blob: 21e1a5603023cdb5ec006178318757864cd736b2 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
shane75ac1de2009-06-09 18:58:52 +000012** $Id: btree.c,v 1.625 2009/06/09 18:58:53 shane Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
drh615ae552005-01-16 23:21:00 +000070/*
drh66cbd152004-09-01 16:12:25 +000071** Forward declaration
72*/
drh11b57d62009-02-24 19:21:41 +000073static int checkForReadConflicts(Btree*, Pgno, BtCursor*, i64);
drh66cbd152004-09-01 16:12:25 +000074
danielk1977aef0bf62005-12-30 16:28:01 +000075
76#ifdef SQLITE_OMIT_SHARED_CACHE
77 /*
drhc25eabe2009-02-24 18:57:31 +000078 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
79 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000080 ** manipulate entries in the BtShared.pLock linked list used to store
81 ** shared-cache table level locks. If the library is compiled with the
82 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000083 ** of each BtShared structure and so this locking is not necessary.
84 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000085 */
drhc25eabe2009-02-24 18:57:31 +000086 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
87 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
88 #define clearAllSharedCacheTableLocks(a)
drhe53831d2007-08-17 01:14:38 +000089#endif
danielk1977aef0bf62005-12-30 16:28:01 +000090
drhe53831d2007-08-17 01:14:38 +000091#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977da184232006-01-05 11:34:32 +000092/*
danielk1977aef0bf62005-12-30 16:28:01 +000093** Query to see if btree handle p may obtain a lock of type eLock
94** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +000095** SQLITE_OK if the lock may be obtained (by calling
96** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +000097*/
drhc25eabe2009-02-24 18:57:31 +000098static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +000099 BtShared *pBt = p->pBt;
100 BtLock *pIter;
101
drh1fee73e2007-08-29 04:00:57 +0000102 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000103 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
104 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000105
danielk19775b413d72009-04-01 09:41:54 +0000106 /* If requesting a write-lock, then the Btree must have an open write
107 ** transaction on this file. And, obviously, for this to be so there
108 ** must be an open write transaction on the file itself.
109 */
110 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
111 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
112
danielk1977da184232006-01-05 11:34:32 +0000113 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000114 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000115 return SQLITE_OK;
116 }
117
danielk1977641b0f42007-12-21 04:47:25 +0000118 /* If some other connection is holding an exclusive lock, the
119 ** requested lock may not be obtained.
120 */
danielk1977404ca072009-03-16 13:19:36 +0000121 if( pBt->pWriter!=p && pBt->isExclusive ){
122 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
123 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000124 }
125
drhc25eabe2009-02-24 18:57:31 +0000126 /* This (along with setSharedCacheTableLock()) is where
127 ** the ReadUncommitted flag is dealt with.
128 ** If the caller is querying for a read-lock on any table
drhc74d0b1d2009-02-24 16:18:05 +0000129 ** other than the sqlite_master table (table 1) and if the ReadUncommitted
130 ** flag is set, then the lock granted even if there are write-locks
danielk1977da184232006-01-05 11:34:32 +0000131 ** on the table. If a write-lock is requested, the ReadUncommitted flag
132 ** is not considered.
133 **
drhc25eabe2009-02-24 18:57:31 +0000134 ** In function setSharedCacheTableLock(), if a read-lock is demanded and the
danielk1977da184232006-01-05 11:34:32 +0000135 ** ReadUncommitted flag is set, no entry is added to the locks list
136 ** (BtShared.pLock).
137 **
drhc74d0b1d2009-02-24 16:18:05 +0000138 ** To summarize: If the ReadUncommitted flag is set, then read cursors
139 ** on non-schema tables do not create or respect table locks. The locking
140 ** procedure for a write-cursor does not change.
danielk1977da184232006-01-05 11:34:32 +0000141 */
142 if(
drhe5fe6902007-12-07 18:55:28 +0000143 0==(p->db->flags&SQLITE_ReadUncommitted) ||
danielk1977da184232006-01-05 11:34:32 +0000144 eLock==WRITE_LOCK ||
drh47ded162006-01-06 01:42:58 +0000145 iTab==MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000146 ){
147 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
danielk19775b413d72009-04-01 09:41:54 +0000148 /* The condition (pIter->eLock!=eLock) in the following if(...)
149 ** statement is a simplification of:
150 **
151 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
152 **
153 ** since we know that if eLock==WRITE_LOCK, then no other connection
154 ** may hold a WRITE_LOCK on any table in this file (since there can
155 ** only be a single writer).
156 */
157 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
158 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
159 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
danielk1977404ca072009-03-16 13:19:36 +0000160 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
161 if( eLock==WRITE_LOCK ){
162 assert( p==pBt->pWriter );
163 pBt->isPending = 1;
164 }
165 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977da184232006-01-05 11:34:32 +0000166 }
danielk1977aef0bf62005-12-30 16:28:01 +0000167 }
168 }
169 return SQLITE_OK;
170}
drhe53831d2007-08-17 01:14:38 +0000171#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000172
drhe53831d2007-08-17 01:14:38 +0000173#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000174/*
175** Add a lock on the table with root-page iTable to the shared-btree used
176** by Btree handle p. Parameter eLock must be either READ_LOCK or
177** WRITE_LOCK.
178**
179** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and
180** SQLITE_NOMEM may also be returned.
181*/
drhc25eabe2009-02-24 18:57:31 +0000182static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000183 BtShared *pBt = p->pBt;
184 BtLock *pLock = 0;
185 BtLock *pIter;
186
drh1fee73e2007-08-29 04:00:57 +0000187 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000188 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
189 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000190
danielk1977da184232006-01-05 11:34:32 +0000191 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000192 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000193 return SQLITE_OK;
194 }
195
drhc25eabe2009-02-24 18:57:31 +0000196 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000197
drhc74d0b1d2009-02-24 16:18:05 +0000198 /* If the read-uncommitted flag is set and a read-lock is requested on
199 ** a non-schema table, then the lock is always granted. Return early
200 ** without adding an entry to the BtShared.pLock list. See
drhc25eabe2009-02-24 18:57:31 +0000201 ** comment in function querySharedCacheTableLock() for more info
202 ** on handling the ReadUncommitted flag.
danielk1977da184232006-01-05 11:34:32 +0000203 */
204 if(
drhe5fe6902007-12-07 18:55:28 +0000205 (p->db->flags&SQLITE_ReadUncommitted) &&
danielk1977da184232006-01-05 11:34:32 +0000206 (eLock==READ_LOCK) &&
drh47ded162006-01-06 01:42:58 +0000207 iTable!=MASTER_ROOT
danielk1977da184232006-01-05 11:34:32 +0000208 ){
209 return SQLITE_OK;
210 }
211
danielk1977aef0bf62005-12-30 16:28:01 +0000212 /* First search the list for an existing lock on this table. */
213 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
214 if( pIter->iTable==iTable && pIter->pBtree==p ){
215 pLock = pIter;
216 break;
217 }
218 }
219
220 /* If the above search did not find a BtLock struct associating Btree p
221 ** with table iTable, allocate one and link it into the list.
222 */
223 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000224 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000225 if( !pLock ){
226 return SQLITE_NOMEM;
227 }
228 pLock->iTable = iTable;
229 pLock->pBtree = p;
230 pLock->pNext = pBt->pLock;
231 pBt->pLock = pLock;
232 }
233
234 /* Set the BtLock.eLock variable to the maximum of the current lock
235 ** and the requested lock. This means if a write-lock was already held
236 ** and a read-lock requested, we don't incorrectly downgrade the lock.
237 */
238 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000239 if( eLock>pLock->eLock ){
240 pLock->eLock = eLock;
241 }
danielk1977aef0bf62005-12-30 16:28:01 +0000242
243 return SQLITE_OK;
244}
drhe53831d2007-08-17 01:14:38 +0000245#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000246
drhe53831d2007-08-17 01:14:38 +0000247#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000248/*
drhc25eabe2009-02-24 18:57:31 +0000249** Release all the table locks (locks obtained via calls to
250** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000251**
252** This function assumes that handle p has an open read or write
253** transaction. If it does not, then the BtShared.isPending variable
254** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000255*/
drhc25eabe2009-02-24 18:57:31 +0000256static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000257 BtShared *pBt = p->pBt;
258 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000259
drh1fee73e2007-08-29 04:00:57 +0000260 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000261 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000262 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000263
danielk1977aef0bf62005-12-30 16:28:01 +0000264 while( *ppIter ){
265 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000266 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000267 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000268 if( pLock->pBtree==p ){
269 *ppIter = pLock->pNext;
drh17435752007-08-16 04:30:38 +0000270 sqlite3_free(pLock);
danielk1977aef0bf62005-12-30 16:28:01 +0000271 }else{
272 ppIter = &pLock->pNext;
273 }
274 }
danielk1977641b0f42007-12-21 04:47:25 +0000275
danielk1977404ca072009-03-16 13:19:36 +0000276 assert( pBt->isPending==0 || pBt->pWriter );
277 if( pBt->pWriter==p ){
278 pBt->pWriter = 0;
279 pBt->isExclusive = 0;
280 pBt->isPending = 0;
281 }else if( pBt->nTransaction==2 ){
282 /* This function is called when connection p is concluding its
283 ** transaction. If there currently exists a writer, and p is not
284 ** that writer, then the number of locks held by connections other
285 ** than the writer must be about to drop to zero. In this case
286 ** set the isPending flag to 0.
287 **
288 ** If there is not currently a writer, then BtShared.isPending must
289 ** be zero already. So this next line is harmless in that case.
290 */
291 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000292 }
danielk1977aef0bf62005-12-30 16:28:01 +0000293}
294#endif /* SQLITE_OMIT_SHARED_CACHE */
295
drh980b1a72006-08-16 16:42:48 +0000296static void releasePage(MemPage *pPage); /* Forward reference */
297
drh1fee73e2007-08-29 04:00:57 +0000298/*
299** Verify that the cursor holds a mutex on the BtShared
300*/
301#ifndef NDEBUG
302static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000303 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000304}
305#endif
306
307
danielk197792d4d7a2007-05-04 12:05:56 +0000308#ifndef SQLITE_OMIT_INCRBLOB
309/*
310** Invalidate the overflow page-list cache for cursor pCur, if any.
311*/
312static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000313 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000314 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000315 pCur->aOverflow = 0;
316}
317
318/*
319** Invalidate the overflow page-list cache for all cursors opened
320** on the shared btree structure pBt.
321*/
322static void invalidateAllOverflowCache(BtShared *pBt){
323 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000325 for(p=pBt->pCursor; p; p=p->pNext){
326 invalidateOverflowCache(p);
327 }
328}
329#else
330 #define invalidateOverflowCache(x)
331 #define invalidateAllOverflowCache(x)
332#endif
333
drh980b1a72006-08-16 16:42:48 +0000334/*
danielk1977bea2a942009-01-20 17:06:27 +0000335** Set bit pgno of the BtShared.pHasContent bitvec. This is called
336** when a page that previously contained data becomes a free-list leaf
337** page.
338**
339** The BtShared.pHasContent bitvec exists to work around an obscure
340** bug caused by the interaction of two useful IO optimizations surrounding
341** free-list leaf pages:
342**
343** 1) When all data is deleted from a page and the page becomes
344** a free-list leaf page, the page is not written to the database
345** (as free-list leaf pages contain no meaningful data). Sometimes
346** such a page is not even journalled (as it will not be modified,
347** why bother journalling it?).
348**
349** 2) When a free-list leaf page is reused, its content is not read
350** from the database or written to the journal file (why should it
351** be, if it is not at all meaningful?).
352**
353** By themselves, these optimizations work fine and provide a handy
354** performance boost to bulk delete or insert operations. However, if
355** a page is moved to the free-list and then reused within the same
356** transaction, a problem comes up. If the page is not journalled when
357** it is moved to the free-list and it is also not journalled when it
358** is extracted from the free-list and reused, then the original data
359** may be lost. In the event of a rollback, it may not be possible
360** to restore the database to its original configuration.
361**
362** The solution is the BtShared.pHasContent bitvec. Whenever a page is
363** moved to become a free-list leaf page, the corresponding bit is
364** set in the bitvec. Whenever a leaf page is extracted from the free-list,
365** optimization 2 above is ommitted if the corresponding bit is already
366** set in BtShared.pHasContent. The contents of the bitvec are cleared
367** at the end of every transaction.
368*/
369static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
370 int rc = SQLITE_OK;
371 if( !pBt->pHasContent ){
372 int nPage;
373 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
374 if( rc==SQLITE_OK ){
375 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
376 if( !pBt->pHasContent ){
377 rc = SQLITE_NOMEM;
378 }
379 }
380 }
381 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
382 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
383 }
384 return rc;
385}
386
387/*
388** Query the BtShared.pHasContent vector.
389**
390** This function is called when a free-list leaf page is removed from the
391** free-list for reuse. It returns false if it is safe to retrieve the
392** page from the pager layer with the 'no-content' flag set. True otherwise.
393*/
394static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
395 Bitvec *p = pBt->pHasContent;
396 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
397}
398
399/*
400** Clear (destroy) the BtShared.pHasContent bitvec. This should be
401** invoked at the conclusion of each write-transaction.
402*/
403static void btreeClearHasContent(BtShared *pBt){
404 sqlite3BitvecDestroy(pBt->pHasContent);
405 pBt->pHasContent = 0;
406}
407
408/*
drh980b1a72006-08-16 16:42:48 +0000409** Save the current cursor position in the variables BtCursor.nKey
410** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
411*/
412static int saveCursorPosition(BtCursor *pCur){
413 int rc;
414
415 assert( CURSOR_VALID==pCur->eState );
416 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000417 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000418
419 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
420
421 /* If this is an intKey table, then the above call to BtreeKeySize()
422 ** stores the integer key in pCur->nKey. In this case this value is
423 ** all that is required. Otherwise, if pCur is not open on an intKey
424 ** table, then malloc space for and store the pCur->nKey bytes of key
425 ** data.
426 */
danielk197771d5d2c2008-09-29 11:49:47 +0000427 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000428 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000429 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000430 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000431 if( rc==SQLITE_OK ){
432 pCur->pKey = pKey;
433 }else{
drh17435752007-08-16 04:30:38 +0000434 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000435 }
436 }else{
437 rc = SQLITE_NOMEM;
438 }
439 }
danielk197771d5d2c2008-09-29 11:49:47 +0000440 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000441
442 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000443 int i;
444 for(i=0; i<=pCur->iPage; i++){
445 releasePage(pCur->apPage[i]);
446 pCur->apPage[i] = 0;
447 }
448 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000449 pCur->eState = CURSOR_REQUIRESEEK;
450 }
451
danielk197792d4d7a2007-05-04 12:05:56 +0000452 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000453 return rc;
454}
455
456/*
457** Save the positions of all cursors except pExcept open on the table
458** with root-page iRoot. Usually, this is called just before cursor
459** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
460*/
461static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
462 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000463 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000464 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000465 for(p=pBt->pCursor; p; p=p->pNext){
466 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
467 p->eState==CURSOR_VALID ){
468 int rc = saveCursorPosition(p);
469 if( SQLITE_OK!=rc ){
470 return rc;
471 }
472 }
473 }
474 return SQLITE_OK;
475}
476
477/*
drhbf700f32007-03-31 02:36:44 +0000478** Clear the current cursor position.
479*/
danielk1977be51a652008-10-08 17:58:48 +0000480void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000481 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000482 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000483 pCur->pKey = 0;
484 pCur->eState = CURSOR_INVALID;
485}
486
487/*
drh980b1a72006-08-16 16:42:48 +0000488** Restore the cursor to the position it was in (or as close to as possible)
489** when saveCursorPosition() was called. Note that this call deletes the
490** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000491** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000492** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000493*/
drha3460582008-07-11 21:02:53 +0000494int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000495 int rc;
drh1fee73e2007-08-29 04:00:57 +0000496 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000497 assert( pCur->eState>=CURSOR_REQUIRESEEK );
498 if( pCur->eState==CURSOR_FAULT ){
499 return pCur->skip;
500 }
drh980b1a72006-08-16 16:42:48 +0000501 pCur->eState = CURSOR_INVALID;
drhe63d9992008-08-13 19:11:48 +0000502 rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000503 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000504 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000505 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000506 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000507 }
508 return rc;
509}
510
drha3460582008-07-11 21:02:53 +0000511#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000512 (p->eState>=CURSOR_REQUIRESEEK ? \
drha3460582008-07-11 21:02:53 +0000513 sqlite3BtreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000514 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000515
drha3460582008-07-11 21:02:53 +0000516/*
517** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000518** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000519** at is deleted out from under them.
520**
521** This routine returns an error code if something goes wrong. The
522** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
523*/
524int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
525 int rc;
526
527 rc = restoreCursorPosition(pCur);
528 if( rc ){
529 *pHasMoved = 1;
530 return rc;
531 }
532 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
533 *pHasMoved = 1;
534 }else{
535 *pHasMoved = 0;
536 }
537 return SQLITE_OK;
538}
539
danielk1977599fcba2004-11-08 07:13:13 +0000540#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000541/*
drha3152892007-05-05 11:48:52 +0000542** Given a page number of a regular database page, return the page
543** number for the pointer-map page that contains the entry for the
544** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000545*/
danielk1977266664d2006-02-10 08:24:21 +0000546static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000547 int nPagesPerMapPage;
548 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000549 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000550 nPagesPerMapPage = (pBt->usableSize/5)+1;
551 iPtrMap = (pgno-2)/nPagesPerMapPage;
552 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000553 if( ret==PENDING_BYTE_PAGE(pBt) ){
554 ret++;
555 }
556 return ret;
557}
danielk1977a19df672004-11-03 11:37:07 +0000558
danielk1977afcdd022004-10-31 16:25:42 +0000559/*
danielk1977afcdd022004-10-31 16:25:42 +0000560** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000561**
562** This routine updates the pointer map entry for page number 'key'
563** so that it maps to type 'eType' and parent page number 'pgno'.
564** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000565*/
danielk1977aef0bf62005-12-30 16:28:01 +0000566static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000567 DbPage *pDbPage; /* The pointer map page */
568 u8 *pPtrmap; /* The pointer map data */
569 Pgno iPtrmap; /* The pointer map page number */
570 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000571 int rc;
572
drh1fee73e2007-08-29 04:00:57 +0000573 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000574 /* The master-journal page number must never be used as a pointer map page */
575 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
576
danielk1977ac11ee62005-01-15 12:45:51 +0000577 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000578 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000579 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000580 }
danielk1977266664d2006-02-10 08:24:21 +0000581 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000582 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000583 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000584 return rc;
585 }
danielk19778c666b12008-07-18 09:34:57 +0000586 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000587 if( offset<0 ){
588 return SQLITE_CORRUPT_BKPT;
589 }
danielk19773b8a05f2007-03-19 17:44:26 +0000590 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000591
drh615ae552005-01-16 23:21:00 +0000592 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
593 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000594 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000595 if( rc==SQLITE_OK ){
596 pPtrmap[offset] = eType;
597 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000598 }
danielk1977afcdd022004-10-31 16:25:42 +0000599 }
600
danielk19773b8a05f2007-03-19 17:44:26 +0000601 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000602 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000603}
604
605/*
606** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000607**
608** This routine retrieves the pointer map entry for page 'key', writing
609** the type and parent page number to *pEType and *pPgno respectively.
610** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000611*/
danielk1977aef0bf62005-12-30 16:28:01 +0000612static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000613 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000614 int iPtrmap; /* Pointer map page index */
615 u8 *pPtrmap; /* Pointer map page data */
616 int offset; /* Offset of entry in pointer map */
617 int rc;
618
drh1fee73e2007-08-29 04:00:57 +0000619 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000620
danielk1977266664d2006-02-10 08:24:21 +0000621 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000622 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000623 if( rc!=0 ){
624 return rc;
625 }
danielk19773b8a05f2007-03-19 17:44:26 +0000626 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000627
danielk19778c666b12008-07-18 09:34:57 +0000628 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000629 assert( pEType!=0 );
630 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000631 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000632
danielk19773b8a05f2007-03-19 17:44:26 +0000633 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000634 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000635 return SQLITE_OK;
636}
637
danielk197785d90ca2008-07-19 14:25:15 +0000638#else /* if defined SQLITE_OMIT_AUTOVACUUM */
639 #define ptrmapPut(w,x,y,z) SQLITE_OK
640 #define ptrmapGet(w,x,y,z) SQLITE_OK
641 #define ptrmapPutOvfl(y,z) SQLITE_OK
642#endif
danielk1977afcdd022004-10-31 16:25:42 +0000643
drh0d316a42002-08-11 20:10:47 +0000644/*
drh271efa52004-05-30 19:19:05 +0000645** Given a btree page and a cell index (0 means the first cell on
646** the page, 1 means the second cell, and so forth) return a pointer
647** to the cell content.
648**
649** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000650*/
drh1688c862008-07-18 02:44:17 +0000651#define findCell(P,I) \
652 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000653
654/*
drh93a960a2008-07-10 00:32:42 +0000655** This a more complex version of findCell() that works for
drh43605152004-05-29 21:46:49 +0000656** pages that do contain overflow cells. See insert
657*/
658static u8 *findOverflowCell(MemPage *pPage, int iCell){
659 int i;
drh1fee73e2007-08-29 04:00:57 +0000660 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000661 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000662 int k;
663 struct _OvflCell *pOvfl;
664 pOvfl = &pPage->aOvfl[i];
665 k = pOvfl->idx;
666 if( k<=iCell ){
667 if( k==iCell ){
668 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000669 }
670 iCell--;
671 }
672 }
danielk19771cc5ed82007-05-16 17:28:43 +0000673 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000674}
675
676/*
677** Parse a cell content block and fill in the CellInfo structure. There
drh16a9b832007-05-05 18:39:25 +0000678** are two versions of this function. sqlite3BtreeParseCell() takes a
679** cell index as the second argument and sqlite3BtreeParseCellPtr()
680** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000681**
682** Within this file, the parseCell() macro can be called instead of
683** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000684*/
drh16a9b832007-05-05 18:39:25 +0000685void sqlite3BtreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000686 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000687 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000688 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000689){
drhf49661a2008-12-10 16:45:50 +0000690 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000691 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000692
drh1fee73e2007-08-29 04:00:57 +0000693 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000694
drh43605152004-05-29 21:46:49 +0000695 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000696 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000697 n = pPage->childPtrSize;
698 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000699 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000700 if( pPage->hasData ){
701 n += getVarint32(&pCell[n], nPayload);
702 }else{
703 nPayload = 0;
704 }
drh1bd10f82008-12-10 21:19:56 +0000705 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000706 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000707 }else{
drh79df1f42008-07-18 00:57:33 +0000708 pInfo->nData = 0;
709 n += getVarint32(&pCell[n], nPayload);
710 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000711 }
drh72365832007-03-06 15:53:44 +0000712 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000713 pInfo->nHeader = n;
drh79df1f42008-07-18 00:57:33 +0000714 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000715 /* This is the (easy) common case where the entire payload fits
716 ** on the local page. No overflow is required.
717 */
718 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000719 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000720 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000721 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000722 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000723 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000724 }
drh1bd10f82008-12-10 21:19:56 +0000725 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000726 }else{
drh271efa52004-05-30 19:19:05 +0000727 /* If the payload will not fit completely on the local page, we have
728 ** to decide how much to store locally and how much to spill onto
729 ** overflow pages. The strategy is to minimize the amount of unused
730 ** space on overflow pages while keeping the amount of local storage
731 ** in between minLocal and maxLocal.
732 **
733 ** Warning: changing the way overflow payload is distributed in any
734 ** way will result in an incompatible file format.
735 */
736 int minLocal; /* Minimum amount of payload held locally */
737 int maxLocal; /* Maximum amount of payload held locally */
738 int surplus; /* Overflow payload available for local storage */
739
740 minLocal = pPage->minLocal;
741 maxLocal = pPage->maxLocal;
742 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000743 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000744 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000745 }else{
drhf49661a2008-12-10 16:45:50 +0000746 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000747 }
drhf49661a2008-12-10 16:45:50 +0000748 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000749 pInfo->nSize = pInfo->iOverflow + 4;
750 }
drh3aac2dd2004-04-26 14:10:20 +0000751}
danielk19771cc5ed82007-05-16 17:28:43 +0000752#define parseCell(pPage, iCell, pInfo) \
753 sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
drh16a9b832007-05-05 18:39:25 +0000754void sqlite3BtreeParseCell(
drh43605152004-05-29 21:46:49 +0000755 MemPage *pPage, /* Page containing the cell */
756 int iCell, /* The cell index. First cell is 0 */
757 CellInfo *pInfo /* Fill in this structure */
758){
danielk19771cc5ed82007-05-16 17:28:43 +0000759 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000760}
drh3aac2dd2004-04-26 14:10:20 +0000761
762/*
drh43605152004-05-29 21:46:49 +0000763** Compute the total number of bytes that a Cell needs in the cell
764** data area of the btree-page. The return number includes the cell
765** data header and the local payload, but not any overflow page or
766** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000767*/
danielk1977ae5558b2009-04-29 11:31:47 +0000768static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
769 u8 *pIter = &pCell[pPage->childPtrSize];
770 u32 nSize;
771
772#ifdef SQLITE_DEBUG
773 /* The value returned by this function should always be the same as
774 ** the (CellInfo.nSize) value found by doing a full parse of the
775 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
776 ** this function verifies that this invariant is not violated. */
777 CellInfo debuginfo;
778 sqlite3BtreeParseCellPtr(pPage, pCell, &debuginfo);
779#endif
780
781 if( pPage->intKey ){
782 u8 *pEnd;
783 if( pPage->hasData ){
784 pIter += getVarint32(pIter, nSize);
785 }else{
786 nSize = 0;
787 }
788
789 /* pIter now points at the 64-bit integer key value, a variable length
790 ** integer. The following block moves pIter to point at the first byte
791 ** past the end of the key value. */
792 pEnd = &pIter[9];
793 while( (*pIter++)&0x80 && pIter<pEnd );
794 }else{
795 pIter += getVarint32(pIter, nSize);
796 }
797
798 if( nSize>pPage->maxLocal ){
799 int minLocal = pPage->minLocal;
800 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
801 if( nSize>pPage->maxLocal ){
802 nSize = minLocal;
803 }
804 nSize += 4;
805 }
shane75ac1de2009-06-09 18:58:52 +0000806 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000807
808 /* The minimum size of any cell is 4 bytes. */
809 if( nSize<4 ){
810 nSize = 4;
811 }
812
813 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000814 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000815}
danielk1977bc6ada42004-06-30 08:20:16 +0000816#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000817static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000818 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000819}
danielk1977bc6ada42004-06-30 08:20:16 +0000820#endif
drh3b7511c2001-05-26 13:15:44 +0000821
danielk197779a40da2005-01-16 08:00:01 +0000822#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000823/*
danielk197726836652005-01-17 01:33:13 +0000824** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000825** to an overflow page, insert an entry into the pointer-map
826** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000827*/
danielk197726836652005-01-17 01:33:13 +0000828static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +0000829 CellInfo info;
830 assert( pCell!=0 );
831 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
832 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
833 if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){
834 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
835 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +0000836 }
danielk197779a40da2005-01-16 08:00:01 +0000837 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +0000838}
danielk197726836652005-01-17 01:33:13 +0000839/*
840** If the cell with index iCell on page pPage contains a pointer
841** to an overflow page, insert an entry into the pointer-map
842** for the overflow page.
843*/
844static int ptrmapPutOvfl(MemPage *pPage, int iCell){
845 u8 *pCell;
drh1fee73e2007-08-29 04:00:57 +0000846 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197726836652005-01-17 01:33:13 +0000847 pCell = findOverflowCell(pPage, iCell);
848 return ptrmapPutOvflPtr(pPage, pCell);
849}
danielk197779a40da2005-01-16 08:00:01 +0000850#endif
851
danielk1977ac11ee62005-01-15 12:45:51 +0000852
drhda200cc2004-05-09 11:51:38 +0000853/*
drh72f82862001-05-24 21:06:34 +0000854** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +0000855** end of the page and all free space is collected into one
856** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +0000857** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +0000858*/
shane0af3f892008-11-12 04:55:34 +0000859static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000860 int i; /* Loop counter */
861 int pc; /* Address of a i-th cell */
862 int addr; /* Offset of first byte after cell pointer array */
863 int hdr; /* Offset to the page header */
864 int size; /* Size of a cell */
865 int usableSize; /* Number of usable bytes on a page */
866 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +0000867 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +0000868 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +0000869 unsigned char *data; /* The page data */
870 unsigned char *temp; /* Temp area for cell content */
drh2af926b2001-05-15 00:39:25 +0000871
danielk19773b8a05f2007-03-19 17:44:26 +0000872 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000873 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +0000874 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000875 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +0000876 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +0000877 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +0000878 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000879 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000880 cellOffset = pPage->cellOffset;
881 nCell = pPage->nCell;
882 assert( nCell==get2byte(&data[hdr+3]) );
883 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +0000884 cbrk = get2byte(&data[hdr+5]);
885 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
886 cbrk = usableSize;
drh43605152004-05-29 21:46:49 +0000887 for(i=0; i<nCell; i++){
888 u8 *pAddr; /* The i-th cell pointer */
889 pAddr = &data[cellOffset + i*2];
890 pc = get2byte(pAddr);
shanedcc50b72008-11-13 18:29:50 +0000891 if( pc>=usableSize ){
shane0af3f892008-11-12 04:55:34 +0000892 return SQLITE_CORRUPT_BKPT;
893 }
drh43605152004-05-29 21:46:49 +0000894 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +0000895 cbrk -= size;
danielk19770d065412008-11-12 18:21:36 +0000896 if( cbrk<cellOffset+2*nCell || pc+size>usableSize ){
shane0af3f892008-11-12 04:55:34 +0000897 return SQLITE_CORRUPT_BKPT;
898 }
danielk19770d065412008-11-12 18:21:36 +0000899 assert( cbrk+size<=usableSize && cbrk>=0 );
drh281b21d2008-08-22 12:57:08 +0000900 memcpy(&data[cbrk], &temp[pc], size);
901 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +0000902 }
drh281b21d2008-08-22 12:57:08 +0000903 assert( cbrk>=cellOffset+2*nCell );
904 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +0000905 data[hdr+1] = 0;
906 data[hdr+2] = 0;
907 data[hdr+7] = 0;
908 addr = cellOffset+2*nCell;
drh281b21d2008-08-22 12:57:08 +0000909 memset(&data[addr], 0, cbrk-addr);
drhc5053fb2008-11-27 02:22:10 +0000910 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977360e6342008-11-12 08:49:51 +0000911 if( cbrk-addr!=pPage->nFree ){
912 return SQLITE_CORRUPT_BKPT;
913 }
shane0af3f892008-11-12 04:55:34 +0000914 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +0000915}
916
drha059ad02001-04-17 20:09:11 +0000917/*
danielk19776011a752009-04-01 16:25:32 +0000918** Allocate nByte bytes of space from within the B-Tree page passed
919** as the first argument. Return the index into pPage->aData[] of the
920** first byte of allocated space.
drhbd03cae2001-06-02 02:40:57 +0000921**
danielk19776011a752009-04-01 16:25:32 +0000922** The caller guarantees that the space between the end of the cell-offset
923** array and the start of the cell-content area is at least nByte bytes
924** in size. So this routine can never fail.
drh2af926b2001-05-15 00:39:25 +0000925**
danielk19776011a752009-04-01 16:25:32 +0000926** If there are already 60 or more bytes of fragments within the page,
927** the page is defragmented before returning. If this were not done there
928** is a chance that the number of fragmented bytes could eventually
929** overflow the single-byte field of the page-header in which this value
930** is stored.
drh7e3b0a02001-04-28 16:52:40 +0000931*/
drh9e572e62004-04-23 23:43:10 +0000932static int allocateSpace(MemPage *pPage, int nByte){
danielk19776011a752009-04-01 16:25:32 +0000933 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
934 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
935 int nFrag; /* Number of fragmented bytes on pPage */
drh43605152004-05-29 21:46:49 +0000936 int top;
drh43605152004-05-29 21:46:49 +0000937
danielk19773b8a05f2007-03-19 17:44:26 +0000938 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +0000939 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +0000940 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +0000941 assert( nByte>=0 ); /* Minimum cell size is 4 */
942 assert( pPage->nFree>=nByte );
943 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +0000944
danielk19776011a752009-04-01 16:25:32 +0000945 /* Assert that the space between the cell-offset array and the
946 ** cell-content area is greater than nByte bytes.
947 */
948 assert( nByte <= (
949 get2byte(&data[hdr+5])-(hdr+8+(pPage->leaf?0:4)+2*get2byte(&data[hdr+3]))
950 ));
951
952 pPage->nFree -= (u16)nByte;
drh43605152004-05-29 21:46:49 +0000953 nFrag = data[hdr+7];
danielk19776011a752009-04-01 16:25:32 +0000954 if( nFrag>=60 ){
955 defragmentPage(pPage);
956 }else{
957 /* Search the freelist looking for a free slot big enough to satisfy
958 ** the request. The allocation is made from the first free slot in
959 ** the list that is large enough to accomadate it.
960 */
961 int pc, addr;
962 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
963 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +0000964 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +0000965 int x = size - nByte;
danielk19776011a752009-04-01 16:25:32 +0000966 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +0000967 /* Remove the slot from the free-list. Update the number of
968 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +0000969 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +0000970 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +0000971 }else{
danielk1977fad91942009-04-29 17:49:59 +0000972 /* The slot remains on the free-list. Reduce its size to account
973 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +0000974 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +0000975 }
danielk19776011a752009-04-01 16:25:32 +0000976 return pc + x;
drh43605152004-05-29 21:46:49 +0000977 }
drh9e572e62004-04-23 23:43:10 +0000978 }
979 }
drh43605152004-05-29 21:46:49 +0000980
981 /* Allocate memory from the gap in between the cell pointer array
982 ** and the cell content area.
983 */
danielk19776011a752009-04-01 16:25:32 +0000984 top = get2byte(&data[hdr+5]) - nByte;
drh43605152004-05-29 21:46:49 +0000985 put2byte(&data[hdr+5], top);
986 return top;
drh7e3b0a02001-04-28 16:52:40 +0000987}
988
989/*
drh9e572e62004-04-23 23:43:10 +0000990** Return a section of the pPage->aData to the freelist.
991** The first byte of the new free block is pPage->aDisk[start]
992** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000993**
994** Most of the effort here is involved in coalesing adjacent
995** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000996*/
shanedcc50b72008-11-13 18:29:50 +0000997static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000998 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000999 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001000
drh9e572e62004-04-23 23:43:10 +00001001 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001002 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001003 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001004 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001005 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001006 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001007
drhfcce93f2006-02-22 03:08:32 +00001008#ifdef SQLITE_SECURE_DELETE
1009 /* Overwrite deleted information with zeros when the SECURE_DELETE
1010 ** option is enabled at compile-time */
1011 memset(&data[start], 0, size);
1012#endif
1013
drh9e572e62004-04-23 23:43:10 +00001014 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +00001015 hdr = pPage->hdrOffset;
1016 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001017 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +00001018 assert( pbegin<=pPage->pBt->usableSize-4 );
shanedcc50b72008-11-13 18:29:50 +00001019 if( pbegin<=addr ) {
1020 return SQLITE_CORRUPT_BKPT;
1021 }
drh3aac2dd2004-04-26 14:10:20 +00001022 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001023 }
shanedcc50b72008-11-13 18:29:50 +00001024 if ( pbegin>pPage->pBt->usableSize-4 ) {
1025 return SQLITE_CORRUPT_BKPT;
1026 }
drh3aac2dd2004-04-26 14:10:20 +00001027 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001028 put2byte(&data[addr], start);
1029 put2byte(&data[start], pbegin);
1030 put2byte(&data[start+2], size);
drhf49661a2008-12-10 16:45:50 +00001031 pPage->nFree += (u16)size;
drh9e572e62004-04-23 23:43:10 +00001032
1033 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +00001034 addr = pPage->hdrOffset + 1;
1035 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001036 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001037 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001038 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001039 pnext = get2byte(&data[pbegin]);
1040 psize = get2byte(&data[pbegin+2]);
1041 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1042 int frag = pnext - (pbegin+psize);
drhf49661a2008-12-10 16:45:50 +00001043 if( (frag<0) || (frag>(int)data[pPage->hdrOffset+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001044 return SQLITE_CORRUPT_BKPT;
1045 }
drhf49661a2008-12-10 16:45:50 +00001046 data[pPage->hdrOffset+7] -= (u8)frag;
1047 x = get2byte(&data[pnext]);
1048 put2byte(&data[pbegin], x);
1049 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1050 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001051 }else{
drh3aac2dd2004-04-26 14:10:20 +00001052 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001053 }
1054 }
drh7e3b0a02001-04-28 16:52:40 +00001055
drh43605152004-05-29 21:46:49 +00001056 /* If the cell content area begins with a freeblock, remove it. */
1057 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1058 int top;
1059 pbegin = get2byte(&data[hdr+1]);
1060 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001061 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1062 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001063 }
drhc5053fb2008-11-27 02:22:10 +00001064 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001065 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001066}
1067
1068/*
drh271efa52004-05-30 19:19:05 +00001069** Decode the flags byte (the first byte of the header) for a page
1070** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001071**
1072** Only the following combinations are supported. Anything different
1073** indicates a corrupt database files:
1074**
1075** PTF_ZERODATA
1076** PTF_ZERODATA | PTF_LEAF
1077** PTF_LEAFDATA | PTF_INTKEY
1078** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001079*/
drh44845222008-07-17 18:39:57 +00001080static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001081 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001082
1083 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001084 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001085 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001086 flagByte &= ~PTF_LEAF;
1087 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001088 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001089 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1090 pPage->intKey = 1;
1091 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001092 pPage->maxLocal = pBt->maxLeaf;
1093 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001094 }else if( flagByte==PTF_ZERODATA ){
1095 pPage->intKey = 0;
1096 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001097 pPage->maxLocal = pBt->maxLocal;
1098 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001099 }else{
1100 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001101 }
drh44845222008-07-17 18:39:57 +00001102 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001103}
1104
1105/*
drh7e3b0a02001-04-28 16:52:40 +00001106** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001107**
1108** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001109** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001110** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1111** guarantee that the page is well-formed. It only shows that
1112** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001113*/
danielk197771d5d2c2008-09-29 11:49:47 +00001114int sqlite3BtreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001115
danielk197771d5d2c2008-09-29 11:49:47 +00001116 assert( pPage->pBt!=0 );
1117 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001118 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001119 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1120 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001121
1122 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001123 u16 pc; /* Address of a freeblock within pPage->aData[] */
1124 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001125 u8 *data; /* Equal to pPage->aData */
1126 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001127 u16 usableSize; /* Amount of usable space on each page */
1128 u16 cellOffset; /* Offset from start of page to first cell pointer */
1129 u16 nFree; /* Number of unused bytes on the page */
1130 u16 top; /* First byte of the cell content area */
danielk197771d5d2c2008-09-29 11:49:47 +00001131
1132 pBt = pPage->pBt;
1133
danielk1977eaa06f62008-09-18 17:34:44 +00001134 hdr = pPage->hdrOffset;
1135 data = pPage->aData;
1136 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1137 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1138 pPage->maskPage = pBt->pageSize - 1;
1139 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001140 usableSize = pBt->usableSize;
1141 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1142 top = get2byte(&data[hdr+5]);
1143 pPage->nCell = get2byte(&data[hdr+3]);
1144 if( pPage->nCell>MX_CELL(pBt) ){
1145 /* To many cells for a single page. The page must be corrupt */
1146 return SQLITE_CORRUPT_BKPT;
1147 }
drh69e931e2009-06-03 21:04:35 +00001148
1149 /* A malformed database page might cause use to read past the end
1150 ** of page when parsing a cell.
1151 **
1152 ** The following block of code checks early to see if a cell extends
1153 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1154 ** returned if it does.
1155 */
drh3b2a3fa2009-06-09 13:42:24 +00001156#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001157 {
1158 int iCellFirst; /* First allowable cell index */
1159 int iCellLast; /* Last possible cell index */
1160 int i; /* Index into the cell pointer array */
1161 int sz; /* Size of a cell */
1162
1163 iCellFirst = cellOffset + 2*pPage->nCell;
1164 iCellLast = usableSize - 4;
1165 if( !pPage->leaf ) iCellLast--;
1166 for(i=0; i<pPage->nCell; i++){
1167 pc = get2byte(&data[cellOffset+i*2]);
1168 if( pc<iCellFirst || pc>iCellLast ){
1169 return SQLITE_CORRUPT_BKPT;
1170 }
1171 sz = cellSizePtr(pPage, &data[pc]);
1172 if( pc+sz>usableSize ){
1173 return SQLITE_CORRUPT_BKPT;
1174 }
1175 }
1176 }
1177#endif
1178
danielk1977eaa06f62008-09-18 17:34:44 +00001179 /* Compute the total free space on the page */
1180 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001181 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001182 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001183 u16 next, size;
danielk1977eaa06f62008-09-18 17:34:44 +00001184 if( pc>usableSize-4 ){
1185 /* Free block is off the page */
1186 return SQLITE_CORRUPT_BKPT;
1187 }
1188 next = get2byte(&data[pc]);
1189 size = get2byte(&data[pc+2]);
1190 if( next>0 && next<=pc+size+3 ){
1191 /* Free blocks must be in accending order */
1192 return SQLITE_CORRUPT_BKPT;
1193 }
1194 nFree += size;
1195 pc = next;
1196 }
danielk197793c829c2009-06-03 17:26:17 +00001197
1198 /* At this point, nFree contains the sum of the offset to the start
1199 ** of the cell-content area plus the number of free bytes within
1200 ** the cell-content area. If this is greater than the usable-size
1201 ** of the page, then the page must be corrupted. This check also
1202 ** serves to verify that the offset to the start of the cell-content
1203 ** area, according to the page header, lies within the page.
1204 */
1205 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001206 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001207 }
danielk197793c829c2009-06-03 17:26:17 +00001208 pPage->nFree = nFree - (cellOffset + 2*pPage->nCell);
drh9e572e62004-04-23 23:43:10 +00001209
drh1688c862008-07-18 02:44:17 +00001210#if 0
1211 /* Check that all the offsets in the cell offset array are within range.
1212 **
1213 ** Omitting this consistency check and using the pPage->maskPage mask
1214 ** to prevent overrunning the page buffer in findCell() results in a
1215 ** 2.5% performance gain.
1216 */
1217 {
1218 u8 *pOff; /* Iterator used to check all cell offsets are in range */
1219 u8 *pEnd; /* Pointer to end of cell offset array */
1220 u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */
1221 mask = ~(((u8)(pBt->pageSize>>8))-1);
1222 pEnd = &data[cellOffset + pPage->nCell*2];
1223 for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2);
1224 if( pOff!=pEnd ){
1225 return SQLITE_CORRUPT_BKPT;
1226 }
danielk1977e16535f2008-06-11 18:15:29 +00001227 }
drh1688c862008-07-18 02:44:17 +00001228#endif
danielk1977e16535f2008-06-11 18:15:29 +00001229
danielk197771d5d2c2008-09-29 11:49:47 +00001230 pPage->isInit = 1;
1231 }
drh9e572e62004-04-23 23:43:10 +00001232 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001233}
1234
1235/*
drh8b2f49b2001-06-08 00:21:52 +00001236** Set up a raw page so that it looks like a database page holding
1237** no entries.
drhbd03cae2001-06-02 02:40:57 +00001238*/
drh9e572e62004-04-23 23:43:10 +00001239static void zeroPage(MemPage *pPage, int flags){
1240 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001241 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001242 u8 hdr = pPage->hdrOffset;
1243 u16 first;
drh9e572e62004-04-23 23:43:10 +00001244
danielk19773b8a05f2007-03-19 17:44:26 +00001245 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001246 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1247 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001248 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001249 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001250 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001251 data[hdr] = (char)flags;
1252 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001253 memset(&data[hdr+1], 0, 4);
1254 data[hdr+7] = 0;
1255 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001256 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001257 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001258 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001259 pPage->cellOffset = first;
1260 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001261 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1262 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001263 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001264 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001265}
1266
drh897a8202008-09-18 01:08:15 +00001267
1268/*
1269** Convert a DbPage obtained from the pager into a MemPage used by
1270** the btree layer.
1271*/
1272static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1273 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1274 pPage->aData = sqlite3PagerGetData(pDbPage);
1275 pPage->pDbPage = pDbPage;
1276 pPage->pBt = pBt;
1277 pPage->pgno = pgno;
1278 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1279 return pPage;
1280}
1281
drhbd03cae2001-06-02 02:40:57 +00001282/*
drh3aac2dd2004-04-26 14:10:20 +00001283** Get a page from the pager. Initialize the MemPage.pBt and
1284** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001285**
1286** If the noContent flag is set, it means that we do not care about
1287** the content of the page at this time. So do not go to the disk
1288** to fetch the content. Just fill in the content with zeros for now.
1289** If in the future we call sqlite3PagerWrite() on this page, that
1290** means we have started to be concerned about content and the disk
1291** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001292*/
drh16a9b832007-05-05 18:39:25 +00001293int sqlite3BtreeGetPage(
1294 BtShared *pBt, /* The btree */
1295 Pgno pgno, /* Number of the page to fetch */
1296 MemPage **ppPage, /* Return the page in this parameter */
1297 int noContent /* Do not load page content if true */
1298){
drh3aac2dd2004-04-26 14:10:20 +00001299 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001300 DbPage *pDbPage;
1301
drh1fee73e2007-08-29 04:00:57 +00001302 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001303 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001304 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001305 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001306 return SQLITE_OK;
1307}
1308
1309/*
danielk1977bea2a942009-01-20 17:06:27 +00001310** Retrieve a page from the pager cache. If the requested page is not
1311** already in the pager cache return NULL. Initialize the MemPage.pBt and
1312** MemPage.aData elements if needed.
1313*/
1314static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1315 DbPage *pDbPage;
1316 assert( sqlite3_mutex_held(pBt->mutex) );
1317 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1318 if( pDbPage ){
1319 return btreePageFromDbPage(pDbPage, pgno, pBt);
1320 }
1321 return 0;
1322}
1323
1324/*
danielk197789d40042008-11-17 14:20:56 +00001325** Return the size of the database file in pages. If there is any kind of
1326** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001327*/
danielk197789d40042008-11-17 14:20:56 +00001328static Pgno pagerPagecount(BtShared *pBt){
1329 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001330 int rc;
danielk197789d40042008-11-17 14:20:56 +00001331 assert( pBt->pPage1 );
1332 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1333 assert( rc==SQLITE_OK || nPage==-1 );
1334 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001335}
1336
1337/*
drhde647132004-05-07 17:57:49 +00001338** Get a page from the pager and initialize it. This routine
1339** is just a convenience wrapper around separate calls to
drh16a9b832007-05-05 18:39:25 +00001340** sqlite3BtreeGetPage() and sqlite3BtreeInitPage().
drhde647132004-05-07 17:57:49 +00001341*/
1342static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001343 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001344 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001345 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001346){
1347 int rc;
drh897a8202008-09-18 01:08:15 +00001348 MemPage *pPage;
1349
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001351 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001352 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001353 }
danielk19779f580ad2008-09-10 14:45:57 +00001354
drh897a8202008-09-18 01:08:15 +00001355 /* It is often the case that the page we want is already in cache.
1356 ** If so, get it directly. This saves us from having to call
1357 ** pagerPagecount() to make sure pgno is within limits, which results
1358 ** in a measureable performance improvements.
1359 */
danielk1977bea2a942009-01-20 17:06:27 +00001360 *ppPage = pPage = btreePageLookup(pBt, pgno);
1361 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001362 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001363 rc = SQLITE_OK;
1364 }else{
1365 /* Page not in cache. Acquire it. */
danielk197789d40042008-11-17 14:20:56 +00001366 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001367 return SQLITE_CORRUPT_BKPT;
1368 }
1369 rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0);
1370 if( rc ) return rc;
1371 pPage = *ppPage;
1372 }
danielk197771d5d2c2008-09-29 11:49:47 +00001373 if( !pPage->isInit ){
1374 rc = sqlite3BtreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001375 }
1376 if( rc!=SQLITE_OK ){
1377 releasePage(pPage);
1378 *ppPage = 0;
1379 }
drhde647132004-05-07 17:57:49 +00001380 return rc;
1381}
1382
1383/*
drh3aac2dd2004-04-26 14:10:20 +00001384** Release a MemPage. This should be called once for each prior
drh16a9b832007-05-05 18:39:25 +00001385** call to sqlite3BtreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001386*/
drh4b70f112004-05-02 21:12:19 +00001387static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001388 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001389 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001390 assert( pPage->aData );
1391 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001392 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1393 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001394 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001395 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001396 }
1397}
1398
1399/*
drha6abd042004-06-09 17:37:22 +00001400** During a rollback, when the pager reloads information into the cache
1401** so that the cache is restored to its original state at the start of
1402** the transaction, for each page restored this routine is called.
1403**
1404** This routine needs to reset the extra data section at the end of the
1405** page to agree with the restored data.
1406*/
danielk1977eaa06f62008-09-18 17:34:44 +00001407static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001408 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001409 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001410 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001411 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001412 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001413 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001414 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001415 /* pPage might not be a btree page; it might be an overflow page
1416 ** or ptrmap page or a free page. In those cases, the following
1417 ** call to sqlite3BtreeInitPage() will likely return SQLITE_CORRUPT.
1418 ** But no harm is done by this. And it is very important that
1419 ** sqlite3BtreeInitPage() be called on every btree page so we make
1420 ** the call for every page that comes in for re-initing. */
danielk197771d5d2c2008-09-29 11:49:47 +00001421 sqlite3BtreeInitPage(pPage);
1422 }
drha6abd042004-06-09 17:37:22 +00001423 }
1424}
1425
1426/*
drhe5fe6902007-12-07 18:55:28 +00001427** Invoke the busy handler for a btree.
1428*/
danielk19771ceedd32008-11-19 10:22:33 +00001429static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001430 BtShared *pBt = (BtShared*)pArg;
1431 assert( pBt->db );
1432 assert( sqlite3_mutex_held(pBt->db->mutex) );
1433 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1434}
1435
1436/*
drhad3e0102004-09-03 23:32:18 +00001437** Open a database file.
1438**
drh382c0242001-10-06 16:33:02 +00001439** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001440** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001441** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001442** If zFilename is ":memory:" then an in-memory database is created
1443** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001444**
1445** If the database is already opened in the same database connection
1446** and we are in shared cache mode, then the open will fail with an
1447** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1448** objects in the same database connection since doing so will lead
1449** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001450*/
drh23e11ca2004-05-04 17:27:28 +00001451int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001452 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001453 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001454 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001455 int flags, /* Options */
1456 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001457){
drh7555d8e2009-03-20 13:15:30 +00001458 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1459 BtShared *pBt = 0; /* Shared part of btree structure */
1460 Btree *p; /* Handle to return */
1461 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1462 int rc = SQLITE_OK; /* Result code from this function */
1463 u8 nReserve; /* Byte of unused space on each page */
1464 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001465
1466 /* Set the variable isMemdb to true for an in-memory database, or
1467 ** false for a file-based database. This symbol is only required if
1468 ** either of the shared-data or autovacuum features are compiled
1469 ** into the library.
1470 */
1471#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1472 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001473 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001474 #else
drh980b1a72006-08-16 16:42:48 +00001475 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001476 #endif
1477#endif
1478
drhe5fe6902007-12-07 18:55:28 +00001479 assert( db!=0 );
1480 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001481
drhe5fe6902007-12-07 18:55:28 +00001482 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001483 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001484 if( !p ){
1485 return SQLITE_NOMEM;
1486 }
1487 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001488 p->db = db;
danielk1977aef0bf62005-12-30 16:28:01 +00001489
drh198bf392006-01-06 21:52:49 +00001490#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001491 /*
1492 ** If this Btree is a candidate for shared cache, try to find an
1493 ** existing BtShared object that we can share with
1494 */
danielk197720c6cc22009-04-01 18:03:00 +00001495 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001496 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001497 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001498 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001499 sqlite3_mutex *mutexShared;
1500 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001501 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001502 if( !zFullPathname ){
1503 sqlite3_free(p);
1504 return SQLITE_NOMEM;
1505 }
danielk1977adfb9b02007-09-17 07:02:56 +00001506 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001507 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1508 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001509 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001510 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001511 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001512 assert( pBt->nRef>0 );
1513 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1514 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001515 int iDb;
1516 for(iDb=db->nDb-1; iDb>=0; iDb--){
1517 Btree *pExisting = db->aDb[iDb].pBt;
1518 if( pExisting && pExisting->pBt==pBt ){
1519 sqlite3_mutex_leave(mutexShared);
1520 sqlite3_mutex_leave(mutexOpen);
1521 sqlite3_free(zFullPathname);
1522 sqlite3_free(p);
1523 return SQLITE_CONSTRAINT;
1524 }
1525 }
drhff0587c2007-08-29 17:43:19 +00001526 p->pBt = pBt;
1527 pBt->nRef++;
1528 break;
1529 }
1530 }
1531 sqlite3_mutex_leave(mutexShared);
1532 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001533 }
drhff0587c2007-08-29 17:43:19 +00001534#ifdef SQLITE_DEBUG
1535 else{
1536 /* In debug mode, we mark all persistent databases as sharable
1537 ** even when they are not. This exercises the locking code and
1538 ** gives more opportunity for asserts(sqlite3_mutex_held())
1539 ** statements to find locking problems.
1540 */
1541 p->sharable = 1;
1542 }
1543#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001544 }
1545#endif
drha059ad02001-04-17 20:09:11 +00001546 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001547 /*
1548 ** The following asserts make sure that structures used by the btree are
1549 ** the right size. This is to guard against size changes that result
1550 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001551 */
drhe53831d2007-08-17 01:14:38 +00001552 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1553 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1554 assert( sizeof(u32)==4 );
1555 assert( sizeof(u16)==2 );
1556 assert( sizeof(Pgno)==4 );
1557
1558 pBt = sqlite3MallocZero( sizeof(*pBt) );
1559 if( pBt==0 ){
1560 rc = SQLITE_NOMEM;
1561 goto btree_open_out;
1562 }
danielk197771d5d2c2008-09-29 11:49:47 +00001563 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001564 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001565 if( rc==SQLITE_OK ){
1566 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1567 }
1568 if( rc!=SQLITE_OK ){
1569 goto btree_open_out;
1570 }
danielk19772a50ff02009-04-10 09:47:06 +00001571 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001572 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001573 p->pBt = pBt;
1574
drhe53831d2007-08-17 01:14:38 +00001575 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1576 pBt->pCursor = 0;
1577 pBt->pPage1 = 0;
1578 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1579 pBt->pageSize = get2byte(&zDbHeader[16]);
1580 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1581 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001582 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001583#ifndef SQLITE_OMIT_AUTOVACUUM
1584 /* If the magic name ":memory:" will create an in-memory database, then
1585 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1586 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1587 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1588 ** regular file-name. In this case the auto-vacuum applies as per normal.
1589 */
1590 if( zFilename && !isMemdb ){
1591 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1592 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1593 }
1594#endif
1595 nReserve = 0;
1596 }else{
1597 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001598 pBt->pageSizeFixed = 1;
1599#ifndef SQLITE_OMIT_AUTOVACUUM
1600 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1601 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1602#endif
1603 }
drhc0b61812009-04-30 01:22:41 +00001604 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
1605 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001606 pBt->usableSize = pBt->pageSize - nReserve;
1607 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001608
1609#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1610 /* Add the new BtShared object to the linked list sharable BtShareds.
1611 */
1612 if( p->sharable ){
1613 sqlite3_mutex *mutexShared;
1614 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001615 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001616 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001617 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001618 if( pBt->mutex==0 ){
1619 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001620 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001621 goto btree_open_out;
1622 }
drhff0587c2007-08-29 17:43:19 +00001623 }
drhe53831d2007-08-17 01:14:38 +00001624 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001625 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1626 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001627 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001628 }
drheee46cf2004-11-06 00:02:48 +00001629#endif
drh90f5ecb2004-07-22 01:19:35 +00001630 }
danielk1977aef0bf62005-12-30 16:28:01 +00001631
drhcfed7bc2006-03-13 14:28:05 +00001632#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001633 /* If the new Btree uses a sharable pBtShared, then link the new
1634 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001635 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001636 */
drhe53831d2007-08-17 01:14:38 +00001637 if( p->sharable ){
1638 int i;
1639 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001640 for(i=0; i<db->nDb; i++){
1641 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001642 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1643 if( p->pBt<pSib->pBt ){
1644 p->pNext = pSib;
1645 p->pPrev = 0;
1646 pSib->pPrev = p;
1647 }else{
drhabddb0c2007-08-20 13:14:28 +00001648 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001649 pSib = pSib->pNext;
1650 }
1651 p->pNext = pSib->pNext;
1652 p->pPrev = pSib;
1653 if( p->pNext ){
1654 p->pNext->pPrev = p;
1655 }
1656 pSib->pNext = p;
1657 }
1658 break;
1659 }
1660 }
danielk1977aef0bf62005-12-30 16:28:01 +00001661 }
danielk1977aef0bf62005-12-30 16:28:01 +00001662#endif
1663 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001664
1665btree_open_out:
1666 if( rc!=SQLITE_OK ){
1667 if( pBt && pBt->pPager ){
1668 sqlite3PagerClose(pBt->pPager);
1669 }
drh17435752007-08-16 04:30:38 +00001670 sqlite3_free(pBt);
1671 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001672 *ppBtree = 0;
1673 }
drh7555d8e2009-03-20 13:15:30 +00001674 if( mutexOpen ){
1675 assert( sqlite3_mutex_held(mutexOpen) );
1676 sqlite3_mutex_leave(mutexOpen);
1677 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001678 return rc;
drha059ad02001-04-17 20:09:11 +00001679}
1680
1681/*
drhe53831d2007-08-17 01:14:38 +00001682** Decrement the BtShared.nRef counter. When it reaches zero,
1683** remove the BtShared structure from the sharing list. Return
1684** true if the BtShared.nRef counter reaches zero and return
1685** false if it is still positive.
1686*/
1687static int removeFromSharingList(BtShared *pBt){
1688#ifndef SQLITE_OMIT_SHARED_CACHE
1689 sqlite3_mutex *pMaster;
1690 BtShared *pList;
1691 int removed = 0;
1692
drhd677b3d2007-08-20 22:48:41 +00001693 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001694 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001695 sqlite3_mutex_enter(pMaster);
1696 pBt->nRef--;
1697 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001698 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1699 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001700 }else{
drh78f82d12008-09-02 00:52:52 +00001701 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001702 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001703 pList=pList->pNext;
1704 }
drh34004ce2008-07-11 16:15:17 +00001705 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001706 pList->pNext = pBt->pNext;
1707 }
1708 }
drh3285db22007-09-03 22:00:39 +00001709 if( SQLITE_THREADSAFE ){
1710 sqlite3_mutex_free(pBt->mutex);
1711 }
drhe53831d2007-08-17 01:14:38 +00001712 removed = 1;
1713 }
1714 sqlite3_mutex_leave(pMaster);
1715 return removed;
1716#else
1717 return 1;
1718#endif
1719}
1720
1721/*
drhf7141992008-06-19 00:16:08 +00001722** Make sure pBt->pTmpSpace points to an allocation of
1723** MX_CELL_SIZE(pBt) bytes.
1724*/
1725static void allocateTempSpace(BtShared *pBt){
1726 if( !pBt->pTmpSpace ){
1727 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1728 }
1729}
1730
1731/*
1732** Free the pBt->pTmpSpace allocation
1733*/
1734static void freeTempSpace(BtShared *pBt){
1735 sqlite3PageFree( pBt->pTmpSpace);
1736 pBt->pTmpSpace = 0;
1737}
1738
1739/*
drha059ad02001-04-17 20:09:11 +00001740** Close an open database and invalidate all cursors.
1741*/
danielk1977aef0bf62005-12-30 16:28:01 +00001742int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001743 BtShared *pBt = p->pBt;
1744 BtCursor *pCur;
1745
danielk1977aef0bf62005-12-30 16:28:01 +00001746 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001747 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001748 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001749 pCur = pBt->pCursor;
1750 while( pCur ){
1751 BtCursor *pTmp = pCur;
1752 pCur = pCur->pNext;
1753 if( pTmp->pBtree==p ){
1754 sqlite3BtreeCloseCursor(pTmp);
1755 }
drha059ad02001-04-17 20:09:11 +00001756 }
danielk1977aef0bf62005-12-30 16:28:01 +00001757
danielk19778d34dfd2006-01-24 16:37:57 +00001758 /* Rollback any active transaction and free the handle structure.
1759 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1760 ** this handle.
1761 */
danielk1977b597f742006-01-15 11:39:18 +00001762 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001763 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001764
danielk1977aef0bf62005-12-30 16:28:01 +00001765 /* If there are still other outstanding references to the shared-btree
1766 ** structure, return now. The remainder of this procedure cleans
1767 ** up the shared-btree.
1768 */
drhe53831d2007-08-17 01:14:38 +00001769 assert( p->wantToLock==0 && p->locked==0 );
1770 if( !p->sharable || removeFromSharingList(pBt) ){
1771 /* The pBt is no longer on the sharing list, so we can access
1772 ** it without having to hold the mutex.
1773 **
1774 ** Clean out and delete the BtShared object.
1775 */
1776 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001777 sqlite3PagerClose(pBt->pPager);
1778 if( pBt->xFreeSchema && pBt->pSchema ){
1779 pBt->xFreeSchema(pBt->pSchema);
1780 }
1781 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001782 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001783 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001784 }
1785
drhe53831d2007-08-17 01:14:38 +00001786#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001787 assert( p->wantToLock==0 );
1788 assert( p->locked==0 );
1789 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1790 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001791#endif
1792
drhe53831d2007-08-17 01:14:38 +00001793 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001794 return SQLITE_OK;
1795}
1796
1797/*
drhda47d772002-12-02 04:25:19 +00001798** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001799**
1800** The maximum number of cache pages is set to the absolute
1801** value of mxPage. If mxPage is negative, the pager will
1802** operate asynchronously - it will not stop to do fsync()s
1803** to insure data is written to the disk surface before
1804** continuing. Transactions still work if synchronous is off,
1805** and the database cannot be corrupted if this program
1806** crashes. But if the operating system crashes or there is
1807** an abrupt power failure when synchronous is off, the database
1808** could be left in an inconsistent and unrecoverable state.
1809** Synchronous is on by default so database corruption is not
1810** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001811*/
danielk1977aef0bf62005-12-30 16:28:01 +00001812int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
1813 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001814 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001815 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001816 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00001817 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00001818 return SQLITE_OK;
1819}
1820
1821/*
drh973b6e32003-02-12 14:09:42 +00001822** Change the way data is synced to disk in order to increase or decrease
1823** how well the database resists damage due to OS crashes and power
1824** failures. Level 1 is the same as asynchronous (no syncs() occur and
1825** there is a high probability of damage) Level 2 is the default. There
1826** is a very low but non-zero probability of damage. Level 3 reduces the
1827** probability of damage to near zero but with a write performance reduction.
1828*/
danielk197793758c82005-01-21 08:13:14 +00001829#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00001830int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00001831 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00001832 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001833 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00001834 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00001835 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00001836 return SQLITE_OK;
1837}
danielk197793758c82005-01-21 08:13:14 +00001838#endif
drh973b6e32003-02-12 14:09:42 +00001839
drh2c8997b2005-08-27 16:36:48 +00001840/*
1841** Return TRUE if the given btree is set to safety level 1. In other
1842** words, return TRUE if no sync() occurs on the disk files.
1843*/
danielk1977aef0bf62005-12-30 16:28:01 +00001844int sqlite3BtreeSyncDisabled(Btree *p){
1845 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001846 int rc;
drhe5fe6902007-12-07 18:55:28 +00001847 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001848 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00001849 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00001850 rc = sqlite3PagerNosync(pBt->pPager);
1851 sqlite3BtreeLeave(p);
1852 return rc;
drh2c8997b2005-08-27 16:36:48 +00001853}
1854
danielk1977576ec6b2005-01-21 11:55:25 +00001855#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00001856/*
drh90f5ecb2004-07-22 01:19:35 +00001857** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00001858** Or, if the page size has already been fixed, return SQLITE_READONLY
1859** without changing anything.
drh06f50212004-11-02 14:24:33 +00001860**
1861** The page size must be a power of 2 between 512 and 65536. If the page
1862** size supplied does not meet this constraint then the page size is not
1863** changed.
1864**
1865** Page sizes are constrained to be a power of two so that the region
1866** of the database file used for locking (beginning at PENDING_BYTE,
1867** the first byte past the 1GB boundary, 0x40000000) needs to occur
1868** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00001869**
1870** If parameter nReserve is less than zero, then the number of reserved
1871** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00001872**
1873** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
1874** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00001875*/
drhce4869f2009-04-02 20:16:58 +00001876int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00001877 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00001878 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00001879 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00001880 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00001881 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00001882 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00001883 return SQLITE_READONLY;
1884 }
1885 if( nReserve<0 ){
1886 nReserve = pBt->pageSize - pBt->usableSize;
1887 }
drhf49661a2008-12-10 16:45:50 +00001888 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00001889 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
1890 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00001891 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00001892 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00001893 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00001894 freeTempSpace(pBt);
danielk1977a1644fd2007-08-29 12:31:25 +00001895 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
drh90f5ecb2004-07-22 01:19:35 +00001896 }
drhf49661a2008-12-10 16:45:50 +00001897 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00001898 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00001899 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00001900 return rc;
drh90f5ecb2004-07-22 01:19:35 +00001901}
1902
1903/*
1904** Return the currently defined page size
1905*/
danielk1977aef0bf62005-12-30 16:28:01 +00001906int sqlite3BtreeGetPageSize(Btree *p){
1907 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00001908}
drh7f751222009-03-17 22:33:00 +00001909
1910/*
1911** Return the number of bytes of space at the end of every page that
1912** are intentually left unused. This is the "reserved" space that is
1913** sometimes used by extensions.
1914*/
danielk1977aef0bf62005-12-30 16:28:01 +00001915int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00001916 int n;
1917 sqlite3BtreeEnter(p);
1918 n = p->pBt->pageSize - p->pBt->usableSize;
1919 sqlite3BtreeLeave(p);
1920 return n;
drh2011d5f2004-07-22 02:40:37 +00001921}
drhf8e632b2007-05-08 14:51:36 +00001922
1923/*
1924** Set the maximum page count for a database if mxPage is positive.
1925** No changes are made if mxPage is 0 or negative.
1926** Regardless of the value of mxPage, return the maximum page count.
1927*/
1928int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00001929 int n;
1930 sqlite3BtreeEnter(p);
1931 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
1932 sqlite3BtreeLeave(p);
1933 return n;
drhf8e632b2007-05-08 14:51:36 +00001934}
danielk1977576ec6b2005-01-21 11:55:25 +00001935#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00001936
1937/*
danielk1977951af802004-11-05 15:45:09 +00001938** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
1939** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
1940** is disabled. The default value for the auto-vacuum property is
1941** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
1942*/
danielk1977aef0bf62005-12-30 16:28:01 +00001943int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00001944#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00001945 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00001946#else
danielk1977dddbcdc2007-04-26 14:42:34 +00001947 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00001948 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00001949 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00001950
1951 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00001952 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00001953 rc = SQLITE_READONLY;
1954 }else{
drh076d4662009-02-18 20:31:18 +00001955 pBt->autoVacuum = av ?1:0;
1956 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00001957 }
drhd677b3d2007-08-20 22:48:41 +00001958 sqlite3BtreeLeave(p);
1959 return rc;
danielk1977951af802004-11-05 15:45:09 +00001960#endif
1961}
1962
1963/*
1964** Return the value of the 'auto-vacuum' property. If auto-vacuum is
1965** enabled 1 is returned. Otherwise 0.
1966*/
danielk1977aef0bf62005-12-30 16:28:01 +00001967int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00001968#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00001969 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00001970#else
drhd677b3d2007-08-20 22:48:41 +00001971 int rc;
1972 sqlite3BtreeEnter(p);
1973 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00001974 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
1975 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
1976 BTREE_AUTOVACUUM_INCR
1977 );
drhd677b3d2007-08-20 22:48:41 +00001978 sqlite3BtreeLeave(p);
1979 return rc;
danielk1977951af802004-11-05 15:45:09 +00001980#endif
1981}
1982
1983
1984/*
drha34b6762004-05-07 13:30:42 +00001985** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001986** also acquire a readlock on that file.
1987**
1988** SQLITE_OK is returned on success. If the file is not a
1989** well-formed database file, then SQLITE_CORRUPT is returned.
1990** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00001991** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00001992*/
danielk1977aef0bf62005-12-30 16:28:01 +00001993static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00001994 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001995 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00001996 int nPage;
drhd677b3d2007-08-20 22:48:41 +00001997
drh1fee73e2007-08-29 04:00:57 +00001998 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00001999 assert( pBt->pPage1==0 );
drh16a9b832007-05-05 18:39:25 +00002000 rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002001 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002002
2003 /* Do some checking to help insure the file we opened really is
2004 ** a valid database file.
2005 */
danielk1977ad0132d2008-06-07 08:58:22 +00002006 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2007 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002008 goto page1_init_failed;
2009 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002010 int pageSize;
2011 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002012 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002013 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002014 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002015 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002016 }
drh309169a2007-04-24 17:27:51 +00002017 if( page1[18]>1 ){
2018 pBt->readOnly = 1;
2019 }
2020 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002021 goto page1_init_failed;
2022 }
drhe5ae5732008-06-15 02:51:47 +00002023
2024 /* The maximum embedded fraction must be exactly 25%. And the minimum
2025 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2026 ** The original design allowed these amounts to vary, but as of
2027 ** version 3.6.0, we require them to be fixed.
2028 */
2029 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2030 goto page1_init_failed;
2031 }
drh07d183d2005-05-01 22:52:42 +00002032 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002033 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2034 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2035 ){
drh07d183d2005-05-01 22:52:42 +00002036 goto page1_init_failed;
2037 }
2038 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002039 usableSize = pageSize - page1[20];
2040 if( pageSize!=pBt->pageSize ){
2041 /* After reading the first page of the database assuming a page size
2042 ** of BtShared.pageSize, we have discovered that the page-size is
2043 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2044 ** zero and return SQLITE_OK. The caller will call this function
2045 ** again with the correct page-size.
2046 */
2047 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002048 pBt->usableSize = (u16)usableSize;
2049 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002050 freeTempSpace(pBt);
drhc0b61812009-04-30 01:22:41 +00002051 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize);
2052 if( rc ) goto page1_init_failed;
danielk1977f653d782008-03-20 11:04:21 +00002053 return SQLITE_OK;
2054 }
2055 if( usableSize<500 ){
drhb6f41482004-05-14 01:58:11 +00002056 goto page1_init_failed;
2057 }
drh1bd10f82008-12-10 21:19:56 +00002058 pBt->pageSize = (u16)pageSize;
2059 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002060#ifndef SQLITE_OMIT_AUTOVACUUM
2061 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002062 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002063#endif
drh306dc212001-05-21 13:45:10 +00002064 }
drhb6f41482004-05-14 01:58:11 +00002065
2066 /* maxLocal is the maximum amount of payload to store locally for
2067 ** a cell. Make sure it is small enough so that at least minFanout
2068 ** cells can will fit on one page. We assume a 10-byte page header.
2069 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002070 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002071 ** 4-byte child pointer
2072 ** 9-byte nKey value
2073 ** 4-byte nData value
2074 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002075 ** So a cell consists of a 2-byte poiner, a header which is as much as
2076 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2077 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002078 */
drhe5ae5732008-06-15 02:51:47 +00002079 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2080 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002081 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002082 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002083 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002084 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002085 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002086
drh72f82862001-05-24 21:06:34 +00002087page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002088 releasePage(pPage1);
2089 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002090 return rc;
drh306dc212001-05-21 13:45:10 +00002091}
2092
2093/*
drhb8ef32c2005-03-14 02:01:49 +00002094** This routine works like lockBtree() except that it also invokes the
2095** busy callback if there is lock contention.
2096*/
danielk1977aef0bf62005-12-30 16:28:01 +00002097static int lockBtreeWithRetry(Btree *pRef){
drhb8ef32c2005-03-14 02:01:49 +00002098 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00002099
drh1fee73e2007-08-29 04:00:57 +00002100 assert( sqlite3BtreeHoldsMutex(pRef) );
danielk1977aef0bf62005-12-30 16:28:01 +00002101 if( pRef->inTrans==TRANS_NONE ){
2102 u8 inTransaction = pRef->pBt->inTransaction;
2103 btreeIntegrity(pRef);
2104 rc = sqlite3BtreeBeginTrans(pRef, 0);
2105 pRef->pBt->inTransaction = inTransaction;
2106 pRef->inTrans = TRANS_NONE;
2107 if( rc==SQLITE_OK ){
2108 pRef->pBt->nTransaction--;
2109 }
2110 btreeIntegrity(pRef);
drhb8ef32c2005-03-14 02:01:49 +00002111 }
2112 return rc;
2113}
2114
2115
2116/*
drhb8ca3072001-12-05 00:21:20 +00002117** If there are no outstanding cursors and we are not in the middle
2118** of a transaction but there is a read lock on the database, then
2119** this routine unrefs the first page of the database file which
2120** has the effect of releasing the read lock.
2121**
2122** If there are any outstanding cursors, this routine is a no-op.
2123**
2124** If there is a transaction in progress, this routine is a no-op.
2125*/
danielk1977aef0bf62005-12-30 16:28:01 +00002126static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002127 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00002128 if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00002129 if( sqlite3PagerRefcount(pBt->pPager)>=1 ){
drhde4fcfd2008-01-19 23:50:26 +00002130 assert( pBt->pPage1->aData );
drh24c9a2e2007-01-05 02:00:47 +00002131 releasePage(pBt->pPage1);
drh51c6d962004-06-06 00:42:25 +00002132 }
drh3aac2dd2004-04-26 14:10:20 +00002133 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002134 }
2135}
2136
2137/*
drh9e572e62004-04-23 23:43:10 +00002138** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002139** file.
drh8b2f49b2001-06-08 00:21:52 +00002140*/
danielk1977aef0bf62005-12-30 16:28:01 +00002141static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002142 MemPage *pP1;
2143 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002144 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002145 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002146
drh1fee73e2007-08-29 04:00:57 +00002147 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002148 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2149 if( rc!=SQLITE_OK || nPage>0 ){
2150 return rc;
2151 }
drh3aac2dd2004-04-26 14:10:20 +00002152 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002153 assert( pP1!=0 );
2154 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002155 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002156 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002157 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2158 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002159 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002160 data[18] = 1;
2161 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002162 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2163 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002164 data[21] = 64;
2165 data[22] = 32;
2166 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002167 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002168 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002169 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002170#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002171 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002172 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002173 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002174 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002175#endif
drh8b2f49b2001-06-08 00:21:52 +00002176 return SQLITE_OK;
2177}
2178
2179/*
danielk1977ee5741e2004-05-31 10:01:34 +00002180** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002181** is started if the second argument is nonzero, otherwise a read-
2182** transaction. If the second argument is 2 or more and exclusive
2183** transaction is started, meaning that no other process is allowed
2184** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002185** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002186** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002187**
danielk1977ee5741e2004-05-31 10:01:34 +00002188** A write-transaction must be started before attempting any
2189** changes to the database. None of the following routines
2190** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002191**
drh23e11ca2004-05-04 17:27:28 +00002192** sqlite3BtreeCreateTable()
2193** sqlite3BtreeCreateIndex()
2194** sqlite3BtreeClearTable()
2195** sqlite3BtreeDropTable()
2196** sqlite3BtreeInsert()
2197** sqlite3BtreeDelete()
2198** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002199**
drhb8ef32c2005-03-14 02:01:49 +00002200** If an initial attempt to acquire the lock fails because of lock contention
2201** and the database was previously unlocked, then invoke the busy handler
2202** if there is one. But if there was previously a read-lock, do not
2203** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2204** returned when there is already a read-lock in order to avoid a deadlock.
2205**
2206** Suppose there are two processes A and B. A has a read lock and B has
2207** a reserved lock. B tries to promote to exclusive but is blocked because
2208** of A's read lock. A tries to promote to reserved but is blocked by B.
2209** One or the other of the two processes must give way or there can be
2210** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2211** when A already has a read lock, we encourage A to give up and let B
2212** proceed.
drha059ad02001-04-17 20:09:11 +00002213*/
danielk1977aef0bf62005-12-30 16:28:01 +00002214int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002215 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002216 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002217 int rc = SQLITE_OK;
2218
drhd677b3d2007-08-20 22:48:41 +00002219 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002220 btreeIntegrity(p);
2221
danielk1977ee5741e2004-05-31 10:01:34 +00002222 /* If the btree is already in a write-transaction, or it
2223 ** is already in a read-transaction and a read-transaction
2224 ** is requested, this is a no-op.
2225 */
danielk1977aef0bf62005-12-30 16:28:01 +00002226 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002227 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002228 }
drhb8ef32c2005-03-14 02:01:49 +00002229
2230 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002231 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002232 rc = SQLITE_READONLY;
2233 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002234 }
2235
danielk1977404ca072009-03-16 13:19:36 +00002236#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002237 /* If another database handle has already opened a write transaction
2238 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002239 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002240 */
danielk1977404ca072009-03-16 13:19:36 +00002241 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2242 pBlock = pBt->pWriter->db;
2243 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002244 BtLock *pIter;
2245 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2246 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002247 pBlock = pIter->pBtree->db;
2248 break;
danielk1977641b0f42007-12-21 04:47:25 +00002249 }
2250 }
2251 }
danielk1977404ca072009-03-16 13:19:36 +00002252 if( pBlock ){
2253 sqlite3ConnectionBlocked(p->db, pBlock);
2254 rc = SQLITE_LOCKED_SHAREDCACHE;
2255 goto trans_begun;
2256 }
danielk1977641b0f42007-12-21 04:47:25 +00002257#endif
2258
drhb8ef32c2005-03-14 02:01:49 +00002259 do {
danielk1977295dc102009-04-01 19:07:03 +00002260 /* Call lockBtree() until either pBt->pPage1 is populated or
2261 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2262 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2263 ** reading page 1 it discovers that the page-size of the database
2264 ** file is not pBt->pageSize. In this case lockBtree() will update
2265 ** pBt->pageSize to the page-size of the file on disk.
2266 */
2267 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002268
drhb8ef32c2005-03-14 02:01:49 +00002269 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002270 if( pBt->readOnly ){
2271 rc = SQLITE_READONLY;
2272 }else{
danielk1977d8293352009-04-30 09:10:37 +00002273 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002274 if( rc==SQLITE_OK ){
2275 rc = newDatabase(pBt);
2276 }
drhb8ef32c2005-03-14 02:01:49 +00002277 }
2278 }
2279
danielk1977bd434552009-03-18 10:33:00 +00002280 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002281 unlockBtreeIfUnused(pBt);
2282 }
danielk1977aef0bf62005-12-30 16:28:01 +00002283 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002284 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002285
2286 if( rc==SQLITE_OK ){
2287 if( p->inTrans==TRANS_NONE ){
2288 pBt->nTransaction++;
2289 }
2290 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2291 if( p->inTrans>pBt->inTransaction ){
2292 pBt->inTransaction = p->inTrans;
2293 }
danielk1977641b0f42007-12-21 04:47:25 +00002294#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002295 if( wrflag ){
2296 assert( !pBt->pWriter );
2297 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002298 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002299 }
2300#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002301 }
2302
drhd677b3d2007-08-20 22:48:41 +00002303
2304trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002305 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002306 /* This call makes sure that the pager has the correct number of
2307 ** open savepoints. If the second parameter is greater than 0 and
2308 ** the sub-journal is not already open, then it will be opened here.
2309 */
danielk1977fd7f0452008-12-17 17:30:26 +00002310 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2311 }
danielk197712dd5492008-12-18 15:45:07 +00002312
danielk1977aef0bf62005-12-30 16:28:01 +00002313 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002314 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002315 return rc;
drha059ad02001-04-17 20:09:11 +00002316}
2317
danielk1977687566d2004-11-02 12:56:41 +00002318#ifndef SQLITE_OMIT_AUTOVACUUM
2319
2320/*
2321** Set the pointer-map entries for all children of page pPage. Also, if
2322** pPage contains cells that point to overflow pages, set the pointer
2323** map entries for the overflow pages as well.
2324*/
2325static int setChildPtrmaps(MemPage *pPage){
2326 int i; /* Counter variable */
2327 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002328 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002329 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002330 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002331 Pgno pgno = pPage->pgno;
2332
drh1fee73e2007-08-29 04:00:57 +00002333 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197771d5d2c2008-09-29 11:49:47 +00002334 rc = sqlite3BtreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002335 if( rc!=SQLITE_OK ){
2336 goto set_child_ptrmaps_out;
2337 }
danielk1977687566d2004-11-02 12:56:41 +00002338 nCell = pPage->nCell;
2339
2340 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002341 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002342
danielk197726836652005-01-17 01:33:13 +00002343 rc = ptrmapPutOvflPtr(pPage, pCell);
2344 if( rc!=SQLITE_OK ){
2345 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002346 }
danielk197726836652005-01-17 01:33:13 +00002347
danielk1977687566d2004-11-02 12:56:41 +00002348 if( !pPage->leaf ){
2349 Pgno childPgno = get4byte(pCell);
2350 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002351 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002352 }
2353 }
2354
2355 if( !pPage->leaf ){
2356 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2357 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2358 }
2359
2360set_child_ptrmaps_out:
2361 pPage->isInit = isInitOrig;
2362 return rc;
2363}
2364
2365/*
danielk1977fa542f12009-04-02 18:28:08 +00002366** Somewhere on pPage, which is guaranteed to be a btree page, not an overflow
danielk1977687566d2004-11-02 12:56:41 +00002367** page, is a pointer to page iFrom. Modify this pointer so that it points to
2368** iTo. Parameter eType describes the type of pointer to be modified, as
2369** follows:
2370**
2371** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2372** page of pPage.
2373**
2374** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2375** page pointed to by one of the cells on pPage.
2376**
2377** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2378** overflow page in the list.
2379*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002380static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002381 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002382 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002383 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002384 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002385 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002386 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002387 }
danielk1977f78fc082004-11-02 14:40:32 +00002388 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002389 }else{
drhf49661a2008-12-10 16:45:50 +00002390 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002391 int i;
2392 int nCell;
2393
danielk197771d5d2c2008-09-29 11:49:47 +00002394 sqlite3BtreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002395 nCell = pPage->nCell;
2396
danielk1977687566d2004-11-02 12:56:41 +00002397 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002398 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002399 if( eType==PTRMAP_OVERFLOW1 ){
2400 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00002401 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002402 if( info.iOverflow ){
2403 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2404 put4byte(&pCell[info.iOverflow], iTo);
2405 break;
2406 }
2407 }
2408 }else{
2409 if( get4byte(pCell)==iFrom ){
2410 put4byte(pCell, iTo);
2411 break;
2412 }
2413 }
2414 }
2415
2416 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002417 if( eType!=PTRMAP_BTREE ||
2418 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002419 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002420 }
danielk1977687566d2004-11-02 12:56:41 +00002421 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2422 }
2423
2424 pPage->isInit = isInitOrig;
2425 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002426 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002427}
2428
danielk1977003ba062004-11-04 02:57:33 +00002429
danielk19777701e812005-01-10 12:59:51 +00002430/*
2431** Move the open database page pDbPage to location iFreePage in the
2432** database. The pDbPage reference remains valid.
2433*/
danielk1977003ba062004-11-04 02:57:33 +00002434static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002435 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002436 MemPage *pDbPage, /* Open page to move */
2437 u8 eType, /* Pointer map 'type' entry for pDbPage */
2438 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002439 Pgno iFreePage, /* The location to move pDbPage to */
2440 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002441){
2442 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2443 Pgno iDbPage = pDbPage->pgno;
2444 Pager *pPager = pBt->pPager;
2445 int rc;
2446
danielk1977a0bf2652004-11-04 14:30:04 +00002447 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2448 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002449 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002450 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002451
drh85b623f2007-12-13 21:54:09 +00002452 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002453 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2454 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002455 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002456 if( rc!=SQLITE_OK ){
2457 return rc;
2458 }
2459 pDbPage->pgno = iFreePage;
2460
2461 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2462 ** that point to overflow pages. The pointer map entries for all these
2463 ** pages need to be changed.
2464 **
2465 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2466 ** pointer to a subsequent overflow page. If this is the case, then
2467 ** the pointer map needs to be updated for the subsequent overflow page.
2468 */
danielk1977a0bf2652004-11-04 14:30:04 +00002469 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002470 rc = setChildPtrmaps(pDbPage);
2471 if( rc!=SQLITE_OK ){
2472 return rc;
2473 }
2474 }else{
2475 Pgno nextOvfl = get4byte(pDbPage->aData);
2476 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002477 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2478 if( rc!=SQLITE_OK ){
2479 return rc;
2480 }
2481 }
2482 }
2483
2484 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2485 ** that it points at iFreePage. Also fix the pointer map entry for
2486 ** iPtrPage.
2487 */
danielk1977a0bf2652004-11-04 14:30:04 +00002488 if( eType!=PTRMAP_ROOTPAGE ){
drh16a9b832007-05-05 18:39:25 +00002489 rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002490 if( rc!=SQLITE_OK ){
2491 return rc;
2492 }
danielk19773b8a05f2007-03-19 17:44:26 +00002493 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002494 if( rc!=SQLITE_OK ){
2495 releasePage(pPtrPage);
2496 return rc;
2497 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002498 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002499 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002500 if( rc==SQLITE_OK ){
2501 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2502 }
danielk1977003ba062004-11-04 02:57:33 +00002503 }
danielk1977003ba062004-11-04 02:57:33 +00002504 return rc;
2505}
2506
danielk1977dddbcdc2007-04-26 14:42:34 +00002507/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002508static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002509
2510/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002511** Perform a single step of an incremental-vacuum. If successful,
2512** return SQLITE_OK. If there is no work to do (and therefore no
2513** point in calling this function again), return SQLITE_DONE.
2514**
2515** More specificly, this function attempts to re-organize the
2516** database so that the last page of the file currently in use
2517** is no longer in use.
2518**
2519** If the nFin parameter is non-zero, the implementation assumes
2520** that the caller will keep calling incrVacuumStep() until
2521** it returns SQLITE_DONE or an error, and that nFin is the
2522** number of pages the database file will contain after this
2523** process is complete.
2524*/
danielk19773460d192008-12-27 15:23:13 +00002525static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002526 Pgno nFreeList; /* Number of pages still on the free-list */
2527
drh1fee73e2007-08-29 04:00:57 +00002528 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002529 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002530
2531 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2532 int rc;
2533 u8 eType;
2534 Pgno iPtrPage;
2535
2536 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002537 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002538 return SQLITE_DONE;
2539 }
2540
2541 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2542 if( rc!=SQLITE_OK ){
2543 return rc;
2544 }
2545 if( eType==PTRMAP_ROOTPAGE ){
2546 return SQLITE_CORRUPT_BKPT;
2547 }
2548
2549 if( eType==PTRMAP_FREEPAGE ){
2550 if( nFin==0 ){
2551 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002552 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002553 ** truncated to zero after this function returns, so it doesn't
2554 ** matter if it still contains some garbage entries.
2555 */
2556 Pgno iFreePg;
2557 MemPage *pFreePg;
2558 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2559 if( rc!=SQLITE_OK ){
2560 return rc;
2561 }
2562 assert( iFreePg==iLastPg );
2563 releasePage(pFreePg);
2564 }
2565 } else {
2566 Pgno iFreePg; /* Index of free page to move pLastPg to */
2567 MemPage *pLastPg;
2568
drh16a9b832007-05-05 18:39:25 +00002569 rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002570 if( rc!=SQLITE_OK ){
2571 return rc;
2572 }
2573
danielk1977b4626a32007-04-28 15:47:43 +00002574 /* If nFin is zero, this loop runs exactly once and page pLastPg
2575 ** is swapped with the first free page pulled off the free list.
2576 **
2577 ** On the other hand, if nFin is greater than zero, then keep
2578 ** looping until a free-page located within the first nFin pages
2579 ** of the file is found.
2580 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002581 do {
2582 MemPage *pFreePg;
2583 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2584 if( rc!=SQLITE_OK ){
2585 releasePage(pLastPg);
2586 return rc;
2587 }
2588 releasePage(pFreePg);
2589 }while( nFin!=0 && iFreePg>nFin );
2590 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002591
2592 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002593 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002594 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002595 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002596 releasePage(pLastPg);
2597 if( rc!=SQLITE_OK ){
2598 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002599 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002600 }
2601 }
2602
danielk19773460d192008-12-27 15:23:13 +00002603 if( nFin==0 ){
2604 iLastPg--;
2605 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002606 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2607 MemPage *pPg;
2608 int rc = sqlite3BtreeGetPage(pBt, iLastPg, &pPg, 0);
2609 if( rc!=SQLITE_OK ){
2610 return rc;
2611 }
2612 rc = sqlite3PagerWrite(pPg->pDbPage);
2613 releasePage(pPg);
2614 if( rc!=SQLITE_OK ){
2615 return rc;
2616 }
2617 }
danielk19773460d192008-12-27 15:23:13 +00002618 iLastPg--;
2619 }
2620 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002621 }
2622 return SQLITE_OK;
2623}
2624
2625/*
2626** A write-transaction must be opened before calling this function.
2627** It performs a single unit of work towards an incremental vacuum.
2628**
2629** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002630** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002631** SQLITE_OK is returned. Otherwise an SQLite error code.
2632*/
2633int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002634 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002635 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002636
2637 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002638 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2639 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002640 rc = SQLITE_DONE;
2641 }else{
2642 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002643 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002644 }
drhd677b3d2007-08-20 22:48:41 +00002645 sqlite3BtreeLeave(p);
2646 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002647}
2648
2649/*
danielk19773b8a05f2007-03-19 17:44:26 +00002650** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002651** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002652**
2653** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2654** the database file should be truncated to during the commit process.
2655** i.e. the database has been reorganized so that only the first *pnTrunc
2656** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002657*/
danielk19773460d192008-12-27 15:23:13 +00002658static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002659 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002660 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002661 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002662
drh1fee73e2007-08-29 04:00:57 +00002663 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002664 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002665 assert(pBt->autoVacuum);
2666 if( !pBt->incrVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002667 Pgno nFin;
2668 Pgno nFree;
2669 Pgno nPtrmap;
2670 Pgno iFree;
2671 const int pgsz = pBt->pageSize;
2672 Pgno nOrig = pagerPagecount(pBt);
danielk1977687566d2004-11-02 12:56:41 +00002673
danielk1977ef165ce2009-04-06 17:50:03 +00002674 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2675 /* It is not possible to create a database for which the final page
2676 ** is either a pointer-map page or the pending-byte page. If one
2677 ** is encountered, this indicates corruption.
2678 */
danielk19773460d192008-12-27 15:23:13 +00002679 return SQLITE_CORRUPT_BKPT;
2680 }
danielk1977ef165ce2009-04-06 17:50:03 +00002681
danielk19773460d192008-12-27 15:23:13 +00002682 nFree = get4byte(&pBt->pPage1->aData[36]);
2683 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5);
2684 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002685 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002686 nFin--;
2687 }
2688 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2689 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002690 }
drhc5e47ac2009-06-04 00:11:56 +00002691 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002692
danielk19773460d192008-12-27 15:23:13 +00002693 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2694 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002695 }
danielk19773460d192008-12-27 15:23:13 +00002696 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002697 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002698 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2699 put4byte(&pBt->pPage1->aData[32], 0);
2700 put4byte(&pBt->pPage1->aData[36], 0);
2701 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002702 }
2703 if( rc!=SQLITE_OK ){
2704 sqlite3PagerRollback(pPager);
2705 }
danielk1977687566d2004-11-02 12:56:41 +00002706 }
2707
danielk19773b8a05f2007-03-19 17:44:26 +00002708 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002709 return rc;
2710}
danielk1977dddbcdc2007-04-26 14:42:34 +00002711
danielk1977a50d9aa2009-06-08 14:49:45 +00002712#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2713# define setChildPtrmaps(x) SQLITE_OK
2714#endif
danielk1977687566d2004-11-02 12:56:41 +00002715
2716/*
drh80e35f42007-03-30 14:06:34 +00002717** This routine does the first phase of a two-phase commit. This routine
2718** causes a rollback journal to be created (if it does not already exist)
2719** and populated with enough information so that if a power loss occurs
2720** the database can be restored to its original state by playing back
2721** the journal. Then the contents of the journal are flushed out to
2722** the disk. After the journal is safely on oxide, the changes to the
2723** database are written into the database file and flushed to oxide.
2724** At the end of this call, the rollback journal still exists on the
2725** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002726** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002727** commit process.
2728**
2729** This call is a no-op if no write-transaction is currently active on pBt.
2730**
2731** Otherwise, sync the database file for the btree pBt. zMaster points to
2732** the name of a master journal file that should be written into the
2733** individual journal file, or is NULL, indicating no master journal file
2734** (single database transaction).
2735**
2736** When this is called, the master journal should already have been
2737** created, populated with this journal pointer and synced to disk.
2738**
2739** Once this is routine has returned, the only thing required to commit
2740** the write-transaction for this database file is to delete the journal.
2741*/
2742int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2743 int rc = SQLITE_OK;
2744 if( p->inTrans==TRANS_WRITE ){
2745 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002746 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002747#ifndef SQLITE_OMIT_AUTOVACUUM
2748 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002749 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002750 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002751 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002752 return rc;
2753 }
2754 }
2755#endif
drh49b9d332009-01-02 18:10:42 +00002756 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002757 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002758 }
2759 return rc;
2760}
2761
2762/*
drh2aa679f2001-06-25 02:11:07 +00002763** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002764**
drh6e345992007-03-30 11:12:08 +00002765** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002766** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2767** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
2768** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00002769** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00002770** routine has to do is delete or truncate or zero the header in the
2771** the rollback journal (which causes the transaction to commit) and
2772** drop locks.
drh6e345992007-03-30 11:12:08 +00002773**
drh5e00f6c2001-09-13 13:46:56 +00002774** This will release the write lock on the database file. If there
2775** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002776*/
drh80e35f42007-03-30 14:06:34 +00002777int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002778 BtShared *pBt = p->pBt;
2779
drhd677b3d2007-08-20 22:48:41 +00002780 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002781 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002782
2783 /* If the handle has a write-transaction open, commit the shared-btrees
2784 ** transaction and set the shared state to TRANS_READ.
2785 */
2786 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00002787 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002788 assert( pBt->inTransaction==TRANS_WRITE );
2789 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00002790 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00002791 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002792 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002793 return rc;
2794 }
danielk1977aef0bf62005-12-30 16:28:01 +00002795 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00002796 }
danielk1977aef0bf62005-12-30 16:28:01 +00002797
2798 /* If the handle has any kind of transaction open, decrement the transaction
2799 ** count of the shared btree. If the transaction count reaches 0, set
2800 ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below
2801 ** will unlock the pager.
2802 */
2803 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002804 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002805 pBt->nTransaction--;
2806 if( 0==pBt->nTransaction ){
2807 pBt->inTransaction = TRANS_NONE;
2808 }
2809 }
2810
drh51898cf2009-04-19 20:51:06 +00002811 /* Set the current transaction state to TRANS_NONE and unlock
danielk1977aef0bf62005-12-30 16:28:01 +00002812 ** the pager if this call closed the only read or write transaction.
2813 */
danielk1977bea2a942009-01-20 17:06:27 +00002814 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002815 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002816 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002817
2818 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002819 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00002820 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00002821}
2822
drh80e35f42007-03-30 14:06:34 +00002823/*
2824** Do both phases of a commit.
2825*/
2826int sqlite3BtreeCommit(Btree *p){
2827 int rc;
drhd677b3d2007-08-20 22:48:41 +00002828 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002829 rc = sqlite3BtreeCommitPhaseOne(p, 0);
2830 if( rc==SQLITE_OK ){
2831 rc = sqlite3BtreeCommitPhaseTwo(p);
2832 }
drhd677b3d2007-08-20 22:48:41 +00002833 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002834 return rc;
2835}
2836
danielk1977fbcd5852004-06-15 02:44:18 +00002837#ifndef NDEBUG
2838/*
2839** Return the number of write-cursors open on this handle. This is for use
2840** in assert() expressions, so it is only compiled if NDEBUG is not
2841** defined.
drhfb982642007-08-30 01:19:59 +00002842**
2843** For the purposes of this routine, a write-cursor is any cursor that
2844** is capable of writing to the databse. That means the cursor was
2845** originally opened for writing and the cursor has not be disabled
2846** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00002847*/
danielk1977aef0bf62005-12-30 16:28:01 +00002848static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00002849 BtCursor *pCur;
2850 int r = 0;
2851 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00002852 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00002853 }
2854 return r;
2855}
2856#endif
2857
drhc39e0002004-05-07 23:50:57 +00002858/*
drhfb982642007-08-30 01:19:59 +00002859** This routine sets the state to CURSOR_FAULT and the error
2860** code to errCode for every cursor on BtShared that pBtree
2861** references.
2862**
2863** Every cursor is tripped, including cursors that belong
2864** to other database connections that happen to be sharing
2865** the cache with pBtree.
2866**
2867** This routine gets called when a rollback occurs.
2868** All cursors using the same cache must be tripped
2869** to prevent them from trying to use the btree after
2870** the rollback. The rollback may have deleted tables
2871** or moved root pages, so it is not sufficient to
2872** save the state of the cursor. The cursor must be
2873** invalidated.
2874*/
2875void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
2876 BtCursor *p;
2877 sqlite3BtreeEnter(pBtree);
2878 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00002879 int i;
danielk1977be51a652008-10-08 17:58:48 +00002880 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00002881 p->eState = CURSOR_FAULT;
2882 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00002883 for(i=0; i<=p->iPage; i++){
2884 releasePage(p->apPage[i]);
2885 p->apPage[i] = 0;
2886 }
drhfb982642007-08-30 01:19:59 +00002887 }
2888 sqlite3BtreeLeave(pBtree);
2889}
2890
2891/*
drhecdc7532001-09-23 02:35:53 +00002892** Rollback the transaction in progress. All cursors will be
2893** invalided by this operation. Any attempt to use a cursor
2894** that was open at the beginning of this operation will result
2895** in an error.
drh5e00f6c2001-09-13 13:46:56 +00002896**
2897** This will release the write lock on the database file. If there
2898** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00002899*/
danielk1977aef0bf62005-12-30 16:28:01 +00002900int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00002901 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002902 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00002903 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00002904
drhd677b3d2007-08-20 22:48:41 +00002905 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00002906 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00002907#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00002908 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00002909 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00002910 ** trying to save cursor positions. If this is an automatic rollback (as
2911 ** the result of a constraint, malloc() failure or IO error) then
2912 ** the cache may be internally inconsistent (not contain valid trees) so
2913 ** we cannot simply return the error to the caller. Instead, abort
2914 ** all queries that may be using any of the cursors that failed to save.
2915 */
drhfb982642007-08-30 01:19:59 +00002916 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00002917 }
danielk19778d34dfd2006-01-24 16:37:57 +00002918#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002919 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002920
2921 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00002922 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00002923
danielk19778d34dfd2006-01-24 16:37:57 +00002924 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00002925 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00002926 if( rc2!=SQLITE_OK ){
2927 rc = rc2;
2928 }
2929
drh24cd67e2004-05-10 16:18:47 +00002930 /* The rollback may have destroyed the pPage1->aData value. So
drh16a9b832007-05-05 18:39:25 +00002931 ** call sqlite3BtreeGetPage() on page 1 again to make
2932 ** sure pPage1->aData is set correctly. */
2933 if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00002934 releasePage(pPage1);
2935 }
danielk1977fbcd5852004-06-15 02:44:18 +00002936 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002937 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00002938 }
danielk1977aef0bf62005-12-30 16:28:01 +00002939
2940 if( p->inTrans!=TRANS_NONE ){
danielk1977fa542f12009-04-02 18:28:08 +00002941 clearAllSharedCacheTableLocks(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002942 assert( pBt->nTransaction>0 );
2943 pBt->nTransaction--;
2944 if( 0==pBt->nTransaction ){
2945 pBt->inTransaction = TRANS_NONE;
2946 }
2947 }
2948
danielk1977bea2a942009-01-20 17:06:27 +00002949 btreeClearHasContent(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002950 p->inTrans = TRANS_NONE;
drh5e00f6c2001-09-13 13:46:56 +00002951 unlockBtreeIfUnused(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002952
2953 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002954 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00002955 return rc;
2956}
2957
2958/*
danielk1977bd434552009-03-18 10:33:00 +00002959** Start a statement subtransaction. The subtransaction can can be rolled
2960** back independently of the main transaction. You must start a transaction
2961** before starting a subtransaction. The subtransaction is ended automatically
2962** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00002963**
2964** Statement subtransactions are used around individual SQL statements
2965** that are contained within a BEGIN...COMMIT block. If a constraint
2966** error occurs within the statement, the effect of that one statement
2967** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00002968**
2969** A statement sub-transaction is implemented as an anonymous savepoint. The
2970** value passed as the second parameter is the total number of savepoints,
2971** including the new anonymous savepoint, open on the B-Tree. i.e. if there
2972** are no active savepoints and no other statement-transactions open,
2973** iStatement is 1. This anonymous savepoint can be released or rolled back
2974** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00002975*/
danielk1977bd434552009-03-18 10:33:00 +00002976int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00002977 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00002978 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002979 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00002980 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002981 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00002982 assert( iStatement>0 );
2983 assert( iStatement>p->db->nSavepoint );
2984 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00002985 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00002986 }else{
2987 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00002988 /* At the pager level, a statement transaction is a savepoint with
2989 ** an index greater than all savepoints created explicitly using
2990 ** SQL statements. It is illegal to open, release or rollback any
2991 ** such savepoints while the statement transaction savepoint is active.
2992 */
danielk1977bd434552009-03-18 10:33:00 +00002993 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00002994 }
drhd677b3d2007-08-20 22:48:41 +00002995 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00002996 return rc;
2997}
2998
2999/*
danielk1977fd7f0452008-12-17 17:30:26 +00003000** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3001** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003002** savepoint identified by parameter iSavepoint, depending on the value
3003** of op.
3004**
3005** Normally, iSavepoint is greater than or equal to zero. However, if op is
3006** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3007** contents of the entire transaction are rolled back. This is different
3008** from a normal transaction rollback, as no locks are released and the
3009** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003010*/
3011int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3012 int rc = SQLITE_OK;
3013 if( p && p->inTrans==TRANS_WRITE ){
3014 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003015 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3016 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3017 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003018 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003019 if( rc==SQLITE_OK ){
3020 rc = newDatabase(pBt);
3021 }
danielk1977fd7f0452008-12-17 17:30:26 +00003022 sqlite3BtreeLeave(p);
3023 }
3024 return rc;
3025}
3026
3027/*
drh8b2f49b2001-06-08 00:21:52 +00003028** Create a new cursor for the BTree whose root is on the page
3029** iTable. The act of acquiring a cursor gets a read lock on
3030** the database file.
drh1bee3d72001-10-15 00:44:35 +00003031**
3032** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003033** If wrFlag==1, then the cursor can be used for reading or for
3034** writing if other conditions for writing are also met. These
3035** are the conditions that must be met in order for writing to
3036** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003037**
drhf74b8d92002-09-01 23:20:45 +00003038** 1: The cursor must have been opened with wrFlag==1
3039**
drhfe5d71d2007-03-19 11:54:10 +00003040** 2: Other database connections that share the same pager cache
3041** but which are not in the READ_UNCOMMITTED state may not have
3042** cursors open with wrFlag==0 on the same table. Otherwise
3043** the changes made by this write cursor would be visible to
3044** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003045**
3046** 3: The database must be writable (not on read-only media)
3047**
3048** 4: There must be an active transaction.
3049**
drh6446c4d2001-12-15 14:22:18 +00003050** No checking is done to make sure that page iTable really is the
3051** root page of a b-tree. If it is not, then the cursor acquired
3052** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003053**
3054** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3055** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003056*/
drhd677b3d2007-08-20 22:48:41 +00003057static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003058 Btree *p, /* The btree */
3059 int iTable, /* Root page of table to open */
3060 int wrFlag, /* 1 to write. 0 read-only */
3061 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3062 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003063){
drha059ad02001-04-17 20:09:11 +00003064 int rc;
danielk197789d40042008-11-17 14:20:56 +00003065 Pgno nPage;
danielk1977aef0bf62005-12-30 16:28:01 +00003066 BtShared *pBt = p->pBt;
drhecdc7532001-09-23 02:35:53 +00003067
drh1fee73e2007-08-29 04:00:57 +00003068 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003069 assert( wrFlag==0 || wrFlag==1 );
drh8dcd7ca2004-08-08 19:43:29 +00003070 if( wrFlag ){
drh64022502009-01-09 14:11:04 +00003071 assert( !pBt->readOnly );
3072 if( NEVER(pBt->readOnly) ){
drh8dcd7ca2004-08-08 19:43:29 +00003073 return SQLITE_READONLY;
3074 }
danielk1977404ca072009-03-16 13:19:36 +00003075 rc = checkForReadConflicts(p, iTable, 0, 0);
3076 if( rc!=SQLITE_OK ){
3077 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
3078 return rc;
drh8dcd7ca2004-08-08 19:43:29 +00003079 }
drha0c9a112004-03-10 13:42:37 +00003080 }
danielk1977aef0bf62005-12-30 16:28:01 +00003081
drh4b70f112004-05-02 21:12:19 +00003082 if( pBt->pPage1==0 ){
danielk1977aef0bf62005-12-30 16:28:01 +00003083 rc = lockBtreeWithRetry(p);
drha059ad02001-04-17 20:09:11 +00003084 if( rc!=SQLITE_OK ){
drha059ad02001-04-17 20:09:11 +00003085 return rc;
3086 }
3087 }
drh8b2f49b2001-06-08 00:21:52 +00003088 pCur->pgnoRoot = (Pgno)iTable;
danielk197789d40042008-11-17 14:20:56 +00003089 rc = sqlite3PagerPagecount(pBt->pPager, (int *)&nPage);
3090 if( rc!=SQLITE_OK ){
3091 return rc;
3092 }
3093 if( iTable==1 && nPage==0 ){
drh24cd67e2004-05-10 16:18:47 +00003094 rc = SQLITE_EMPTY;
3095 goto create_cursor_exception;
3096 }
danielk197771d5d2c2008-09-29 11:49:47 +00003097 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
drhbd03cae2001-06-02 02:40:57 +00003098 if( rc!=SQLITE_OK ){
3099 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00003100 }
danielk1977aef0bf62005-12-30 16:28:01 +00003101
danielk1977aef0bf62005-12-30 16:28:01 +00003102 /* Now that no other errors can occur, finish filling in the BtCursor
3103 ** variables, link the cursor into the BtShared list and set *ppCur (the
3104 ** output argument to this function).
3105 */
drh1e968a02008-03-25 00:22:21 +00003106 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003107 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003108 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003109 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003110 pCur->pNext = pBt->pCursor;
3111 if( pCur->pNext ){
3112 pCur->pNext->pPrev = pCur;
3113 }
3114 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003115 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003116 pCur->cachedRowid = 0;
drhbd03cae2001-06-02 02:40:57 +00003117
danielk1977aef0bf62005-12-30 16:28:01 +00003118 return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003119
drhbd03cae2001-06-02 02:40:57 +00003120create_cursor_exception:
danielk197771d5d2c2008-09-29 11:49:47 +00003121 releasePage(pCur->apPage[0]);
drh5e00f6c2001-09-13 13:46:56 +00003122 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00003123 return rc;
drha059ad02001-04-17 20:09:11 +00003124}
drhd677b3d2007-08-20 22:48:41 +00003125int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003126 Btree *p, /* The btree */
3127 int iTable, /* Root page of table to open */
3128 int wrFlag, /* 1 to write. 0 read-only */
3129 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3130 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003131){
3132 int rc;
3133 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003134 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003135 sqlite3BtreeLeave(p);
3136 return rc;
3137}
drh7f751222009-03-17 22:33:00 +00003138
3139/*
3140** Return the size of a BtCursor object in bytes.
3141**
3142** This interfaces is needed so that users of cursors can preallocate
3143** sufficient storage to hold a cursor. The BtCursor object is opaque
3144** to users so they cannot do the sizeof() themselves - they must call
3145** this routine.
3146*/
3147int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003148 return sizeof(BtCursor);
3149}
3150
drh7f751222009-03-17 22:33:00 +00003151/*
3152** Set the cached rowid value of every cursor in the same database file
3153** as pCur and having the same root page number as pCur. The value is
3154** set to iRowid.
3155**
3156** Only positive rowid values are considered valid for this cache.
3157** The cache is initialized to zero, indicating an invalid cache.
3158** A btree will work fine with zero or negative rowids. We just cannot
3159** cache zero or negative rowids, which means tables that use zero or
3160** negative rowids might run a little slower. But in practice, zero
3161** or negative rowids are very uncommon so this should not be a problem.
3162*/
3163void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3164 BtCursor *p;
3165 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3166 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3167 }
3168 assert( pCur->cachedRowid==iRowid );
3169}
drhd677b3d2007-08-20 22:48:41 +00003170
drh7f751222009-03-17 22:33:00 +00003171/*
3172** Return the cached rowid for the given cursor. A negative or zero
3173** return value indicates that the rowid cache is invalid and should be
3174** ignored. If the rowid cache has never before been set, then a
3175** zero is returned.
3176*/
3177sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3178 return pCur->cachedRowid;
3179}
drha059ad02001-04-17 20:09:11 +00003180
3181/*
drh5e00f6c2001-09-13 13:46:56 +00003182** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003183** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003184*/
drh3aac2dd2004-04-26 14:10:20 +00003185int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003186 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003187 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003188 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003189 BtShared *pBt = pCur->pBt;
3190 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003191 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003192 if( pCur->pPrev ){
3193 pCur->pPrev->pNext = pCur->pNext;
3194 }else{
3195 pBt->pCursor = pCur->pNext;
3196 }
3197 if( pCur->pNext ){
3198 pCur->pNext->pPrev = pCur->pPrev;
3199 }
danielk197771d5d2c2008-09-29 11:49:47 +00003200 for(i=0; i<=pCur->iPage; i++){
3201 releasePage(pCur->apPage[i]);
3202 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003203 unlockBtreeIfUnused(pBt);
3204 invalidateOverflowCache(pCur);
3205 /* sqlite3_free(pCur); */
3206 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003207 }
drh8c42ca92001-06-22 19:15:00 +00003208 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003209}
3210
drh7e3b0a02001-04-28 16:52:40 +00003211/*
drh5e2f8b92001-05-28 00:41:15 +00003212** Make a temporary cursor by filling in the fields of pTempCur.
3213** The temporary cursor is not on the cursor list for the Btree.
3214*/
drh16a9b832007-05-05 18:39:25 +00003215void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003216 int i;
drh1fee73e2007-08-29 04:00:57 +00003217 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003218 memcpy(pTempCur, pCur, sizeof(BtCursor));
drh5e2f8b92001-05-28 00:41:15 +00003219 pTempCur->pNext = 0;
3220 pTempCur->pPrev = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003221 for(i=0; i<=pTempCur->iPage; i++){
3222 sqlite3PagerRef(pTempCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003223 }
danielk197736e20932008-11-26 07:40:30 +00003224 assert( pTempCur->pKey==0 );
drh5e2f8b92001-05-28 00:41:15 +00003225}
3226
3227/*
drhbd03cae2001-06-02 02:40:57 +00003228** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00003229** function above.
3230*/
drh16a9b832007-05-05 18:39:25 +00003231void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00003232 int i;
drh1fee73e2007-08-29 04:00:57 +00003233 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003234 for(i=0; i<=pCur->iPage; i++){
3235 sqlite3PagerUnref(pCur->apPage[i]->pDbPage);
drhecdc7532001-09-23 02:35:53 +00003236 }
danielk197736e20932008-11-26 07:40:30 +00003237 sqlite3_free(pCur->pKey);
drh5e2f8b92001-05-28 00:41:15 +00003238}
3239
drh7f751222009-03-17 22:33:00 +00003240
3241
drh5e2f8b92001-05-28 00:41:15 +00003242/*
drh86057612007-06-26 01:04:48 +00003243** Make sure the BtCursor* given in the argument has a valid
3244** BtCursor.info structure. If it is not already valid, call
danielk19771cc5ed82007-05-16 17:28:43 +00003245** sqlite3BtreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003246**
3247** BtCursor.info is a cache of the information in the current cell.
drh16a9b832007-05-05 18:39:25 +00003248** Using this cache reduces the number of calls to sqlite3BtreeParseCell().
drh86057612007-06-26 01:04:48 +00003249**
3250** 2007-06-25: There is a bug in some versions of MSVC that cause the
3251** compiler to crash when getCellInfo() is implemented as a macro.
3252** But there is a measureable speed advantage to using the macro on gcc
3253** (when less compiler optimizations like -Os or -O0 are used and the
3254** compiler is not doing agressive inlining.) So we use a real function
3255** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003256*/
drh9188b382004-05-14 21:12:22 +00003257#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003258 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003259 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003260 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003261 memset(&info, 0, sizeof(info));
danielk197771d5d2c2008-09-29 11:49:47 +00003262 sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003263 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003264 }
danielk19771cc5ed82007-05-16 17:28:43 +00003265#else
3266 #define assertCellInfo(x)
3267#endif
drh86057612007-06-26 01:04:48 +00003268#ifdef _MSC_VER
3269 /* Use a real function in MSVC to work around bugs in that compiler. */
3270 static void getCellInfo(BtCursor *pCur){
3271 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003272 int iPage = pCur->iPage;
3273 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003274 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003275 }else{
3276 assertCellInfo(pCur);
3277 }
3278 }
3279#else /* if not _MSC_VER */
3280 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003281#define getCellInfo(pCur) \
3282 if( pCur->info.nSize==0 ){ \
3283 int iPage = pCur->iPage; \
3284 sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3285 pCur->validNKey = 1; \
3286 }else{ \
3287 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003288 }
3289#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003290
3291/*
drh3aac2dd2004-04-26 14:10:20 +00003292** Set *pSize to the size of the buffer needed to hold the value of
3293** the key for the current entry. If the cursor is not pointing
3294** to a valid entry, *pSize is set to 0.
3295**
drh4b70f112004-05-02 21:12:19 +00003296** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003297** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003298*/
drh4a1c3802004-05-12 15:15:47 +00003299int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003300 int rc;
3301
drh1fee73e2007-08-29 04:00:57 +00003302 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003303 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003304 if( rc==SQLITE_OK ){
3305 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3306 if( pCur->eState==CURSOR_INVALID ){
3307 *pSize = 0;
3308 }else{
drh86057612007-06-26 01:04:48 +00003309 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003310 *pSize = pCur->info.nKey;
3311 }
drh72f82862001-05-24 21:06:34 +00003312 }
danielk1977da184232006-01-05 11:34:32 +00003313 return rc;
drha059ad02001-04-17 20:09:11 +00003314}
drh2af926b2001-05-15 00:39:25 +00003315
drh72f82862001-05-24 21:06:34 +00003316/*
drh0e1c19e2004-05-11 00:58:56 +00003317** Set *pSize to the number of bytes of data in the entry the
3318** cursor currently points to. Always return SQLITE_OK.
3319** Failure is not possible. If the cursor is not currently
3320** pointing to an entry (which can happen, for example, if
3321** the database is empty) then *pSize is set to 0.
3322*/
3323int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003324 int rc;
3325
drh1fee73e2007-08-29 04:00:57 +00003326 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003327 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003328 if( rc==SQLITE_OK ){
3329 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3330 if( pCur->eState==CURSOR_INVALID ){
3331 /* Not pointing at a valid entry - set *pSize to 0. */
3332 *pSize = 0;
3333 }else{
drh86057612007-06-26 01:04:48 +00003334 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003335 *pSize = pCur->info.nData;
3336 }
drh0e1c19e2004-05-11 00:58:56 +00003337 }
danielk1977da184232006-01-05 11:34:32 +00003338 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003339}
3340
3341/*
danielk1977d04417962007-05-02 13:16:30 +00003342** Given the page number of an overflow page in the database (parameter
3343** ovfl), this function finds the page number of the next page in the
3344** linked list of overflow pages. If possible, it uses the auto-vacuum
3345** pointer-map data instead of reading the content of page ovfl to do so.
3346**
3347** If an error occurs an SQLite error code is returned. Otherwise:
3348**
danielk1977bea2a942009-01-20 17:06:27 +00003349** The page number of the next overflow page in the linked list is
3350** written to *pPgnoNext. If page ovfl is the last page in its linked
3351** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003352**
danielk1977bea2a942009-01-20 17:06:27 +00003353** If ppPage is not NULL, and a reference to the MemPage object corresponding
3354** to page number pOvfl was obtained, then *ppPage is set to point to that
3355** reference. It is the responsibility of the caller to call releasePage()
3356** on *ppPage to free the reference. In no reference was obtained (because
3357** the pointer-map was used to obtain the value for *pPgnoNext), then
3358** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003359*/
3360static int getOverflowPage(
3361 BtShared *pBt,
3362 Pgno ovfl, /* Overflow page */
danielk1977bea2a942009-01-20 17:06:27 +00003363 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003364 Pgno *pPgnoNext /* OUT: Next overflow page number */
3365){
3366 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003367 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003368 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003369
drh1fee73e2007-08-29 04:00:57 +00003370 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003371 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003372
3373#ifndef SQLITE_OMIT_AUTOVACUUM
3374 /* Try to find the next page in the overflow list using the
3375 ** autovacuum pointer-map pages. Guess that the next page in
3376 ** the overflow list is page number (ovfl+1). If that guess turns
3377 ** out to be wrong, fall back to loading the data of page
3378 ** number ovfl to determine the next page number.
3379 */
3380 if( pBt->autoVacuum ){
3381 Pgno pgno;
3382 Pgno iGuess = ovfl+1;
3383 u8 eType;
3384
3385 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3386 iGuess++;
3387 }
3388
danielk197789d40042008-11-17 14:20:56 +00003389 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003390 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003391 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003392 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003393 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003394 }
3395 }
3396 }
3397#endif
3398
danielk1977bea2a942009-01-20 17:06:27 +00003399 if( rc==SQLITE_OK ){
3400 rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d04417962007-05-02 13:16:30 +00003401 assert(rc==SQLITE_OK || pPage==0);
3402 if( next==0 && rc==SQLITE_OK ){
3403 next = get4byte(pPage->aData);
3404 }
danielk1977443c0592009-01-16 15:21:05 +00003405 }
danielk197745d68822009-01-16 16:23:38 +00003406
danielk1977bea2a942009-01-20 17:06:27 +00003407 *pPgnoNext = next;
3408 if( ppPage ){
3409 *ppPage = pPage;
3410 }else{
3411 releasePage(pPage);
3412 }
3413 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003414}
3415
danielk1977da107192007-05-04 08:32:13 +00003416/*
3417** Copy data from a buffer to a page, or from a page to a buffer.
3418**
3419** pPayload is a pointer to data stored on database page pDbPage.
3420** If argument eOp is false, then nByte bytes of data are copied
3421** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3422** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3423** of data are copied from the buffer pBuf to pPayload.
3424**
3425** SQLITE_OK is returned on success, otherwise an error code.
3426*/
3427static int copyPayload(
3428 void *pPayload, /* Pointer to page data */
3429 void *pBuf, /* Pointer to buffer */
3430 int nByte, /* Number of bytes to copy */
3431 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3432 DbPage *pDbPage /* Page containing pPayload */
3433){
3434 if( eOp ){
3435 /* Copy data from buffer to page (a write operation) */
3436 int rc = sqlite3PagerWrite(pDbPage);
3437 if( rc!=SQLITE_OK ){
3438 return rc;
3439 }
3440 memcpy(pPayload, pBuf, nByte);
3441 }else{
3442 /* Copy data from page to buffer (a read operation) */
3443 memcpy(pBuf, pPayload, nByte);
3444 }
3445 return SQLITE_OK;
3446}
danielk1977d04417962007-05-02 13:16:30 +00003447
3448/*
danielk19779f8d6402007-05-02 17:48:45 +00003449** This function is used to read or overwrite payload information
3450** for the entry that the pCur cursor is pointing to. If the eOp
3451** parameter is 0, this is a read operation (data copied into
3452** buffer pBuf). If it is non-zero, a write (data copied from
3453** buffer pBuf).
3454**
3455** A total of "amt" bytes are read or written beginning at "offset".
3456** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003457**
3458** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003459** It just reads or writes bytes from the payload area. Data might
3460** appear on the main page or be scattered out on multiple overflow
3461** pages.
danielk1977da107192007-05-04 08:32:13 +00003462**
danielk1977dcbb5d32007-05-04 18:36:44 +00003463** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003464** cursor entry uses one or more overflow pages, this function
3465** allocates space for and lazily popluates the overflow page-list
3466** cache array (BtCursor.aOverflow). Subsequent calls use this
3467** cache to make seeking to the supplied offset more efficient.
3468**
3469** Once an overflow page-list cache has been allocated, it may be
3470** invalidated if some other cursor writes to the same table, or if
3471** the cursor is moved to a different row. Additionally, in auto-vacuum
3472** mode, the following events may invalidate an overflow page-list cache.
3473**
3474** * An incremental vacuum,
3475** * A commit in auto_vacuum="full" mode,
3476** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003477*/
danielk19779f8d6402007-05-02 17:48:45 +00003478static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003479 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003480 u32 offset, /* Begin reading this far into payload */
3481 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003482 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003483 int skipKey, /* offset begins at data if this is true */
3484 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003485){
3486 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003487 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003488 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003489 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003490 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003491 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003492
danielk1977da107192007-05-04 08:32:13 +00003493 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003494 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003495 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003496 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003497
drh86057612007-06-26 01:04:48 +00003498 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003499 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003500 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003501
drh3aac2dd2004-04-26 14:10:20 +00003502 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003503 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003504 }
danielk19770d065412008-11-12 18:21:36 +00003505 if( offset+amt > nKey+pCur->info.nData
3506 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3507 ){
danielk1977da107192007-05-04 08:32:13 +00003508 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003509 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003510 }
danielk1977da107192007-05-04 08:32:13 +00003511
3512 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003513 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003514 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003515 if( a+offset>pCur->info.nLocal ){
3516 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003517 }
danielk1977da107192007-05-04 08:32:13 +00003518 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003519 offset = 0;
drha34b6762004-05-07 13:30:42 +00003520 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003521 amt -= a;
drhdd793422001-06-28 01:54:48 +00003522 }else{
drhfa1a98a2004-05-14 19:08:17 +00003523 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003524 }
danielk1977da107192007-05-04 08:32:13 +00003525
3526 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003527 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003528 Pgno nextPage;
3529
drhfa1a98a2004-05-14 19:08:17 +00003530 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003531
danielk19772dec9702007-05-02 16:48:37 +00003532#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003533 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003534 ** has not been allocated, allocate it now. The array is sized at
3535 ** one entry for each overflow page in the overflow chain. The
3536 ** page number of the first overflow page is stored in aOverflow[0],
3537 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3538 ** (the cache is lazily populated).
3539 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003540 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003541 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003542 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003543 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003544 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003545 }
3546 }
danielk1977da107192007-05-04 08:32:13 +00003547
3548 /* If the overflow page-list cache has been allocated and the
3549 ** entry for the first required overflow page is valid, skip
3550 ** directly to it.
3551 */
danielk19772dec9702007-05-02 16:48:37 +00003552 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3553 iIdx = (offset/ovflSize);
3554 nextPage = pCur->aOverflow[iIdx];
3555 offset = (offset%ovflSize);
3556 }
3557#endif
danielk1977da107192007-05-04 08:32:13 +00003558
3559 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3560
3561#ifndef SQLITE_OMIT_INCRBLOB
3562 /* If required, populate the overflow page-list cache. */
3563 if( pCur->aOverflow ){
3564 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3565 pCur->aOverflow[iIdx] = nextPage;
3566 }
3567#endif
3568
danielk1977d04417962007-05-02 13:16:30 +00003569 if( offset>=ovflSize ){
3570 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003571 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003572 ** data is not required. So first try to lookup the overflow
3573 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003574 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003575 */
danielk19772dec9702007-05-02 16:48:37 +00003576#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003577 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3578 nextPage = pCur->aOverflow[iIdx+1];
3579 } else
danielk19772dec9702007-05-02 16:48:37 +00003580#endif
danielk1977da107192007-05-04 08:32:13 +00003581 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003582 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003583 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003584 /* Need to read this page properly. It contains some of the
3585 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003586 */
3587 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003588 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003589 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003590 if( rc==SQLITE_OK ){
3591 aPayload = sqlite3PagerGetData(pDbPage);
3592 nextPage = get4byte(aPayload);
3593 if( a + offset > ovflSize ){
3594 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003595 }
danielk1977da107192007-05-04 08:32:13 +00003596 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3597 sqlite3PagerUnref(pDbPage);
3598 offset = 0;
3599 amt -= a;
3600 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003601 }
danielk1977cfe9a692004-06-16 12:00:29 +00003602 }
drh2af926b2001-05-15 00:39:25 +00003603 }
drh2af926b2001-05-15 00:39:25 +00003604 }
danielk1977cfe9a692004-06-16 12:00:29 +00003605
danielk1977da107192007-05-04 08:32:13 +00003606 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003607 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003608 }
danielk1977da107192007-05-04 08:32:13 +00003609 return rc;
drh2af926b2001-05-15 00:39:25 +00003610}
3611
drh72f82862001-05-24 21:06:34 +00003612/*
drh3aac2dd2004-04-26 14:10:20 +00003613** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003614** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003615** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003616**
drh3aac2dd2004-04-26 14:10:20 +00003617** Return SQLITE_OK on success or an error code if anything goes
3618** wrong. An error is returned if "offset+amt" is larger than
3619** the available payload.
drh72f82862001-05-24 21:06:34 +00003620*/
drha34b6762004-05-07 13:30:42 +00003621int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003622 int rc;
3623
drh1fee73e2007-08-29 04:00:57 +00003624 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003625 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003626 if( rc==SQLITE_OK ){
3627 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003628 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3629 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003630 return SQLITE_CORRUPT_BKPT;
3631 }
danielk197771d5d2c2008-09-29 11:49:47 +00003632 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003633 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003634 }
danielk1977da184232006-01-05 11:34:32 +00003635 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003636}
3637
3638/*
drh3aac2dd2004-04-26 14:10:20 +00003639** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003640** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003641** begins at "offset".
3642**
3643** Return SQLITE_OK on success or an error code if anything goes
3644** wrong. An error is returned if "offset+amt" is larger than
3645** the available payload.
drh72f82862001-05-24 21:06:34 +00003646*/
drh3aac2dd2004-04-26 14:10:20 +00003647int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003648 int rc;
3649
danielk19773588ceb2008-06-10 17:30:26 +00003650#ifndef SQLITE_OMIT_INCRBLOB
3651 if ( pCur->eState==CURSOR_INVALID ){
3652 return SQLITE_ABORT;
3653 }
3654#endif
3655
drh1fee73e2007-08-29 04:00:57 +00003656 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003657 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003658 if( rc==SQLITE_OK ){
3659 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003660 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3661 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003662 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003663 }
3664 return rc;
drh2af926b2001-05-15 00:39:25 +00003665}
3666
drh72f82862001-05-24 21:06:34 +00003667/*
drh0e1c19e2004-05-11 00:58:56 +00003668** Return a pointer to payload information from the entry that the
3669** pCur cursor is pointing to. The pointer is to the beginning of
3670** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003671** skipKey==1. The number of bytes of available key/data is written
3672** into *pAmt. If *pAmt==0, then the value returned will not be
3673** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003674**
3675** This routine is an optimization. It is common for the entire key
3676** and data to fit on the local page and for there to be no overflow
3677** pages. When that is so, this routine can be used to access the
3678** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003679** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003680** the key/data and copy it into a preallocated buffer.
3681**
3682** The pointer returned by this routine looks directly into the cached
3683** page of the database. The data might change or move the next time
3684** any btree routine is called.
3685*/
3686static const unsigned char *fetchPayload(
3687 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003688 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003689 int skipKey /* read beginning at data if this is true */
3690){
3691 unsigned char *aPayload;
3692 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003693 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003694 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003695
danielk197771d5d2c2008-09-29 11:49:47 +00003696 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003697 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003698 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003699 pPage = pCur->apPage[pCur->iPage];
3700 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003701 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003702 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003703 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003704 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003705 nKey = 0;
3706 }else{
drhf49661a2008-12-10 16:45:50 +00003707 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003708 }
drh0e1c19e2004-05-11 00:58:56 +00003709 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003710 aPayload += nKey;
3711 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003712 }else{
drhfa1a98a2004-05-14 19:08:17 +00003713 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003714 if( nLocal>nKey ){
3715 nLocal = nKey;
3716 }
drh0e1c19e2004-05-11 00:58:56 +00003717 }
drhe51c44f2004-05-30 20:46:09 +00003718 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003719 return aPayload;
3720}
3721
3722
3723/*
drhe51c44f2004-05-30 20:46:09 +00003724** For the entry that cursor pCur is point to, return as
3725** many bytes of the key or data as are available on the local
3726** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003727**
3728** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003729** or be destroyed on the next call to any Btree routine,
3730** including calls from other threads against the same cache.
3731** Hence, a mutex on the BtShared should be held prior to calling
3732** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003733**
3734** These routines is used to get quick access to key and data
3735** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003736*/
drhe51c44f2004-05-30 20:46:09 +00003737const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003738 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003739 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003740 if( pCur->eState==CURSOR_VALID ){
3741 return (const void*)fetchPayload(pCur, pAmt, 0);
3742 }
3743 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003744}
drhe51c44f2004-05-30 20:46:09 +00003745const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003746 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003747 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003748 if( pCur->eState==CURSOR_VALID ){
3749 return (const void*)fetchPayload(pCur, pAmt, 1);
3750 }
3751 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003752}
3753
3754
3755/*
drh8178a752003-01-05 21:41:40 +00003756** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003757** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003758*/
drh3aac2dd2004-04-26 14:10:20 +00003759static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003760 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003761 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003762 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003763 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003764
drh1fee73e2007-08-29 04:00:57 +00003765 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003766 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003767 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3768 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3769 return SQLITE_CORRUPT_BKPT;
3770 }
3771 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003772 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003773 pCur->apPage[i+1] = pNewPage;
3774 pCur->aiIdx[i+1] = 0;
3775 pCur->iPage++;
3776
drh271efa52004-05-30 19:19:05 +00003777 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003778 pCur->validNKey = 0;
drh4be295b2003-12-16 03:44:47 +00003779 if( pNewPage->nCell<1 ){
drh49285702005-09-17 15:20:26 +00003780 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003781 }
drh72f82862001-05-24 21:06:34 +00003782 return SQLITE_OK;
3783}
3784
danielk1977bf93c562008-09-29 15:53:25 +00003785#ifndef NDEBUG
3786/*
3787** Page pParent is an internal (non-leaf) tree page. This function
3788** asserts that page number iChild is the left-child if the iIdx'th
3789** cell in page pParent. Or, if iIdx is equal to the total number of
3790** cells in pParent, that page number iChild is the right-child of
3791** the page.
3792*/
3793static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3794 assert( iIdx<=pParent->nCell );
3795 if( iIdx==pParent->nCell ){
3796 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3797 }else{
3798 assert( get4byte(findCell(pParent, iIdx))==iChild );
3799 }
3800}
3801#else
3802# define assertParentIndex(x,y,z)
3803#endif
3804
drh72f82862001-05-24 21:06:34 +00003805/*
drh5e2f8b92001-05-28 00:41:15 +00003806** Move the cursor up to the parent page.
3807**
3808** pCur->idx is set to the cell index that contains the pointer
3809** to the page we are coming from. If we are coming from the
3810** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003811** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003812*/
drh16a9b832007-05-05 18:39:25 +00003813void sqlite3BtreeMoveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003814 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003815 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003816 assert( pCur->iPage>0 );
3817 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003818 assertParentIndex(
3819 pCur->apPage[pCur->iPage-1],
3820 pCur->aiIdx[pCur->iPage-1],
3821 pCur->apPage[pCur->iPage]->pgno
3822 );
danielk197771d5d2c2008-09-29 11:49:47 +00003823 releasePage(pCur->apPage[pCur->iPage]);
3824 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003825 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003826 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003827}
3828
3829/*
3830** Move the cursor to the root page
3831*/
drh5e2f8b92001-05-28 00:41:15 +00003832static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003833 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003834 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003835 Btree *p = pCur->pBtree;
3836 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003837
drh1fee73e2007-08-29 04:00:57 +00003838 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003839 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3840 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3841 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3842 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3843 if( pCur->eState==CURSOR_FAULT ){
3844 return pCur->skip;
3845 }
danielk1977be51a652008-10-08 17:58:48 +00003846 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003847 }
danielk197771d5d2c2008-09-29 11:49:47 +00003848
3849 if( pCur->iPage>=0 ){
3850 int i;
3851 for(i=1; i<=pCur->iPage; i++){
3852 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00003853 }
drh777e4c42006-01-13 04:31:58 +00003854 }else{
3855 if(
danielk197771d5d2c2008-09-29 11:49:47 +00003856 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00003857 ){
3858 pCur->eState = CURSOR_INVALID;
3859 return rc;
3860 }
drhc39e0002004-05-07 23:50:57 +00003861 }
danielk197771d5d2c2008-09-29 11:49:47 +00003862
3863 pRoot = pCur->apPage[0];
3864 assert( pRoot->pgno==pCur->pgnoRoot );
3865 pCur->iPage = 0;
3866 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00003867 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003868 pCur->atLast = 0;
3869 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003870
drh8856d6a2004-04-29 14:42:46 +00003871 if( pRoot->nCell==0 && !pRoot->leaf ){
3872 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00003873 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00003874 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00003875 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00003876 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00003877 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00003878 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00003879 }else{
3880 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00003881 }
3882 return rc;
drh72f82862001-05-24 21:06:34 +00003883}
drh2af926b2001-05-15 00:39:25 +00003884
drh5e2f8b92001-05-28 00:41:15 +00003885/*
3886** Move the cursor down to the left-most leaf entry beneath the
3887** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00003888**
3889** The left-most leaf is the one with the smallest key - the first
3890** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00003891*/
3892static int moveToLeftmost(BtCursor *pCur){
3893 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003894 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00003895 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00003896
drh1fee73e2007-08-29 04:00:57 +00003897 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003898 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003899 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
3900 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
3901 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00003902 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00003903 }
drhd677b3d2007-08-20 22:48:41 +00003904 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003905}
3906
drh2dcc9aa2002-12-04 13:40:25 +00003907/*
3908** Move the cursor down to the right-most leaf entry beneath the
3909** page to which it is currently pointing. Notice the difference
3910** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
3911** finds the left-most entry beneath the *entry* whereas moveToRightmost()
3912** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00003913**
3914** The right-most entry is the one with the largest key - the last
3915** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00003916*/
3917static int moveToRightmost(BtCursor *pCur){
3918 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00003919 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00003920 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00003921
drh1fee73e2007-08-29 04:00:57 +00003922 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003923 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003924 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00003925 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00003926 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00003927 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00003928 }
drhd677b3d2007-08-20 22:48:41 +00003929 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00003930 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00003931 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003932 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00003933 }
danielk1977518002e2008-09-05 05:02:46 +00003934 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00003935}
3936
drh5e00f6c2001-09-13 13:46:56 +00003937/* Move the cursor to the first entry in the table. Return SQLITE_OK
3938** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003939** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00003940*/
drh3aac2dd2004-04-26 14:10:20 +00003941int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00003942 int rc;
drhd677b3d2007-08-20 22:48:41 +00003943
drh1fee73e2007-08-29 04:00:57 +00003944 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003945 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00003946 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003947 if( rc==SQLITE_OK ){
3948 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00003949 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003950 *pRes = 1;
3951 rc = SQLITE_OK;
3952 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00003953 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00003954 *pRes = 0;
3955 rc = moveToLeftmost(pCur);
3956 }
drh5e00f6c2001-09-13 13:46:56 +00003957 }
drh5e00f6c2001-09-13 13:46:56 +00003958 return rc;
3959}
drh5e2f8b92001-05-28 00:41:15 +00003960
drh9562b552002-02-19 15:00:07 +00003961/* Move the cursor to the last entry in the table. Return SQLITE_OK
3962** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00003963** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00003964*/
drh3aac2dd2004-04-26 14:10:20 +00003965int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00003966 int rc;
drhd677b3d2007-08-20 22:48:41 +00003967
drh1fee73e2007-08-29 04:00:57 +00003968 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00003969 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00003970
3971 /* If the cursor already points to the last entry, this is a no-op. */
3972 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
3973#ifdef SQLITE_DEBUG
3974 /* This block serves to assert() that the cursor really does point
3975 ** to the last entry in the b-tree. */
3976 int ii;
3977 for(ii=0; ii<pCur->iPage; ii++){
3978 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
3979 }
3980 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
3981 assert( pCur->apPage[pCur->iPage]->leaf );
3982#endif
3983 return SQLITE_OK;
3984 }
3985
drh9562b552002-02-19 15:00:07 +00003986 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00003987 if( rc==SQLITE_OK ){
3988 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00003989 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00003990 *pRes = 1;
3991 }else{
3992 assert( pCur->eState==CURSOR_VALID );
3993 *pRes = 0;
3994 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00003995 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00003996 }
drh9562b552002-02-19 15:00:07 +00003997 }
drh9562b552002-02-19 15:00:07 +00003998 return rc;
3999}
4000
drhe14006d2008-03-25 17:23:32 +00004001/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004002** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004003**
drhe63d9992008-08-13 19:11:48 +00004004** For INTKEY tables, the intKey parameter is used. pIdxKey
4005** must be NULL. For index tables, pIdxKey is used and intKey
4006** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004007**
drh5e2f8b92001-05-28 00:41:15 +00004008** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004009** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004010** were present. The cursor might point to an entry that comes
4011** before or after the key.
4012**
drh64022502009-01-09 14:11:04 +00004013** An integer is written into *pRes which is the result of
4014** comparing the key with the entry to which the cursor is
4015** pointing. The meaning of the integer written into
4016** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004017**
4018** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004019** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004020** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004021**
4022** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004023** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004024**
4025** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004026** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004027**
drha059ad02001-04-17 20:09:11 +00004028*/
drhe63d9992008-08-13 19:11:48 +00004029int sqlite3BtreeMovetoUnpacked(
4030 BtCursor *pCur, /* The cursor to be moved */
4031 UnpackedRecord *pIdxKey, /* Unpacked index key */
4032 i64 intKey, /* The table key */
4033 int biasRight, /* If true, bias the search to the high end */
4034 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004035){
drh72f82862001-05-24 21:06:34 +00004036 int rc;
drhd677b3d2007-08-20 22:48:41 +00004037
drh1fee73e2007-08-29 04:00:57 +00004038 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004039 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drha2c20e42008-03-29 16:01:04 +00004040
4041 /* If the cursor is already positioned at the point we are trying
4042 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004043 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4044 && pCur->apPage[0]->intKey
4045 ){
drhe63d9992008-08-13 19:11:48 +00004046 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004047 *pRes = 0;
4048 return SQLITE_OK;
4049 }
drhe63d9992008-08-13 19:11:48 +00004050 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004051 *pRes = -1;
4052 return SQLITE_OK;
4053 }
4054 }
4055
drh5e2f8b92001-05-28 00:41:15 +00004056 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004057 if( rc ){
4058 return rc;
4059 }
danielk197771d5d2c2008-09-29 11:49:47 +00004060 assert( pCur->apPage[pCur->iPage] );
4061 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977da184232006-01-05 11:34:32 +00004062 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004063 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004064 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004065 return SQLITE_OK;
4066 }
danielk197771d5d2c2008-09-29 11:49:47 +00004067 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004068 for(;;){
drh72f82862001-05-24 21:06:34 +00004069 int lwr, upr;
4070 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004071 MemPage *pPage = pCur->apPage[pCur->iPage];
drh1a844c32002-12-04 22:29:28 +00004072 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00004073 lwr = 0;
4074 upr = pPage->nCell-1;
drh64022502009-01-09 14:11:04 +00004075 if( (!pPage->intKey && pIdxKey==0) || upr<0 ){
drh1e968a02008-03-25 00:22:21 +00004076 rc = SQLITE_CORRUPT_BKPT;
4077 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004078 }
drhe4d90812007-03-29 05:51:49 +00004079 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004080 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004081 }else{
drhf49661a2008-12-10 16:45:50 +00004082 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004083 }
drh64022502009-01-09 14:11:04 +00004084 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004085 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4086 u8 *pCell; /* Pointer to current cell in pPage */
4087
drh366fda62006-01-13 02:35:09 +00004088 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004089 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004090 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004091 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004092 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004093 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004094 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004095 }
drha2c20e42008-03-29 16:01:04 +00004096 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004097 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004098 c = 0;
drhe63d9992008-08-13 19:11:48 +00004099 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004100 c = -1;
4101 }else{
drhe63d9992008-08-13 19:11:48 +00004102 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004103 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004104 }
danielk197711c327a2009-05-04 19:01:26 +00004105 pCur->validNKey = 1;
4106 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004107 }else{
danielk197711c327a2009-05-04 19:01:26 +00004108 /* The maximum supported page-size is 32768 bytes. This means that
4109 ** the maximum number of record bytes stored on an index B-Tree
4110 ** page is at most 8198 bytes, which may be stored as a 2-byte
4111 ** varint. This information is used to attempt to avoid parsing
4112 ** the entire cell by checking for the cases where the record is
4113 ** stored entirely within the b-tree page by inspecting the first
4114 ** 2 bytes of the cell.
4115 */
4116 int nCell = pCell[0];
4117 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4118 /* This branch runs if the record-size field of the cell is a
4119 ** single byte varint and the record fits entirely on the main
4120 ** b-tree page. */
4121 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4122 }else if( !(pCell[1] & 0x80)
4123 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4124 ){
4125 /* The record-size field is a 2 byte varint and the record
4126 ** fits entirely on the main b-tree page. */
4127 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004128 }else{
danielk197711c327a2009-05-04 19:01:26 +00004129 /* The record flows over onto one or more overflow pages. In
4130 ** this case the whole cell needs to be parsed, a buffer allocated
4131 ** and accessPayload() used to retrieve the record into the
4132 ** buffer before VdbeRecordCompare() can be called. */
4133 void *pCellKey;
4134 u8 * const pCellBody = pCell - pPage->childPtrSize;
4135 sqlite3BtreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004136 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004137 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004138 if( pCellKey==0 ){
4139 rc = SQLITE_NOMEM;
4140 goto moveto_finish;
4141 }
danielk197711c327a2009-05-04 19:01:26 +00004142 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4143 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004144 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004145 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004146 }
drh3aac2dd2004-04-26 14:10:20 +00004147 }
drh72f82862001-05-24 21:06:34 +00004148 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004149 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004150 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004151 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004152 break;
4153 }else{
drh64022502009-01-09 14:11:04 +00004154 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004155 rc = SQLITE_OK;
4156 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004157 }
drh72f82862001-05-24 21:06:34 +00004158 }
4159 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004160 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004161 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004162 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004163 }
drhf1d68b32007-03-29 04:43:26 +00004164 if( lwr>upr ){
4165 break;
4166 }
drhf49661a2008-12-10 16:45:50 +00004167 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004168 }
4169 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004170 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004171 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004172 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004173 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004174 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004175 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004176 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004177 }
4178 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004179 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh72f82862001-05-24 21:06:34 +00004180 if( pRes ) *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004181 rc = SQLITE_OK;
4182 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004183 }
drhf49661a2008-12-10 16:45:50 +00004184 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004185 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004186 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004187 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004188 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004189 }
drh1e968a02008-03-25 00:22:21 +00004190moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004191 return rc;
4192}
4193
4194/*
4195** In this version of BtreeMoveto, pKey is a packed index record
4196** such as is generated by the OP_MakeRecord opcode. Unpack the
4197** record and then call BtreeMovetoUnpacked() to do the work.
4198*/
4199int sqlite3BtreeMoveto(
4200 BtCursor *pCur, /* Cursor open on the btree to be searched */
4201 const void *pKey, /* Packed key if the btree is an index */
4202 i64 nKey, /* Integer key for tables. Size of pKey for indices */
4203 int bias, /* Bias search to the high end */
4204 int *pRes /* Write search results here */
4205){
4206 int rc; /* Status code */
4207 UnpackedRecord *pIdxKey; /* Unpacked index key */
drh8c5d1522009-04-10 00:56:28 +00004208 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
4209
drhe63d9992008-08-13 19:11:48 +00004210
drhe14006d2008-03-25 17:23:32 +00004211 if( pKey ){
drhf49661a2008-12-10 16:45:50 +00004212 assert( nKey==(i64)(int)nKey );
4213 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
drh23f79d02008-08-20 22:06:47 +00004214 aSpace, sizeof(aSpace));
drhe63d9992008-08-13 19:11:48 +00004215 if( pIdxKey==0 ) return SQLITE_NOMEM;
4216 }else{
4217 pIdxKey = 0;
4218 }
4219 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
4220 if( pKey ){
4221 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
drhe14006d2008-03-25 17:23:32 +00004222 }
drh1e968a02008-03-25 00:22:21 +00004223 return rc;
drh72f82862001-05-24 21:06:34 +00004224}
4225
drhd677b3d2007-08-20 22:48:41 +00004226
drh72f82862001-05-24 21:06:34 +00004227/*
drhc39e0002004-05-07 23:50:57 +00004228** Return TRUE if the cursor is not pointing at an entry of the table.
4229**
4230** TRUE will be returned after a call to sqlite3BtreeNext() moves
4231** past the last entry in the table or sqlite3BtreePrev() moves past
4232** the first entry. TRUE is also returned if the table is empty.
4233*/
4234int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004235 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4236 ** have been deleted? This API will need to change to return an error code
4237 ** as well as the boolean result value.
4238 */
4239 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004240}
4241
4242/*
drhbd03cae2001-06-02 02:40:57 +00004243** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004244** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004245** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004246** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004247*/
drhd094db12008-04-03 21:46:57 +00004248int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004249 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004250 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004251 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004252
drh1fee73e2007-08-29 04:00:57 +00004253 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004254 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004255 if( rc!=SQLITE_OK ){
4256 return rc;
4257 }
drh8c4d3a62007-04-06 01:03:32 +00004258 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004259 if( CURSOR_INVALID==pCur->eState ){
4260 *pRes = 1;
4261 return SQLITE_OK;
4262 }
danielk1977da184232006-01-05 11:34:32 +00004263 if( pCur->skip>0 ){
4264 pCur->skip = 0;
4265 *pRes = 0;
4266 return SQLITE_OK;
4267 }
4268 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004269
danielk197771d5d2c2008-09-29 11:49:47 +00004270 pPage = pCur->apPage[pCur->iPage];
4271 idx = ++pCur->aiIdx[pCur->iPage];
4272 assert( pPage->isInit );
4273 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004274
drh271efa52004-05-30 19:19:05 +00004275 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004276 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004277 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004278 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004279 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004280 if( rc ) return rc;
4281 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004282 *pRes = 0;
4283 return rc;
drh72f82862001-05-24 21:06:34 +00004284 }
drh5e2f8b92001-05-28 00:41:15 +00004285 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004286 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004287 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004288 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004289 return SQLITE_OK;
4290 }
drh16a9b832007-05-05 18:39:25 +00004291 sqlite3BtreeMoveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004292 pPage = pCur->apPage[pCur->iPage];
4293 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004294 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004295 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004296 rc = sqlite3BtreeNext(pCur, pRes);
4297 }else{
4298 rc = SQLITE_OK;
4299 }
4300 return rc;
drh8178a752003-01-05 21:41:40 +00004301 }
4302 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004303 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004304 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004305 }
drh5e2f8b92001-05-28 00:41:15 +00004306 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004307 return rc;
drh72f82862001-05-24 21:06:34 +00004308}
drhd677b3d2007-08-20 22:48:41 +00004309
drh72f82862001-05-24 21:06:34 +00004310
drh3b7511c2001-05-26 13:15:44 +00004311/*
drh2dcc9aa2002-12-04 13:40:25 +00004312** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004313** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004314** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004315** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004316*/
drhd094db12008-04-03 21:46:57 +00004317int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004318 int rc;
drh8178a752003-01-05 21:41:40 +00004319 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004320
drh1fee73e2007-08-29 04:00:57 +00004321 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004322 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004323 if( rc!=SQLITE_OK ){
4324 return rc;
4325 }
drha2c20e42008-03-29 16:01:04 +00004326 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004327 if( CURSOR_INVALID==pCur->eState ){
4328 *pRes = 1;
4329 return SQLITE_OK;
4330 }
danielk1977da184232006-01-05 11:34:32 +00004331 if( pCur->skip<0 ){
4332 pCur->skip = 0;
4333 *pRes = 0;
4334 return SQLITE_OK;
4335 }
4336 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004337
danielk197771d5d2c2008-09-29 11:49:47 +00004338 pPage = pCur->apPage[pCur->iPage];
4339 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004340 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004341 int idx = pCur->aiIdx[pCur->iPage];
4342 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004343 if( rc ){
4344 return rc;
4345 }
drh2dcc9aa2002-12-04 13:40:25 +00004346 rc = moveToRightmost(pCur);
4347 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004348 while( pCur->aiIdx[pCur->iPage]==0 ){
4349 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004350 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004351 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004352 return SQLITE_OK;
4353 }
drh16a9b832007-05-05 18:39:25 +00004354 sqlite3BtreeMoveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004355 }
drh271efa52004-05-30 19:19:05 +00004356 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004357 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004358
4359 pCur->aiIdx[pCur->iPage]--;
4360 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004361 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004362 rc = sqlite3BtreePrevious(pCur, pRes);
4363 }else{
4364 rc = SQLITE_OK;
4365 }
drh2dcc9aa2002-12-04 13:40:25 +00004366 }
drh8178a752003-01-05 21:41:40 +00004367 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004368 return rc;
4369}
4370
4371/*
drh3b7511c2001-05-26 13:15:44 +00004372** Allocate a new page from the database file.
4373**
danielk19773b8a05f2007-03-19 17:44:26 +00004374** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004375** has already been called on the new page.) The new page has also
4376** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004377** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004378**
4379** SQLITE_OK is returned on success. Any other return value indicates
4380** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004381** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004382**
drh199e3cf2002-07-18 11:01:47 +00004383** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4384** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004385** attempt to keep related pages close to each other in the database file,
4386** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004387**
4388** If the "exact" parameter is not 0, and the page-number nearby exists
4389** anywhere on the free-list, then it is guarenteed to be returned. This
4390** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004391*/
drh4f0c5872007-03-26 22:05:01 +00004392static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004393 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004394 MemPage **ppPage,
4395 Pgno *pPgno,
4396 Pgno nearby,
4397 u8 exact
4398){
drh3aac2dd2004-04-26 14:10:20 +00004399 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004400 int rc;
drh35cd6432009-06-05 14:17:21 +00004401 u32 n; /* Number of pages on the freelist */
drh3aac2dd2004-04-26 14:10:20 +00004402 int k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004403 MemPage *pTrunk = 0;
4404 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004405 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004406
drh1fee73e2007-08-29 04:00:57 +00004407 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004408 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004409 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004410 n = get4byte(&pPage1->aData[36]);
drh1662b5a2009-06-04 19:06:09 +00004411 if( n>mxPage ){
4412 return SQLITE_CORRUPT_BKPT;
4413 }
drh3aac2dd2004-04-26 14:10:20 +00004414 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004415 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004416 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004417 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4418
4419 /* If the 'exact' parameter was true and a query of the pointer-map
4420 ** shows that the page 'nearby' is somewhere on the free-list, then
4421 ** the entire-list will be searched for that page.
4422 */
4423#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004424 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004425 u8 eType;
4426 assert( nearby>0 );
4427 assert( pBt->autoVacuum );
4428 rc = ptrmapGet(pBt, nearby, &eType, 0);
4429 if( rc ) return rc;
4430 if( eType==PTRMAP_FREEPAGE ){
4431 searchList = 1;
4432 }
4433 *pPgno = nearby;
4434 }
4435#endif
4436
4437 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4438 ** first free-list trunk page. iPrevTrunk is initially 1.
4439 */
danielk19773b8a05f2007-03-19 17:44:26 +00004440 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004441 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004442 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004443
4444 /* The code within this loop is run only once if the 'searchList' variable
4445 ** is not true. Otherwise, it runs once for each trunk-page on the
4446 ** free-list until the page 'nearby' is located.
4447 */
4448 do {
4449 pPrevTrunk = pTrunk;
4450 if( pPrevTrunk ){
4451 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004452 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004453 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004454 }
drh1662b5a2009-06-04 19:06:09 +00004455 if( iTrunk>mxPage ){
4456 rc = SQLITE_CORRUPT_BKPT;
4457 }else{
4458 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4459 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004460 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004461 pTrunk = 0;
4462 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004463 }
4464
4465 k = get4byte(&pTrunk->aData[4]);
4466 if( k==0 && !searchList ){
4467 /* The trunk has no leaves and the list is not being searched.
4468 ** So extract the trunk page itself and use it as the newly
4469 ** allocated page */
4470 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004471 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004472 if( rc ){
4473 goto end_allocate_page;
4474 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004475 *pPgno = iTrunk;
4476 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4477 *ppPage = pTrunk;
4478 pTrunk = 0;
4479 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh45b1fac2008-07-04 17:52:42 +00004480 }else if( k>pBt->usableSize/4 - 2 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004481 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004482 rc = SQLITE_CORRUPT_BKPT;
4483 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004484#ifndef SQLITE_OMIT_AUTOVACUUM
4485 }else if( searchList && nearby==iTrunk ){
4486 /* The list is being searched and this trunk page is the page
4487 ** to allocate, regardless of whether it has leaves.
4488 */
4489 assert( *pPgno==iTrunk );
4490 *ppPage = pTrunk;
4491 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004492 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004493 if( rc ){
4494 goto end_allocate_page;
4495 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004496 if( k==0 ){
4497 if( !pPrevTrunk ){
4498 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4499 }else{
4500 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4501 }
4502 }else{
4503 /* The trunk page is required by the caller but it contains
4504 ** pointers to free-list leaves. The first leaf becomes a trunk
4505 ** page in this case.
4506 */
4507 MemPage *pNewTrunk;
4508 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004509 if( iNewTrunk>mxPage ){
4510 rc = SQLITE_CORRUPT_BKPT;
4511 goto end_allocate_page;
4512 }
drh16a9b832007-05-05 18:39:25 +00004513 rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004514 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004515 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004516 }
danielk19773b8a05f2007-03-19 17:44:26 +00004517 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004518 if( rc!=SQLITE_OK ){
4519 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004520 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004521 }
4522 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4523 put4byte(&pNewTrunk->aData[4], k-1);
4524 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004525 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004526 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004527 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004528 put4byte(&pPage1->aData[32], iNewTrunk);
4529 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004530 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004531 if( rc ){
4532 goto end_allocate_page;
4533 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004534 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4535 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004536 }
4537 pTrunk = 0;
4538 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4539#endif
4540 }else{
4541 /* Extract a leaf from the trunk */
4542 int closest;
4543 Pgno iPage;
4544 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004545 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004546 if( rc ){
4547 goto end_allocate_page;
4548 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004549 if( nearby>0 ){
4550 int i, dist;
4551 closest = 0;
4552 dist = get4byte(&aData[8]) - nearby;
4553 if( dist<0 ) dist = -dist;
4554 for(i=1; i<k; i++){
4555 int d2 = get4byte(&aData[8+i*4]) - nearby;
4556 if( d2<0 ) d2 = -d2;
4557 if( d2<dist ){
4558 closest = i;
4559 dist = d2;
4560 }
4561 }
4562 }else{
4563 closest = 0;
4564 }
4565
4566 iPage = get4byte(&aData[8+closest*4]);
drh1662b5a2009-06-04 19:06:09 +00004567 if( iPage>mxPage ){
4568 rc = SQLITE_CORRUPT_BKPT;
4569 goto end_allocate_page;
4570 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004571 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004572 int noContent;
danielk197789d40042008-11-17 14:20:56 +00004573 Pgno nPage;
shane1f9e6aa2008-06-09 19:27:11 +00004574 *pPgno = iPage;
danielk197789d40042008-11-17 14:20:56 +00004575 nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004576 if( *pPgno>nPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004577 /* Free page off the end of the file */
danielk197743e377a2008-05-05 12:09:32 +00004578 rc = SQLITE_CORRUPT_BKPT;
4579 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004580 }
4581 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4582 ": %d more free pages\n",
4583 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4584 if( closest<k-1 ){
4585 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4586 }
4587 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004588 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004589 noContent = !btreeGetHasContent(pBt, *pPgno);
4590 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004591 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004592 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004593 if( rc!=SQLITE_OK ){
4594 releasePage(*ppPage);
4595 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004596 }
4597 searchList = 0;
4598 }
drhee696e22004-08-30 16:52:17 +00004599 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004600 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004601 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004602 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004603 }else{
drh3aac2dd2004-04-26 14:10:20 +00004604 /* There are no pages on the freelist, so create a new page at the
4605 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004606 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004607 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004608
danielk1977bea2a942009-01-20 17:06:27 +00004609 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4610 (*pPgno)++;
4611 }
4612
danielk1977afcdd022004-10-31 16:25:42 +00004613#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004614 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004615 /* If *pPgno refers to a pointer-map page, allocate two new pages
4616 ** at the end of the file instead of one. The first allocated page
4617 ** becomes a new pointer-map page, the second is used by the caller.
4618 */
danielk1977ac861692009-03-28 10:54:22 +00004619 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004620 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004621 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk1977ac861692009-03-28 10:54:22 +00004622 rc = sqlite3BtreeGetPage(pBt, *pPgno, &pPg, 0);
4623 if( rc==SQLITE_OK ){
4624 rc = sqlite3PagerWrite(pPg->pDbPage);
4625 releasePage(pPg);
4626 }
4627 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004628 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004629 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004630 }
4631#endif
4632
danielk1977599fcba2004-11-08 07:13:13 +00004633 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh16a9b832007-05-05 18:39:25 +00004634 rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004635 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004636 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004637 if( rc!=SQLITE_OK ){
4638 releasePage(*ppPage);
4639 }
drh3a4c1412004-05-09 20:40:11 +00004640 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004641 }
danielk1977599fcba2004-11-08 07:13:13 +00004642
4643 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004644
4645end_allocate_page:
4646 releasePage(pTrunk);
4647 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004648 if( rc==SQLITE_OK ){
4649 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4650 releasePage(*ppPage);
4651 return SQLITE_CORRUPT_BKPT;
4652 }
4653 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004654 }else{
4655 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004656 }
drh3b7511c2001-05-26 13:15:44 +00004657 return rc;
4658}
4659
4660/*
danielk1977bea2a942009-01-20 17:06:27 +00004661** This function is used to add page iPage to the database file free-list.
4662** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004663**
danielk1977bea2a942009-01-20 17:06:27 +00004664** The value passed as the second argument to this function is optional.
4665** If the caller happens to have a pointer to the MemPage object
4666** corresponding to page iPage handy, it may pass it as the second value.
4667** Otherwise, it may pass NULL.
4668**
4669** If a pointer to a MemPage object is passed as the second argument,
4670** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004671*/
danielk1977bea2a942009-01-20 17:06:27 +00004672static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4673 MemPage *pTrunk = 0; /* Free-list trunk page */
4674 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4675 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4676 MemPage *pPage; /* Page being freed. May be NULL. */
4677 int rc; /* Return Code */
4678 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004679
danielk1977bea2a942009-01-20 17:06:27 +00004680 assert( sqlite3_mutex_held(pBt->mutex) );
4681 assert( iPage>1 );
4682 assert( !pMemPage || pMemPage->pgno==iPage );
4683
4684 if( pMemPage ){
4685 pPage = pMemPage;
4686 sqlite3PagerRef(pPage->pDbPage);
4687 }else{
4688 pPage = btreePageLookup(pBt, iPage);
4689 }
drh3aac2dd2004-04-26 14:10:20 +00004690
drha34b6762004-05-07 13:30:42 +00004691 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004692 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004693 if( rc ) goto freepage_out;
4694 nFree = get4byte(&pPage1->aData[36]);
4695 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004696
drhfcce93f2006-02-22 03:08:32 +00004697#ifdef SQLITE_SECURE_DELETE
4698 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4699 ** always fully overwrite deleted information with zeros.
4700 */
danielk1977bea2a942009-01-20 17:06:27 +00004701 if( (!pPage && (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0)))
4702 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4703 ){
4704 goto freepage_out;
4705 }
drhfcce93f2006-02-22 03:08:32 +00004706 memset(pPage->aData, 0, pPage->pBt->pageSize);
4707#endif
4708
danielk1977687566d2004-11-02 12:56:41 +00004709 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004710 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004711 */
danielk197785d90ca2008-07-19 14:25:15 +00004712 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004713 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4714 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004715 }
danielk1977687566d2004-11-02 12:56:41 +00004716
danielk1977bea2a942009-01-20 17:06:27 +00004717 /* Now manipulate the actual database free-list structure. There are two
4718 ** possibilities. If the free-list is currently empty, or if the first
4719 ** trunk page in the free-list is full, then this page will become a
4720 ** new free-list trunk page. Otherwise, it will become a leaf of the
4721 ** first trunk page in the current free-list. This block tests if it
4722 ** is possible to add the page as a new free-list leaf.
4723 */
4724 if( nFree!=0 ){
4725 int nLeaf; /* Initial number of leaf cells on trunk page */
4726
4727 iTrunk = get4byte(&pPage1->aData[32]);
4728 rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0);
4729 if( rc!=SQLITE_OK ){
4730 goto freepage_out;
4731 }
4732
4733 nLeaf = get4byte(&pTrunk->aData[4]);
4734 if( nLeaf<0 ){
4735 rc = SQLITE_CORRUPT_BKPT;
4736 goto freepage_out;
4737 }
4738 if( nLeaf<pBt->usableSize/4 - 8 ){
4739 /* In this case there is room on the trunk page to insert the page
4740 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004741 **
4742 ** Note that the trunk page is not really full until it contains
4743 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4744 ** coded. But due to a coding error in versions of SQLite prior to
4745 ** 3.6.0, databases with freelist trunk pages holding more than
4746 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4747 ** to maintain backwards compatibility with older versions of SQLite,
4748 ** we will contain to restrict the number of entries to usableSize/4 - 8
4749 ** for now. At some point in the future (once everyone has upgraded
4750 ** to 3.6.0 or later) we should consider fixing the conditional above
4751 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4752 */
danielk19773b8a05f2007-03-19 17:44:26 +00004753 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004754 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004755 put4byte(&pTrunk->aData[4], nLeaf+1);
4756 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004757#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004758 if( pPage ){
4759 sqlite3PagerDontWrite(pPage->pDbPage);
4760 }
drhfcce93f2006-02-22 03:08:32 +00004761#endif
danielk1977bea2a942009-01-20 17:06:27 +00004762 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004763 }
drh3a4c1412004-05-09 20:40:11 +00004764 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004765 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004766 }
drh3b7511c2001-05-26 13:15:44 +00004767 }
danielk1977bea2a942009-01-20 17:06:27 +00004768
4769 /* If control flows to this point, then it was not possible to add the
4770 ** the page being freed as a leaf page of the first trunk in the free-list.
4771 ** Possibly because the free-list is empty, or possibly because the
4772 ** first trunk in the free-list is full. Either way, the page being freed
4773 ** will become the new first trunk page in the free-list.
4774 */
shane63207ab2009-02-04 01:49:30 +00004775 if( ((!pPage) && (0 != (rc = sqlite3BtreeGetPage(pBt, iPage, &pPage, 0))))
4776 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004777 ){
4778 goto freepage_out;
4779 }
4780 put4byte(pPage->aData, iTrunk);
4781 put4byte(&pPage->aData[4], 0);
4782 put4byte(&pPage1->aData[32], iPage);
4783 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4784
4785freepage_out:
4786 if( pPage ){
4787 pPage->isInit = 0;
4788 }
4789 releasePage(pPage);
4790 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004791 return rc;
4792}
danielk1977bea2a942009-01-20 17:06:27 +00004793static int freePage(MemPage *pPage){
4794 return freePage2(pPage->pBt, pPage, pPage->pgno);
4795}
drh3b7511c2001-05-26 13:15:44 +00004796
4797/*
drh3aac2dd2004-04-26 14:10:20 +00004798** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004799*/
drh3aac2dd2004-04-26 14:10:20 +00004800static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004801 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004802 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004803 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004804 int rc;
drh94440812007-03-06 11:42:19 +00004805 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004806 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004807
drh1fee73e2007-08-29 04:00:57 +00004808 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh16a9b832007-05-05 18:39:25 +00004809 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004810 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004811 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004812 }
drh6f11bef2004-05-13 01:12:56 +00004813 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004814 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004815 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004816 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4817 assert( ovflPgno==0 || nOvfl>0 );
4818 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004819 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004820 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004821 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4822 /* 0 is not a legal page number and page 1 cannot be an
4823 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4824 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004825 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004826 }
danielk1977bea2a942009-01-20 17:06:27 +00004827 if( nOvfl ){
4828 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4829 if( rc ) return rc;
4830 }
4831 rc = freePage2(pBt, pOvfl, ovflPgno);
4832 if( pOvfl ){
4833 sqlite3PagerUnref(pOvfl->pDbPage);
4834 }
drh3b7511c2001-05-26 13:15:44 +00004835 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004836 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004837 }
drh5e2f8b92001-05-28 00:41:15 +00004838 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004839}
4840
4841/*
drh91025292004-05-03 19:49:32 +00004842** Create the byte sequence used to represent a cell on page pPage
4843** and write that byte sequence into pCell[]. Overflow pages are
4844** allocated and filled in as necessary. The calling procedure
4845** is responsible for making sure sufficient space has been allocated
4846** for pCell[].
4847**
4848** Note that pCell does not necessary need to point to the pPage->aData
4849** area. pCell might point to some temporary storage. The cell will
4850** be constructed in this temporary area then copied into pPage->aData
4851** later.
drh3b7511c2001-05-26 13:15:44 +00004852*/
4853static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004854 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004855 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004856 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004857 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004858 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004859 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004860){
drh3b7511c2001-05-26 13:15:44 +00004861 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004862 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00004863 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00004864 int spaceLeft;
4865 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00004866 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00004867 unsigned char *pPrior;
4868 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00004869 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00004870 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00004871 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00004872 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00004873
drh1fee73e2007-08-29 04:00:57 +00004874 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00004875
drhc5053fb2008-11-27 02:22:10 +00004876 /* pPage is not necessarily writeable since pCell might be auxiliary
4877 ** buffer space that is separate from the pPage buffer area */
4878 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
4879 || sqlite3PagerIswriteable(pPage->pDbPage) );
4880
drh91025292004-05-03 19:49:32 +00004881 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00004882 nHeader = 0;
drh91025292004-05-03 19:49:32 +00004883 if( !pPage->leaf ){
4884 nHeader += 4;
4885 }
drh8b18dd42004-05-12 19:18:15 +00004886 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00004887 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00004888 }else{
drhb026e052007-05-02 01:34:31 +00004889 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00004890 }
drh6f11bef2004-05-13 01:12:56 +00004891 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh16a9b832007-05-05 18:39:25 +00004892 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004893 assert( info.nHeader==nHeader );
4894 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00004895 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00004896
4897 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00004898 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00004899 if( pPage->intKey ){
4900 pSrc = pData;
4901 nSrc = nData;
drh91025292004-05-03 19:49:32 +00004902 nData = 0;
drhf49661a2008-12-10 16:45:50 +00004903 }else{
drh20abac22009-01-28 20:21:17 +00004904 if( nKey>0x7fffffff || pKey==0 ){
4905 return SQLITE_CORRUPT;
4906 }
drhf49661a2008-12-10 16:45:50 +00004907 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004908 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00004909 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00004910 }
drh6f11bef2004-05-13 01:12:56 +00004911 *pnSize = info.nSize;
4912 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00004913 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00004914 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00004915
drh3b7511c2001-05-26 13:15:44 +00004916 while( nPayload>0 ){
4917 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00004918#ifndef SQLITE_OMIT_AUTOVACUUM
4919 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00004920 if( pBt->autoVacuum ){
4921 do{
4922 pgnoOvfl++;
4923 } while(
4924 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
4925 );
danielk1977b39f70b2007-05-17 18:28:11 +00004926 }
danielk1977afcdd022004-10-31 16:25:42 +00004927#endif
drhf49661a2008-12-10 16:45:50 +00004928 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00004929#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00004930 /* If the database supports auto-vacuum, and the second or subsequent
4931 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00004932 ** for that page now.
4933 **
4934 ** If this is the first overflow page, then write a partial entry
4935 ** to the pointer-map. If we write nothing to this pointer-map slot,
4936 ** then the optimistic overflow chain processing in clearCell()
4937 ** may misinterpret the uninitialised values and delete the
4938 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00004939 */
danielk19774ef24492007-05-23 09:52:41 +00004940 if( pBt->autoVacuum && rc==SQLITE_OK ){
4941 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
4942 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00004943 if( rc ){
4944 releasePage(pOvfl);
4945 }
danielk1977afcdd022004-10-31 16:25:42 +00004946 }
4947#endif
drh3b7511c2001-05-26 13:15:44 +00004948 if( rc ){
drh9b171272004-05-08 02:03:22 +00004949 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00004950 return rc;
4951 }
drhc5053fb2008-11-27 02:22:10 +00004952
4953 /* If pToRelease is not zero than pPrior points into the data area
4954 ** of pToRelease. Make sure pToRelease is still writeable. */
4955 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4956
4957 /* If pPrior is part of the data area of pPage, then make sure pPage
4958 ** is still writeable */
4959 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
4960 || sqlite3PagerIswriteable(pPage->pDbPage) );
4961
drh3aac2dd2004-04-26 14:10:20 +00004962 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00004963 releasePage(pToRelease);
4964 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00004965 pPrior = pOvfl->aData;
4966 put4byte(pPrior, 0);
4967 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00004968 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00004969 }
4970 n = nPayload;
4971 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00004972
4973 /* If pToRelease is not zero than pPayload points into the data area
4974 ** of pToRelease. Make sure pToRelease is still writeable. */
4975 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
4976
4977 /* If pPayload is part of the data area of pPage, then make sure pPage
4978 ** is still writeable */
4979 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
4980 || sqlite3PagerIswriteable(pPage->pDbPage) );
4981
drhb026e052007-05-02 01:34:31 +00004982 if( nSrc>0 ){
4983 if( n>nSrc ) n = nSrc;
4984 assert( pSrc );
4985 memcpy(pPayload, pSrc, n);
4986 }else{
4987 memset(pPayload, 0, n);
4988 }
drh3b7511c2001-05-26 13:15:44 +00004989 nPayload -= n;
drhde647132004-05-07 17:57:49 +00004990 pPayload += n;
drh9b171272004-05-08 02:03:22 +00004991 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00004992 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00004993 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00004994 if( nSrc==0 ){
4995 nSrc = nData;
4996 pSrc = pData;
4997 }
drhdd793422001-06-28 01:54:48 +00004998 }
drh9b171272004-05-08 02:03:22 +00004999 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005000 return SQLITE_OK;
5001}
5002
drh14acc042001-06-10 19:56:58 +00005003/*
5004** Remove the i-th cell from pPage. This routine effects pPage only.
5005** The cell content is not freed or deallocated. It is assumed that
5006** the cell content has been copied someplace else. This routine just
5007** removes the reference to the cell from pPage.
5008**
5009** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005010*/
shane0af3f892008-11-12 04:55:34 +00005011static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005012 int i; /* Loop counter */
5013 int pc; /* Offset to cell content of cell being deleted */
5014 u8 *data; /* pPage->aData */
5015 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005016 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005017
drh8c42ca92001-06-22 19:15:00 +00005018 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005019 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005020 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005021 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005022 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005023 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005024 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005025 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5026 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005027 return SQLITE_CORRUPT_BKPT;
5028 }
shanedcc50b72008-11-13 18:29:50 +00005029 rc = freeSpace(pPage, pc, sz);
5030 if( rc!=SQLITE_OK ){
5031 return rc;
5032 }
drh43605152004-05-29 21:46:49 +00005033 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5034 ptr[0] = ptr[2];
5035 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005036 }
5037 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005038 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5039 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005040 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005041}
5042
5043/*
5044** Insert a new cell on pPage at cell index "i". pCell points to the
5045** content of the cell.
5046**
5047** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005048** will not fit, then make a copy of the cell content into pTemp if
5049** pTemp is not null. Regardless of pTemp, allocate a new entry
5050** in pPage->aOvfl[] and make it point to the cell content (either
5051** in pTemp or the original pCell) and also record its index.
5052** Allocating a new entry in pPage->aCell[] implies that
5053** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005054**
5055** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5056** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005057** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005058** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005059*/
danielk1977e80463b2004-11-03 03:01:16 +00005060static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005061 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005062 int i, /* New cell becomes the i-th cell of the page */
5063 u8 *pCell, /* Content of the new cell */
5064 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005065 u8 *pTemp, /* Temp storage space for pCell, if needed */
5066 u8 nSkip /* Do not write the first nSkip bytes of the cell */
drh24cd67e2004-05-10 16:18:47 +00005067){
drh43605152004-05-29 21:46:49 +00005068 int idx; /* Where to write new cell content in data[] */
5069 int j; /* Loop counter */
5070 int top; /* First byte of content for any cell in data[] */
5071 int end; /* First byte past the last cell pointer in data[] */
5072 int ins; /* Index in data[] where new cell pointer is inserted */
5073 int hdr; /* Offset into data[] of the page header */
5074 int cellOffset; /* Address of first cell pointer in data[] */
5075 u8 *data; /* The content of the whole page */
5076 u8 *ptr; /* Used for moving information around in data[] */
5077
5078 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005079 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5080 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005081 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005082 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005083 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005084 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005085 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005086 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005087 }
drh43605152004-05-29 21:46:49 +00005088 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005089 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005090 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005091 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005092 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005093 int rc = sqlite3PagerWrite(pPage->pDbPage);
5094 if( rc!=SQLITE_OK ){
5095 return rc;
5096 }
5097 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005098 data = pPage->aData;
5099 hdr = pPage->hdrOffset;
5100 top = get2byte(&data[hdr+5]);
5101 cellOffset = pPage->cellOffset;
5102 end = cellOffset + 2*pPage->nCell + 2;
5103 ins = cellOffset + 2*i;
5104 if( end > top - sz ){
shane0af3f892008-11-12 04:55:34 +00005105 rc = defragmentPage(pPage);
5106 if( rc!=SQLITE_OK ){
5107 return rc;
5108 }
drh43605152004-05-29 21:46:49 +00005109 top = get2byte(&data[hdr+5]);
5110 assert( end + sz <= top );
5111 }
5112 idx = allocateSpace(pPage, sz);
5113 assert( idx>0 );
5114 assert( end <= get2byte(&data[hdr+5]) );
shane0af3f892008-11-12 04:55:34 +00005115 if (idx+sz > pPage->pBt->usableSize) {
shane34ac18d2008-11-11 22:18:20 +00005116 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005117 }
drh43605152004-05-29 21:46:49 +00005118 pPage->nCell++;
5119 pPage->nFree -= 2;
danielk1977a3ad5e72005-01-07 08:56:44 +00005120 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005121 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
5122 ptr[0] = ptr[-2];
5123 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005124 }
drh43605152004-05-29 21:46:49 +00005125 put2byte(&data[ins], idx);
5126 put2byte(&data[hdr+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005127#ifndef SQLITE_OMIT_AUTOVACUUM
5128 if( pPage->pBt->autoVacuum ){
5129 /* The cell may contain a pointer to an overflow page. If so, write
5130 ** the entry for the overflow page into the pointer map.
5131 */
5132 CellInfo info;
drh16a9b832007-05-05 18:39:25 +00005133 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh72365832007-03-06 15:53:44 +00005134 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19777b801382009-04-29 06:27:56 +00005135 if( info.iOverflow ){
danielk1977a19df672004-11-03 11:37:07 +00005136 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk19776e465eb2007-08-21 13:11:00 +00005137 rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977a19df672004-11-03 11:37:07 +00005138 if( rc!=SQLITE_OK ) return rc;
5139 }
5140 }
5141#endif
drh14acc042001-06-10 19:56:58 +00005142 }
danielk1977e80463b2004-11-03 03:01:16 +00005143
danielk1977e80463b2004-11-03 03:01:16 +00005144 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005145}
5146
5147/*
drhfa1a98a2004-05-14 19:08:17 +00005148** Add a list of cells to a page. The page should be initially empty.
5149** The cells are guaranteed to fit on the page.
5150*/
5151static void assemblePage(
5152 MemPage *pPage, /* The page to be assemblied */
5153 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005154 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005155 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005156){
5157 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005158 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005159 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005160 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5161 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5162 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005163
drh43605152004-05-29 21:46:49 +00005164 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005165 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005166 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005167 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005168
5169 /* Check that the page has just been zeroed by zeroPage() */
5170 assert( pPage->nCell==0 );
5171 assert( get2byte(&data[hdr+5])==nUsable );
5172
5173 pCellptr = &data[pPage->cellOffset + nCell*2];
5174 cellbody = nUsable;
5175 for(i=nCell-1; i>=0; i--){
5176 pCellptr -= 2;
5177 cellbody -= aSize[i];
5178 put2byte(pCellptr, cellbody);
5179 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005180 }
danielk1977fad91942009-04-29 17:49:59 +00005181 put2byte(&data[hdr+3], nCell);
5182 put2byte(&data[hdr+5], cellbody);
5183 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005184 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005185}
5186
drh14acc042001-06-10 19:56:58 +00005187/*
drhc3b70572003-01-04 19:44:07 +00005188** The following parameters determine how many adjacent pages get involved
5189** in a balancing operation. NN is the number of neighbors on either side
5190** of the page that participate in the balancing operation. NB is the
5191** total number of pages that participate, including the target page and
5192** NN neighbors on either side.
5193**
5194** The minimum value of NN is 1 (of course). Increasing NN above 1
5195** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5196** in exchange for a larger degradation in INSERT and UPDATE performance.
5197** The value of NN appears to give the best results overall.
5198*/
5199#define NN 1 /* Number of neighbors on either side of pPage */
5200#define NB (NN*2+1) /* Total pages involved in the balance */
5201
danielk1977ac245ec2005-01-14 13:50:11 +00005202
drh615ae552005-01-16 23:21:00 +00005203#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005204/*
5205** This version of balance() handles the common special case where
5206** a new entry is being inserted on the extreme right-end of the
5207** tree, in other words, when the new entry will become the largest
5208** entry in the tree.
5209**
5210** Instead of trying balance the 3 right-most leaf pages, just add
5211** a new page to the right-hand side and put the one new entry in
5212** that page. This leaves the right side of the tree somewhat
5213** unbalanced. But odds are that we will be inserting new entries
5214** at the end soon afterwards so the nearly empty page will quickly
5215** fill up. On average.
5216**
5217** pPage is the leaf page which is the right-most page in the tree.
5218** pParent is its parent. pPage must have a single overflow entry
5219** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005220**
5221** The pSpace buffer is used to store a temporary copy of the divider
5222** cell that will be inserted into pParent. Such a cell consists of a 4
5223** byte page number followed by a variable length integer. In other
5224** words, at most 13 bytes. Hence the pSpace buffer must be at
5225** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005226*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005227static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5228 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19776f235cc2009-06-04 14:46:08 +00005229 MemPage *pNew = 0; /* Newly allocated page */
5230 int rc; /* Return Code */
5231 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005232
drh1fee73e2007-08-29 04:00:57 +00005233 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005234 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drhd46b6c22009-06-04 17:02:51 +00005235 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005236
danielk1977a50d9aa2009-06-08 14:49:45 +00005237 /* Allocate a new page. This page will become the right-sibling of
5238 ** pPage. Make the parent page writable, so that the new divider cell
5239 ** may be inserted. If both these operations are successful, proceed.
5240 */
drh4f0c5872007-03-26 22:05:01 +00005241 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk1977eaa06f62008-09-18 17:34:44 +00005242 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005243
5244 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005245 u8 *pCell = pPage->aOvfl[0].pCell;
5246 u16 szCell = cellSizePtr(pPage, pCell);
5247 u8 *pStop;
5248
drhc5053fb2008-11-27 02:22:10 +00005249 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005250
danielk1977eaa06f62008-09-18 17:34:44 +00005251 zeroPage(pNew, pPage->aData[0]);
5252 assemblePage(pNew, 1, &pCell, &szCell);
5253 pPage->nOverflow = 0;
5254
danielk19776f235cc2009-06-04 14:46:08 +00005255 /* Create a divider cell to insert into pParent. The divider cell
5256 ** consists of a 4-byte page number (the page number of pPage) and
5257 ** a variable length key value (which must be the same value as the
5258 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005259 **
danielk19776f235cc2009-06-04 14:46:08 +00005260 ** To find the largest key value on pPage, first find the right-most
5261 ** cell on pPage. The first two fields of this cell are the
5262 ** record-length (a variable length integer at most 32-bits in size)
5263 ** and the key value (a variable length integer, may have any value).
5264 ** The first of the while(...) loops below skips over the record-length
5265 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005266 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005267 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005268 put4byte(pSpace, pPage->pgno);
danielk1977eaa06f62008-09-18 17:34:44 +00005269 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005270 pStop = &pCell[9];
5271 while( (*(pCell++)&0x80) && pCell<pStop );
5272 pStop = &pCell[9];
5273 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5274
5275 /* Insert the new divider cell into pParent */
shane75ac1de2009-06-09 18:58:52 +00005276 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), 0, 0);
danielk19776f235cc2009-06-04 14:46:08 +00005277
5278 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005279 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5280
5281 /* If this is an auto-vacuum database, update the pointer map
5282 ** with entries for the new page, and any pointer from the
5283 ** cell on the page to an overflow page.
5284 */
5285 if( ISAUTOVACUUM ){
5286 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5287 if( rc==SQLITE_OK ){
5288 rc = ptrmapPutOvfl(pNew, 0);
5289 }
danielk1977ac11ee62005-01-15 12:45:51 +00005290 }
danielk1977e08a3c42008-09-18 18:17:03 +00005291
5292 /* Release the reference to the new page. */
5293 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005294 }
5295
danielk1977eaa06f62008-09-18 17:34:44 +00005296 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005297}
drh615ae552005-01-16 23:21:00 +00005298#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005299
drhc3b70572003-01-04 19:44:07 +00005300/*
drhab01f612004-05-22 02:55:23 +00005301** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00005302** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00005303** Usually NN siblings on either side of pPage is used in the balancing,
5304** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00005305** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00005306** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00005307** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005308**
drh0c6cc4e2004-06-15 02:13:26 +00005309** The number of siblings of pPage might be increased or decreased by one or
5310** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00005311** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00005312** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00005313** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00005314** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00005315**
drh8b2f49b2001-06-08 00:21:52 +00005316** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00005317** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00005318** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00005319** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00005320**
drh8c42ca92001-06-22 19:15:00 +00005321** In the course of balancing the siblings of pPage, the parent of pPage
5322** might become overfull or underfull. If that happens, then this routine
5323** is called recursively on the parent.
5324**
drh5e00f6c2001-09-13 13:46:56 +00005325** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005326** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005327** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00005328*/
danielk19776067a9b2009-06-09 09:41:00 +00005329static int balance_nonroot(MemPage *pParent, int iParentIdx, u8 *aOvflSpace){
drh16a9b832007-05-05 18:39:25 +00005330 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005331 int nCell = 0; /* Number of cells in apCell[] */
5332 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005333 int nOld = 0; /* Number of pages in apOld[] */
5334 int nNew = 0; /* Number of pages in apNew[] */
drh14acc042001-06-10 19:56:58 +00005335 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005336 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00005337 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00005338 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005339 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005340 int usableSpace; /* Bytes in pPage beyond the header */
5341 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005342 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005343 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005344 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005345 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005346 MemPage *apOld[NB]; /* pPage and up to two siblings */
5347 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00005348 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005349 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
5350 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drh4b70f112004-05-02 21:12:19 +00005351 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005352 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5353 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005354 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005355 u16 *szCell; /* Local size of all cells in apCell[] */
drhe5ae5732008-06-15 02:51:47 +00005356 u8 *aCopy[NB]; /* Space for holding data of apCopy[] */
5357 u8 *aSpace1; /* Space for copies of dividers cells before balance */
danielk1977ac11ee62005-01-15 12:45:51 +00005358 u8 *aFrom = 0;
drh8b2f49b2001-06-08 00:21:52 +00005359
danielk1977a50d9aa2009-06-08 14:49:45 +00005360 pBt = pParent->pBt;
5361 assert( sqlite3_mutex_held(pBt->mutex) );
5362 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005363
drh43605152004-05-29 21:46:49 +00005364 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh2e38c322004-09-03 18:38:44 +00005365
danielk1977a50d9aa2009-06-08 14:49:45 +00005366 /* Find the sibling pages to balance. Also locate the cells in pParent
5367 ** that divide the siblings. An attempt is made to find NN siblings on
5368 ** either side of pPage. More siblings are taken from one side, however,
5369 ** if there are fewer than NN siblings on the other side. If pParent
drhc3b70572003-01-04 19:44:07 +00005370 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00005371 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005372 nxDiv = iParentIdx - NN;
drhc3b70572003-01-04 19:44:07 +00005373 if( nxDiv + NB > pParent->nCell ){
5374 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00005375 }
drhc3b70572003-01-04 19:44:07 +00005376 if( nxDiv<0 ){
5377 nxDiv = 0;
5378 }
drhc3b70572003-01-04 19:44:07 +00005379 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00005380 if( k<pParent->nCell ){
danielk19771cc5ed82007-05-16 17:28:43 +00005381 apDiv[i] = findCell(pParent, k);
drha34b6762004-05-07 13:30:42 +00005382 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00005383 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00005384 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00005385 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00005386 }else{
5387 break;
drh8b2f49b2001-06-08 00:21:52 +00005388 }
danielk197771d5d2c2008-09-29 11:49:47 +00005389 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]);
drh6019e162001-07-02 17:51:45 +00005390 if( rc ) goto balance_cleanup;
drh91025292004-05-03 19:49:32 +00005391 apCopy[i] = 0;
5392 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00005393 nOld++;
danielk1977634f2982005-03-28 08:44:07 +00005394 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
drh8b2f49b2001-06-08 00:21:52 +00005395 }
5396
drha9121e42008-02-19 14:59:35 +00005397 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005398 ** alignment */
drha9121e42008-02-19 14:59:35 +00005399 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005400
drh8b2f49b2001-06-08 00:21:52 +00005401 /*
danielk1977634f2982005-03-28 08:44:07 +00005402 ** Allocate space for memory structures
5403 */
drhfacf0302008-06-17 15:12:00 +00005404 szScratch =
drha9121e42008-02-19 14:59:35 +00005405 nMaxCells*sizeof(u8*) /* apCell */
5406 + nMaxCells*sizeof(u16) /* szCell */
5407 + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */
drhe5ae5732008-06-15 02:51:47 +00005408 + pBt->pageSize /* aSpace1 */
drhfacf0302008-06-17 15:12:00 +00005409 + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */
5410 apCell = sqlite3ScratchMalloc( szScratch );
danielk19776067a9b2009-06-09 09:41:00 +00005411 if( apCell==0 || aOvflSpace==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005412 rc = SQLITE_NOMEM;
5413 goto balance_cleanup;
5414 }
drha9121e42008-02-19 14:59:35 +00005415 szCell = (u16*)&apCell[nMaxCells];
danielk1977634f2982005-03-28 08:44:07 +00005416 aCopy[0] = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005417 assert( EIGHT_BYTE_ALIGNMENT(aCopy[0]) );
danielk1977634f2982005-03-28 08:44:07 +00005418 for(i=1; i<NB; i++){
drhc96d8532005-05-03 12:30:33 +00005419 aCopy[i] = &aCopy[i-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drh66e80082008-12-16 13:46:29 +00005420 assert( ((aCopy[i] - (u8*)0) & 7)==0 ); /* 8-byte alignment required */
danielk1977634f2982005-03-28 08:44:07 +00005421 }
drhe5ae5732008-06-15 02:51:47 +00005422 aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))];
drhea598cb2009-04-05 12:22:08 +00005423 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
danielk197785d90ca2008-07-19 14:25:15 +00005424 if( ISAUTOVACUUM ){
drhe5ae5732008-06-15 02:51:47 +00005425 aFrom = &aSpace1[pBt->pageSize];
danielk1977634f2982005-03-28 08:44:07 +00005426 }
danielk1977634f2982005-03-28 08:44:07 +00005427
5428 /*
drh14acc042001-06-10 19:56:58 +00005429 ** Make copies of the content of pPage and its siblings into aOld[].
5430 ** The rest of this function will use data from the copies rather
5431 ** that the original pages since the original pages will be in the
5432 ** process of being overwritten.
5433 */
5434 for(i=0; i<nOld; i++){
drhbf4bca52007-09-06 22:19:14 +00005435 MemPage *p = apCopy[i] = (MemPage*)aCopy[i];
5436 memcpy(p, apOld[i], sizeof(MemPage));
5437 p->aData = (void*)&p[1];
5438 memcpy(p->aData, apOld[i]->aData, pBt->pageSize);
drh14acc042001-06-10 19:56:58 +00005439 }
5440
5441 /*
5442 ** Load pointers to all cells on sibling pages and the divider cells
5443 ** into the local apCell[] array. Make copies of the divider cells
drhe5ae5732008-06-15 02:51:47 +00005444 ** into space obtained form aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005445 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005446 **
5447 ** If the siblings are on leaf pages, then the child pointers of the
5448 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005449 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005450 ** child pointers. If siblings are not leaves, then all cell in
5451 ** apCell[] include child pointers. Either way, all cells in apCell[]
5452 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005453 **
5454 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5455 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005456 */
5457 nCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005458 leafCorrection = apOld[0]->leaf*4;
5459 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005460 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00005461 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00005462 int limit = pOld->nCell+pOld->nOverflow;
5463 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005464 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005465 apCell[nCell] = findOverflowCell(pOld, j);
5466 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk197785d90ca2008-07-19 14:25:15 +00005467 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005468 int a;
drhf49661a2008-12-10 16:45:50 +00005469 aFrom[nCell] = (u8)i; assert( i>=0 && i<6 );
danielk1977ac11ee62005-01-15 12:45:51 +00005470 for(a=0; a<pOld->nOverflow; a++){
5471 if( pOld->aOvfl[a].pCell==apCell[nCell] ){
5472 aFrom[nCell] = 0xFF;
5473 break;
5474 }
5475 }
5476 }
drh14acc042001-06-10 19:56:58 +00005477 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005478 }
5479 if( i<nOld-1 ){
drha9121e42008-02-19 14:59:35 +00005480 u16 sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00005481 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00005482 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
5483 ** are duplicates of keys on the child pages. We need to remove
5484 ** the divider cells from pParent, but the dividers cells are not
5485 ** added to apCell[] because they are duplicates of child cells.
5486 */
drh8b18dd42004-05-12 19:18:15 +00005487 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00005488 }else{
drhb6f41482004-05-14 01:58:11 +00005489 u8 *pTemp;
danielk1977634f2982005-03-28 08:44:07 +00005490 assert( nCell<nMaxCells );
drhb6f41482004-05-14 01:58:11 +00005491 szCell[nCell] = sz;
drhe5ae5732008-06-15 02:51:47 +00005492 pTemp = &aSpace1[iSpace1];
5493 iSpace1 += sz;
5494 assert( sz<=pBt->pageSize/4 );
5495 assert( iSpace1<=pBt->pageSize );
drhb6f41482004-05-14 01:58:11 +00005496 memcpy(pTemp, apDiv[i], sz);
5497 apCell[nCell] = pTemp+leafCorrection;
danielk197785d90ca2008-07-19 14:25:15 +00005498 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005499 aFrom[nCell] = 0xFF;
5500 }
drhb6f41482004-05-14 01:58:11 +00005501 dropCell(pParent, nxDiv, sz);
drhf49661a2008-12-10 16:45:50 +00005502 assert( leafCorrection==0 || leafCorrection==4 );
5503 szCell[nCell] -= (u16)leafCorrection;
drh43605152004-05-29 21:46:49 +00005504 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00005505 if( !pOld->leaf ){
5506 assert( leafCorrection==0 );
5507 /* The right pointer of the child page pOld becomes the left
5508 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00005509 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00005510 }else{
5511 assert( leafCorrection==4 );
danielk197739c96042007-05-12 10:41:47 +00005512 if( szCell[nCell]<4 ){
5513 /* Do not allow any cells smaller than 4 bytes. */
5514 szCell[nCell] = 4;
5515 }
drh8b18dd42004-05-12 19:18:15 +00005516 }
5517 nCell++;
drh4b70f112004-05-02 21:12:19 +00005518 }
drh8b2f49b2001-06-08 00:21:52 +00005519 }
5520 }
5521
5522 /*
drh6019e162001-07-02 17:51:45 +00005523 ** Figure out the number of pages needed to hold all nCell cells.
5524 ** Store this number in "k". Also compute szNew[] which is the total
5525 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005526 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005527 ** cntNew[k] should equal nCell.
5528 **
drh96f5b762004-05-16 16:24:36 +00005529 ** Values computed by this block:
5530 **
5531 ** k: The total number of sibling pages
5532 ** szNew[i]: Spaced used on the i-th sibling page.
5533 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5534 ** the right of the i-th sibling page.
5535 ** usableSpace: Number of bytes of space available on each sibling.
5536 **
drh8b2f49b2001-06-08 00:21:52 +00005537 */
drh43605152004-05-29 21:46:49 +00005538 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005539 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005540 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005541 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005542 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005543 szNew[k] = subtotal - szCell[i];
5544 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005545 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005546 subtotal = 0;
5547 k++;
5548 }
5549 }
5550 szNew[k] = subtotal;
5551 cntNew[k] = nCell;
5552 k++;
drh96f5b762004-05-16 16:24:36 +00005553
5554 /*
5555 ** The packing computed by the previous block is biased toward the siblings
5556 ** on the left side. The left siblings are always nearly full, while the
5557 ** right-most sibling might be nearly empty. This block of code attempts
5558 ** to adjust the packing of siblings to get a better balance.
5559 **
5560 ** This adjustment is more than an optimization. The packing above might
5561 ** be so out of balance as to be illegal. For example, the right-most
5562 ** sibling might be completely empty. This adjustment is not optional.
5563 */
drh6019e162001-07-02 17:51:45 +00005564 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005565 int szRight = szNew[i]; /* Size of sibling on the right */
5566 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5567 int r; /* Index of right-most cell in left sibling */
5568 int d; /* Index of first cell to the left of right sibling */
5569
5570 r = cntNew[i-1] - 1;
5571 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005572 assert( d<nMaxCells );
5573 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005574 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5575 szRight += szCell[d] + 2;
5576 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005577 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005578 r = cntNew[i-1] - 1;
5579 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005580 }
drh96f5b762004-05-16 16:24:36 +00005581 szNew[i] = szRight;
5582 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005583 }
drh09d0deb2005-08-02 17:13:09 +00005584
danielk19776f235cc2009-06-04 14:46:08 +00005585 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005586 ** a virtual root page. A virtual root page is when the real root
5587 ** page is page 1 and we are the only child of that page.
5588 */
5589 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005590
5591 /*
drh6b308672002-07-08 02:16:37 +00005592 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005593 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005594 assert( apOld[0]->pgno>1 );
5595 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005596 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005597 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005598 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005599 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005600 pgnoNew[i] = pgnoOld[i];
5601 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005602 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005603 nNew++;
danielk197728129562005-01-11 10:25:06 +00005604 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005605 }else{
drh7aa8f852006-03-28 00:24:44 +00005606 assert( i>0 );
drh4f0c5872007-03-26 22:05:01 +00005607 rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0);
drh6b308672002-07-08 02:16:37 +00005608 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005609 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005610 nNew++;
drh6b308672002-07-08 02:16:37 +00005611 }
drh8b2f49b2001-06-08 00:21:52 +00005612 }
5613
danielk1977299b1872004-11-22 10:02:10 +00005614 /* Free any old pages that were not reused as new pages.
5615 */
5616 while( i<nOld ){
5617 rc = freePage(apOld[i]);
5618 if( rc ) goto balance_cleanup;
5619 releasePage(apOld[i]);
5620 apOld[i] = 0;
5621 i++;
5622 }
5623
drh8b2f49b2001-06-08 00:21:52 +00005624 /*
drhf9ffac92002-03-02 19:00:31 +00005625 ** Put the new pages in accending order. This helps to
5626 ** keep entries in the disk file in order so that a scan
5627 ** of the table is a linear scan through the file. That
5628 ** in turn helps the operating system to deliver pages
5629 ** from the disk more rapidly.
5630 **
5631 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005632 ** n is never more than NB (a small constant), that should
5633 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005634 **
drhc3b70572003-01-04 19:44:07 +00005635 ** When NB==3, this one optimization makes the database
5636 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005637 */
5638 for(i=0; i<k-1; i++){
5639 int minV = pgnoNew[i];
5640 int minI = i;
5641 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00005642 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005643 minI = j;
5644 minV = pgnoNew[j];
5645 }
5646 }
5647 if( minI>i ){
5648 int t;
5649 MemPage *pT;
5650 t = pgnoNew[i];
5651 pT = apNew[i];
5652 pgnoNew[i] = pgnoNew[minI];
5653 apNew[i] = apNew[minI];
5654 pgnoNew[minI] = t;
5655 apNew[minI] = pT;
5656 }
5657 }
drha2fce642004-06-05 00:01:44 +00005658 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00005659 pgnoOld[0],
5660 nOld>=2 ? pgnoOld[1] : 0,
5661 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00005662 pgnoNew[0], szNew[0],
5663 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
5664 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00005665 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
5666 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00005667
drhf9ffac92002-03-02 19:00:31 +00005668 /*
drh14acc042001-06-10 19:56:58 +00005669 ** Evenly distribute the data in apCell[] across the new pages.
5670 ** Insert divider cells into pParent as necessary.
5671 */
5672 j = 0;
5673 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005674 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005675 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005676 assert( j<nMaxCells );
drh4b70f112004-05-02 21:12:19 +00005677 assert( pNew->pgno==pgnoNew[i] );
drh10131482008-07-11 03:34:09 +00005678 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005679 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005680 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005681 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005682
danielk1977ac11ee62005-01-15 12:45:51 +00005683 /* If this is an auto-vacuum database, update the pointer map entries
5684 ** that point to the siblings that were rearranged. These can be: left
5685 ** children of cells, the right-child of the page, or overflow pages
5686 ** pointed to by cells.
5687 */
danielk197785d90ca2008-07-19 14:25:15 +00005688 if( ISAUTOVACUUM ){
danielk1977ac11ee62005-01-15 12:45:51 +00005689 for(k=j; k<cntNew[i]; k++){
danielk1977634f2982005-03-28 08:44:07 +00005690 assert( k<nMaxCells );
danielk1977ac11ee62005-01-15 12:45:51 +00005691 if( aFrom[k]==0xFF || apCopy[aFrom[k]]->pgno!=pNew->pgno ){
danielk197779a40da2005-01-16 08:00:01 +00005692 rc = ptrmapPutOvfl(pNew, k-j);
danielk197787c52b52008-07-19 11:49:07 +00005693 if( rc==SQLITE_OK && leafCorrection==0 ){
5694 rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno);
5695 }
danielk197779a40da2005-01-16 08:00:01 +00005696 if( rc!=SQLITE_OK ){
5697 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005698 }
5699 }
5700 }
5701 }
danielk1977ac11ee62005-01-15 12:45:51 +00005702
5703 j = cntNew[i];
5704
5705 /* If the sibling page assembled above was not the right-most sibling,
5706 ** insert a divider cell into the parent page.
5707 */
drh14acc042001-06-10 19:56:58 +00005708 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005709 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005710 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005711 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005712
5713 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005714 pCell = apCell[j];
5715 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005716 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005717 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005718 memcpy(&pNew->aData[8], pCell, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005719 if( ISAUTOVACUUM
danielk197787c52b52008-07-19 11:49:07 +00005720 && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno)
5721 ){
5722 rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno);
5723 if( rc!=SQLITE_OK ){
5724 goto balance_cleanup;
5725 }
5726 }
drh8b18dd42004-05-12 19:18:15 +00005727 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005728 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005729 ** then there is no divider cell in apCell[]. Instead, the divider
5730 ** cell consists of the integer key for the right-most cell of
5731 ** the sibling-page assembled above only.
5732 */
drh6f11bef2004-05-13 01:12:56 +00005733 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005734 j--;
drh16a9b832007-05-05 18:39:25 +00005735 sqlite3BtreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005736 pCell = pTemp;
danielk197780929b32009-06-09 11:34:10 +00005737 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00005738 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005739 }else{
5740 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005741 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005742 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005743 ** bytes, then it may actually be smaller than this
5744 ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005745 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005746 ** insertCell(), so reparse the cell now.
5747 **
5748 ** Note that this can never happen in an SQLite data file, as all
5749 ** cells are at least 4 bytes. It only happens in b-trees used
5750 ** to evaluate "IN (SELECT ...)" and similar clauses.
5751 */
5752 if( szCell[j]==4 ){
5753 assert(leafCorrection==4);
5754 sz = cellSizePtr(pParent, pCell);
5755 }
drh4b70f112004-05-02 21:12:19 +00005756 }
danielk19776067a9b2009-06-09 09:41:00 +00005757 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00005758 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00005759 assert( iOvflSpace<=pBt->pageSize );
danielk1977a3ad5e72005-01-07 08:56:44 +00005760 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4);
danielk1977e80463b2004-11-03 03:01:16 +00005761 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00005762 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005763 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
danielk197785d90ca2008-07-19 14:25:15 +00005764
danielk1977ac11ee62005-01-15 12:45:51 +00005765 /* If this is an auto-vacuum database, and not a leaf-data tree,
5766 ** then update the pointer map with an entry for the overflow page
5767 ** that the cell just inserted points to (if any).
5768 */
danielk197785d90ca2008-07-19 14:25:15 +00005769 if( ISAUTOVACUUM && !leafData ){
danielk197779a40da2005-01-16 08:00:01 +00005770 rc = ptrmapPutOvfl(pParent, nxDiv);
5771 if( rc!=SQLITE_OK ){
5772 goto balance_cleanup;
danielk1977ac11ee62005-01-15 12:45:51 +00005773 }
5774 }
drh14acc042001-06-10 19:56:58 +00005775 j++;
5776 nxDiv++;
5777 }
danielk197787c52b52008-07-19 11:49:07 +00005778
danielk197787c52b52008-07-19 11:49:07 +00005779 /* Set the pointer-map entry for the new sibling page. */
danielk197785d90ca2008-07-19 14:25:15 +00005780 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005781 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5782 if( rc!=SQLITE_OK ){
5783 goto balance_cleanup;
5784 }
5785 }
drh14acc042001-06-10 19:56:58 +00005786 }
drh6019e162001-07-02 17:51:45 +00005787 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00005788 assert( nOld>0 );
5789 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00005790 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00005791 u8 *zChild = &apCopy[nOld-1]->aData[8];
5792 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
danielk197785d90ca2008-07-19 14:25:15 +00005793 if( ISAUTOVACUUM ){
danielk197787c52b52008-07-19 11:49:07 +00005794 rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno);
5795 if( rc!=SQLITE_OK ){
5796 goto balance_cleanup;
5797 }
5798 }
drh14acc042001-06-10 19:56:58 +00005799 }
drhc5053fb2008-11-27 02:22:10 +00005800 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh43605152004-05-29 21:46:49 +00005801 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00005802 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00005803 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00005804 }else{
5805 /* Right-most sibling is the left child of the first entry in pParent
5806 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00005807 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00005808 }
5809
5810 /*
drh3a4c1412004-05-09 20:40:11 +00005811 ** Balance the parent page. Note that the current page (pPage) might
danielk1977ac11ee62005-01-15 12:45:51 +00005812 ** have been added to the freelist so it might no longer be initialized.
drh3a4c1412004-05-09 20:40:11 +00005813 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00005814 */
danielk197771d5d2c2008-09-29 11:49:47 +00005815 assert( pParent->isInit );
drhfacf0302008-06-17 15:12:00 +00005816 sqlite3ScratchFree(apCell);
drhe5ae5732008-06-15 02:51:47 +00005817 apCell = 0;
danielk1977a4124bd2008-12-23 10:37:47 +00005818 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
5819 pPage->pgno, nOld, nNew, nCell));
drhda200cc2004-05-09 11:51:38 +00005820
drh8b2f49b2001-06-08 00:21:52 +00005821 /*
drh14acc042001-06-10 19:56:58 +00005822 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00005823 */
drh14acc042001-06-10 19:56:58 +00005824balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00005825 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00005826 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00005827 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00005828 }
drh14acc042001-06-10 19:56:58 +00005829 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00005830 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00005831 }
danielk1977eaa06f62008-09-18 17:34:44 +00005832
drh8b2f49b2001-06-08 00:21:52 +00005833 return rc;
5834}
5835
5836/*
danielk1977a50d9aa2009-06-08 14:49:45 +00005837** This function is used to copy the contents of the b-tree node stored
5838** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5839** the pointer-map entries for each child page are updated so that the
5840** parent page stored in the pointer map is page pTo. If pFrom contained
5841** any cells with overflow page pointers, then the corresponding pointer
5842** map entries are also updated so that the parent page is page pTo.
5843**
5844** If pFrom is currently carrying any overflow cells (entries in the
5845** MemPage.aOvfl[] array), they are not copied to pTo.
5846**
5847** Before returning, page pTo is reinitialized using sqlite3BtreeInitPage().
5848**
5849** The performance of this function is not critical. It is only used by
5850** the balance_shallower() and balance_deeper() procedures, neither of
5851** which are called often under normal circumstances.
5852*/
5853static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5854 BtShared * const pBt = pFrom->pBt;
5855 u8 * const aFrom = pFrom->aData;
5856 u8 * const aTo = pTo->aData;
5857 int const iFromHdr = pFrom->hdrOffset;
5858 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5859 int rc = SQLITE_OK;
5860 int iData;
5861
5862 assert( pFrom->isInit );
5863 assert( pFrom->nFree>=iToHdr );
5864 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5865
5866 /* Copy the b-tree node content from page pFrom to page pTo. */
5867 iData = get2byte(&aFrom[iFromHdr+5]);
5868 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5869 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5870
5871 /* Reinitialize page pTo so that the contents of the MemPage structure
5872 ** match the new data. The initialization of pTo "cannot" fail, as the
5873 ** data copied from pFrom is known to be valid. */
5874 pTo->isInit = 0;
5875 TESTONLY(rc = ) sqlite3BtreeInitPage(pTo);
5876 assert( rc==SQLITE_OK );
5877
5878 /* If this is an auto-vacuum database, update the pointer-map entries
5879 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5880 if( ISAUTOVACUUM ){
5881 rc = setChildPtrmaps(pTo);
5882 }
5883 return rc;
5884}
5885
5886/*
5887** This routine is called on the root page of a btree when the root
5888** page contains no cells. This is an opportunity to make the tree
drh43605152004-05-29 21:46:49 +00005889** shallower by one level.
5890*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005891static int balance_shallower(MemPage *pRoot){
danielk1977a50d9aa2009-06-08 14:49:45 +00005892 /* The root page is empty but has one child. Transfer the
5893 ** information from that one child into the root page if it
5894 ** will fit. This reduces the depth of the tree by one.
5895 **
5896 ** If the root page is page 1, it has less space available than
5897 ** its child (due to the 100 byte header that occurs at the beginning
5898 ** of the database fle), so it might not be able to hold all of the
5899 ** information currently contained in the child. If this is the
5900 ** case, then do not do the transfer. Leave page 1 empty except
5901 ** for the right-pointer to the child page. The child page becomes
5902 ** the virtual root of the tree.
5903 */
5904 int rc = SQLITE_OK; /* Return code */
5905 int const hdr = pRoot->hdrOffset; /* Offset of root page header */
5906 MemPage *pChild; /* Only child of pRoot */
5907 Pgno const pgnoChild = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5908
5909 assert( pRoot->nCell==0 );
5910 assert( sqlite3_mutex_held(pRoot->pBt->mutex) );
5911 assert( !pRoot->leaf );
5912 assert( pgnoChild>0 );
5913 assert( pgnoChild<=pagerPagecount(pRoot->pBt) );
5914 assert( hdr==0 || pRoot->pgno==1 );
5915
5916 rc = sqlite3BtreeGetPage(pRoot->pBt, pgnoChild, &pChild, 0);
5917 if( rc==SQLITE_OK ){
5918 if( pChild->nFree>=hdr ){
5919 if( hdr ){
danielk19776067a9b2009-06-09 09:41:00 +00005920 rc = defragmentPage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00005921 }
5922 if( rc==SQLITE_OK ){
5923 rc = copyNodeContent(pChild, pRoot);
5924 }
5925 if( rc==SQLITE_OK ){
drh9bf9e9c2008-12-05 20:01:43 +00005926 rc = freePage(pChild);
drh43605152004-05-29 21:46:49 +00005927 }
5928 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00005929 /* The child has more information that will fit on the root.
5930 ** The tree is already balanced. Do nothing. */
5931 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
drh43605152004-05-29 21:46:49 +00005932 }
drh43605152004-05-29 21:46:49 +00005933 releasePage(pChild);
5934 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005935
drh2e38c322004-09-03 18:38:44 +00005936 return rc;
drh43605152004-05-29 21:46:49 +00005937}
5938
5939
5940/*
danielk1977a50d9aa2009-06-08 14:49:45 +00005941** This function is called when the root page of a b-tree structure is
5942** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00005943**
danielk1977a50d9aa2009-06-08 14:49:45 +00005944** A new child page is allocated and the contents of the current root
5945** page, including overflow cells, are copied into the child. The root
5946** page is then overwritten to make it an empty page with the right-child
5947** pointer pointing to the new page.
5948**
5949** Before returning, all pointer-map entries corresponding to pages
5950** that the new child-page now contains pointers to are updated. The
5951** entry corresponding to the new right-child pointer of the root
5952** page is also updated.
5953**
5954** If successful, *ppChild is set to contain a reference to the child
5955** page and SQLITE_OK is returned. In this case the caller is required
5956** to call releasePage() on *ppChild exactly once. If an error occurs,
5957** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00005958*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005959static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
5960 int rc; /* Return value from subprocedures */
5961 MemPage *pChild = 0; /* Pointer to a new child page */
5962 Pgno pgnoChild; /* Page number of the new child page */
5963 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00005964
danielk1977a50d9aa2009-06-08 14:49:45 +00005965 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00005966 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00005967
danielk1977a50d9aa2009-06-08 14:49:45 +00005968 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
5969 ** page that will become the new right-child of pPage. Copy the contents
5970 ** of the node stored on pRoot into the new child page.
5971 */
5972 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
5973 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
5974 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
5975 || (ISAUTOVACUUM &&
5976 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
5977 ){
5978 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00005979 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00005980 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005981 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005982 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
5983 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
5984 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00005985
danielk1977a50d9aa2009-06-08 14:49:45 +00005986 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
5987
5988 /* Copy the overflow cells from pRoot to pChild */
5989 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
5990 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00005991
5992 /* Zero the contents of pRoot. Then install pChild as the right-child. */
5993 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
5994 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
5995
5996 *ppChild = pChild;
5997 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00005998}
5999
6000/*
danielk197771d5d2c2008-09-29 11:49:47 +00006001** The page that pCur currently points to has just been modified in
6002** some way. This function figures out if this modification means the
6003** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006004** routine. Balancing routines are:
6005**
6006** balance_quick()
6007** balance_shallower()
6008** balance_deeper()
6009** balance_nonroot()
6010**
6011** If built with SQLITE_DEBUG, pCur->pagesShuffled is set to true if
6012** balance_shallower(), balance_deeper() or balance_nonroot() is called.
6013** If none of these functions are invoked, pCur->pagesShuffled is left
6014** unmodified.
drh43605152004-05-29 21:46:49 +00006015*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006016static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006017 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006018 const int nMin = pCur->pBt->usableSize * 2 / 3;
6019 u8 aBalanceQuickSpace[13];
6020 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006021
shane75ac1de2009-06-09 18:58:52 +00006022 TESTONLY( int balance_quick_called = 0 );
6023 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006024
6025 do {
6026 int iPage = pCur->iPage;
6027 MemPage *pPage = pCur->apPage[iPage];
6028
6029 if( iPage==0 ){
6030 if( pPage->nOverflow ){
6031 /* The root page of the b-tree is overfull. In this case call the
6032 ** balance_deeper() function to create a new child for the root-page
6033 ** and copy the current contents of the root-page to it. The
6034 ** next iteration of the do-loop will balance the child page.
6035 */
6036 assert( (balance_deeper_called++)==0 );
6037 rc = balance_deeper(pPage, &pCur->apPage[1]);
6038 if( rc==SQLITE_OK ){
6039 pCur->iPage = 1;
6040 pCur->aiIdx[0] = 0;
6041 pCur->aiIdx[1] = 0;
6042 assert( pCur->apPage[1]->nOverflow );
6043 }
6044 VVA_ONLY( pCur->pagesShuffled = 1 );
6045 }else{
6046 /* The root page of the b-tree is now empty. If the root-page is not
6047 ** also a leaf page, it will have a single child page. Call
6048 ** balance_shallower to attempt to copy the contents of the single
6049 ** child-page into the root page (this may not be possible if the
6050 ** root page is page 1).
6051 **
6052 ** Whether or not this is possible , the tree is now balanced.
6053 ** Therefore is no next iteration of the do-loop.
6054 */
6055 if( pPage->nCell==0 && !pPage->leaf ){
6056 rc = balance_shallower(pPage);
6057 VVA_ONLY( pCur->pagesShuffled = 1 );
6058 }
6059 break;
6060 }
6061 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6062 break;
6063 }else{
6064 MemPage * const pParent = pCur->apPage[iPage-1];
6065 int const iIdx = pCur->aiIdx[iPage-1];
6066
6067 rc = sqlite3PagerWrite(pParent->pDbPage);
6068 if( rc==SQLITE_OK ){
6069#ifndef SQLITE_OMIT_QUICKBALANCE
6070 if( pPage->hasData
6071 && pPage->nOverflow==1
6072 && pPage->aOvfl[0].idx==pPage->nCell
6073 && pParent->pgno!=1
6074 && pParent->nCell==iIdx
6075 ){
6076 /* Call balance_quick() to create a new sibling of pPage on which
6077 ** to store the overflow cell. balance_quick() inserts a new cell
6078 ** into pParent, which may cause pParent overflow. If this
6079 ** happens, the next interation of the do-loop will balance pParent
6080 ** use either balance_nonroot() or balance_deeper(). Until this
6081 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6082 ** buffer.
6083 **
6084 ** The purpose of the following assert() is to check that only a
6085 ** single call to balance_quick() is made for each call to this
6086 ** function. If this were not verified, a subtle bug involving reuse
6087 ** of the aBalanceQuickSpace[] might sneak in.
6088 */
6089 assert( (balance_quick_called++)==0 );
6090 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6091 }else
6092#endif
6093 {
6094 /* In this case, call balance_nonroot() to redistribute cells
6095 ** between pPage and up to 2 of its sibling pages. This involves
6096 ** modifying the contents of pParent, which may cause pParent to
6097 ** become overfull or underfull. The next iteration of the do-loop
6098 ** will balance the parent page to correct this.
6099 **
6100 ** If the parent page becomes overfull, the overflow cell or cells
6101 ** are stored in the pSpace buffer allocated immediately below.
6102 ** A subsequent iteration of the do-loop will deal with this by
6103 ** calling balance_nonroot() (balance_deeper() may be called first,
6104 ** but it doesn't deal with overflow cells - just moves them to a
6105 ** different page). Once this subsequent call to balance_nonroot()
6106 ** has completed, it is safe to release the pSpace buffer used by
6107 ** the previous call, as the overflow cell data will have been
6108 ** copied either into the body of a database page or into the new
6109 ** pSpace buffer passed to the latter call to balance_nonroot().
6110 */
6111 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
6112 rc = balance_nonroot(pParent, iIdx, pSpace);
6113 if( pFree ){
6114 /* If pFree is not NULL, it points to the pSpace buffer used
6115 ** by a previous call to balance_nonroot(). Its contents are
6116 ** now stored either on real database pages or within the
6117 ** new pSpace buffer, so it may be safely freed here. */
6118 sqlite3PageFree(pFree);
6119 }
6120
6121 /* The pSpace buffer will be freed after the next call to
6122 ** balance_nonroot(), or just before this function returns, whichever
6123 ** comes first. */
6124 pFree = pSpace;
6125 VVA_ONLY( pCur->pagesShuffled = 1 );
6126 }
6127 }
6128
6129 pPage->nOverflow = 0;
6130
6131 /* The next iteration of the do-loop balances the parent page. */
6132 releasePage(pPage);
6133 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006134 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006135 }while( rc==SQLITE_OK );
6136
6137 if( pFree ){
6138 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006139 }
6140 return rc;
6141}
6142
6143/*
drh8dcd7ca2004-08-08 19:43:29 +00006144** This routine checks all cursors that point to table pgnoRoot.
drh980b1a72006-08-16 16:42:48 +00006145** If any of those cursors were opened with wrFlag==0 in a different
6146** database connection (a database connection that shares the pager
6147** cache with the current connection) and that other connection
6148** is not in the ReadUncommmitted state, then this routine returns
6149** SQLITE_LOCKED.
danielk1977299b1872004-11-22 10:02:10 +00006150**
drh11b57d62009-02-24 19:21:41 +00006151** As well as cursors with wrFlag==0, cursors with
6152** isIncrblobHandle==1 are also considered 'read' cursors because
6153** incremental blob cursors are used for both reading and writing.
danielk19773588ceb2008-06-10 17:30:26 +00006154**
6155** When pgnoRoot is the root page of an intkey table, this function is also
6156** responsible for invalidating incremental blob cursors when the table row
6157** on which they are opened is deleted or modified. Cursors are invalidated
6158** according to the following rules:
6159**
6160** 1) When BtreeClearTable() is called to completely delete the contents
6161** of a B-Tree table, pExclude is set to zero and parameter iRow is
6162** set to non-zero. In this case all incremental blob cursors open
6163** on the table rooted at pgnoRoot are invalidated.
6164**
6165** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to
6166** modify a table row via an SQL statement, pExclude is set to the
6167** write cursor used to do the modification and parameter iRow is set
6168** to the integer row id of the B-Tree entry being modified. Unless
6169** pExclude is itself an incremental blob cursor, then all incremental
6170** blob cursors open on row iRow of the B-Tree are invalidated.
6171**
6172** 3) If both pExclude and iRow are set to zero, no incremental blob
6173** cursors are invalidated.
drhf74b8d92002-09-01 23:20:45 +00006174*/
drh11b57d62009-02-24 19:21:41 +00006175static int checkForReadConflicts(
6176 Btree *pBtree, /* The database file to check */
6177 Pgno pgnoRoot, /* Look for read cursors on this btree */
6178 BtCursor *pExclude, /* Ignore this cursor */
6179 i64 iRow /* The rowid that might be changing */
danielk19773588ceb2008-06-10 17:30:26 +00006180){
danielk1977299b1872004-11-22 10:02:10 +00006181 BtCursor *p;
drh980b1a72006-08-16 16:42:48 +00006182 BtShared *pBt = pBtree->pBt;
drhe5fe6902007-12-07 18:55:28 +00006183 sqlite3 *db = pBtree->db;
drh1fee73e2007-08-29 04:00:57 +00006184 assert( sqlite3BtreeHoldsMutex(pBtree) );
danielk1977299b1872004-11-22 10:02:10 +00006185 for(p=pBt->pCursor; p; p=p->pNext){
drh980b1a72006-08-16 16:42:48 +00006186 if( p==pExclude ) continue;
drh980b1a72006-08-16 16:42:48 +00006187 if( p->pgnoRoot!=pgnoRoot ) continue;
danielk19773588ceb2008-06-10 17:30:26 +00006188#ifndef SQLITE_OMIT_INCRBLOB
6189 if( p->isIncrblobHandle && (
6190 (!pExclude && iRow)
6191 || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow)
6192 )){
6193 p->eState = CURSOR_INVALID;
6194 }
6195#endif
6196 if( p->eState!=CURSOR_VALID ) continue;
6197 if( p->wrFlag==0
6198#ifndef SQLITE_OMIT_INCRBLOB
6199 || p->isIncrblobHandle
6200#endif
6201 ){
drhe5fe6902007-12-07 18:55:28 +00006202 sqlite3 *dbOther = p->pBtree->db;
danielk1977404ca072009-03-16 13:19:36 +00006203 assert(dbOther);
6204 if( dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0 ){
6205 sqlite3ConnectionBlocked(db, dbOther);
6206 return SQLITE_LOCKED_SHAREDCACHE;
drh980b1a72006-08-16 16:42:48 +00006207 }
danielk1977299b1872004-11-22 10:02:10 +00006208 }
6209 }
drhf74b8d92002-09-01 23:20:45 +00006210 return SQLITE_OK;
6211}
6212
6213/*
drh3b7511c2001-05-26 13:15:44 +00006214** Insert a new record into the BTree. The key is given by (pKey,nKey)
6215** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006216** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006217** is left pointing at a random location.
6218**
6219** For an INTKEY table, only the nKey value of the key is used. pKey is
6220** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006221**
6222** If the seekResult parameter is non-zero, then a successful call to
6223** sqlite3BtreeMoveto() to seek cursor pCur to (pKey, nKey) has already
6224** been performed. seekResult is the search result returned (a negative
6225** number if pCur points at an entry that is smaller than (pKey, nKey), or
6226** a positive value if pCur points at an etry that is larger than
6227** (pKey, nKey)).
6228**
6229** If the seekResult parameter is 0, then cursor pCur may point to any
6230** entry or to no entry at all. In this case this function has to seek
6231** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006232*/
drh3aac2dd2004-04-26 14:10:20 +00006233int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006234 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006235 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006236 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006237 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006238 int appendBias, /* True if this is likely an append */
6239 int seekResult /* Result of prior sqlite3BtreeMoveto() call */
drh3b7511c2001-05-26 13:15:44 +00006240){
drh3b7511c2001-05-26 13:15:44 +00006241 int rc;
danielk1977de630352009-05-04 11:42:29 +00006242 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006243 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006244 int idx;
drh3b7511c2001-05-26 13:15:44 +00006245 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006246 Btree *p = pCur->pBtree;
6247 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006248 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006249 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006250
drh1fee73e2007-08-29 04:00:57 +00006251 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006252 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006253 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006254 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006255 rc = checkForReadConflicts(pCur->pBtree, pCur->pgnoRoot, pCur, nKey);
6256 if( rc ){
6257 /* The table pCur points to has a read lock */
6258 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6259 return rc;
drhf74b8d92002-09-01 23:20:45 +00006260 }
drhfb982642007-08-30 01:19:59 +00006261 if( pCur->eState==CURSOR_FAULT ){
6262 return pCur->skip;
6263 }
danielk1977da184232006-01-05 11:34:32 +00006264
danielk19779c3acf32009-05-02 07:36:49 +00006265 /* Save the positions of any other cursors open on this table.
6266 **
6267 ** In some cases, the call to sqlite3BtreeMoveto() below is a no-op. For
6268 ** example, when inserting data into a table with auto-generated integer
6269 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6270 ** integer key to use. It then calls this function to actually insert the
6271 ** data into the intkey B-Tree. In this case sqlite3BtreeMoveto() recognizes
6272 ** that the cursor is already where it needs to be and returns without
6273 ** doing any work. To avoid thwarting these optimizations, it is important
6274 ** not to clear the cursor here.
6275 */
danielk1977de630352009-05-04 11:42:29 +00006276 if(
6277 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
drhe63d9992008-08-13 19:11:48 +00006278 SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006279 )){
danielk1977da184232006-01-05 11:34:32 +00006280 return rc;
6281 }
6282
danielk197771d5d2c2008-09-29 11:49:47 +00006283 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006284 assert( pPage->intKey || nKey>=0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006285 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006286 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006287 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6288 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6289 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006290 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006291 allocateTempSpace(pBt);
6292 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006293 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006294 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006295 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006296 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006297 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006298 idx = pCur->aiIdx[pCur->iPage];
danielk1977da184232006-01-05 11:34:32 +00006299 if( loc==0 && CURSOR_VALID==pCur->eState ){
drha9121e42008-02-19 14:59:35 +00006300 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006301 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006302 rc = sqlite3PagerWrite(pPage->pDbPage);
6303 if( rc ){
6304 goto end_insert;
6305 }
danielk197771d5d2c2008-09-29 11:49:47 +00006306 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006307 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006308 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006309 }
drh43605152004-05-29 21:46:49 +00006310 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006311 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006312 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006313 rc = dropCell(pPage, idx, szOld);
6314 if( rc!=SQLITE_OK ) {
6315 goto end_insert;
6316 }
drh7c717f72001-06-24 20:39:41 +00006317 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006318 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006319 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006320 }else{
drh4b70f112004-05-02 21:12:19 +00006321 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006322 }
danielk197771d5d2c2008-09-29 11:49:47 +00006323 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006324 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006325
danielk1977a50d9aa2009-06-08 14:49:45 +00006326 /* If no error has occured and pPage has an overflow cell, call balance()
6327 ** to redistribute the cells within the tree. Since balance() may move
6328 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6329 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006330 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006331 ** Previous versions of SQLite called moveToRoot() to move the cursor
6332 ** back to the root page as balance() used to invalidate the contents
6333 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. This is no longer necessary,
6334 ** as balance() always leaves the cursor pointing to a valid entry.
danielk19773f632d52009-05-02 10:03:09 +00006335 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006336 ** There is a subtle but important optimization here too. When inserting
6337 ** multiple records into an intkey b-tree using a single cursor (as can
6338 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6339 ** is advantageous to leave the cursor pointing to the last entry in
6340 ** the b-tree if possible. If the cursor is left pointing to the last
6341 ** entry in the table, and the next row inserted has an integer key
6342 ** larger than the largest existing key, it is possible to insert the
6343 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006344 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006345 pCur->info.nSize = 0;
6346 pCur->validNKey = 0;
6347 if( rc==SQLITE_OK && pPage->nOverflow ){
6348 pCur->atLast = 0;
6349 rc = balance(pCur);
6350
6351 /* Must make sure nOverflow is reset to zero even if the balance()
6352 ** fails. Internal data structure corruption will result otherwise. */
6353 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk19773f632d52009-05-02 10:03:09 +00006354 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006355 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006356
drh2e38c322004-09-03 18:38:44 +00006357end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006358 return rc;
6359}
6360
6361/*
drh4b70f112004-05-02 21:12:19 +00006362** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006363** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006364*/
drh3aac2dd2004-04-26 14:10:20 +00006365int sqlite3BtreeDelete(BtCursor *pCur){
danielk197771d5d2c2008-09-29 11:49:47 +00006366 MemPage *pPage = pCur->apPage[pCur->iPage];
6367 int idx;
drh4b70f112004-05-02 21:12:19 +00006368 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00006369 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00006370 Pgno pgnoChild = 0;
drhd677b3d2007-08-20 22:48:41 +00006371 Btree *p = pCur->pBtree;
6372 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006373
drh1fee73e2007-08-29 04:00:57 +00006374 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00006375 assert( pPage->isInit );
drh64022502009-01-09 14:11:04 +00006376 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006377 assert( !pBt->readOnly );
drhfb982642007-08-30 01:19:59 +00006378 if( pCur->eState==CURSOR_FAULT ){
6379 return pCur->skip;
6380 }
drh64022502009-01-09 14:11:04 +00006381 if( NEVER(pCur->aiIdx[pCur->iPage]>=pPage->nCell) ){
drhbd03cae2001-06-02 02:40:57 +00006382 return SQLITE_ERROR; /* The cursor is not pointing to anything */
6383 }
drh64022502009-01-09 14:11:04 +00006384 assert( pCur->wrFlag );
danielk1977404ca072009-03-16 13:19:36 +00006385 rc = checkForReadConflicts(p, pCur->pgnoRoot, pCur, pCur->info.nKey);
6386 if( rc!=SQLITE_OK ){
6387 /* The table pCur points to has a read lock */
6388 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
6389 return rc;
drhf74b8d92002-09-01 23:20:45 +00006390 }
danielk1977da184232006-01-05 11:34:32 +00006391
6392 /* Restore the current cursor position (a no-op if the cursor is not in
6393 ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors
danielk19773b8a05f2007-03-19 17:44:26 +00006394 ** open on the same table. Then call sqlite3PagerWrite() on the page
danielk1977da184232006-01-05 11:34:32 +00006395 ** that the entry will be deleted from.
6396 */
6397 if(
drha3460582008-07-11 21:02:53 +00006398 (rc = restoreCursorPosition(pCur))!=0 ||
drhd1167392006-01-23 13:00:35 +00006399 (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 ||
danielk19773b8a05f2007-03-19 17:44:26 +00006400 (rc = sqlite3PagerWrite(pPage->pDbPage))!=0
danielk1977da184232006-01-05 11:34:32 +00006401 ){
6402 return rc;
6403 }
danielk1977e6efa742004-11-10 11:55:10 +00006404
drh85b623f2007-12-13 21:54:09 +00006405 /* Locate the cell within its page and leave pCell pointing to the
danielk1977e6efa742004-11-10 11:55:10 +00006406 ** data. The clearCell() call frees any overflow pages associated with the
6407 ** cell. The cell itself is still intact.
6408 */
danielk197771d5d2c2008-09-29 11:49:47 +00006409 idx = pCur->aiIdx[pCur->iPage];
6410 pCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006411 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006412 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00006413 }
danielk197728129562005-01-11 10:25:06 +00006414 rc = clearCell(pPage, pCell);
drhd677b3d2007-08-20 22:48:41 +00006415 if( rc ){
drhd677b3d2007-08-20 22:48:41 +00006416 return rc;
6417 }
danielk1977e6efa742004-11-10 11:55:10 +00006418
drh4b70f112004-05-02 21:12:19 +00006419 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00006420 /*
drh5e00f6c2001-09-13 13:46:56 +00006421 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00006422 ** do something we will leave a hole on an internal page.
6423 ** We have to fill the hole by moving in a cell from a leaf. The
6424 ** next Cell after the one to be deleted is guaranteed to exist and
danielk1977299b1872004-11-22 10:02:10 +00006425 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00006426 */
drh14acc042001-06-10 19:56:58 +00006427 BtCursor leafCur;
drh1bd10f82008-12-10 21:19:56 +00006428 MemPage *pLeafPage = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006429
drh4b70f112004-05-02 21:12:19 +00006430 unsigned char *pNext;
danielk1977299b1872004-11-22 10:02:10 +00006431 int notUsed;
danielk19776b456a22005-03-21 04:04:02 +00006432 unsigned char *tempCell = 0;
drh44845222008-07-17 18:39:57 +00006433 assert( !pPage->intKey );
drh16a9b832007-05-05 18:39:25 +00006434 sqlite3BtreeGetTempCursor(pCur, &leafCur);
danielk1977299b1872004-11-22 10:02:10 +00006435 rc = sqlite3BtreeNext(&leafCur, &notUsed);
danielk19776b456a22005-03-21 04:04:02 +00006436 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006437 assert( leafCur.aiIdx[leafCur.iPage]==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00006438 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk197771d5d2c2008-09-29 11:49:47 +00006439 rc = sqlite3PagerWrite(pLeafPage->pDbPage);
danielk19776b456a22005-03-21 04:04:02 +00006440 }
6441 if( rc==SQLITE_OK ){
danielk19772f78fc62008-09-30 09:31:45 +00006442 int leafCursorInvalid = 0;
drha9121e42008-02-19 14:59:35 +00006443 u16 szNext;
danielk19776b456a22005-03-21 04:04:02 +00006444 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
danielk197771d5d2c2008-09-29 11:49:47 +00006445 pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno));
6446 dropCell(pPage, idx, cellSizePtr(pPage, pCell));
danielk19772f78fc62008-09-30 09:31:45 +00006447 pNext = findCell(pLeafPage, 0);
danielk197771d5d2c2008-09-29 11:49:47 +00006448 szNext = cellSizePtr(pLeafPage, pNext);
danielk19776b456a22005-03-21 04:04:02 +00006449 assert( MX_CELL_SIZE(pBt)>=szNext+4 );
danielk197752ae7242008-03-25 14:24:56 +00006450 allocateTempSpace(pBt);
6451 tempCell = pBt->pTmpSpace;
danielk19776b456a22005-03-21 04:04:02 +00006452 if( tempCell==0 ){
6453 rc = SQLITE_NOMEM;
6454 }
danielk19778ea1cfa2008-01-01 06:19:02 +00006455 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00006456 rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0);
danielk19778ea1cfa2008-01-01 06:19:02 +00006457 }
danielk19772f78fc62008-09-30 09:31:45 +00006458
drhf94a1732008-09-30 17:18:17 +00006459
6460 /* The "if" statement in the next code block is critical. The
6461 ** slightest error in that statement would allow SQLite to operate
6462 ** correctly most of the time but produce very rare failures. To
6463 ** guard against this, the following macros help to verify that
6464 ** the "if" statement is well tested.
6465 */
6466 testcase( pPage->nOverflow==0 && pPage->nFree<pBt->usableSize*2/3
6467 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6468 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3
6469 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6470 testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1
6471 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6472 testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3
6473 && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 );
6474 testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3))
6475 && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 );
6476
6477
danielk19772f78fc62008-09-30 09:31:45 +00006478 if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) &&
6479 (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3)
6480 ){
drhf94a1732008-09-30 17:18:17 +00006481 /* This branch is taken if the internal node is now either overflowing
6482 ** or underfull and the leaf node will be underfull after the just cell
danielk19772f78fc62008-09-30 09:31:45 +00006483 ** copied to the internal node is deleted from it. This is a special
6484 ** case because the call to balance() to correct the internal node
6485 ** may change the tree structure and invalidate the contents of
6486 ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be
6487 ** used by the balance() required to correct the underfull leaf
6488 ** node.
6489 **
6490 ** The formula used in the expression above are based on facets of
6491 ** the SQLite file-format that do not change over time.
6492 */
drhf94a1732008-09-30 17:18:17 +00006493 testcase( pPage->nFree==pBt->usableSize*2/3+1 );
6494 testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 );
danielk19772f78fc62008-09-30 09:31:45 +00006495 leafCursorInvalid = 1;
6496 }
6497
danielk19778ea1cfa2008-01-01 06:19:02 +00006498 if( rc==SQLITE_OK ){
drhc5053fb2008-11-27 02:22:10 +00006499 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00006500 put4byte(findOverflowCell(pPage, idx), pgnoChild);
drhf94a1732008-09-30 17:18:17 +00006501 VVA_ONLY( pCur->pagesShuffled = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006502 rc = balance(pCur);
danielk19778ea1cfa2008-01-01 06:19:02 +00006503 }
danielk19772f78fc62008-09-30 09:31:45 +00006504
6505 if( rc==SQLITE_OK && leafCursorInvalid ){
6506 /* The leaf-node is now underfull and so the tree needs to be
6507 ** rebalanced. However, the balance() operation on the internal
6508 ** node above may have modified the structure of the B-Tree and
6509 ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[]
6510 ** may not be trusted.
6511 **
6512 ** It is not possible to copy the ancestry from pCur, as the same
6513 ** balance() call has invalidated the pCur->apPage[] and aiIdx[]
6514 ** arrays.
drh7b682802008-09-30 14:06:28 +00006515 **
6516 ** The call to saveCursorPosition() below internally saves the
6517 ** key that leafCur is currently pointing to. Currently, there
6518 ** are two copies of that key in the tree - one here on the leaf
6519 ** page and one on some internal node in the tree. The copy on
6520 ** the leaf node is always the next key in tree-order after the
6521 ** copy on the internal node. So, the call to sqlite3BtreeNext()
6522 ** calls restoreCursorPosition() to point the cursor to the copy
6523 ** stored on the internal node, then advances to the next entry,
6524 ** which happens to be the copy of the key on the internal node.
danielk1977a69fda22008-09-30 16:48:10 +00006525 ** Net effect: leafCur is pointing back to the duplicate cell
6526 ** that needs to be removed, and the leafCur.apPage[] and
6527 ** leafCur.aiIdx[] arrays are correct.
danielk19772f78fc62008-09-30 09:31:45 +00006528 */
drhf94a1732008-09-30 17:18:17 +00006529 VVA_ONLY( Pgno leafPgno = pLeafPage->pgno );
danielk19772f78fc62008-09-30 09:31:45 +00006530 rc = saveCursorPosition(&leafCur);
6531 if( rc==SQLITE_OK ){
6532 rc = sqlite3BtreeNext(&leafCur, &notUsed);
6533 }
6534 pLeafPage = leafCur.apPage[leafCur.iPage];
danielk19775d189852009-04-07 14:38:58 +00006535 assert( rc!=SQLITE_OK || pLeafPage->pgno==leafPgno );
6536 assert( rc!=SQLITE_OK || leafCur.aiIdx[leafCur.iPage]==0 );
danielk19772f78fc62008-09-30 09:31:45 +00006537 }
6538
danielk19770cd1bbd2008-11-26 07:25:52 +00006539 if( SQLITE_OK==rc
6540 && SQLITE_OK==(rc = sqlite3PagerWrite(pLeafPage->pDbPage))
6541 ){
danielk19772f78fc62008-09-30 09:31:45 +00006542 dropCell(pLeafPage, 0, szNext);
drhf94a1732008-09-30 17:18:17 +00006543 VVA_ONLY( leafCur.pagesShuffled = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006544 rc = balance(&leafCur);
drhf94a1732008-09-30 17:18:17 +00006545 assert( leafCursorInvalid || !leafCur.pagesShuffled
6546 || !pCur->pagesShuffled );
danielk19778ea1cfa2008-01-01 06:19:02 +00006547 }
danielk19776b456a22005-03-21 04:04:02 +00006548 }
drh16a9b832007-05-05 18:39:25 +00006549 sqlite3BtreeReleaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00006550 }else{
danielk1977299b1872004-11-22 10:02:10 +00006551 TRACE(("DELETE: table=%d delete from leaf %d\n",
6552 pCur->pgnoRoot, pPage->pgno));
shanedcc50b72008-11-13 18:29:50 +00006553 rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell));
6554 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006555 rc = balance(pCur);
shanedcc50b72008-11-13 18:29:50 +00006556 }
drh5e2f8b92001-05-28 00:41:15 +00006557 }
danielk19776b456a22005-03-21 04:04:02 +00006558 if( rc==SQLITE_OK ){
6559 moveToRoot(pCur);
6560 }
drh5e2f8b92001-05-28 00:41:15 +00006561 return rc;
drh3b7511c2001-05-26 13:15:44 +00006562}
drh8b2f49b2001-06-08 00:21:52 +00006563
6564/*
drhc6b52df2002-01-04 03:09:29 +00006565** Create a new BTree table. Write into *piTable the page
6566** number for the root page of the new table.
6567**
drhab01f612004-05-22 02:55:23 +00006568** The type of type is determined by the flags parameter. Only the
6569** following values of flags are currently in use. Other values for
6570** flags might not work:
6571**
6572** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6573** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006574*/
drhd677b3d2007-08-20 22:48:41 +00006575static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006576 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006577 MemPage *pRoot;
6578 Pgno pgnoRoot;
6579 int rc;
drhd677b3d2007-08-20 22:48:41 +00006580
drh1fee73e2007-08-29 04:00:57 +00006581 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006582 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006583 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006584
danielk1977003ba062004-11-04 02:57:33 +00006585#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006586 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006587 if( rc ){
6588 return rc;
6589 }
danielk1977003ba062004-11-04 02:57:33 +00006590#else
danielk1977687566d2004-11-02 12:56:41 +00006591 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006592 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6593 MemPage *pPageMove; /* The page to move to. */
6594
danielk197720713f32007-05-03 11:43:33 +00006595 /* Creating a new table may probably require moving an existing database
6596 ** to make room for the new tables root page. In case this page turns
6597 ** out to be an overflow page, delete all overflow page-map caches
6598 ** held by open cursors.
6599 */
danielk197792d4d7a2007-05-04 12:05:56 +00006600 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006601
danielk1977003ba062004-11-04 02:57:33 +00006602 /* Read the value of meta[3] from the database to determine where the
6603 ** root page of the new table should go. meta[3] is the largest root-page
6604 ** created so far, so the new root-page is (meta[3]+1).
6605 */
danielk19770d19f7a2009-06-03 11:25:07 +00006606 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
drhd677b3d2007-08-20 22:48:41 +00006607 if( rc!=SQLITE_OK ){
6608 return rc;
6609 }
danielk1977003ba062004-11-04 02:57:33 +00006610 pgnoRoot++;
6611
danielk1977599fcba2004-11-08 07:13:13 +00006612 /* The new root-page may not be allocated on a pointer-map page, or the
6613 ** PENDING_BYTE page.
6614 */
drh72190432008-01-31 14:54:43 +00006615 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006616 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006617 pgnoRoot++;
6618 }
6619 assert( pgnoRoot>=3 );
6620
6621 /* Allocate a page. The page that currently resides at pgnoRoot will
6622 ** be moved to the allocated page (unless the allocated page happens
6623 ** to reside at pgnoRoot).
6624 */
drh4f0c5872007-03-26 22:05:01 +00006625 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006626 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006627 return rc;
6628 }
danielk1977003ba062004-11-04 02:57:33 +00006629
6630 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006631 /* pgnoRoot is the page that will be used for the root-page of
6632 ** the new table (assuming an error did not occur). But we were
6633 ** allocated pgnoMove. If required (i.e. if it was not allocated
6634 ** by extending the file), the current page at position pgnoMove
6635 ** is already journaled.
6636 */
danielk1977003ba062004-11-04 02:57:33 +00006637 u8 eType;
6638 Pgno iPtrPage;
6639
6640 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006641
6642 /* Move the page currently at pgnoRoot to pgnoMove. */
drh16a9b832007-05-05 18:39:25 +00006643 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006644 if( rc!=SQLITE_OK ){
6645 return rc;
6646 }
6647 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drhccae6022005-02-26 17:31:26 +00006648 if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00006649 releasePage(pRoot);
6650 return rc;
6651 }
drhccae6022005-02-26 17:31:26 +00006652 assert( eType!=PTRMAP_ROOTPAGE );
6653 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006654 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006655 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006656
6657 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006658 if( rc!=SQLITE_OK ){
6659 return rc;
6660 }
drh16a9b832007-05-05 18:39:25 +00006661 rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006662 if( rc!=SQLITE_OK ){
6663 return rc;
6664 }
danielk19773b8a05f2007-03-19 17:44:26 +00006665 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006666 if( rc!=SQLITE_OK ){
6667 releasePage(pRoot);
6668 return rc;
6669 }
6670 }else{
6671 pRoot = pPageMove;
6672 }
6673
danielk197742741be2005-01-08 12:42:39 +00006674 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006675 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6676 if( rc ){
6677 releasePage(pRoot);
6678 return rc;
6679 }
danielk1977aef0bf62005-12-30 16:28:01 +00006680 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006681 if( rc ){
6682 releasePage(pRoot);
6683 return rc;
6684 }
danielk197742741be2005-01-08 12:42:39 +00006685
danielk1977003ba062004-11-04 02:57:33 +00006686 }else{
drh4f0c5872007-03-26 22:05:01 +00006687 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006688 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006689 }
6690#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006691 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006692 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006693 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006694 *piTable = (int)pgnoRoot;
6695 return SQLITE_OK;
6696}
drhd677b3d2007-08-20 22:48:41 +00006697int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6698 int rc;
6699 sqlite3BtreeEnter(p);
6700 rc = btreeCreateTable(p, piTable, flags);
6701 sqlite3BtreeLeave(p);
6702 return rc;
6703}
drh8b2f49b2001-06-08 00:21:52 +00006704
6705/*
6706** Erase the given database page and all its children. Return
6707** the page to the freelist.
6708*/
drh4b70f112004-05-02 21:12:19 +00006709static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006710 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006711 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006712 int freePageFlag, /* Deallocate page if true */
6713 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006714){
danielk19776b456a22005-03-21 04:04:02 +00006715 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006716 int rc;
drh4b70f112004-05-02 21:12:19 +00006717 unsigned char *pCell;
6718 int i;
drh8b2f49b2001-06-08 00:21:52 +00006719
drh1fee73e2007-08-29 04:00:57 +00006720 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006721 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006722 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006723 }
6724
danielk197771d5d2c2008-09-29 11:49:47 +00006725 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006726 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006727 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006728 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006729 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006730 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006731 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006732 }
drh4b70f112004-05-02 21:12:19 +00006733 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006734 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006735 }
drha34b6762004-05-07 13:30:42 +00006736 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006737 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006738 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006739 }else if( pnChange ){
6740 assert( pPage->intKey );
6741 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006742 }
6743 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006744 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006745 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006746 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006747 }
danielk19776b456a22005-03-21 04:04:02 +00006748
6749cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006750 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006751 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006752}
6753
6754/*
drhab01f612004-05-22 02:55:23 +00006755** Delete all information from a single table in the database. iTable is
6756** the page number of the root of the table. After this routine returns,
6757** the root page is empty, but still exists.
6758**
6759** This routine will fail with SQLITE_LOCKED if there are any open
6760** read cursors on the table. Open write cursors are moved to the
6761** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006762**
6763** If pnChange is not NULL, then table iTable must be an intkey table. The
6764** integer value pointed to by pnChange is incremented by the number of
6765** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006766*/
danielk1977c7af4842008-10-27 13:59:33 +00006767int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006768 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006769 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006770 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006771 assert( p->inTrans==TRANS_WRITE );
drh11b57d62009-02-24 19:21:41 +00006772 if( (rc = checkForReadConflicts(p, iTable, 0, 1))!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006773 /* nothing to do */
6774 }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){
6775 /* nothing to do */
6776 }else{
danielk197762c14b32008-11-19 09:05:26 +00006777 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006778 }
drhd677b3d2007-08-20 22:48:41 +00006779 sqlite3BtreeLeave(p);
6780 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006781}
6782
6783/*
6784** Erase all information in a table and add the root of the table to
6785** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006786** page 1) is never added to the freelist.
6787**
6788** This routine will fail with SQLITE_LOCKED if there are any open
6789** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006790**
6791** If AUTOVACUUM is enabled and the page at iTable is not the last
6792** root page in the database file, then the last root page
6793** in the database file is moved into the slot formerly occupied by
6794** iTable and that last slot formerly occupied by the last root page
6795** is added to the freelist instead of iTable. In this say, all
6796** root pages are kept at the beginning of the database file, which
6797** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6798** page number that used to be the last root page in the file before
6799** the move. If no page gets moved, *piMoved is set to 0.
6800** The last root page is recorded in meta[3] and the value of
6801** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006802*/
danielk197789d40042008-11-17 14:20:56 +00006803static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006804 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006805 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006806 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006807
drh1fee73e2007-08-29 04:00:57 +00006808 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006809 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006810
danielk1977e6efa742004-11-10 11:55:10 +00006811 /* It is illegal to drop a table if any cursors are open on the
6812 ** database. This is because in auto-vacuum mode the backend may
6813 ** need to move another root-page to fill a gap left by the deleted
6814 ** root page. If an open cursor was using this page a problem would
6815 ** occur.
6816 */
6817 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006818 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6819 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006820 }
danielk1977a0bf2652004-11-04 14:30:04 +00006821
drh16a9b832007-05-05 18:39:25 +00006822 rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006823 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006824 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006825 if( rc ){
6826 releasePage(pPage);
6827 return rc;
6828 }
danielk1977a0bf2652004-11-04 14:30:04 +00006829
drh205f48e2004-11-05 00:43:11 +00006830 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006831
drh4b70f112004-05-02 21:12:19 +00006832 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006833#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006834 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006835 releasePage(pPage);
6836#else
6837 if( pBt->autoVacuum ){
6838 Pgno maxRootPgno;
danielk19770d19f7a2009-06-03 11:25:07 +00006839 rc = sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006840 if( rc!=SQLITE_OK ){
6841 releasePage(pPage);
6842 return rc;
6843 }
6844
6845 if( iTable==maxRootPgno ){
6846 /* If the table being dropped is the table with the largest root-page
6847 ** number in the database, put the root page on the free list.
6848 */
6849 rc = freePage(pPage);
6850 releasePage(pPage);
6851 if( rc!=SQLITE_OK ){
6852 return rc;
6853 }
6854 }else{
6855 /* The table being dropped does not have the largest root-page
6856 ** number in the database. So move the page that does into the
6857 ** gap left by the deleted root-page.
6858 */
6859 MemPage *pMove;
6860 releasePage(pPage);
drh16a9b832007-05-05 18:39:25 +00006861 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006862 if( rc!=SQLITE_OK ){
6863 return rc;
6864 }
danielk19774c999992008-07-16 18:17:55 +00006865 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006866 releasePage(pMove);
6867 if( rc!=SQLITE_OK ){
6868 return rc;
6869 }
drh16a9b832007-05-05 18:39:25 +00006870 rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006871 if( rc!=SQLITE_OK ){
6872 return rc;
6873 }
6874 rc = freePage(pMove);
6875 releasePage(pMove);
6876 if( rc!=SQLITE_OK ){
6877 return rc;
6878 }
6879 *piMoved = maxRootPgno;
6880 }
6881
danielk1977599fcba2004-11-08 07:13:13 +00006882 /* Set the new 'max-root-page' value in the database header. This
6883 ** is the old value less one, less one more if that happens to
6884 ** be a root-page number, less one again if that is the
6885 ** PENDING_BYTE_PAGE.
6886 */
danielk197787a6e732004-11-05 12:58:25 +00006887 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006888 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6889 maxRootPgno--;
6890 }
danielk1977266664d2006-02-10 08:24:21 +00006891 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006892 maxRootPgno--;
6893 }
danielk1977599fcba2004-11-08 07:13:13 +00006894 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6895
danielk1977aef0bf62005-12-30 16:28:01 +00006896 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006897 }else{
6898 rc = freePage(pPage);
6899 releasePage(pPage);
6900 }
6901#endif
drh2aa679f2001-06-25 02:11:07 +00006902 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006903 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006904 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006905 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006906 }
drh8b2f49b2001-06-08 00:21:52 +00006907 return rc;
6908}
drhd677b3d2007-08-20 22:48:41 +00006909int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6910 int rc;
6911 sqlite3BtreeEnter(p);
6912 rc = btreeDropTable(p, iTable, piMoved);
6913 sqlite3BtreeLeave(p);
6914 return rc;
6915}
drh8b2f49b2001-06-08 00:21:52 +00006916
drh001bbcb2003-03-19 03:14:00 +00006917
drh8b2f49b2001-06-08 00:21:52 +00006918/*
drh23e11ca2004-05-04 17:27:28 +00006919** Read the meta-information out of a database file. Meta[0]
6920** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006921** through meta[15] are available for use by higher layers. Meta[0]
6922** is read-only, the others are read/write.
6923**
6924** The schema layer numbers meta values differently. At the schema
6925** layer (and the SetCookie and ReadCookie opcodes) the number of
6926** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006927*/
danielk1977aef0bf62005-12-30 16:28:01 +00006928int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
drh1bd10f82008-12-10 21:19:56 +00006929 DbPage *pDbPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006930 int rc;
drh4b70f112004-05-02 21:12:19 +00006931 unsigned char *pP1;
danielk1977aef0bf62005-12-30 16:28:01 +00006932 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006933
drhd677b3d2007-08-20 22:48:41 +00006934 sqlite3BtreeEnter(p);
6935
danielk1977da184232006-01-05 11:34:32 +00006936 /* Reading a meta-data value requires a read-lock on page 1 (and hence
6937 ** the sqlite_master table. We grab this lock regardless of whether or
6938 ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page
drhc25eabe2009-02-24 18:57:31 +00006939 ** 1 is treated as a special case by querySharedCacheTableLock()
6940 ** and setSharedCacheTableLock()).
danielk1977da184232006-01-05 11:34:32 +00006941 */
drhc25eabe2009-02-24 18:57:31 +00006942 rc = querySharedCacheTableLock(p, 1, READ_LOCK);
danielk1977da184232006-01-05 11:34:32 +00006943 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00006944 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006945 return rc;
6946 }
6947
drh23e11ca2004-05-04 17:27:28 +00006948 assert( idx>=0 && idx<=15 );
danielk1977d9f6c532008-09-19 16:39:38 +00006949 if( pBt->pPage1 ){
6950 /* The b-tree is already holding a reference to page 1 of the database
6951 ** file. In this case the required meta-data value can be read directly
6952 ** from the page data of this reference. This is slightly faster than
6953 ** requesting a new reference from the pager layer.
6954 */
6955 pP1 = (unsigned char *)pBt->pPage1->aData;
6956 }else{
6957 /* The b-tree does not have a reference to page 1 of the database file.
6958 ** Obtain one from the pager layer.
6959 */
danielk1977ea897302008-09-19 15:10:58 +00006960 rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage);
6961 if( rc ){
6962 sqlite3BtreeLeave(p);
6963 return rc;
6964 }
6965 pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage);
drhd677b3d2007-08-20 22:48:41 +00006966 }
drh23e11ca2004-05-04 17:27:28 +00006967 *pMeta = get4byte(&pP1[36 + idx*4]);
danielk1977ea897302008-09-19 15:10:58 +00006968
danielk1977d9f6c532008-09-19 16:39:38 +00006969 /* If the b-tree is not holding a reference to page 1, then one was
6970 ** requested from the pager layer in the above block. Release it now.
6971 */
danielk1977ea897302008-09-19 15:10:58 +00006972 if( !pBt->pPage1 ){
6973 sqlite3PagerUnref(pDbPage);
6974 }
drhae157872004-08-14 19:20:09 +00006975
danielk1977599fcba2004-11-08 07:13:13 +00006976 /* If autovacuumed is disabled in this build but we are trying to
6977 ** access an autovacuumed database, then make the database readonly.
6978 */
danielk1977003ba062004-11-04 02:57:33 +00006979#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00006980 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00006981#endif
drhae157872004-08-14 19:20:09 +00006982
danielk1977fa542f12009-04-02 18:28:08 +00006983 /* If there is currently an open transaction, grab a read-lock
6984 ** on page 1 of the database file. This is done to make sure that
6985 ** no other connection can modify the meta value just read from
6986 ** the database until the transaction is concluded.
6987 */
6988 if( p->inTrans>0 ){
6989 rc = setSharedCacheTableLock(p, 1, READ_LOCK);
6990 }
drhd677b3d2007-08-20 22:48:41 +00006991 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00006992 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006993}
6994
6995/*
drh23e11ca2004-05-04 17:27:28 +00006996** Write meta-information back into the database. Meta[0] is
6997** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00006998*/
danielk1977aef0bf62005-12-30 16:28:01 +00006999int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7000 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007001 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007002 int rc;
drh23e11ca2004-05-04 17:27:28 +00007003 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007004 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007005 assert( p->inTrans==TRANS_WRITE );
7006 assert( pBt->pPage1!=0 );
7007 pP1 = pBt->pPage1->aData;
7008 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7009 if( rc==SQLITE_OK ){
7010 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007011#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007012 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007013 assert( pBt->autoVacuum || iMeta==0 );
7014 assert( iMeta==0 || iMeta==1 );
7015 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007016 }
drh64022502009-01-09 14:11:04 +00007017#endif
drh5df72a52002-06-06 23:16:05 +00007018 }
drhd677b3d2007-08-20 22:48:41 +00007019 sqlite3BtreeLeave(p);
7020 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007021}
drh8c42ca92001-06-22 19:15:00 +00007022
drhf328bc82004-05-10 23:29:49 +00007023/*
7024** Return the flag byte at the beginning of the page that the cursor
7025** is currently pointing to.
7026*/
7027int sqlite3BtreeFlags(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00007028 /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call
drha3460582008-07-11 21:02:53 +00007029 ** restoreCursorPosition() here.
danielk1977da184232006-01-05 11:34:32 +00007030 */
danielk1977e448dc42008-01-02 11:50:51 +00007031 MemPage *pPage;
drha3460582008-07-11 21:02:53 +00007032 restoreCursorPosition(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00007033 pPage = pCur->apPage[pCur->iPage];
drh1fee73e2007-08-29 04:00:57 +00007034 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007035 assert( pPage!=0 );
drhd0679ed2007-08-28 22:24:34 +00007036 assert( pPage->pBt==pCur->pBt );
drh64022502009-01-09 14:11:04 +00007037 return pPage->aData[pPage->hdrOffset];
drhf328bc82004-05-10 23:29:49 +00007038}
7039
danielk1977a5533162009-02-24 10:01:51 +00007040#ifndef SQLITE_OMIT_BTREECOUNT
7041/*
7042** The first argument, pCur, is a cursor opened on some b-tree. Count the
7043** number of entries in the b-tree and write the result to *pnEntry.
7044**
7045** SQLITE_OK is returned if the operation is successfully executed.
7046** Otherwise, if an error is encountered (i.e. an IO error or database
7047** corruption) an SQLite error code is returned.
7048*/
7049int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7050 i64 nEntry = 0; /* Value to return in *pnEntry */
7051 int rc; /* Return code */
7052 rc = moveToRoot(pCur);
7053
7054 /* Unless an error occurs, the following loop runs one iteration for each
7055 ** page in the B-Tree structure (not including overflow pages).
7056 */
7057 while( rc==SQLITE_OK ){
7058 int iIdx; /* Index of child node in parent */
7059 MemPage *pPage; /* Current page of the b-tree */
7060
7061 /* If this is a leaf page or the tree is not an int-key tree, then
7062 ** this page contains countable entries. Increment the entry counter
7063 ** accordingly.
7064 */
7065 pPage = pCur->apPage[pCur->iPage];
7066 if( pPage->leaf || !pPage->intKey ){
7067 nEntry += pPage->nCell;
7068 }
7069
7070 /* pPage is a leaf node. This loop navigates the cursor so that it
7071 ** points to the first interior cell that it points to the parent of
7072 ** the next page in the tree that has not yet been visited. The
7073 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7074 ** of the page, or to the number of cells in the page if the next page
7075 ** to visit is the right-child of its parent.
7076 **
7077 ** If all pages in the tree have been visited, return SQLITE_OK to the
7078 ** caller.
7079 */
7080 if( pPage->leaf ){
7081 do {
7082 if( pCur->iPage==0 ){
7083 /* All pages of the b-tree have been visited. Return successfully. */
7084 *pnEntry = nEntry;
7085 return SQLITE_OK;
7086 }
7087 sqlite3BtreeMoveToParent(pCur);
7088 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7089
7090 pCur->aiIdx[pCur->iPage]++;
7091 pPage = pCur->apPage[pCur->iPage];
7092 }
7093
7094 /* Descend to the child node of the cell that the cursor currently
7095 ** points at. This is the right-child if (iIdx==pPage->nCell).
7096 */
7097 iIdx = pCur->aiIdx[pCur->iPage];
7098 if( iIdx==pPage->nCell ){
7099 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7100 }else{
7101 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7102 }
7103 }
7104
shanebe217792009-03-05 04:20:31 +00007105 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007106 return rc;
7107}
7108#endif
drhdd793422001-06-28 01:54:48 +00007109
drhdd793422001-06-28 01:54:48 +00007110/*
drh5eddca62001-06-30 21:53:53 +00007111** Return the pager associated with a BTree. This routine is used for
7112** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007113*/
danielk1977aef0bf62005-12-30 16:28:01 +00007114Pager *sqlite3BtreePager(Btree *p){
7115 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007116}
drh5eddca62001-06-30 21:53:53 +00007117
drhb7f91642004-10-31 02:22:47 +00007118#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007119/*
7120** Append a message to the error message string.
7121*/
drh2e38c322004-09-03 18:38:44 +00007122static void checkAppendMsg(
7123 IntegrityCk *pCheck,
7124 char *zMsg1,
7125 const char *zFormat,
7126 ...
7127){
7128 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007129 if( !pCheck->mxErr ) return;
7130 pCheck->mxErr--;
7131 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007132 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007133 if( pCheck->errMsg.nChar ){
7134 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007135 }
drhf089aa42008-07-08 19:34:06 +00007136 if( zMsg1 ){
7137 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7138 }
7139 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7140 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007141 if( pCheck->errMsg.mallocFailed ){
7142 pCheck->mallocFailed = 1;
7143 }
drh5eddca62001-06-30 21:53:53 +00007144}
drhb7f91642004-10-31 02:22:47 +00007145#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007146
drhb7f91642004-10-31 02:22:47 +00007147#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007148/*
7149** Add 1 to the reference count for page iPage. If this is the second
7150** reference to the page, add an error message to pCheck->zErrMsg.
7151** Return 1 if there are 2 ore more references to the page and 0 if
7152** if this is the first reference to the page.
7153**
7154** Also check that the page number is in bounds.
7155*/
danielk197789d40042008-11-17 14:20:56 +00007156static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007157 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007158 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007159 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007160 return 1;
7161 }
7162 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007163 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007164 return 1;
7165 }
7166 return (pCheck->anRef[iPage]++)>1;
7167}
7168
danielk1977afcdd022004-10-31 16:25:42 +00007169#ifndef SQLITE_OMIT_AUTOVACUUM
7170/*
7171** Check that the entry in the pointer-map for page iChild maps to
7172** page iParent, pointer type ptrType. If not, append an error message
7173** to pCheck.
7174*/
7175static void checkPtrmap(
7176 IntegrityCk *pCheck, /* Integrity check context */
7177 Pgno iChild, /* Child page number */
7178 u8 eType, /* Expected pointer map type */
7179 Pgno iParent, /* Expected pointer map parent page number */
7180 char *zContext /* Context description (used for error msg) */
7181){
7182 int rc;
7183 u8 ePtrmapType;
7184 Pgno iPtrmapParent;
7185
7186 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7187 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007188 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007189 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7190 return;
7191 }
7192
7193 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7194 checkAppendMsg(pCheck, zContext,
7195 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7196 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7197 }
7198}
7199#endif
7200
drh5eddca62001-06-30 21:53:53 +00007201/*
7202** Check the integrity of the freelist or of an overflow page list.
7203** Verify that the number of pages on the list is N.
7204*/
drh30e58752002-03-02 20:41:57 +00007205static void checkList(
7206 IntegrityCk *pCheck, /* Integrity checking context */
7207 int isFreeList, /* True for a freelist. False for overflow page list */
7208 int iPage, /* Page number for first page in the list */
7209 int N, /* Expected number of pages in the list */
7210 char *zContext /* Context for error messages */
7211){
7212 int i;
drh3a4c1412004-05-09 20:40:11 +00007213 int expected = N;
7214 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007215 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007216 DbPage *pOvflPage;
7217 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007218 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007219 checkAppendMsg(pCheck, zContext,
7220 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007221 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007222 break;
7223 }
7224 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007225 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007226 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007227 break;
7228 }
danielk19773b8a05f2007-03-19 17:44:26 +00007229 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007230 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007231 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007232#ifndef SQLITE_OMIT_AUTOVACUUM
7233 if( pCheck->pBt->autoVacuum ){
7234 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7235 }
7236#endif
drh45b1fac2008-07-04 17:52:42 +00007237 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007238 checkAppendMsg(pCheck, zContext,
7239 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007240 N--;
7241 }else{
7242 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007243 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007244#ifndef SQLITE_OMIT_AUTOVACUUM
7245 if( pCheck->pBt->autoVacuum ){
7246 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7247 }
7248#endif
7249 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007250 }
7251 N -= n;
drh30e58752002-03-02 20:41:57 +00007252 }
drh30e58752002-03-02 20:41:57 +00007253 }
danielk1977afcdd022004-10-31 16:25:42 +00007254#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007255 else{
7256 /* If this database supports auto-vacuum and iPage is not the last
7257 ** page in this overflow list, check that the pointer-map entry for
7258 ** the following page matches iPage.
7259 */
7260 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007261 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007262 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7263 }
danielk1977afcdd022004-10-31 16:25:42 +00007264 }
7265#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007266 iPage = get4byte(pOvflData);
7267 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007268 }
7269}
drhb7f91642004-10-31 02:22:47 +00007270#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007271
drhb7f91642004-10-31 02:22:47 +00007272#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007273/*
7274** Do various sanity checks on a single page of a tree. Return
7275** the tree depth. Root pages return 0. Parents of root pages
7276** return 1, and so forth.
7277**
7278** These checks are done:
7279**
7280** 1. Make sure that cells and freeblocks do not overlap
7281** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007282** NO 2. Make sure cell keys are in order.
7283** NO 3. Make sure no key is less than or equal to zLowerBound.
7284** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007285** 5. Check the integrity of overflow pages.
7286** 6. Recursively call checkTreePage on all children.
7287** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007288** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007289** the root of the tree.
7290*/
7291static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007292 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007293 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007294 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007295){
7296 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007297 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007298 int hdr, cellStart;
7299 int nCell;
drhda200cc2004-05-09 11:51:38 +00007300 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007301 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007302 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007303 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007304 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007305
drh5bb3eb92007-05-04 13:15:55 +00007306 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007307
drh5eddca62001-06-30 21:53:53 +00007308 /* Check that the page exists
7309 */
drhd9cb6ac2005-10-20 07:28:17 +00007310 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007311 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007312 if( iPage==0 ) return 0;
7313 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh16a9b832007-05-05 18:39:25 +00007314 if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007315 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007316 checkAppendMsg(pCheck, zContext,
7317 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007318 return 0;
7319 }
danielk197771d5d2c2008-09-29 11:49:47 +00007320 if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007321 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007322 checkAppendMsg(pCheck, zContext,
7323 "sqlite3BtreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007324 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007325 return 0;
7326 }
7327
7328 /* Check out all the cells.
7329 */
7330 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007331 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007332 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007333 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007334 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007335
7336 /* Check payload overflow pages
7337 */
drh5bb3eb92007-05-04 13:15:55 +00007338 sqlite3_snprintf(sizeof(zContext), zContext,
7339 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007340 pCell = findCell(pPage,i);
drh16a9b832007-05-05 18:39:25 +00007341 sqlite3BtreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007342 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007343 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007344 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007345 if( (sz>info.nLocal)
7346 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7347 ){
drhb6f41482004-05-14 01:58:11 +00007348 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007349 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7350#ifndef SQLITE_OMIT_AUTOVACUUM
7351 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007352 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007353 }
7354#endif
7355 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007356 }
7357
7358 /* Check sanity of left child page.
7359 */
drhda200cc2004-05-09 11:51:38 +00007360 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007361 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007362#ifndef SQLITE_OMIT_AUTOVACUUM
7363 if( pBt->autoVacuum ){
7364 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7365 }
7366#endif
danielk197762c14b32008-11-19 09:05:26 +00007367 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007368 if( i>0 && d2!=depth ){
7369 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7370 }
7371 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007372 }
drh5eddca62001-06-30 21:53:53 +00007373 }
drhda200cc2004-05-09 11:51:38 +00007374 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007375 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007376 sqlite3_snprintf(sizeof(zContext), zContext,
7377 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007378#ifndef SQLITE_OMIT_AUTOVACUUM
7379 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007380 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007381 }
7382#endif
danielk197762c14b32008-11-19 09:05:26 +00007383 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007384 }
drh5eddca62001-06-30 21:53:53 +00007385
7386 /* Check for complete coverage of the page
7387 */
drhda200cc2004-05-09 11:51:38 +00007388 data = pPage->aData;
7389 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007390 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007391 if( hit==0 ){
7392 pCheck->mallocFailed = 1;
7393 }else{
shane5780ebd2008-11-11 17:36:30 +00007394 u16 contentOffset = get2byte(&data[hdr+5]);
7395 if (contentOffset > usableSize) {
7396 checkAppendMsg(pCheck, 0,
7397 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007398 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007399 }
7400 memset(hit+contentOffset, 0, usableSize-contentOffset);
7401 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007402 nCell = get2byte(&data[hdr+3]);
7403 cellStart = hdr + 12 - 4*pPage->leaf;
7404 for(i=0; i<nCell; i++){
7405 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007406 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007407 int j;
danielk1977daca5432008-08-25 11:57:16 +00007408 if( pc<=usableSize ){
7409 size = cellSizePtr(pPage, &data[pc]);
7410 }
danielk19777701e812005-01-10 12:59:51 +00007411 if( (pc+size-1)>=usableSize || pc<0 ){
7412 checkAppendMsg(pCheck, 0,
7413 "Corruption detected in cell %d on page %d",i,iPage,0);
7414 }else{
7415 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7416 }
drh2e38c322004-09-03 18:38:44 +00007417 }
7418 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000;
7419 cnt++){
7420 int size = get2byte(&data[i+2]);
7421 int j;
danielk19777701e812005-01-10 12:59:51 +00007422 if( (i+size-1)>=usableSize || i<0 ){
7423 checkAppendMsg(pCheck, 0,
7424 "Corruption detected in cell %d on page %d",i,iPage,0);
7425 }else{
7426 for(j=i+size-1; j>=i; j--) hit[j]++;
7427 }
drh2e38c322004-09-03 18:38:44 +00007428 i = get2byte(&data[i]);
7429 }
7430 for(i=cnt=0; i<usableSize; i++){
7431 if( hit[i]==0 ){
7432 cnt++;
7433 }else if( hit[i]>1 ){
7434 checkAppendMsg(pCheck, 0,
7435 "Multiple uses for byte %d of page %d", i, iPage);
7436 break;
7437 }
7438 }
7439 if( cnt!=data[hdr+7] ){
7440 checkAppendMsg(pCheck, 0,
7441 "Fragmented space is %d byte reported as %d on page %d",
7442 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007443 }
7444 }
shane0af3f892008-11-12 04:55:34 +00007445check_page_abort:
7446 if (hit) sqlite3PageFree(hit);
drh6019e162001-07-02 17:51:45 +00007447
drh4b70f112004-05-02 21:12:19 +00007448 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007449 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007450}
drhb7f91642004-10-31 02:22:47 +00007451#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007452
drhb7f91642004-10-31 02:22:47 +00007453#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007454/*
7455** This routine does a complete check of the given BTree file. aRoot[] is
7456** an array of pages numbers were each page number is the root page of
7457** a table. nRoot is the number of entries in aRoot.
7458**
drhc890fec2008-08-01 20:10:08 +00007459** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007460** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007461** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007462** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007463*/
drh1dcdbc02007-01-27 02:24:54 +00007464char *sqlite3BtreeIntegrityCheck(
7465 Btree *p, /* The btree to be checked */
7466 int *aRoot, /* An array of root pages numbers for individual trees */
7467 int nRoot, /* Number of entries in aRoot[] */
7468 int mxErr, /* Stop reporting errors after this many */
7469 int *pnErr /* Write number of errors seen to this variable */
7470){
danielk197789d40042008-11-17 14:20:56 +00007471 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007472 int nRef;
drhaaab5722002-02-19 13:39:21 +00007473 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007474 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007475 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007476
drhd677b3d2007-08-20 22:48:41 +00007477 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00007478 nRef = sqlite3PagerRefcount(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00007479 if( lockBtreeWithRetry(p)!=SQLITE_OK ){
drhc890fec2008-08-01 20:10:08 +00007480 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007481 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007482 return sqlite3DbStrDup(0, "cannot acquire a read lock on the database");
drhefc251d2001-07-01 22:12:01 +00007483 }
drh5eddca62001-06-30 21:53:53 +00007484 sCheck.pBt = pBt;
7485 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007486 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007487 sCheck.mxErr = mxErr;
7488 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007489 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007490 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007491 if( sCheck.nPage==0 ){
7492 unlockBtreeIfUnused(pBt);
drhd677b3d2007-08-20 22:48:41 +00007493 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007494 return 0;
7495 }
drhe5ae5732008-06-15 02:51:47 +00007496 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007497 if( !sCheck.anRef ){
7498 unlockBtreeIfUnused(pBt);
drh1dcdbc02007-01-27 02:24:54 +00007499 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007500 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007501 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007502 }
drhda200cc2004-05-09 11:51:38 +00007503 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007504 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007505 if( i<=sCheck.nPage ){
7506 sCheck.anRef[i] = 1;
7507 }
drhf089aa42008-07-08 19:34:06 +00007508 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007509
7510 /* Check the integrity of the freelist
7511 */
drha34b6762004-05-07 13:30:42 +00007512 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7513 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007514
7515 /* Check all the tables.
7516 */
danielk197789d40042008-11-17 14:20:56 +00007517 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007518 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007519#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007520 if( pBt->autoVacuum && aRoot[i]>1 ){
7521 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7522 }
7523#endif
danielk197762c14b32008-11-19 09:05:26 +00007524 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007525 }
7526
7527 /* Make sure every page in the file is referenced
7528 */
drh1dcdbc02007-01-27 02:24:54 +00007529 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007530#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007531 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007532 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007533 }
danielk1977afcdd022004-10-31 16:25:42 +00007534#else
7535 /* If the database supports auto-vacuum, make sure no tables contain
7536 ** references to pointer-map pages.
7537 */
7538 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007539 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007540 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7541 }
7542 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007543 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007544 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7545 }
7546#endif
drh5eddca62001-06-30 21:53:53 +00007547 }
7548
drh64022502009-01-09 14:11:04 +00007549 /* Make sure this analysis did not leave any unref() pages.
7550 ** This is an internal consistency check; an integrity check
7551 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007552 */
drh5e00f6c2001-09-13 13:46:56 +00007553 unlockBtreeIfUnused(pBt);
drh64022502009-01-09 14:11:04 +00007554 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007555 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007556 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007557 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007558 );
drh5eddca62001-06-30 21:53:53 +00007559 }
7560
7561 /* Clean up and report errors.
7562 */
drhd677b3d2007-08-20 22:48:41 +00007563 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007564 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007565 if( sCheck.mallocFailed ){
7566 sqlite3StrAccumReset(&sCheck.errMsg);
7567 *pnErr = sCheck.nErr+1;
7568 return 0;
7569 }
drh1dcdbc02007-01-27 02:24:54 +00007570 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007571 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7572 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007573}
drhb7f91642004-10-31 02:22:47 +00007574#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007575
drh73509ee2003-04-06 20:44:45 +00007576/*
7577** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007578**
7579** The pager filename is invariant as long as the pager is
7580** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007581*/
danielk1977aef0bf62005-12-30 16:28:01 +00007582const char *sqlite3BtreeGetFilename(Btree *p){
7583 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007584 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007585}
7586
7587/*
danielk19775865e3d2004-06-14 06:03:57 +00007588** Return the pathname of the journal file for this database. The return
7589** value of this routine is the same regardless of whether the journal file
7590** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007591**
7592** The pager journal filename is invariant as long as the pager is
7593** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007594*/
danielk1977aef0bf62005-12-30 16:28:01 +00007595const char *sqlite3BtreeGetJournalname(Btree *p){
7596 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007597 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007598}
7599
danielk19771d850a72004-05-31 08:26:49 +00007600/*
7601** Return non-zero if a transaction is active.
7602*/
danielk1977aef0bf62005-12-30 16:28:01 +00007603int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007604 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007605 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007606}
7607
7608/*
danielk19772372c2b2006-06-27 16:34:56 +00007609** Return non-zero if a read (or write) transaction is active.
7610*/
7611int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007612 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007613 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007614 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007615}
7616
danielk197704103022009-02-03 16:51:24 +00007617int sqlite3BtreeIsInBackup(Btree *p){
7618 assert( p );
7619 assert( sqlite3_mutex_held(p->db->mutex) );
7620 return p->nBackup!=0;
7621}
7622
danielk19772372c2b2006-06-27 16:34:56 +00007623/*
danielk1977da184232006-01-05 11:34:32 +00007624** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007625** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007626** purposes (for example, to store a high-level schema associated with
7627** the shared-btree). The btree layer manages reference counting issues.
7628**
7629** The first time this is called on a shared-btree, nBytes bytes of memory
7630** are allocated, zeroed, and returned to the caller. For each subsequent
7631** call the nBytes parameter is ignored and a pointer to the same blob
7632** of memory returned.
7633**
danielk1977171bfed2008-06-23 09:50:50 +00007634** If the nBytes parameter is 0 and the blob of memory has not yet been
7635** allocated, a null pointer is returned. If the blob has already been
7636** allocated, it is returned as normal.
7637**
danielk1977da184232006-01-05 11:34:32 +00007638** Just before the shared-btree is closed, the function passed as the
7639** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007640** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007641** on the memory, the btree layer does that.
7642*/
7643void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7644 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007645 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007646 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007647 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007648 pBt->xFreeSchema = xFree;
7649 }
drh27641702007-08-22 02:56:42 +00007650 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007651 return pBt->pSchema;
7652}
7653
danielk1977c87d34d2006-01-06 13:00:28 +00007654/*
danielk1977404ca072009-03-16 13:19:36 +00007655** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7656** btree as the argument handle holds an exclusive lock on the
7657** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007658*/
7659int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007660 int rc;
drhe5fe6902007-12-07 18:55:28 +00007661 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007662 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007663 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7664 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007665 sqlite3BtreeLeave(p);
7666 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007667}
7668
drha154dcd2006-03-22 22:10:07 +00007669
7670#ifndef SQLITE_OMIT_SHARED_CACHE
7671/*
7672** Obtain a lock on the table whose root page is iTab. The
7673** lock is a write lock if isWritelock is true or a read lock
7674** if it is false.
7675*/
danielk1977c00da102006-01-07 13:21:04 +00007676int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007677 int rc = SQLITE_OK;
drh6a9ad3d2008-04-02 16:29:30 +00007678 if( p->sharable ){
7679 u8 lockType = READ_LOCK + isWriteLock;
7680 assert( READ_LOCK+1==WRITE_LOCK );
7681 assert( isWriteLock==0 || isWriteLock==1 );
7682 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007683 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007684 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007685 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007686 }
7687 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007688 }
7689 return rc;
7690}
drha154dcd2006-03-22 22:10:07 +00007691#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007692
danielk1977b4e9af92007-05-01 17:49:49 +00007693#ifndef SQLITE_OMIT_INCRBLOB
7694/*
7695** Argument pCsr must be a cursor opened for writing on an
7696** INTKEY table currently pointing at a valid table entry.
7697** This function modifies the data stored as part of that entry.
7698** Only the data content may only be modified, it is not possible
7699** to change the length of the data stored.
7700*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007701int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977404ca072009-03-16 13:19:36 +00007702 int rc;
7703
drh1fee73e2007-08-29 04:00:57 +00007704 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007705 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007706 assert(pCsr->isIncrblobHandle);
danielk19773588ceb2008-06-10 17:30:26 +00007707
drha3460582008-07-11 21:02:53 +00007708 restoreCursorPosition(pCsr);
danielk19773588ceb2008-06-10 17:30:26 +00007709 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7710 if( pCsr->eState!=CURSOR_VALID ){
7711 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007712 }
7713
danielk1977d04417962007-05-02 13:16:30 +00007714 /* Check some preconditions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007715 ** (a) the cursor is open for writing,
7716 ** (b) there is no read-lock on the table being modified and
7717 ** (c) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007718 */
danielk1977d04417962007-05-02 13:16:30 +00007719 if( !pCsr->wrFlag ){
danielk1977dcbb5d32007-05-04 18:36:44 +00007720 return SQLITE_READONLY;
danielk1977d04417962007-05-02 13:16:30 +00007721 }
drhd0679ed2007-08-28 22:24:34 +00007722 assert( !pCsr->pBt->readOnly
7723 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk1977404ca072009-03-16 13:19:36 +00007724 rc = checkForReadConflicts(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0);
7725 if( rc!=SQLITE_OK ){
7726 /* The table pCur points to has a read lock */
7727 assert( rc==SQLITE_LOCKED_SHAREDCACHE );
7728 return rc;
danielk1977d04417962007-05-02 13:16:30 +00007729 }
danielk197771d5d2c2008-09-29 11:49:47 +00007730 if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){
danielk1977d04417962007-05-02 13:16:30 +00007731 return SQLITE_ERROR;
danielk1977b4e9af92007-05-01 17:49:49 +00007732 }
7733
danielk19779f8d6402007-05-02 17:48:45 +00007734 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007735}
danielk19772dec9702007-05-02 16:48:37 +00007736
7737/*
7738** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007739** overflow list for the current row. This is used by cursors opened
7740** for incremental blob IO only.
7741**
7742** This function sets a flag only. The actual page location cache
7743** (stored in BtCursor.aOverflow[]) is allocated and used by function
7744** accessPayload() (the worker function for sqlite3BtreeData() and
7745** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007746*/
7747void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007748 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007749 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007750 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007751 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007752 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007753}
danielk1977b4e9af92007-05-01 17:49:49 +00007754#endif