. If this is the root-page
4660 ** the cursor would have been INVALID above and this for(;;) loop
4661 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004662 ** would have already detected db corruption. Similarly, pPage must
4663 ** be the right kind (index or table) of b-tree page. Otherwise
4664 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004665 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004666 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004667 lwr = 0;
4668 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004669 assert( biasRight==0 || biasRight==1 );
4670 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004671 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004672 if( pPage->intKey ){
drhec3e6b12013-11-25 02:38:55 +00004673 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004674 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004675 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004676 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004677 while( 0x80 <= *(pCell++) ){
4678 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4679 }
drhd172f862006-01-12 15:01:15 +00004680 }
drha2c20e42008-03-29 16:01:04 +00004681 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004682 if( nCellKey<intKey ){
4683 lwr = idx+1;
4684 if( lwr>upr ){ c = -1; break; }
4685 }else if( nCellKey>intKey ){
4686 upr = idx-1;
4687 if( lwr>upr ){ c = +1; break; }
4688 }else{
4689 assert( nCellKey==intKey );
drhec3e6b12013-11-25 02:38:55 +00004690 pCur->validNKey = 1;
4691 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004692 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004693 if( !pPage->leaf ){
4694 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004695 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004696 }else{
4697 *pRes = 0;
4698 rc = SQLITE_OK;
4699 goto moveto_finish;
4700 }
drhd793f442013-11-25 14:10:15 +00004701 }
drhebf10b12013-11-25 17:38:26 +00004702 assert( lwr+upr>=0 );
4703 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004704 }
4705 }else{
4706 for(;;){
4707 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004708 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4709
drhb2eced52010-08-12 02:41:12 +00004710 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004711 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004712 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004713 ** varint. This information is used to attempt to avoid parsing
4714 ** the entire cell by checking for the cases where the record is
4715 ** stored entirely within the b-tree page by inspecting the first
4716 ** 2 bytes of the cell.
4717 */
drhec3e6b12013-11-25 02:38:55 +00004718 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004719 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004720 /* This branch runs if the record-size field of the cell is a
4721 ** single byte varint and the record fits entirely on the main
4722 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004723 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004724 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4725 }else if( !(pCell[1] & 0x80)
4726 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4727 ){
4728 /* The record-size field is a 2 byte varint and the record
4729 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004730 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004731 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004732 }else{
danielk197711c327a2009-05-04 19:01:26 +00004733 /* The record flows over onto one or more overflow pages. In
4734 ** this case the whole cell needs to be parsed, a buffer allocated
4735 ** and accessPayload() used to retrieve the record into the
4736 ** buffer before VdbeRecordCompare() can be called. */
4737 void *pCellKey;
4738 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004739 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004740 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004741 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004742 if( pCellKey==0 ){
4743 rc = SQLITE_NOMEM;
4744 goto moveto_finish;
4745 }
drhd793f442013-11-25 14:10:15 +00004746 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhfb192682009-07-11 18:26:28 +00004747 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004748 if( rc ){
4749 sqlite3_free(pCellKey);
4750 goto moveto_finish;
4751 }
danielk197711c327a2009-05-04 19:01:26 +00004752 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004753 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004754 }
drhbb933ef2013-11-25 15:01:38 +00004755 if( c<0 ){
4756 lwr = idx+1;
4757 }else if( c>0 ){
4758 upr = idx-1;
4759 }else{
4760 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004761 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004762 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004763 pCur->aiIdx[pCur->iPage] = (u16)idx;
drh1e968a02008-03-25 00:22:21 +00004764 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004765 }
drhebf10b12013-11-25 17:38:26 +00004766 if( lwr>upr ) break;
4767 assert( lwr+upr>=0 );
4768 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004769 }
drh72f82862001-05-24 21:06:34 +00004770 }
drhb07028f2011-10-14 21:49:18 +00004771 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004772 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004773 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004774 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004775 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004776 *pRes = c;
4777 rc = SQLITE_OK;
4778 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004779 }
4780moveto_next_layer:
4781 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004782 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004783 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004784 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004785 }
drhf49661a2008-12-10 16:45:50 +00004786 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004787 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004788 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004789 }
drh1e968a02008-03-25 00:22:21 +00004790moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004791 pCur->info.nSize = 0;
4792 pCur->validNKey = 0;
drhe63d9992008-08-13 19:11:48 +00004793 return rc;
4794}
4795
drhd677b3d2007-08-20 22:48:41 +00004796
drh72f82862001-05-24 21:06:34 +00004797/*
drhc39e0002004-05-07 23:50:57 +00004798** Return TRUE if the cursor is not pointing at an entry of the table.
4799**
4800** TRUE will be returned after a call to sqlite3BtreeNext() moves
4801** past the last entry in the table or sqlite3BtreePrev() moves past
4802** the first entry. TRUE is also returned if the table is empty.
4803*/
4804int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004805 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4806 ** have been deleted? This API will need to change to return an error code
4807 ** as well as the boolean result value.
4808 */
4809 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004810}
4811
4812/*
drhbd03cae2001-06-02 02:40:57 +00004813** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004814** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004815** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004816** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004817*/
drhd094db12008-04-03 21:46:57 +00004818int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004819 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004820 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004821 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004822
drh1fee73e2007-08-29 04:00:57 +00004823 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004824 assert( pRes!=0 );
drh9b47ee32013-08-20 03:13:51 +00004825 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004826 if( pCur->eState!=CURSOR_VALID ){
4827 rc = restoreCursorPosition(pCur);
4828 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004829 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004830 return rc;
4831 }
4832 if( CURSOR_INVALID==pCur->eState ){
4833 *pRes = 1;
4834 return SQLITE_OK;
4835 }
drh9b47ee32013-08-20 03:13:51 +00004836 if( pCur->skipNext ){
4837 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4838 pCur->eState = CURSOR_VALID;
4839 if( pCur->skipNext>0 ){
4840 pCur->skipNext = 0;
4841 *pRes = 0;
4842 return SQLITE_OK;
4843 }
drhf66f26a2013-08-19 20:04:10 +00004844 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004845 }
danielk1977da184232006-01-05 11:34:32 +00004846 }
danielk1977da184232006-01-05 11:34:32 +00004847
danielk197771d5d2c2008-09-29 11:49:47 +00004848 pPage = pCur->apPage[pCur->iPage];
4849 idx = ++pCur->aiIdx[pCur->iPage];
4850 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004851
4852 /* If the database file is corrupt, it is possible for the value of idx
4853 ** to be invalid here. This can only occur if a second cursor modifies
4854 ** the page while cursor pCur is holding a reference to it. Which can
4855 ** only happen if the database is corrupt in such a way as to link the
4856 ** page into more than one b-tree structure. */
4857 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004858
drh271efa52004-05-30 19:19:05 +00004859 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004860 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004861 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004862 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004863 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004864 if( rc ){
4865 *pRes = 0;
4866 return rc;
4867 }
drh5e2f8b92001-05-28 00:41:15 +00004868 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004869 *pRes = 0;
4870 return rc;
drh72f82862001-05-24 21:06:34 +00004871 }
drh5e2f8b92001-05-28 00:41:15 +00004872 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004873 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004874 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004875 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004876 return SQLITE_OK;
4877 }
danielk197730548662009-07-09 05:07:37 +00004878 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004879 pPage = pCur->apPage[pCur->iPage];
4880 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004881 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004882 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004883 rc = sqlite3BtreeNext(pCur, pRes);
4884 }else{
4885 rc = SQLITE_OK;
4886 }
4887 return rc;
drh8178a752003-01-05 21:41:40 +00004888 }
4889 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004890 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004891 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004892 }
drh5e2f8b92001-05-28 00:41:15 +00004893 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004894 return rc;
drh72f82862001-05-24 21:06:34 +00004895}
drhd677b3d2007-08-20 22:48:41 +00004896
drh72f82862001-05-24 21:06:34 +00004897
drh3b7511c2001-05-26 13:15:44 +00004898/*
drh2dcc9aa2002-12-04 13:40:25 +00004899** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004900** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004901** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004902** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004903*/
drhd094db12008-04-03 21:46:57 +00004904int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004905 int rc;
drh8178a752003-01-05 21:41:40 +00004906 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004907
drh1fee73e2007-08-29 04:00:57 +00004908 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004909 assert( pRes!=0 );
4910 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drha2c20e42008-03-29 16:01:04 +00004911 pCur->atLast = 0;
drhf66f26a2013-08-19 20:04:10 +00004912 if( pCur->eState!=CURSOR_VALID ){
4913 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4914 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004915 if( rc!=SQLITE_OK ){
4916 *pRes = 0;
4917 return rc;
4918 }
drhf66f26a2013-08-19 20:04:10 +00004919 }
4920 if( CURSOR_INVALID==pCur->eState ){
4921 *pRes = 1;
4922 return SQLITE_OK;
4923 }
drh9b47ee32013-08-20 03:13:51 +00004924 if( pCur->skipNext ){
4925 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4926 pCur->eState = CURSOR_VALID;
4927 if( pCur->skipNext<0 ){
4928 pCur->skipNext = 0;
4929 *pRes = 0;
4930 return SQLITE_OK;
4931 }
drhf66f26a2013-08-19 20:04:10 +00004932 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004933 }
danielk1977da184232006-01-05 11:34:32 +00004934 }
danielk1977da184232006-01-05 11:34:32 +00004935
danielk197771d5d2c2008-09-29 11:49:47 +00004936 pPage = pCur->apPage[pCur->iPage];
4937 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004938 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004939 int idx = pCur->aiIdx[pCur->iPage];
4940 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004941 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004942 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004943 return rc;
4944 }
drh2dcc9aa2002-12-04 13:40:25 +00004945 rc = moveToRightmost(pCur);
4946 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004947 while( pCur->aiIdx[pCur->iPage]==0 ){
4948 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004949 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004950 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004951 return SQLITE_OK;
4952 }
danielk197730548662009-07-09 05:07:37 +00004953 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004954 }
drh271efa52004-05-30 19:19:05 +00004955 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004956 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004957
4958 pCur->aiIdx[pCur->iPage]--;
4959 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004960 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004961 rc = sqlite3BtreePrevious(pCur, pRes);
4962 }else{
4963 rc = SQLITE_OK;
4964 }
drh2dcc9aa2002-12-04 13:40:25 +00004965 }
drh8178a752003-01-05 21:41:40 +00004966 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004967 return rc;
4968}
4969
4970/*
drh3b7511c2001-05-26 13:15:44 +00004971** Allocate a new page from the database file.
4972**
danielk19773b8a05f2007-03-19 17:44:26 +00004973** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004974** has already been called on the new page.) The new page has also
4975** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004976** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004977**
4978** SQLITE_OK is returned on success. Any other return value indicates
4979** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004980** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004981**
drh82e647d2013-03-02 03:25:55 +00004982** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004983** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004984** attempt to keep related pages close to each other in the database file,
4985** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004986**
drh82e647d2013-03-02 03:25:55 +00004987** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4988** anywhere on the free-list, then it is guaranteed to be returned. If
4989** eMode is BTALLOC_LT then the page returned will be less than or equal
4990** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4991** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004992*/
drh4f0c5872007-03-26 22:05:01 +00004993static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004994 BtShared *pBt, /* The btree */
4995 MemPage **ppPage, /* Store pointer to the allocated page here */
4996 Pgno *pPgno, /* Store the page number here */
4997 Pgno nearby, /* Search for a page near this one */
4998 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004999){
drh3aac2dd2004-04-26 14:10:20 +00005000 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005001 int rc;
drh35cd6432009-06-05 14:17:21 +00005002 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005003 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005004 MemPage *pTrunk = 0;
5005 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005006 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005007
drh1fee73e2007-08-29 04:00:57 +00005008 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005009 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005010 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005011 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005012 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005013 testcase( n==mxPage-1 );
5014 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005015 return SQLITE_CORRUPT_BKPT;
5016 }
drh3aac2dd2004-04-26 14:10:20 +00005017 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005018 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005019 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005020 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5021
drh82e647d2013-03-02 03:25:55 +00005022 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005023 ** shows that the page 'nearby' is somewhere on the free-list, then
5024 ** the entire-list will be searched for that page.
5025 */
5026#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005027 if( eMode==BTALLOC_EXACT ){
5028 if( nearby<=mxPage ){
5029 u8 eType;
5030 assert( nearby>0 );
5031 assert( pBt->autoVacuum );
5032 rc = ptrmapGet(pBt, nearby, &eType, 0);
5033 if( rc ) return rc;
5034 if( eType==PTRMAP_FREEPAGE ){
5035 searchList = 1;
5036 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005037 }
dan51f0b6d2013-02-22 20:16:34 +00005038 }else if( eMode==BTALLOC_LE ){
5039 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005040 }
5041#endif
5042
5043 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5044 ** first free-list trunk page. iPrevTrunk is initially 1.
5045 */
danielk19773b8a05f2007-03-19 17:44:26 +00005046 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005047 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005048 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005049
5050 /* The code within this loop is run only once if the 'searchList' variable
5051 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005052 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5053 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005054 */
5055 do {
5056 pPrevTrunk = pTrunk;
5057 if( pPrevTrunk ){
5058 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005059 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005060 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005061 }
drhdf35a082009-07-09 02:24:35 +00005062 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005063 if( iTrunk>mxPage ){
5064 rc = SQLITE_CORRUPT_BKPT;
5065 }else{
drhb00fc3b2013-08-21 23:42:32 +00005066 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005067 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005068 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005069 pTrunk = 0;
5070 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005071 }
drhb07028f2011-10-14 21:49:18 +00005072 assert( pTrunk!=0 );
5073 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005074
drh93b4fc72011-04-07 14:47:01 +00005075 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005076 if( k==0 && !searchList ){
5077 /* The trunk has no leaves and the list is not being searched.
5078 ** So extract the trunk page itself and use it as the newly
5079 ** allocated page */
5080 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005081 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005082 if( rc ){
5083 goto end_allocate_page;
5084 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005085 *pPgno = iTrunk;
5086 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5087 *ppPage = pTrunk;
5088 pTrunk = 0;
5089 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005090 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005091 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005092 rc = SQLITE_CORRUPT_BKPT;
5093 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005094#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005095 }else if( searchList
5096 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5097 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005098 /* The list is being searched and this trunk page is the page
5099 ** to allocate, regardless of whether it has leaves.
5100 */
dan51f0b6d2013-02-22 20:16:34 +00005101 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005102 *ppPage = pTrunk;
5103 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005104 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005105 if( rc ){
5106 goto end_allocate_page;
5107 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005108 if( k==0 ){
5109 if( !pPrevTrunk ){
5110 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5111 }else{
danf48c3552010-08-23 15:41:24 +00005112 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5113 if( rc!=SQLITE_OK ){
5114 goto end_allocate_page;
5115 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005116 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5117 }
5118 }else{
5119 /* The trunk page is required by the caller but it contains
5120 ** pointers to free-list leaves. The first leaf becomes a trunk
5121 ** page in this case.
5122 */
5123 MemPage *pNewTrunk;
5124 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005125 if( iNewTrunk>mxPage ){
5126 rc = SQLITE_CORRUPT_BKPT;
5127 goto end_allocate_page;
5128 }
drhdf35a082009-07-09 02:24:35 +00005129 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005130 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005131 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005132 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005133 }
danielk19773b8a05f2007-03-19 17:44:26 +00005134 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005135 if( rc!=SQLITE_OK ){
5136 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005137 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005138 }
5139 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5140 put4byte(&pNewTrunk->aData[4], k-1);
5141 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005142 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005143 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005144 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005145 put4byte(&pPage1->aData[32], iNewTrunk);
5146 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005147 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005148 if( rc ){
5149 goto end_allocate_page;
5150 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005151 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5152 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005153 }
5154 pTrunk = 0;
5155 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5156#endif
danielk1977e5765212009-06-17 11:13:28 +00005157 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005158 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005159 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005160 Pgno iPage;
5161 unsigned char *aData = pTrunk->aData;
5162 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005163 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005164 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005165 if( eMode==BTALLOC_LE ){
5166 for(i=0; i<k; i++){
5167 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005168 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005169 closest = i;
5170 break;
5171 }
5172 }
5173 }else{
5174 int dist;
5175 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5176 for(i=1; i<k; i++){
5177 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5178 if( d2<dist ){
5179 closest = i;
5180 dist = d2;
5181 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005182 }
5183 }
5184 }else{
5185 closest = 0;
5186 }
5187
5188 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005189 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005190 if( iPage>mxPage ){
5191 rc = SQLITE_CORRUPT_BKPT;
5192 goto end_allocate_page;
5193 }
drhdf35a082009-07-09 02:24:35 +00005194 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005195 if( !searchList
5196 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5197 ){
danielk1977bea2a942009-01-20 17:06:27 +00005198 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005199 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005200 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5201 ": %d more free pages\n",
5202 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005203 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5204 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005205 if( closest<k-1 ){
5206 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5207 }
5208 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005209 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5210 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005211 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005212 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005213 if( rc!=SQLITE_OK ){
5214 releasePage(*ppPage);
5215 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005216 }
5217 searchList = 0;
5218 }
drhee696e22004-08-30 16:52:17 +00005219 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005220 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005221 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005222 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005223 }else{
danbc1a3c62013-02-23 16:40:46 +00005224 /* There are no pages on the freelist, so append a new page to the
5225 ** database image.
5226 **
5227 ** Normally, new pages allocated by this block can be requested from the
5228 ** pager layer with the 'no-content' flag set. This prevents the pager
5229 ** from trying to read the pages content from disk. However, if the
5230 ** current transaction has already run one or more incremental-vacuum
5231 ** steps, then the page we are about to allocate may contain content
5232 ** that is required in the event of a rollback. In this case, do
5233 ** not set the no-content flag. This causes the pager to load and journal
5234 ** the current page content before overwriting it.
5235 **
5236 ** Note that the pager will not actually attempt to load or journal
5237 ** content for any page that really does lie past the end of the database
5238 ** file on disk. So the effects of disabling the no-content optimization
5239 ** here are confined to those pages that lie between the end of the
5240 ** database image and the end of the database file.
5241 */
drhb00fc3b2013-08-21 23:42:32 +00005242 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005243
drhdd3cd972010-03-27 17:12:36 +00005244 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5245 if( rc ) return rc;
5246 pBt->nPage++;
5247 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005248
danielk1977afcdd022004-10-31 16:25:42 +00005249#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005250 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005251 /* If *pPgno refers to a pointer-map page, allocate two new pages
5252 ** at the end of the file instead of one. The first allocated page
5253 ** becomes a new pointer-map page, the second is used by the caller.
5254 */
danielk1977ac861692009-03-28 10:54:22 +00005255 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005256 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5257 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005258 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005259 if( rc==SQLITE_OK ){
5260 rc = sqlite3PagerWrite(pPg->pDbPage);
5261 releasePage(pPg);
5262 }
5263 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005264 pBt->nPage++;
5265 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005266 }
5267#endif
drhdd3cd972010-03-27 17:12:36 +00005268 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5269 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005270
danielk1977599fcba2004-11-08 07:13:13 +00005271 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005272 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005273 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005274 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005275 if( rc!=SQLITE_OK ){
5276 releasePage(*ppPage);
5277 }
drh3a4c1412004-05-09 20:40:11 +00005278 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005279 }
danielk1977599fcba2004-11-08 07:13:13 +00005280
5281 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005282
5283end_allocate_page:
5284 releasePage(pTrunk);
5285 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005286 if( rc==SQLITE_OK ){
5287 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5288 releasePage(*ppPage);
5289 return SQLITE_CORRUPT_BKPT;
5290 }
5291 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005292 }else{
5293 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005294 }
drh93b4fc72011-04-07 14:47:01 +00005295 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005296 return rc;
5297}
5298
5299/*
danielk1977bea2a942009-01-20 17:06:27 +00005300** This function is used to add page iPage to the database file free-list.
5301** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005302**
danielk1977bea2a942009-01-20 17:06:27 +00005303** The value passed as the second argument to this function is optional.
5304** If the caller happens to have a pointer to the MemPage object
5305** corresponding to page iPage handy, it may pass it as the second value.
5306** Otherwise, it may pass NULL.
5307**
5308** If a pointer to a MemPage object is passed as the second argument,
5309** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005310*/
danielk1977bea2a942009-01-20 17:06:27 +00005311static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5312 MemPage *pTrunk = 0; /* Free-list trunk page */
5313 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5314 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5315 MemPage *pPage; /* Page being freed. May be NULL. */
5316 int rc; /* Return Code */
5317 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005318
danielk1977bea2a942009-01-20 17:06:27 +00005319 assert( sqlite3_mutex_held(pBt->mutex) );
5320 assert( iPage>1 );
5321 assert( !pMemPage || pMemPage->pgno==iPage );
5322
5323 if( pMemPage ){
5324 pPage = pMemPage;
5325 sqlite3PagerRef(pPage->pDbPage);
5326 }else{
5327 pPage = btreePageLookup(pBt, iPage);
5328 }
drh3aac2dd2004-04-26 14:10:20 +00005329
drha34b6762004-05-07 13:30:42 +00005330 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005331 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005332 if( rc ) goto freepage_out;
5333 nFree = get4byte(&pPage1->aData[36]);
5334 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005335
drhc9166342012-01-05 23:32:06 +00005336 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005337 /* If the secure_delete option is enabled, then
5338 ** always fully overwrite deleted information with zeros.
5339 */
drhb00fc3b2013-08-21 23:42:32 +00005340 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005341 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005342 ){
5343 goto freepage_out;
5344 }
5345 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005346 }
drhfcce93f2006-02-22 03:08:32 +00005347
danielk1977687566d2004-11-02 12:56:41 +00005348 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005349 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005350 */
danielk197785d90ca2008-07-19 14:25:15 +00005351 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005352 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005353 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005354 }
danielk1977687566d2004-11-02 12:56:41 +00005355
danielk1977bea2a942009-01-20 17:06:27 +00005356 /* Now manipulate the actual database free-list structure. There are two
5357 ** possibilities. If the free-list is currently empty, or if the first
5358 ** trunk page in the free-list is full, then this page will become a
5359 ** new free-list trunk page. Otherwise, it will become a leaf of the
5360 ** first trunk page in the current free-list. This block tests if it
5361 ** is possible to add the page as a new free-list leaf.
5362 */
5363 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005364 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005365
5366 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005367 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005368 if( rc!=SQLITE_OK ){
5369 goto freepage_out;
5370 }
5371
5372 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005373 assert( pBt->usableSize>32 );
5374 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005375 rc = SQLITE_CORRUPT_BKPT;
5376 goto freepage_out;
5377 }
drheeb844a2009-08-08 18:01:07 +00005378 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005379 /* In this case there is room on the trunk page to insert the page
5380 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005381 **
5382 ** Note that the trunk page is not really full until it contains
5383 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5384 ** coded. But due to a coding error in versions of SQLite prior to
5385 ** 3.6.0, databases with freelist trunk pages holding more than
5386 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5387 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005388 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005389 ** for now. At some point in the future (once everyone has upgraded
5390 ** to 3.6.0 or later) we should consider fixing the conditional above
5391 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5392 */
danielk19773b8a05f2007-03-19 17:44:26 +00005393 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005394 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005395 put4byte(&pTrunk->aData[4], nLeaf+1);
5396 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005397 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005398 sqlite3PagerDontWrite(pPage->pDbPage);
5399 }
danielk1977bea2a942009-01-20 17:06:27 +00005400 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005401 }
drh3a4c1412004-05-09 20:40:11 +00005402 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005403 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005404 }
drh3b7511c2001-05-26 13:15:44 +00005405 }
danielk1977bea2a942009-01-20 17:06:27 +00005406
5407 /* If control flows to this point, then it was not possible to add the
5408 ** the page being freed as a leaf page of the first trunk in the free-list.
5409 ** Possibly because the free-list is empty, or possibly because the
5410 ** first trunk in the free-list is full. Either way, the page being freed
5411 ** will become the new first trunk page in the free-list.
5412 */
drhb00fc3b2013-08-21 23:42:32 +00005413 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005414 goto freepage_out;
5415 }
5416 rc = sqlite3PagerWrite(pPage->pDbPage);
5417 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005418 goto freepage_out;
5419 }
5420 put4byte(pPage->aData, iTrunk);
5421 put4byte(&pPage->aData[4], 0);
5422 put4byte(&pPage1->aData[32], iPage);
5423 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5424
5425freepage_out:
5426 if( pPage ){
5427 pPage->isInit = 0;
5428 }
5429 releasePage(pPage);
5430 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005431 return rc;
5432}
drhc314dc72009-07-21 11:52:34 +00005433static void freePage(MemPage *pPage, int *pRC){
5434 if( (*pRC)==SQLITE_OK ){
5435 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5436 }
danielk1977bea2a942009-01-20 17:06:27 +00005437}
drh3b7511c2001-05-26 13:15:44 +00005438
5439/*
drh3aac2dd2004-04-26 14:10:20 +00005440** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005441*/
drh3aac2dd2004-04-26 14:10:20 +00005442static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005443 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005444 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005445 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005446 int rc;
drh94440812007-03-06 11:42:19 +00005447 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005448 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005449
drh1fee73e2007-08-29 04:00:57 +00005450 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005451 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005452 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005453 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005454 }
drhe42a9b42011-08-31 13:27:19 +00005455 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005456 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005457 }
drh6f11bef2004-05-13 01:12:56 +00005458 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005459 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005460 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005461 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5462 assert( ovflPgno==0 || nOvfl>0 );
5463 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005464 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005465 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005466 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005467 /* 0 is not a legal page number and page 1 cannot be an
5468 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5469 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005470 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005471 }
danielk1977bea2a942009-01-20 17:06:27 +00005472 if( nOvfl ){
5473 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5474 if( rc ) return rc;
5475 }
dan887d4b22010-02-25 12:09:16 +00005476
shaneh1da207e2010-03-09 14:41:12 +00005477 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005478 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5479 ){
5480 /* There is no reason any cursor should have an outstanding reference
5481 ** to an overflow page belonging to a cell that is being deleted/updated.
5482 ** So if there exists more than one reference to this page, then it
5483 ** must not really be an overflow page and the database must be corrupt.
5484 ** It is helpful to detect this before calling freePage2(), as
5485 ** freePage2() may zero the page contents if secure-delete mode is
5486 ** enabled. If this 'overflow' page happens to be a page that the
5487 ** caller is iterating through or using in some other way, this
5488 ** can be problematic.
5489 */
5490 rc = SQLITE_CORRUPT_BKPT;
5491 }else{
5492 rc = freePage2(pBt, pOvfl, ovflPgno);
5493 }
5494
danielk1977bea2a942009-01-20 17:06:27 +00005495 if( pOvfl ){
5496 sqlite3PagerUnref(pOvfl->pDbPage);
5497 }
drh3b7511c2001-05-26 13:15:44 +00005498 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005499 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005500 }
drh5e2f8b92001-05-28 00:41:15 +00005501 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005502}
5503
5504/*
drh91025292004-05-03 19:49:32 +00005505** Create the byte sequence used to represent a cell on page pPage
5506** and write that byte sequence into pCell[]. Overflow pages are
5507** allocated and filled in as necessary. The calling procedure
5508** is responsible for making sure sufficient space has been allocated
5509** for pCell[].
5510**
5511** Note that pCell does not necessary need to point to the pPage->aData
5512** area. pCell might point to some temporary storage. The cell will
5513** be constructed in this temporary area then copied into pPage->aData
5514** later.
drh3b7511c2001-05-26 13:15:44 +00005515*/
5516static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005517 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005518 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005519 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005520 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005521 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005522 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005523){
drh3b7511c2001-05-26 13:15:44 +00005524 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005525 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005526 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005527 int spaceLeft;
5528 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005529 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005530 unsigned char *pPrior;
5531 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005532 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005533 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005534 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005535 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005536
drh1fee73e2007-08-29 04:00:57 +00005537 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005538
drhc5053fb2008-11-27 02:22:10 +00005539 /* pPage is not necessarily writeable since pCell might be auxiliary
5540 ** buffer space that is separate from the pPage buffer area */
5541 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5542 || sqlite3PagerIswriteable(pPage->pDbPage) );
5543
drh91025292004-05-03 19:49:32 +00005544 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005545 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005546 if( !pPage->leaf ){
5547 nHeader += 4;
5548 }
drh8b18dd42004-05-12 19:18:15 +00005549 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005550 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005551 }else{
drhb026e052007-05-02 01:34:31 +00005552 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005553 }
drh6f11bef2004-05-13 01:12:56 +00005554 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005555 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005556 assert( info.nHeader==nHeader );
5557 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005558 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005559
5560 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005561 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005562 if( pPage->intKey ){
5563 pSrc = pData;
5564 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005565 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005566 }else{
danielk197731d31b82009-07-13 13:18:07 +00005567 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5568 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005569 }
drhf49661a2008-12-10 16:45:50 +00005570 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005571 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005572 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005573 }
drh6f11bef2004-05-13 01:12:56 +00005574 *pnSize = info.nSize;
5575 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005576 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005577 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005578
drh3b7511c2001-05-26 13:15:44 +00005579 while( nPayload>0 ){
5580 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005581#ifndef SQLITE_OMIT_AUTOVACUUM
5582 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005583 if( pBt->autoVacuum ){
5584 do{
5585 pgnoOvfl++;
5586 } while(
5587 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5588 );
danielk1977b39f70b2007-05-17 18:28:11 +00005589 }
danielk1977afcdd022004-10-31 16:25:42 +00005590#endif
drhf49661a2008-12-10 16:45:50 +00005591 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005592#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005593 /* If the database supports auto-vacuum, and the second or subsequent
5594 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005595 ** for that page now.
5596 **
5597 ** If this is the first overflow page, then write a partial entry
5598 ** to the pointer-map. If we write nothing to this pointer-map slot,
5599 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005600 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005601 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005602 */
danielk19774ef24492007-05-23 09:52:41 +00005603 if( pBt->autoVacuum && rc==SQLITE_OK ){
5604 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005605 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005606 if( rc ){
5607 releasePage(pOvfl);
5608 }
danielk1977afcdd022004-10-31 16:25:42 +00005609 }
5610#endif
drh3b7511c2001-05-26 13:15:44 +00005611 if( rc ){
drh9b171272004-05-08 02:03:22 +00005612 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005613 return rc;
5614 }
drhc5053fb2008-11-27 02:22:10 +00005615
5616 /* If pToRelease is not zero than pPrior points into the data area
5617 ** of pToRelease. Make sure pToRelease is still writeable. */
5618 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5619
5620 /* If pPrior is part of the data area of pPage, then make sure pPage
5621 ** is still writeable */
5622 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5623 || sqlite3PagerIswriteable(pPage->pDbPage) );
5624
drh3aac2dd2004-04-26 14:10:20 +00005625 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005626 releasePage(pToRelease);
5627 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005628 pPrior = pOvfl->aData;
5629 put4byte(pPrior, 0);
5630 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005631 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005632 }
5633 n = nPayload;
5634 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005635
5636 /* If pToRelease is not zero than pPayload points into the data area
5637 ** of pToRelease. Make sure pToRelease is still writeable. */
5638 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5639
5640 /* If pPayload is part of the data area of pPage, then make sure pPage
5641 ** is still writeable */
5642 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5643 || sqlite3PagerIswriteable(pPage->pDbPage) );
5644
drhb026e052007-05-02 01:34:31 +00005645 if( nSrc>0 ){
5646 if( n>nSrc ) n = nSrc;
5647 assert( pSrc );
5648 memcpy(pPayload, pSrc, n);
5649 }else{
5650 memset(pPayload, 0, n);
5651 }
drh3b7511c2001-05-26 13:15:44 +00005652 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005653 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005654 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005655 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005656 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005657 if( nSrc==0 ){
5658 nSrc = nData;
5659 pSrc = pData;
5660 }
drhdd793422001-06-28 01:54:48 +00005661 }
drh9b171272004-05-08 02:03:22 +00005662 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005663 return SQLITE_OK;
5664}
5665
drh14acc042001-06-10 19:56:58 +00005666/*
5667** Remove the i-th cell from pPage. This routine effects pPage only.
5668** The cell content is not freed or deallocated. It is assumed that
5669** the cell content has been copied someplace else. This routine just
5670** removes the reference to the cell from pPage.
5671**
5672** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005673*/
drh98add2e2009-07-20 17:11:49 +00005674static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005675 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005676 u8 *data; /* pPage->aData */
5677 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005678 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005679 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005680 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005681
drh98add2e2009-07-20 17:11:49 +00005682 if( *pRC ) return;
5683
drh8c42ca92001-06-22 19:15:00 +00005684 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005685 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005686 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005687 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005688 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005689 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005690 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005691 hdr = pPage->hdrOffset;
5692 testcase( pc==get2byte(&data[hdr+5]) );
5693 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005694 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005695 *pRC = SQLITE_CORRUPT_BKPT;
5696 return;
shane0af3f892008-11-12 04:55:34 +00005697 }
shanedcc50b72008-11-13 18:29:50 +00005698 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005699 if( rc ){
5700 *pRC = rc;
5701 return;
shanedcc50b72008-11-13 18:29:50 +00005702 }
drh3def2352011-11-11 00:27:15 +00005703 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005704 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005705 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005706 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005707 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005708 }
5709 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005710 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005711 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005712}
5713
5714/*
5715** Insert a new cell on pPage at cell index "i". pCell points to the
5716** content of the cell.
5717**
5718** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005719** will not fit, then make a copy of the cell content into pTemp if
5720** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005721** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005722** in pTemp or the original pCell) and also record its index.
5723** Allocating a new entry in pPage->aCell[] implies that
5724** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005725**
5726** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5727** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005728** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005729** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005730*/
drh98add2e2009-07-20 17:11:49 +00005731static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005732 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005733 int i, /* New cell becomes the i-th cell of the page */
5734 u8 *pCell, /* Content of the new cell */
5735 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005736 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005737 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5738 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005739){
drh383d30f2010-02-26 13:07:37 +00005740 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005741 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005742 int end; /* First byte past the last cell pointer in data[] */
5743 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005744 int cellOffset; /* Address of first cell pointer in data[] */
5745 u8 *data; /* The content of the whole page */
5746 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005747 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005748
danielk19774dbaa892009-06-16 16:50:22 +00005749 int nSkip = (iChild ? 4 : 0);
5750
drh98add2e2009-07-20 17:11:49 +00005751 if( *pRC ) return;
5752
drh43605152004-05-29 21:46:49 +00005753 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005754 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005755 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5756 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005757 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005758 /* The cell should normally be sized correctly. However, when moving a
5759 ** malformed cell from a leaf page to an interior page, if the cell size
5760 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5761 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5762 ** the term after the || in the following assert(). */
5763 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005764 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005765 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005766 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005767 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005768 }
danielk19774dbaa892009-06-16 16:50:22 +00005769 if( iChild ){
5770 put4byte(pCell, iChild);
5771 }
drh43605152004-05-29 21:46:49 +00005772 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005773 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5774 pPage->apOvfl[j] = pCell;
5775 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005776 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005777 int rc = sqlite3PagerWrite(pPage->pDbPage);
5778 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005779 *pRC = rc;
5780 return;
danielk19776e465eb2007-08-21 13:11:00 +00005781 }
5782 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005783 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005784 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005785 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005786 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005787 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005788 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005789 /* The allocateSpace() routine guarantees the following two properties
5790 ** if it returns success */
5791 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005792 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005793 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005794 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005795 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005796 if( iChild ){
5797 put4byte(&data[idx], iChild);
5798 }
drh61d2fe92011-06-03 23:28:33 +00005799 ptr = &data[end];
5800 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005801 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005802 while( ptr>endPtr ){
5803 *(u16*)ptr = *(u16*)&ptr[-2];
5804 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005805 }
drh43605152004-05-29 21:46:49 +00005806 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005807 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005808#ifndef SQLITE_OMIT_AUTOVACUUM
5809 if( pPage->pBt->autoVacuum ){
5810 /* The cell may contain a pointer to an overflow page. If so, write
5811 ** the entry for the overflow page into the pointer map.
5812 */
drh98add2e2009-07-20 17:11:49 +00005813 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005814 }
5815#endif
drh14acc042001-06-10 19:56:58 +00005816 }
5817}
5818
5819/*
drhfa1a98a2004-05-14 19:08:17 +00005820** Add a list of cells to a page. The page should be initially empty.
5821** The cells are guaranteed to fit on the page.
5822*/
5823static void assemblePage(
5824 MemPage *pPage, /* The page to be assemblied */
5825 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005826 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005827 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005828){
5829 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005830 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005831 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005832 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5833 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5834 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005835
drh43605152004-05-29 21:46:49 +00005836 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005837 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005838 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5839 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005840 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005841
5842 /* Check that the page has just been zeroed by zeroPage() */
5843 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005844 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005845
drh3def2352011-11-11 00:27:15 +00005846 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005847 cellbody = nUsable;
5848 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005849 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005850 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005851 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005852 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005853 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005854 }
danielk1977fad91942009-04-29 17:49:59 +00005855 put2byte(&data[hdr+3], nCell);
5856 put2byte(&data[hdr+5], cellbody);
5857 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005858 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005859}
5860
drh14acc042001-06-10 19:56:58 +00005861/*
drhc3b70572003-01-04 19:44:07 +00005862** The following parameters determine how many adjacent pages get involved
5863** in a balancing operation. NN is the number of neighbors on either side
5864** of the page that participate in the balancing operation. NB is the
5865** total number of pages that participate, including the target page and
5866** NN neighbors on either side.
5867**
5868** The minimum value of NN is 1 (of course). Increasing NN above 1
5869** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5870** in exchange for a larger degradation in INSERT and UPDATE performance.
5871** The value of NN appears to give the best results overall.
5872*/
5873#define NN 1 /* Number of neighbors on either side of pPage */
5874#define NB (NN*2+1) /* Total pages involved in the balance */
5875
danielk1977ac245ec2005-01-14 13:50:11 +00005876
drh615ae552005-01-16 23:21:00 +00005877#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005878/*
5879** This version of balance() handles the common special case where
5880** a new entry is being inserted on the extreme right-end of the
5881** tree, in other words, when the new entry will become the largest
5882** entry in the tree.
5883**
drhc314dc72009-07-21 11:52:34 +00005884** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005885** a new page to the right-hand side and put the one new entry in
5886** that page. This leaves the right side of the tree somewhat
5887** unbalanced. But odds are that we will be inserting new entries
5888** at the end soon afterwards so the nearly empty page will quickly
5889** fill up. On average.
5890**
5891** pPage is the leaf page which is the right-most page in the tree.
5892** pParent is its parent. pPage must have a single overflow entry
5893** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005894**
5895** The pSpace buffer is used to store a temporary copy of the divider
5896** cell that will be inserted into pParent. Such a cell consists of a 4
5897** byte page number followed by a variable length integer. In other
5898** words, at most 13 bytes. Hence the pSpace buffer must be at
5899** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005900*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005901static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5902 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005903 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005904 int rc; /* Return Code */
5905 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005906
drh1fee73e2007-08-29 04:00:57 +00005907 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005908 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005909 assert( pPage->nOverflow==1 );
5910
drh5d433ce2010-08-14 16:02:52 +00005911 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005912 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005913
danielk1977a50d9aa2009-06-08 14:49:45 +00005914 /* Allocate a new page. This page will become the right-sibling of
5915 ** pPage. Make the parent page writable, so that the new divider cell
5916 ** may be inserted. If both these operations are successful, proceed.
5917 */
drh4f0c5872007-03-26 22:05:01 +00005918 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005919
danielk1977eaa06f62008-09-18 17:34:44 +00005920 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005921
5922 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005923 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005924 u16 szCell = cellSizePtr(pPage, pCell);
5925 u8 *pStop;
5926
drhc5053fb2008-11-27 02:22:10 +00005927 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005928 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5929 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005930 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005931
5932 /* If this is an auto-vacuum database, update the pointer map
5933 ** with entries for the new page, and any pointer from the
5934 ** cell on the page to an overflow page. If either of these
5935 ** operations fails, the return code is set, but the contents
5936 ** of the parent page are still manipulated by thh code below.
5937 ** That is Ok, at this point the parent page is guaranteed to
5938 ** be marked as dirty. Returning an error code will cause a
5939 ** rollback, undoing any changes made to the parent page.
5940 */
5941 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005942 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5943 if( szCell>pNew->minLocal ){
5944 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005945 }
5946 }
danielk1977eaa06f62008-09-18 17:34:44 +00005947
danielk19776f235cc2009-06-04 14:46:08 +00005948 /* Create a divider cell to insert into pParent. The divider cell
5949 ** consists of a 4-byte page number (the page number of pPage) and
5950 ** a variable length key value (which must be the same value as the
5951 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005952 **
danielk19776f235cc2009-06-04 14:46:08 +00005953 ** To find the largest key value on pPage, first find the right-most
5954 ** cell on pPage. The first two fields of this cell are the
5955 ** record-length (a variable length integer at most 32-bits in size)
5956 ** and the key value (a variable length integer, may have any value).
5957 ** The first of the while(...) loops below skips over the record-length
5958 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005959 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005960 */
danielk1977eaa06f62008-09-18 17:34:44 +00005961 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005962 pStop = &pCell[9];
5963 while( (*(pCell++)&0x80) && pCell<pStop );
5964 pStop = &pCell[9];
5965 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5966
danielk19774dbaa892009-06-16 16:50:22 +00005967 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005968 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5969 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005970
5971 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005972 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5973
danielk1977e08a3c42008-09-18 18:17:03 +00005974 /* Release the reference to the new page. */
5975 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005976 }
5977
danielk1977eaa06f62008-09-18 17:34:44 +00005978 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005979}
drh615ae552005-01-16 23:21:00 +00005980#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005981
danielk19774dbaa892009-06-16 16:50:22 +00005982#if 0
drhc3b70572003-01-04 19:44:07 +00005983/*
danielk19774dbaa892009-06-16 16:50:22 +00005984** This function does not contribute anything to the operation of SQLite.
5985** it is sometimes activated temporarily while debugging code responsible
5986** for setting pointer-map entries.
5987*/
5988static int ptrmapCheckPages(MemPage **apPage, int nPage){
5989 int i, j;
5990 for(i=0; i<nPage; i++){
5991 Pgno n;
5992 u8 e;
5993 MemPage *pPage = apPage[i];
5994 BtShared *pBt = pPage->pBt;
5995 assert( pPage->isInit );
5996
5997 for(j=0; j<pPage->nCell; j++){
5998 CellInfo info;
5999 u8 *z;
6000
6001 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006002 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006003 if( info.iOverflow ){
6004 Pgno ovfl = get4byte(&z[info.iOverflow]);
6005 ptrmapGet(pBt, ovfl, &e, &n);
6006 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6007 }
6008 if( !pPage->leaf ){
6009 Pgno child = get4byte(z);
6010 ptrmapGet(pBt, child, &e, &n);
6011 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6012 }
6013 }
6014 if( !pPage->leaf ){
6015 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6016 ptrmapGet(pBt, child, &e, &n);
6017 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6018 }
6019 }
6020 return 1;
6021}
6022#endif
6023
danielk1977cd581a72009-06-23 15:43:39 +00006024/*
6025** This function is used to copy the contents of the b-tree node stored
6026** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6027** the pointer-map entries for each child page are updated so that the
6028** parent page stored in the pointer map is page pTo. If pFrom contained
6029** any cells with overflow page pointers, then the corresponding pointer
6030** map entries are also updated so that the parent page is page pTo.
6031**
6032** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006033** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006034**
danielk197730548662009-07-09 05:07:37 +00006035** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006036**
6037** The performance of this function is not critical. It is only used by
6038** the balance_shallower() and balance_deeper() procedures, neither of
6039** which are called often under normal circumstances.
6040*/
drhc314dc72009-07-21 11:52:34 +00006041static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6042 if( (*pRC)==SQLITE_OK ){
6043 BtShared * const pBt = pFrom->pBt;
6044 u8 * const aFrom = pFrom->aData;
6045 u8 * const aTo = pTo->aData;
6046 int const iFromHdr = pFrom->hdrOffset;
6047 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006048 int rc;
drhc314dc72009-07-21 11:52:34 +00006049 int iData;
6050
6051
6052 assert( pFrom->isInit );
6053 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006054 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006055
6056 /* Copy the b-tree node content from page pFrom to page pTo. */
6057 iData = get2byte(&aFrom[iFromHdr+5]);
6058 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6059 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6060
6061 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006062 ** match the new data. The initialization of pTo can actually fail under
6063 ** fairly obscure circumstances, even though it is a copy of initialized
6064 ** page pFrom.
6065 */
drhc314dc72009-07-21 11:52:34 +00006066 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006067 rc = btreeInitPage(pTo);
6068 if( rc!=SQLITE_OK ){
6069 *pRC = rc;
6070 return;
6071 }
drhc314dc72009-07-21 11:52:34 +00006072
6073 /* If this is an auto-vacuum database, update the pointer-map entries
6074 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6075 */
6076 if( ISAUTOVACUUM ){
6077 *pRC = setChildPtrmaps(pTo);
6078 }
danielk1977cd581a72009-06-23 15:43:39 +00006079 }
danielk1977cd581a72009-06-23 15:43:39 +00006080}
6081
6082/*
danielk19774dbaa892009-06-16 16:50:22 +00006083** This routine redistributes cells on the iParentIdx'th child of pParent
6084** (hereafter "the page") and up to 2 siblings so that all pages have about the
6085** same amount of free space. Usually a single sibling on either side of the
6086** page are used in the balancing, though both siblings might come from one
6087** side if the page is the first or last child of its parent. If the page
6088** has fewer than 2 siblings (something which can only happen if the page
6089** is a root page or a child of a root page) then all available siblings
6090** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006091**
danielk19774dbaa892009-06-16 16:50:22 +00006092** The number of siblings of the page might be increased or decreased by
6093** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006094**
danielk19774dbaa892009-06-16 16:50:22 +00006095** Note that when this routine is called, some of the cells on the page
6096** might not actually be stored in MemPage.aData[]. This can happen
6097** if the page is overfull. This routine ensures that all cells allocated
6098** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006099**
danielk19774dbaa892009-06-16 16:50:22 +00006100** In the course of balancing the page and its siblings, cells may be
6101** inserted into or removed from the parent page (pParent). Doing so
6102** may cause the parent page to become overfull or underfull. If this
6103** happens, it is the responsibility of the caller to invoke the correct
6104** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006105**
drh5e00f6c2001-09-13 13:46:56 +00006106** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006107** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006108** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006109**
6110** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006111** buffer big enough to hold one page. If while inserting cells into the parent
6112** page (pParent) the parent page becomes overfull, this buffer is
6113** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006114** a maximum of four divider cells into the parent page, and the maximum
6115** size of a cell stored within an internal node is always less than 1/4
6116** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6117** enough for all overflow cells.
6118**
6119** If aOvflSpace is set to a null pointer, this function returns
6120** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006121*/
mistachkine7c54162012-10-02 22:54:27 +00006122#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6123#pragma optimize("", off)
6124#endif
danielk19774dbaa892009-06-16 16:50:22 +00006125static int balance_nonroot(
6126 MemPage *pParent, /* Parent page of siblings being balanced */
6127 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006128 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006129 int isRoot, /* True if pParent is a root-page */
6130 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006131){
drh16a9b832007-05-05 18:39:25 +00006132 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006133 int nCell = 0; /* Number of cells in apCell[] */
6134 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006135 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006136 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006137 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006138 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006139 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006140 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006141 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006142 int usableSpace; /* Bytes in pPage beyond the header */
6143 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006144 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006145 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006146 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006147 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006148 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006149 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006150 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006151 u8 *pRight; /* Location in parent of right-sibling pointer */
6152 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006153 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6154 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006155 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006156 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006157 u8 *aSpace1; /* Space for copies of dividers cells */
6158 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006159
danielk1977a50d9aa2009-06-08 14:49:45 +00006160 pBt = pParent->pBt;
6161 assert( sqlite3_mutex_held(pBt->mutex) );
6162 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006163
danielk1977e5765212009-06-17 11:13:28 +00006164#if 0
drh43605152004-05-29 21:46:49 +00006165 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006166#endif
drh2e38c322004-09-03 18:38:44 +00006167
danielk19774dbaa892009-06-16 16:50:22 +00006168 /* At this point pParent may have at most one overflow cell. And if
6169 ** this overflow cell is present, it must be the cell with
6170 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006171 ** is called (indirectly) from sqlite3BtreeDelete().
6172 */
danielk19774dbaa892009-06-16 16:50:22 +00006173 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006174 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006175
danielk197711a8a862009-06-17 11:49:52 +00006176 if( !aOvflSpace ){
6177 return SQLITE_NOMEM;
6178 }
6179
danielk1977a50d9aa2009-06-08 14:49:45 +00006180 /* Find the sibling pages to balance. Also locate the cells in pParent
6181 ** that divide the siblings. An attempt is made to find NN siblings on
6182 ** either side of pPage. More siblings are taken from one side, however,
6183 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006184 ** has NB or fewer children then all children of pParent are taken.
6185 **
6186 ** This loop also drops the divider cells from the parent page. This
6187 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006188 ** overflow cells in the parent page, since if any existed they will
6189 ** have already been removed.
6190 */
danielk19774dbaa892009-06-16 16:50:22 +00006191 i = pParent->nOverflow + pParent->nCell;
6192 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006193 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006194 }else{
dan7d6885a2012-08-08 14:04:56 +00006195 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006196 if( iParentIdx==0 ){
6197 nxDiv = 0;
6198 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006199 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006200 }else{
dan7d6885a2012-08-08 14:04:56 +00006201 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006202 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006203 }
dan7d6885a2012-08-08 14:04:56 +00006204 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006205 }
dan7d6885a2012-08-08 14:04:56 +00006206 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006207 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6208 pRight = &pParent->aData[pParent->hdrOffset+8];
6209 }else{
6210 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6211 }
6212 pgno = get4byte(pRight);
6213 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006214 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006215 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006216 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006217 goto balance_cleanup;
6218 }
danielk1977634f2982005-03-28 08:44:07 +00006219 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006220 if( (i--)==0 ) break;
6221
drh2cbd78b2012-02-02 19:37:18 +00006222 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6223 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006224 pgno = get4byte(apDiv[i]);
6225 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6226 pParent->nOverflow = 0;
6227 }else{
6228 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6229 pgno = get4byte(apDiv[i]);
6230 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6231
6232 /* Drop the cell from the parent page. apDiv[i] still points to
6233 ** the cell within the parent, even though it has been dropped.
6234 ** This is safe because dropping a cell only overwrites the first
6235 ** four bytes of it, and this function does not need the first
6236 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006237 ** later on.
6238 **
drh8a575d92011-10-12 17:00:28 +00006239 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006240 ** the dropCell() routine will overwrite the entire cell with zeroes.
6241 ** In this case, temporarily copy the cell into the aOvflSpace[]
6242 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6243 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006244 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006245 int iOff;
6246
6247 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006248 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006249 rc = SQLITE_CORRUPT_BKPT;
6250 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6251 goto balance_cleanup;
6252 }else{
6253 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6254 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6255 }
drh5b47efa2010-02-12 18:18:39 +00006256 }
drh98add2e2009-07-20 17:11:49 +00006257 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006258 }
drh8b2f49b2001-06-08 00:21:52 +00006259 }
6260
drha9121e42008-02-19 14:59:35 +00006261 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006262 ** alignment */
drha9121e42008-02-19 14:59:35 +00006263 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006264
drh8b2f49b2001-06-08 00:21:52 +00006265 /*
danielk1977634f2982005-03-28 08:44:07 +00006266 ** Allocate space for memory structures
6267 */
danielk19774dbaa892009-06-16 16:50:22 +00006268 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006269 szScratch =
drha9121e42008-02-19 14:59:35 +00006270 nMaxCells*sizeof(u8*) /* apCell */
6271 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006272 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006273 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006274 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006275 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006276 rc = SQLITE_NOMEM;
6277 goto balance_cleanup;
6278 }
drha9121e42008-02-19 14:59:35 +00006279 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006280 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006281 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006282
6283 /*
6284 ** Load pointers to all cells on sibling pages and the divider cells
6285 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006286 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006287 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006288 **
6289 ** If the siblings are on leaf pages, then the child pointers of the
6290 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006291 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006292 ** child pointers. If siblings are not leaves, then all cell in
6293 ** apCell[] include child pointers. Either way, all cells in apCell[]
6294 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006295 **
6296 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6297 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006298 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006299 leafCorrection = apOld[0]->leaf*4;
6300 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006301 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006302 int limit;
6303
6304 /* Before doing anything else, take a copy of the i'th original sibling
6305 ** The rest of this function will use data from the copies rather
6306 ** that the original pages since the original pages will be in the
6307 ** process of being overwritten. */
6308 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6309 memcpy(pOld, apOld[i], sizeof(MemPage));
6310 pOld->aData = (void*)&pOld[1];
6311 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6312
6313 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006314 if( pOld->nOverflow>0 ){
6315 for(j=0; j<limit; j++){
6316 assert( nCell<nMaxCells );
6317 apCell[nCell] = findOverflowCell(pOld, j);
6318 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6319 nCell++;
6320 }
6321 }else{
6322 u8 *aData = pOld->aData;
6323 u16 maskPage = pOld->maskPage;
6324 u16 cellOffset = pOld->cellOffset;
6325 for(j=0; j<limit; j++){
6326 assert( nCell<nMaxCells );
6327 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6328 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6329 nCell++;
6330 }
6331 }
danielk19774dbaa892009-06-16 16:50:22 +00006332 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006333 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006334 u8 *pTemp;
6335 assert( nCell<nMaxCells );
6336 szCell[nCell] = sz;
6337 pTemp = &aSpace1[iSpace1];
6338 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006339 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006340 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006341 memcpy(pTemp, apDiv[i], sz);
6342 apCell[nCell] = pTemp+leafCorrection;
6343 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006344 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006345 if( !pOld->leaf ){
6346 assert( leafCorrection==0 );
6347 assert( pOld->hdrOffset==0 );
6348 /* The right pointer of the child page pOld becomes the left
6349 ** pointer of the divider cell */
6350 memcpy(apCell[nCell], &pOld->aData[8], 4);
6351 }else{
6352 assert( leafCorrection==4 );
6353 if( szCell[nCell]<4 ){
6354 /* Do not allow any cells smaller than 4 bytes. */
6355 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006356 }
6357 }
drh14acc042001-06-10 19:56:58 +00006358 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006359 }
drh8b2f49b2001-06-08 00:21:52 +00006360 }
6361
6362 /*
drh6019e162001-07-02 17:51:45 +00006363 ** Figure out the number of pages needed to hold all nCell cells.
6364 ** Store this number in "k". Also compute szNew[] which is the total
6365 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006366 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006367 ** cntNew[k] should equal nCell.
6368 **
drh96f5b762004-05-16 16:24:36 +00006369 ** Values computed by this block:
6370 **
6371 ** k: The total number of sibling pages
6372 ** szNew[i]: Spaced used on the i-th sibling page.
6373 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6374 ** the right of the i-th sibling page.
6375 ** usableSpace: Number of bytes of space available on each sibling.
6376 **
drh8b2f49b2001-06-08 00:21:52 +00006377 */
drh43605152004-05-29 21:46:49 +00006378 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006379 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006380 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006381 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006382 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006383 szNew[k] = subtotal - szCell[i];
6384 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006385 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006386 subtotal = 0;
6387 k++;
drh9978c972010-02-23 17:36:32 +00006388 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006389 }
6390 }
6391 szNew[k] = subtotal;
6392 cntNew[k] = nCell;
6393 k++;
drh96f5b762004-05-16 16:24:36 +00006394
6395 /*
6396 ** The packing computed by the previous block is biased toward the siblings
6397 ** on the left side. The left siblings are always nearly full, while the
6398 ** right-most sibling might be nearly empty. This block of code attempts
6399 ** to adjust the packing of siblings to get a better balance.
6400 **
6401 ** This adjustment is more than an optimization. The packing above might
6402 ** be so out of balance as to be illegal. For example, the right-most
6403 ** sibling might be completely empty. This adjustment is not optional.
6404 */
drh6019e162001-07-02 17:51:45 +00006405 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006406 int szRight = szNew[i]; /* Size of sibling on the right */
6407 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6408 int r; /* Index of right-most cell in left sibling */
6409 int d; /* Index of first cell to the left of right sibling */
6410
6411 r = cntNew[i-1] - 1;
6412 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006413 assert( d<nMaxCells );
6414 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006415 while( szRight==0
6416 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6417 ){
drh43605152004-05-29 21:46:49 +00006418 szRight += szCell[d] + 2;
6419 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006420 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006421 r = cntNew[i-1] - 1;
6422 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006423 }
drh96f5b762004-05-16 16:24:36 +00006424 szNew[i] = szRight;
6425 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006426 }
drh09d0deb2005-08-02 17:13:09 +00006427
danielk19776f235cc2009-06-04 14:46:08 +00006428 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006429 ** a virtual root page. A virtual root page is when the real root
6430 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006431 **
6432 ** UPDATE: The assert() below is not necessarily true if the database
6433 ** file is corrupt. The corruption will be detected and reported later
6434 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006435 */
drh2f32fba2012-01-02 16:38:57 +00006436#if 0
drh09d0deb2005-08-02 17:13:09 +00006437 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006438#endif
drh8b2f49b2001-06-08 00:21:52 +00006439
danielk1977e5765212009-06-17 11:13:28 +00006440 TRACE(("BALANCE: old: %d %d %d ",
6441 apOld[0]->pgno,
6442 nOld>=2 ? apOld[1]->pgno : 0,
6443 nOld>=3 ? apOld[2]->pgno : 0
6444 ));
6445
drh8b2f49b2001-06-08 00:21:52 +00006446 /*
drh6b308672002-07-08 02:16:37 +00006447 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006448 */
drheac74422009-06-14 12:47:11 +00006449 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006450 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006451 goto balance_cleanup;
6452 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006453 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006454 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006455 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006456 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006457 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006458 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006459 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006460 nNew++;
danielk197728129562005-01-11 10:25:06 +00006461 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006462 }else{
drh7aa8f852006-03-28 00:24:44 +00006463 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006464 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006465 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006466 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006467 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006468
6469 /* Set the pointer-map entry for the new sibling page. */
6470 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006471 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006472 if( rc!=SQLITE_OK ){
6473 goto balance_cleanup;
6474 }
6475 }
drh6b308672002-07-08 02:16:37 +00006476 }
drh8b2f49b2001-06-08 00:21:52 +00006477 }
6478
danielk1977299b1872004-11-22 10:02:10 +00006479 /* Free any old pages that were not reused as new pages.
6480 */
6481 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006482 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006483 if( rc ) goto balance_cleanup;
6484 releasePage(apOld[i]);
6485 apOld[i] = 0;
6486 i++;
6487 }
6488
drh8b2f49b2001-06-08 00:21:52 +00006489 /*
drhf9ffac92002-03-02 19:00:31 +00006490 ** Put the new pages in accending order. This helps to
6491 ** keep entries in the disk file in order so that a scan
6492 ** of the table is a linear scan through the file. That
6493 ** in turn helps the operating system to deliver pages
6494 ** from the disk more rapidly.
6495 **
6496 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006497 ** n is never more than NB (a small constant), that should
6498 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006499 **
drhc3b70572003-01-04 19:44:07 +00006500 ** When NB==3, this one optimization makes the database
6501 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006502 */
6503 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006504 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006505 int minI = i;
6506 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006507 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006508 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006509 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006510 }
6511 }
6512 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006513 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006514 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006515 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006516 apNew[minI] = pT;
6517 }
6518 }
danielk1977e5765212009-06-17 11:13:28 +00006519 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006520 apNew[0]->pgno, szNew[0],
6521 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6522 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6523 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6524 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6525
6526 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6527 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006528
drhf9ffac92002-03-02 19:00:31 +00006529 /*
drh14acc042001-06-10 19:56:58 +00006530 ** Evenly distribute the data in apCell[] across the new pages.
6531 ** Insert divider cells into pParent as necessary.
6532 */
6533 j = 0;
6534 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006535 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006536 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006537 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006538 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006539 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006540 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006541 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006542
danielk1977ac11ee62005-01-15 12:45:51 +00006543 j = cntNew[i];
6544
6545 /* If the sibling page assembled above was not the right-most sibling,
6546 ** insert a divider cell into the parent page.
6547 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006548 assert( i<nNew-1 || j==nCell );
6549 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006550 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006551 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006552 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006553
6554 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006555 pCell = apCell[j];
6556 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006557 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006558 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006559 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006560 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006561 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006562 ** then there is no divider cell in apCell[]. Instead, the divider
6563 ** cell consists of the integer key for the right-most cell of
6564 ** the sibling-page assembled above only.
6565 */
drh6f11bef2004-05-13 01:12:56 +00006566 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006567 j--;
danielk197730548662009-07-09 05:07:37 +00006568 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006569 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006570 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006571 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006572 }else{
6573 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006574 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006575 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006576 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006577 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006578 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006579 ** insertCell(), so reparse the cell now.
6580 **
6581 ** Note that this can never happen in an SQLite data file, as all
6582 ** cells are at least 4 bytes. It only happens in b-trees used
6583 ** to evaluate "IN (SELECT ...)" and similar clauses.
6584 */
6585 if( szCell[j]==4 ){
6586 assert(leafCorrection==4);
6587 sz = cellSizePtr(pParent, pCell);
6588 }
drh4b70f112004-05-02 21:12:19 +00006589 }
danielk19776067a9b2009-06-09 09:41:00 +00006590 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006591 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006592 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006593 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006594 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006595 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006596
drh14acc042001-06-10 19:56:58 +00006597 j++;
6598 nxDiv++;
6599 }
6600 }
drh6019e162001-07-02 17:51:45 +00006601 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006602 assert( nOld>0 );
6603 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006604 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006605 u8 *zChild = &apCopy[nOld-1]->aData[8];
6606 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006607 }
6608
danielk197713bd99f2009-06-24 05:40:34 +00006609 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6610 /* The root page of the b-tree now contains no cells. The only sibling
6611 ** page is the right-child of the parent. Copy the contents of the
6612 ** child page into the parent, decreasing the overall height of the
6613 ** b-tree structure by one. This is described as the "balance-shallower"
6614 ** sub-algorithm in some documentation.
6615 **
6616 ** If this is an auto-vacuum database, the call to copyNodeContent()
6617 ** sets all pointer-map entries corresponding to database image pages
6618 ** for which the pointer is stored within the content being copied.
6619 **
6620 ** The second assert below verifies that the child page is defragmented
6621 ** (it must be, as it was just reconstructed using assemblePage()). This
6622 ** is important if the parent page happens to be page 1 of the database
6623 ** image. */
6624 assert( nNew==1 );
6625 assert( apNew[0]->nFree ==
6626 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6627 );
drhc314dc72009-07-21 11:52:34 +00006628 copyNodeContent(apNew[0], pParent, &rc);
6629 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006630 }else if( ISAUTOVACUUM ){
6631 /* Fix the pointer-map entries for all the cells that were shifted around.
6632 ** There are several different types of pointer-map entries that need to
6633 ** be dealt with by this routine. Some of these have been set already, but
6634 ** many have not. The following is a summary:
6635 **
6636 ** 1) The entries associated with new sibling pages that were not
6637 ** siblings when this function was called. These have already
6638 ** been set. We don't need to worry about old siblings that were
6639 ** moved to the free-list - the freePage() code has taken care
6640 ** of those.
6641 **
6642 ** 2) The pointer-map entries associated with the first overflow
6643 ** page in any overflow chains used by new divider cells. These
6644 ** have also already been taken care of by the insertCell() code.
6645 **
6646 ** 3) If the sibling pages are not leaves, then the child pages of
6647 ** cells stored on the sibling pages may need to be updated.
6648 **
6649 ** 4) If the sibling pages are not internal intkey nodes, then any
6650 ** overflow pages used by these cells may need to be updated
6651 ** (internal intkey nodes never contain pointers to overflow pages).
6652 **
6653 ** 5) If the sibling pages are not leaves, then the pointer-map
6654 ** entries for the right-child pages of each sibling may need
6655 ** to be updated.
6656 **
6657 ** Cases 1 and 2 are dealt with above by other code. The next
6658 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6659 ** setting a pointer map entry is a relatively expensive operation, this
6660 ** code only sets pointer map entries for child or overflow pages that have
6661 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006662 MemPage *pNew = apNew[0];
6663 MemPage *pOld = apCopy[0];
6664 int nOverflow = pOld->nOverflow;
6665 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006666 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006667 j = 0; /* Current 'old' sibling page */
6668 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006669 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006670 int isDivider = 0;
6671 while( i==iNextOld ){
6672 /* Cell i is the cell immediately following the last cell on old
6673 ** sibling page j. If the siblings are not leaf pages of an
6674 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006675 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006676 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006677 pOld = apCopy[++j];
6678 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6679 if( pOld->nOverflow ){
6680 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006681 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006682 }
6683 isDivider = !leafData;
6684 }
6685
6686 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006687 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6688 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006689 if( i==iOverflow ){
6690 isDivider = 1;
6691 if( (--nOverflow)>0 ){
6692 iOverflow++;
6693 }
6694 }
6695
6696 if( i==cntNew[k] ){
6697 /* Cell i is the cell immediately following the last cell on new
6698 ** sibling page k. If the siblings are not leaf pages of an
6699 ** intkey b-tree, then cell i is a divider cell. */
6700 pNew = apNew[++k];
6701 if( !leafData ) continue;
6702 }
danielk19774dbaa892009-06-16 16:50:22 +00006703 assert( j<nOld );
6704 assert( k<nNew );
6705
6706 /* If the cell was originally divider cell (and is not now) or
6707 ** an overflow cell, or if the cell was located on a different sibling
6708 ** page before the balancing, then the pointer map entries associated
6709 ** with any child or overflow pages need to be updated. */
6710 if( isDivider || pOld->pgno!=pNew->pgno ){
6711 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006712 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006713 }
drh98add2e2009-07-20 17:11:49 +00006714 if( szCell[i]>pNew->minLocal ){
6715 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006716 }
6717 }
6718 }
6719
6720 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006721 for(i=0; i<nNew; i++){
6722 u32 key = get4byte(&apNew[i]->aData[8]);
6723 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006724 }
6725 }
6726
6727#if 0
6728 /* The ptrmapCheckPages() contains assert() statements that verify that
6729 ** all pointer map pages are set correctly. This is helpful while
6730 ** debugging. This is usually disabled because a corrupt database may
6731 ** cause an assert() statement to fail. */
6732 ptrmapCheckPages(apNew, nNew);
6733 ptrmapCheckPages(&pParent, 1);
6734#endif
6735 }
6736
danielk197771d5d2c2008-09-29 11:49:47 +00006737 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006738 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6739 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006740
drh8b2f49b2001-06-08 00:21:52 +00006741 /*
drh14acc042001-06-10 19:56:58 +00006742 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006743 */
drh14acc042001-06-10 19:56:58 +00006744balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006745 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006746 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006747 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006748 }
drh14acc042001-06-10 19:56:58 +00006749 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006750 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006751 }
danielk1977eaa06f62008-09-18 17:34:44 +00006752
drh8b2f49b2001-06-08 00:21:52 +00006753 return rc;
6754}
mistachkine7c54162012-10-02 22:54:27 +00006755#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6756#pragma optimize("", on)
6757#endif
drh8b2f49b2001-06-08 00:21:52 +00006758
drh43605152004-05-29 21:46:49 +00006759
6760/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006761** This function is called when the root page of a b-tree structure is
6762** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006763**
danielk1977a50d9aa2009-06-08 14:49:45 +00006764** A new child page is allocated and the contents of the current root
6765** page, including overflow cells, are copied into the child. The root
6766** page is then overwritten to make it an empty page with the right-child
6767** pointer pointing to the new page.
6768**
6769** Before returning, all pointer-map entries corresponding to pages
6770** that the new child-page now contains pointers to are updated. The
6771** entry corresponding to the new right-child pointer of the root
6772** page is also updated.
6773**
6774** If successful, *ppChild is set to contain a reference to the child
6775** page and SQLITE_OK is returned. In this case the caller is required
6776** to call releasePage() on *ppChild exactly once. If an error occurs,
6777** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006778*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006779static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6780 int rc; /* Return value from subprocedures */
6781 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006782 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006783 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006784
danielk1977a50d9aa2009-06-08 14:49:45 +00006785 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006786 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006787
danielk1977a50d9aa2009-06-08 14:49:45 +00006788 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6789 ** page that will become the new right-child of pPage. Copy the contents
6790 ** of the node stored on pRoot into the new child page.
6791 */
drh98add2e2009-07-20 17:11:49 +00006792 rc = sqlite3PagerWrite(pRoot->pDbPage);
6793 if( rc==SQLITE_OK ){
6794 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006795 copyNodeContent(pRoot, pChild, &rc);
6796 if( ISAUTOVACUUM ){
6797 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006798 }
6799 }
6800 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006801 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006802 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006803 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006804 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006805 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6806 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6807 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006808
danielk1977a50d9aa2009-06-08 14:49:45 +00006809 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6810
6811 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006812 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6813 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6814 memcpy(pChild->apOvfl, pRoot->apOvfl,
6815 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006816 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006817
6818 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6819 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6820 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6821
6822 *ppChild = pChild;
6823 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006824}
6825
6826/*
danielk197771d5d2c2008-09-29 11:49:47 +00006827** The page that pCur currently points to has just been modified in
6828** some way. This function figures out if this modification means the
6829** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006830** routine. Balancing routines are:
6831**
6832** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006833** balance_deeper()
6834** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006835*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006836static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006837 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006838 const int nMin = pCur->pBt->usableSize * 2 / 3;
6839 u8 aBalanceQuickSpace[13];
6840 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006841
shane75ac1de2009-06-09 18:58:52 +00006842 TESTONLY( int balance_quick_called = 0 );
6843 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006844
6845 do {
6846 int iPage = pCur->iPage;
6847 MemPage *pPage = pCur->apPage[iPage];
6848
6849 if( iPage==0 ){
6850 if( pPage->nOverflow ){
6851 /* The root page of the b-tree is overfull. In this case call the
6852 ** balance_deeper() function to create a new child for the root-page
6853 ** and copy the current contents of the root-page to it. The
6854 ** next iteration of the do-loop will balance the child page.
6855 */
6856 assert( (balance_deeper_called++)==0 );
6857 rc = balance_deeper(pPage, &pCur->apPage[1]);
6858 if( rc==SQLITE_OK ){
6859 pCur->iPage = 1;
6860 pCur->aiIdx[0] = 0;
6861 pCur->aiIdx[1] = 0;
6862 assert( pCur->apPage[1]->nOverflow );
6863 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006864 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006865 break;
6866 }
6867 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6868 break;
6869 }else{
6870 MemPage * const pParent = pCur->apPage[iPage-1];
6871 int const iIdx = pCur->aiIdx[iPage-1];
6872
6873 rc = sqlite3PagerWrite(pParent->pDbPage);
6874 if( rc==SQLITE_OK ){
6875#ifndef SQLITE_OMIT_QUICKBALANCE
6876 if( pPage->hasData
6877 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006878 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006879 && pParent->pgno!=1
6880 && pParent->nCell==iIdx
6881 ){
6882 /* Call balance_quick() to create a new sibling of pPage on which
6883 ** to store the overflow cell. balance_quick() inserts a new cell
6884 ** into pParent, which may cause pParent overflow. If this
6885 ** happens, the next interation of the do-loop will balance pParent
6886 ** use either balance_nonroot() or balance_deeper(). Until this
6887 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6888 ** buffer.
6889 **
6890 ** The purpose of the following assert() is to check that only a
6891 ** single call to balance_quick() is made for each call to this
6892 ** function. If this were not verified, a subtle bug involving reuse
6893 ** of the aBalanceQuickSpace[] might sneak in.
6894 */
6895 assert( (balance_quick_called++)==0 );
6896 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6897 }else
6898#endif
6899 {
6900 /* In this case, call balance_nonroot() to redistribute cells
6901 ** between pPage and up to 2 of its sibling pages. This involves
6902 ** modifying the contents of pParent, which may cause pParent to
6903 ** become overfull or underfull. The next iteration of the do-loop
6904 ** will balance the parent page to correct this.
6905 **
6906 ** If the parent page becomes overfull, the overflow cell or cells
6907 ** are stored in the pSpace buffer allocated immediately below.
6908 ** A subsequent iteration of the do-loop will deal with this by
6909 ** calling balance_nonroot() (balance_deeper() may be called first,
6910 ** but it doesn't deal with overflow cells - just moves them to a
6911 ** different page). Once this subsequent call to balance_nonroot()
6912 ** has completed, it is safe to release the pSpace buffer used by
6913 ** the previous call, as the overflow cell data will have been
6914 ** copied either into the body of a database page or into the new
6915 ** pSpace buffer passed to the latter call to balance_nonroot().
6916 */
6917 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006918 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006919 if( pFree ){
6920 /* If pFree is not NULL, it points to the pSpace buffer used
6921 ** by a previous call to balance_nonroot(). Its contents are
6922 ** now stored either on real database pages or within the
6923 ** new pSpace buffer, so it may be safely freed here. */
6924 sqlite3PageFree(pFree);
6925 }
6926
danielk19774dbaa892009-06-16 16:50:22 +00006927 /* The pSpace buffer will be freed after the next call to
6928 ** balance_nonroot(), or just before this function returns, whichever
6929 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006930 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006931 }
6932 }
6933
6934 pPage->nOverflow = 0;
6935
6936 /* The next iteration of the do-loop balances the parent page. */
6937 releasePage(pPage);
6938 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006939 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006940 }while( rc==SQLITE_OK );
6941
6942 if( pFree ){
6943 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006944 }
6945 return rc;
6946}
6947
drhf74b8d92002-09-01 23:20:45 +00006948
6949/*
drh3b7511c2001-05-26 13:15:44 +00006950** Insert a new record into the BTree. The key is given by (pKey,nKey)
6951** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006952** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006953** is left pointing at a random location.
6954**
6955** For an INTKEY table, only the nKey value of the key is used. pKey is
6956** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006957**
6958** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006959** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006960** been performed. seekResult is the search result returned (a negative
6961** number if pCur points at an entry that is smaller than (pKey, nKey), or
6962** a positive value if pCur points at an etry that is larger than
6963** (pKey, nKey)).
6964**
drh3e9ca092009-09-08 01:14:48 +00006965** If the seekResult parameter is non-zero, then the caller guarantees that
6966** cursor pCur is pointing at the existing copy of a row that is to be
6967** overwritten. If the seekResult parameter is 0, then cursor pCur may
6968** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006969** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006970*/
drh3aac2dd2004-04-26 14:10:20 +00006971int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006972 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006973 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006974 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006975 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006976 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006977 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006978){
drh3b7511c2001-05-26 13:15:44 +00006979 int rc;
drh3e9ca092009-09-08 01:14:48 +00006980 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006981 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006982 int idx;
drh3b7511c2001-05-26 13:15:44 +00006983 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006984 Btree *p = pCur->pBtree;
6985 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006986 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006987 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006988
drh98add2e2009-07-20 17:11:49 +00006989 if( pCur->eState==CURSOR_FAULT ){
6990 assert( pCur->skipNext!=SQLITE_OK );
6991 return pCur->skipNext;
6992 }
6993
drh1fee73e2007-08-29 04:00:57 +00006994 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006995 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6996 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006997 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6998
danielk197731d31b82009-07-13 13:18:07 +00006999 /* Assert that the caller has been consistent. If this cursor was opened
7000 ** expecting an index b-tree, then the caller should be inserting blob
7001 ** keys with no associated data. If the cursor was opened expecting an
7002 ** intkey table, the caller should be inserting integer keys with a
7003 ** blob of associated data. */
7004 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7005
danielk19779c3acf32009-05-02 07:36:49 +00007006 /* Save the positions of any other cursors open on this table.
7007 **
danielk19773509a652009-07-06 18:56:13 +00007008 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007009 ** example, when inserting data into a table with auto-generated integer
7010 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7011 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007012 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007013 ** that the cursor is already where it needs to be and returns without
7014 ** doing any work. To avoid thwarting these optimizations, it is important
7015 ** not to clear the cursor here.
7016 */
drh4c301aa2009-07-15 17:25:45 +00007017 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7018 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007019
7020 /* If this is an insert into a table b-tree, invalidate any incrblob
7021 ** cursors open on the row being replaced (assuming this is a replace
7022 ** operation - if it is not, the following is a no-op). */
7023 if( pCur->pKeyInfo==0 ){
7024 invalidateIncrblobCursors(p, nKey, 0);
7025 }
7026
drh4c301aa2009-07-15 17:25:45 +00007027 if( !loc ){
7028 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7029 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007030 }
danielk1977b980d2212009-06-22 18:03:51 +00007031 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007032
danielk197771d5d2c2008-09-29 11:49:47 +00007033 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007034 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007035 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007036
drh3a4c1412004-05-09 20:40:11 +00007037 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7038 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7039 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007040 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007041 allocateTempSpace(pBt);
7042 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007043 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007044 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007045 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007046 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007047 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007048 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007049 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007050 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007051 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007052 rc = sqlite3PagerWrite(pPage->pDbPage);
7053 if( rc ){
7054 goto end_insert;
7055 }
danielk197771d5d2c2008-09-29 11:49:47 +00007056 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007057 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007058 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007059 }
drh43605152004-05-29 21:46:49 +00007060 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007061 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007062 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007063 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007064 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007065 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007066 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007067 }else{
drh4b70f112004-05-02 21:12:19 +00007068 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007069 }
drh98add2e2009-07-20 17:11:49 +00007070 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007071 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007072
mistachkin48864df2013-03-21 21:20:32 +00007073 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007074 ** to redistribute the cells within the tree. Since balance() may move
7075 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7076 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007077 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007078 ** Previous versions of SQLite called moveToRoot() to move the cursor
7079 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007080 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7081 ** set the cursor state to "invalid". This makes common insert operations
7082 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007083 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007084 ** There is a subtle but important optimization here too. When inserting
7085 ** multiple records into an intkey b-tree using a single cursor (as can
7086 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7087 ** is advantageous to leave the cursor pointing to the last entry in
7088 ** the b-tree if possible. If the cursor is left pointing to the last
7089 ** entry in the table, and the next row inserted has an integer key
7090 ** larger than the largest existing key, it is possible to insert the
7091 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007092 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007093 pCur->info.nSize = 0;
7094 pCur->validNKey = 0;
7095 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007096 rc = balance(pCur);
7097
7098 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007099 ** fails. Internal data structure corruption will result otherwise.
7100 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7101 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007102 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007103 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007104 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007105 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007106
drh2e38c322004-09-03 18:38:44 +00007107end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007108 return rc;
7109}
7110
7111/*
drh4b70f112004-05-02 21:12:19 +00007112** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007113** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007114*/
drh3aac2dd2004-04-26 14:10:20 +00007115int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007116 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007117 BtShared *pBt = p->pBt;
7118 int rc; /* Return code */
7119 MemPage *pPage; /* Page to delete cell from */
7120 unsigned char *pCell; /* Pointer to cell to delete */
7121 int iCellIdx; /* Index of cell to delete */
7122 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007123
drh1fee73e2007-08-29 04:00:57 +00007124 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007125 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007126 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007127 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007128 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7129 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7130
danielk19774dbaa892009-06-16 16:50:22 +00007131 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7132 || NEVER(pCur->eState!=CURSOR_VALID)
7133 ){
7134 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007135 }
danielk1977da184232006-01-05 11:34:32 +00007136
danielk19774dbaa892009-06-16 16:50:22 +00007137 iCellDepth = pCur->iPage;
7138 iCellIdx = pCur->aiIdx[iCellDepth];
7139 pPage = pCur->apPage[iCellDepth];
7140 pCell = findCell(pPage, iCellIdx);
7141
7142 /* If the page containing the entry to delete is not a leaf page, move
7143 ** the cursor to the largest entry in the tree that is smaller than
7144 ** the entry being deleted. This cell will replace the cell being deleted
7145 ** from the internal node. The 'previous' entry is used for this instead
7146 ** of the 'next' entry, as the previous entry is always a part of the
7147 ** sub-tree headed by the child page of the cell being deleted. This makes
7148 ** balancing the tree following the delete operation easier. */
7149 if( !pPage->leaf ){
7150 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007151 rc = sqlite3BtreePrevious(pCur, &notUsed);
7152 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007153 }
7154
7155 /* Save the positions of any other cursors open on this table before
7156 ** making any modifications. Make the page containing the entry to be
7157 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007158 ** entry and finally remove the cell itself from within the page.
7159 */
7160 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7161 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007162
7163 /* If this is a delete operation to remove a row from a table b-tree,
7164 ** invalidate any incrblob cursors open on the row being deleted. */
7165 if( pCur->pKeyInfo==0 ){
7166 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7167 }
7168
drha4ec1d42009-07-11 13:13:11 +00007169 rc = sqlite3PagerWrite(pPage->pDbPage);
7170 if( rc ) return rc;
7171 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007172 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007173 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007174
danielk19774dbaa892009-06-16 16:50:22 +00007175 /* If the cell deleted was not located on a leaf page, then the cursor
7176 ** is currently pointing to the largest entry in the sub-tree headed
7177 ** by the child-page of the cell that was just deleted from an internal
7178 ** node. The cell from the leaf node needs to be moved to the internal
7179 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007180 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007181 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7182 int nCell;
7183 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7184 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007185
danielk19774dbaa892009-06-16 16:50:22 +00007186 pCell = findCell(pLeaf, pLeaf->nCell-1);
7187 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007188 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007189
danielk19774dbaa892009-06-16 16:50:22 +00007190 allocateTempSpace(pBt);
7191 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007192
drha4ec1d42009-07-11 13:13:11 +00007193 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007194 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7195 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007196 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007197 }
danielk19774dbaa892009-06-16 16:50:22 +00007198
7199 /* Balance the tree. If the entry deleted was located on a leaf page,
7200 ** then the cursor still points to that page. In this case the first
7201 ** call to balance() repairs the tree, and the if(...) condition is
7202 ** never true.
7203 **
7204 ** Otherwise, if the entry deleted was on an internal node page, then
7205 ** pCur is pointing to the leaf page from which a cell was removed to
7206 ** replace the cell deleted from the internal node. This is slightly
7207 ** tricky as the leaf node may be underfull, and the internal node may
7208 ** be either under or overfull. In this case run the balancing algorithm
7209 ** on the leaf node first. If the balance proceeds far enough up the
7210 ** tree that we can be sure that any problem in the internal node has
7211 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7212 ** walk the cursor up the tree to the internal node and balance it as
7213 ** well. */
7214 rc = balance(pCur);
7215 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7216 while( pCur->iPage>iCellDepth ){
7217 releasePage(pCur->apPage[pCur->iPage--]);
7218 }
7219 rc = balance(pCur);
7220 }
7221
danielk19776b456a22005-03-21 04:04:02 +00007222 if( rc==SQLITE_OK ){
7223 moveToRoot(pCur);
7224 }
drh5e2f8b92001-05-28 00:41:15 +00007225 return rc;
drh3b7511c2001-05-26 13:15:44 +00007226}
drh8b2f49b2001-06-08 00:21:52 +00007227
7228/*
drhc6b52df2002-01-04 03:09:29 +00007229** Create a new BTree table. Write into *piTable the page
7230** number for the root page of the new table.
7231**
drhab01f612004-05-22 02:55:23 +00007232** The type of type is determined by the flags parameter. Only the
7233** following values of flags are currently in use. Other values for
7234** flags might not work:
7235**
7236** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7237** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007238*/
drhd4187c72010-08-30 22:15:45 +00007239static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007240 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007241 MemPage *pRoot;
7242 Pgno pgnoRoot;
7243 int rc;
drhd4187c72010-08-30 22:15:45 +00007244 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007245
drh1fee73e2007-08-29 04:00:57 +00007246 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007247 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007248 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007249
danielk1977003ba062004-11-04 02:57:33 +00007250#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007251 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007252 if( rc ){
7253 return rc;
7254 }
danielk1977003ba062004-11-04 02:57:33 +00007255#else
danielk1977687566d2004-11-02 12:56:41 +00007256 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007257 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7258 MemPage *pPageMove; /* The page to move to. */
7259
danielk197720713f32007-05-03 11:43:33 +00007260 /* Creating a new table may probably require moving an existing database
7261 ** to make room for the new tables root page. In case this page turns
7262 ** out to be an overflow page, delete all overflow page-map caches
7263 ** held by open cursors.
7264 */
danielk197792d4d7a2007-05-04 12:05:56 +00007265 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007266
danielk1977003ba062004-11-04 02:57:33 +00007267 /* Read the value of meta[3] from the database to determine where the
7268 ** root page of the new table should go. meta[3] is the largest root-page
7269 ** created so far, so the new root-page is (meta[3]+1).
7270 */
danielk1977602b4662009-07-02 07:47:33 +00007271 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007272 pgnoRoot++;
7273
danielk1977599fcba2004-11-08 07:13:13 +00007274 /* The new root-page may not be allocated on a pointer-map page, or the
7275 ** PENDING_BYTE page.
7276 */
drh72190432008-01-31 14:54:43 +00007277 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007278 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007279 pgnoRoot++;
7280 }
7281 assert( pgnoRoot>=3 );
7282
7283 /* Allocate a page. The page that currently resides at pgnoRoot will
7284 ** be moved to the allocated page (unless the allocated page happens
7285 ** to reside at pgnoRoot).
7286 */
dan51f0b6d2013-02-22 20:16:34 +00007287 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007288 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007289 return rc;
7290 }
danielk1977003ba062004-11-04 02:57:33 +00007291
7292 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007293 /* pgnoRoot is the page that will be used for the root-page of
7294 ** the new table (assuming an error did not occur). But we were
7295 ** allocated pgnoMove. If required (i.e. if it was not allocated
7296 ** by extending the file), the current page at position pgnoMove
7297 ** is already journaled.
7298 */
drheeb844a2009-08-08 18:01:07 +00007299 u8 eType = 0;
7300 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007301
danf7679ad2013-04-03 11:38:36 +00007302 /* Save the positions of any open cursors. This is required in
7303 ** case they are holding a reference to an xFetch reference
7304 ** corresponding to page pgnoRoot. */
7305 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007306 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007307 if( rc!=SQLITE_OK ){
7308 return rc;
7309 }
danielk1977f35843b2007-04-07 15:03:17 +00007310
7311 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007312 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007313 if( rc!=SQLITE_OK ){
7314 return rc;
7315 }
7316 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007317 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7318 rc = SQLITE_CORRUPT_BKPT;
7319 }
7320 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007321 releasePage(pRoot);
7322 return rc;
7323 }
drhccae6022005-02-26 17:31:26 +00007324 assert( eType!=PTRMAP_ROOTPAGE );
7325 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007326 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007327 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007328
7329 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007330 if( rc!=SQLITE_OK ){
7331 return rc;
7332 }
drhb00fc3b2013-08-21 23:42:32 +00007333 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007334 if( rc!=SQLITE_OK ){
7335 return rc;
7336 }
danielk19773b8a05f2007-03-19 17:44:26 +00007337 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007338 if( rc!=SQLITE_OK ){
7339 releasePage(pRoot);
7340 return rc;
7341 }
7342 }else{
7343 pRoot = pPageMove;
7344 }
7345
danielk197742741be2005-01-08 12:42:39 +00007346 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007347 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007348 if( rc ){
7349 releasePage(pRoot);
7350 return rc;
7351 }
drhbf592832010-03-30 15:51:12 +00007352
7353 /* When the new root page was allocated, page 1 was made writable in
7354 ** order either to increase the database filesize, or to decrement the
7355 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7356 */
7357 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007358 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007359 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007360 releasePage(pRoot);
7361 return rc;
7362 }
danielk197742741be2005-01-08 12:42:39 +00007363
danielk1977003ba062004-11-04 02:57:33 +00007364 }else{
drh4f0c5872007-03-26 22:05:01 +00007365 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007366 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007367 }
7368#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007369 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007370 if( createTabFlags & BTREE_INTKEY ){
7371 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7372 }else{
7373 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7374 }
7375 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007376 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007377 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007378 *piTable = (int)pgnoRoot;
7379 return SQLITE_OK;
7380}
drhd677b3d2007-08-20 22:48:41 +00007381int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7382 int rc;
7383 sqlite3BtreeEnter(p);
7384 rc = btreeCreateTable(p, piTable, flags);
7385 sqlite3BtreeLeave(p);
7386 return rc;
7387}
drh8b2f49b2001-06-08 00:21:52 +00007388
7389/*
7390** Erase the given database page and all its children. Return
7391** the page to the freelist.
7392*/
drh4b70f112004-05-02 21:12:19 +00007393static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007394 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007395 Pgno pgno, /* Page number to clear */
7396 int freePageFlag, /* Deallocate page if true */
7397 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007398){
danielk1977146ba992009-07-22 14:08:13 +00007399 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007400 int rc;
drh4b70f112004-05-02 21:12:19 +00007401 unsigned char *pCell;
7402 int i;
drh8b2f49b2001-06-08 00:21:52 +00007403
drh1fee73e2007-08-29 04:00:57 +00007404 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007405 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007406 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007407 }
7408
dan11dcd112013-03-15 18:29:18 +00007409 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007410 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007411 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007412 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007413 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007414 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007415 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007416 }
drh4b70f112004-05-02 21:12:19 +00007417 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007418 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007419 }
drha34b6762004-05-07 13:30:42 +00007420 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007421 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007422 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007423 }else if( pnChange ){
7424 assert( pPage->intKey );
7425 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007426 }
7427 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007428 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007429 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007430 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007431 }
danielk19776b456a22005-03-21 04:04:02 +00007432
7433cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007434 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007435 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007436}
7437
7438/*
drhab01f612004-05-22 02:55:23 +00007439** Delete all information from a single table in the database. iTable is
7440** the page number of the root of the table. After this routine returns,
7441** the root page is empty, but still exists.
7442**
7443** This routine will fail with SQLITE_LOCKED if there are any open
7444** read cursors on the table. Open write cursors are moved to the
7445** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007446**
7447** If pnChange is not NULL, then table iTable must be an intkey table. The
7448** integer value pointed to by pnChange is incremented by the number of
7449** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007450*/
danielk1977c7af4842008-10-27 13:59:33 +00007451int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007452 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007453 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007454 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007455 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007456
drhc046e3e2009-07-15 11:26:44 +00007457 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007458
drhc046e3e2009-07-15 11:26:44 +00007459 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007460 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7461 ** is the root of a table b-tree - if it is not, the following call is
7462 ** a no-op). */
7463 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007464 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007465 }
drhd677b3d2007-08-20 22:48:41 +00007466 sqlite3BtreeLeave(p);
7467 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007468}
7469
7470/*
7471** Erase all information in a table and add the root of the table to
7472** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007473** page 1) is never added to the freelist.
7474**
7475** This routine will fail with SQLITE_LOCKED if there are any open
7476** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007477**
7478** If AUTOVACUUM is enabled and the page at iTable is not the last
7479** root page in the database file, then the last root page
7480** in the database file is moved into the slot formerly occupied by
7481** iTable and that last slot formerly occupied by the last root page
7482** is added to the freelist instead of iTable. In this say, all
7483** root pages are kept at the beginning of the database file, which
7484** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7485** page number that used to be the last root page in the file before
7486** the move. If no page gets moved, *piMoved is set to 0.
7487** The last root page is recorded in meta[3] and the value of
7488** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007489*/
danielk197789d40042008-11-17 14:20:56 +00007490static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007491 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007492 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007493 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007494
drh1fee73e2007-08-29 04:00:57 +00007495 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007496 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007497
danielk1977e6efa742004-11-10 11:55:10 +00007498 /* It is illegal to drop a table if any cursors are open on the
7499 ** database. This is because in auto-vacuum mode the backend may
7500 ** need to move another root-page to fill a gap left by the deleted
7501 ** root page. If an open cursor was using this page a problem would
7502 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007503 **
7504 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007505 */
drhc046e3e2009-07-15 11:26:44 +00007506 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007507 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7508 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007509 }
danielk1977a0bf2652004-11-04 14:30:04 +00007510
drhb00fc3b2013-08-21 23:42:32 +00007511 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007512 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007513 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007514 if( rc ){
7515 releasePage(pPage);
7516 return rc;
7517 }
danielk1977a0bf2652004-11-04 14:30:04 +00007518
drh205f48e2004-11-05 00:43:11 +00007519 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007520
drh4b70f112004-05-02 21:12:19 +00007521 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007522#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007523 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007524 releasePage(pPage);
7525#else
7526 if( pBt->autoVacuum ){
7527 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007528 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007529
7530 if( iTable==maxRootPgno ){
7531 /* If the table being dropped is the table with the largest root-page
7532 ** number in the database, put the root page on the free list.
7533 */
drhc314dc72009-07-21 11:52:34 +00007534 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007535 releasePage(pPage);
7536 if( rc!=SQLITE_OK ){
7537 return rc;
7538 }
7539 }else{
7540 /* The table being dropped does not have the largest root-page
7541 ** number in the database. So move the page that does into the
7542 ** gap left by the deleted root-page.
7543 */
7544 MemPage *pMove;
7545 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007546 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007547 if( rc!=SQLITE_OK ){
7548 return rc;
7549 }
danielk19774c999992008-07-16 18:17:55 +00007550 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007551 releasePage(pMove);
7552 if( rc!=SQLITE_OK ){
7553 return rc;
7554 }
drhfe3313f2009-07-21 19:02:20 +00007555 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007556 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007557 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007558 releasePage(pMove);
7559 if( rc!=SQLITE_OK ){
7560 return rc;
7561 }
7562 *piMoved = maxRootPgno;
7563 }
7564
danielk1977599fcba2004-11-08 07:13:13 +00007565 /* Set the new 'max-root-page' value in the database header. This
7566 ** is the old value less one, less one more if that happens to
7567 ** be a root-page number, less one again if that is the
7568 ** PENDING_BYTE_PAGE.
7569 */
danielk197787a6e732004-11-05 12:58:25 +00007570 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007571 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7572 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007573 maxRootPgno--;
7574 }
danielk1977599fcba2004-11-08 07:13:13 +00007575 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7576
danielk1977aef0bf62005-12-30 16:28:01 +00007577 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007578 }else{
drhc314dc72009-07-21 11:52:34 +00007579 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007580 releasePage(pPage);
7581 }
7582#endif
drh2aa679f2001-06-25 02:11:07 +00007583 }else{
drhc046e3e2009-07-15 11:26:44 +00007584 /* If sqlite3BtreeDropTable was called on page 1.
7585 ** This really never should happen except in a corrupt
7586 ** database.
7587 */
drha34b6762004-05-07 13:30:42 +00007588 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007589 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007590 }
drh8b2f49b2001-06-08 00:21:52 +00007591 return rc;
7592}
drhd677b3d2007-08-20 22:48:41 +00007593int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7594 int rc;
7595 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007596 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007597 sqlite3BtreeLeave(p);
7598 return rc;
7599}
drh8b2f49b2001-06-08 00:21:52 +00007600
drh001bbcb2003-03-19 03:14:00 +00007601
drh8b2f49b2001-06-08 00:21:52 +00007602/*
danielk1977602b4662009-07-02 07:47:33 +00007603** This function may only be called if the b-tree connection already
7604** has a read or write transaction open on the database.
7605**
drh23e11ca2004-05-04 17:27:28 +00007606** Read the meta-information out of a database file. Meta[0]
7607** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007608** through meta[15] are available for use by higher layers. Meta[0]
7609** is read-only, the others are read/write.
7610**
7611** The schema layer numbers meta values differently. At the schema
7612** layer (and the SetCookie and ReadCookie opcodes) the number of
7613** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007614*/
danielk1977602b4662009-07-02 07:47:33 +00007615void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007616 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007617
drhd677b3d2007-08-20 22:48:41 +00007618 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007619 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007620 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007621 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007622 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007623
danielk1977602b4662009-07-02 07:47:33 +00007624 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007625
danielk1977602b4662009-07-02 07:47:33 +00007626 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7627 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007628#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007629 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7630 pBt->btsFlags |= BTS_READ_ONLY;
7631 }
danielk1977003ba062004-11-04 02:57:33 +00007632#endif
drhae157872004-08-14 19:20:09 +00007633
drhd677b3d2007-08-20 22:48:41 +00007634 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007635}
7636
7637/*
drh23e11ca2004-05-04 17:27:28 +00007638** Write meta-information back into the database. Meta[0] is
7639** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007640*/
danielk1977aef0bf62005-12-30 16:28:01 +00007641int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7642 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007643 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007644 int rc;
drh23e11ca2004-05-04 17:27:28 +00007645 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007646 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007647 assert( p->inTrans==TRANS_WRITE );
7648 assert( pBt->pPage1!=0 );
7649 pP1 = pBt->pPage1->aData;
7650 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7651 if( rc==SQLITE_OK ){
7652 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007653#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007654 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007655 assert( pBt->autoVacuum || iMeta==0 );
7656 assert( iMeta==0 || iMeta==1 );
7657 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007658 }
drh64022502009-01-09 14:11:04 +00007659#endif
drh5df72a52002-06-06 23:16:05 +00007660 }
drhd677b3d2007-08-20 22:48:41 +00007661 sqlite3BtreeLeave(p);
7662 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007663}
drh8c42ca92001-06-22 19:15:00 +00007664
danielk1977a5533162009-02-24 10:01:51 +00007665#ifndef SQLITE_OMIT_BTREECOUNT
7666/*
7667** The first argument, pCur, is a cursor opened on some b-tree. Count the
7668** number of entries in the b-tree and write the result to *pnEntry.
7669**
7670** SQLITE_OK is returned if the operation is successfully executed.
7671** Otherwise, if an error is encountered (i.e. an IO error or database
7672** corruption) an SQLite error code is returned.
7673*/
7674int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7675 i64 nEntry = 0; /* Value to return in *pnEntry */
7676 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007677
7678 if( pCur->pgnoRoot==0 ){
7679 *pnEntry = 0;
7680 return SQLITE_OK;
7681 }
danielk1977a5533162009-02-24 10:01:51 +00007682 rc = moveToRoot(pCur);
7683
7684 /* Unless an error occurs, the following loop runs one iteration for each
7685 ** page in the B-Tree structure (not including overflow pages).
7686 */
7687 while( rc==SQLITE_OK ){
7688 int iIdx; /* Index of child node in parent */
7689 MemPage *pPage; /* Current page of the b-tree */
7690
7691 /* If this is a leaf page or the tree is not an int-key tree, then
7692 ** this page contains countable entries. Increment the entry counter
7693 ** accordingly.
7694 */
7695 pPage = pCur->apPage[pCur->iPage];
7696 if( pPage->leaf || !pPage->intKey ){
7697 nEntry += pPage->nCell;
7698 }
7699
7700 /* pPage is a leaf node. This loop navigates the cursor so that it
7701 ** points to the first interior cell that it points to the parent of
7702 ** the next page in the tree that has not yet been visited. The
7703 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7704 ** of the page, or to the number of cells in the page if the next page
7705 ** to visit is the right-child of its parent.
7706 **
7707 ** If all pages in the tree have been visited, return SQLITE_OK to the
7708 ** caller.
7709 */
7710 if( pPage->leaf ){
7711 do {
7712 if( pCur->iPage==0 ){
7713 /* All pages of the b-tree have been visited. Return successfully. */
7714 *pnEntry = nEntry;
7715 return SQLITE_OK;
7716 }
danielk197730548662009-07-09 05:07:37 +00007717 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007718 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7719
7720 pCur->aiIdx[pCur->iPage]++;
7721 pPage = pCur->apPage[pCur->iPage];
7722 }
7723
7724 /* Descend to the child node of the cell that the cursor currently
7725 ** points at. This is the right-child if (iIdx==pPage->nCell).
7726 */
7727 iIdx = pCur->aiIdx[pCur->iPage];
7728 if( iIdx==pPage->nCell ){
7729 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7730 }else{
7731 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7732 }
7733 }
7734
shanebe217792009-03-05 04:20:31 +00007735 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007736 return rc;
7737}
7738#endif
drhdd793422001-06-28 01:54:48 +00007739
drhdd793422001-06-28 01:54:48 +00007740/*
drh5eddca62001-06-30 21:53:53 +00007741** Return the pager associated with a BTree. This routine is used for
7742** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007743*/
danielk1977aef0bf62005-12-30 16:28:01 +00007744Pager *sqlite3BtreePager(Btree *p){
7745 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007746}
drh5eddca62001-06-30 21:53:53 +00007747
drhb7f91642004-10-31 02:22:47 +00007748#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007749/*
7750** Append a message to the error message string.
7751*/
drh2e38c322004-09-03 18:38:44 +00007752static void checkAppendMsg(
7753 IntegrityCk *pCheck,
7754 char *zMsg1,
7755 const char *zFormat,
7756 ...
7757){
7758 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007759 if( !pCheck->mxErr ) return;
7760 pCheck->mxErr--;
7761 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007762 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007763 if( pCheck->errMsg.nChar ){
7764 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007765 }
drhf089aa42008-07-08 19:34:06 +00007766 if( zMsg1 ){
7767 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7768 }
7769 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7770 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007771 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007772 pCheck->mallocFailed = 1;
7773 }
drh5eddca62001-06-30 21:53:53 +00007774}
drhb7f91642004-10-31 02:22:47 +00007775#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007776
drhb7f91642004-10-31 02:22:47 +00007777#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007778
7779/*
7780** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7781** corresponds to page iPg is already set.
7782*/
7783static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7784 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7785 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7786}
7787
7788/*
7789** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7790*/
7791static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7792 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7793 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7794}
7795
7796
drh5eddca62001-06-30 21:53:53 +00007797/*
7798** Add 1 to the reference count for page iPage. If this is the second
7799** reference to the page, add an error message to pCheck->zErrMsg.
7800** Return 1 if there are 2 ore more references to the page and 0 if
7801** if this is the first reference to the page.
7802**
7803** Also check that the page number is in bounds.
7804*/
danielk197789d40042008-11-17 14:20:56 +00007805static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007806 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007807 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007808 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007809 return 1;
7810 }
dan1235bb12012-04-03 17:43:28 +00007811 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007812 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007813 return 1;
7814 }
dan1235bb12012-04-03 17:43:28 +00007815 setPageReferenced(pCheck, iPage);
7816 return 0;
drh5eddca62001-06-30 21:53:53 +00007817}
7818
danielk1977afcdd022004-10-31 16:25:42 +00007819#ifndef SQLITE_OMIT_AUTOVACUUM
7820/*
7821** Check that the entry in the pointer-map for page iChild maps to
7822** page iParent, pointer type ptrType. If not, append an error message
7823** to pCheck.
7824*/
7825static void checkPtrmap(
7826 IntegrityCk *pCheck, /* Integrity check context */
7827 Pgno iChild, /* Child page number */
7828 u8 eType, /* Expected pointer map type */
7829 Pgno iParent, /* Expected pointer map parent page number */
7830 char *zContext /* Context description (used for error msg) */
7831){
7832 int rc;
7833 u8 ePtrmapType;
7834 Pgno iPtrmapParent;
7835
7836 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7837 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007838 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007839 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7840 return;
7841 }
7842
7843 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7844 checkAppendMsg(pCheck, zContext,
7845 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7846 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7847 }
7848}
7849#endif
7850
drh5eddca62001-06-30 21:53:53 +00007851/*
7852** Check the integrity of the freelist or of an overflow page list.
7853** Verify that the number of pages on the list is N.
7854*/
drh30e58752002-03-02 20:41:57 +00007855static void checkList(
7856 IntegrityCk *pCheck, /* Integrity checking context */
7857 int isFreeList, /* True for a freelist. False for overflow page list */
7858 int iPage, /* Page number for first page in the list */
7859 int N, /* Expected number of pages in the list */
7860 char *zContext /* Context for error messages */
7861){
7862 int i;
drh3a4c1412004-05-09 20:40:11 +00007863 int expected = N;
7864 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007865 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007866 DbPage *pOvflPage;
7867 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007868 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007869 checkAppendMsg(pCheck, zContext,
7870 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007871 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007872 break;
7873 }
7874 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007875 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007876 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007877 break;
7878 }
danielk19773b8a05f2007-03-19 17:44:26 +00007879 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007880 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007881 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007882#ifndef SQLITE_OMIT_AUTOVACUUM
7883 if( pCheck->pBt->autoVacuum ){
7884 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7885 }
7886#endif
drh43b18e12010-08-17 19:40:08 +00007887 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007888 checkAppendMsg(pCheck, zContext,
7889 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007890 N--;
7891 }else{
7892 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007893 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007894#ifndef SQLITE_OMIT_AUTOVACUUM
7895 if( pCheck->pBt->autoVacuum ){
7896 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7897 }
7898#endif
7899 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007900 }
7901 N -= n;
drh30e58752002-03-02 20:41:57 +00007902 }
drh30e58752002-03-02 20:41:57 +00007903 }
danielk1977afcdd022004-10-31 16:25:42 +00007904#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007905 else{
7906 /* If this database supports auto-vacuum and iPage is not the last
7907 ** page in this overflow list, check that the pointer-map entry for
7908 ** the following page matches iPage.
7909 */
7910 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007911 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007912 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7913 }
danielk1977afcdd022004-10-31 16:25:42 +00007914 }
7915#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007916 iPage = get4byte(pOvflData);
7917 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007918 }
7919}
drhb7f91642004-10-31 02:22:47 +00007920#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007921
drhb7f91642004-10-31 02:22:47 +00007922#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007923/*
7924** Do various sanity checks on a single page of a tree. Return
7925** the tree depth. Root pages return 0. Parents of root pages
7926** return 1, and so forth.
7927**
7928** These checks are done:
7929**
7930** 1. Make sure that cells and freeblocks do not overlap
7931** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007932** NO 2. Make sure cell keys are in order.
7933** NO 3. Make sure no key is less than or equal to zLowerBound.
7934** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007935** 5. Check the integrity of overflow pages.
7936** 6. Recursively call checkTreePage on all children.
7937** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007938** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007939** the root of the tree.
7940*/
7941static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007942 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007943 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007944 char *zParentContext, /* Parent context */
7945 i64 *pnParentMinKey,
7946 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007947){
7948 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007949 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007950 int hdr, cellStart;
7951 int nCell;
drhda200cc2004-05-09 11:51:38 +00007952 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007953 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007954 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007955 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007956 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007957 i64 nMinKey = 0;
7958 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007959
drh5bb3eb92007-05-04 13:15:55 +00007960 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007961
drh5eddca62001-06-30 21:53:53 +00007962 /* Check that the page exists
7963 */
drhd9cb6ac2005-10-20 07:28:17 +00007964 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007965 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007966 if( iPage==0 ) return 0;
7967 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007968 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007969 checkAppendMsg(pCheck, zContext,
7970 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007971 return 0;
7972 }
danielk197793caf5a2009-07-11 06:55:33 +00007973
7974 /* Clear MemPage.isInit to make sure the corruption detection code in
7975 ** btreeInitPage() is executed. */
7976 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007977 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007978 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007979 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007980 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007981 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007982 return 0;
7983 }
7984
7985 /* Check out all the cells.
7986 */
7987 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007988 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007989 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007990 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007991 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007992
7993 /* Check payload overflow pages
7994 */
drh5bb3eb92007-05-04 13:15:55 +00007995 sqlite3_snprintf(sizeof(zContext), zContext,
7996 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007997 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007998 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007999 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00008000 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00008001 /* For intKey pages, check that the keys are in order.
8002 */
8003 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
8004 else{
8005 if( info.nKey <= nMaxKey ){
8006 checkAppendMsg(pCheck, zContext,
8007 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8008 }
8009 nMaxKey = info.nKey;
8010 }
drh72365832007-03-06 15:53:44 +00008011 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00008012 if( (sz>info.nLocal)
8013 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8014 ){
drhb6f41482004-05-14 01:58:11 +00008015 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008016 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8017#ifndef SQLITE_OMIT_AUTOVACUUM
8018 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008019 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008020 }
8021#endif
8022 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008023 }
8024
8025 /* Check sanity of left child page.
8026 */
drhda200cc2004-05-09 11:51:38 +00008027 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008028 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008029#ifndef SQLITE_OMIT_AUTOVACUUM
8030 if( pBt->autoVacuum ){
8031 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8032 }
8033#endif
shaneh195475d2010-02-19 04:28:08 +00008034 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008035 if( i>0 && d2!=depth ){
8036 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8037 }
8038 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008039 }
drh5eddca62001-06-30 21:53:53 +00008040 }
shaneh195475d2010-02-19 04:28:08 +00008041
drhda200cc2004-05-09 11:51:38 +00008042 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008043 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008044 sqlite3_snprintf(sizeof(zContext), zContext,
8045 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008046#ifndef SQLITE_OMIT_AUTOVACUUM
8047 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008048 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008049 }
8050#endif
shaneh195475d2010-02-19 04:28:08 +00008051 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008052 }
drh5eddca62001-06-30 21:53:53 +00008053
shaneh195475d2010-02-19 04:28:08 +00008054 /* For intKey leaf pages, check that the min/max keys are in order
8055 ** with any left/parent/right pages.
8056 */
8057 if( pPage->leaf && pPage->intKey ){
8058 /* if we are a left child page */
8059 if( pnParentMinKey ){
8060 /* if we are the left most child page */
8061 if( !pnParentMaxKey ){
8062 if( nMaxKey > *pnParentMinKey ){
8063 checkAppendMsg(pCheck, zContext,
8064 "Rowid %lld out of order (max larger than parent min of %lld)",
8065 nMaxKey, *pnParentMinKey);
8066 }
8067 }else{
8068 if( nMinKey <= *pnParentMinKey ){
8069 checkAppendMsg(pCheck, zContext,
8070 "Rowid %lld out of order (min less than parent min of %lld)",
8071 nMinKey, *pnParentMinKey);
8072 }
8073 if( nMaxKey > *pnParentMaxKey ){
8074 checkAppendMsg(pCheck, zContext,
8075 "Rowid %lld out of order (max larger than parent max of %lld)",
8076 nMaxKey, *pnParentMaxKey);
8077 }
8078 *pnParentMinKey = nMaxKey;
8079 }
8080 /* else if we're a right child page */
8081 } else if( pnParentMaxKey ){
8082 if( nMinKey <= *pnParentMaxKey ){
8083 checkAppendMsg(pCheck, zContext,
8084 "Rowid %lld out of order (min less than parent max of %lld)",
8085 nMinKey, *pnParentMaxKey);
8086 }
8087 }
8088 }
8089
drh5eddca62001-06-30 21:53:53 +00008090 /* Check for complete coverage of the page
8091 */
drhda200cc2004-05-09 11:51:38 +00008092 data = pPage->aData;
8093 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008094 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008095 if( hit==0 ){
8096 pCheck->mallocFailed = 1;
8097 }else{
drh5d433ce2010-08-14 16:02:52 +00008098 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008099 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008100 memset(hit+contentOffset, 0, usableSize-contentOffset);
8101 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008102 nCell = get2byte(&data[hdr+3]);
8103 cellStart = hdr + 12 - 4*pPage->leaf;
8104 for(i=0; i<nCell; i++){
8105 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008106 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008107 int j;
drh8c2bbb62009-07-10 02:52:20 +00008108 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008109 size = cellSizePtr(pPage, &data[pc]);
8110 }
drh43b18e12010-08-17 19:40:08 +00008111 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008112 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008113 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008114 }else{
8115 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8116 }
drh2e38c322004-09-03 18:38:44 +00008117 }
drh8c2bbb62009-07-10 02:52:20 +00008118 i = get2byte(&data[hdr+1]);
8119 while( i>0 ){
8120 int size, j;
8121 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8122 size = get2byte(&data[i+2]);
8123 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8124 for(j=i+size-1; j>=i; j--) hit[j]++;
8125 j = get2byte(&data[i]);
8126 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8127 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8128 i = j;
drh2e38c322004-09-03 18:38:44 +00008129 }
8130 for(i=cnt=0; i<usableSize; i++){
8131 if( hit[i]==0 ){
8132 cnt++;
8133 }else if( hit[i]>1 ){
8134 checkAppendMsg(pCheck, 0,
8135 "Multiple uses for byte %d of page %d", i, iPage);
8136 break;
8137 }
8138 }
8139 if( cnt!=data[hdr+7] ){
8140 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008141 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008142 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008143 }
8144 }
drh8c2bbb62009-07-10 02:52:20 +00008145 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008146 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008147 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008148}
drhb7f91642004-10-31 02:22:47 +00008149#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008150
drhb7f91642004-10-31 02:22:47 +00008151#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008152/*
8153** This routine does a complete check of the given BTree file. aRoot[] is
8154** an array of pages numbers were each page number is the root page of
8155** a table. nRoot is the number of entries in aRoot.
8156**
danielk19773509a652009-07-06 18:56:13 +00008157** A read-only or read-write transaction must be opened before calling
8158** this function.
8159**
drhc890fec2008-08-01 20:10:08 +00008160** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008161** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008162** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008163** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008164*/
drh1dcdbc02007-01-27 02:24:54 +00008165char *sqlite3BtreeIntegrityCheck(
8166 Btree *p, /* The btree to be checked */
8167 int *aRoot, /* An array of root pages numbers for individual trees */
8168 int nRoot, /* Number of entries in aRoot[] */
8169 int mxErr, /* Stop reporting errors after this many */
8170 int *pnErr /* Write number of errors seen to this variable */
8171){
danielk197789d40042008-11-17 14:20:56 +00008172 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008173 int nRef;
drhaaab5722002-02-19 13:39:21 +00008174 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008175 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008176 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008177
drhd677b3d2007-08-20 22:48:41 +00008178 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008179 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008180 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008181 sCheck.pBt = pBt;
8182 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008183 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008184 sCheck.mxErr = mxErr;
8185 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008186 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008187 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008188 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008189 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008190 return 0;
8191 }
dan1235bb12012-04-03 17:43:28 +00008192
8193 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8194 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008195 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008196 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008197 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008198 }
drh42cac6d2004-11-20 20:31:11 +00008199 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008200 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008201 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008202 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008203
8204 /* Check the integrity of the freelist
8205 */
drha34b6762004-05-07 13:30:42 +00008206 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8207 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008208
8209 /* Check all the tables.
8210 */
danielk197789d40042008-11-17 14:20:56 +00008211 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008212 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008213#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008214 if( pBt->autoVacuum && aRoot[i]>1 ){
8215 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8216 }
8217#endif
shaneh195475d2010-02-19 04:28:08 +00008218 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008219 }
8220
8221 /* Make sure every page in the file is referenced
8222 */
drh1dcdbc02007-01-27 02:24:54 +00008223 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008224#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008225 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008226 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008227 }
danielk1977afcdd022004-10-31 16:25:42 +00008228#else
8229 /* If the database supports auto-vacuum, make sure no tables contain
8230 ** references to pointer-map pages.
8231 */
dan1235bb12012-04-03 17:43:28 +00008232 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008233 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008234 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8235 }
dan1235bb12012-04-03 17:43:28 +00008236 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008237 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008238 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8239 }
8240#endif
drh5eddca62001-06-30 21:53:53 +00008241 }
8242
drh64022502009-01-09 14:11:04 +00008243 /* Make sure this analysis did not leave any unref() pages.
8244 ** This is an internal consistency check; an integrity check
8245 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008246 */
drh64022502009-01-09 14:11:04 +00008247 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008248 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008249 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008250 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008251 );
drh5eddca62001-06-30 21:53:53 +00008252 }
8253
8254 /* Clean up and report errors.
8255 */
drhd677b3d2007-08-20 22:48:41 +00008256 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008257 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008258 if( sCheck.mallocFailed ){
8259 sqlite3StrAccumReset(&sCheck.errMsg);
8260 *pnErr = sCheck.nErr+1;
8261 return 0;
8262 }
drh1dcdbc02007-01-27 02:24:54 +00008263 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008264 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8265 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008266}
drhb7f91642004-10-31 02:22:47 +00008267#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008268
drh73509ee2003-04-06 20:44:45 +00008269/*
drhd4e0bb02012-05-27 01:19:04 +00008270** Return the full pathname of the underlying database file. Return
8271** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008272**
8273** The pager filename is invariant as long as the pager is
8274** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008275*/
danielk1977aef0bf62005-12-30 16:28:01 +00008276const char *sqlite3BtreeGetFilename(Btree *p){
8277 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008278 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008279}
8280
8281/*
danielk19775865e3d2004-06-14 06:03:57 +00008282** Return the pathname of the journal file for this database. The return
8283** value of this routine is the same regardless of whether the journal file
8284** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008285**
8286** The pager journal filename is invariant as long as the pager is
8287** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008288*/
danielk1977aef0bf62005-12-30 16:28:01 +00008289const char *sqlite3BtreeGetJournalname(Btree *p){
8290 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008291 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008292}
8293
danielk19771d850a72004-05-31 08:26:49 +00008294/*
8295** Return non-zero if a transaction is active.
8296*/
danielk1977aef0bf62005-12-30 16:28:01 +00008297int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008298 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008299 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008300}
8301
dana550f2d2010-08-02 10:47:05 +00008302#ifndef SQLITE_OMIT_WAL
8303/*
8304** Run a checkpoint on the Btree passed as the first argument.
8305**
8306** Return SQLITE_LOCKED if this or any other connection has an open
8307** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008308**
dancdc1f042010-11-18 12:11:05 +00008309** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008310*/
dancdc1f042010-11-18 12:11:05 +00008311int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008312 int rc = SQLITE_OK;
8313 if( p ){
8314 BtShared *pBt = p->pBt;
8315 sqlite3BtreeEnter(p);
8316 if( pBt->inTransaction!=TRANS_NONE ){
8317 rc = SQLITE_LOCKED;
8318 }else{
dancdc1f042010-11-18 12:11:05 +00008319 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008320 }
8321 sqlite3BtreeLeave(p);
8322 }
8323 return rc;
8324}
8325#endif
8326
danielk19771d850a72004-05-31 08:26:49 +00008327/*
danielk19772372c2b2006-06-27 16:34:56 +00008328** Return non-zero if a read (or write) transaction is active.
8329*/
8330int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008331 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008332 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008333 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008334}
8335
danielk197704103022009-02-03 16:51:24 +00008336int sqlite3BtreeIsInBackup(Btree *p){
8337 assert( p );
8338 assert( sqlite3_mutex_held(p->db->mutex) );
8339 return p->nBackup!=0;
8340}
8341
danielk19772372c2b2006-06-27 16:34:56 +00008342/*
danielk1977da184232006-01-05 11:34:32 +00008343** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008344** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008345** purposes (for example, to store a high-level schema associated with
8346** the shared-btree). The btree layer manages reference counting issues.
8347**
8348** The first time this is called on a shared-btree, nBytes bytes of memory
8349** are allocated, zeroed, and returned to the caller. For each subsequent
8350** call the nBytes parameter is ignored and a pointer to the same blob
8351** of memory returned.
8352**
danielk1977171bfed2008-06-23 09:50:50 +00008353** If the nBytes parameter is 0 and the blob of memory has not yet been
8354** allocated, a null pointer is returned. If the blob has already been
8355** allocated, it is returned as normal.
8356**
danielk1977da184232006-01-05 11:34:32 +00008357** Just before the shared-btree is closed, the function passed as the
8358** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008359** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008360** on the memory, the btree layer does that.
8361*/
8362void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8363 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008364 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008365 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008366 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008367 pBt->xFreeSchema = xFree;
8368 }
drh27641702007-08-22 02:56:42 +00008369 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008370 return pBt->pSchema;
8371}
8372
danielk1977c87d34d2006-01-06 13:00:28 +00008373/*
danielk1977404ca072009-03-16 13:19:36 +00008374** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8375** btree as the argument handle holds an exclusive lock on the
8376** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008377*/
8378int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008379 int rc;
drhe5fe6902007-12-07 18:55:28 +00008380 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008381 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008382 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8383 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008384 sqlite3BtreeLeave(p);
8385 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008386}
8387
drha154dcd2006-03-22 22:10:07 +00008388
8389#ifndef SQLITE_OMIT_SHARED_CACHE
8390/*
8391** Obtain a lock on the table whose root page is iTab. The
8392** lock is a write lock if isWritelock is true or a read lock
8393** if it is false.
8394*/
danielk1977c00da102006-01-07 13:21:04 +00008395int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008396 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008397 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008398 if( p->sharable ){
8399 u8 lockType = READ_LOCK + isWriteLock;
8400 assert( READ_LOCK+1==WRITE_LOCK );
8401 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008402
drh6a9ad3d2008-04-02 16:29:30 +00008403 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008404 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008405 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008406 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008407 }
8408 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008409 }
8410 return rc;
8411}
drha154dcd2006-03-22 22:10:07 +00008412#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008413
danielk1977b4e9af92007-05-01 17:49:49 +00008414#ifndef SQLITE_OMIT_INCRBLOB
8415/*
8416** Argument pCsr must be a cursor opened for writing on an
8417** INTKEY table currently pointing at a valid table entry.
8418** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008419**
8420** Only the data content may only be modified, it is not possible to
8421** change the length of the data stored. If this function is called with
8422** parameters that attempt to write past the end of the existing data,
8423** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008424*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008425int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008426 int rc;
drh1fee73e2007-08-29 04:00:57 +00008427 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008428 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008429 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008430
danielk1977c9000e62009-07-08 13:55:28 +00008431 rc = restoreCursorPosition(pCsr);
8432 if( rc!=SQLITE_OK ){
8433 return rc;
8434 }
danielk19773588ceb2008-06-10 17:30:26 +00008435 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8436 if( pCsr->eState!=CURSOR_VALID ){
8437 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008438 }
8439
dan227a1c42013-04-03 11:17:39 +00008440 /* Save the positions of all other cursors open on this table. This is
8441 ** required in case any of them are holding references to an xFetch
8442 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008443 **
8444 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8445 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8446 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008447 */
drh370c9f42013-04-03 20:04:04 +00008448 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8449 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008450
danielk1977c9000e62009-07-08 13:55:28 +00008451 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008452 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008453 ** (b) there is a read/write transaction open,
8454 ** (c) the connection holds a write-lock on the table (if required),
8455 ** (d) there are no conflicting read-locks, and
8456 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008457 */
danielk19774f029602009-07-08 18:45:37 +00008458 if( !pCsr->wrFlag ){
8459 return SQLITE_READONLY;
8460 }
drhc9166342012-01-05 23:32:06 +00008461 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8462 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008463 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8464 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008465 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008466
drhfb192682009-07-11 18:26:28 +00008467 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008468}
danielk19772dec9702007-05-02 16:48:37 +00008469
8470/*
8471** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008472** overflow list for the current row. This is used by cursors opened
8473** for incremental blob IO only.
8474**
8475** This function sets a flag only. The actual page location cache
8476** (stored in BtCursor.aOverflow[]) is allocated and used by function
8477** accessPayload() (the worker function for sqlite3BtreeData() and
8478** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008479*/
8480void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008481 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008482 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008483 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008484 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008485}
danielk1977b4e9af92007-05-01 17:49:49 +00008486#endif
dane04dc882010-04-20 18:53:15 +00008487
8488/*
8489** Set both the "read version" (single byte at byte offset 18) and
8490** "write version" (single byte at byte offset 19) fields in the database
8491** header to iVersion.
8492*/
8493int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8494 BtShared *pBt = pBtree->pBt;
8495 int rc; /* Return code */
8496
dane04dc882010-04-20 18:53:15 +00008497 assert( iVersion==1 || iVersion==2 );
8498
danb9780022010-04-21 18:37:57 +00008499 /* If setting the version fields to 1, do not automatically open the
8500 ** WAL connection, even if the version fields are currently set to 2.
8501 */
drhc9166342012-01-05 23:32:06 +00008502 pBt->btsFlags &= ~BTS_NO_WAL;
8503 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008504
8505 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008506 if( rc==SQLITE_OK ){
8507 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008508 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008509 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008510 if( rc==SQLITE_OK ){
8511 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8512 if( rc==SQLITE_OK ){
8513 aData[18] = (u8)iVersion;
8514 aData[19] = (u8)iVersion;
8515 }
8516 }
8517 }
dane04dc882010-04-20 18:53:15 +00008518 }
8519
drhc9166342012-01-05 23:32:06 +00008520 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008521 return rc;
8522}
dan428c2182012-08-06 18:50:11 +00008523
8524/*
8525** set the mask of hint flags for cursor pCsr. Currently the only valid
8526** values are 0 and BTREE_BULKLOAD.
8527*/
8528void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8529 assert( mask==BTREE_BULKLOAD || mask==0 );
8530 pCsr->hints = mask;
8531}