blob: f5feff8a4c597c8b490c9e154dfa5b056e9b93a1 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
danf0ee1d32015-09-12 19:26:11 +0000594/*
595** The cursor passed as the only argument must point to a valid entry
596** when this function is called (i.e. have eState==CURSOR_VALID). This
597** function saves the current cursor key in variables pCur->nKey and
598** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
599** code otherwise.
600**
601** If the cursor is open on an intkey table, then the integer key
602** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
603** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
604** set to point to a malloced buffer pCur->nKey bytes in size containing
605** the key.
606*/
607static int saveCursorKey(BtCursor *pCur){
608 int rc;
609 assert( CURSOR_VALID==pCur->eState );
610 assert( 0==pCur->pKey );
611 assert( cursorHoldsMutex(pCur) );
612
613 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
614 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
615
616 /* If this is an intKey table, then the above call to BtreeKeySize()
617 ** stores the integer key in pCur->nKey. In this case this value is
618 ** all that is required. Otherwise, if pCur is not open on an intKey
619 ** table, then malloc space for and store the pCur->nKey bytes of key
620 ** data. */
621 if( 0==pCur->curIntKey ){
622 void *pKey = sqlite3Malloc( pCur->nKey );
623 if( pKey ){
624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
628 sqlite3_free(pKey);
629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
634 assert( !pCur->curIntKey || !pCur->pKey );
635 return rc;
636}
drh138eeeb2013-03-27 03:15:23 +0000637
638/*
drh980b1a72006-08-16 16:42:48 +0000639** Save the current cursor position in the variables BtCursor.nKey
640** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000641**
642** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
643** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000644*/
645static int saveCursorPosition(BtCursor *pCur){
646 int rc;
647
drhd2f83132015-03-25 17:35:01 +0000648 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000649 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000650 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000651
drhd2f83132015-03-25 17:35:01 +0000652 if( pCur->eState==CURSOR_SKIPNEXT ){
653 pCur->eState = CURSOR_VALID;
654 }else{
655 pCur->skipNext = 0;
656 }
drh980b1a72006-08-16 16:42:48 +0000657
danf0ee1d32015-09-12 19:26:11 +0000658 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000659 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000660 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000661 pCur->eState = CURSOR_REQUIRESEEK;
662 }
663
dane755e102015-09-30 12:59:12 +0000664 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000665 return rc;
666}
667
drh637f3d82014-08-22 22:26:07 +0000668/* Forward reference */
669static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
670
drh980b1a72006-08-16 16:42:48 +0000671/*
drh0ee3dbe2009-10-16 15:05:18 +0000672** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000673** the table with root-page iRoot. "Saving the cursor position" means that
674** the location in the btree is remembered in such a way that it can be
675** moved back to the same spot after the btree has been modified. This
676** routine is called just before cursor pExcept is used to modify the
677** table, for example in BtreeDelete() or BtreeInsert().
678**
drh27fb7462015-06-30 02:47:36 +0000679** If there are two or more cursors on the same btree, then all such
680** cursors should have their BTCF_Multiple flag set. The btreeCursor()
681** routine enforces that rule. This routine only needs to be called in
682** the uncommon case when pExpect has the BTCF_Multiple flag set.
683**
684** If pExpect!=NULL and if no other cursors are found on the same root-page,
685** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
686** pointless call to this routine.
687**
drh637f3d82014-08-22 22:26:07 +0000688** Implementation note: This routine merely checks to see if any cursors
689** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
690** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000691*/
692static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
693 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000694 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000695 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000696 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000697 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
698 }
drh27fb7462015-06-30 02:47:36 +0000699 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
700 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
701 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000702}
703
704/* This helper routine to saveAllCursors does the actual work of saving
705** the cursors if and when a cursor is found that actually requires saving.
706** The common case is that no cursors need to be saved, so this routine is
707** broken out from its caller to avoid unnecessary stack pointer movement.
708*/
709static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000710 BtCursor *p, /* The first cursor that needs saving */
711 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
712 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000713){
714 do{
drh138eeeb2013-03-27 03:15:23 +0000715 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000716 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000717 int rc = saveCursorPosition(p);
718 if( SQLITE_OK!=rc ){
719 return rc;
720 }
721 }else{
722 testcase( p->iPage>0 );
723 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000724 }
725 }
drh637f3d82014-08-22 22:26:07 +0000726 p = p->pNext;
727 }while( p );
drh980b1a72006-08-16 16:42:48 +0000728 return SQLITE_OK;
729}
730
731/*
drhbf700f32007-03-31 02:36:44 +0000732** Clear the current cursor position.
733*/
danielk1977be51a652008-10-08 17:58:48 +0000734void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000735 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000736 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000737 pCur->pKey = 0;
738 pCur->eState = CURSOR_INVALID;
739}
740
741/*
danielk19773509a652009-07-06 18:56:13 +0000742** In this version of BtreeMoveto, pKey is a packed index record
743** such as is generated by the OP_MakeRecord opcode. Unpack the
744** record and then call BtreeMovetoUnpacked() to do the work.
745*/
746static int btreeMoveto(
747 BtCursor *pCur, /* Cursor open on the btree to be searched */
748 const void *pKey, /* Packed key if the btree is an index */
749 i64 nKey, /* Integer key for tables. Size of pKey for indices */
750 int bias, /* Bias search to the high end */
751 int *pRes /* Write search results here */
752){
753 int rc; /* Status code */
754 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000755 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000756 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000757
758 if( pKey ){
759 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000760 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
761 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
762 );
danielk19773509a652009-07-06 18:56:13 +0000763 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000764 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000765 if( pIdxKey->nField==0 ){
766 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
767 return SQLITE_CORRUPT_BKPT;
768 }
danielk19773509a652009-07-06 18:56:13 +0000769 }else{
770 pIdxKey = 0;
771 }
772 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000773 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000774 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000775 }
776 return rc;
777}
778
779/*
drh980b1a72006-08-16 16:42:48 +0000780** Restore the cursor to the position it was in (or as close to as possible)
781** when saveCursorPosition() was called. Note that this call deletes the
782** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000783** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000784** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000785*/
danielk197730548662009-07-09 05:07:37 +0000786static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000787 int rc;
drhd2f83132015-03-25 17:35:01 +0000788 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000789 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000790 assert( pCur->eState>=CURSOR_REQUIRESEEK );
791 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000792 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000793 }
drh980b1a72006-08-16 16:42:48 +0000794 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000795 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000796 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000797 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000798 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000799 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000800 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000801 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
802 pCur->eState = CURSOR_SKIPNEXT;
803 }
drh980b1a72006-08-16 16:42:48 +0000804 }
805 return rc;
806}
807
drha3460582008-07-11 21:02:53 +0000808#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000809 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000810 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000811 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000812
drha3460582008-07-11 21:02:53 +0000813/*
drh6848dad2014-08-22 23:33:03 +0000814** Determine whether or not a cursor has moved from the position where
815** it was last placed, or has been invalidated for any other reason.
816** Cursors can move when the row they are pointing at is deleted out
817** from under them, for example. Cursor might also move if a btree
818** is rebalanced.
drha3460582008-07-11 21:02:53 +0000819**
drh6848dad2014-08-22 23:33:03 +0000820** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000821**
drh6848dad2014-08-22 23:33:03 +0000822** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
823** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000824*/
drh6848dad2014-08-22 23:33:03 +0000825int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000826 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000827}
828
829/*
830** This routine restores a cursor back to its original position after it
831** has been moved by some outside activity (such as a btree rebalance or
832** a row having been deleted out from under the cursor).
833**
834** On success, the *pDifferentRow parameter is false if the cursor is left
835** pointing at exactly the same row. *pDifferntRow is the row the cursor
836** was pointing to has been deleted, forcing the cursor to point to some
837** nearby row.
838**
839** This routine should only be called for a cursor that just returned
840** TRUE from sqlite3BtreeCursorHasMoved().
841*/
842int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000843 int rc;
844
drh6848dad2014-08-22 23:33:03 +0000845 assert( pCur!=0 );
846 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000847 rc = restoreCursorPosition(pCur);
848 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000849 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000850 return rc;
851 }
drh606a3572015-03-25 18:29:10 +0000852 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 }else{
drh606a3572015-03-25 18:29:10 +0000855 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000856 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000857 }
858 return SQLITE_OK;
859}
860
drhf7854c72015-10-27 13:24:37 +0000861#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000862/*
drh0df57012015-08-14 15:05:55 +0000863** Provide hints to the cursor. The particular hint given (and the type
864** and number of the varargs parameters) is determined by the eHintType
865** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000866*/
drh0df57012015-08-14 15:05:55 +0000867void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000868 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000869}
drhf7854c72015-10-27 13:24:37 +0000870#endif
871
872/*
873** Provide flag hints to the cursor.
874*/
875void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
876 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
877 pCur->hints = x;
878}
879
drh28935362013-12-07 20:39:19 +0000880
danielk1977599fcba2004-11-08 07:13:13 +0000881#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000882/*
drha3152892007-05-05 11:48:52 +0000883** Given a page number of a regular database page, return the page
884** number for the pointer-map page that contains the entry for the
885** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000886**
887** Return 0 (not a valid page) for pgno==1 since there is
888** no pointer map associated with page 1. The integrity_check logic
889** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000890*/
danielk1977266664d2006-02-10 08:24:21 +0000891static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000892 int nPagesPerMapPage;
893 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000894 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000895 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000896 nPagesPerMapPage = (pBt->usableSize/5)+1;
897 iPtrMap = (pgno-2)/nPagesPerMapPage;
898 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000899 if( ret==PENDING_BYTE_PAGE(pBt) ){
900 ret++;
901 }
902 return ret;
903}
danielk1977a19df672004-11-03 11:37:07 +0000904
danielk1977afcdd022004-10-31 16:25:42 +0000905/*
danielk1977afcdd022004-10-31 16:25:42 +0000906** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000907**
908** This routine updates the pointer map entry for page number 'key'
909** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000910**
911** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
912** a no-op. If an error occurs, the appropriate error code is written
913** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000914*/
drh98add2e2009-07-20 17:11:49 +0000915static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000916 DbPage *pDbPage; /* The pointer map page */
917 u8 *pPtrmap; /* The pointer map data */
918 Pgno iPtrmap; /* The pointer map page number */
919 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000920 int rc; /* Return code from subfunctions */
921
922 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000923
drh1fee73e2007-08-29 04:00:57 +0000924 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000925 /* The master-journal page number must never be used as a pointer map page */
926 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
927
danielk1977ac11ee62005-01-15 12:45:51 +0000928 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000929 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000930 *pRC = SQLITE_CORRUPT_BKPT;
931 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000932 }
danielk1977266664d2006-02-10 08:24:21 +0000933 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000934 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000935 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000936 *pRC = rc;
937 return;
danielk1977afcdd022004-10-31 16:25:42 +0000938 }
danielk19778c666b12008-07-18 09:34:57 +0000939 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000940 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000941 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000942 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000943 }
drhfc243732011-05-17 15:21:56 +0000944 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000945 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000946
drh615ae552005-01-16 23:21:00 +0000947 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
948 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000949 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000950 if( rc==SQLITE_OK ){
951 pPtrmap[offset] = eType;
952 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000953 }
danielk1977afcdd022004-10-31 16:25:42 +0000954 }
955
drh4925a552009-07-07 11:39:58 +0000956ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000957 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000958}
959
960/*
961** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000962**
963** This routine retrieves the pointer map entry for page 'key', writing
964** the type and parent page number to *pEType and *pPgno respectively.
965** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000966*/
danielk1977aef0bf62005-12-30 16:28:01 +0000967static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000968 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000969 int iPtrmap; /* Pointer map page index */
970 u8 *pPtrmap; /* Pointer map page data */
971 int offset; /* Offset of entry in pointer map */
972 int rc;
973
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000975
danielk1977266664d2006-02-10 08:24:21 +0000976 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000977 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000978 if( rc!=0 ){
979 return rc;
980 }
danielk19773b8a05f2007-03-19 17:44:26 +0000981 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000982
danielk19778c666b12008-07-18 09:34:57 +0000983 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000984 if( offset<0 ){
985 sqlite3PagerUnref(pDbPage);
986 return SQLITE_CORRUPT_BKPT;
987 }
988 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000989 assert( pEType!=0 );
990 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000991 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000992
danielk19773b8a05f2007-03-19 17:44:26 +0000993 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000994 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000995 return SQLITE_OK;
996}
997
danielk197785d90ca2008-07-19 14:25:15 +0000998#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000999 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001000 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001001 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001002#endif
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh0d316a42002-08-11 20:10:47 +00001004/*
drh271efa52004-05-30 19:19:05 +00001005** Given a btree page and a cell index (0 means the first cell on
1006** the page, 1 means the second cell, and so forth) return a pointer
1007** to the cell content.
1008**
drhf44890a2015-06-27 03:58:15 +00001009** findCellPastPtr() does the same except it skips past the initial
1010** 4-byte child pointer found on interior pages, if there is one.
1011**
drh271efa52004-05-30 19:19:05 +00001012** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001013*/
drh1688c862008-07-18 02:44:17 +00001014#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001015 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001016#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001017 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001018
drh43605152004-05-29 21:46:49 +00001019
1020/*
drh5fa60512015-06-19 17:19:34 +00001021** This is common tail processing for btreeParseCellPtr() and
1022** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1023** on a single B-tree page. Make necessary adjustments to the CellInfo
1024** structure.
drh43605152004-05-29 21:46:49 +00001025*/
drh5fa60512015-06-19 17:19:34 +00001026static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1027 MemPage *pPage, /* Page containing the cell */
1028 u8 *pCell, /* Pointer to the cell text. */
1029 CellInfo *pInfo /* Fill in this structure */
1030){
1031 /* If the payload will not fit completely on the local page, we have
1032 ** to decide how much to store locally and how much to spill onto
1033 ** overflow pages. The strategy is to minimize the amount of unused
1034 ** space on overflow pages while keeping the amount of local storage
1035 ** in between minLocal and maxLocal.
1036 **
1037 ** Warning: changing the way overflow payload is distributed in any
1038 ** way will result in an incompatible file format.
1039 */
1040 int minLocal; /* Minimum amount of payload held locally */
1041 int maxLocal; /* Maximum amount of payload held locally */
1042 int surplus; /* Overflow payload available for local storage */
1043
1044 minLocal = pPage->minLocal;
1045 maxLocal = pPage->maxLocal;
1046 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1047 testcase( surplus==maxLocal );
1048 testcase( surplus==maxLocal+1 );
1049 if( surplus <= maxLocal ){
1050 pInfo->nLocal = (u16)surplus;
1051 }else{
1052 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001053 }
drh45ac1c72015-12-18 03:59:16 +00001054 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001055}
1056
1057/*
drh5fa60512015-06-19 17:19:34 +00001058** The following routines are implementations of the MemPage.xParseCell()
1059** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001060**
drh5fa60512015-06-19 17:19:34 +00001061** Parse a cell content block and fill in the CellInfo structure.
1062**
1063** btreeParseCellPtr() => table btree leaf nodes
1064** btreeParseCellNoPayload() => table btree internal nodes
1065** btreeParseCellPtrIndex() => index btree nodes
1066**
1067** There is also a wrapper function btreeParseCell() that works for
1068** all MemPage types and that references the cell by index rather than
1069** by pointer.
drh43605152004-05-29 21:46:49 +00001070*/
drh5fa60512015-06-19 17:19:34 +00001071static void btreeParseCellPtrNoPayload(
1072 MemPage *pPage, /* Page containing the cell */
1073 u8 *pCell, /* Pointer to the cell text. */
1074 CellInfo *pInfo /* Fill in this structure */
1075){
1076 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1077 assert( pPage->leaf==0 );
1078 assert( pPage->noPayload );
1079 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001080#ifndef SQLITE_DEBUG
1081 UNUSED_PARAMETER(pPage);
1082#endif
drh5fa60512015-06-19 17:19:34 +00001083 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1084 pInfo->nPayload = 0;
1085 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001086 pInfo->pPayload = 0;
1087 return;
1088}
danielk197730548662009-07-09 05:07:37 +00001089static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001090 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001091 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001092 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001093){
drh3e28ff52014-09-24 00:59:08 +00001094 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001095 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001096 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001097
drh1fee73e2007-08-29 04:00:57 +00001098 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001099 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001100 assert( pPage->intKeyLeaf || pPage->noPayload );
1101 assert( pPage->noPayload==0 );
1102 assert( pPage->intKeyLeaf );
1103 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001104 pIter = pCell;
1105
1106 /* The next block of code is equivalent to:
1107 **
1108 ** pIter += getVarint32(pIter, nPayload);
1109 **
1110 ** The code is inlined to avoid a function call.
1111 */
1112 nPayload = *pIter;
1113 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001114 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001115 nPayload &= 0x7f;
1116 do{
1117 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1118 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001119 }
drh56cb04e2015-06-19 18:24:37 +00001120 pIter++;
1121
1122 /* The next block of code is equivalent to:
1123 **
1124 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1125 **
1126 ** The code is inlined to avoid a function call.
1127 */
1128 iKey = *pIter;
1129 if( iKey>=0x80 ){
1130 u8 *pEnd = &pIter[7];
1131 iKey &= 0x7f;
1132 while(1){
1133 iKey = (iKey<<7) | (*++pIter & 0x7f);
1134 if( (*pIter)<0x80 ) break;
1135 if( pIter>=pEnd ){
1136 iKey = (iKey<<8) | *++pIter;
1137 break;
1138 }
1139 }
1140 }
1141 pIter++;
1142
1143 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001144 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001145 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001146 testcase( nPayload==pPage->maxLocal );
1147 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001148 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001149 /* This is the (easy) common case where the entire payload fits
1150 ** on the local page. No overflow is required.
1151 */
drhab1cc582014-09-23 21:25:19 +00001152 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1153 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001154 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001155 }else{
drh5fa60512015-06-19 17:19:34 +00001156 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001157 }
drh3aac2dd2004-04-26 14:10:20 +00001158}
drh5fa60512015-06-19 17:19:34 +00001159static void btreeParseCellPtrIndex(
1160 MemPage *pPage, /* Page containing the cell */
1161 u8 *pCell, /* Pointer to the cell text. */
1162 CellInfo *pInfo /* Fill in this structure */
1163){
1164 u8 *pIter; /* For scanning through pCell */
1165 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001166
drh5fa60512015-06-19 17:19:34 +00001167 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1168 assert( pPage->leaf==0 || pPage->leaf==1 );
1169 assert( pPage->intKeyLeaf==0 );
1170 assert( pPage->noPayload==0 );
1171 pIter = pCell + pPage->childPtrSize;
1172 nPayload = *pIter;
1173 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001174 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001175 nPayload &= 0x7f;
1176 do{
1177 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1178 }while( *(pIter)>=0x80 && pIter<pEnd );
1179 }
1180 pIter++;
1181 pInfo->nKey = nPayload;
1182 pInfo->nPayload = nPayload;
1183 pInfo->pPayload = pIter;
1184 testcase( nPayload==pPage->maxLocal );
1185 testcase( nPayload==pPage->maxLocal+1 );
1186 if( nPayload<=pPage->maxLocal ){
1187 /* This is the (easy) common case where the entire payload fits
1188 ** on the local page. No overflow is required.
1189 */
1190 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1191 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1192 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001193 }else{
1194 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001195 }
1196}
danielk197730548662009-07-09 05:07:37 +00001197static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001198 MemPage *pPage, /* Page containing the cell */
1199 int iCell, /* The cell index. First cell is 0 */
1200 CellInfo *pInfo /* Fill in this structure */
1201){
drh5fa60512015-06-19 17:19:34 +00001202 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001203}
drh3aac2dd2004-04-26 14:10:20 +00001204
1205/*
drh5fa60512015-06-19 17:19:34 +00001206** The following routines are implementations of the MemPage.xCellSize
1207** method.
1208**
drh43605152004-05-29 21:46:49 +00001209** Compute the total number of bytes that a Cell needs in the cell
1210** data area of the btree-page. The return number includes the cell
1211** data header and the local payload, but not any overflow page or
1212** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001213**
drh5fa60512015-06-19 17:19:34 +00001214** cellSizePtrNoPayload() => table internal nodes
1215** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001216*/
danielk1977ae5558b2009-04-29 11:31:47 +00001217static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001218 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1219 u8 *pEnd; /* End mark for a varint */
1220 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001221
1222#ifdef SQLITE_DEBUG
1223 /* The value returned by this function should always be the same as
1224 ** the (CellInfo.nSize) value found by doing a full parse of the
1225 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1226 ** this function verifies that this invariant is not violated. */
1227 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001228 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001229#endif
1230
drh25ada072015-06-19 15:07:14 +00001231 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001232 nSize = *pIter;
1233 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001234 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001235 nSize &= 0x7f;
1236 do{
1237 nSize = (nSize<<7) | (*++pIter & 0x7f);
1238 }while( *(pIter)>=0x80 && pIter<pEnd );
1239 }
1240 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001241 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001242 /* pIter now points at the 64-bit integer key value, a variable length
1243 ** integer. The following block moves pIter to point at the first byte
1244 ** past the end of the key value. */
1245 pEnd = &pIter[9];
1246 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001247 }
drh0a45c272009-07-08 01:49:11 +00001248 testcase( nSize==pPage->maxLocal );
1249 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001250 if( nSize<=pPage->maxLocal ){
1251 nSize += (u32)(pIter - pCell);
1252 if( nSize<4 ) nSize = 4;
1253 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001254 int minLocal = pPage->minLocal;
1255 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001256 testcase( nSize==pPage->maxLocal );
1257 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001258 if( nSize>pPage->maxLocal ){
1259 nSize = minLocal;
1260 }
drh3e28ff52014-09-24 00:59:08 +00001261 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001262 }
drhdc41d602014-09-22 19:51:35 +00001263 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001264 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001265}
drh25ada072015-06-19 15:07:14 +00001266static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1267 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1268 u8 *pEnd; /* End mark for a varint */
1269
1270#ifdef SQLITE_DEBUG
1271 /* The value returned by this function should always be the same as
1272 ** the (CellInfo.nSize) value found by doing a full parse of the
1273 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1274 ** this function verifies that this invariant is not violated. */
1275 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001276 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001277#else
1278 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001279#endif
1280
1281 assert( pPage->childPtrSize==4 );
1282 pEnd = pIter + 9;
1283 while( (*pIter++)&0x80 && pIter<pEnd );
1284 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1285 return (u16)(pIter - pCell);
1286}
1287
drh0ee3dbe2009-10-16 15:05:18 +00001288
1289#ifdef SQLITE_DEBUG
1290/* This variation on cellSizePtr() is used inside of assert() statements
1291** only. */
drha9121e42008-02-19 14:59:35 +00001292static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001293 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001294}
danielk1977bc6ada42004-06-30 08:20:16 +00001295#endif
drh3b7511c2001-05-26 13:15:44 +00001296
danielk197779a40da2005-01-16 08:00:01 +00001297#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001298/*
danielk197726836652005-01-17 01:33:13 +00001299** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001300** to an overflow page, insert an entry into the pointer-map
1301** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001302*/
drh98add2e2009-07-20 17:11:49 +00001303static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001304 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001305 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001306 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001307 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001308 if( info.nLocal<info.nPayload ){
1309 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001310 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001311 }
danielk1977ac11ee62005-01-15 12:45:51 +00001312}
danielk197779a40da2005-01-16 08:00:01 +00001313#endif
1314
danielk1977ac11ee62005-01-15 12:45:51 +00001315
drhda200cc2004-05-09 11:51:38 +00001316/*
drh72f82862001-05-24 21:06:34 +00001317** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001318** end of the page and all free space is collected into one
1319** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001320** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001321**
1322** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1323** b-tree page so that there are no freeblocks or fragment bytes, all
1324** unused bytes are contained in the unallocated space region, and all
1325** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001326*/
shane0af3f892008-11-12 04:55:34 +00001327static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001328 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001329 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001330 int hdr; /* Offset to the page header */
1331 int size; /* Size of a cell */
1332 int usableSize; /* Number of usable bytes on a page */
1333 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001334 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001335 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001336 unsigned char *data; /* The page data */
1337 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001338 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001339 int iCellFirst; /* First allowable cell index */
1340 int iCellLast; /* Last possible cell index */
1341
drh2af926b2001-05-15 00:39:25 +00001342
danielk19773b8a05f2007-03-19 17:44:26 +00001343 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001344 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001345 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001346 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001347 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001348 temp = 0;
1349 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001350 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001351 cellOffset = pPage->cellOffset;
1352 nCell = pPage->nCell;
1353 assert( nCell==get2byte(&data[hdr+3]) );
1354 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001355 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001356 iCellFirst = cellOffset + 2*nCell;
1357 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001358 for(i=0; i<nCell; i++){
1359 u8 *pAddr; /* The i-th cell pointer */
1360 pAddr = &data[cellOffset + i*2];
1361 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001362 testcase( pc==iCellFirst );
1363 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001364 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001365 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001366 */
1367 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001368 return SQLITE_CORRUPT_BKPT;
1369 }
drh17146622009-07-07 17:38:38 +00001370 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001371 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001372 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001373 if( cbrk<iCellFirst || pc+size>usableSize ){
1374 return SQLITE_CORRUPT_BKPT;
1375 }
drh7157e1d2009-07-09 13:25:32 +00001376 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001377 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001378 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001379 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001380 if( temp==0 ){
1381 int x;
1382 if( cbrk==pc ) continue;
1383 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1384 x = get2byte(&data[hdr+5]);
1385 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1386 src = temp;
1387 }
1388 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001389 }
drh17146622009-07-07 17:38:38 +00001390 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001391 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001392 data[hdr+1] = 0;
1393 data[hdr+2] = 0;
1394 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001395 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001396 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001397 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001398 return SQLITE_CORRUPT_BKPT;
1399 }
shane0af3f892008-11-12 04:55:34 +00001400 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001401}
1402
drha059ad02001-04-17 20:09:11 +00001403/*
dan8e9ba0c2014-10-14 17:27:04 +00001404** Search the free-list on page pPg for space to store a cell nByte bytes in
1405** size. If one can be found, return a pointer to the space and remove it
1406** from the free-list.
1407**
1408** If no suitable space can be found on the free-list, return NULL.
1409**
drhba0f9992014-10-30 20:48:44 +00001410** This function may detect corruption within pPg. If corruption is
1411** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001412**
drhb7580e82015-06-25 18:36:13 +00001413** Slots on the free list that are between 1 and 3 bytes larger than nByte
1414** will be ignored if adding the extra space to the fragmentation count
1415** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001416*/
drhb7580e82015-06-25 18:36:13 +00001417static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001418 const int hdr = pPg->hdrOffset;
1419 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001420 int iAddr = hdr + 1;
1421 int pc = get2byte(&aData[iAddr]);
1422 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001423 int usableSize = pPg->pBt->usableSize;
1424
drhb7580e82015-06-25 18:36:13 +00001425 assert( pc>0 );
1426 do{
dan8e9ba0c2014-10-14 17:27:04 +00001427 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001428 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1429 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001430 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001431 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001432 return 0;
1433 }
drh113762a2014-11-19 16:36:25 +00001434 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1435 ** freeblock form a big-endian integer which is the size of the freeblock
1436 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001437 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001438 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001439 testcase( x==4 );
1440 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001441 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1442 *pRc = SQLITE_CORRUPT_BKPT;
1443 return 0;
1444 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001445 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1446 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001447 if( aData[hdr+7]>57 ) return 0;
1448
dan8e9ba0c2014-10-14 17:27:04 +00001449 /* Remove the slot from the free-list. Update the number of
1450 ** fragmented bytes within the page. */
1451 memcpy(&aData[iAddr], &aData[pc], 2);
1452 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001453 }else{
1454 /* The slot remains on the free-list. Reduce its size to account
1455 ** for the portion used by the new allocation. */
1456 put2byte(&aData[pc+2], x);
1457 }
1458 return &aData[pc + x];
1459 }
drhb7580e82015-06-25 18:36:13 +00001460 iAddr = pc;
1461 pc = get2byte(&aData[pc]);
1462 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001463
1464 return 0;
1465}
1466
1467/*
danielk19776011a752009-04-01 16:25:32 +00001468** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001469** as the first argument. Write into *pIdx the index into pPage->aData[]
1470** of the first byte of allocated space. Return either SQLITE_OK or
1471** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001472**
drh0a45c272009-07-08 01:49:11 +00001473** The caller guarantees that there is sufficient space to make the
1474** allocation. This routine might need to defragment in order to bring
1475** all the space together, however. This routine will avoid using
1476** the first two bytes past the cell pointer area since presumably this
1477** allocation is being made in order to insert a new cell, so we will
1478** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001479*/
drh0a45c272009-07-08 01:49:11 +00001480static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001481 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1482 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001483 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001484 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001485 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001486
danielk19773b8a05f2007-03-19 17:44:26 +00001487 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001488 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001489 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001490 assert( nByte>=0 ); /* Minimum cell size is 4 */
1491 assert( pPage->nFree>=nByte );
1492 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001493 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001494
drh0a45c272009-07-08 01:49:11 +00001495 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1496 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001497 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001498 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1499 ** and the reserved space is zero (the usual value for reserved space)
1500 ** then the cell content offset of an empty page wants to be 65536.
1501 ** However, that integer is too large to be stored in a 2-byte unsigned
1502 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001503 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001504 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001505 if( gap>top ){
1506 if( top==0 && pPage->pBt->usableSize==65536 ){
1507 top = 65536;
1508 }else{
1509 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001510 }
1511 }
drh43605152004-05-29 21:46:49 +00001512
drh4c04f3c2014-08-20 11:56:14 +00001513 /* If there is enough space between gap and top for one more cell pointer
1514 ** array entry offset, and if the freelist is not empty, then search the
1515 ** freelist looking for a free slot big enough to satisfy the request.
1516 */
drh5e2f8b92001-05-28 00:41:15 +00001517 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001518 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001519 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001520 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001521 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001522 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001523 assert( pSpace>=data && (pSpace - data)<65536 );
1524 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001525 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001526 }else if( rc ){
1527 return rc;
drh9e572e62004-04-23 23:43:10 +00001528 }
1529 }
drh43605152004-05-29 21:46:49 +00001530
drh4c04f3c2014-08-20 11:56:14 +00001531 /* The request could not be fulfilled using a freelist slot. Check
1532 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001533 */
1534 testcase( gap+2+nByte==top );
1535 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001536 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001537 rc = defragmentPage(pPage);
1538 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001539 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001540 assert( gap+nByte<=top );
1541 }
1542
1543
drh43605152004-05-29 21:46:49 +00001544 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001545 ** and the cell content area. The btreeInitPage() call has already
1546 ** validated the freelist. Given that the freelist is valid, there
1547 ** is no way that the allocation can extend off the end of the page.
1548 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001549 */
drh0a45c272009-07-08 01:49:11 +00001550 top -= nByte;
drh43605152004-05-29 21:46:49 +00001551 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001552 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001553 *pIdx = top;
1554 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001555}
1556
1557/*
drh9e572e62004-04-23 23:43:10 +00001558** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001559** The first byte of the new free block is pPage->aData[iStart]
1560** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001561**
drh5f5c7532014-08-20 17:56:27 +00001562** Adjacent freeblocks are coalesced.
1563**
1564** Note that even though the freeblock list was checked by btreeInitPage(),
1565** that routine will not detect overlap between cells or freeblocks. Nor
1566** does it detect cells or freeblocks that encrouch into the reserved bytes
1567** at the end of the page. So do additional corruption checks inside this
1568** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001569*/
drh5f5c7532014-08-20 17:56:27 +00001570static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001571 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001572 u16 iFreeBlk; /* Address of the next freeblock */
1573 u8 hdr; /* Page header size. 0 or 100 */
1574 u8 nFrag = 0; /* Reduction in fragmentation */
1575 u16 iOrigSize = iSize; /* Original value of iSize */
1576 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1577 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001578 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001579
drh9e572e62004-04-23 23:43:10 +00001580 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001581 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001582 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001583 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001585 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001586 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001587
drh5f5c7532014-08-20 17:56:27 +00001588 /* Overwrite deleted information with zeros when the secure_delete
1589 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001590 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001591 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001592 }
drhfcce93f2006-02-22 03:08:32 +00001593
drh5f5c7532014-08-20 17:56:27 +00001594 /* The list of freeblocks must be in ascending order. Find the
1595 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001596 */
drh43605152004-05-29 21:46:49 +00001597 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001598 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001599 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1600 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1601 }else{
1602 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1603 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1604 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001605 }
drh7bc4c452014-08-20 18:43:44 +00001606 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1607 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1608
1609 /* At this point:
1610 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001611 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001612 **
1613 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1614 */
1615 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1616 nFrag = iFreeBlk - iEnd;
1617 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1618 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001619 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001620 iSize = iEnd - iStart;
1621 iFreeBlk = get2byte(&data[iFreeBlk]);
1622 }
1623
drh3f387402014-09-24 01:23:00 +00001624 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1625 ** pointer in the page header) then check to see if iStart should be
1626 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001627 */
1628 if( iPtr>hdr+1 ){
1629 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1630 if( iPtrEnd+3>=iStart ){
1631 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1632 nFrag += iStart - iPtrEnd;
1633 iSize = iEnd - iPtr;
1634 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001635 }
drh9e572e62004-04-23 23:43:10 +00001636 }
drh7bc4c452014-08-20 18:43:44 +00001637 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1638 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001639 }
drh7bc4c452014-08-20 18:43:44 +00001640 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001641 /* The new freeblock is at the beginning of the cell content area,
1642 ** so just extend the cell content area rather than create another
1643 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001644 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001645 put2byte(&data[hdr+1], iFreeBlk);
1646 put2byte(&data[hdr+5], iEnd);
1647 }else{
1648 /* Insert the new freeblock into the freelist */
1649 put2byte(&data[iPtr], iStart);
1650 put2byte(&data[iStart], iFreeBlk);
1651 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001652 }
drh5f5c7532014-08-20 17:56:27 +00001653 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001654 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001655}
1656
1657/*
drh271efa52004-05-30 19:19:05 +00001658** Decode the flags byte (the first byte of the header) for a page
1659** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001660**
1661** Only the following combinations are supported. Anything different
1662** indicates a corrupt database files:
1663**
1664** PTF_ZERODATA
1665** PTF_ZERODATA | PTF_LEAF
1666** PTF_LEAFDATA | PTF_INTKEY
1667** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001668*/
drh44845222008-07-17 18:39:57 +00001669static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001670 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001671
1672 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001673 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001674 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001675 flagByte &= ~PTF_LEAF;
1676 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001677 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001678 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001679 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001680 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1681 ** table b-tree page. */
1682 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1683 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1684 ** table b-tree page. */
1685 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001686 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001687 if( pPage->leaf ){
1688 pPage->intKeyLeaf = 1;
1689 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001690 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001691 }else{
1692 pPage->intKeyLeaf = 0;
1693 pPage->noPayload = 1;
1694 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001695 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001696 }
drh271efa52004-05-30 19:19:05 +00001697 pPage->maxLocal = pBt->maxLeaf;
1698 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001699 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001700 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1701 ** index b-tree page. */
1702 assert( (PTF_ZERODATA)==2 );
1703 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1704 ** index b-tree page. */
1705 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001706 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001707 pPage->intKeyLeaf = 0;
1708 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001709 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001710 pPage->maxLocal = pBt->maxLocal;
1711 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001712 }else{
drhfdab0262014-11-20 15:30:50 +00001713 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1714 ** an error. */
drh44845222008-07-17 18:39:57 +00001715 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001716 }
drhc9166342012-01-05 23:32:06 +00001717 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001718 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001719}
1720
1721/*
drh7e3b0a02001-04-28 16:52:40 +00001722** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001723**
1724** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001725** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001726** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1727** guarantee that the page is well-formed. It only shows that
1728** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001729*/
danielk197730548662009-07-09 05:07:37 +00001730static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001731
danielk197771d5d2c2008-09-29 11:49:47 +00001732 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001733 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001734 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001735 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001736 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1737 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001738
1739 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001740 u16 pc; /* Address of a freeblock within pPage->aData[] */
1741 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001742 u8 *data; /* Equal to pPage->aData */
1743 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001744 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001745 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001746 int nFree; /* Number of unused bytes on the page */
1747 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001748 int iCellFirst; /* First allowable cell or freeblock offset */
1749 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001750
1751 pBt = pPage->pBt;
1752
danielk1977eaa06f62008-09-18 17:34:44 +00001753 hdr = pPage->hdrOffset;
1754 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001755 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1756 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001757 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001758 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1759 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001760 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001761 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001762 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001763 pPage->aDataEnd = &data[usableSize];
1764 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001765 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001766 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1767 ** the start of the cell content area. A zero value for this integer is
1768 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001769 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001770 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1771 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001772 pPage->nCell = get2byte(&data[hdr+3]);
1773 if( pPage->nCell>MX_CELL(pBt) ){
1774 /* To many cells for a single page. The page must be corrupt */
1775 return SQLITE_CORRUPT_BKPT;
1776 }
drhb908d762009-07-08 16:54:40 +00001777 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001778 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1779 ** possible for a root page of a table that contains no rows) then the
1780 ** offset to the cell content area will equal the page size minus the
1781 ** bytes of reserved space. */
1782 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001783
shane5eff7cf2009-08-10 03:57:58 +00001784 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001785 ** of page when parsing a cell.
1786 **
1787 ** The following block of code checks early to see if a cell extends
1788 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1789 ** returned if it does.
1790 */
drh0a45c272009-07-08 01:49:11 +00001791 iCellFirst = cellOffset + 2*pPage->nCell;
1792 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001793 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001794 int i; /* Index into the cell pointer array */
1795 int sz; /* Size of a cell */
1796
drh69e931e2009-06-03 21:04:35 +00001797 if( !pPage->leaf ) iCellLast--;
1798 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001799 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001800 testcase( pc==iCellFirst );
1801 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001802 if( pc<iCellFirst || pc>iCellLast ){
1803 return SQLITE_CORRUPT_BKPT;
1804 }
drh25ada072015-06-19 15:07:14 +00001805 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001806 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001807 if( pc+sz>usableSize ){
1808 return SQLITE_CORRUPT_BKPT;
1809 }
1810 }
drh0a45c272009-07-08 01:49:11 +00001811 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001812 }
drh69e931e2009-06-03 21:04:35 +00001813
drhfdab0262014-11-20 15:30:50 +00001814 /* Compute the total free space on the page
1815 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1816 ** start of the first freeblock on the page, or is zero if there are no
1817 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001818 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001819 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001820 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001821 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001822 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001823 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1824 ** always be at least one cell before the first freeblock.
1825 **
1826 ** Or, the freeblock is off the end of the page
1827 */
danielk1977eaa06f62008-09-18 17:34:44 +00001828 return SQLITE_CORRUPT_BKPT;
1829 }
1830 next = get2byte(&data[pc]);
1831 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001832 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1833 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001834 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001835 return SQLITE_CORRUPT_BKPT;
1836 }
shane85095702009-06-15 16:27:08 +00001837 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001838 pc = next;
1839 }
danielk197793c829c2009-06-03 17:26:17 +00001840
1841 /* At this point, nFree contains the sum of the offset to the start
1842 ** of the cell-content area plus the number of free bytes within
1843 ** the cell-content area. If this is greater than the usable-size
1844 ** of the page, then the page must be corrupted. This check also
1845 ** serves to verify that the offset to the start of the cell-content
1846 ** area, according to the page header, lies within the page.
1847 */
1848 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001849 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001850 }
shane5eff7cf2009-08-10 03:57:58 +00001851 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001852 pPage->isInit = 1;
1853 }
drh9e572e62004-04-23 23:43:10 +00001854 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001855}
1856
1857/*
drh8b2f49b2001-06-08 00:21:52 +00001858** Set up a raw page so that it looks like a database page holding
1859** no entries.
drhbd03cae2001-06-02 02:40:57 +00001860*/
drh9e572e62004-04-23 23:43:10 +00001861static void zeroPage(MemPage *pPage, int flags){
1862 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001863 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001864 u8 hdr = pPage->hdrOffset;
1865 u16 first;
drh9e572e62004-04-23 23:43:10 +00001866
danielk19773b8a05f2007-03-19 17:44:26 +00001867 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001868 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1869 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001870 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001871 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001872 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001873 memset(&data[hdr], 0, pBt->usableSize - hdr);
1874 }
drh1bd10f82008-12-10 21:19:56 +00001875 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001876 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001877 memset(&data[hdr+1], 0, 4);
1878 data[hdr+7] = 0;
1879 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001880 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001881 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001882 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001883 pPage->aDataEnd = &data[pBt->usableSize];
1884 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001885 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001886 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001887 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1888 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001889 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001890 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001891}
1892
drh897a8202008-09-18 01:08:15 +00001893
1894/*
1895** Convert a DbPage obtained from the pager into a MemPage used by
1896** the btree layer.
1897*/
1898static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1899 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001900 if( pgno!=pPage->pgno ){
1901 pPage->aData = sqlite3PagerGetData(pDbPage);
1902 pPage->pDbPage = pDbPage;
1903 pPage->pBt = pBt;
1904 pPage->pgno = pgno;
1905 pPage->hdrOffset = pgno==1 ? 100 : 0;
1906 }
1907 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001908 return pPage;
1909}
1910
drhbd03cae2001-06-02 02:40:57 +00001911/*
drh3aac2dd2004-04-26 14:10:20 +00001912** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001913** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001914**
drh7e8c6f12015-05-28 03:28:27 +00001915** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1916** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001917** to fetch the content. Just fill in the content with zeros for now.
1918** If in the future we call sqlite3PagerWrite() on this page, that
1919** means we have started to be concerned about content and the disk
1920** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001921*/
danielk197730548662009-07-09 05:07:37 +00001922static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001923 BtShared *pBt, /* The btree */
1924 Pgno pgno, /* Number of the page to fetch */
1925 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001926 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001927){
drh3aac2dd2004-04-26 14:10:20 +00001928 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001929 DbPage *pDbPage;
1930
drhb00fc3b2013-08-21 23:42:32 +00001931 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001932 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001933 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001934 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001935 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001936 return SQLITE_OK;
1937}
1938
1939/*
danielk1977bea2a942009-01-20 17:06:27 +00001940** Retrieve a page from the pager cache. If the requested page is not
1941** already in the pager cache return NULL. Initialize the MemPage.pBt and
1942** MemPage.aData elements if needed.
1943*/
1944static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1945 DbPage *pDbPage;
1946 assert( sqlite3_mutex_held(pBt->mutex) );
1947 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1948 if( pDbPage ){
1949 return btreePageFromDbPage(pDbPage, pgno, pBt);
1950 }
1951 return 0;
1952}
1953
1954/*
danielk197789d40042008-11-17 14:20:56 +00001955** Return the size of the database file in pages. If there is any kind of
1956** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001957*/
drhb1299152010-03-30 22:58:33 +00001958static Pgno btreePagecount(BtShared *pBt){
1959 return pBt->nPage;
1960}
1961u32 sqlite3BtreeLastPage(Btree *p){
1962 assert( sqlite3BtreeHoldsMutex(p) );
1963 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001964 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001965}
1966
1967/*
drh28f58dd2015-06-27 19:45:03 +00001968** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001969**
drh15a00212015-06-27 20:55:00 +00001970** If pCur!=0 then the page is being fetched as part of a moveToChild()
1971** call. Do additional sanity checking on the page in this case.
1972** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001973**
1974** The page is fetched as read-write unless pCur is not NULL and is
1975** a read-only cursor.
1976**
1977** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001978** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001979*/
1980static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001981 BtShared *pBt, /* The database file */
1982 Pgno pgno, /* Number of the page to get */
1983 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001984 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1985 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001986){
1987 int rc;
drh28f58dd2015-06-27 19:45:03 +00001988 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001989 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001990 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1991 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001992 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001993
danba3cbf32010-06-30 04:29:03 +00001994 if( pgno>btreePagecount(pBt) ){
1995 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001996 goto getAndInitPage_error;
1997 }
drh9584f582015-11-04 20:22:37 +00001998 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00001999 if( rc ){
2000 goto getAndInitPage_error;
2001 }
drh8dd1c252015-11-04 22:31:02 +00002002 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002003 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002004 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002005 rc = btreeInitPage(*ppPage);
2006 if( rc!=SQLITE_OK ){
2007 releasePage(*ppPage);
2008 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002009 }
drhee696e22004-08-30 16:52:17 +00002010 }
drh8dd1c252015-11-04 22:31:02 +00002011 assert( (*ppPage)->pgno==pgno );
2012 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002013
drh15a00212015-06-27 20:55:00 +00002014 /* If obtaining a child page for a cursor, we must verify that the page is
2015 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002016 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002017 rc = SQLITE_CORRUPT_BKPT;
2018 releasePage(*ppPage);
2019 goto getAndInitPage_error;
2020 }
drh28f58dd2015-06-27 19:45:03 +00002021 return SQLITE_OK;
2022
2023getAndInitPage_error:
2024 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002025 testcase( pgno==0 );
2026 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002027 return rc;
2028}
2029
2030/*
drh3aac2dd2004-04-26 14:10:20 +00002031** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002032** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002033*/
drhbbf0f862015-06-27 14:59:26 +00002034static void releasePageNotNull(MemPage *pPage){
2035 assert( pPage->aData );
2036 assert( pPage->pBt );
2037 assert( pPage->pDbPage!=0 );
2038 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2039 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2040 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2041 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002042}
drh3aac2dd2004-04-26 14:10:20 +00002043static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002044 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002045}
2046
2047/*
drh7e8c6f12015-05-28 03:28:27 +00002048** Get an unused page.
2049**
2050** This works just like btreeGetPage() with the addition:
2051**
2052** * If the page is already in use for some other purpose, immediately
2053** release it and return an SQLITE_CURRUPT error.
2054** * Make sure the isInit flag is clear
2055*/
2056static int btreeGetUnusedPage(
2057 BtShared *pBt, /* The btree */
2058 Pgno pgno, /* Number of the page to fetch */
2059 MemPage **ppPage, /* Return the page in this parameter */
2060 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2061){
2062 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2063 if( rc==SQLITE_OK ){
2064 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2065 releasePage(*ppPage);
2066 *ppPage = 0;
2067 return SQLITE_CORRUPT_BKPT;
2068 }
2069 (*ppPage)->isInit = 0;
2070 }else{
2071 *ppPage = 0;
2072 }
2073 return rc;
2074}
2075
drha059ad02001-04-17 20:09:11 +00002076
2077/*
drha6abd042004-06-09 17:37:22 +00002078** During a rollback, when the pager reloads information into the cache
2079** so that the cache is restored to its original state at the start of
2080** the transaction, for each page restored this routine is called.
2081**
2082** This routine needs to reset the extra data section at the end of the
2083** page to agree with the restored data.
2084*/
danielk1977eaa06f62008-09-18 17:34:44 +00002085static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002086 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002087 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002088 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002089 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002090 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002091 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002092 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002093 /* pPage might not be a btree page; it might be an overflow page
2094 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002095 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002096 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002097 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002098 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002099 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002100 }
drha6abd042004-06-09 17:37:22 +00002101 }
2102}
2103
2104/*
drhe5fe6902007-12-07 18:55:28 +00002105** Invoke the busy handler for a btree.
2106*/
danielk19771ceedd32008-11-19 10:22:33 +00002107static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002108 BtShared *pBt = (BtShared*)pArg;
2109 assert( pBt->db );
2110 assert( sqlite3_mutex_held(pBt->db->mutex) );
2111 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2112}
2113
2114/*
drhad3e0102004-09-03 23:32:18 +00002115** Open a database file.
2116**
drh382c0242001-10-06 16:33:02 +00002117** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002118** then an ephemeral database is created. The ephemeral database might
2119** be exclusively in memory, or it might use a disk-based memory cache.
2120** Either way, the ephemeral database will be automatically deleted
2121** when sqlite3BtreeClose() is called.
2122**
drhe53831d2007-08-17 01:14:38 +00002123** If zFilename is ":memory:" then an in-memory database is created
2124** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002125**
drh33f111d2012-01-17 15:29:14 +00002126** The "flags" parameter is a bitmask that might contain bits like
2127** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002128**
drhc47fd8e2009-04-30 13:30:32 +00002129** If the database is already opened in the same database connection
2130** and we are in shared cache mode, then the open will fail with an
2131** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2132** objects in the same database connection since doing so will lead
2133** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002134*/
drh23e11ca2004-05-04 17:27:28 +00002135int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002136 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002137 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002138 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002139 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002140 int flags, /* Options */
2141 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002142){
drh7555d8e2009-03-20 13:15:30 +00002143 BtShared *pBt = 0; /* Shared part of btree structure */
2144 Btree *p; /* Handle to return */
2145 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2146 int rc = SQLITE_OK; /* Result code from this function */
2147 u8 nReserve; /* Byte of unused space on each page */
2148 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002149
drh75c014c2010-08-30 15:02:28 +00002150 /* True if opening an ephemeral, temporary database */
2151 const int isTempDb = zFilename==0 || zFilename[0]==0;
2152
danielk1977aef0bf62005-12-30 16:28:01 +00002153 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002154 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002155 */
drhb0a7c9c2010-12-06 21:09:59 +00002156#ifdef SQLITE_OMIT_MEMORYDB
2157 const int isMemdb = 0;
2158#else
2159 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002160 || (isTempDb && sqlite3TempInMemory(db))
2161 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002162#endif
2163
drhe5fe6902007-12-07 18:55:28 +00002164 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002165 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002166 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002167 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2168
2169 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2170 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2171
2172 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2173 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002174
drh75c014c2010-08-30 15:02:28 +00002175 if( isMemdb ){
2176 flags |= BTREE_MEMORY;
2177 }
2178 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2179 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2180 }
drh17435752007-08-16 04:30:38 +00002181 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002182 if( !p ){
2183 return SQLITE_NOMEM;
2184 }
2185 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002186 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002187#ifndef SQLITE_OMIT_SHARED_CACHE
2188 p->lock.pBtree = p;
2189 p->lock.iTable = 1;
2190#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002191
drh198bf392006-01-06 21:52:49 +00002192#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002193 /*
2194 ** If this Btree is a candidate for shared cache, try to find an
2195 ** existing BtShared object that we can share with
2196 */
drh4ab9d252012-05-26 20:08:49 +00002197 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002198 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002199 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002200 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002201 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002202 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002203
drhff0587c2007-08-29 17:43:19 +00002204 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002205 if( !zFullPathname ){
2206 sqlite3_free(p);
2207 return SQLITE_NOMEM;
2208 }
drhafc8b7f2012-05-26 18:06:38 +00002209 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002210 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002211 }else{
2212 rc = sqlite3OsFullPathname(pVfs, zFilename,
2213 nFullPathname, zFullPathname);
2214 if( rc ){
2215 sqlite3_free(zFullPathname);
2216 sqlite3_free(p);
2217 return rc;
2218 }
drh070ad6b2011-11-17 11:43:19 +00002219 }
drh30ddce62011-10-15 00:16:30 +00002220#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002221 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2222 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002223 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002224 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002225#endif
drh78f82d12008-09-02 00:52:52 +00002226 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002227 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002228 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002229 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002230 int iDb;
2231 for(iDb=db->nDb-1; iDb>=0; iDb--){
2232 Btree *pExisting = db->aDb[iDb].pBt;
2233 if( pExisting && pExisting->pBt==pBt ){
2234 sqlite3_mutex_leave(mutexShared);
2235 sqlite3_mutex_leave(mutexOpen);
2236 sqlite3_free(zFullPathname);
2237 sqlite3_free(p);
2238 return SQLITE_CONSTRAINT;
2239 }
2240 }
drhff0587c2007-08-29 17:43:19 +00002241 p->pBt = pBt;
2242 pBt->nRef++;
2243 break;
2244 }
2245 }
2246 sqlite3_mutex_leave(mutexShared);
2247 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002248 }
drhff0587c2007-08-29 17:43:19 +00002249#ifdef SQLITE_DEBUG
2250 else{
2251 /* In debug mode, we mark all persistent databases as sharable
2252 ** even when they are not. This exercises the locking code and
2253 ** gives more opportunity for asserts(sqlite3_mutex_held())
2254 ** statements to find locking problems.
2255 */
2256 p->sharable = 1;
2257 }
2258#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002259 }
2260#endif
drha059ad02001-04-17 20:09:11 +00002261 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002262 /*
2263 ** The following asserts make sure that structures used by the btree are
2264 ** the right size. This is to guard against size changes that result
2265 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002266 */
drh062cf272015-03-23 19:03:51 +00002267 assert( sizeof(i64)==8 );
2268 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002269 assert( sizeof(u32)==4 );
2270 assert( sizeof(u16)==2 );
2271 assert( sizeof(Pgno)==4 );
2272
2273 pBt = sqlite3MallocZero( sizeof(*pBt) );
2274 if( pBt==0 ){
2275 rc = SQLITE_NOMEM;
2276 goto btree_open_out;
2277 }
danielk197771d5d2c2008-09-29 11:49:47 +00002278 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002279 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002280 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002281 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002282 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2283 }
2284 if( rc!=SQLITE_OK ){
2285 goto btree_open_out;
2286 }
shanehbd2aaf92010-09-01 02:38:21 +00002287 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002288 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002289 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002290 p->pBt = pBt;
2291
drhe53831d2007-08-17 01:14:38 +00002292 pBt->pCursor = 0;
2293 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002294 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002295#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002296 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002297#endif
drh113762a2014-11-19 16:36:25 +00002298 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2299 ** determined by the 2-byte integer located at an offset of 16 bytes from
2300 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002301 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002302 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2303 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002304 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002305#ifndef SQLITE_OMIT_AUTOVACUUM
2306 /* If the magic name ":memory:" will create an in-memory database, then
2307 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2308 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2309 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2310 ** regular file-name. In this case the auto-vacuum applies as per normal.
2311 */
2312 if( zFilename && !isMemdb ){
2313 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2314 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2315 }
2316#endif
2317 nReserve = 0;
2318 }else{
drh113762a2014-11-19 16:36:25 +00002319 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2320 ** determined by the one-byte unsigned integer found at an offset of 20
2321 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002322 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002323 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002324#ifndef SQLITE_OMIT_AUTOVACUUM
2325 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2326 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2327#endif
2328 }
drhfa9601a2009-06-18 17:22:39 +00002329 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002330 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002331 pBt->usableSize = pBt->pageSize - nReserve;
2332 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002333
2334#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2335 /* Add the new BtShared object to the linked list sharable BtShareds.
2336 */
2337 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002338 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002339 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002340 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002341 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002342 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002343 if( pBt->mutex==0 ){
2344 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002345 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002346 goto btree_open_out;
2347 }
drhff0587c2007-08-29 17:43:19 +00002348 }
drhe53831d2007-08-17 01:14:38 +00002349 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002350 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2351 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002352 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002353 }
drheee46cf2004-11-06 00:02:48 +00002354#endif
drh90f5ecb2004-07-22 01:19:35 +00002355 }
danielk1977aef0bf62005-12-30 16:28:01 +00002356
drhcfed7bc2006-03-13 14:28:05 +00002357#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002358 /* If the new Btree uses a sharable pBtShared, then link the new
2359 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002360 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002361 */
drhe53831d2007-08-17 01:14:38 +00002362 if( p->sharable ){
2363 int i;
2364 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002365 for(i=0; i<db->nDb; i++){
2366 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002367 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2368 if( p->pBt<pSib->pBt ){
2369 p->pNext = pSib;
2370 p->pPrev = 0;
2371 pSib->pPrev = p;
2372 }else{
drhabddb0c2007-08-20 13:14:28 +00002373 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002374 pSib = pSib->pNext;
2375 }
2376 p->pNext = pSib->pNext;
2377 p->pPrev = pSib;
2378 if( p->pNext ){
2379 p->pNext->pPrev = p;
2380 }
2381 pSib->pNext = p;
2382 }
2383 break;
2384 }
2385 }
danielk1977aef0bf62005-12-30 16:28:01 +00002386 }
danielk1977aef0bf62005-12-30 16:28:01 +00002387#endif
2388 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002389
2390btree_open_out:
2391 if( rc!=SQLITE_OK ){
2392 if( pBt && pBt->pPager ){
2393 sqlite3PagerClose(pBt->pPager);
2394 }
drh17435752007-08-16 04:30:38 +00002395 sqlite3_free(pBt);
2396 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002397 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002398 }else{
2399 /* If the B-Tree was successfully opened, set the pager-cache size to the
2400 ** default value. Except, when opening on an existing shared pager-cache,
2401 ** do not change the pager-cache size.
2402 */
2403 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2404 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2405 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002406 }
drh7555d8e2009-03-20 13:15:30 +00002407 if( mutexOpen ){
2408 assert( sqlite3_mutex_held(mutexOpen) );
2409 sqlite3_mutex_leave(mutexOpen);
2410 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002411 return rc;
drha059ad02001-04-17 20:09:11 +00002412}
2413
2414/*
drhe53831d2007-08-17 01:14:38 +00002415** Decrement the BtShared.nRef counter. When it reaches zero,
2416** remove the BtShared structure from the sharing list. Return
2417** true if the BtShared.nRef counter reaches zero and return
2418** false if it is still positive.
2419*/
2420static int removeFromSharingList(BtShared *pBt){
2421#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002422 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002423 BtShared *pList;
2424 int removed = 0;
2425
drhd677b3d2007-08-20 22:48:41 +00002426 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002427 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002428 sqlite3_mutex_enter(pMaster);
2429 pBt->nRef--;
2430 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002431 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2432 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002433 }else{
drh78f82d12008-09-02 00:52:52 +00002434 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002435 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002436 pList=pList->pNext;
2437 }
drh34004ce2008-07-11 16:15:17 +00002438 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002439 pList->pNext = pBt->pNext;
2440 }
2441 }
drh3285db22007-09-03 22:00:39 +00002442 if( SQLITE_THREADSAFE ){
2443 sqlite3_mutex_free(pBt->mutex);
2444 }
drhe53831d2007-08-17 01:14:38 +00002445 removed = 1;
2446 }
2447 sqlite3_mutex_leave(pMaster);
2448 return removed;
2449#else
2450 return 1;
2451#endif
2452}
2453
2454/*
drhf7141992008-06-19 00:16:08 +00002455** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002456** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2457** pointer.
drhf7141992008-06-19 00:16:08 +00002458*/
2459static void allocateTempSpace(BtShared *pBt){
2460 if( !pBt->pTmpSpace ){
2461 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002462
2463 /* One of the uses of pBt->pTmpSpace is to format cells before
2464 ** inserting them into a leaf page (function fillInCell()). If
2465 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2466 ** by the various routines that manipulate binary cells. Which
2467 ** can mean that fillInCell() only initializes the first 2 or 3
2468 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2469 ** it into a database page. This is not actually a problem, but it
2470 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2471 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002472 ** zero the first 4 bytes of temp space here.
2473 **
2474 ** Also: Provide four bytes of initialized space before the
2475 ** beginning of pTmpSpace as an area available to prepend the
2476 ** left-child pointer to the beginning of a cell.
2477 */
2478 if( pBt->pTmpSpace ){
2479 memset(pBt->pTmpSpace, 0, 8);
2480 pBt->pTmpSpace += 4;
2481 }
drhf7141992008-06-19 00:16:08 +00002482 }
2483}
2484
2485/*
2486** Free the pBt->pTmpSpace allocation
2487*/
2488static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002489 if( pBt->pTmpSpace ){
2490 pBt->pTmpSpace -= 4;
2491 sqlite3PageFree(pBt->pTmpSpace);
2492 pBt->pTmpSpace = 0;
2493 }
drhf7141992008-06-19 00:16:08 +00002494}
2495
2496/*
drha059ad02001-04-17 20:09:11 +00002497** Close an open database and invalidate all cursors.
2498*/
danielk1977aef0bf62005-12-30 16:28:01 +00002499int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002500 BtShared *pBt = p->pBt;
2501 BtCursor *pCur;
2502
danielk1977aef0bf62005-12-30 16:28:01 +00002503 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002504 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002505 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002506 pCur = pBt->pCursor;
2507 while( pCur ){
2508 BtCursor *pTmp = pCur;
2509 pCur = pCur->pNext;
2510 if( pTmp->pBtree==p ){
2511 sqlite3BtreeCloseCursor(pTmp);
2512 }
drha059ad02001-04-17 20:09:11 +00002513 }
danielk1977aef0bf62005-12-30 16:28:01 +00002514
danielk19778d34dfd2006-01-24 16:37:57 +00002515 /* Rollback any active transaction and free the handle structure.
2516 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2517 ** this handle.
2518 */
drh47b7fc72014-11-11 01:33:57 +00002519 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002520 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002521
danielk1977aef0bf62005-12-30 16:28:01 +00002522 /* If there are still other outstanding references to the shared-btree
2523 ** structure, return now. The remainder of this procedure cleans
2524 ** up the shared-btree.
2525 */
drhe53831d2007-08-17 01:14:38 +00002526 assert( p->wantToLock==0 && p->locked==0 );
2527 if( !p->sharable || removeFromSharingList(pBt) ){
2528 /* The pBt is no longer on the sharing list, so we can access
2529 ** it without having to hold the mutex.
2530 **
2531 ** Clean out and delete the BtShared object.
2532 */
2533 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002534 sqlite3PagerClose(pBt->pPager);
2535 if( pBt->xFreeSchema && pBt->pSchema ){
2536 pBt->xFreeSchema(pBt->pSchema);
2537 }
drhb9755982010-07-24 16:34:37 +00002538 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002539 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002540 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002541 }
2542
drhe53831d2007-08-17 01:14:38 +00002543#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002544 assert( p->wantToLock==0 );
2545 assert( p->locked==0 );
2546 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2547 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002548#endif
2549
drhe53831d2007-08-17 01:14:38 +00002550 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002551 return SQLITE_OK;
2552}
2553
2554/*
drh9b0cf342015-11-12 14:57:19 +00002555** Change the "soft" limit on the number of pages in the cache.
2556** Unused and unmodified pages will be recycled when the number of
2557** pages in the cache exceeds this soft limit. But the size of the
2558** cache is allowed to grow larger than this limit if it contains
2559** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002560*/
danielk1977aef0bf62005-12-30 16:28:01 +00002561int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2562 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002563 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002564 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002565 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002566 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002567 return SQLITE_OK;
2568}
2569
drh9b0cf342015-11-12 14:57:19 +00002570/*
2571** Change the "spill" limit on the number of pages in the cache.
2572** If the number of pages exceeds this limit during a write transaction,
2573** the pager might attempt to "spill" pages to the journal early in
2574** order to free up memory.
2575**
2576** The value returned is the current spill size. If zero is passed
2577** as an argument, no changes are made to the spill size setting, so
2578** using mxPage of 0 is a way to query the current spill size.
2579*/
2580int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2581 BtShared *pBt = p->pBt;
2582 int res;
2583 assert( sqlite3_mutex_held(p->db->mutex) );
2584 sqlite3BtreeEnter(p);
2585 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2586 sqlite3BtreeLeave(p);
2587 return res;
2588}
2589
drh18c7e402014-03-14 11:46:10 +00002590#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002591/*
dan5d8a1372013-03-19 19:28:06 +00002592** Change the limit on the amount of the database file that may be
2593** memory mapped.
2594*/
drh9b4c59f2013-04-15 17:03:42 +00002595int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002596 BtShared *pBt = p->pBt;
2597 assert( sqlite3_mutex_held(p->db->mutex) );
2598 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002599 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002600 sqlite3BtreeLeave(p);
2601 return SQLITE_OK;
2602}
drh18c7e402014-03-14 11:46:10 +00002603#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002604
2605/*
drh973b6e32003-02-12 14:09:42 +00002606** Change the way data is synced to disk in order to increase or decrease
2607** how well the database resists damage due to OS crashes and power
2608** failures. Level 1 is the same as asynchronous (no syncs() occur and
2609** there is a high probability of damage) Level 2 is the default. There
2610** is a very low but non-zero probability of damage. Level 3 reduces the
2611** probability of damage to near zero but with a write performance reduction.
2612*/
danielk197793758c82005-01-21 08:13:14 +00002613#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002614int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002615 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002616 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002617){
danielk1977aef0bf62005-12-30 16:28:01 +00002618 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002619 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002620 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002621 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002622 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002623 return SQLITE_OK;
2624}
danielk197793758c82005-01-21 08:13:14 +00002625#endif
drh973b6e32003-02-12 14:09:42 +00002626
drh2c8997b2005-08-27 16:36:48 +00002627/*
2628** Return TRUE if the given btree is set to safety level 1. In other
2629** words, return TRUE if no sync() occurs on the disk files.
2630*/
danielk1977aef0bf62005-12-30 16:28:01 +00002631int sqlite3BtreeSyncDisabled(Btree *p){
2632 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002633 int rc;
drhe5fe6902007-12-07 18:55:28 +00002634 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002635 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002636 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002637 rc = sqlite3PagerNosync(pBt->pPager);
2638 sqlite3BtreeLeave(p);
2639 return rc;
drh2c8997b2005-08-27 16:36:48 +00002640}
2641
drh973b6e32003-02-12 14:09:42 +00002642/*
drh90f5ecb2004-07-22 01:19:35 +00002643** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002644** Or, if the page size has already been fixed, return SQLITE_READONLY
2645** without changing anything.
drh06f50212004-11-02 14:24:33 +00002646**
2647** The page size must be a power of 2 between 512 and 65536. If the page
2648** size supplied does not meet this constraint then the page size is not
2649** changed.
2650**
2651** Page sizes are constrained to be a power of two so that the region
2652** of the database file used for locking (beginning at PENDING_BYTE,
2653** the first byte past the 1GB boundary, 0x40000000) needs to occur
2654** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002655**
2656** If parameter nReserve is less than zero, then the number of reserved
2657** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002658**
drhc9166342012-01-05 23:32:06 +00002659** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002660** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002661*/
drhce4869f2009-04-02 20:16:58 +00002662int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002663 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002664 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002665 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002666 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002667#if SQLITE_HAS_CODEC
2668 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2669#endif
drhc9166342012-01-05 23:32:06 +00002670 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002671 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002672 return SQLITE_READONLY;
2673 }
2674 if( nReserve<0 ){
2675 nReserve = pBt->pageSize - pBt->usableSize;
2676 }
drhf49661a2008-12-10 16:45:50 +00002677 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002678 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2679 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002680 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002681 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002682 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002683 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002684 }
drhfa9601a2009-06-18 17:22:39 +00002685 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002686 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002687 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002688 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002689 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002690}
2691
2692/*
2693** Return the currently defined page size
2694*/
danielk1977aef0bf62005-12-30 16:28:01 +00002695int sqlite3BtreeGetPageSize(Btree *p){
2696 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002697}
drh7f751222009-03-17 22:33:00 +00002698
dan0094f372012-09-28 20:23:42 +00002699/*
2700** This function is similar to sqlite3BtreeGetReserve(), except that it
2701** may only be called if it is guaranteed that the b-tree mutex is already
2702** held.
2703**
2704** This is useful in one special case in the backup API code where it is
2705** known that the shared b-tree mutex is held, but the mutex on the
2706** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2707** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002708** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002709*/
2710int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002711 int n;
dan0094f372012-09-28 20:23:42 +00002712 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002713 n = p->pBt->pageSize - p->pBt->usableSize;
2714 return n;
dan0094f372012-09-28 20:23:42 +00002715}
2716
drh7f751222009-03-17 22:33:00 +00002717/*
2718** Return the number of bytes of space at the end of every page that
2719** are intentually left unused. This is the "reserved" space that is
2720** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002721**
2722** If SQLITE_HAS_MUTEX is defined then the number returned is the
2723** greater of the current reserved space and the maximum requested
2724** reserve space.
drh7f751222009-03-17 22:33:00 +00002725*/
drhad0961b2015-02-21 00:19:25 +00002726int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002727 int n;
2728 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002729 n = sqlite3BtreeGetReserveNoMutex(p);
2730#ifdef SQLITE_HAS_CODEC
2731 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2732#endif
drhd677b3d2007-08-20 22:48:41 +00002733 sqlite3BtreeLeave(p);
2734 return n;
drh2011d5f2004-07-22 02:40:37 +00002735}
drhf8e632b2007-05-08 14:51:36 +00002736
drhad0961b2015-02-21 00:19:25 +00002737
drhf8e632b2007-05-08 14:51:36 +00002738/*
2739** Set the maximum page count for a database if mxPage is positive.
2740** No changes are made if mxPage is 0 or negative.
2741** Regardless of the value of mxPage, return the maximum page count.
2742*/
2743int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002744 int n;
2745 sqlite3BtreeEnter(p);
2746 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2747 sqlite3BtreeLeave(p);
2748 return n;
drhf8e632b2007-05-08 14:51:36 +00002749}
drh5b47efa2010-02-12 18:18:39 +00002750
2751/*
drhc9166342012-01-05 23:32:06 +00002752** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2753** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002754** setting after the change.
2755*/
2756int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2757 int b;
drhaf034ed2010-02-12 19:46:26 +00002758 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002759 sqlite3BtreeEnter(p);
2760 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002761 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2762 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002763 }
drhc9166342012-01-05 23:32:06 +00002764 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002765 sqlite3BtreeLeave(p);
2766 return b;
2767}
drh90f5ecb2004-07-22 01:19:35 +00002768
2769/*
danielk1977951af802004-11-05 15:45:09 +00002770** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2771** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2772** is disabled. The default value for the auto-vacuum property is
2773** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2774*/
danielk1977aef0bf62005-12-30 16:28:01 +00002775int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002776#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002777 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002778#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002779 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002780 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002781 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002782
2783 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002784 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002785 rc = SQLITE_READONLY;
2786 }else{
drh076d4662009-02-18 20:31:18 +00002787 pBt->autoVacuum = av ?1:0;
2788 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002789 }
drhd677b3d2007-08-20 22:48:41 +00002790 sqlite3BtreeLeave(p);
2791 return rc;
danielk1977951af802004-11-05 15:45:09 +00002792#endif
2793}
2794
2795/*
2796** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2797** enabled 1 is returned. Otherwise 0.
2798*/
danielk1977aef0bf62005-12-30 16:28:01 +00002799int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002800#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002801 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002802#else
drhd677b3d2007-08-20 22:48:41 +00002803 int rc;
2804 sqlite3BtreeEnter(p);
2805 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002806 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2807 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2808 BTREE_AUTOVACUUM_INCR
2809 );
drhd677b3d2007-08-20 22:48:41 +00002810 sqlite3BtreeLeave(p);
2811 return rc;
danielk1977951af802004-11-05 15:45:09 +00002812#endif
2813}
2814
2815
2816/*
drha34b6762004-05-07 13:30:42 +00002817** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002818** also acquire a readlock on that file.
2819**
2820** SQLITE_OK is returned on success. If the file is not a
2821** well-formed database file, then SQLITE_CORRUPT is returned.
2822** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002823** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002824*/
danielk1977aef0bf62005-12-30 16:28:01 +00002825static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002826 int rc; /* Result code from subfunctions */
2827 MemPage *pPage1; /* Page 1 of the database file */
2828 int nPage; /* Number of pages in the database */
2829 int nPageFile = 0; /* Number of pages in the database file */
2830 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002831
drh1fee73e2007-08-29 04:00:57 +00002832 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002833 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002834 rc = sqlite3PagerSharedLock(pBt->pPager);
2835 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002836 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002837 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002838
2839 /* Do some checking to help insure the file we opened really is
2840 ** a valid database file.
2841 */
drhc2a4bab2010-04-02 12:46:45 +00002842 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002843 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002844 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002845 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002846 }
2847 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002848 u32 pageSize;
2849 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002850 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002851 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002852 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2853 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2854 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002855 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002856 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002857 }
dan5cf53532010-05-01 16:40:20 +00002858
2859#ifdef SQLITE_OMIT_WAL
2860 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002861 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002862 }
2863 if( page1[19]>1 ){
2864 goto page1_init_failed;
2865 }
2866#else
dane04dc882010-04-20 18:53:15 +00002867 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002868 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002869 }
dane04dc882010-04-20 18:53:15 +00002870 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002871 goto page1_init_failed;
2872 }
drhe5ae5732008-06-15 02:51:47 +00002873
dana470aeb2010-04-21 11:43:38 +00002874 /* If the write version is set to 2, this database should be accessed
2875 ** in WAL mode. If the log is not already open, open it now. Then
2876 ** return SQLITE_OK and return without populating BtShared.pPage1.
2877 ** The caller detects this and calls this function again. This is
2878 ** required as the version of page 1 currently in the page1 buffer
2879 ** may not be the latest version - there may be a newer one in the log
2880 ** file.
2881 */
drhc9166342012-01-05 23:32:06 +00002882 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002883 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002884 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002885 if( rc!=SQLITE_OK ){
2886 goto page1_init_failed;
2887 }else if( isOpen==0 ){
2888 releasePage(pPage1);
2889 return SQLITE_OK;
2890 }
dan8b5444b2010-04-27 14:37:47 +00002891 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002892 }
dan5cf53532010-05-01 16:40:20 +00002893#endif
dane04dc882010-04-20 18:53:15 +00002894
drh113762a2014-11-19 16:36:25 +00002895 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2896 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2897 **
drhe5ae5732008-06-15 02:51:47 +00002898 ** The original design allowed these amounts to vary, but as of
2899 ** version 3.6.0, we require them to be fixed.
2900 */
2901 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2902 goto page1_init_failed;
2903 }
drh113762a2014-11-19 16:36:25 +00002904 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2905 ** determined by the 2-byte integer located at an offset of 16 bytes from
2906 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002907 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002908 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2909 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002910 if( ((pageSize-1)&pageSize)!=0
2911 || pageSize>SQLITE_MAX_PAGE_SIZE
2912 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002913 ){
drh07d183d2005-05-01 22:52:42 +00002914 goto page1_init_failed;
2915 }
2916 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002917 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2918 ** integer at offset 20 is the number of bytes of space at the end of
2919 ** each page to reserve for extensions.
2920 **
2921 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2922 ** determined by the one-byte unsigned integer found at an offset of 20
2923 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002924 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002925 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002926 /* After reading the first page of the database assuming a page size
2927 ** of BtShared.pageSize, we have discovered that the page-size is
2928 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2929 ** zero and return SQLITE_OK. The caller will call this function
2930 ** again with the correct page-size.
2931 */
2932 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002933 pBt->usableSize = usableSize;
2934 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002935 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002936 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2937 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002938 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002939 }
danecac6702011-02-09 18:19:20 +00002940 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002941 rc = SQLITE_CORRUPT_BKPT;
2942 goto page1_init_failed;
2943 }
drh113762a2014-11-19 16:36:25 +00002944 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2945 ** be less than 480. In other words, if the page size is 512, then the
2946 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002947 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002948 goto page1_init_failed;
2949 }
drh43b18e12010-08-17 19:40:08 +00002950 pBt->pageSize = pageSize;
2951 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002952#ifndef SQLITE_OMIT_AUTOVACUUM
2953 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002954 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002955#endif
drh306dc212001-05-21 13:45:10 +00002956 }
drhb6f41482004-05-14 01:58:11 +00002957
2958 /* maxLocal is the maximum amount of payload to store locally for
2959 ** a cell. Make sure it is small enough so that at least minFanout
2960 ** cells can will fit on one page. We assume a 10-byte page header.
2961 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002962 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002963 ** 4-byte child pointer
2964 ** 9-byte nKey value
2965 ** 4-byte nData value
2966 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002967 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002968 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2969 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002970 */
shaneh1df2db72010-08-18 02:28:48 +00002971 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2972 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2973 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2974 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002975 if( pBt->maxLocal>127 ){
2976 pBt->max1bytePayload = 127;
2977 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002978 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002979 }
drh2e38c322004-09-03 18:38:44 +00002980 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002981 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002982 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002983 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002984
drh72f82862001-05-24 21:06:34 +00002985page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002986 releasePage(pPage1);
2987 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002988 return rc;
drh306dc212001-05-21 13:45:10 +00002989}
2990
drh85ec3b62013-05-14 23:12:06 +00002991#ifndef NDEBUG
2992/*
2993** Return the number of cursors open on pBt. This is for use
2994** in assert() expressions, so it is only compiled if NDEBUG is not
2995** defined.
2996**
2997** Only write cursors are counted if wrOnly is true. If wrOnly is
2998** false then all cursors are counted.
2999**
3000** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003001** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003002** have been tripped into the CURSOR_FAULT state are not counted.
3003*/
3004static int countValidCursors(BtShared *pBt, int wrOnly){
3005 BtCursor *pCur;
3006 int r = 0;
3007 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003008 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3009 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003010 }
3011 return r;
3012}
3013#endif
3014
drh306dc212001-05-21 13:45:10 +00003015/*
drhb8ca3072001-12-05 00:21:20 +00003016** If there are no outstanding cursors and we are not in the middle
3017** of a transaction but there is a read lock on the database, then
3018** this routine unrefs the first page of the database file which
3019** has the effect of releasing the read lock.
3020**
drhb8ca3072001-12-05 00:21:20 +00003021** If there is a transaction in progress, this routine is a no-op.
3022*/
danielk1977aef0bf62005-12-30 16:28:01 +00003023static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003024 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003025 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003026 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003027 MemPage *pPage1 = pBt->pPage1;
3028 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003029 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003030 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003031 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003032 }
3033}
3034
3035/*
drhe39f2f92009-07-23 01:43:59 +00003036** If pBt points to an empty file then convert that empty file
3037** into a new empty database by initializing the first page of
3038** the database.
drh8b2f49b2001-06-08 00:21:52 +00003039*/
danielk1977aef0bf62005-12-30 16:28:01 +00003040static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003041 MemPage *pP1;
3042 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003043 int rc;
drhd677b3d2007-08-20 22:48:41 +00003044
drh1fee73e2007-08-29 04:00:57 +00003045 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003046 if( pBt->nPage>0 ){
3047 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003048 }
drh3aac2dd2004-04-26 14:10:20 +00003049 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003050 assert( pP1!=0 );
3051 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003052 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003053 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003054 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3055 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003056 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3057 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003058 data[18] = 1;
3059 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003060 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3061 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003062 data[21] = 64;
3063 data[22] = 32;
3064 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003065 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003066 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003067 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003068#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003069 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003070 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003071 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003072 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003073#endif
drhdd3cd972010-03-27 17:12:36 +00003074 pBt->nPage = 1;
3075 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003076 return SQLITE_OK;
3077}
3078
3079/*
danb483eba2012-10-13 19:58:11 +00003080** Initialize the first page of the database file (creating a database
3081** consisting of a single page and no schema objects). Return SQLITE_OK
3082** if successful, or an SQLite error code otherwise.
3083*/
3084int sqlite3BtreeNewDb(Btree *p){
3085 int rc;
3086 sqlite3BtreeEnter(p);
3087 p->pBt->nPage = 0;
3088 rc = newDatabase(p->pBt);
3089 sqlite3BtreeLeave(p);
3090 return rc;
3091}
3092
3093/*
danielk1977ee5741e2004-05-31 10:01:34 +00003094** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003095** is started if the second argument is nonzero, otherwise a read-
3096** transaction. If the second argument is 2 or more and exclusive
3097** transaction is started, meaning that no other process is allowed
3098** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003099** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003100** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003101**
danielk1977ee5741e2004-05-31 10:01:34 +00003102** A write-transaction must be started before attempting any
3103** changes to the database. None of the following routines
3104** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003105**
drh23e11ca2004-05-04 17:27:28 +00003106** sqlite3BtreeCreateTable()
3107** sqlite3BtreeCreateIndex()
3108** sqlite3BtreeClearTable()
3109** sqlite3BtreeDropTable()
3110** sqlite3BtreeInsert()
3111** sqlite3BtreeDelete()
3112** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003113**
drhb8ef32c2005-03-14 02:01:49 +00003114** If an initial attempt to acquire the lock fails because of lock contention
3115** and the database was previously unlocked, then invoke the busy handler
3116** if there is one. But if there was previously a read-lock, do not
3117** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3118** returned when there is already a read-lock in order to avoid a deadlock.
3119**
3120** Suppose there are two processes A and B. A has a read lock and B has
3121** a reserved lock. B tries to promote to exclusive but is blocked because
3122** of A's read lock. A tries to promote to reserved but is blocked by B.
3123** One or the other of the two processes must give way or there can be
3124** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3125** when A already has a read lock, we encourage A to give up and let B
3126** proceed.
drha059ad02001-04-17 20:09:11 +00003127*/
danielk1977aef0bf62005-12-30 16:28:01 +00003128int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003129 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003130 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003131 int rc = SQLITE_OK;
3132
drhd677b3d2007-08-20 22:48:41 +00003133 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003134 btreeIntegrity(p);
3135
danielk1977ee5741e2004-05-31 10:01:34 +00003136 /* If the btree is already in a write-transaction, or it
3137 ** is already in a read-transaction and a read-transaction
3138 ** is requested, this is a no-op.
3139 */
danielk1977aef0bf62005-12-30 16:28:01 +00003140 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003141 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003142 }
dan56c517a2013-09-26 11:04:33 +00003143 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003144
3145 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003146 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003147 rc = SQLITE_READONLY;
3148 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003149 }
3150
danielk1977404ca072009-03-16 13:19:36 +00003151#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003152 /* If another database handle has already opened a write transaction
3153 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003154 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003155 */
drhc9166342012-01-05 23:32:06 +00003156 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3157 || (pBt->btsFlags & BTS_PENDING)!=0
3158 ){
danielk1977404ca072009-03-16 13:19:36 +00003159 pBlock = pBt->pWriter->db;
3160 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003161 BtLock *pIter;
3162 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3163 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003164 pBlock = pIter->pBtree->db;
3165 break;
danielk1977641b0f42007-12-21 04:47:25 +00003166 }
3167 }
3168 }
danielk1977404ca072009-03-16 13:19:36 +00003169 if( pBlock ){
3170 sqlite3ConnectionBlocked(p->db, pBlock);
3171 rc = SQLITE_LOCKED_SHAREDCACHE;
3172 goto trans_begun;
3173 }
danielk1977641b0f42007-12-21 04:47:25 +00003174#endif
3175
danielk1977602b4662009-07-02 07:47:33 +00003176 /* Any read-only or read-write transaction implies a read-lock on
3177 ** page 1. So if some other shared-cache client already has a write-lock
3178 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003179 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3180 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003181
drhc9166342012-01-05 23:32:06 +00003182 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3183 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003184 do {
danielk1977295dc102009-04-01 19:07:03 +00003185 /* Call lockBtree() until either pBt->pPage1 is populated or
3186 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3187 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3188 ** reading page 1 it discovers that the page-size of the database
3189 ** file is not pBt->pageSize. In this case lockBtree() will update
3190 ** pBt->pageSize to the page-size of the file on disk.
3191 */
3192 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003193
drhb8ef32c2005-03-14 02:01:49 +00003194 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003195 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003196 rc = SQLITE_READONLY;
3197 }else{
danielk1977d8293352009-04-30 09:10:37 +00003198 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003199 if( rc==SQLITE_OK ){
3200 rc = newDatabase(pBt);
3201 }
drhb8ef32c2005-03-14 02:01:49 +00003202 }
3203 }
3204
danielk1977bd434552009-03-18 10:33:00 +00003205 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003206 unlockBtreeIfUnused(pBt);
3207 }
danf9b76712010-06-01 14:12:45 +00003208 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003209 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003210
3211 if( rc==SQLITE_OK ){
3212 if( p->inTrans==TRANS_NONE ){
3213 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003214#ifndef SQLITE_OMIT_SHARED_CACHE
3215 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003216 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003217 p->lock.eLock = READ_LOCK;
3218 p->lock.pNext = pBt->pLock;
3219 pBt->pLock = &p->lock;
3220 }
3221#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003222 }
3223 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3224 if( p->inTrans>pBt->inTransaction ){
3225 pBt->inTransaction = p->inTrans;
3226 }
danielk1977404ca072009-03-16 13:19:36 +00003227 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003228 MemPage *pPage1 = pBt->pPage1;
3229#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003230 assert( !pBt->pWriter );
3231 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003232 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3233 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003234#endif
dan59257dc2010-08-04 11:34:31 +00003235
3236 /* If the db-size header field is incorrect (as it may be if an old
3237 ** client has been writing the database file), update it now. Doing
3238 ** this sooner rather than later means the database size can safely
3239 ** re-read the database size from page 1 if a savepoint or transaction
3240 ** rollback occurs within the transaction.
3241 */
3242 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3243 rc = sqlite3PagerWrite(pPage1->pDbPage);
3244 if( rc==SQLITE_OK ){
3245 put4byte(&pPage1->aData[28], pBt->nPage);
3246 }
3247 }
3248 }
danielk1977aef0bf62005-12-30 16:28:01 +00003249 }
3250
drhd677b3d2007-08-20 22:48:41 +00003251
3252trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003253 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003254 /* This call makes sure that the pager has the correct number of
3255 ** open savepoints. If the second parameter is greater than 0 and
3256 ** the sub-journal is not already open, then it will be opened here.
3257 */
danielk1977fd7f0452008-12-17 17:30:26 +00003258 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3259 }
danielk197712dd5492008-12-18 15:45:07 +00003260
danielk1977aef0bf62005-12-30 16:28:01 +00003261 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003262 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003263 return rc;
drha059ad02001-04-17 20:09:11 +00003264}
3265
danielk1977687566d2004-11-02 12:56:41 +00003266#ifndef SQLITE_OMIT_AUTOVACUUM
3267
3268/*
3269** Set the pointer-map entries for all children of page pPage. Also, if
3270** pPage contains cells that point to overflow pages, set the pointer
3271** map entries for the overflow pages as well.
3272*/
3273static int setChildPtrmaps(MemPage *pPage){
3274 int i; /* Counter variable */
3275 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003276 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003277 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003278 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003279 Pgno pgno = pPage->pgno;
3280
drh1fee73e2007-08-29 04:00:57 +00003281 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003282 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003283 if( rc!=SQLITE_OK ){
3284 goto set_child_ptrmaps_out;
3285 }
danielk1977687566d2004-11-02 12:56:41 +00003286 nCell = pPage->nCell;
3287
3288 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003289 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003290
drh98add2e2009-07-20 17:11:49 +00003291 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003292
danielk1977687566d2004-11-02 12:56:41 +00003293 if( !pPage->leaf ){
3294 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003295 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003296 }
3297 }
3298
3299 if( !pPage->leaf ){
3300 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003301 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003302 }
3303
3304set_child_ptrmaps_out:
3305 pPage->isInit = isInitOrig;
3306 return rc;
3307}
3308
3309/*
drhf3aed592009-07-08 18:12:49 +00003310** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3311** that it points to iTo. Parameter eType describes the type of pointer to
3312** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003313**
3314** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3315** page of pPage.
3316**
3317** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3318** page pointed to by one of the cells on pPage.
3319**
3320** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3321** overflow page in the list.
3322*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003323static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003324 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003325 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003326 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003327 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003328 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003329 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003330 }
danielk1977f78fc082004-11-02 14:40:32 +00003331 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003332 }else{
drhf49661a2008-12-10 16:45:50 +00003333 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003334 int i;
3335 int nCell;
drha1f75d92015-05-24 10:18:12 +00003336 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003337
drha1f75d92015-05-24 10:18:12 +00003338 rc = btreeInitPage(pPage);
3339 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003340 nCell = pPage->nCell;
3341
danielk1977687566d2004-11-02 12:56:41 +00003342 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003343 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003344 if( eType==PTRMAP_OVERFLOW1 ){
3345 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003346 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003347 if( info.nLocal<info.nPayload
3348 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3349 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003350 ){
drh45ac1c72015-12-18 03:59:16 +00003351 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003352 break;
danielk1977687566d2004-11-02 12:56:41 +00003353 }
3354 }else{
3355 if( get4byte(pCell)==iFrom ){
3356 put4byte(pCell, iTo);
3357 break;
3358 }
3359 }
3360 }
3361
3362 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003363 if( eType!=PTRMAP_BTREE ||
3364 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003365 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003366 }
danielk1977687566d2004-11-02 12:56:41 +00003367 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3368 }
3369
3370 pPage->isInit = isInitOrig;
3371 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003372 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003373}
3374
danielk1977003ba062004-11-04 02:57:33 +00003375
danielk19777701e812005-01-10 12:59:51 +00003376/*
3377** Move the open database page pDbPage to location iFreePage in the
3378** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003379**
3380** The isCommit flag indicates that there is no need to remember that
3381** the journal needs to be sync()ed before database page pDbPage->pgno
3382** can be written to. The caller has already promised not to write to that
3383** page.
danielk19777701e812005-01-10 12:59:51 +00003384*/
danielk1977003ba062004-11-04 02:57:33 +00003385static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003386 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003387 MemPage *pDbPage, /* Open page to move */
3388 u8 eType, /* Pointer map 'type' entry for pDbPage */
3389 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003390 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003391 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003392){
3393 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3394 Pgno iDbPage = pDbPage->pgno;
3395 Pager *pPager = pBt->pPager;
3396 int rc;
3397
danielk1977a0bf2652004-11-04 14:30:04 +00003398 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3399 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003400 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003401 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003402
drh85b623f2007-12-13 21:54:09 +00003403 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003404 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3405 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003406 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003407 if( rc!=SQLITE_OK ){
3408 return rc;
3409 }
3410 pDbPage->pgno = iFreePage;
3411
3412 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3413 ** that point to overflow pages. The pointer map entries for all these
3414 ** pages need to be changed.
3415 **
3416 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3417 ** pointer to a subsequent overflow page. If this is the case, then
3418 ** the pointer map needs to be updated for the subsequent overflow page.
3419 */
danielk1977a0bf2652004-11-04 14:30:04 +00003420 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003421 rc = setChildPtrmaps(pDbPage);
3422 if( rc!=SQLITE_OK ){
3423 return rc;
3424 }
3425 }else{
3426 Pgno nextOvfl = get4byte(pDbPage->aData);
3427 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003428 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003429 if( rc!=SQLITE_OK ){
3430 return rc;
3431 }
3432 }
3433 }
3434
3435 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3436 ** that it points at iFreePage. Also fix the pointer map entry for
3437 ** iPtrPage.
3438 */
danielk1977a0bf2652004-11-04 14:30:04 +00003439 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003440 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003441 if( rc!=SQLITE_OK ){
3442 return rc;
3443 }
danielk19773b8a05f2007-03-19 17:44:26 +00003444 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003445 if( rc!=SQLITE_OK ){
3446 releasePage(pPtrPage);
3447 return rc;
3448 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003449 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003450 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003451 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003452 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003453 }
danielk1977003ba062004-11-04 02:57:33 +00003454 }
danielk1977003ba062004-11-04 02:57:33 +00003455 return rc;
3456}
3457
danielk1977dddbcdc2007-04-26 14:42:34 +00003458/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003459static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003460
3461/*
dan51f0b6d2013-02-22 20:16:34 +00003462** Perform a single step of an incremental-vacuum. If successful, return
3463** SQLITE_OK. If there is no work to do (and therefore no point in
3464** calling this function again), return SQLITE_DONE. Or, if an error
3465** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003466**
peter.d.reid60ec9142014-09-06 16:39:46 +00003467** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003468** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003469**
dan51f0b6d2013-02-22 20:16:34 +00003470** Parameter nFin is the number of pages that this database would contain
3471** were this function called until it returns SQLITE_DONE.
3472**
3473** If the bCommit parameter is non-zero, this function assumes that the
3474** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003475** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003476** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003477*/
dan51f0b6d2013-02-22 20:16:34 +00003478static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003479 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003480 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003481
drh1fee73e2007-08-29 04:00:57 +00003482 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003483 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003484
3485 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003486 u8 eType;
3487 Pgno iPtrPage;
3488
3489 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003490 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003491 return SQLITE_DONE;
3492 }
3493
3494 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3495 if( rc!=SQLITE_OK ){
3496 return rc;
3497 }
3498 if( eType==PTRMAP_ROOTPAGE ){
3499 return SQLITE_CORRUPT_BKPT;
3500 }
3501
3502 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003503 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003504 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003505 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003506 ** truncated to zero after this function returns, so it doesn't
3507 ** matter if it still contains some garbage entries.
3508 */
3509 Pgno iFreePg;
3510 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003511 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003512 if( rc!=SQLITE_OK ){
3513 return rc;
3514 }
3515 assert( iFreePg==iLastPg );
3516 releasePage(pFreePg);
3517 }
3518 } else {
3519 Pgno iFreePg; /* Index of free page to move pLastPg to */
3520 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003521 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3522 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003523
drhb00fc3b2013-08-21 23:42:32 +00003524 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003525 if( rc!=SQLITE_OK ){
3526 return rc;
3527 }
3528
dan51f0b6d2013-02-22 20:16:34 +00003529 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003530 ** is swapped with the first free page pulled off the free list.
3531 **
dan51f0b6d2013-02-22 20:16:34 +00003532 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003533 ** looping until a free-page located within the first nFin pages
3534 ** of the file is found.
3535 */
dan51f0b6d2013-02-22 20:16:34 +00003536 if( bCommit==0 ){
3537 eMode = BTALLOC_LE;
3538 iNear = nFin;
3539 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003540 do {
3541 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003542 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003543 if( rc!=SQLITE_OK ){
3544 releasePage(pLastPg);
3545 return rc;
3546 }
3547 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003548 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003549 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003550
dane1df4e32013-03-05 11:27:04 +00003551 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003552 releasePage(pLastPg);
3553 if( rc!=SQLITE_OK ){
3554 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003555 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003556 }
3557 }
3558
dan51f0b6d2013-02-22 20:16:34 +00003559 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003560 do {
danielk19773460d192008-12-27 15:23:13 +00003561 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003562 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3563 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003564 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003565 }
3566 return SQLITE_OK;
3567}
3568
3569/*
dan51f0b6d2013-02-22 20:16:34 +00003570** The database opened by the first argument is an auto-vacuum database
3571** nOrig pages in size containing nFree free pages. Return the expected
3572** size of the database in pages following an auto-vacuum operation.
3573*/
3574static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3575 int nEntry; /* Number of entries on one ptrmap page */
3576 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3577 Pgno nFin; /* Return value */
3578
3579 nEntry = pBt->usableSize/5;
3580 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3581 nFin = nOrig - nFree - nPtrmap;
3582 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3583 nFin--;
3584 }
3585 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3586 nFin--;
3587 }
dan51f0b6d2013-02-22 20:16:34 +00003588
3589 return nFin;
3590}
3591
3592/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003593** A write-transaction must be opened before calling this function.
3594** It performs a single unit of work towards an incremental vacuum.
3595**
3596** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003597** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003598** SQLITE_OK is returned. Otherwise an SQLite error code.
3599*/
3600int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003601 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003602 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003603
3604 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003605 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3606 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003607 rc = SQLITE_DONE;
3608 }else{
dan51f0b6d2013-02-22 20:16:34 +00003609 Pgno nOrig = btreePagecount(pBt);
3610 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3611 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3612
dan91384712013-02-24 11:50:43 +00003613 if( nOrig<nFin ){
3614 rc = SQLITE_CORRUPT_BKPT;
3615 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003616 rc = saveAllCursors(pBt, 0, 0);
3617 if( rc==SQLITE_OK ){
3618 invalidateAllOverflowCache(pBt);
3619 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3620 }
dan51f0b6d2013-02-22 20:16:34 +00003621 if( rc==SQLITE_OK ){
3622 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3623 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3624 }
3625 }else{
3626 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003627 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003628 }
drhd677b3d2007-08-20 22:48:41 +00003629 sqlite3BtreeLeave(p);
3630 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003631}
3632
3633/*
danielk19773b8a05f2007-03-19 17:44:26 +00003634** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003635** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003636**
3637** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3638** the database file should be truncated to during the commit process.
3639** i.e. the database has been reorganized so that only the first *pnTrunc
3640** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003641*/
danielk19773460d192008-12-27 15:23:13 +00003642static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003643 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003644 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003645 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003646
drh1fee73e2007-08-29 04:00:57 +00003647 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003648 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003649 assert(pBt->autoVacuum);
3650 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003651 Pgno nFin; /* Number of pages in database after autovacuuming */
3652 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003653 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003654 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003655
drhb1299152010-03-30 22:58:33 +00003656 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003657 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3658 /* It is not possible to create a database for which the final page
3659 ** is either a pointer-map page or the pending-byte page. If one
3660 ** is encountered, this indicates corruption.
3661 */
danielk19773460d192008-12-27 15:23:13 +00003662 return SQLITE_CORRUPT_BKPT;
3663 }
danielk1977ef165ce2009-04-06 17:50:03 +00003664
danielk19773460d192008-12-27 15:23:13 +00003665 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003666 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003667 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003668 if( nFin<nOrig ){
3669 rc = saveAllCursors(pBt, 0, 0);
3670 }
danielk19773460d192008-12-27 15:23:13 +00003671 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003672 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003673 }
danielk19773460d192008-12-27 15:23:13 +00003674 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003675 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3676 put4byte(&pBt->pPage1->aData[32], 0);
3677 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003678 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003679 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003680 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003681 }
3682 if( rc!=SQLITE_OK ){
3683 sqlite3PagerRollback(pPager);
3684 }
danielk1977687566d2004-11-02 12:56:41 +00003685 }
3686
dan0aed84d2013-03-26 14:16:20 +00003687 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003688 return rc;
3689}
danielk1977dddbcdc2007-04-26 14:42:34 +00003690
danielk1977a50d9aa2009-06-08 14:49:45 +00003691#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3692# define setChildPtrmaps(x) SQLITE_OK
3693#endif
danielk1977687566d2004-11-02 12:56:41 +00003694
3695/*
drh80e35f42007-03-30 14:06:34 +00003696** This routine does the first phase of a two-phase commit. This routine
3697** causes a rollback journal to be created (if it does not already exist)
3698** and populated with enough information so that if a power loss occurs
3699** the database can be restored to its original state by playing back
3700** the journal. Then the contents of the journal are flushed out to
3701** the disk. After the journal is safely on oxide, the changes to the
3702** database are written into the database file and flushed to oxide.
3703** At the end of this call, the rollback journal still exists on the
3704** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003705** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003706** commit process.
3707**
3708** This call is a no-op if no write-transaction is currently active on pBt.
3709**
3710** Otherwise, sync the database file for the btree pBt. zMaster points to
3711** the name of a master journal file that should be written into the
3712** individual journal file, or is NULL, indicating no master journal file
3713** (single database transaction).
3714**
3715** When this is called, the master journal should already have been
3716** created, populated with this journal pointer and synced to disk.
3717**
3718** Once this is routine has returned, the only thing required to commit
3719** the write-transaction for this database file is to delete the journal.
3720*/
3721int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3722 int rc = SQLITE_OK;
3723 if( p->inTrans==TRANS_WRITE ){
3724 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003725 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003726#ifndef SQLITE_OMIT_AUTOVACUUM
3727 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003728 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003729 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003730 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003731 return rc;
3732 }
3733 }
danbc1a3c62013-02-23 16:40:46 +00003734 if( pBt->bDoTruncate ){
3735 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3736 }
drh80e35f42007-03-30 14:06:34 +00003737#endif
drh49b9d332009-01-02 18:10:42 +00003738 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003739 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003740 }
3741 return rc;
3742}
3743
3744/*
danielk197794b30732009-07-02 17:21:57 +00003745** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3746** at the conclusion of a transaction.
3747*/
3748static void btreeEndTransaction(Btree *p){
3749 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003750 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003751 assert( sqlite3BtreeHoldsMutex(p) );
3752
danbc1a3c62013-02-23 16:40:46 +00003753#ifndef SQLITE_OMIT_AUTOVACUUM
3754 pBt->bDoTruncate = 0;
3755#endif
danc0537fe2013-06-28 19:41:43 +00003756 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003757 /* If there are other active statements that belong to this database
3758 ** handle, downgrade to a read-only transaction. The other statements
3759 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003760 downgradeAllSharedCacheTableLocks(p);
3761 p->inTrans = TRANS_READ;
3762 }else{
3763 /* If the handle had any kind of transaction open, decrement the
3764 ** transaction count of the shared btree. If the transaction count
3765 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3766 ** call below will unlock the pager. */
3767 if( p->inTrans!=TRANS_NONE ){
3768 clearAllSharedCacheTableLocks(p);
3769 pBt->nTransaction--;
3770 if( 0==pBt->nTransaction ){
3771 pBt->inTransaction = TRANS_NONE;
3772 }
3773 }
3774
3775 /* Set the current transaction state to TRANS_NONE and unlock the
3776 ** pager if this call closed the only read or write transaction. */
3777 p->inTrans = TRANS_NONE;
3778 unlockBtreeIfUnused(pBt);
3779 }
3780
3781 btreeIntegrity(p);
3782}
3783
3784/*
drh2aa679f2001-06-25 02:11:07 +00003785** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003786**
drh6e345992007-03-30 11:12:08 +00003787** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003788** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3789** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3790** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003791** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003792** routine has to do is delete or truncate or zero the header in the
3793** the rollback journal (which causes the transaction to commit) and
3794** drop locks.
drh6e345992007-03-30 11:12:08 +00003795**
dan60939d02011-03-29 15:40:55 +00003796** Normally, if an error occurs while the pager layer is attempting to
3797** finalize the underlying journal file, this function returns an error and
3798** the upper layer will attempt a rollback. However, if the second argument
3799** is non-zero then this b-tree transaction is part of a multi-file
3800** transaction. In this case, the transaction has already been committed
3801** (by deleting a master journal file) and the caller will ignore this
3802** functions return code. So, even if an error occurs in the pager layer,
3803** reset the b-tree objects internal state to indicate that the write
3804** transaction has been closed. This is quite safe, as the pager will have
3805** transitioned to the error state.
3806**
drh5e00f6c2001-09-13 13:46:56 +00003807** This will release the write lock on the database file. If there
3808** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003809*/
dan60939d02011-03-29 15:40:55 +00003810int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003811
drh075ed302010-10-14 01:17:30 +00003812 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003813 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003814 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003815
3816 /* If the handle has a write-transaction open, commit the shared-btrees
3817 ** transaction and set the shared state to TRANS_READ.
3818 */
3819 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003820 int rc;
drh075ed302010-10-14 01:17:30 +00003821 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003822 assert( pBt->inTransaction==TRANS_WRITE );
3823 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003824 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003825 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003826 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003827 return rc;
3828 }
drh3da9c042014-12-22 18:41:21 +00003829 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003830 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003831 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003832 }
danielk1977aef0bf62005-12-30 16:28:01 +00003833
danielk197794b30732009-07-02 17:21:57 +00003834 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003835 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003836 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003837}
3838
drh80e35f42007-03-30 14:06:34 +00003839/*
3840** Do both phases of a commit.
3841*/
3842int sqlite3BtreeCommit(Btree *p){
3843 int rc;
drhd677b3d2007-08-20 22:48:41 +00003844 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003845 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3846 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003847 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003848 }
drhd677b3d2007-08-20 22:48:41 +00003849 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003850 return rc;
3851}
3852
drhc39e0002004-05-07 23:50:57 +00003853/*
drhfb982642007-08-30 01:19:59 +00003854** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003855** code to errCode for every cursor on any BtShared that pBtree
3856** references. Or if the writeOnly flag is set to 1, then only
3857** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003858**
drh47b7fc72014-11-11 01:33:57 +00003859** Every cursor is a candidate to be tripped, including cursors
3860** that belong to other database connections that happen to be
3861** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003862**
dan80231042014-11-12 14:56:02 +00003863** This routine gets called when a rollback occurs. If the writeOnly
3864** flag is true, then only write-cursors need be tripped - read-only
3865** cursors save their current positions so that they may continue
3866** following the rollback. Or, if writeOnly is false, all cursors are
3867** tripped. In general, writeOnly is false if the transaction being
3868** rolled back modified the database schema. In this case b-tree root
3869** pages may be moved or deleted from the database altogether, making
3870** it unsafe for read cursors to continue.
3871**
3872** If the writeOnly flag is true and an error is encountered while
3873** saving the current position of a read-only cursor, all cursors,
3874** including all read-cursors are tripped.
3875**
3876** SQLITE_OK is returned if successful, or if an error occurs while
3877** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003878*/
dan80231042014-11-12 14:56:02 +00003879int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003880 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003881 int rc = SQLITE_OK;
3882
drh47b7fc72014-11-11 01:33:57 +00003883 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003884 if( pBtree ){
3885 sqlite3BtreeEnter(pBtree);
3886 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3887 int i;
3888 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003889 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003890 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003891 if( rc!=SQLITE_OK ){
3892 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3893 break;
3894 }
3895 }
3896 }else{
3897 sqlite3BtreeClearCursor(p);
3898 p->eState = CURSOR_FAULT;
3899 p->skipNext = errCode;
3900 }
3901 for(i=0; i<=p->iPage; i++){
3902 releasePage(p->apPage[i]);
3903 p->apPage[i] = 0;
3904 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003905 }
dan80231042014-11-12 14:56:02 +00003906 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003907 }
dan80231042014-11-12 14:56:02 +00003908 return rc;
drhfb982642007-08-30 01:19:59 +00003909}
3910
3911/*
drh47b7fc72014-11-11 01:33:57 +00003912** Rollback the transaction in progress.
3913**
3914** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3915** Only write cursors are tripped if writeOnly is true but all cursors are
3916** tripped if writeOnly is false. Any attempt to use
3917** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003918**
3919** This will release the write lock on the database file. If there
3920** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003921*/
drh47b7fc72014-11-11 01:33:57 +00003922int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003923 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003924 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003925 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003926
drh47b7fc72014-11-11 01:33:57 +00003927 assert( writeOnly==1 || writeOnly==0 );
3928 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003929 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003930 if( tripCode==SQLITE_OK ){
3931 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003932 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003933 }else{
3934 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003935 }
drh0f198a72012-02-13 16:43:16 +00003936 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003937 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3938 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3939 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003940 }
danielk1977aef0bf62005-12-30 16:28:01 +00003941 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003942
3943 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003944 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003945
danielk19778d34dfd2006-01-24 16:37:57 +00003946 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003947 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003948 if( rc2!=SQLITE_OK ){
3949 rc = rc2;
3950 }
3951
drh24cd67e2004-05-10 16:18:47 +00003952 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003953 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003954 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003955 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003956 int nPage = get4byte(28+(u8*)pPage1->aData);
3957 testcase( nPage==0 );
3958 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3959 testcase( pBt->nPage!=nPage );
3960 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003961 releasePage(pPage1);
3962 }
drh85ec3b62013-05-14 23:12:06 +00003963 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003964 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003965 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003966 }
danielk1977aef0bf62005-12-30 16:28:01 +00003967
danielk197794b30732009-07-02 17:21:57 +00003968 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003969 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003970 return rc;
3971}
3972
3973/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003974** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003975** back independently of the main transaction. You must start a transaction
3976** before starting a subtransaction. The subtransaction is ended automatically
3977** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003978**
3979** Statement subtransactions are used around individual SQL statements
3980** that are contained within a BEGIN...COMMIT block. If a constraint
3981** error occurs within the statement, the effect of that one statement
3982** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003983**
3984** A statement sub-transaction is implemented as an anonymous savepoint. The
3985** value passed as the second parameter is the total number of savepoints,
3986** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3987** are no active savepoints and no other statement-transactions open,
3988** iStatement is 1. This anonymous savepoint can be released or rolled back
3989** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003990*/
danielk1977bd434552009-03-18 10:33:00 +00003991int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003992 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003993 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003994 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003995 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003996 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003997 assert( iStatement>0 );
3998 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003999 assert( pBt->inTransaction==TRANS_WRITE );
4000 /* At the pager level, a statement transaction is a savepoint with
4001 ** an index greater than all savepoints created explicitly using
4002 ** SQL statements. It is illegal to open, release or rollback any
4003 ** such savepoints while the statement transaction savepoint is active.
4004 */
4005 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004006 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004007 return rc;
4008}
4009
4010/*
danielk1977fd7f0452008-12-17 17:30:26 +00004011** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4012** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004013** savepoint identified by parameter iSavepoint, depending on the value
4014** of op.
4015**
4016** Normally, iSavepoint is greater than or equal to zero. However, if op is
4017** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4018** contents of the entire transaction are rolled back. This is different
4019** from a normal transaction rollback, as no locks are released and the
4020** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004021*/
4022int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4023 int rc = SQLITE_OK;
4024 if( p && p->inTrans==TRANS_WRITE ){
4025 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004026 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4027 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4028 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004029 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004030 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004031 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4032 pBt->nPage = 0;
4033 }
drh9f0bbf92009-01-02 21:08:09 +00004034 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004035 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004036
4037 /* The database size was written into the offset 28 of the header
4038 ** when the transaction started, so we know that the value at offset
4039 ** 28 is nonzero. */
4040 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004041 }
danielk1977fd7f0452008-12-17 17:30:26 +00004042 sqlite3BtreeLeave(p);
4043 }
4044 return rc;
4045}
4046
4047/*
drh8b2f49b2001-06-08 00:21:52 +00004048** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004049** iTable. If a read-only cursor is requested, it is assumed that
4050** the caller already has at least a read-only transaction open
4051** on the database already. If a write-cursor is requested, then
4052** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004053**
4054** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004055** If wrFlag==1, then the cursor can be used for reading or for
4056** writing if other conditions for writing are also met. These
4057** are the conditions that must be met in order for writing to
4058** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004059**
drhf74b8d92002-09-01 23:20:45 +00004060** 1: The cursor must have been opened with wrFlag==1
4061**
drhfe5d71d2007-03-19 11:54:10 +00004062** 2: Other database connections that share the same pager cache
4063** but which are not in the READ_UNCOMMITTED state may not have
4064** cursors open with wrFlag==0 on the same table. Otherwise
4065** the changes made by this write cursor would be visible to
4066** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004067**
4068** 3: The database must be writable (not on read-only media)
4069**
4070** 4: There must be an active transaction.
4071**
drh6446c4d2001-12-15 14:22:18 +00004072** No checking is done to make sure that page iTable really is the
4073** root page of a b-tree. If it is not, then the cursor acquired
4074** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004075**
drhf25a5072009-11-18 23:01:25 +00004076** It is assumed that the sqlite3BtreeCursorZero() has been called
4077** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004078*/
drhd677b3d2007-08-20 22:48:41 +00004079static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004080 Btree *p, /* The btree */
4081 int iTable, /* Root page of table to open */
4082 int wrFlag, /* 1 to write. 0 read-only */
4083 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4084 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004085){
danielk19773e8add92009-07-04 17:16:00 +00004086 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004087 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004088
drh1fee73e2007-08-29 04:00:57 +00004089 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004090 assert( wrFlag==0
4091 || wrFlag==BTREE_WRCSR
4092 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4093 );
danielk197796d48e92009-06-29 06:00:37 +00004094
danielk1977602b4662009-07-02 07:47:33 +00004095 /* The following assert statements verify that if this is a sharable
4096 ** b-tree database, the connection is holding the required table locks,
4097 ** and that no other connection has any open cursor that conflicts with
4098 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004099 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004100 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4101
danielk19773e8add92009-07-04 17:16:00 +00004102 /* Assert that the caller has opened the required transaction. */
4103 assert( p->inTrans>TRANS_NONE );
4104 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4105 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004106 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004107
drh3fbb0222014-09-24 19:47:27 +00004108 if( wrFlag ){
4109 allocateTempSpace(pBt);
4110 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
drha0c9a112004-03-10 13:42:37 +00004111 }
drhb1299152010-03-30 22:58:33 +00004112 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004113 assert( wrFlag==0 );
4114 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004115 }
danielk1977aef0bf62005-12-30 16:28:01 +00004116
danielk1977aef0bf62005-12-30 16:28:01 +00004117 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004118 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004119 pCur->pgnoRoot = (Pgno)iTable;
4120 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004121 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004122 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004123 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004124 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004125 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004126 /* If there are two or more cursors on the same btree, then all such
4127 ** cursors *must* have the BTCF_Multiple flag set. */
4128 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4129 if( pX->pgnoRoot==(Pgno)iTable ){
4130 pX->curFlags |= BTCF_Multiple;
4131 pCur->curFlags |= BTCF_Multiple;
4132 }
drha059ad02001-04-17 20:09:11 +00004133 }
drh27fb7462015-06-30 02:47:36 +00004134 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004135 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004136 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004137 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004138}
drhd677b3d2007-08-20 22:48:41 +00004139int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004140 Btree *p, /* The btree */
4141 int iTable, /* Root page of table to open */
4142 int wrFlag, /* 1 to write. 0 read-only */
4143 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4144 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004145){
4146 int rc;
dan08f901b2015-05-25 19:24:36 +00004147 if( iTable<1 ){
4148 rc = SQLITE_CORRUPT_BKPT;
4149 }else{
4150 sqlite3BtreeEnter(p);
4151 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4152 sqlite3BtreeLeave(p);
4153 }
drhd677b3d2007-08-20 22:48:41 +00004154 return rc;
4155}
drh7f751222009-03-17 22:33:00 +00004156
4157/*
4158** Return the size of a BtCursor object in bytes.
4159**
4160** This interfaces is needed so that users of cursors can preallocate
4161** sufficient storage to hold a cursor. The BtCursor object is opaque
4162** to users so they cannot do the sizeof() themselves - they must call
4163** this routine.
4164*/
4165int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004166 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004167}
4168
drh7f751222009-03-17 22:33:00 +00004169/*
drhf25a5072009-11-18 23:01:25 +00004170** Initialize memory that will be converted into a BtCursor object.
4171**
4172** The simple approach here would be to memset() the entire object
4173** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4174** do not need to be zeroed and they are large, so we can save a lot
4175** of run-time by skipping the initialization of those elements.
4176*/
4177void sqlite3BtreeCursorZero(BtCursor *p){
4178 memset(p, 0, offsetof(BtCursor, iPage));
4179}
4180
4181/*
drh5e00f6c2001-09-13 13:46:56 +00004182** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004183** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004184*/
drh3aac2dd2004-04-26 14:10:20 +00004185int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004186 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004187 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004188 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004189 BtShared *pBt = pCur->pBt;
4190 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004191 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004192 assert( pBt->pCursor!=0 );
4193 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004194 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004195 }else{
4196 BtCursor *pPrev = pBt->pCursor;
4197 do{
4198 if( pPrev->pNext==pCur ){
4199 pPrev->pNext = pCur->pNext;
4200 break;
4201 }
4202 pPrev = pPrev->pNext;
4203 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004204 }
danielk197771d5d2c2008-09-29 11:49:47 +00004205 for(i=0; i<=pCur->iPage; i++){
4206 releasePage(pCur->apPage[i]);
4207 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004208 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004209 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004210 /* sqlite3_free(pCur); */
4211 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004212 }
drh8c42ca92001-06-22 19:15:00 +00004213 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004214}
4215
drh5e2f8b92001-05-28 00:41:15 +00004216/*
drh86057612007-06-26 01:04:48 +00004217** Make sure the BtCursor* given in the argument has a valid
4218** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004219** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004220**
4221** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004222** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004223*/
drh9188b382004-05-14 21:12:22 +00004224#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004225 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004226 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004227 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004228 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004229 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004230 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004231 }
danielk19771cc5ed82007-05-16 17:28:43 +00004232#else
4233 #define assertCellInfo(x)
4234#endif
drhc5b41ac2015-06-17 02:11:46 +00004235static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4236 if( pCur->info.nSize==0 ){
4237 int iPage = pCur->iPage;
4238 pCur->curFlags |= BTCF_ValidNKey;
4239 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4240 }else{
4241 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004242 }
drhc5b41ac2015-06-17 02:11:46 +00004243}
drh9188b382004-05-14 21:12:22 +00004244
drhea8ffdf2009-07-22 00:35:23 +00004245#ifndef NDEBUG /* The next routine used only within assert() statements */
4246/*
4247** Return true if the given BtCursor is valid. A valid cursor is one
4248** that is currently pointing to a row in a (non-empty) table.
4249** This is a verification routine is used only within assert() statements.
4250*/
4251int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4252 return pCur && pCur->eState==CURSOR_VALID;
4253}
4254#endif /* NDEBUG */
4255
drh9188b382004-05-14 21:12:22 +00004256/*
drh3aac2dd2004-04-26 14:10:20 +00004257** Set *pSize to the size of the buffer needed to hold the value of
4258** the key for the current entry. If the cursor is not pointing
4259** to a valid entry, *pSize is set to 0.
4260**
drh4b70f112004-05-02 21:12:19 +00004261** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004262** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004263**
4264** The caller must position the cursor prior to invoking this routine.
4265**
4266** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004267*/
drh4a1c3802004-05-12 15:15:47 +00004268int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004269 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004270 assert( pCur->eState==CURSOR_VALID );
4271 getCellInfo(pCur);
4272 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004273 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004274}
drh2af926b2001-05-15 00:39:25 +00004275
drh72f82862001-05-24 21:06:34 +00004276/*
drh0e1c19e2004-05-11 00:58:56 +00004277** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004278** cursor currently points to.
4279**
4280** The caller must guarantee that the cursor is pointing to a non-NULL
4281** valid entry. In other words, the calling procedure must guarantee
4282** that the cursor has Cursor.eState==CURSOR_VALID.
4283**
4284** Failure is not possible. This function always returns SQLITE_OK.
4285** It might just as well be a procedure (returning void) but we continue
4286** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004287*/
4288int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004289 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004290 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004291 assert( pCur->iPage>=0 );
4292 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004293 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004294 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004295 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004296 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004297}
4298
4299/*
danielk1977d04417962007-05-02 13:16:30 +00004300** Given the page number of an overflow page in the database (parameter
4301** ovfl), this function finds the page number of the next page in the
4302** linked list of overflow pages. If possible, it uses the auto-vacuum
4303** pointer-map data instead of reading the content of page ovfl to do so.
4304**
4305** If an error occurs an SQLite error code is returned. Otherwise:
4306**
danielk1977bea2a942009-01-20 17:06:27 +00004307** The page number of the next overflow page in the linked list is
4308** written to *pPgnoNext. If page ovfl is the last page in its linked
4309** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004310**
danielk1977bea2a942009-01-20 17:06:27 +00004311** If ppPage is not NULL, and a reference to the MemPage object corresponding
4312** to page number pOvfl was obtained, then *ppPage is set to point to that
4313** reference. It is the responsibility of the caller to call releasePage()
4314** on *ppPage to free the reference. In no reference was obtained (because
4315** the pointer-map was used to obtain the value for *pPgnoNext), then
4316** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004317*/
4318static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004319 BtShared *pBt, /* The database file */
4320 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004321 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004322 Pgno *pPgnoNext /* OUT: Next overflow page number */
4323){
4324 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004325 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004326 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004327
drh1fee73e2007-08-29 04:00:57 +00004328 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004329 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004330
4331#ifndef SQLITE_OMIT_AUTOVACUUM
4332 /* Try to find the next page in the overflow list using the
4333 ** autovacuum pointer-map pages. Guess that the next page in
4334 ** the overflow list is page number (ovfl+1). If that guess turns
4335 ** out to be wrong, fall back to loading the data of page
4336 ** number ovfl to determine the next page number.
4337 */
4338 if( pBt->autoVacuum ){
4339 Pgno pgno;
4340 Pgno iGuess = ovfl+1;
4341 u8 eType;
4342
4343 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4344 iGuess++;
4345 }
4346
drhb1299152010-03-30 22:58:33 +00004347 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004348 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004349 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004350 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004351 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004352 }
4353 }
4354 }
4355#endif
4356
danielk1977d8a3f3d2009-07-11 11:45:23 +00004357 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004358 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004359 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004360 assert( rc==SQLITE_OK || pPage==0 );
4361 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004362 next = get4byte(pPage->aData);
4363 }
danielk1977443c0592009-01-16 15:21:05 +00004364 }
danielk197745d68822009-01-16 16:23:38 +00004365
danielk1977bea2a942009-01-20 17:06:27 +00004366 *pPgnoNext = next;
4367 if( ppPage ){
4368 *ppPage = pPage;
4369 }else{
4370 releasePage(pPage);
4371 }
4372 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004373}
4374
danielk1977da107192007-05-04 08:32:13 +00004375/*
4376** Copy data from a buffer to a page, or from a page to a buffer.
4377**
4378** pPayload is a pointer to data stored on database page pDbPage.
4379** If argument eOp is false, then nByte bytes of data are copied
4380** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4381** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4382** of data are copied from the buffer pBuf to pPayload.
4383**
4384** SQLITE_OK is returned on success, otherwise an error code.
4385*/
4386static int copyPayload(
4387 void *pPayload, /* Pointer to page data */
4388 void *pBuf, /* Pointer to buffer */
4389 int nByte, /* Number of bytes to copy */
4390 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4391 DbPage *pDbPage /* Page containing pPayload */
4392){
4393 if( eOp ){
4394 /* Copy data from buffer to page (a write operation) */
4395 int rc = sqlite3PagerWrite(pDbPage);
4396 if( rc!=SQLITE_OK ){
4397 return rc;
4398 }
4399 memcpy(pPayload, pBuf, nByte);
4400 }else{
4401 /* Copy data from page to buffer (a read operation) */
4402 memcpy(pBuf, pPayload, nByte);
4403 }
4404 return SQLITE_OK;
4405}
danielk1977d04417962007-05-02 13:16:30 +00004406
4407/*
danielk19779f8d6402007-05-02 17:48:45 +00004408** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004409** for the entry that the pCur cursor is pointing to. The eOp
4410** argument is interpreted as follows:
4411**
4412** 0: The operation is a read. Populate the overflow cache.
4413** 1: The operation is a write. Populate the overflow cache.
4414** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004415**
4416** A total of "amt" bytes are read or written beginning at "offset".
4417** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004418**
drh3bcdfd22009-07-12 02:32:21 +00004419** The content being read or written might appear on the main page
4420** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004421**
dan5a500af2014-03-11 20:33:04 +00004422** If the current cursor entry uses one or more overflow pages and the
4423** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004424** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004425** Subsequent calls use this cache to make seeking to the supplied offset
4426** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004427**
4428** Once an overflow page-list cache has been allocated, it may be
4429** invalidated if some other cursor writes to the same table, or if
4430** the cursor is moved to a different row. Additionally, in auto-vacuum
4431** mode, the following events may invalidate an overflow page-list cache.
4432**
4433** * An incremental vacuum,
4434** * A commit in auto_vacuum="full" mode,
4435** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004436*/
danielk19779f8d6402007-05-02 17:48:45 +00004437static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004438 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004439 u32 offset, /* Begin reading this far into payload */
4440 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004441 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004442 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004443){
4444 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004445 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004446 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004447 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004448 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004449#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004450 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004451 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004452#endif
drh3aac2dd2004-04-26 14:10:20 +00004453
danielk1977da107192007-05-04 08:32:13 +00004454 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004455 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004456 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004457 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004458 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004459
drh86057612007-06-26 01:04:48 +00004460 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004461 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004462#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004463 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004464#endif
drhab1cc582014-09-23 21:25:19 +00004465 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004466
drhab1cc582014-09-23 21:25:19 +00004467 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004468 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004469 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004470 }
danielk1977da107192007-05-04 08:32:13 +00004471
4472 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004473 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004474 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004475 if( a+offset>pCur->info.nLocal ){
4476 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004477 }
dan5a500af2014-03-11 20:33:04 +00004478 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004479 offset = 0;
drha34b6762004-05-07 13:30:42 +00004480 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004481 amt -= a;
drhdd793422001-06-28 01:54:48 +00004482 }else{
drhfa1a98a2004-05-14 19:08:17 +00004483 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004484 }
danielk1977da107192007-05-04 08:32:13 +00004485
dan85753662014-12-11 16:38:18 +00004486
danielk1977da107192007-05-04 08:32:13 +00004487 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004488 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004489 Pgno nextPage;
4490
drhfa1a98a2004-05-14 19:08:17 +00004491 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004492
drha38c9512014-04-01 01:24:34 +00004493 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4494 ** Except, do not allocate aOverflow[] for eOp==2.
4495 **
4496 ** The aOverflow[] array is sized at one entry for each overflow page
4497 ** in the overflow chain. The page number of the first overflow page is
4498 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4499 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004500 */
drh036dbec2014-03-11 23:40:44 +00004501 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004502 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004503 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004504 Pgno *aNew = (Pgno*)sqlite3Realloc(
4505 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004506 );
4507 if( aNew==0 ){
4508 rc = SQLITE_NOMEM;
4509 }else{
4510 pCur->nOvflAlloc = nOvfl*2;
4511 pCur->aOverflow = aNew;
4512 }
4513 }
4514 if( rc==SQLITE_OK ){
4515 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004516 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004517 }
4518 }
danielk1977da107192007-05-04 08:32:13 +00004519
4520 /* If the overflow page-list cache has been allocated and the
4521 ** entry for the first required overflow page is valid, skip
4522 ** directly to it.
4523 */
drh3f387402014-09-24 01:23:00 +00004524 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4525 && pCur->aOverflow[offset/ovflSize]
4526 ){
danielk19772dec9702007-05-02 16:48:37 +00004527 iIdx = (offset/ovflSize);
4528 nextPage = pCur->aOverflow[iIdx];
4529 offset = (offset%ovflSize);
4530 }
danielk1977da107192007-05-04 08:32:13 +00004531
4532 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4533
danielk1977da107192007-05-04 08:32:13 +00004534 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004535 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004536 assert( pCur->aOverflow[iIdx]==0
4537 || pCur->aOverflow[iIdx]==nextPage
4538 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004539 pCur->aOverflow[iIdx] = nextPage;
4540 }
danielk1977da107192007-05-04 08:32:13 +00004541
danielk1977d04417962007-05-02 13:16:30 +00004542 if( offset>=ovflSize ){
4543 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004544 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004545 ** data is not required. So first try to lookup the overflow
4546 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004547 ** function.
drha38c9512014-04-01 01:24:34 +00004548 **
4549 ** Note that the aOverflow[] array must be allocated because eOp!=2
4550 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004551 */
drha38c9512014-04-01 01:24:34 +00004552 assert( eOp!=2 );
4553 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004554 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004555 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004556 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004557 }else{
danielk1977da107192007-05-04 08:32:13 +00004558 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004559 }
danielk1977da107192007-05-04 08:32:13 +00004560 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004561 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004562 /* Need to read this page properly. It contains some of the
4563 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004564 */
danf4ba1092011-10-08 14:57:07 +00004565#ifdef SQLITE_DIRECT_OVERFLOW_READ
4566 sqlite3_file *fd;
4567#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004568 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004569 if( a + offset > ovflSize ){
4570 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004571 }
danf4ba1092011-10-08 14:57:07 +00004572
4573#ifdef SQLITE_DIRECT_OVERFLOW_READ
4574 /* If all the following are true:
4575 **
4576 ** 1) this is a read operation, and
4577 ** 2) data is required from the start of this overflow page, and
4578 ** 3) the database is file-backed, and
4579 ** 4) there is no open write-transaction, and
4580 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004581 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004582 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004583 **
4584 ** then data can be read directly from the database file into the
4585 ** output buffer, bypassing the page-cache altogether. This speeds
4586 ** up loading large records that span many overflow pages.
4587 */
dan5a500af2014-03-11 20:33:04 +00004588 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004589 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004590 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004591 && pBt->inTransaction==TRANS_READ /* (4) */
4592 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4593 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004594 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004595 ){
4596 u8 aSave[4];
4597 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004598 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004599 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004600 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004601 nextPage = get4byte(aWrite);
4602 memcpy(aWrite, aSave, 4);
4603 }else
4604#endif
4605
4606 {
4607 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004608 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004609 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004610 );
danf4ba1092011-10-08 14:57:07 +00004611 if( rc==SQLITE_OK ){
4612 aPayload = sqlite3PagerGetData(pDbPage);
4613 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004614 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004615 sqlite3PagerUnref(pDbPage);
4616 offset = 0;
4617 }
4618 }
4619 amt -= a;
4620 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004621 }
drh2af926b2001-05-15 00:39:25 +00004622 }
drh2af926b2001-05-15 00:39:25 +00004623 }
danielk1977cfe9a692004-06-16 12:00:29 +00004624
danielk1977da107192007-05-04 08:32:13 +00004625 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004626 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004627 }
danielk1977da107192007-05-04 08:32:13 +00004628 return rc;
drh2af926b2001-05-15 00:39:25 +00004629}
4630
drh72f82862001-05-24 21:06:34 +00004631/*
drh3aac2dd2004-04-26 14:10:20 +00004632** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004633** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004634** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004635**
drh5d1a8722009-07-22 18:07:40 +00004636** The caller must ensure that pCur is pointing to a valid row
4637** in the table.
4638**
drh3aac2dd2004-04-26 14:10:20 +00004639** Return SQLITE_OK on success or an error code if anything goes
4640** wrong. An error is returned if "offset+amt" is larger than
4641** the available payload.
drh72f82862001-05-24 21:06:34 +00004642*/
drha34b6762004-05-07 13:30:42 +00004643int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004644 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004645 assert( pCur->eState==CURSOR_VALID );
4646 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4647 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4648 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004649}
4650
4651/*
drh3aac2dd2004-04-26 14:10:20 +00004652** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004653** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004654** begins at "offset".
4655**
4656** Return SQLITE_OK on success or an error code if anything goes
4657** wrong. An error is returned if "offset+amt" is larger than
4658** the available payload.
drh72f82862001-05-24 21:06:34 +00004659*/
drh3aac2dd2004-04-26 14:10:20 +00004660int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004661 int rc;
4662
danielk19773588ceb2008-06-10 17:30:26 +00004663#ifndef SQLITE_OMIT_INCRBLOB
4664 if ( pCur->eState==CURSOR_INVALID ){
4665 return SQLITE_ABORT;
4666 }
4667#endif
4668
drh1fee73e2007-08-29 04:00:57 +00004669 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004670 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004671 if( rc==SQLITE_OK ){
4672 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004673 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4674 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004675 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004676 }
4677 return rc;
drh2af926b2001-05-15 00:39:25 +00004678}
4679
drh72f82862001-05-24 21:06:34 +00004680/*
drh0e1c19e2004-05-11 00:58:56 +00004681** Return a pointer to payload information from the entry that the
4682** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004683** the key if index btrees (pPage->intKey==0) and is the data for
4684** table btrees (pPage->intKey==1). The number of bytes of available
4685** key/data is written into *pAmt. If *pAmt==0, then the value
4686** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004687**
4688** This routine is an optimization. It is common for the entire key
4689** and data to fit on the local page and for there to be no overflow
4690** pages. When that is so, this routine can be used to access the
4691** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004692** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004693** the key/data and copy it into a preallocated buffer.
4694**
4695** The pointer returned by this routine looks directly into the cached
4696** page of the database. The data might change or move the next time
4697** any btree routine is called.
4698*/
drh2a8d2262013-12-09 20:43:22 +00004699static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004700 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004701 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004702){
drhf3392e32015-04-15 17:26:55 +00004703 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004704 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004705 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004706 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004707 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004708 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004709 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004710 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4711 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4712 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4713 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4714 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004715 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004716}
4717
4718
4719/*
drhe51c44f2004-05-30 20:46:09 +00004720** For the entry that cursor pCur is point to, return as
4721** many bytes of the key or data as are available on the local
4722** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004723**
4724** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004725** or be destroyed on the next call to any Btree routine,
4726** including calls from other threads against the same cache.
4727** Hence, a mutex on the BtShared should be held prior to calling
4728** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004729**
4730** These routines is used to get quick access to key and data
4731** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004732*/
drh501932c2013-11-21 21:59:53 +00004733const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004734 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004735}
drh501932c2013-11-21 21:59:53 +00004736const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004737 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004738}
4739
4740
4741/*
drh8178a752003-01-05 21:41:40 +00004742** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004743** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004744**
4745** This function returns SQLITE_CORRUPT if the page-header flags field of
4746** the new child page does not match the flags field of the parent (i.e.
4747** if an intkey page appears to be the parent of a non-intkey page, or
4748** vice-versa).
drh72f82862001-05-24 21:06:34 +00004749*/
drh3aac2dd2004-04-26 14:10:20 +00004750static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004751 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004752
drh1fee73e2007-08-29 04:00:57 +00004753 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004754 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004755 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004756 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004757 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4758 return SQLITE_CORRUPT_BKPT;
4759 }
drh271efa52004-05-30 19:19:05 +00004760 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004761 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004762 pCur->iPage++;
4763 pCur->aiIdx[pCur->iPage] = 0;
4764 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4765 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004766}
4767
drhcbd33492015-03-25 13:06:54 +00004768#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004769/*
4770** Page pParent is an internal (non-leaf) tree page. This function
4771** asserts that page number iChild is the left-child if the iIdx'th
4772** cell in page pParent. Or, if iIdx is equal to the total number of
4773** cells in pParent, that page number iChild is the right-child of
4774** the page.
4775*/
4776static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004777 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4778 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004779 assert( iIdx<=pParent->nCell );
4780 if( iIdx==pParent->nCell ){
4781 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4782 }else{
4783 assert( get4byte(findCell(pParent, iIdx))==iChild );
4784 }
4785}
4786#else
4787# define assertParentIndex(x,y,z)
4788#endif
4789
drh72f82862001-05-24 21:06:34 +00004790/*
drh5e2f8b92001-05-28 00:41:15 +00004791** Move the cursor up to the parent page.
4792**
4793** pCur->idx is set to the cell index that contains the pointer
4794** to the page we are coming from. If we are coming from the
4795** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004796** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004797*/
danielk197730548662009-07-09 05:07:37 +00004798static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004799 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004800 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004801 assert( pCur->iPage>0 );
4802 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004803 assertParentIndex(
4804 pCur->apPage[pCur->iPage-1],
4805 pCur->aiIdx[pCur->iPage-1],
4806 pCur->apPage[pCur->iPage]->pgno
4807 );
dan6c2688c2012-01-12 15:05:03 +00004808 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004809 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004810 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004811 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004812}
4813
4814/*
danielk19778f880a82009-07-13 09:41:45 +00004815** Move the cursor to point to the root page of its b-tree structure.
4816**
4817** If the table has a virtual root page, then the cursor is moved to point
4818** to the virtual root page instead of the actual root page. A table has a
4819** virtual root page when the actual root page contains no cells and a
4820** single child page. This can only happen with the table rooted at page 1.
4821**
4822** If the b-tree structure is empty, the cursor state is set to
4823** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4824** cell located on the root (or virtual root) page and the cursor state
4825** is set to CURSOR_VALID.
4826**
4827** If this function returns successfully, it may be assumed that the
4828** page-header flags indicate that the [virtual] root-page is the expected
4829** kind of b-tree page (i.e. if when opening the cursor the caller did not
4830** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4831** indicating a table b-tree, or if the caller did specify a KeyInfo
4832** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4833** b-tree).
drh72f82862001-05-24 21:06:34 +00004834*/
drh5e2f8b92001-05-28 00:41:15 +00004835static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004836 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004837 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004838
drh1fee73e2007-08-29 04:00:57 +00004839 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004840 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4841 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4842 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4843 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4844 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004845 assert( pCur->skipNext!=SQLITE_OK );
4846 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004847 }
danielk1977be51a652008-10-08 17:58:48 +00004848 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004849 }
danielk197771d5d2c2008-09-29 11:49:47 +00004850
4851 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004852 while( pCur->iPage ){
4853 assert( pCur->apPage[pCur->iPage]!=0 );
4854 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4855 }
dana205a482011-08-27 18:48:57 +00004856 }else if( pCur->pgnoRoot==0 ){
4857 pCur->eState = CURSOR_INVALID;
4858 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004859 }else{
drh28f58dd2015-06-27 19:45:03 +00004860 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004861 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004862 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004863 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004864 pCur->eState = CURSOR_INVALID;
4865 return rc;
4866 }
danielk1977172114a2009-07-07 15:47:12 +00004867 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004868 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004869 }
danielk197771d5d2c2008-09-29 11:49:47 +00004870 pRoot = pCur->apPage[0];
4871 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004872
4873 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4874 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4875 ** NULL, the caller expects a table b-tree. If this is not the case,
4876 ** return an SQLITE_CORRUPT error.
4877 **
4878 ** Earlier versions of SQLite assumed that this test could not fail
4879 ** if the root page was already loaded when this function was called (i.e.
4880 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4881 ** in such a way that page pRoot is linked into a second b-tree table
4882 ** (or the freelist). */
4883 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4884 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4885 return SQLITE_CORRUPT_BKPT;
4886 }
danielk19778f880a82009-07-13 09:41:45 +00004887
danielk197771d5d2c2008-09-29 11:49:47 +00004888 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004889 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004890 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004891
drh4e8fe3f2013-12-06 23:25:27 +00004892 if( pRoot->nCell>0 ){
4893 pCur->eState = CURSOR_VALID;
4894 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004895 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004896 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004897 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004898 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004899 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004900 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004901 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004902 }
4903 return rc;
drh72f82862001-05-24 21:06:34 +00004904}
drh2af926b2001-05-15 00:39:25 +00004905
drh5e2f8b92001-05-28 00:41:15 +00004906/*
4907** Move the cursor down to the left-most leaf entry beneath the
4908** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004909**
4910** The left-most leaf is the one with the smallest key - the first
4911** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004912*/
4913static int moveToLeftmost(BtCursor *pCur){
4914 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004915 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004916 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004917
drh1fee73e2007-08-29 04:00:57 +00004918 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004919 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004920 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4921 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4922 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004923 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004924 }
drhd677b3d2007-08-20 22:48:41 +00004925 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004926}
4927
drh2dcc9aa2002-12-04 13:40:25 +00004928/*
4929** Move the cursor down to the right-most leaf entry beneath the
4930** page to which it is currently pointing. Notice the difference
4931** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4932** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4933** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004934**
4935** The right-most entry is the one with the largest key - the last
4936** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004937*/
4938static int moveToRightmost(BtCursor *pCur){
4939 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004940 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004941 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004942
drh1fee73e2007-08-29 04:00:57 +00004943 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004944 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004945 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004946 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004947 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004948 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004949 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004950 }
drhee6438d2014-09-01 13:29:32 +00004951 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4952 assert( pCur->info.nSize==0 );
4953 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4954 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004955}
4956
drh5e00f6c2001-09-13 13:46:56 +00004957/* Move the cursor to the first entry in the table. Return SQLITE_OK
4958** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004959** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004960*/
drh3aac2dd2004-04-26 14:10:20 +00004961int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004962 int rc;
drhd677b3d2007-08-20 22:48:41 +00004963
drh1fee73e2007-08-29 04:00:57 +00004964 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004965 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004966 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004967 if( rc==SQLITE_OK ){
4968 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004969 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004970 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004971 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004972 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004973 *pRes = 0;
4974 rc = moveToLeftmost(pCur);
4975 }
drh5e00f6c2001-09-13 13:46:56 +00004976 }
drh5e00f6c2001-09-13 13:46:56 +00004977 return rc;
4978}
drh5e2f8b92001-05-28 00:41:15 +00004979
drh9562b552002-02-19 15:00:07 +00004980/* Move the cursor to the last entry in the table. Return SQLITE_OK
4981** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004982** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004983*/
drh3aac2dd2004-04-26 14:10:20 +00004984int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004985 int rc;
drhd677b3d2007-08-20 22:48:41 +00004986
drh1fee73e2007-08-29 04:00:57 +00004987 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004988 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004989
4990 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004991 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004992#ifdef SQLITE_DEBUG
4993 /* This block serves to assert() that the cursor really does point
4994 ** to the last entry in the b-tree. */
4995 int ii;
4996 for(ii=0; ii<pCur->iPage; ii++){
4997 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4998 }
4999 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5000 assert( pCur->apPage[pCur->iPage]->leaf );
5001#endif
5002 return SQLITE_OK;
5003 }
5004
drh9562b552002-02-19 15:00:07 +00005005 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005006 if( rc==SQLITE_OK ){
5007 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005008 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005009 *pRes = 1;
5010 }else{
5011 assert( pCur->eState==CURSOR_VALID );
5012 *pRes = 0;
5013 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005014 if( rc==SQLITE_OK ){
5015 pCur->curFlags |= BTCF_AtLast;
5016 }else{
5017 pCur->curFlags &= ~BTCF_AtLast;
5018 }
5019
drhd677b3d2007-08-20 22:48:41 +00005020 }
drh9562b552002-02-19 15:00:07 +00005021 }
drh9562b552002-02-19 15:00:07 +00005022 return rc;
5023}
5024
drhe14006d2008-03-25 17:23:32 +00005025/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005026** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005027**
drhe63d9992008-08-13 19:11:48 +00005028** For INTKEY tables, the intKey parameter is used. pIdxKey
5029** must be NULL. For index tables, pIdxKey is used and intKey
5030** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005031**
drh5e2f8b92001-05-28 00:41:15 +00005032** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005033** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005034** were present. The cursor might point to an entry that comes
5035** before or after the key.
5036**
drh64022502009-01-09 14:11:04 +00005037** An integer is written into *pRes which is the result of
5038** comparing the key with the entry to which the cursor is
5039** pointing. The meaning of the integer written into
5040** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005041**
5042** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005043** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005044** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005045**
5046** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005047** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005048**
5049** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005050** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005051**
drhb1d607d2015-11-05 22:30:54 +00005052** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5053** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005054*/
drhe63d9992008-08-13 19:11:48 +00005055int sqlite3BtreeMovetoUnpacked(
5056 BtCursor *pCur, /* The cursor to be moved */
5057 UnpackedRecord *pIdxKey, /* Unpacked index key */
5058 i64 intKey, /* The table key */
5059 int biasRight, /* If true, bias the search to the high end */
5060 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005061){
drh72f82862001-05-24 21:06:34 +00005062 int rc;
dan3b9330f2014-02-27 20:44:18 +00005063 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005064
drh1fee73e2007-08-29 04:00:57 +00005065 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005066 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005067 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005068 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005069
5070 /* If the cursor is already positioned at the point we are trying
5071 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005072 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005073 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005074 ){
drhe63d9992008-08-13 19:11:48 +00005075 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005076 *pRes = 0;
5077 return SQLITE_OK;
5078 }
drh036dbec2014-03-11 23:40:44 +00005079 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005080 *pRes = -1;
5081 return SQLITE_OK;
5082 }
5083 }
5084
dan1fed5da2014-02-25 21:01:25 +00005085 if( pIdxKey ){
5086 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005087 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005088 assert( pIdxKey->default_rc==1
5089 || pIdxKey->default_rc==0
5090 || pIdxKey->default_rc==-1
5091 );
drh13a747e2014-03-03 21:46:55 +00005092 }else{
drhb6e8fd12014-03-06 01:56:33 +00005093 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005094 }
5095
drh5e2f8b92001-05-28 00:41:15 +00005096 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005097 if( rc ){
5098 return rc;
5099 }
dana205a482011-08-27 18:48:57 +00005100 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5101 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5102 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005103 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005104 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005105 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005106 return SQLITE_OK;
5107 }
drhc75d8862015-06-27 23:55:20 +00005108 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5109 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005110 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005111 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005112 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005113 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005114 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005115
5116 /* pPage->nCell must be greater than zero. If this is the root-page
5117 ** the cursor would have been INVALID above and this for(;;) loop
5118 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005119 ** would have already detected db corruption. Similarly, pPage must
5120 ** be the right kind (index or table) of b-tree page. Otherwise
5121 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005122 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005123 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005124 lwr = 0;
5125 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005126 assert( biasRight==0 || biasRight==1 );
5127 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005128 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005129 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005130 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005131 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005132 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005133 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005134 while( 0x80 <= *(pCell++) ){
5135 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5136 }
drhd172f862006-01-12 15:01:15 +00005137 }
drha2c20e42008-03-29 16:01:04 +00005138 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005139 if( nCellKey<intKey ){
5140 lwr = idx+1;
5141 if( lwr>upr ){ c = -1; break; }
5142 }else if( nCellKey>intKey ){
5143 upr = idx-1;
5144 if( lwr>upr ){ c = +1; break; }
5145 }else{
5146 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005147 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005148 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005149 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005150 if( !pPage->leaf ){
5151 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005152 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005153 }else{
5154 *pRes = 0;
5155 rc = SQLITE_OK;
5156 goto moveto_finish;
5157 }
drhd793f442013-11-25 14:10:15 +00005158 }
drhebf10b12013-11-25 17:38:26 +00005159 assert( lwr+upr>=0 );
5160 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005161 }
5162 }else{
5163 for(;;){
drhc6827502015-05-28 15:14:32 +00005164 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005165 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005166
drhb2eced52010-08-12 02:41:12 +00005167 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005168 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005169 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005170 ** varint. This information is used to attempt to avoid parsing
5171 ** the entire cell by checking for the cases where the record is
5172 ** stored entirely within the b-tree page by inspecting the first
5173 ** 2 bytes of the cell.
5174 */
drhec3e6b12013-11-25 02:38:55 +00005175 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005176 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005177 /* This branch runs if the record-size field of the cell is a
5178 ** single byte varint and the record fits entirely on the main
5179 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005180 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005181 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005182 }else if( !(pCell[1] & 0x80)
5183 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5184 ){
5185 /* The record-size field is a 2 byte varint and the record
5186 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005187 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005188 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005189 }else{
danielk197711c327a2009-05-04 19:01:26 +00005190 /* The record flows over onto one or more overflow pages. In
5191 ** this case the whole cell needs to be parsed, a buffer allocated
5192 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005193 ** buffer before VdbeRecordCompare() can be called.
5194 **
5195 ** If the record is corrupt, the xRecordCompare routine may read
5196 ** up to two varints past the end of the buffer. An extra 18
5197 ** bytes of padding is allocated at the end of the buffer in
5198 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005199 void *pCellKey;
5200 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005201 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005202 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005203 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5204 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5205 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5206 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005207 if( nCell<2 ){
5208 rc = SQLITE_CORRUPT_BKPT;
5209 goto moveto_finish;
5210 }
5211 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005212 if( pCellKey==0 ){
5213 rc = SQLITE_NOMEM;
5214 goto moveto_finish;
5215 }
drhd793f442013-11-25 14:10:15 +00005216 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005217 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005218 if( rc ){
5219 sqlite3_free(pCellKey);
5220 goto moveto_finish;
5221 }
drh75179de2014-09-16 14:37:35 +00005222 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005223 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005224 }
dan38fdead2014-04-01 10:19:02 +00005225 assert(
5226 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005227 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005228 );
drhbb933ef2013-11-25 15:01:38 +00005229 if( c<0 ){
5230 lwr = idx+1;
5231 }else if( c>0 ){
5232 upr = idx-1;
5233 }else{
5234 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005235 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005236 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005237 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005238 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005239 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005240 }
drhebf10b12013-11-25 17:38:26 +00005241 if( lwr>upr ) break;
5242 assert( lwr+upr>=0 );
5243 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005244 }
drh72f82862001-05-24 21:06:34 +00005245 }
drhb07028f2011-10-14 21:49:18 +00005246 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005247 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005248 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005249 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005250 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005251 *pRes = c;
5252 rc = SQLITE_OK;
5253 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005254 }
5255moveto_next_layer:
5256 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005257 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005258 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005259 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005260 }
drhf49661a2008-12-10 16:45:50 +00005261 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005262 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005263 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005264 }
drh1e968a02008-03-25 00:22:21 +00005265moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005266 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005267 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005268 return rc;
5269}
5270
drhd677b3d2007-08-20 22:48:41 +00005271
drh72f82862001-05-24 21:06:34 +00005272/*
drhc39e0002004-05-07 23:50:57 +00005273** Return TRUE if the cursor is not pointing at an entry of the table.
5274**
5275** TRUE will be returned after a call to sqlite3BtreeNext() moves
5276** past the last entry in the table or sqlite3BtreePrev() moves past
5277** the first entry. TRUE is also returned if the table is empty.
5278*/
5279int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005280 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5281 ** have been deleted? This API will need to change to return an error code
5282 ** as well as the boolean result value.
5283 */
5284 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005285}
5286
5287/*
drhbd03cae2001-06-02 02:40:57 +00005288** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005289** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005290** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005291** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005292**
drhee6438d2014-09-01 13:29:32 +00005293** The main entry point is sqlite3BtreeNext(). That routine is optimized
5294** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5295** to the next cell on the current page. The (slower) btreeNext() helper
5296** routine is called when it is necessary to move to a different page or
5297** to restore the cursor.
5298**
drhe39a7322014-02-03 14:04:11 +00005299** The calling function will set *pRes to 0 or 1. The initial *pRes value
5300** will be 1 if the cursor being stepped corresponds to an SQL index and
5301** if this routine could have been skipped if that SQL index had been
5302** a unique index. Otherwise the caller will have set *pRes to zero.
5303** Zero is the common case. The btree implementation is free to use the
5304** initial *pRes value as a hint to improve performance, but the current
5305** SQLite btree implementation does not. (Note that the comdb2 btree
5306** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005307*/
drhee6438d2014-09-01 13:29:32 +00005308static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005309 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005310 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005311 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005312
drh1fee73e2007-08-29 04:00:57 +00005313 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005314 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005315 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005316 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005317 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005318 rc = restoreCursorPosition(pCur);
5319 if( rc!=SQLITE_OK ){
5320 return rc;
5321 }
5322 if( CURSOR_INVALID==pCur->eState ){
5323 *pRes = 1;
5324 return SQLITE_OK;
5325 }
drh9b47ee32013-08-20 03:13:51 +00005326 if( pCur->skipNext ){
5327 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5328 pCur->eState = CURSOR_VALID;
5329 if( pCur->skipNext>0 ){
5330 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005331 return SQLITE_OK;
5332 }
drhf66f26a2013-08-19 20:04:10 +00005333 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005334 }
danielk1977da184232006-01-05 11:34:32 +00005335 }
danielk1977da184232006-01-05 11:34:32 +00005336
danielk197771d5d2c2008-09-29 11:49:47 +00005337 pPage = pCur->apPage[pCur->iPage];
5338 idx = ++pCur->aiIdx[pCur->iPage];
5339 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005340
5341 /* If the database file is corrupt, it is possible for the value of idx
5342 ** to be invalid here. This can only occur if a second cursor modifies
5343 ** the page while cursor pCur is holding a reference to it. Which can
5344 ** only happen if the database is corrupt in such a way as to link the
5345 ** page into more than one b-tree structure. */
5346 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005347
danielk197771d5d2c2008-09-29 11:49:47 +00005348 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005349 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005350 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005351 if( rc ) return rc;
5352 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005353 }
drh5e2f8b92001-05-28 00:41:15 +00005354 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005355 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005356 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005357 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005358 return SQLITE_OK;
5359 }
danielk197730548662009-07-09 05:07:37 +00005360 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005361 pPage = pCur->apPage[pCur->iPage];
5362 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005363 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005364 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005365 }else{
drhee6438d2014-09-01 13:29:32 +00005366 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005367 }
drh8178a752003-01-05 21:41:40 +00005368 }
drh3aac2dd2004-04-26 14:10:20 +00005369 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005370 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005371 }else{
5372 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005373 }
drh72f82862001-05-24 21:06:34 +00005374}
drhee6438d2014-09-01 13:29:32 +00005375int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5376 MemPage *pPage;
5377 assert( cursorHoldsMutex(pCur) );
5378 assert( pRes!=0 );
5379 assert( *pRes==0 || *pRes==1 );
5380 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5381 pCur->info.nSize = 0;
5382 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5383 *pRes = 0;
5384 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5385 pPage = pCur->apPage[pCur->iPage];
5386 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5387 pCur->aiIdx[pCur->iPage]--;
5388 return btreeNext(pCur, pRes);
5389 }
5390 if( pPage->leaf ){
5391 return SQLITE_OK;
5392 }else{
5393 return moveToLeftmost(pCur);
5394 }
5395}
drh72f82862001-05-24 21:06:34 +00005396
drh3b7511c2001-05-26 13:15:44 +00005397/*
drh2dcc9aa2002-12-04 13:40:25 +00005398** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005399** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005400** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005401** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005402**
drhee6438d2014-09-01 13:29:32 +00005403** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5404** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005405** to the previous cell on the current page. The (slower) btreePrevious()
5406** helper routine is called when it is necessary to move to a different page
5407** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005408**
drhe39a7322014-02-03 14:04:11 +00005409** The calling function will set *pRes to 0 or 1. The initial *pRes value
5410** will be 1 if the cursor being stepped corresponds to an SQL index and
5411** if this routine could have been skipped if that SQL index had been
5412** a unique index. Otherwise the caller will have set *pRes to zero.
5413** Zero is the common case. The btree implementation is free to use the
5414** initial *pRes value as a hint to improve performance, but the current
5415** SQLite btree implementation does not. (Note that the comdb2 btree
5416** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005417*/
drhee6438d2014-09-01 13:29:32 +00005418static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005419 int rc;
drh8178a752003-01-05 21:41:40 +00005420 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005421
drh1fee73e2007-08-29 04:00:57 +00005422 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005423 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005424 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005425 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005426 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5427 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005428 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005429 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005430 if( rc!=SQLITE_OK ){
5431 return rc;
drhf66f26a2013-08-19 20:04:10 +00005432 }
5433 if( CURSOR_INVALID==pCur->eState ){
5434 *pRes = 1;
5435 return SQLITE_OK;
5436 }
drh9b47ee32013-08-20 03:13:51 +00005437 if( pCur->skipNext ){
5438 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5439 pCur->eState = CURSOR_VALID;
5440 if( pCur->skipNext<0 ){
5441 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005442 return SQLITE_OK;
5443 }
drhf66f26a2013-08-19 20:04:10 +00005444 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005445 }
danielk1977da184232006-01-05 11:34:32 +00005446 }
danielk1977da184232006-01-05 11:34:32 +00005447
danielk197771d5d2c2008-09-29 11:49:47 +00005448 pPage = pCur->apPage[pCur->iPage];
5449 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005450 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005451 int idx = pCur->aiIdx[pCur->iPage];
5452 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005453 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005454 rc = moveToRightmost(pCur);
5455 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005456 while( pCur->aiIdx[pCur->iPage]==0 ){
5457 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005458 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005459 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005460 return SQLITE_OK;
5461 }
danielk197730548662009-07-09 05:07:37 +00005462 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005463 }
drhee6438d2014-09-01 13:29:32 +00005464 assert( pCur->info.nSize==0 );
5465 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005466
5467 pCur->aiIdx[pCur->iPage]--;
5468 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005469 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005470 rc = sqlite3BtreePrevious(pCur, pRes);
5471 }else{
5472 rc = SQLITE_OK;
5473 }
drh2dcc9aa2002-12-04 13:40:25 +00005474 }
drh2dcc9aa2002-12-04 13:40:25 +00005475 return rc;
5476}
drhee6438d2014-09-01 13:29:32 +00005477int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5478 assert( cursorHoldsMutex(pCur) );
5479 assert( pRes!=0 );
5480 assert( *pRes==0 || *pRes==1 );
5481 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5482 *pRes = 0;
5483 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5484 pCur->info.nSize = 0;
5485 if( pCur->eState!=CURSOR_VALID
5486 || pCur->aiIdx[pCur->iPage]==0
5487 || pCur->apPage[pCur->iPage]->leaf==0
5488 ){
5489 return btreePrevious(pCur, pRes);
5490 }
5491 pCur->aiIdx[pCur->iPage]--;
5492 return SQLITE_OK;
5493}
drh2dcc9aa2002-12-04 13:40:25 +00005494
5495/*
drh3b7511c2001-05-26 13:15:44 +00005496** Allocate a new page from the database file.
5497**
danielk19773b8a05f2007-03-19 17:44:26 +00005498** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005499** has already been called on the new page.) The new page has also
5500** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005501** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005502**
5503** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005504** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005505**
drh82e647d2013-03-02 03:25:55 +00005506** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005507** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005508** attempt to keep related pages close to each other in the database file,
5509** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005510**
drh82e647d2013-03-02 03:25:55 +00005511** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5512** anywhere on the free-list, then it is guaranteed to be returned. If
5513** eMode is BTALLOC_LT then the page returned will be less than or equal
5514** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5515** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005516*/
drh4f0c5872007-03-26 22:05:01 +00005517static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005518 BtShared *pBt, /* The btree */
5519 MemPage **ppPage, /* Store pointer to the allocated page here */
5520 Pgno *pPgno, /* Store the page number here */
5521 Pgno nearby, /* Search for a page near this one */
5522 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005523){
drh3aac2dd2004-04-26 14:10:20 +00005524 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005525 int rc;
drh35cd6432009-06-05 14:17:21 +00005526 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005527 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005528 MemPage *pTrunk = 0;
5529 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005530 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005531
drh1fee73e2007-08-29 04:00:57 +00005532 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005533 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005534 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005535 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005536 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5537 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005538 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005539 testcase( n==mxPage-1 );
5540 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005541 return SQLITE_CORRUPT_BKPT;
5542 }
drh3aac2dd2004-04-26 14:10:20 +00005543 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005544 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005545 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005546 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005547 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005548
drh82e647d2013-03-02 03:25:55 +00005549 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005550 ** shows that the page 'nearby' is somewhere on the free-list, then
5551 ** the entire-list will be searched for that page.
5552 */
5553#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005554 if( eMode==BTALLOC_EXACT ){
5555 if( nearby<=mxPage ){
5556 u8 eType;
5557 assert( nearby>0 );
5558 assert( pBt->autoVacuum );
5559 rc = ptrmapGet(pBt, nearby, &eType, 0);
5560 if( rc ) return rc;
5561 if( eType==PTRMAP_FREEPAGE ){
5562 searchList = 1;
5563 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005564 }
dan51f0b6d2013-02-22 20:16:34 +00005565 }else if( eMode==BTALLOC_LE ){
5566 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005567 }
5568#endif
5569
5570 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5571 ** first free-list trunk page. iPrevTrunk is initially 1.
5572 */
danielk19773b8a05f2007-03-19 17:44:26 +00005573 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005574 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005575 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005576
5577 /* The code within this loop is run only once if the 'searchList' variable
5578 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005579 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5580 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005581 */
5582 do {
5583 pPrevTrunk = pTrunk;
5584 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005585 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5586 ** is the page number of the next freelist trunk page in the list or
5587 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005588 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005589 }else{
drh113762a2014-11-19 16:36:25 +00005590 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5591 ** stores the page number of the first page of the freelist, or zero if
5592 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005593 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005594 }
drhdf35a082009-07-09 02:24:35 +00005595 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005596 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005597 rc = SQLITE_CORRUPT_BKPT;
5598 }else{
drh7e8c6f12015-05-28 03:28:27 +00005599 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005600 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005601 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005602 pTrunk = 0;
5603 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005604 }
drhb07028f2011-10-14 21:49:18 +00005605 assert( pTrunk!=0 );
5606 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005607 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5608 ** is the number of leaf page pointers to follow. */
5609 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005610 if( k==0 && !searchList ){
5611 /* The trunk has no leaves and the list is not being searched.
5612 ** So extract the trunk page itself and use it as the newly
5613 ** allocated page */
5614 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005615 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005616 if( rc ){
5617 goto end_allocate_page;
5618 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005619 *pPgno = iTrunk;
5620 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5621 *ppPage = pTrunk;
5622 pTrunk = 0;
5623 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005624 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005625 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005626 rc = SQLITE_CORRUPT_BKPT;
5627 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005628#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005629 }else if( searchList
5630 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5631 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632 /* The list is being searched and this trunk page is the page
5633 ** to allocate, regardless of whether it has leaves.
5634 */
dan51f0b6d2013-02-22 20:16:34 +00005635 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636 *ppPage = pTrunk;
5637 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005638 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005639 if( rc ){
5640 goto end_allocate_page;
5641 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005642 if( k==0 ){
5643 if( !pPrevTrunk ){
5644 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5645 }else{
danf48c3552010-08-23 15:41:24 +00005646 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5647 if( rc!=SQLITE_OK ){
5648 goto end_allocate_page;
5649 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005650 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5651 }
5652 }else{
5653 /* The trunk page is required by the caller but it contains
5654 ** pointers to free-list leaves. The first leaf becomes a trunk
5655 ** page in this case.
5656 */
5657 MemPage *pNewTrunk;
5658 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005659 if( iNewTrunk>mxPage ){
5660 rc = SQLITE_CORRUPT_BKPT;
5661 goto end_allocate_page;
5662 }
drhdf35a082009-07-09 02:24:35 +00005663 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005664 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005665 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005666 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005667 }
danielk19773b8a05f2007-03-19 17:44:26 +00005668 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005669 if( rc!=SQLITE_OK ){
5670 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005671 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005672 }
5673 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5674 put4byte(&pNewTrunk->aData[4], k-1);
5675 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005676 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005677 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005678 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005679 put4byte(&pPage1->aData[32], iNewTrunk);
5680 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005681 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005682 if( rc ){
5683 goto end_allocate_page;
5684 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005685 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5686 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005687 }
5688 pTrunk = 0;
5689 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5690#endif
danielk1977e5765212009-06-17 11:13:28 +00005691 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005692 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005693 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005694 Pgno iPage;
5695 unsigned char *aData = pTrunk->aData;
5696 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005697 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005699 if( eMode==BTALLOC_LE ){
5700 for(i=0; i<k; i++){
5701 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005702 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005703 closest = i;
5704 break;
5705 }
5706 }
5707 }else{
5708 int dist;
5709 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5710 for(i=1; i<k; i++){
5711 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5712 if( d2<dist ){
5713 closest = i;
5714 dist = d2;
5715 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005716 }
5717 }
5718 }else{
5719 closest = 0;
5720 }
5721
5722 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005723 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005724 if( iPage>mxPage ){
5725 rc = SQLITE_CORRUPT_BKPT;
5726 goto end_allocate_page;
5727 }
drhdf35a082009-07-09 02:24:35 +00005728 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005729 if( !searchList
5730 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5731 ){
danielk1977bea2a942009-01-20 17:06:27 +00005732 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005733 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005734 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5735 ": %d more free pages\n",
5736 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005737 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5738 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005739 if( closest<k-1 ){
5740 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5741 }
5742 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005743 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005744 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005745 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005746 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005747 if( rc!=SQLITE_OK ){
5748 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005749 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005750 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005751 }
5752 searchList = 0;
5753 }
drhee696e22004-08-30 16:52:17 +00005754 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005755 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005756 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005757 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005758 }else{
danbc1a3c62013-02-23 16:40:46 +00005759 /* There are no pages on the freelist, so append a new page to the
5760 ** database image.
5761 **
5762 ** Normally, new pages allocated by this block can be requested from the
5763 ** pager layer with the 'no-content' flag set. This prevents the pager
5764 ** from trying to read the pages content from disk. However, if the
5765 ** current transaction has already run one or more incremental-vacuum
5766 ** steps, then the page we are about to allocate may contain content
5767 ** that is required in the event of a rollback. In this case, do
5768 ** not set the no-content flag. This causes the pager to load and journal
5769 ** the current page content before overwriting it.
5770 **
5771 ** Note that the pager will not actually attempt to load or journal
5772 ** content for any page that really does lie past the end of the database
5773 ** file on disk. So the effects of disabling the no-content optimization
5774 ** here are confined to those pages that lie between the end of the
5775 ** database image and the end of the database file.
5776 */
drh3f387402014-09-24 01:23:00 +00005777 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005778
drhdd3cd972010-03-27 17:12:36 +00005779 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5780 if( rc ) return rc;
5781 pBt->nPage++;
5782 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005783
danielk1977afcdd022004-10-31 16:25:42 +00005784#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005785 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005786 /* If *pPgno refers to a pointer-map page, allocate two new pages
5787 ** at the end of the file instead of one. The first allocated page
5788 ** becomes a new pointer-map page, the second is used by the caller.
5789 */
danielk1977ac861692009-03-28 10:54:22 +00005790 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005791 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5792 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005793 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005794 if( rc==SQLITE_OK ){
5795 rc = sqlite3PagerWrite(pPg->pDbPage);
5796 releasePage(pPg);
5797 }
5798 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005799 pBt->nPage++;
5800 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005801 }
5802#endif
drhdd3cd972010-03-27 17:12:36 +00005803 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5804 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005805
danielk1977599fcba2004-11-08 07:13:13 +00005806 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005807 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005808 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005809 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005810 if( rc!=SQLITE_OK ){
5811 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005812 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005813 }
drh3a4c1412004-05-09 20:40:11 +00005814 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005815 }
danielk1977599fcba2004-11-08 07:13:13 +00005816
5817 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005818
5819end_allocate_page:
5820 releasePage(pTrunk);
5821 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005822 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5823 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005824 return rc;
5825}
5826
5827/*
danielk1977bea2a942009-01-20 17:06:27 +00005828** This function is used to add page iPage to the database file free-list.
5829** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005830**
danielk1977bea2a942009-01-20 17:06:27 +00005831** The value passed as the second argument to this function is optional.
5832** If the caller happens to have a pointer to the MemPage object
5833** corresponding to page iPage handy, it may pass it as the second value.
5834** Otherwise, it may pass NULL.
5835**
5836** If a pointer to a MemPage object is passed as the second argument,
5837** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005838*/
danielk1977bea2a942009-01-20 17:06:27 +00005839static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5840 MemPage *pTrunk = 0; /* Free-list trunk page */
5841 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5842 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5843 MemPage *pPage; /* Page being freed. May be NULL. */
5844 int rc; /* Return Code */
5845 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005846
danielk1977bea2a942009-01-20 17:06:27 +00005847 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005848 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005849 assert( !pMemPage || pMemPage->pgno==iPage );
5850
danfb0246b2015-05-26 12:18:17 +00005851 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005852 if( pMemPage ){
5853 pPage = pMemPage;
5854 sqlite3PagerRef(pPage->pDbPage);
5855 }else{
5856 pPage = btreePageLookup(pBt, iPage);
5857 }
drh3aac2dd2004-04-26 14:10:20 +00005858
drha34b6762004-05-07 13:30:42 +00005859 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005860 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005861 if( rc ) goto freepage_out;
5862 nFree = get4byte(&pPage1->aData[36]);
5863 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005864
drhc9166342012-01-05 23:32:06 +00005865 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005866 /* If the secure_delete option is enabled, then
5867 ** always fully overwrite deleted information with zeros.
5868 */
drhb00fc3b2013-08-21 23:42:32 +00005869 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005870 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005871 ){
5872 goto freepage_out;
5873 }
5874 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005875 }
drhfcce93f2006-02-22 03:08:32 +00005876
danielk1977687566d2004-11-02 12:56:41 +00005877 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005878 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005879 */
danielk197785d90ca2008-07-19 14:25:15 +00005880 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005881 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005882 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005883 }
danielk1977687566d2004-11-02 12:56:41 +00005884
danielk1977bea2a942009-01-20 17:06:27 +00005885 /* Now manipulate the actual database free-list structure. There are two
5886 ** possibilities. If the free-list is currently empty, or if the first
5887 ** trunk page in the free-list is full, then this page will become a
5888 ** new free-list trunk page. Otherwise, it will become a leaf of the
5889 ** first trunk page in the current free-list. This block tests if it
5890 ** is possible to add the page as a new free-list leaf.
5891 */
5892 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005893 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005894
5895 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005896 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005897 if( rc!=SQLITE_OK ){
5898 goto freepage_out;
5899 }
5900
5901 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005902 assert( pBt->usableSize>32 );
5903 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005904 rc = SQLITE_CORRUPT_BKPT;
5905 goto freepage_out;
5906 }
drheeb844a2009-08-08 18:01:07 +00005907 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005908 /* In this case there is room on the trunk page to insert the page
5909 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005910 **
5911 ** Note that the trunk page is not really full until it contains
5912 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5913 ** coded. But due to a coding error in versions of SQLite prior to
5914 ** 3.6.0, databases with freelist trunk pages holding more than
5915 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5916 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005917 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005918 ** for now. At some point in the future (once everyone has upgraded
5919 ** to 3.6.0 or later) we should consider fixing the conditional above
5920 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005921 **
5922 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5923 ** avoid using the last six entries in the freelist trunk page array in
5924 ** order that database files created by newer versions of SQLite can be
5925 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005926 */
danielk19773b8a05f2007-03-19 17:44:26 +00005927 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005928 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005929 put4byte(&pTrunk->aData[4], nLeaf+1);
5930 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005931 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005932 sqlite3PagerDontWrite(pPage->pDbPage);
5933 }
danielk1977bea2a942009-01-20 17:06:27 +00005934 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005935 }
drh3a4c1412004-05-09 20:40:11 +00005936 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005937 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005938 }
drh3b7511c2001-05-26 13:15:44 +00005939 }
danielk1977bea2a942009-01-20 17:06:27 +00005940
5941 /* If control flows to this point, then it was not possible to add the
5942 ** the page being freed as a leaf page of the first trunk in the free-list.
5943 ** Possibly because the free-list is empty, or possibly because the
5944 ** first trunk in the free-list is full. Either way, the page being freed
5945 ** will become the new first trunk page in the free-list.
5946 */
drhb00fc3b2013-08-21 23:42:32 +00005947 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005948 goto freepage_out;
5949 }
5950 rc = sqlite3PagerWrite(pPage->pDbPage);
5951 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005952 goto freepage_out;
5953 }
5954 put4byte(pPage->aData, iTrunk);
5955 put4byte(&pPage->aData[4], 0);
5956 put4byte(&pPage1->aData[32], iPage);
5957 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5958
5959freepage_out:
5960 if( pPage ){
5961 pPage->isInit = 0;
5962 }
5963 releasePage(pPage);
5964 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005965 return rc;
5966}
drhc314dc72009-07-21 11:52:34 +00005967static void freePage(MemPage *pPage, int *pRC){
5968 if( (*pRC)==SQLITE_OK ){
5969 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5970 }
danielk1977bea2a942009-01-20 17:06:27 +00005971}
drh3b7511c2001-05-26 13:15:44 +00005972
5973/*
drh9bfdc252014-09-24 02:05:41 +00005974** Free any overflow pages associated with the given Cell. Write the
5975** local Cell size (the number of bytes on the original page, omitting
5976** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005977*/
drh9bfdc252014-09-24 02:05:41 +00005978static int clearCell(
5979 MemPage *pPage, /* The page that contains the Cell */
5980 unsigned char *pCell, /* First byte of the Cell */
5981 u16 *pnSize /* Write the size of the Cell here */
5982){
danielk1977aef0bf62005-12-30 16:28:01 +00005983 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005984 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005985 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005986 int rc;
drh94440812007-03-06 11:42:19 +00005987 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005988 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005989
drh1fee73e2007-08-29 04:00:57 +00005990 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005991 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005992 *pnSize = info.nSize;
drh45ac1c72015-12-18 03:59:16 +00005993 if( info.nLocal==info.nPayload ){
drha34b6762004-05-07 13:30:42 +00005994 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005995 }
drh45ac1c72015-12-18 03:59:16 +00005996 if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005997 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005998 }
drh45ac1c72015-12-18 03:59:16 +00005999 ovflPgno = get4byte(pCell + info.nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006000 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006001 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006002 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006003 assert( nOvfl>0 ||
6004 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6005 );
drh72365832007-03-06 15:53:44 +00006006 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006007 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006008 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006009 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006010 /* 0 is not a legal page number and page 1 cannot be an
6011 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6012 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006013 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006014 }
danielk1977bea2a942009-01-20 17:06:27 +00006015 if( nOvfl ){
6016 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6017 if( rc ) return rc;
6018 }
dan887d4b22010-02-25 12:09:16 +00006019
shaneh1da207e2010-03-09 14:41:12 +00006020 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006021 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6022 ){
6023 /* There is no reason any cursor should have an outstanding reference
6024 ** to an overflow page belonging to a cell that is being deleted/updated.
6025 ** So if there exists more than one reference to this page, then it
6026 ** must not really be an overflow page and the database must be corrupt.
6027 ** It is helpful to detect this before calling freePage2(), as
6028 ** freePage2() may zero the page contents if secure-delete mode is
6029 ** enabled. If this 'overflow' page happens to be a page that the
6030 ** caller is iterating through or using in some other way, this
6031 ** can be problematic.
6032 */
6033 rc = SQLITE_CORRUPT_BKPT;
6034 }else{
6035 rc = freePage2(pBt, pOvfl, ovflPgno);
6036 }
6037
danielk1977bea2a942009-01-20 17:06:27 +00006038 if( pOvfl ){
6039 sqlite3PagerUnref(pOvfl->pDbPage);
6040 }
drh3b7511c2001-05-26 13:15:44 +00006041 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006042 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006043 }
drh5e2f8b92001-05-28 00:41:15 +00006044 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006045}
6046
6047/*
drh91025292004-05-03 19:49:32 +00006048** Create the byte sequence used to represent a cell on page pPage
6049** and write that byte sequence into pCell[]. Overflow pages are
6050** allocated and filled in as necessary. The calling procedure
6051** is responsible for making sure sufficient space has been allocated
6052** for pCell[].
6053**
6054** Note that pCell does not necessary need to point to the pPage->aData
6055** area. pCell might point to some temporary storage. The cell will
6056** be constructed in this temporary area then copied into pPage->aData
6057** later.
drh3b7511c2001-05-26 13:15:44 +00006058*/
6059static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006060 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006061 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006062 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006063 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006064 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006065 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006066){
drh3b7511c2001-05-26 13:15:44 +00006067 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006068 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006069 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006070 int spaceLeft;
6071 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006072 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006073 unsigned char *pPrior;
6074 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006075 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006076 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006077 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006078
drh1fee73e2007-08-29 04:00:57 +00006079 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006080
drhc5053fb2008-11-27 02:22:10 +00006081 /* pPage is not necessarily writeable since pCell might be auxiliary
6082 ** buffer space that is separate from the pPage buffer area */
6083 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6084 || sqlite3PagerIswriteable(pPage->pDbPage) );
6085
drh91025292004-05-03 19:49:32 +00006086 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006087 nHeader = pPage->childPtrSize;
6088 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006089 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006090 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006091 }else{
drh6200c882014-09-23 22:36:25 +00006092 assert( nData==0 );
6093 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006094 }
drh6f11bef2004-05-13 01:12:56 +00006095 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006096
drh6200c882014-09-23 22:36:25 +00006097 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006098 if( pPage->intKey ){
6099 pSrc = pData;
6100 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006101 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006102 }else{
drh98ef0f62015-06-30 01:25:52 +00006103 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006104 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006105 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006106 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006107 }
drh6200c882014-09-23 22:36:25 +00006108 if( nPayload<=pPage->maxLocal ){
6109 n = nHeader + nPayload;
6110 testcase( n==3 );
6111 testcase( n==4 );
6112 if( n<4 ) n = 4;
6113 *pnSize = n;
6114 spaceLeft = nPayload;
6115 pPrior = pCell;
6116 }else{
6117 int mn = pPage->minLocal;
6118 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6119 testcase( n==pPage->maxLocal );
6120 testcase( n==pPage->maxLocal+1 );
6121 if( n > pPage->maxLocal ) n = mn;
6122 spaceLeft = n;
6123 *pnSize = n + nHeader + 4;
6124 pPrior = &pCell[nHeader+n];
6125 }
drh3aac2dd2004-04-26 14:10:20 +00006126 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006127
drh6200c882014-09-23 22:36:25 +00006128 /* At this point variables should be set as follows:
6129 **
6130 ** nPayload Total payload size in bytes
6131 ** pPayload Begin writing payload here
6132 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6133 ** that means content must spill into overflow pages.
6134 ** *pnSize Size of the local cell (not counting overflow pages)
6135 ** pPrior Where to write the pgno of the first overflow page
6136 **
6137 ** Use a call to btreeParseCellPtr() to verify that the values above
6138 ** were computed correctly.
6139 */
6140#if SQLITE_DEBUG
6141 {
6142 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006143 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006144 assert( nHeader=(int)(info.pPayload - pCell) );
6145 assert( info.nKey==nKey );
6146 assert( *pnSize == info.nSize );
6147 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006148 }
6149#endif
6150
6151 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006152 while( nPayload>0 ){
6153 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006154#ifndef SQLITE_OMIT_AUTOVACUUM
6155 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006156 if( pBt->autoVacuum ){
6157 do{
6158 pgnoOvfl++;
6159 } while(
6160 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6161 );
danielk1977b39f70b2007-05-17 18:28:11 +00006162 }
danielk1977afcdd022004-10-31 16:25:42 +00006163#endif
drhf49661a2008-12-10 16:45:50 +00006164 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006165#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006166 /* If the database supports auto-vacuum, and the second or subsequent
6167 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006168 ** for that page now.
6169 **
6170 ** If this is the first overflow page, then write a partial entry
6171 ** to the pointer-map. If we write nothing to this pointer-map slot,
6172 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006173 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006174 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006175 */
danielk19774ef24492007-05-23 09:52:41 +00006176 if( pBt->autoVacuum && rc==SQLITE_OK ){
6177 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006178 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006179 if( rc ){
6180 releasePage(pOvfl);
6181 }
danielk1977afcdd022004-10-31 16:25:42 +00006182 }
6183#endif
drh3b7511c2001-05-26 13:15:44 +00006184 if( rc ){
drh9b171272004-05-08 02:03:22 +00006185 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006186 return rc;
6187 }
drhc5053fb2008-11-27 02:22:10 +00006188
6189 /* If pToRelease is not zero than pPrior points into the data area
6190 ** of pToRelease. Make sure pToRelease is still writeable. */
6191 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6192
6193 /* If pPrior is part of the data area of pPage, then make sure pPage
6194 ** is still writeable */
6195 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6196 || sqlite3PagerIswriteable(pPage->pDbPage) );
6197
drh3aac2dd2004-04-26 14:10:20 +00006198 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006199 releasePage(pToRelease);
6200 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006201 pPrior = pOvfl->aData;
6202 put4byte(pPrior, 0);
6203 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006204 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006205 }
6206 n = nPayload;
6207 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006208
6209 /* If pToRelease is not zero than pPayload points into the data area
6210 ** of pToRelease. Make sure pToRelease is still writeable. */
6211 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6212
6213 /* If pPayload is part of the data area of pPage, then make sure pPage
6214 ** is still writeable */
6215 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6216 || sqlite3PagerIswriteable(pPage->pDbPage) );
6217
drhb026e052007-05-02 01:34:31 +00006218 if( nSrc>0 ){
6219 if( n>nSrc ) n = nSrc;
6220 assert( pSrc );
6221 memcpy(pPayload, pSrc, n);
6222 }else{
6223 memset(pPayload, 0, n);
6224 }
drh3b7511c2001-05-26 13:15:44 +00006225 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006226 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006227 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006228 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006229 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006230 if( nSrc==0 ){
6231 nSrc = nData;
6232 pSrc = pData;
6233 }
drhdd793422001-06-28 01:54:48 +00006234 }
drh9b171272004-05-08 02:03:22 +00006235 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006236 return SQLITE_OK;
6237}
6238
drh14acc042001-06-10 19:56:58 +00006239/*
6240** Remove the i-th cell from pPage. This routine effects pPage only.
6241** The cell content is not freed or deallocated. It is assumed that
6242** the cell content has been copied someplace else. This routine just
6243** removes the reference to the cell from pPage.
6244**
6245** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006246*/
drh98add2e2009-07-20 17:11:49 +00006247static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006248 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006249 u8 *data; /* pPage->aData */
6250 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006251 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006252 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006253
drh98add2e2009-07-20 17:11:49 +00006254 if( *pRC ) return;
6255
drh8c42ca92001-06-22 19:15:00 +00006256 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006257 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006258 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006259 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006260 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006261 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006262 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006263 hdr = pPage->hdrOffset;
6264 testcase( pc==get2byte(&data[hdr+5]) );
6265 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006266 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006267 *pRC = SQLITE_CORRUPT_BKPT;
6268 return;
shane0af3f892008-11-12 04:55:34 +00006269 }
shanedcc50b72008-11-13 18:29:50 +00006270 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006271 if( rc ){
6272 *pRC = rc;
6273 return;
shanedcc50b72008-11-13 18:29:50 +00006274 }
drh14acc042001-06-10 19:56:58 +00006275 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006276 if( pPage->nCell==0 ){
6277 memset(&data[hdr+1], 0, 4);
6278 data[hdr+7] = 0;
6279 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6280 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6281 - pPage->childPtrSize - 8;
6282 }else{
6283 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6284 put2byte(&data[hdr+3], pPage->nCell);
6285 pPage->nFree += 2;
6286 }
drh14acc042001-06-10 19:56:58 +00006287}
6288
6289/*
6290** Insert a new cell on pPage at cell index "i". pCell points to the
6291** content of the cell.
6292**
6293** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006294** will not fit, then make a copy of the cell content into pTemp if
6295** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006296** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006297** in pTemp or the original pCell) and also record its index.
6298** Allocating a new entry in pPage->aCell[] implies that
6299** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006300*/
drh98add2e2009-07-20 17:11:49 +00006301static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006302 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006303 int i, /* New cell becomes the i-th cell of the page */
6304 u8 *pCell, /* Content of the new cell */
6305 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006306 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006307 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6308 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006309){
drh383d30f2010-02-26 13:07:37 +00006310 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006311 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006312 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006313 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006314
drh98add2e2009-07-20 17:11:49 +00006315 if( *pRC ) return;
6316
drh43605152004-05-29 21:46:49 +00006317 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006318 assert( MX_CELL(pPage->pBt)<=10921 );
6319 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006320 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6321 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006322 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006323 /* The cell should normally be sized correctly. However, when moving a
6324 ** malformed cell from a leaf page to an interior page, if the cell size
6325 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6326 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6327 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006328 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006329 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006330 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006331 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006332 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006333 }
danielk19774dbaa892009-06-16 16:50:22 +00006334 if( iChild ){
6335 put4byte(pCell, iChild);
6336 }
drh43605152004-05-29 21:46:49 +00006337 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006338 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6339 pPage->apOvfl[j] = pCell;
6340 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006341
6342 /* When multiple overflows occur, they are always sequential and in
6343 ** sorted order. This invariants arise because multiple overflows can
6344 ** only occur when inserting divider cells into the parent page during
6345 ** balancing, and the dividers are adjacent and sorted.
6346 */
6347 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6348 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006349 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006350 int rc = sqlite3PagerWrite(pPage->pDbPage);
6351 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006352 *pRC = rc;
6353 return;
danielk19776e465eb2007-08-21 13:11:00 +00006354 }
6355 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006356 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006357 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006358 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006359 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006360 /* The allocateSpace() routine guarantees the following properties
6361 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006362 assert( idx >= 0 );
6363 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006364 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006365 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006366 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006367 if( iChild ){
6368 put4byte(&data[idx], iChild);
6369 }
drh2c8fb922015-06-25 19:53:48 +00006370 pIns = pPage->aCellIdx + i*2;
6371 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6372 put2byte(pIns, idx);
6373 pPage->nCell++;
6374 /* increment the cell count */
6375 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6376 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006377#ifndef SQLITE_OMIT_AUTOVACUUM
6378 if( pPage->pBt->autoVacuum ){
6379 /* The cell may contain a pointer to an overflow page. If so, write
6380 ** the entry for the overflow page into the pointer map.
6381 */
drh98add2e2009-07-20 17:11:49 +00006382 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006383 }
6384#endif
drh14acc042001-06-10 19:56:58 +00006385 }
6386}
6387
6388/*
drh1ffd2472015-06-23 02:37:30 +00006389** A CellArray object contains a cache of pointers and sizes for a
6390** consecutive sequence of cells that might be held multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006391*/
drh1ffd2472015-06-23 02:37:30 +00006392typedef struct CellArray CellArray;
6393struct CellArray {
6394 int nCell; /* Number of cells in apCell[] */
6395 MemPage *pRef; /* Reference page */
6396 u8 **apCell; /* All cells begin balanced */
6397 u16 *szCell; /* Local size of all cells in apCell[] */
6398};
drhfa1a98a2004-05-14 19:08:17 +00006399
drh1ffd2472015-06-23 02:37:30 +00006400/*
6401** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6402** computed.
6403*/
6404static void populateCellCache(CellArray *p, int idx, int N){
6405 assert( idx>=0 && idx+N<=p->nCell );
6406 while( N>0 ){
6407 assert( p->apCell[idx]!=0 );
6408 if( p->szCell[idx]==0 ){
6409 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6410 }else{
6411 assert( CORRUPT_DB ||
6412 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6413 }
6414 idx++;
6415 N--;
drhfa1a98a2004-05-14 19:08:17 +00006416 }
drh1ffd2472015-06-23 02:37:30 +00006417}
6418
6419/*
6420** Return the size of the Nth element of the cell array
6421*/
6422static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6423 assert( N>=0 && N<p->nCell );
6424 assert( p->szCell[N]==0 );
6425 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6426 return p->szCell[N];
6427}
6428static u16 cachedCellSize(CellArray *p, int N){
6429 assert( N>=0 && N<p->nCell );
6430 if( p->szCell[N] ) return p->szCell[N];
6431 return computeCellSize(p, N);
6432}
6433
6434/*
dan8e9ba0c2014-10-14 17:27:04 +00006435** Array apCell[] contains pointers to nCell b-tree page cells. The
6436** szCell[] array contains the size in bytes of each cell. This function
6437** replaces the current contents of page pPg with the contents of the cell
6438** array.
6439**
6440** Some of the cells in apCell[] may currently be stored in pPg. This
6441** function works around problems caused by this by making a copy of any
6442** such cells before overwriting the page data.
6443**
6444** The MemPage.nFree field is invalidated by this function. It is the
6445** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006446*/
drh658873b2015-06-22 20:02:04 +00006447static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006448 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006449 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006450 u8 **apCell, /* Array of cells */
6451 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006452){
6453 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6454 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6455 const int usableSize = pPg->pBt->usableSize;
6456 u8 * const pEnd = &aData[usableSize];
6457 int i;
6458 u8 *pCellptr = pPg->aCellIdx;
6459 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6460 u8 *pData;
6461
6462 i = get2byte(&aData[hdr+5]);
6463 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006464
dan8e9ba0c2014-10-14 17:27:04 +00006465 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006466 for(i=0; i<nCell; i++){
6467 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006468 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006469 pCell = &pTmp[pCell - aData];
6470 }
6471 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006472 put2byte(pCellptr, (pData - aData));
6473 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006474 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6475 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006476 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006477 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006478 }
6479
dand7b545b2014-10-13 18:03:27 +00006480 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006481 pPg->nCell = nCell;
6482 pPg->nOverflow = 0;
6483
6484 put2byte(&aData[hdr+1], 0);
6485 put2byte(&aData[hdr+3], pPg->nCell);
6486 put2byte(&aData[hdr+5], pData - aData);
6487 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006488 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006489}
6490
dan8e9ba0c2014-10-14 17:27:04 +00006491/*
6492** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6493** contains the size in bytes of each such cell. This function attempts to
6494** add the cells stored in the array to page pPg. If it cannot (because
6495** the page needs to be defragmented before the cells will fit), non-zero
6496** is returned. Otherwise, if the cells are added successfully, zero is
6497** returned.
6498**
6499** Argument pCellptr points to the first entry in the cell-pointer array
6500** (part of page pPg) to populate. After cell apCell[0] is written to the
6501** page body, a 16-bit offset is written to pCellptr. And so on, for each
6502** cell in the array. It is the responsibility of the caller to ensure
6503** that it is safe to overwrite this part of the cell-pointer array.
6504**
6505** When this function is called, *ppData points to the start of the
6506** content area on page pPg. If the size of the content area is extended,
6507** *ppData is updated to point to the new start of the content area
6508** before returning.
6509**
6510** Finally, argument pBegin points to the byte immediately following the
6511** end of the space required by this page for the cell-pointer area (for
6512** all cells - not just those inserted by the current call). If the content
6513** area must be extended to before this point in order to accomodate all
6514** cells in apCell[], then the cells do not fit and non-zero is returned.
6515*/
dand7b545b2014-10-13 18:03:27 +00006516static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006517 MemPage *pPg, /* Page to add cells to */
6518 u8 *pBegin, /* End of cell-pointer array */
6519 u8 **ppData, /* IN/OUT: Page content -area pointer */
6520 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006521 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006522 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006523 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006524){
6525 int i;
6526 u8 *aData = pPg->aData;
6527 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006528 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006529 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006530 for(i=iFirst; i<iEnd; i++){
6531 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006532 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006533 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006534 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006535 pData -= sz;
6536 if( pData<pBegin ) return 1;
6537 pSlot = pData;
6538 }
drh48310f82015-10-10 16:41:28 +00006539 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6540 ** database. But they might for a corrupt database. Hence use memmove()
6541 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6542 assert( (pSlot+sz)<=pCArray->apCell[i]
6543 || pSlot>=(pCArray->apCell[i]+sz)
6544 || CORRUPT_DB );
6545 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006546 put2byte(pCellptr, (pSlot - aData));
6547 pCellptr += 2;
6548 }
6549 *ppData = pData;
6550 return 0;
6551}
6552
dan8e9ba0c2014-10-14 17:27:04 +00006553/*
6554** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6555** contains the size in bytes of each such cell. This function adds the
6556** space associated with each cell in the array that is currently stored
6557** within the body of pPg to the pPg free-list. The cell-pointers and other
6558** fields of the page are not updated.
6559**
6560** This function returns the total number of cells added to the free-list.
6561*/
dand7b545b2014-10-13 18:03:27 +00006562static int pageFreeArray(
6563 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006564 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006565 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006566 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006567){
6568 u8 * const aData = pPg->aData;
6569 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006570 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006571 int nRet = 0;
6572 int i;
drhf7838932015-06-23 15:36:34 +00006573 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006574 u8 *pFree = 0;
6575 int szFree = 0;
6576
drhf7838932015-06-23 15:36:34 +00006577 for(i=iFirst; i<iEnd; i++){
6578 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006579 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006580 int sz;
6581 /* No need to use cachedCellSize() here. The sizes of all cells that
6582 ** are to be freed have already been computing while deciding which
6583 ** cells need freeing */
6584 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006585 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006586 if( pFree ){
6587 assert( pFree>aData && (pFree - aData)<65536 );
6588 freeSpace(pPg, (u16)(pFree - aData), szFree);
6589 }
dand7b545b2014-10-13 18:03:27 +00006590 pFree = pCell;
6591 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006592 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006593 }else{
6594 pFree = pCell;
6595 szFree += sz;
6596 }
6597 nRet++;
6598 }
6599 }
drhfefa0942014-11-05 21:21:08 +00006600 if( pFree ){
6601 assert( pFree>aData && (pFree - aData)<65536 );
6602 freeSpace(pPg, (u16)(pFree - aData), szFree);
6603 }
dand7b545b2014-10-13 18:03:27 +00006604 return nRet;
6605}
6606
dand7b545b2014-10-13 18:03:27 +00006607/*
drh5ab63772014-11-27 03:46:04 +00006608** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6609** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6610** with apCell[iOld]. After balancing, this page should hold nNew cells
6611** starting at apCell[iNew].
6612**
6613** This routine makes the necessary adjustments to pPg so that it contains
6614** the correct cells after being balanced.
6615**
dand7b545b2014-10-13 18:03:27 +00006616** The pPg->nFree field is invalid when this function returns. It is the
6617** responsibility of the caller to set it correctly.
6618*/
drh658873b2015-06-22 20:02:04 +00006619static int editPage(
dan09c68402014-10-11 20:00:24 +00006620 MemPage *pPg, /* Edit this page */
6621 int iOld, /* Index of first cell currently on page */
6622 int iNew, /* Index of new first cell on page */
6623 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006624 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006625){
dand7b545b2014-10-13 18:03:27 +00006626 u8 * const aData = pPg->aData;
6627 const int hdr = pPg->hdrOffset;
6628 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6629 int nCell = pPg->nCell; /* Cells stored on pPg */
6630 u8 *pData;
6631 u8 *pCellptr;
6632 int i;
6633 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6634 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006635
6636#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006637 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6638 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006639#endif
6640
dand7b545b2014-10-13 18:03:27 +00006641 /* Remove cells from the start and end of the page */
6642 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006643 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006644 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6645 nCell -= nShift;
6646 }
6647 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006648 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006649 }
dan09c68402014-10-11 20:00:24 +00006650
drh5ab63772014-11-27 03:46:04 +00006651 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006652 if( pData<pBegin ) goto editpage_fail;
6653
6654 /* Add cells to the start of the page */
6655 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006656 int nAdd = MIN(nNew,iOld-iNew);
6657 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006658 pCellptr = pPg->aCellIdx;
6659 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6660 if( pageInsertArray(
6661 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006662 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006663 ) ) goto editpage_fail;
6664 nCell += nAdd;
6665 }
6666
6667 /* Add any overflow cells */
6668 for(i=0; i<pPg->nOverflow; i++){
6669 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6670 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006671 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006672 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6673 nCell++;
6674 if( pageInsertArray(
6675 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006676 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006677 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006678 }
dand7b545b2014-10-13 18:03:27 +00006679 }
dan09c68402014-10-11 20:00:24 +00006680
dand7b545b2014-10-13 18:03:27 +00006681 /* Append cells to the end of the page */
6682 pCellptr = &pPg->aCellIdx[nCell*2];
6683 if( pageInsertArray(
6684 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006685 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006686 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006687
dand7b545b2014-10-13 18:03:27 +00006688 pPg->nCell = nNew;
6689 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006690
dand7b545b2014-10-13 18:03:27 +00006691 put2byte(&aData[hdr+3], pPg->nCell);
6692 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006693
6694#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006695 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006696 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006697 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006698 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6699 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006700 }
drh1ffd2472015-06-23 02:37:30 +00006701 assert( 0==memcmp(pCell, &aData[iOff],
6702 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006703 }
dan09c68402014-10-11 20:00:24 +00006704#endif
6705
drh658873b2015-06-22 20:02:04 +00006706 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006707 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006708 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006709 populateCellCache(pCArray, iNew, nNew);
6710 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006711}
6712
drh14acc042001-06-10 19:56:58 +00006713/*
drhc3b70572003-01-04 19:44:07 +00006714** The following parameters determine how many adjacent pages get involved
6715** in a balancing operation. NN is the number of neighbors on either side
6716** of the page that participate in the balancing operation. NB is the
6717** total number of pages that participate, including the target page and
6718** NN neighbors on either side.
6719**
6720** The minimum value of NN is 1 (of course). Increasing NN above 1
6721** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6722** in exchange for a larger degradation in INSERT and UPDATE performance.
6723** The value of NN appears to give the best results overall.
6724*/
6725#define NN 1 /* Number of neighbors on either side of pPage */
6726#define NB (NN*2+1) /* Total pages involved in the balance */
6727
danielk1977ac245ec2005-01-14 13:50:11 +00006728
drh615ae552005-01-16 23:21:00 +00006729#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006730/*
6731** This version of balance() handles the common special case where
6732** a new entry is being inserted on the extreme right-end of the
6733** tree, in other words, when the new entry will become the largest
6734** entry in the tree.
6735**
drhc314dc72009-07-21 11:52:34 +00006736** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006737** a new page to the right-hand side and put the one new entry in
6738** that page. This leaves the right side of the tree somewhat
6739** unbalanced. But odds are that we will be inserting new entries
6740** at the end soon afterwards so the nearly empty page will quickly
6741** fill up. On average.
6742**
6743** pPage is the leaf page which is the right-most page in the tree.
6744** pParent is its parent. pPage must have a single overflow entry
6745** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006746**
6747** The pSpace buffer is used to store a temporary copy of the divider
6748** cell that will be inserted into pParent. Such a cell consists of a 4
6749** byte page number followed by a variable length integer. In other
6750** words, at most 13 bytes. Hence the pSpace buffer must be at
6751** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006752*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006753static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6754 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006755 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006756 int rc; /* Return Code */
6757 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006758
drh1fee73e2007-08-29 04:00:57 +00006759 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006760 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006761 assert( pPage->nOverflow==1 );
6762
drh5d433ce2010-08-14 16:02:52 +00006763 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006764 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006765
danielk1977a50d9aa2009-06-08 14:49:45 +00006766 /* Allocate a new page. This page will become the right-sibling of
6767 ** pPage. Make the parent page writable, so that the new divider cell
6768 ** may be inserted. If both these operations are successful, proceed.
6769 */
drh4f0c5872007-03-26 22:05:01 +00006770 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006771
danielk1977eaa06f62008-09-18 17:34:44 +00006772 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006773
6774 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006775 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006776 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006777 u8 *pStop;
6778
drhc5053fb2008-11-27 02:22:10 +00006779 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006780 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6781 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006782 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006783 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006784 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006785
6786 /* If this is an auto-vacuum database, update the pointer map
6787 ** with entries for the new page, and any pointer from the
6788 ** cell on the page to an overflow page. If either of these
6789 ** operations fails, the return code is set, but the contents
6790 ** of the parent page are still manipulated by thh code below.
6791 ** That is Ok, at this point the parent page is guaranteed to
6792 ** be marked as dirty. Returning an error code will cause a
6793 ** rollback, undoing any changes made to the parent page.
6794 */
6795 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006796 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6797 if( szCell>pNew->minLocal ){
6798 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006799 }
6800 }
danielk1977eaa06f62008-09-18 17:34:44 +00006801
danielk19776f235cc2009-06-04 14:46:08 +00006802 /* Create a divider cell to insert into pParent. The divider cell
6803 ** consists of a 4-byte page number (the page number of pPage) and
6804 ** a variable length key value (which must be the same value as the
6805 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006806 **
danielk19776f235cc2009-06-04 14:46:08 +00006807 ** To find the largest key value on pPage, first find the right-most
6808 ** cell on pPage. The first two fields of this cell are the
6809 ** record-length (a variable length integer at most 32-bits in size)
6810 ** and the key value (a variable length integer, may have any value).
6811 ** The first of the while(...) loops below skips over the record-length
6812 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006813 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006814 */
danielk1977eaa06f62008-09-18 17:34:44 +00006815 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006816 pStop = &pCell[9];
6817 while( (*(pCell++)&0x80) && pCell<pStop );
6818 pStop = &pCell[9];
6819 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6820
danielk19774dbaa892009-06-16 16:50:22 +00006821 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006822 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6823 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006824
6825 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006826 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6827
danielk1977e08a3c42008-09-18 18:17:03 +00006828 /* Release the reference to the new page. */
6829 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006830 }
6831
danielk1977eaa06f62008-09-18 17:34:44 +00006832 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006833}
drh615ae552005-01-16 23:21:00 +00006834#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006835
danielk19774dbaa892009-06-16 16:50:22 +00006836#if 0
drhc3b70572003-01-04 19:44:07 +00006837/*
danielk19774dbaa892009-06-16 16:50:22 +00006838** This function does not contribute anything to the operation of SQLite.
6839** it is sometimes activated temporarily while debugging code responsible
6840** for setting pointer-map entries.
6841*/
6842static int ptrmapCheckPages(MemPage **apPage, int nPage){
6843 int i, j;
6844 for(i=0; i<nPage; i++){
6845 Pgno n;
6846 u8 e;
6847 MemPage *pPage = apPage[i];
6848 BtShared *pBt = pPage->pBt;
6849 assert( pPage->isInit );
6850
6851 for(j=0; j<pPage->nCell; j++){
6852 CellInfo info;
6853 u8 *z;
6854
6855 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006856 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006857 if( info.nLocal<info.nPayload ){
6858 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006859 ptrmapGet(pBt, ovfl, &e, &n);
6860 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6861 }
6862 if( !pPage->leaf ){
6863 Pgno child = get4byte(z);
6864 ptrmapGet(pBt, child, &e, &n);
6865 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6866 }
6867 }
6868 if( !pPage->leaf ){
6869 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6870 ptrmapGet(pBt, child, &e, &n);
6871 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6872 }
6873 }
6874 return 1;
6875}
6876#endif
6877
danielk1977cd581a72009-06-23 15:43:39 +00006878/*
6879** This function is used to copy the contents of the b-tree node stored
6880** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6881** the pointer-map entries for each child page are updated so that the
6882** parent page stored in the pointer map is page pTo. If pFrom contained
6883** any cells with overflow page pointers, then the corresponding pointer
6884** map entries are also updated so that the parent page is page pTo.
6885**
6886** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006887** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006888**
danielk197730548662009-07-09 05:07:37 +00006889** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006890**
6891** The performance of this function is not critical. It is only used by
6892** the balance_shallower() and balance_deeper() procedures, neither of
6893** which are called often under normal circumstances.
6894*/
drhc314dc72009-07-21 11:52:34 +00006895static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6896 if( (*pRC)==SQLITE_OK ){
6897 BtShared * const pBt = pFrom->pBt;
6898 u8 * const aFrom = pFrom->aData;
6899 u8 * const aTo = pTo->aData;
6900 int const iFromHdr = pFrom->hdrOffset;
6901 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006902 int rc;
drhc314dc72009-07-21 11:52:34 +00006903 int iData;
6904
6905
6906 assert( pFrom->isInit );
6907 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006908 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006909
6910 /* Copy the b-tree node content from page pFrom to page pTo. */
6911 iData = get2byte(&aFrom[iFromHdr+5]);
6912 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6913 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6914
6915 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006916 ** match the new data. The initialization of pTo can actually fail under
6917 ** fairly obscure circumstances, even though it is a copy of initialized
6918 ** page pFrom.
6919 */
drhc314dc72009-07-21 11:52:34 +00006920 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006921 rc = btreeInitPage(pTo);
6922 if( rc!=SQLITE_OK ){
6923 *pRC = rc;
6924 return;
6925 }
drhc314dc72009-07-21 11:52:34 +00006926
6927 /* If this is an auto-vacuum database, update the pointer-map entries
6928 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6929 */
6930 if( ISAUTOVACUUM ){
6931 *pRC = setChildPtrmaps(pTo);
6932 }
danielk1977cd581a72009-06-23 15:43:39 +00006933 }
danielk1977cd581a72009-06-23 15:43:39 +00006934}
6935
6936/*
danielk19774dbaa892009-06-16 16:50:22 +00006937** This routine redistributes cells on the iParentIdx'th child of pParent
6938** (hereafter "the page") and up to 2 siblings so that all pages have about the
6939** same amount of free space. Usually a single sibling on either side of the
6940** page are used in the balancing, though both siblings might come from one
6941** side if the page is the first or last child of its parent. If the page
6942** has fewer than 2 siblings (something which can only happen if the page
6943** is a root page or a child of a root page) then all available siblings
6944** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006945**
danielk19774dbaa892009-06-16 16:50:22 +00006946** The number of siblings of the page might be increased or decreased by
6947** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006948**
danielk19774dbaa892009-06-16 16:50:22 +00006949** Note that when this routine is called, some of the cells on the page
6950** might not actually be stored in MemPage.aData[]. This can happen
6951** if the page is overfull. This routine ensures that all cells allocated
6952** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006953**
danielk19774dbaa892009-06-16 16:50:22 +00006954** In the course of balancing the page and its siblings, cells may be
6955** inserted into or removed from the parent page (pParent). Doing so
6956** may cause the parent page to become overfull or underfull. If this
6957** happens, it is the responsibility of the caller to invoke the correct
6958** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006959**
drh5e00f6c2001-09-13 13:46:56 +00006960** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006961** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006962** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006963**
6964** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006965** buffer big enough to hold one page. If while inserting cells into the parent
6966** page (pParent) the parent page becomes overfull, this buffer is
6967** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006968** a maximum of four divider cells into the parent page, and the maximum
6969** size of a cell stored within an internal node is always less than 1/4
6970** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6971** enough for all overflow cells.
6972**
6973** If aOvflSpace is set to a null pointer, this function returns
6974** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006975*/
danielk19774dbaa892009-06-16 16:50:22 +00006976static int balance_nonroot(
6977 MemPage *pParent, /* Parent page of siblings being balanced */
6978 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006979 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006980 int isRoot, /* True if pParent is a root-page */
6981 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006982){
drh16a9b832007-05-05 18:39:25 +00006983 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006984 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006985 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006986 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006987 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006988 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006989 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006990 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006991 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006992 int usableSpace; /* Bytes in pPage beyond the header */
6993 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006994 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006995 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006996 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006997 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006998 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006999 u8 *pRight; /* Location in parent of right-sibling pointer */
7000 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007001 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7002 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007003 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007004 u8 *aSpace1; /* Space for copies of dividers cells */
7005 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007006 u8 abDone[NB+2]; /* True after i'th new page is populated */
7007 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007008 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007009 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007010 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007011
dan33ea4862014-10-09 19:35:37 +00007012 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007013 b.nCell = 0;
7014 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007015 pBt = pParent->pBt;
7016 assert( sqlite3_mutex_held(pBt->mutex) );
7017 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007018
danielk1977e5765212009-06-17 11:13:28 +00007019#if 0
drh43605152004-05-29 21:46:49 +00007020 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007021#endif
drh2e38c322004-09-03 18:38:44 +00007022
danielk19774dbaa892009-06-16 16:50:22 +00007023 /* At this point pParent may have at most one overflow cell. And if
7024 ** this overflow cell is present, it must be the cell with
7025 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007026 ** is called (indirectly) from sqlite3BtreeDelete().
7027 */
danielk19774dbaa892009-06-16 16:50:22 +00007028 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007029 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007030
danielk197711a8a862009-06-17 11:49:52 +00007031 if( !aOvflSpace ){
7032 return SQLITE_NOMEM;
7033 }
7034
danielk1977a50d9aa2009-06-08 14:49:45 +00007035 /* Find the sibling pages to balance. Also locate the cells in pParent
7036 ** that divide the siblings. An attempt is made to find NN siblings on
7037 ** either side of pPage. More siblings are taken from one side, however,
7038 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007039 ** has NB or fewer children then all children of pParent are taken.
7040 **
7041 ** This loop also drops the divider cells from the parent page. This
7042 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007043 ** overflow cells in the parent page, since if any existed they will
7044 ** have already been removed.
7045 */
danielk19774dbaa892009-06-16 16:50:22 +00007046 i = pParent->nOverflow + pParent->nCell;
7047 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007048 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007049 }else{
dan7d6885a2012-08-08 14:04:56 +00007050 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007051 if( iParentIdx==0 ){
7052 nxDiv = 0;
7053 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007054 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007055 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007056 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007057 }
dan7d6885a2012-08-08 14:04:56 +00007058 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007059 }
dan7d6885a2012-08-08 14:04:56 +00007060 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007061 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7062 pRight = &pParent->aData[pParent->hdrOffset+8];
7063 }else{
7064 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7065 }
7066 pgno = get4byte(pRight);
7067 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007068 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007069 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007070 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007071 goto balance_cleanup;
7072 }
danielk1977634f2982005-03-28 08:44:07 +00007073 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007074 if( (i--)==0 ) break;
7075
drh2cbd78b2012-02-02 19:37:18 +00007076 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7077 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007078 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007079 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007080 pParent->nOverflow = 0;
7081 }else{
7082 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7083 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007084 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007085
7086 /* Drop the cell from the parent page. apDiv[i] still points to
7087 ** the cell within the parent, even though it has been dropped.
7088 ** This is safe because dropping a cell only overwrites the first
7089 ** four bytes of it, and this function does not need the first
7090 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007091 ** later on.
7092 **
drh8a575d92011-10-12 17:00:28 +00007093 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007094 ** the dropCell() routine will overwrite the entire cell with zeroes.
7095 ** In this case, temporarily copy the cell into the aOvflSpace[]
7096 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7097 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007098 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007099 int iOff;
7100
7101 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007102 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007103 rc = SQLITE_CORRUPT_BKPT;
7104 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7105 goto balance_cleanup;
7106 }else{
7107 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7108 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7109 }
drh5b47efa2010-02-12 18:18:39 +00007110 }
drh98add2e2009-07-20 17:11:49 +00007111 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007112 }
drh8b2f49b2001-06-08 00:21:52 +00007113 }
7114
drha9121e42008-02-19 14:59:35 +00007115 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007116 ** alignment */
drha9121e42008-02-19 14:59:35 +00007117 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007118
drh8b2f49b2001-06-08 00:21:52 +00007119 /*
danielk1977634f2982005-03-28 08:44:07 +00007120 ** Allocate space for memory structures
7121 */
drhfacf0302008-06-17 15:12:00 +00007122 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007123 nMaxCells*sizeof(u8*) /* b.apCell */
7124 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007125 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007126
drhcbd55b02014-11-04 14:22:27 +00007127 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7128 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007129 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007130 b.apCell = sqlite3ScratchMalloc( szScratch );
7131 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007132 rc = SQLITE_NOMEM;
7133 goto balance_cleanup;
7134 }
drh1ffd2472015-06-23 02:37:30 +00007135 b.szCell = (u16*)&b.apCell[nMaxCells];
7136 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007137 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007138
7139 /*
7140 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007141 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007142 ** into space obtained from aSpace1[]. The divider cells have already
7143 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007144 **
7145 ** If the siblings are on leaf pages, then the child pointers of the
7146 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007147 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007148 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007149 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007150 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007151 **
7152 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7153 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007154 */
drh1ffd2472015-06-23 02:37:30 +00007155 b.pRef = apOld[0];
7156 leafCorrection = b.pRef->leaf*4;
7157 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007158 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007159 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007160 int limit = pOld->nCell;
7161 u8 *aData = pOld->aData;
7162 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007163 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007164 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007165
drh73d340a2015-05-28 11:23:11 +00007166 /* Verify that all sibling pages are of the same "type" (table-leaf,
7167 ** table-interior, index-leaf, or index-interior).
7168 */
7169 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7170 rc = SQLITE_CORRUPT_BKPT;
7171 goto balance_cleanup;
7172 }
7173
drhfe647dc2015-06-23 18:24:25 +00007174 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7175 ** constains overflow cells, include them in the b.apCell[] array
7176 ** in the correct spot.
7177 **
7178 ** Note that when there are multiple overflow cells, it is always the
7179 ** case that they are sequential and adjacent. This invariant arises
7180 ** because multiple overflows can only occurs when inserting divider
7181 ** cells into a parent on a prior balance, and divider cells are always
7182 ** adjacent and are inserted in order. There is an assert() tagged
7183 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7184 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007185 **
7186 ** This must be done in advance. Once the balance starts, the cell
7187 ** offset section of the btree page will be overwritten and we will no
7188 ** long be able to find the cells if a pointer to each cell is not saved
7189 ** first.
7190 */
drh1ffd2472015-06-23 02:37:30 +00007191 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007192 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007193 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007194 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007195 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007196 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007197 piCell += 2;
7198 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007199 }
drhfe647dc2015-06-23 18:24:25 +00007200 for(k=0; k<pOld->nOverflow; k++){
7201 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007202 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007203 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007204 }
drh1ffd2472015-06-23 02:37:30 +00007205 }
drhfe647dc2015-06-23 18:24:25 +00007206 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7207 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007208 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007209 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007210 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007211 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007212 }
7213
drh1ffd2472015-06-23 02:37:30 +00007214 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007215 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007216 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007217 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007218 assert( b.nCell<nMaxCells );
7219 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007220 pTemp = &aSpace1[iSpace1];
7221 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007222 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007223 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007224 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007225 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007226 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007227 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007228 if( !pOld->leaf ){
7229 assert( leafCorrection==0 );
7230 assert( pOld->hdrOffset==0 );
7231 /* The right pointer of the child page pOld becomes the left
7232 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007233 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007234 }else{
7235 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007236 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007237 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7238 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007239 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7240 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007241 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007242 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007243 }
7244 }
drh1ffd2472015-06-23 02:37:30 +00007245 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007246 }
drh8b2f49b2001-06-08 00:21:52 +00007247 }
7248
7249 /*
drh1ffd2472015-06-23 02:37:30 +00007250 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007251 ** Store this number in "k". Also compute szNew[] which is the total
7252 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007253 ** in b.apCell[] of the cell that divides page i from page i+1.
7254 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007255 **
drh96f5b762004-05-16 16:24:36 +00007256 ** Values computed by this block:
7257 **
7258 ** k: The total number of sibling pages
7259 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007260 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007261 ** the right of the i-th sibling page.
7262 ** usableSpace: Number of bytes of space available on each sibling.
7263 **
drh8b2f49b2001-06-08 00:21:52 +00007264 */
drh43605152004-05-29 21:46:49 +00007265 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007266 for(i=0; i<nOld; i++){
7267 MemPage *p = apOld[i];
7268 szNew[i] = usableSpace - p->nFree;
7269 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7270 for(j=0; j<p->nOverflow; j++){
7271 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7272 }
7273 cntNew[i] = cntOld[i];
7274 }
7275 k = nOld;
7276 for(i=0; i<k; i++){
7277 int sz;
7278 while( szNew[i]>usableSpace ){
7279 if( i+1>=k ){
7280 k = i+2;
7281 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7282 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007283 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007284 }
drh1ffd2472015-06-23 02:37:30 +00007285 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007286 szNew[i] -= sz;
7287 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007288 if( cntNew[i]<b.nCell ){
7289 sz = 2 + cachedCellSize(&b, cntNew[i]);
7290 }else{
7291 sz = 0;
7292 }
drh658873b2015-06-22 20:02:04 +00007293 }
7294 szNew[i+1] += sz;
7295 cntNew[i]--;
7296 }
drh1ffd2472015-06-23 02:37:30 +00007297 while( cntNew[i]<b.nCell ){
7298 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007299 if( szNew[i]+sz>usableSpace ) break;
7300 szNew[i] += sz;
7301 cntNew[i]++;
7302 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007303 if( cntNew[i]<b.nCell ){
7304 sz = 2 + cachedCellSize(&b, cntNew[i]);
7305 }else{
7306 sz = 0;
7307 }
drh658873b2015-06-22 20:02:04 +00007308 }
7309 szNew[i+1] -= sz;
7310 }
drh1ffd2472015-06-23 02:37:30 +00007311 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007312 k = i+1;
drh672073a2015-06-24 12:07:40 +00007313 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007314 rc = SQLITE_CORRUPT_BKPT;
7315 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007316 }
7317 }
drh96f5b762004-05-16 16:24:36 +00007318
7319 /*
7320 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007321 ** on the left side (siblings with smaller keys). The left siblings are
7322 ** always nearly full, while the right-most sibling might be nearly empty.
7323 ** The next block of code attempts to adjust the packing of siblings to
7324 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007325 **
7326 ** This adjustment is more than an optimization. The packing above might
7327 ** be so out of balance as to be illegal. For example, the right-most
7328 ** sibling might be completely empty. This adjustment is not optional.
7329 */
drh6019e162001-07-02 17:51:45 +00007330 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007331 int szRight = szNew[i]; /* Size of sibling on the right */
7332 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7333 int r; /* Index of right-most cell in left sibling */
7334 int d; /* Index of first cell to the left of right sibling */
7335
7336 r = cntNew[i-1] - 1;
7337 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007338 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007339 do{
drh1ffd2472015-06-23 02:37:30 +00007340 assert( d<nMaxCells );
7341 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007342 (void)cachedCellSize(&b, r);
7343 if( szRight!=0
7344 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7345 break;
7346 }
7347 szRight += b.szCell[d] + 2;
7348 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007349 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007350 r--;
7351 d--;
drh672073a2015-06-24 12:07:40 +00007352 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007353 szNew[i] = szRight;
7354 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007355 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7356 rc = SQLITE_CORRUPT_BKPT;
7357 goto balance_cleanup;
7358 }
drh6019e162001-07-02 17:51:45 +00007359 }
drh09d0deb2005-08-02 17:13:09 +00007360
drh2a0df922014-10-30 23:14:56 +00007361 /* Sanity check: For a non-corrupt database file one of the follwing
7362 ** must be true:
7363 ** (1) We found one or more cells (cntNew[0])>0), or
7364 ** (2) pPage is a virtual root page. A virtual root page is when
7365 ** the real root page is page 1 and we are the only child of
7366 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007367 */
drh2a0df922014-10-30 23:14:56 +00007368 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007369 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7370 apOld[0]->pgno, apOld[0]->nCell,
7371 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7372 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007373 ));
7374
drh8b2f49b2001-06-08 00:21:52 +00007375 /*
drh6b308672002-07-08 02:16:37 +00007376 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007377 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007378 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007379 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007380 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007381 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007382 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007383 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007384 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007385 nNew++;
danielk197728129562005-01-11 10:25:06 +00007386 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007387 }else{
drh7aa8f852006-03-28 00:24:44 +00007388 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007389 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007390 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007391 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007392 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007393 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007394 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007395
7396 /* Set the pointer-map entry for the new sibling page. */
7397 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007398 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007399 if( rc!=SQLITE_OK ){
7400 goto balance_cleanup;
7401 }
7402 }
drh6b308672002-07-08 02:16:37 +00007403 }
drh8b2f49b2001-06-08 00:21:52 +00007404 }
7405
7406 /*
dan33ea4862014-10-09 19:35:37 +00007407 ** Reassign page numbers so that the new pages are in ascending order.
7408 ** This helps to keep entries in the disk file in order so that a scan
7409 ** of the table is closer to a linear scan through the file. That in turn
7410 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007411 **
dan33ea4862014-10-09 19:35:37 +00007412 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7413 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007414 **
dan33ea4862014-10-09 19:35:37 +00007415 ** When NB==3, this one optimization makes the database about 25% faster
7416 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007417 */
dan33ea4862014-10-09 19:35:37 +00007418 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007419 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007420 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007421 for(j=0; j<i; j++){
7422 if( aPgno[j]==aPgno[i] ){
7423 /* This branch is taken if the set of sibling pages somehow contains
7424 ** duplicate entries. This can happen if the database is corrupt.
7425 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007426 ** we do the detection here in order to avoid populating the pager
7427 ** cache with two separate objects associated with the same
7428 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007429 assert( CORRUPT_DB );
7430 rc = SQLITE_CORRUPT_BKPT;
7431 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007432 }
7433 }
dan33ea4862014-10-09 19:35:37 +00007434 }
7435 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007436 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007437 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007438 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007439 }
drh00fe08a2014-10-31 00:05:23 +00007440 pgno = aPgOrder[iBest];
7441 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007442 if( iBest!=i ){
7443 if( iBest>i ){
7444 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7445 }
7446 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7447 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007448 }
7449 }
dan33ea4862014-10-09 19:35:37 +00007450
7451 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7452 "%d(%d nc=%d) %d(%d nc=%d)\n",
7453 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007454 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007455 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007456 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007457 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007458 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007459 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7460 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7461 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7462 ));
danielk19774dbaa892009-06-16 16:50:22 +00007463
7464 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7465 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007466
dan33ea4862014-10-09 19:35:37 +00007467 /* If the sibling pages are not leaves, ensure that the right-child pointer
7468 ** of the right-most new sibling page is set to the value that was
7469 ** originally in the same field of the right-most old sibling page. */
7470 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7471 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7472 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7473 }
danielk1977ac11ee62005-01-15 12:45:51 +00007474
dan33ea4862014-10-09 19:35:37 +00007475 /* Make any required updates to pointer map entries associated with
7476 ** cells stored on sibling pages following the balance operation. Pointer
7477 ** map entries associated with divider cells are set by the insertCell()
7478 ** routine. The associated pointer map entries are:
7479 **
7480 ** a) if the cell contains a reference to an overflow chain, the
7481 ** entry associated with the first page in the overflow chain, and
7482 **
7483 ** b) if the sibling pages are not leaves, the child page associated
7484 ** with the cell.
7485 **
7486 ** If the sibling pages are not leaves, then the pointer map entry
7487 ** associated with the right-child of each sibling may also need to be
7488 ** updated. This happens below, after the sibling pages have been
7489 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007490 */
dan33ea4862014-10-09 19:35:37 +00007491 if( ISAUTOVACUUM ){
7492 MemPage *pNew = apNew[0];
7493 u8 *aOld = pNew->aData;
7494 int cntOldNext = pNew->nCell + pNew->nOverflow;
7495 int usableSize = pBt->usableSize;
7496 int iNew = 0;
7497 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007498
drh1ffd2472015-06-23 02:37:30 +00007499 for(i=0; i<b.nCell; i++){
7500 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007501 if( i==cntOldNext ){
7502 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7503 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7504 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007505 }
dan33ea4862014-10-09 19:35:37 +00007506 if( i==cntNew[iNew] ){
7507 pNew = apNew[++iNew];
7508 if( !leafData ) continue;
7509 }
danielk197785d90ca2008-07-19 14:25:15 +00007510
dan33ea4862014-10-09 19:35:37 +00007511 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007512 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007513 ** or else the divider cell to the left of sibling page iOld. So,
7514 ** if sibling page iOld had the same page number as pNew, and if
7515 ** pCell really was a part of sibling page iOld (not a divider or
7516 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007517 if( iOld>=nNew
7518 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007519 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007520 ){
dan33ea4862014-10-09 19:35:37 +00007521 if( !leafCorrection ){
7522 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7523 }
drh1ffd2472015-06-23 02:37:30 +00007524 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007525 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007526 }
drhea82b372015-06-23 21:35:28 +00007527 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007528 }
drh14acc042001-06-10 19:56:58 +00007529 }
7530 }
dan33ea4862014-10-09 19:35:37 +00007531
7532 /* Insert new divider cells into pParent. */
7533 for(i=0; i<nNew-1; i++){
7534 u8 *pCell;
7535 u8 *pTemp;
7536 int sz;
7537 MemPage *pNew = apNew[i];
7538 j = cntNew[i];
7539
7540 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007541 assert( b.apCell[j]!=0 );
7542 pCell = b.apCell[j];
7543 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007544 pTemp = &aOvflSpace[iOvflSpace];
7545 if( !pNew->leaf ){
7546 memcpy(&pNew->aData[8], pCell, 4);
7547 }else if( leafData ){
7548 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007549 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007550 ** cell consists of the integer key for the right-most cell of
7551 ** the sibling-page assembled above only.
7552 */
7553 CellInfo info;
7554 j--;
drh1ffd2472015-06-23 02:37:30 +00007555 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007556 pCell = pTemp;
7557 sz = 4 + putVarint(&pCell[4], info.nKey);
7558 pTemp = 0;
7559 }else{
7560 pCell -= 4;
7561 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7562 ** previously stored on a leaf node, and its reported size was 4
7563 ** bytes, then it may actually be smaller than this
7564 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7565 ** any cell). But it is important to pass the correct size to
7566 ** insertCell(), so reparse the cell now.
7567 **
7568 ** Note that this can never happen in an SQLite data file, as all
7569 ** cells are at least 4 bytes. It only happens in b-trees used
7570 ** to evaluate "IN (SELECT ...)" and similar clauses.
7571 */
drh1ffd2472015-06-23 02:37:30 +00007572 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007573 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007574 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007575 }
7576 }
7577 iOvflSpace += sz;
7578 assert( sz<=pBt->maxLocal+23 );
7579 assert( iOvflSpace <= (int)pBt->pageSize );
7580 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7581 if( rc!=SQLITE_OK ) goto balance_cleanup;
7582 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7583 }
7584
7585 /* Now update the actual sibling pages. The order in which they are updated
7586 ** is important, as this code needs to avoid disrupting any page from which
7587 ** cells may still to be read. In practice, this means:
7588 **
drhd836d422014-10-31 14:26:36 +00007589 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7590 ** then it is not safe to update page apNew[iPg] until after
7591 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007592 **
drhd836d422014-10-31 14:26:36 +00007593 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7594 ** then it is not safe to update page apNew[iPg] until after
7595 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007596 **
7597 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007598 **
7599 ** The iPg value in the following loop starts at nNew-1 goes down
7600 ** to 0, then back up to nNew-1 again, thus making two passes over
7601 ** the pages. On the initial downward pass, only condition (1) above
7602 ** needs to be tested because (2) will always be true from the previous
7603 ** step. On the upward pass, both conditions are always true, so the
7604 ** upwards pass simply processes pages that were missed on the downward
7605 ** pass.
dan33ea4862014-10-09 19:35:37 +00007606 */
drhbec021b2014-10-31 12:22:00 +00007607 for(i=1-nNew; i<nNew; i++){
7608 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007609 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007610 if( abDone[iPg] ) continue; /* Skip pages already processed */
7611 if( i>=0 /* On the upwards pass, or... */
7612 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007613 ){
dan09c68402014-10-11 20:00:24 +00007614 int iNew;
7615 int iOld;
7616 int nNewCell;
7617
drhd836d422014-10-31 14:26:36 +00007618 /* Verify condition (1): If cells are moving left, update iPg
7619 ** only after iPg-1 has already been updated. */
7620 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7621
7622 /* Verify condition (2): If cells are moving right, update iPg
7623 ** only after iPg+1 has already been updated. */
7624 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7625
dan09c68402014-10-11 20:00:24 +00007626 if( iPg==0 ){
7627 iNew = iOld = 0;
7628 nNewCell = cntNew[0];
7629 }else{
drh1ffd2472015-06-23 02:37:30 +00007630 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007631 iNew = cntNew[iPg-1] + !leafData;
7632 nNewCell = cntNew[iPg] - iNew;
7633 }
7634
drh1ffd2472015-06-23 02:37:30 +00007635 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007636 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007637 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007638 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007639 assert( apNew[iPg]->nOverflow==0 );
7640 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007641 }
7642 }
drhd836d422014-10-31 14:26:36 +00007643
7644 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007645 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7646
drh7aa8f852006-03-28 00:24:44 +00007647 assert( nOld>0 );
7648 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007649
danielk197713bd99f2009-06-24 05:40:34 +00007650 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7651 /* The root page of the b-tree now contains no cells. The only sibling
7652 ** page is the right-child of the parent. Copy the contents of the
7653 ** child page into the parent, decreasing the overall height of the
7654 ** b-tree structure by one. This is described as the "balance-shallower"
7655 ** sub-algorithm in some documentation.
7656 **
7657 ** If this is an auto-vacuum database, the call to copyNodeContent()
7658 ** sets all pointer-map entries corresponding to database image pages
7659 ** for which the pointer is stored within the content being copied.
7660 **
drh768f2902014-10-31 02:51:41 +00007661 ** It is critical that the child page be defragmented before being
7662 ** copied into the parent, because if the parent is page 1 then it will
7663 ** by smaller than the child due to the database header, and so all the
7664 ** free space needs to be up front.
7665 */
drh9b5351d2015-09-30 14:19:08 +00007666 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007667 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007668 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007669 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007670 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7671 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007672 );
drhc314dc72009-07-21 11:52:34 +00007673 copyNodeContent(apNew[0], pParent, &rc);
7674 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007675 }else if( ISAUTOVACUUM && !leafCorrection ){
7676 /* Fix the pointer map entries associated with the right-child of each
7677 ** sibling page. All other pointer map entries have already been taken
7678 ** care of. */
7679 for(i=0; i<nNew; i++){
7680 u32 key = get4byte(&apNew[i]->aData[8]);
7681 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007682 }
dan33ea4862014-10-09 19:35:37 +00007683 }
danielk19774dbaa892009-06-16 16:50:22 +00007684
dan33ea4862014-10-09 19:35:37 +00007685 assert( pParent->isInit );
7686 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007687 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007688
dan33ea4862014-10-09 19:35:37 +00007689 /* Free any old pages that were not reused as new pages.
7690 */
7691 for(i=nNew; i<nOld; i++){
7692 freePage(apOld[i], &rc);
7693 }
danielk19774dbaa892009-06-16 16:50:22 +00007694
7695#if 0
dan33ea4862014-10-09 19:35:37 +00007696 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007697 /* The ptrmapCheckPages() contains assert() statements that verify that
7698 ** all pointer map pages are set correctly. This is helpful while
7699 ** debugging. This is usually disabled because a corrupt database may
7700 ** cause an assert() statement to fail. */
7701 ptrmapCheckPages(apNew, nNew);
7702 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007703 }
dan33ea4862014-10-09 19:35:37 +00007704#endif
danielk1977cd581a72009-06-23 15:43:39 +00007705
drh8b2f49b2001-06-08 00:21:52 +00007706 /*
drh14acc042001-06-10 19:56:58 +00007707 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007708 */
drh14acc042001-06-10 19:56:58 +00007709balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007710 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007711 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007712 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007713 }
drh14acc042001-06-10 19:56:58 +00007714 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007715 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007716 }
danielk1977eaa06f62008-09-18 17:34:44 +00007717
drh8b2f49b2001-06-08 00:21:52 +00007718 return rc;
7719}
7720
drh43605152004-05-29 21:46:49 +00007721
7722/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007723** This function is called when the root page of a b-tree structure is
7724** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007725**
danielk1977a50d9aa2009-06-08 14:49:45 +00007726** A new child page is allocated and the contents of the current root
7727** page, including overflow cells, are copied into the child. The root
7728** page is then overwritten to make it an empty page with the right-child
7729** pointer pointing to the new page.
7730**
7731** Before returning, all pointer-map entries corresponding to pages
7732** that the new child-page now contains pointers to are updated. The
7733** entry corresponding to the new right-child pointer of the root
7734** page is also updated.
7735**
7736** If successful, *ppChild is set to contain a reference to the child
7737** page and SQLITE_OK is returned. In this case the caller is required
7738** to call releasePage() on *ppChild exactly once. If an error occurs,
7739** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007740*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007741static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7742 int rc; /* Return value from subprocedures */
7743 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007744 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007745 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007746
danielk1977a50d9aa2009-06-08 14:49:45 +00007747 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007748 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007749
danielk1977a50d9aa2009-06-08 14:49:45 +00007750 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7751 ** page that will become the new right-child of pPage. Copy the contents
7752 ** of the node stored on pRoot into the new child page.
7753 */
drh98add2e2009-07-20 17:11:49 +00007754 rc = sqlite3PagerWrite(pRoot->pDbPage);
7755 if( rc==SQLITE_OK ){
7756 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007757 copyNodeContent(pRoot, pChild, &rc);
7758 if( ISAUTOVACUUM ){
7759 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007760 }
7761 }
7762 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007763 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007764 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007765 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007766 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007767 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7768 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7769 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007770
danielk1977a50d9aa2009-06-08 14:49:45 +00007771 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7772
7773 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007774 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7775 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7776 memcpy(pChild->apOvfl, pRoot->apOvfl,
7777 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007778 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007779
7780 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7781 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7782 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7783
7784 *ppChild = pChild;
7785 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007786}
7787
7788/*
danielk197771d5d2c2008-09-29 11:49:47 +00007789** The page that pCur currently points to has just been modified in
7790** some way. This function figures out if this modification means the
7791** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007792** routine. Balancing routines are:
7793**
7794** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007795** balance_deeper()
7796** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007797*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007798static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007799 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007800 const int nMin = pCur->pBt->usableSize * 2 / 3;
7801 u8 aBalanceQuickSpace[13];
7802 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007803
shane75ac1de2009-06-09 18:58:52 +00007804 TESTONLY( int balance_quick_called = 0 );
7805 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007806
7807 do {
7808 int iPage = pCur->iPage;
7809 MemPage *pPage = pCur->apPage[iPage];
7810
7811 if( iPage==0 ){
7812 if( pPage->nOverflow ){
7813 /* The root page of the b-tree is overfull. In this case call the
7814 ** balance_deeper() function to create a new child for the root-page
7815 ** and copy the current contents of the root-page to it. The
7816 ** next iteration of the do-loop will balance the child page.
7817 */
7818 assert( (balance_deeper_called++)==0 );
7819 rc = balance_deeper(pPage, &pCur->apPage[1]);
7820 if( rc==SQLITE_OK ){
7821 pCur->iPage = 1;
7822 pCur->aiIdx[0] = 0;
7823 pCur->aiIdx[1] = 0;
7824 assert( pCur->apPage[1]->nOverflow );
7825 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007826 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007827 break;
7828 }
7829 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7830 break;
7831 }else{
7832 MemPage * const pParent = pCur->apPage[iPage-1];
7833 int const iIdx = pCur->aiIdx[iPage-1];
7834
7835 rc = sqlite3PagerWrite(pParent->pDbPage);
7836 if( rc==SQLITE_OK ){
7837#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007838 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007839 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007840 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007841 && pParent->pgno!=1
7842 && pParent->nCell==iIdx
7843 ){
7844 /* Call balance_quick() to create a new sibling of pPage on which
7845 ** to store the overflow cell. balance_quick() inserts a new cell
7846 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007847 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007848 ** use either balance_nonroot() or balance_deeper(). Until this
7849 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7850 ** buffer.
7851 **
7852 ** The purpose of the following assert() is to check that only a
7853 ** single call to balance_quick() is made for each call to this
7854 ** function. If this were not verified, a subtle bug involving reuse
7855 ** of the aBalanceQuickSpace[] might sneak in.
7856 */
7857 assert( (balance_quick_called++)==0 );
7858 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7859 }else
7860#endif
7861 {
7862 /* In this case, call balance_nonroot() to redistribute cells
7863 ** between pPage and up to 2 of its sibling pages. This involves
7864 ** modifying the contents of pParent, which may cause pParent to
7865 ** become overfull or underfull. The next iteration of the do-loop
7866 ** will balance the parent page to correct this.
7867 **
7868 ** If the parent page becomes overfull, the overflow cell or cells
7869 ** are stored in the pSpace buffer allocated immediately below.
7870 ** A subsequent iteration of the do-loop will deal with this by
7871 ** calling balance_nonroot() (balance_deeper() may be called first,
7872 ** but it doesn't deal with overflow cells - just moves them to a
7873 ** different page). Once this subsequent call to balance_nonroot()
7874 ** has completed, it is safe to release the pSpace buffer used by
7875 ** the previous call, as the overflow cell data will have been
7876 ** copied either into the body of a database page or into the new
7877 ** pSpace buffer passed to the latter call to balance_nonroot().
7878 */
7879 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007880 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7881 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007882 if( pFree ){
7883 /* If pFree is not NULL, it points to the pSpace buffer used
7884 ** by a previous call to balance_nonroot(). Its contents are
7885 ** now stored either on real database pages or within the
7886 ** new pSpace buffer, so it may be safely freed here. */
7887 sqlite3PageFree(pFree);
7888 }
7889
danielk19774dbaa892009-06-16 16:50:22 +00007890 /* The pSpace buffer will be freed after the next call to
7891 ** balance_nonroot(), or just before this function returns, whichever
7892 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007893 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007894 }
7895 }
7896
7897 pPage->nOverflow = 0;
7898
7899 /* The next iteration of the do-loop balances the parent page. */
7900 releasePage(pPage);
7901 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007902 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007903 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007904 }while( rc==SQLITE_OK );
7905
7906 if( pFree ){
7907 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007908 }
7909 return rc;
7910}
7911
drhf74b8d92002-09-01 23:20:45 +00007912
7913/*
drh3b7511c2001-05-26 13:15:44 +00007914** Insert a new record into the BTree. The key is given by (pKey,nKey)
7915** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007916** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007917** is left pointing at a random location.
7918**
7919** For an INTKEY table, only the nKey value of the key is used. pKey is
7920** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007921**
7922** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007923** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007924** been performed. seekResult is the search result returned (a negative
7925** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007926** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007927** (pKey, nKey)).
7928**
drh3e9ca092009-09-08 01:14:48 +00007929** If the seekResult parameter is non-zero, then the caller guarantees that
7930** cursor pCur is pointing at the existing copy of a row that is to be
7931** overwritten. If the seekResult parameter is 0, then cursor pCur may
7932** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007933** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007934*/
drh3aac2dd2004-04-26 14:10:20 +00007935int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007936 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007937 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007938 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007939 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007940 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007941 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007942){
drh3b7511c2001-05-26 13:15:44 +00007943 int rc;
drh3e9ca092009-09-08 01:14:48 +00007944 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007945 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007946 int idx;
drh3b7511c2001-05-26 13:15:44 +00007947 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007948 Btree *p = pCur->pBtree;
7949 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007950 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007951 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007952
drh98add2e2009-07-20 17:11:49 +00007953 if( pCur->eState==CURSOR_FAULT ){
7954 assert( pCur->skipNext!=SQLITE_OK );
7955 return pCur->skipNext;
7956 }
7957
drh1fee73e2007-08-29 04:00:57 +00007958 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007959 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7960 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007961 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007962 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7963
danielk197731d31b82009-07-13 13:18:07 +00007964 /* Assert that the caller has been consistent. If this cursor was opened
7965 ** expecting an index b-tree, then the caller should be inserting blob
7966 ** keys with no associated data. If the cursor was opened expecting an
7967 ** intkey table, the caller should be inserting integer keys with a
7968 ** blob of associated data. */
7969 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7970
danielk19779c3acf32009-05-02 07:36:49 +00007971 /* Save the positions of any other cursors open on this table.
7972 **
danielk19773509a652009-07-06 18:56:13 +00007973 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007974 ** example, when inserting data into a table with auto-generated integer
7975 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7976 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007977 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007978 ** that the cursor is already where it needs to be and returns without
7979 ** doing any work. To avoid thwarting these optimizations, it is important
7980 ** not to clear the cursor here.
7981 */
drh27fb7462015-06-30 02:47:36 +00007982 if( pCur->curFlags & BTCF_Multiple ){
7983 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7984 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007985 }
7986
danielk197771d5d2c2008-09-29 11:49:47 +00007987 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007988 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007989 /* If this is an insert into a table b-tree, invalidate any incrblob
7990 ** cursors open on the row being replaced */
drh4a1c3802004-05-12 15:15:47 +00007991 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007992
7993 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007994 ** new row onto the end, set the "loc" to avoid an unnecessary
7995 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00007996 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7997 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00007998 loc = -1;
7999 }else if( loc==0 ){
8000 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
8001 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008002 }
drh207c8172015-06-29 23:01:32 +00008003 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00008004 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8005 if( rc ) return rc;
drhf74b8d92002-09-01 23:20:45 +00008006 }
danielk1977b980d2212009-06-22 18:03:51 +00008007 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
drh3aac2dd2004-04-26 14:10:20 +00008008
drh3b7511c2001-05-26 13:15:44 +00008009 pPage = pCur->apPage[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008010 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008011 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008012
drh3a4c1412004-05-09 20:40:11 +00008013 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8014 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8015 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008016 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008017 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008018 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008019 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008020 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008021 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008022 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008023 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008024 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008025 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008026 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008027 rc = sqlite3PagerWrite(pPage->pDbPage);
8028 if( rc ){
8029 goto end_insert;
8030 }
danielk197771d5d2c2008-09-29 11:49:47 +00008031 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008032 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008033 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008034 }
drh9bfdc252014-09-24 02:05:41 +00008035 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008036 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008037 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008038 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008039 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008040 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008041 }else{
drh4b70f112004-05-02 21:12:19 +00008042 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008043 }
drh98add2e2009-07-20 17:11:49 +00008044 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008045 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008046
mistachkin48864df2013-03-21 21:20:32 +00008047 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008048 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008049 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008050 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008051 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008052 ** Previous versions of SQLite called moveToRoot() to move the cursor
8053 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008054 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8055 ** set the cursor state to "invalid". This makes common insert operations
8056 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008057 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008058 ** There is a subtle but important optimization here too. When inserting
8059 ** multiple records into an intkey b-tree using a single cursor (as can
8060 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8061 ** is advantageous to leave the cursor pointing to the last entry in
8062 ** the b-tree if possible. If the cursor is left pointing to the last
8063 ** entry in the table, and the next row inserted has an integer key
8064 ** larger than the largest existing key, it is possible to insert the
8065 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008066 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008067 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008068 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008069 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008070 rc = balance(pCur);
8071
8072 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008073 ** fails. Internal data structure corruption will result otherwise.
8074 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8075 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008076 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008077 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008078 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008079 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008080
drh2e38c322004-09-03 18:38:44 +00008081end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008082 return rc;
8083}
8084
8085/*
danf0ee1d32015-09-12 19:26:11 +00008086** Delete the entry that the cursor is pointing to.
8087**
8088** If the second parameter is zero, then the cursor is left pointing at an
8089** arbitrary location after the delete. If it is non-zero, then the cursor
8090** is left in a state such that the next call to BtreeNext() or BtreePrev()
8091** moves it to the same row as it would if the call to BtreeDelete() had
8092** been omitted.
drh3b7511c2001-05-26 13:15:44 +00008093*/
danf0ee1d32015-09-12 19:26:11 +00008094int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
drhd677b3d2007-08-20 22:48:41 +00008095 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008096 BtShared *pBt = p->pBt;
8097 int rc; /* Return code */
8098 MemPage *pPage; /* Page to delete cell from */
8099 unsigned char *pCell; /* Pointer to cell to delete */
8100 int iCellIdx; /* Index of cell to delete */
8101 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008102 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008103 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drh8b2f49b2001-06-08 00:21:52 +00008104
drh1fee73e2007-08-29 04:00:57 +00008105 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008106 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008107 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008108 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008109 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8110 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008111 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8112 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008113
danielk19774dbaa892009-06-16 16:50:22 +00008114 iCellDepth = pCur->iPage;
8115 iCellIdx = pCur->aiIdx[iCellDepth];
8116 pPage = pCur->apPage[iCellDepth];
8117 pCell = findCell(pPage, iCellIdx);
8118
8119 /* If the page containing the entry to delete is not a leaf page, move
8120 ** the cursor to the largest entry in the tree that is smaller than
8121 ** the entry being deleted. This cell will replace the cell being deleted
8122 ** from the internal node. The 'previous' entry is used for this instead
8123 ** of the 'next' entry, as the previous entry is always a part of the
8124 ** sub-tree headed by the child page of the cell being deleted. This makes
8125 ** balancing the tree following the delete operation easier. */
8126 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008127 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008128 rc = sqlite3BtreePrevious(pCur, &notUsed);
8129 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008130 }
8131
8132 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008133 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008134 if( pCur->curFlags & BTCF_Multiple ){
8135 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8136 if( rc ) return rc;
8137 }
drhd60f4f42012-03-23 14:23:52 +00008138
8139 /* If this is a delete operation to remove a row from a table b-tree,
8140 ** invalidate any incrblob cursors open on the row being deleted. */
8141 if( pCur->pKeyInfo==0 ){
8142 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8143 }
8144
danf0ee1d32015-09-12 19:26:11 +00008145 /* If the bPreserve flag is set to true, then the cursor position must
8146 ** be preserved following this delete operation. If the current delete
8147 ** will cause a b-tree rebalance, then this is done by saving the cursor
8148 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8149 ** returning.
8150 **
8151 ** Or, if the current delete will not cause a rebalance, then the cursor
8152 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8153 ** before or after the deleted entry. In this case set bSkipnext to true. */
8154 if( bPreserve ){
8155 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008156 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008157 ){
8158 /* A b-tree rebalance will be required after deleting this entry.
8159 ** Save the cursor key. */
8160 rc = saveCursorKey(pCur);
8161 if( rc ) return rc;
8162 }else{
8163 bSkipnext = 1;
8164 }
8165 }
8166
8167 /* Make the page containing the entry to be deleted writable. Then free any
8168 ** overflow pages associated with the entry and finally remove the cell
8169 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008170 rc = sqlite3PagerWrite(pPage->pDbPage);
8171 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008172 rc = clearCell(pPage, pCell, &szCell);
8173 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008174 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008175
danielk19774dbaa892009-06-16 16:50:22 +00008176 /* If the cell deleted was not located on a leaf page, then the cursor
8177 ** is currently pointing to the largest entry in the sub-tree headed
8178 ** by the child-page of the cell that was just deleted from an internal
8179 ** node. The cell from the leaf node needs to be moved to the internal
8180 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008181 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008182 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8183 int nCell;
8184 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8185 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008186
danielk19774dbaa892009-06-16 16:50:22 +00008187 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008188 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008189 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008190 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008191 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008192 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008193 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008194 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8195 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008196 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008197 }
danielk19774dbaa892009-06-16 16:50:22 +00008198
8199 /* Balance the tree. If the entry deleted was located on a leaf page,
8200 ** then the cursor still points to that page. In this case the first
8201 ** call to balance() repairs the tree, and the if(...) condition is
8202 ** never true.
8203 **
8204 ** Otherwise, if the entry deleted was on an internal node page, then
8205 ** pCur is pointing to the leaf page from which a cell was removed to
8206 ** replace the cell deleted from the internal node. This is slightly
8207 ** tricky as the leaf node may be underfull, and the internal node may
8208 ** be either under or overfull. In this case run the balancing algorithm
8209 ** on the leaf node first. If the balance proceeds far enough up the
8210 ** tree that we can be sure that any problem in the internal node has
8211 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8212 ** walk the cursor up the tree to the internal node and balance it as
8213 ** well. */
8214 rc = balance(pCur);
8215 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8216 while( pCur->iPage>iCellDepth ){
8217 releasePage(pCur->apPage[pCur->iPage--]);
8218 }
8219 rc = balance(pCur);
8220 }
8221
danielk19776b456a22005-03-21 04:04:02 +00008222 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008223 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008224 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh78ac1092015-09-20 22:57:47 +00008225 assert( pPage==pCur->apPage[pCur->iPage] );
8226 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008227 pCur->eState = CURSOR_SKIPNEXT;
8228 if( iCellIdx>=pPage->nCell ){
8229 pCur->skipNext = -1;
8230 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8231 }else{
8232 pCur->skipNext = 1;
8233 }
8234 }else{
8235 rc = moveToRoot(pCur);
8236 if( bPreserve ){
8237 pCur->eState = CURSOR_REQUIRESEEK;
8238 }
8239 }
danielk19776b456a22005-03-21 04:04:02 +00008240 }
drh5e2f8b92001-05-28 00:41:15 +00008241 return rc;
drh3b7511c2001-05-26 13:15:44 +00008242}
drh8b2f49b2001-06-08 00:21:52 +00008243
8244/*
drhc6b52df2002-01-04 03:09:29 +00008245** Create a new BTree table. Write into *piTable the page
8246** number for the root page of the new table.
8247**
drhab01f612004-05-22 02:55:23 +00008248** The type of type is determined by the flags parameter. Only the
8249** following values of flags are currently in use. Other values for
8250** flags might not work:
8251**
8252** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8253** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008254*/
drhd4187c72010-08-30 22:15:45 +00008255static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008256 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008257 MemPage *pRoot;
8258 Pgno pgnoRoot;
8259 int rc;
drhd4187c72010-08-30 22:15:45 +00008260 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008261
drh1fee73e2007-08-29 04:00:57 +00008262 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008263 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008264 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008265
danielk1977003ba062004-11-04 02:57:33 +00008266#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008267 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008268 if( rc ){
8269 return rc;
8270 }
danielk1977003ba062004-11-04 02:57:33 +00008271#else
danielk1977687566d2004-11-02 12:56:41 +00008272 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008273 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8274 MemPage *pPageMove; /* The page to move to. */
8275
danielk197720713f32007-05-03 11:43:33 +00008276 /* Creating a new table may probably require moving an existing database
8277 ** to make room for the new tables root page. In case this page turns
8278 ** out to be an overflow page, delete all overflow page-map caches
8279 ** held by open cursors.
8280 */
danielk197792d4d7a2007-05-04 12:05:56 +00008281 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008282
danielk1977003ba062004-11-04 02:57:33 +00008283 /* Read the value of meta[3] from the database to determine where the
8284 ** root page of the new table should go. meta[3] is the largest root-page
8285 ** created so far, so the new root-page is (meta[3]+1).
8286 */
danielk1977602b4662009-07-02 07:47:33 +00008287 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008288 pgnoRoot++;
8289
danielk1977599fcba2004-11-08 07:13:13 +00008290 /* The new root-page may not be allocated on a pointer-map page, or the
8291 ** PENDING_BYTE page.
8292 */
drh72190432008-01-31 14:54:43 +00008293 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008294 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008295 pgnoRoot++;
8296 }
drh499e15b2015-05-22 12:37:37 +00008297 assert( pgnoRoot>=3 || CORRUPT_DB );
8298 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008299
8300 /* Allocate a page. The page that currently resides at pgnoRoot will
8301 ** be moved to the allocated page (unless the allocated page happens
8302 ** to reside at pgnoRoot).
8303 */
dan51f0b6d2013-02-22 20:16:34 +00008304 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008305 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008306 return rc;
8307 }
danielk1977003ba062004-11-04 02:57:33 +00008308
8309 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008310 /* pgnoRoot is the page that will be used for the root-page of
8311 ** the new table (assuming an error did not occur). But we were
8312 ** allocated pgnoMove. If required (i.e. if it was not allocated
8313 ** by extending the file), the current page at position pgnoMove
8314 ** is already journaled.
8315 */
drheeb844a2009-08-08 18:01:07 +00008316 u8 eType = 0;
8317 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008318
danf7679ad2013-04-03 11:38:36 +00008319 /* Save the positions of any open cursors. This is required in
8320 ** case they are holding a reference to an xFetch reference
8321 ** corresponding to page pgnoRoot. */
8322 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008323 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008324 if( rc!=SQLITE_OK ){
8325 return rc;
8326 }
danielk1977f35843b2007-04-07 15:03:17 +00008327
8328 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008329 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008330 if( rc!=SQLITE_OK ){
8331 return rc;
8332 }
8333 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008334 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8335 rc = SQLITE_CORRUPT_BKPT;
8336 }
8337 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008338 releasePage(pRoot);
8339 return rc;
8340 }
drhccae6022005-02-26 17:31:26 +00008341 assert( eType!=PTRMAP_ROOTPAGE );
8342 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008343 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008344 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008345
8346 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008347 if( rc!=SQLITE_OK ){
8348 return rc;
8349 }
drhb00fc3b2013-08-21 23:42:32 +00008350 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008351 if( rc!=SQLITE_OK ){
8352 return rc;
8353 }
danielk19773b8a05f2007-03-19 17:44:26 +00008354 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008355 if( rc!=SQLITE_OK ){
8356 releasePage(pRoot);
8357 return rc;
8358 }
8359 }else{
8360 pRoot = pPageMove;
8361 }
8362
danielk197742741be2005-01-08 12:42:39 +00008363 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008364 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008365 if( rc ){
8366 releasePage(pRoot);
8367 return rc;
8368 }
drhbf592832010-03-30 15:51:12 +00008369
8370 /* When the new root page was allocated, page 1 was made writable in
8371 ** order either to increase the database filesize, or to decrement the
8372 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8373 */
8374 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008375 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008376 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008377 releasePage(pRoot);
8378 return rc;
8379 }
danielk197742741be2005-01-08 12:42:39 +00008380
danielk1977003ba062004-11-04 02:57:33 +00008381 }else{
drh4f0c5872007-03-26 22:05:01 +00008382 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008383 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008384 }
8385#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008386 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008387 if( createTabFlags & BTREE_INTKEY ){
8388 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8389 }else{
8390 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8391 }
8392 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008393 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008394 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008395 *piTable = (int)pgnoRoot;
8396 return SQLITE_OK;
8397}
drhd677b3d2007-08-20 22:48:41 +00008398int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8399 int rc;
8400 sqlite3BtreeEnter(p);
8401 rc = btreeCreateTable(p, piTable, flags);
8402 sqlite3BtreeLeave(p);
8403 return rc;
8404}
drh8b2f49b2001-06-08 00:21:52 +00008405
8406/*
8407** Erase the given database page and all its children. Return
8408** the page to the freelist.
8409*/
drh4b70f112004-05-02 21:12:19 +00008410static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008411 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008412 Pgno pgno, /* Page number to clear */
8413 int freePageFlag, /* Deallocate page if true */
8414 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008415){
danielk1977146ba992009-07-22 14:08:13 +00008416 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008417 int rc;
drh4b70f112004-05-02 21:12:19 +00008418 unsigned char *pCell;
8419 int i;
dan8ce71842014-01-14 20:14:09 +00008420 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008421 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008422
drh1fee73e2007-08-29 04:00:57 +00008423 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008424 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008425 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008426 }
drh28f58dd2015-06-27 19:45:03 +00008427 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008428 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008429 if( pPage->bBusy ){
8430 rc = SQLITE_CORRUPT_BKPT;
8431 goto cleardatabasepage_out;
8432 }
8433 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008434 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008435 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008436 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008437 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008438 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008439 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008440 }
drh9bfdc252014-09-24 02:05:41 +00008441 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008442 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008443 }
drha34b6762004-05-07 13:30:42 +00008444 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008445 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008446 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008447 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008448 assert( pPage->intKey || CORRUPT_DB );
8449 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008450 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008451 }
8452 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008453 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008454 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008455 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008456 }
danielk19776b456a22005-03-21 04:04:02 +00008457
8458cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008459 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008460 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008461 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008462}
8463
8464/*
drhab01f612004-05-22 02:55:23 +00008465** Delete all information from a single table in the database. iTable is
8466** the page number of the root of the table. After this routine returns,
8467** the root page is empty, but still exists.
8468**
8469** This routine will fail with SQLITE_LOCKED if there are any open
8470** read cursors on the table. Open write cursors are moved to the
8471** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008472**
8473** If pnChange is not NULL, then table iTable must be an intkey table. The
8474** integer value pointed to by pnChange is incremented by the number of
8475** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008476*/
danielk1977c7af4842008-10-27 13:59:33 +00008477int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008478 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008479 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008480 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008481 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008482
drhc046e3e2009-07-15 11:26:44 +00008483 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008484
drhc046e3e2009-07-15 11:26:44 +00008485 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008486 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8487 ** is the root of a table b-tree - if it is not, the following call is
8488 ** a no-op). */
8489 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008490 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008491 }
drhd677b3d2007-08-20 22:48:41 +00008492 sqlite3BtreeLeave(p);
8493 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008494}
8495
8496/*
drh079a3072014-03-19 14:10:55 +00008497** Delete all information from the single table that pCur is open on.
8498**
8499** This routine only work for pCur on an ephemeral table.
8500*/
8501int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8502 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8503}
8504
8505/*
drh8b2f49b2001-06-08 00:21:52 +00008506** Erase all information in a table and add the root of the table to
8507** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008508** page 1) is never added to the freelist.
8509**
8510** This routine will fail with SQLITE_LOCKED if there are any open
8511** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008512**
8513** If AUTOVACUUM is enabled and the page at iTable is not the last
8514** root page in the database file, then the last root page
8515** in the database file is moved into the slot formerly occupied by
8516** iTable and that last slot formerly occupied by the last root page
8517** is added to the freelist instead of iTable. In this say, all
8518** root pages are kept at the beginning of the database file, which
8519** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8520** page number that used to be the last root page in the file before
8521** the move. If no page gets moved, *piMoved is set to 0.
8522** The last root page is recorded in meta[3] and the value of
8523** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008524*/
danielk197789d40042008-11-17 14:20:56 +00008525static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008526 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008527 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008528 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008529
drh1fee73e2007-08-29 04:00:57 +00008530 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008531 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008532
danielk1977e6efa742004-11-10 11:55:10 +00008533 /* It is illegal to drop a table if any cursors are open on the
8534 ** database. This is because in auto-vacuum mode the backend may
8535 ** need to move another root-page to fill a gap left by the deleted
8536 ** root page. If an open cursor was using this page a problem would
8537 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008538 **
8539 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008540 */
drhc046e3e2009-07-15 11:26:44 +00008541 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008542 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8543 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008544 }
danielk1977a0bf2652004-11-04 14:30:04 +00008545
drhb00fc3b2013-08-21 23:42:32 +00008546 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008547 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008548 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008549 if( rc ){
8550 releasePage(pPage);
8551 return rc;
8552 }
danielk1977a0bf2652004-11-04 14:30:04 +00008553
drh205f48e2004-11-05 00:43:11 +00008554 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008555
drh4b70f112004-05-02 21:12:19 +00008556 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008557#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008558 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008559 releasePage(pPage);
8560#else
8561 if( pBt->autoVacuum ){
8562 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008563 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008564
8565 if( iTable==maxRootPgno ){
8566 /* If the table being dropped is the table with the largest root-page
8567 ** number in the database, put the root page on the free list.
8568 */
drhc314dc72009-07-21 11:52:34 +00008569 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008570 releasePage(pPage);
8571 if( rc!=SQLITE_OK ){
8572 return rc;
8573 }
8574 }else{
8575 /* The table being dropped does not have the largest root-page
8576 ** number in the database. So move the page that does into the
8577 ** gap left by the deleted root-page.
8578 */
8579 MemPage *pMove;
8580 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008581 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008582 if( rc!=SQLITE_OK ){
8583 return rc;
8584 }
danielk19774c999992008-07-16 18:17:55 +00008585 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008586 releasePage(pMove);
8587 if( rc!=SQLITE_OK ){
8588 return rc;
8589 }
drhfe3313f2009-07-21 19:02:20 +00008590 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008591 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008592 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008593 releasePage(pMove);
8594 if( rc!=SQLITE_OK ){
8595 return rc;
8596 }
8597 *piMoved = maxRootPgno;
8598 }
8599
danielk1977599fcba2004-11-08 07:13:13 +00008600 /* Set the new 'max-root-page' value in the database header. This
8601 ** is the old value less one, less one more if that happens to
8602 ** be a root-page number, less one again if that is the
8603 ** PENDING_BYTE_PAGE.
8604 */
danielk197787a6e732004-11-05 12:58:25 +00008605 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008606 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8607 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008608 maxRootPgno--;
8609 }
danielk1977599fcba2004-11-08 07:13:13 +00008610 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8611
danielk1977aef0bf62005-12-30 16:28:01 +00008612 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008613 }else{
drhc314dc72009-07-21 11:52:34 +00008614 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008615 releasePage(pPage);
8616 }
8617#endif
drh2aa679f2001-06-25 02:11:07 +00008618 }else{
drhc046e3e2009-07-15 11:26:44 +00008619 /* If sqlite3BtreeDropTable was called on page 1.
8620 ** This really never should happen except in a corrupt
8621 ** database.
8622 */
drha34b6762004-05-07 13:30:42 +00008623 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008624 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008625 }
drh8b2f49b2001-06-08 00:21:52 +00008626 return rc;
8627}
drhd677b3d2007-08-20 22:48:41 +00008628int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8629 int rc;
8630 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008631 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008632 sqlite3BtreeLeave(p);
8633 return rc;
8634}
drh8b2f49b2001-06-08 00:21:52 +00008635
drh001bbcb2003-03-19 03:14:00 +00008636
drh8b2f49b2001-06-08 00:21:52 +00008637/*
danielk1977602b4662009-07-02 07:47:33 +00008638** This function may only be called if the b-tree connection already
8639** has a read or write transaction open on the database.
8640**
drh23e11ca2004-05-04 17:27:28 +00008641** Read the meta-information out of a database file. Meta[0]
8642** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008643** through meta[15] are available for use by higher layers. Meta[0]
8644** is read-only, the others are read/write.
8645**
8646** The schema layer numbers meta values differently. At the schema
8647** layer (and the SetCookie and ReadCookie opcodes) the number of
8648** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008649**
8650** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8651** of reading the value out of the header, it instead loads the "DataVersion"
8652** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8653** database file. It is a number computed by the pager. But its access
8654** pattern is the same as header meta values, and so it is convenient to
8655** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008656*/
danielk1977602b4662009-07-02 07:47:33 +00008657void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008658 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008659
drhd677b3d2007-08-20 22:48:41 +00008660 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008661 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008662 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008663 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008664 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008665
drh91618562014-12-19 19:28:02 +00008666 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008667 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008668 }else{
8669 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8670 }
drhae157872004-08-14 19:20:09 +00008671
danielk1977602b4662009-07-02 07:47:33 +00008672 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8673 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008674#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008675 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8676 pBt->btsFlags |= BTS_READ_ONLY;
8677 }
danielk1977003ba062004-11-04 02:57:33 +00008678#endif
drhae157872004-08-14 19:20:09 +00008679
drhd677b3d2007-08-20 22:48:41 +00008680 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008681}
8682
8683/*
drh23e11ca2004-05-04 17:27:28 +00008684** Write meta-information back into the database. Meta[0] is
8685** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008686*/
danielk1977aef0bf62005-12-30 16:28:01 +00008687int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8688 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008689 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008690 int rc;
drh23e11ca2004-05-04 17:27:28 +00008691 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008692 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008693 assert( p->inTrans==TRANS_WRITE );
8694 assert( pBt->pPage1!=0 );
8695 pP1 = pBt->pPage1->aData;
8696 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8697 if( rc==SQLITE_OK ){
8698 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008699#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008700 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008701 assert( pBt->autoVacuum || iMeta==0 );
8702 assert( iMeta==0 || iMeta==1 );
8703 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008704 }
drh64022502009-01-09 14:11:04 +00008705#endif
drh5df72a52002-06-06 23:16:05 +00008706 }
drhd677b3d2007-08-20 22:48:41 +00008707 sqlite3BtreeLeave(p);
8708 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008709}
drh8c42ca92001-06-22 19:15:00 +00008710
danielk1977a5533162009-02-24 10:01:51 +00008711#ifndef SQLITE_OMIT_BTREECOUNT
8712/*
8713** The first argument, pCur, is a cursor opened on some b-tree. Count the
8714** number of entries in the b-tree and write the result to *pnEntry.
8715**
8716** SQLITE_OK is returned if the operation is successfully executed.
8717** Otherwise, if an error is encountered (i.e. an IO error or database
8718** corruption) an SQLite error code is returned.
8719*/
8720int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8721 i64 nEntry = 0; /* Value to return in *pnEntry */
8722 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008723
8724 if( pCur->pgnoRoot==0 ){
8725 *pnEntry = 0;
8726 return SQLITE_OK;
8727 }
danielk1977a5533162009-02-24 10:01:51 +00008728 rc = moveToRoot(pCur);
8729
8730 /* Unless an error occurs, the following loop runs one iteration for each
8731 ** page in the B-Tree structure (not including overflow pages).
8732 */
8733 while( rc==SQLITE_OK ){
8734 int iIdx; /* Index of child node in parent */
8735 MemPage *pPage; /* Current page of the b-tree */
8736
8737 /* If this is a leaf page or the tree is not an int-key tree, then
8738 ** this page contains countable entries. Increment the entry counter
8739 ** accordingly.
8740 */
8741 pPage = pCur->apPage[pCur->iPage];
8742 if( pPage->leaf || !pPage->intKey ){
8743 nEntry += pPage->nCell;
8744 }
8745
8746 /* pPage is a leaf node. This loop navigates the cursor so that it
8747 ** points to the first interior cell that it points to the parent of
8748 ** the next page in the tree that has not yet been visited. The
8749 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8750 ** of the page, or to the number of cells in the page if the next page
8751 ** to visit is the right-child of its parent.
8752 **
8753 ** If all pages in the tree have been visited, return SQLITE_OK to the
8754 ** caller.
8755 */
8756 if( pPage->leaf ){
8757 do {
8758 if( pCur->iPage==0 ){
8759 /* All pages of the b-tree have been visited. Return successfully. */
8760 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008761 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008762 }
danielk197730548662009-07-09 05:07:37 +00008763 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008764 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8765
8766 pCur->aiIdx[pCur->iPage]++;
8767 pPage = pCur->apPage[pCur->iPage];
8768 }
8769
8770 /* Descend to the child node of the cell that the cursor currently
8771 ** points at. This is the right-child if (iIdx==pPage->nCell).
8772 */
8773 iIdx = pCur->aiIdx[pCur->iPage];
8774 if( iIdx==pPage->nCell ){
8775 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8776 }else{
8777 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8778 }
8779 }
8780
shanebe217792009-03-05 04:20:31 +00008781 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008782 return rc;
8783}
8784#endif
drhdd793422001-06-28 01:54:48 +00008785
drhdd793422001-06-28 01:54:48 +00008786/*
drh5eddca62001-06-30 21:53:53 +00008787** Return the pager associated with a BTree. This routine is used for
8788** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008789*/
danielk1977aef0bf62005-12-30 16:28:01 +00008790Pager *sqlite3BtreePager(Btree *p){
8791 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008792}
drh5eddca62001-06-30 21:53:53 +00008793
drhb7f91642004-10-31 02:22:47 +00008794#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008795/*
8796** Append a message to the error message string.
8797*/
drh2e38c322004-09-03 18:38:44 +00008798static void checkAppendMsg(
8799 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008800 const char *zFormat,
8801 ...
8802){
8803 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008804 if( !pCheck->mxErr ) return;
8805 pCheck->mxErr--;
8806 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008807 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008808 if( pCheck->errMsg.nChar ){
8809 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008810 }
drh867db832014-09-26 02:41:05 +00008811 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008812 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008813 }
8814 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8815 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008816 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008817 pCheck->mallocFailed = 1;
8818 }
drh5eddca62001-06-30 21:53:53 +00008819}
drhb7f91642004-10-31 02:22:47 +00008820#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008821
drhb7f91642004-10-31 02:22:47 +00008822#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008823
8824/*
8825** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8826** corresponds to page iPg is already set.
8827*/
8828static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8829 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8830 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8831}
8832
8833/*
8834** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8835*/
8836static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8837 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8838 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8839}
8840
8841
drh5eddca62001-06-30 21:53:53 +00008842/*
8843** Add 1 to the reference count for page iPage. If this is the second
8844** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008845** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008846** if this is the first reference to the page.
8847**
8848** Also check that the page number is in bounds.
8849*/
drh867db832014-09-26 02:41:05 +00008850static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008851 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008852 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008853 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008854 return 1;
8855 }
dan1235bb12012-04-03 17:43:28 +00008856 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008857 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008858 return 1;
8859 }
dan1235bb12012-04-03 17:43:28 +00008860 setPageReferenced(pCheck, iPage);
8861 return 0;
drh5eddca62001-06-30 21:53:53 +00008862}
8863
danielk1977afcdd022004-10-31 16:25:42 +00008864#ifndef SQLITE_OMIT_AUTOVACUUM
8865/*
8866** Check that the entry in the pointer-map for page iChild maps to
8867** page iParent, pointer type ptrType. If not, append an error message
8868** to pCheck.
8869*/
8870static void checkPtrmap(
8871 IntegrityCk *pCheck, /* Integrity check context */
8872 Pgno iChild, /* Child page number */
8873 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008874 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008875){
8876 int rc;
8877 u8 ePtrmapType;
8878 Pgno iPtrmapParent;
8879
8880 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8881 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008882 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008883 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008884 return;
8885 }
8886
8887 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008888 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008889 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8890 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8891 }
8892}
8893#endif
8894
drh5eddca62001-06-30 21:53:53 +00008895/*
8896** Check the integrity of the freelist or of an overflow page list.
8897** Verify that the number of pages on the list is N.
8898*/
drh30e58752002-03-02 20:41:57 +00008899static void checkList(
8900 IntegrityCk *pCheck, /* Integrity checking context */
8901 int isFreeList, /* True for a freelist. False for overflow page list */
8902 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008903 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008904){
8905 int i;
drh3a4c1412004-05-09 20:40:11 +00008906 int expected = N;
8907 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008908 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008909 DbPage *pOvflPage;
8910 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008911 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008912 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008913 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008914 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008915 break;
8916 }
drh867db832014-09-26 02:41:05 +00008917 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008918 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008919 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008920 break;
8921 }
danielk19773b8a05f2007-03-19 17:44:26 +00008922 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008923 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008924 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008925#ifndef SQLITE_OMIT_AUTOVACUUM
8926 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008927 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008928 }
8929#endif
drh43b18e12010-08-17 19:40:08 +00008930 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008931 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008932 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008933 N--;
8934 }else{
8935 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008936 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008937#ifndef SQLITE_OMIT_AUTOVACUUM
8938 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008939 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008940 }
8941#endif
drh867db832014-09-26 02:41:05 +00008942 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008943 }
8944 N -= n;
drh30e58752002-03-02 20:41:57 +00008945 }
drh30e58752002-03-02 20:41:57 +00008946 }
danielk1977afcdd022004-10-31 16:25:42 +00008947#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008948 else{
8949 /* If this database supports auto-vacuum and iPage is not the last
8950 ** page in this overflow list, check that the pointer-map entry for
8951 ** the following page matches iPage.
8952 */
8953 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008954 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008955 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008956 }
danielk1977afcdd022004-10-31 16:25:42 +00008957 }
8958#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008959 iPage = get4byte(pOvflData);
8960 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008961
8962 if( isFreeList && N<(iPage!=0) ){
8963 checkAppendMsg(pCheck, "free-page count in header is too small");
8964 }
drh5eddca62001-06-30 21:53:53 +00008965 }
8966}
drhb7f91642004-10-31 02:22:47 +00008967#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008968
drh67731a92015-04-16 11:56:03 +00008969/*
8970** An implementation of a min-heap.
8971**
8972** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008973** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008974** and aHeap[N*2+1].
8975**
8976** The heap property is this: Every node is less than or equal to both
8977** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008978** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008979**
8980** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8981** the heap, preserving the heap property. The btreeHeapPull() routine
8982** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008983** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008984** property.
8985**
8986** This heap is used for cell overlap and coverage testing. Each u32
8987** entry represents the span of a cell or freeblock on a btree page.
8988** The upper 16 bits are the index of the first byte of a range and the
8989** lower 16 bits are the index of the last byte of that range.
8990*/
8991static void btreeHeapInsert(u32 *aHeap, u32 x){
8992 u32 j, i = ++aHeap[0];
8993 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008994 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008995 x = aHeap[j];
8996 aHeap[j] = aHeap[i];
8997 aHeap[i] = x;
8998 i = j;
8999 }
9000}
9001static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9002 u32 j, i, x;
9003 if( (x = aHeap[0])==0 ) return 0;
9004 *pOut = aHeap[1];
9005 aHeap[1] = aHeap[x];
9006 aHeap[x] = 0xffffffff;
9007 aHeap[0]--;
9008 i = 1;
9009 while( (j = i*2)<=aHeap[0] ){
9010 if( aHeap[j]>aHeap[j+1] ) j++;
9011 if( aHeap[i]<aHeap[j] ) break;
9012 x = aHeap[i];
9013 aHeap[i] = aHeap[j];
9014 aHeap[j] = x;
9015 i = j;
9016 }
9017 return 1;
9018}
9019
drhb7f91642004-10-31 02:22:47 +00009020#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009021/*
9022** Do various sanity checks on a single page of a tree. Return
9023** the tree depth. Root pages return 0. Parents of root pages
9024** return 1, and so forth.
9025**
9026** These checks are done:
9027**
9028** 1. Make sure that cells and freeblocks do not overlap
9029** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009030** 2. Make sure integer cell keys are in order.
9031** 3. Check the integrity of overflow pages.
9032** 4. Recursively call checkTreePage on all children.
9033** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009034*/
9035static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009036 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009037 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009038 i64 *piMinKey, /* Write minimum integer primary key here */
9039 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009040){
drhcbc6b712015-07-02 16:17:30 +00009041 MemPage *pPage = 0; /* The page being analyzed */
9042 int i; /* Loop counter */
9043 int rc; /* Result code from subroutine call */
9044 int depth = -1, d2; /* Depth of a subtree */
9045 int pgno; /* Page number */
9046 int nFrag; /* Number of fragmented bytes on the page */
9047 int hdr; /* Offset to the page header */
9048 int cellStart; /* Offset to the start of the cell pointer array */
9049 int nCell; /* Number of cells */
9050 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9051 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9052 ** False if IPK must be strictly less than maxKey */
9053 u8 *data; /* Page content */
9054 u8 *pCell; /* Cell content */
9055 u8 *pCellIdx; /* Next element of the cell pointer array */
9056 BtShared *pBt; /* The BtShared object that owns pPage */
9057 u32 pc; /* Address of a cell */
9058 u32 usableSize; /* Usable size of the page */
9059 u32 contentOffset; /* Offset to the start of the cell content area */
9060 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009061 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009062 const char *saved_zPfx = pCheck->zPfx;
9063 int saved_v1 = pCheck->v1;
9064 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009065 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009066
drh5eddca62001-06-30 21:53:53 +00009067 /* Check that the page exists
9068 */
drhd9cb6ac2005-10-20 07:28:17 +00009069 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009070 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009071 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009072 if( checkRef(pCheck, iPage) ) return 0;
9073 pCheck->zPfx = "Page %d: ";
9074 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009075 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009076 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009077 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009078 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009079 }
danielk197793caf5a2009-07-11 06:55:33 +00009080
9081 /* Clear MemPage.isInit to make sure the corruption detection code in
9082 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009083 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009084 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009085 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009086 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009087 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009088 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009089 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009090 }
drhcbc6b712015-07-02 16:17:30 +00009091 data = pPage->aData;
9092 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009093
drhcbc6b712015-07-02 16:17:30 +00009094 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009095 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009096 contentOffset = get2byteNotZero(&data[hdr+5]);
9097 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9098
9099 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9100 ** number of cells on the page. */
9101 nCell = get2byte(&data[hdr+3]);
9102 assert( pPage->nCell==nCell );
9103
9104 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9105 ** immediately follows the b-tree page header. */
9106 cellStart = hdr + 12 - 4*pPage->leaf;
9107 assert( pPage->aCellIdx==&data[cellStart] );
9108 pCellIdx = &data[cellStart + 2*(nCell-1)];
9109
9110 if( !pPage->leaf ){
9111 /* Analyze the right-child page of internal pages */
9112 pgno = get4byte(&data[hdr+8]);
9113#ifndef SQLITE_OMIT_AUTOVACUUM
9114 if( pBt->autoVacuum ){
9115 pCheck->zPfx = "On page %d at right child: ";
9116 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9117 }
9118#endif
9119 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9120 keyCanBeEqual = 0;
9121 }else{
9122 /* For leaf pages, the coverage check will occur in the same loop
9123 ** as the other cell checks, so initialize the heap. */
9124 heap = pCheck->heap;
9125 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009126 }
9127
drhcbc6b712015-07-02 16:17:30 +00009128 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9129 ** integer offsets to the cell contents. */
9130 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009131 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009132
drhcbc6b712015-07-02 16:17:30 +00009133 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009134 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009135 assert( pCellIdx==&data[cellStart + i*2] );
9136 pc = get2byteAligned(pCellIdx);
9137 pCellIdx -= 2;
9138 if( pc<contentOffset || pc>usableSize-4 ){
9139 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9140 pc, contentOffset, usableSize-4);
9141 doCoverageCheck = 0;
9142 continue;
shaneh195475d2010-02-19 04:28:08 +00009143 }
drhcbc6b712015-07-02 16:17:30 +00009144 pCell = &data[pc];
9145 pPage->xParseCell(pPage, pCell, &info);
9146 if( pc+info.nSize>usableSize ){
9147 checkAppendMsg(pCheck, "Extends off end of page");
9148 doCoverageCheck = 0;
9149 continue;
drh5eddca62001-06-30 21:53:53 +00009150 }
9151
drhcbc6b712015-07-02 16:17:30 +00009152 /* Check for integer primary key out of range */
9153 if( pPage->intKey ){
9154 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9155 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9156 }
9157 maxKey = info.nKey;
9158 }
9159
9160 /* Check the content overflow list */
9161 if( info.nPayload>info.nLocal ){
9162 int nPage; /* Number of pages on the overflow chain */
9163 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009164 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009165 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009166 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009167#ifndef SQLITE_OMIT_AUTOVACUUM
9168 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009169 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009170 }
9171#endif
drh867db832014-09-26 02:41:05 +00009172 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009173 }
9174
drh5eddca62001-06-30 21:53:53 +00009175 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009176 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009177 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009178#ifndef SQLITE_OMIT_AUTOVACUUM
9179 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009180 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009181 }
9182#endif
drhcbc6b712015-07-02 16:17:30 +00009183 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9184 keyCanBeEqual = 0;
9185 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009186 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009187 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009188 }
drhcbc6b712015-07-02 16:17:30 +00009189 }else{
9190 /* Populate the coverage-checking heap for leaf pages */
9191 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009192 }
9193 }
drhcbc6b712015-07-02 16:17:30 +00009194 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009195
drh5eddca62001-06-30 21:53:53 +00009196 /* Check for complete coverage of the page
9197 */
drh867db832014-09-26 02:41:05 +00009198 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009199 if( doCoverageCheck && pCheck->mxErr>0 ){
9200 /* For leaf pages, the min-heap has already been initialized and the
9201 ** cells have already been inserted. But for internal pages, that has
9202 ** not yet been done, so do it now */
9203 if( !pPage->leaf ){
9204 heap = pCheck->heap;
9205 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009206 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009207 u32 size;
9208 pc = get2byteAligned(&data[cellStart+i*2]);
9209 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009210 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009211 }
drh2e38c322004-09-03 18:38:44 +00009212 }
drhcbc6b712015-07-02 16:17:30 +00009213 /* Add the freeblocks to the min-heap
9214 **
9215 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009216 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009217 ** freeblocks on the page.
9218 */
drh8c2bbb62009-07-10 02:52:20 +00009219 i = get2byte(&data[hdr+1]);
9220 while( i>0 ){
9221 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009222 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009223 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009224 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009225 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009226 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9227 ** big-endian integer which is the offset in the b-tree page of the next
9228 ** freeblock in the chain, or zero if the freeblock is the last on the
9229 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009230 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009231 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9232 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009233 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009234 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009235 i = j;
drh2e38c322004-09-03 18:38:44 +00009236 }
drhcbc6b712015-07-02 16:17:30 +00009237 /* Analyze the min-heap looking for overlap between cells and/or
9238 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009239 **
9240 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9241 ** There is an implied first entry the covers the page header, the cell
9242 ** pointer index, and the gap between the cell pointer index and the start
9243 ** of cell content.
9244 **
9245 ** The loop below pulls entries from the min-heap in order and compares
9246 ** the start_address against the previous end_address. If there is an
9247 ** overlap, that means bytes are used multiple times. If there is a gap,
9248 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009249 */
9250 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009251 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009252 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009253 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009254 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009255 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009256 break;
drh67731a92015-04-16 11:56:03 +00009257 }else{
drhcbc6b712015-07-02 16:17:30 +00009258 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009259 prev = x;
drh2e38c322004-09-03 18:38:44 +00009260 }
9261 }
drhcbc6b712015-07-02 16:17:30 +00009262 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009263 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9264 ** is stored in the fifth field of the b-tree page header.
9265 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9266 ** number of fragmented free bytes within the cell content area.
9267 */
drhcbc6b712015-07-02 16:17:30 +00009268 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009269 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009270 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009271 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009272 }
9273 }
drh867db832014-09-26 02:41:05 +00009274
9275end_of_check:
drh72e191e2015-07-04 11:14:20 +00009276 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009277 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009278 pCheck->zPfx = saved_zPfx;
9279 pCheck->v1 = saved_v1;
9280 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009281 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009282}
drhb7f91642004-10-31 02:22:47 +00009283#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009284
drhb7f91642004-10-31 02:22:47 +00009285#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009286/*
9287** This routine does a complete check of the given BTree file. aRoot[] is
9288** an array of pages numbers were each page number is the root page of
9289** a table. nRoot is the number of entries in aRoot.
9290**
danielk19773509a652009-07-06 18:56:13 +00009291** A read-only or read-write transaction must be opened before calling
9292** this function.
9293**
drhc890fec2008-08-01 20:10:08 +00009294** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009295** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009296** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009297** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009298*/
drh1dcdbc02007-01-27 02:24:54 +00009299char *sqlite3BtreeIntegrityCheck(
9300 Btree *p, /* The btree to be checked */
9301 int *aRoot, /* An array of root pages numbers for individual trees */
9302 int nRoot, /* Number of entries in aRoot[] */
9303 int mxErr, /* Stop reporting errors after this many */
9304 int *pnErr /* Write number of errors seen to this variable */
9305){
danielk197789d40042008-11-17 14:20:56 +00009306 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009307 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009308 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009309 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009310 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009311 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009312
drhd677b3d2007-08-20 22:48:41 +00009313 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009314 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009315 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009316 sCheck.pBt = pBt;
9317 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009318 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009319 sCheck.mxErr = mxErr;
9320 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009321 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009322 sCheck.zPfx = 0;
9323 sCheck.v1 = 0;
9324 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009325 sCheck.aPgRef = 0;
9326 sCheck.heap = 0;
9327 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009328 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009329 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009330 }
dan1235bb12012-04-03 17:43:28 +00009331
9332 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9333 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009334 sCheck.mallocFailed = 1;
9335 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009336 }
drhe05b3f82015-07-01 17:53:49 +00009337 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9338 if( sCheck.heap==0 ){
9339 sCheck.mallocFailed = 1;
9340 goto integrity_ck_cleanup;
9341 }
9342
drh42cac6d2004-11-20 20:31:11 +00009343 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009344 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009345
9346 /* Check the integrity of the freelist
9347 */
drh867db832014-09-26 02:41:05 +00009348 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009349 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009350 get4byte(&pBt->pPage1->aData[36]));
9351 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009352
9353 /* Check all the tables.
9354 */
drhcbc6b712015-07-02 16:17:30 +00009355 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9356 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009357 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009358 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009359 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009360#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009361 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009362 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009363 }
9364#endif
drhcbc6b712015-07-02 16:17:30 +00009365 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009366 }
drhcbc6b712015-07-02 16:17:30 +00009367 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009368
9369 /* Make sure every page in the file is referenced
9370 */
drh1dcdbc02007-01-27 02:24:54 +00009371 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009372#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009373 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009374 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009375 }
danielk1977afcdd022004-10-31 16:25:42 +00009376#else
9377 /* If the database supports auto-vacuum, make sure no tables contain
9378 ** references to pointer-map pages.
9379 */
dan1235bb12012-04-03 17:43:28 +00009380 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009381 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009382 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009383 }
dan1235bb12012-04-03 17:43:28 +00009384 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009385 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009386 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009387 }
9388#endif
drh5eddca62001-06-30 21:53:53 +00009389 }
9390
drh5eddca62001-06-30 21:53:53 +00009391 /* Clean up and report errors.
9392 */
drhe05b3f82015-07-01 17:53:49 +00009393integrity_ck_cleanup:
9394 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009395 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009396 if( sCheck.mallocFailed ){
9397 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009398 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009399 }
drh1dcdbc02007-01-27 02:24:54 +00009400 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009401 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009402 /* Make sure this analysis did not leave any unref() pages. */
9403 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9404 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009405 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009406}
drhb7f91642004-10-31 02:22:47 +00009407#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009408
drh73509ee2003-04-06 20:44:45 +00009409/*
drhd4e0bb02012-05-27 01:19:04 +00009410** Return the full pathname of the underlying database file. Return
9411** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009412**
9413** The pager filename is invariant as long as the pager is
9414** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009415*/
danielk1977aef0bf62005-12-30 16:28:01 +00009416const char *sqlite3BtreeGetFilename(Btree *p){
9417 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009418 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009419}
9420
9421/*
danielk19775865e3d2004-06-14 06:03:57 +00009422** Return the pathname of the journal file for this database. The return
9423** value of this routine is the same regardless of whether the journal file
9424** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009425**
9426** The pager journal filename is invariant as long as the pager is
9427** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009428*/
danielk1977aef0bf62005-12-30 16:28:01 +00009429const char *sqlite3BtreeGetJournalname(Btree *p){
9430 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009431 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009432}
9433
danielk19771d850a72004-05-31 08:26:49 +00009434/*
9435** Return non-zero if a transaction is active.
9436*/
danielk1977aef0bf62005-12-30 16:28:01 +00009437int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009438 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009439 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009440}
9441
dana550f2d2010-08-02 10:47:05 +00009442#ifndef SQLITE_OMIT_WAL
9443/*
9444** Run a checkpoint on the Btree passed as the first argument.
9445**
9446** Return SQLITE_LOCKED if this or any other connection has an open
9447** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009448**
dancdc1f042010-11-18 12:11:05 +00009449** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009450*/
dancdc1f042010-11-18 12:11:05 +00009451int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009452 int rc = SQLITE_OK;
9453 if( p ){
9454 BtShared *pBt = p->pBt;
9455 sqlite3BtreeEnter(p);
9456 if( pBt->inTransaction!=TRANS_NONE ){
9457 rc = SQLITE_LOCKED;
9458 }else{
dancdc1f042010-11-18 12:11:05 +00009459 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009460 }
9461 sqlite3BtreeLeave(p);
9462 }
9463 return rc;
9464}
9465#endif
9466
danielk19771d850a72004-05-31 08:26:49 +00009467/*
danielk19772372c2b2006-06-27 16:34:56 +00009468** Return non-zero if a read (or write) transaction is active.
9469*/
9470int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009471 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009472 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009473 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009474}
9475
danielk197704103022009-02-03 16:51:24 +00009476int sqlite3BtreeIsInBackup(Btree *p){
9477 assert( p );
9478 assert( sqlite3_mutex_held(p->db->mutex) );
9479 return p->nBackup!=0;
9480}
9481
danielk19772372c2b2006-06-27 16:34:56 +00009482/*
danielk1977da184232006-01-05 11:34:32 +00009483** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009484** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009485** purposes (for example, to store a high-level schema associated with
9486** the shared-btree). The btree layer manages reference counting issues.
9487**
9488** The first time this is called on a shared-btree, nBytes bytes of memory
9489** are allocated, zeroed, and returned to the caller. For each subsequent
9490** call the nBytes parameter is ignored and a pointer to the same blob
9491** of memory returned.
9492**
danielk1977171bfed2008-06-23 09:50:50 +00009493** If the nBytes parameter is 0 and the blob of memory has not yet been
9494** allocated, a null pointer is returned. If the blob has already been
9495** allocated, it is returned as normal.
9496**
danielk1977da184232006-01-05 11:34:32 +00009497** Just before the shared-btree is closed, the function passed as the
9498** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009499** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009500** on the memory, the btree layer does that.
9501*/
9502void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9503 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009504 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009505 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009506 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009507 pBt->xFreeSchema = xFree;
9508 }
drh27641702007-08-22 02:56:42 +00009509 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009510 return pBt->pSchema;
9511}
9512
danielk1977c87d34d2006-01-06 13:00:28 +00009513/*
danielk1977404ca072009-03-16 13:19:36 +00009514** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9515** btree as the argument handle holds an exclusive lock on the
9516** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009517*/
9518int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009519 int rc;
drhe5fe6902007-12-07 18:55:28 +00009520 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009521 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009522 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9523 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009524 sqlite3BtreeLeave(p);
9525 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009526}
9527
drha154dcd2006-03-22 22:10:07 +00009528
9529#ifndef SQLITE_OMIT_SHARED_CACHE
9530/*
9531** Obtain a lock on the table whose root page is iTab. The
9532** lock is a write lock if isWritelock is true or a read lock
9533** if it is false.
9534*/
danielk1977c00da102006-01-07 13:21:04 +00009535int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009536 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009537 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009538 if( p->sharable ){
9539 u8 lockType = READ_LOCK + isWriteLock;
9540 assert( READ_LOCK+1==WRITE_LOCK );
9541 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009542
drh6a9ad3d2008-04-02 16:29:30 +00009543 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009544 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009545 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009546 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009547 }
9548 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009549 }
9550 return rc;
9551}
drha154dcd2006-03-22 22:10:07 +00009552#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009553
danielk1977b4e9af92007-05-01 17:49:49 +00009554#ifndef SQLITE_OMIT_INCRBLOB
9555/*
9556** Argument pCsr must be a cursor opened for writing on an
9557** INTKEY table currently pointing at a valid table entry.
9558** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009559**
9560** Only the data content may only be modified, it is not possible to
9561** change the length of the data stored. If this function is called with
9562** parameters that attempt to write past the end of the existing data,
9563** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009564*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009565int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009566 int rc;
drh1fee73e2007-08-29 04:00:57 +00009567 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009568 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009569 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009570
danielk1977c9000e62009-07-08 13:55:28 +00009571 rc = restoreCursorPosition(pCsr);
9572 if( rc!=SQLITE_OK ){
9573 return rc;
9574 }
danielk19773588ceb2008-06-10 17:30:26 +00009575 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9576 if( pCsr->eState!=CURSOR_VALID ){
9577 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009578 }
9579
dan227a1c42013-04-03 11:17:39 +00009580 /* Save the positions of all other cursors open on this table. This is
9581 ** required in case any of them are holding references to an xFetch
9582 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009583 **
drh3f387402014-09-24 01:23:00 +00009584 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009585 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9586 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009587 */
drh370c9f42013-04-03 20:04:04 +00009588 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9589 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009590
danielk1977c9000e62009-07-08 13:55:28 +00009591 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009592 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009593 ** (b) there is a read/write transaction open,
9594 ** (c) the connection holds a write-lock on the table (if required),
9595 ** (d) there are no conflicting read-locks, and
9596 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009597 */
drh036dbec2014-03-11 23:40:44 +00009598 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009599 return SQLITE_READONLY;
9600 }
drhc9166342012-01-05 23:32:06 +00009601 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9602 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009603 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9604 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009605 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009606
drhfb192682009-07-11 18:26:28 +00009607 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009608}
danielk19772dec9702007-05-02 16:48:37 +00009609
9610/*
dan5a500af2014-03-11 20:33:04 +00009611** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009612*/
dan5a500af2014-03-11 20:33:04 +00009613void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009614 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009615 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009616}
danielk1977b4e9af92007-05-01 17:49:49 +00009617#endif
dane04dc882010-04-20 18:53:15 +00009618
9619/*
9620** Set both the "read version" (single byte at byte offset 18) and
9621** "write version" (single byte at byte offset 19) fields in the database
9622** header to iVersion.
9623*/
9624int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9625 BtShared *pBt = pBtree->pBt;
9626 int rc; /* Return code */
9627
dane04dc882010-04-20 18:53:15 +00009628 assert( iVersion==1 || iVersion==2 );
9629
danb9780022010-04-21 18:37:57 +00009630 /* If setting the version fields to 1, do not automatically open the
9631 ** WAL connection, even if the version fields are currently set to 2.
9632 */
drhc9166342012-01-05 23:32:06 +00009633 pBt->btsFlags &= ~BTS_NO_WAL;
9634 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009635
9636 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009637 if( rc==SQLITE_OK ){
9638 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009639 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009640 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009641 if( rc==SQLITE_OK ){
9642 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9643 if( rc==SQLITE_OK ){
9644 aData[18] = (u8)iVersion;
9645 aData[19] = (u8)iVersion;
9646 }
9647 }
9648 }
dane04dc882010-04-20 18:53:15 +00009649 }
9650
drhc9166342012-01-05 23:32:06 +00009651 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009652 return rc;
9653}
dan428c2182012-08-06 18:50:11 +00009654
drhe0997b32015-03-20 14:57:50 +00009655/*
9656** Return true if the cursor has a hint specified. This routine is
9657** only used from within assert() statements
9658*/
9659int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9660 return (pCsr->hints & mask)!=0;
9661}
drhe0997b32015-03-20 14:57:50 +00009662
drh781597f2014-05-21 08:21:07 +00009663/*
9664** Return true if the given Btree is read-only.
9665*/
9666int sqlite3BtreeIsReadonly(Btree *p){
9667 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9668}
drhdef68892014-11-04 12:11:23 +00009669
9670/*
9671** Return the size of the header added to each page by this module.
9672*/
drh37c057b2014-12-30 00:57:29 +00009673int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }