blob: abe0b844f3225889b3f9407b400b255149288dbf [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
pdrdb9cb172020-03-08 13:33:58 +0000614 return p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTestNotNull(p, pgno));
danielk1977bea2a942009-01-20 17:06:27 +0000615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
drhe6c628e2019-01-21 16:01:17 +0000675 memset(((u8*)pKey)+pCur->nKey, 0, 9+8);
danf0ee1d32015-09-12 19:26:11 +0000676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drh7b14b652019-12-29 22:08:20 +0000702 if( pCur->curFlags & BTCF_Pinned ){
703 return SQLITE_CONSTRAINT_PINNED;
704 }
drhd2f83132015-03-25 17:35:01 +0000705 if( pCur->eState==CURSOR_SKIPNEXT ){
706 pCur->eState = CURSOR_VALID;
707 }else{
708 pCur->skipNext = 0;
709 }
drh980b1a72006-08-16 16:42:48 +0000710
danf0ee1d32015-09-12 19:26:11 +0000711 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000712 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000713 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000714 pCur->eState = CURSOR_REQUIRESEEK;
715 }
716
dane755e102015-09-30 12:59:12 +0000717 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000718 return rc;
719}
720
drh637f3d82014-08-22 22:26:07 +0000721/* Forward reference */
722static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
723
drh980b1a72006-08-16 16:42:48 +0000724/*
drh0ee3dbe2009-10-16 15:05:18 +0000725** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000726** the table with root-page iRoot. "Saving the cursor position" means that
727** the location in the btree is remembered in such a way that it can be
728** moved back to the same spot after the btree has been modified. This
729** routine is called just before cursor pExcept is used to modify the
730** table, for example in BtreeDelete() or BtreeInsert().
731**
drh27fb7462015-06-30 02:47:36 +0000732** If there are two or more cursors on the same btree, then all such
733** cursors should have their BTCF_Multiple flag set. The btreeCursor()
734** routine enforces that rule. This routine only needs to be called in
735** the uncommon case when pExpect has the BTCF_Multiple flag set.
736**
737** If pExpect!=NULL and if no other cursors are found on the same root-page,
738** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
739** pointless call to this routine.
740**
drh637f3d82014-08-22 22:26:07 +0000741** Implementation note: This routine merely checks to see if any cursors
742** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
743** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000744*/
745static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
746 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000747 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000748 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000749 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000750 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
751 }
drh27fb7462015-06-30 02:47:36 +0000752 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
753 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
754 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000755}
756
757/* This helper routine to saveAllCursors does the actual work of saving
758** the cursors if and when a cursor is found that actually requires saving.
759** The common case is that no cursors need to be saved, so this routine is
760** broken out from its caller to avoid unnecessary stack pointer movement.
761*/
762static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000763 BtCursor *p, /* The first cursor that needs saving */
764 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
765 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000766){
767 do{
drh138eeeb2013-03-27 03:15:23 +0000768 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000769 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000770 int rc = saveCursorPosition(p);
771 if( SQLITE_OK!=rc ){
772 return rc;
773 }
774 }else{
drh85ef6302017-08-02 15:50:09 +0000775 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000776 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000777 }
778 }
drh637f3d82014-08-22 22:26:07 +0000779 p = p->pNext;
780 }while( p );
drh980b1a72006-08-16 16:42:48 +0000781 return SQLITE_OK;
782}
783
784/*
drhbf700f32007-03-31 02:36:44 +0000785** Clear the current cursor position.
786*/
danielk1977be51a652008-10-08 17:58:48 +0000787void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000788 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000789 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000790 pCur->pKey = 0;
791 pCur->eState = CURSOR_INVALID;
792}
793
794/*
danielk19773509a652009-07-06 18:56:13 +0000795** In this version of BtreeMoveto, pKey is a packed index record
796** such as is generated by the OP_MakeRecord opcode. Unpack the
797** record and then call BtreeMovetoUnpacked() to do the work.
798*/
799static int btreeMoveto(
800 BtCursor *pCur, /* Cursor open on the btree to be searched */
801 const void *pKey, /* Packed key if the btree is an index */
802 i64 nKey, /* Integer key for tables. Size of pKey for indices */
803 int bias, /* Bias search to the high end */
804 int *pRes /* Write search results here */
805){
806 int rc; /* Status code */
807 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000808
809 if( pKey ){
danb0c4c942019-01-24 15:16:17 +0000810 KeyInfo *pKeyInfo = pCur->pKeyInfo;
danielk19773509a652009-07-06 18:56:13 +0000811 assert( nKey==(i64)(int)nKey );
danb0c4c942019-01-24 15:16:17 +0000812 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000813 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
danb0c4c942019-01-24 15:16:17 +0000814 sqlite3VdbeRecordUnpack(pKeyInfo, (int)nKey, pKey, pIdxKey);
815 if( pIdxKey->nField==0 || pIdxKey->nField>pKeyInfo->nAllField ){
mistachkin88a79732017-09-04 19:31:54 +0000816 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000817 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000818 }
danielk19773509a652009-07-06 18:56:13 +0000819 }else{
820 pIdxKey = 0;
821 }
822 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000823moveto_done:
824 if( pIdxKey ){
825 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000826 }
827 return rc;
828}
829
830/*
drh980b1a72006-08-16 16:42:48 +0000831** Restore the cursor to the position it was in (or as close to as possible)
832** when saveCursorPosition() was called. Note that this call deletes the
833** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000834** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000835** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000836*/
danielk197730548662009-07-09 05:07:37 +0000837static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000838 int rc;
mistachkin4e2d3d42019-04-01 03:07:21 +0000839 int skipNext = 0;
dan7a2347e2016-01-07 16:43:54 +0000840 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000841 assert( pCur->eState>=CURSOR_REQUIRESEEK );
842 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000843 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000844 }
drh980b1a72006-08-16 16:42:48 +0000845 pCur->eState = CURSOR_INVALID;
drhb336d1a2019-03-30 19:17:35 +0000846 if( sqlite3FaultSim(410) ){
847 rc = SQLITE_IOERR;
848 }else{
849 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
850 }
drh980b1a72006-08-16 16:42:48 +0000851 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000852 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000853 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000854 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh0c873bf2019-01-28 00:42:06 +0000855 if( skipNext ) pCur->skipNext = skipNext;
drh9b47ee32013-08-20 03:13:51 +0000856 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
857 pCur->eState = CURSOR_SKIPNEXT;
858 }
drh980b1a72006-08-16 16:42:48 +0000859 }
860 return rc;
861}
862
drha3460582008-07-11 21:02:53 +0000863#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000864 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000865 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000866 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000867
drha3460582008-07-11 21:02:53 +0000868/*
drh6848dad2014-08-22 23:33:03 +0000869** Determine whether or not a cursor has moved from the position where
870** it was last placed, or has been invalidated for any other reason.
871** Cursors can move when the row they are pointing at is deleted out
872** from under them, for example. Cursor might also move if a btree
873** is rebalanced.
drha3460582008-07-11 21:02:53 +0000874**
drh6848dad2014-08-22 23:33:03 +0000875** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000876**
drh6848dad2014-08-22 23:33:03 +0000877** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
878** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000879*/
drh6848dad2014-08-22 23:33:03 +0000880int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000881 assert( EIGHT_BYTE_ALIGNMENT(pCur)
882 || pCur==sqlite3BtreeFakeValidCursor() );
883 assert( offsetof(BtCursor, eState)==0 );
884 assert( sizeof(pCur->eState)==1 );
885 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000886}
887
888/*
drhfe0cf7a2017-08-16 19:20:20 +0000889** Return a pointer to a fake BtCursor object that will always answer
890** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
891** cursor returned must not be used with any other Btree interface.
892*/
893BtCursor *sqlite3BtreeFakeValidCursor(void){
894 static u8 fakeCursor = CURSOR_VALID;
895 assert( offsetof(BtCursor, eState)==0 );
896 return (BtCursor*)&fakeCursor;
897}
898
899/*
drh6848dad2014-08-22 23:33:03 +0000900** This routine restores a cursor back to its original position after it
901** has been moved by some outside activity (such as a btree rebalance or
902** a row having been deleted out from under the cursor).
903**
904** On success, the *pDifferentRow parameter is false if the cursor is left
905** pointing at exactly the same row. *pDifferntRow is the row the cursor
906** was pointing to has been deleted, forcing the cursor to point to some
907** nearby row.
908**
909** This routine should only be called for a cursor that just returned
910** TRUE from sqlite3BtreeCursorHasMoved().
911*/
912int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000913 int rc;
914
drh6848dad2014-08-22 23:33:03 +0000915 assert( pCur!=0 );
916 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000917 rc = restoreCursorPosition(pCur);
918 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000919 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000920 return rc;
921 }
drh606a3572015-03-25 18:29:10 +0000922 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000923 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000924 }else{
drh6848dad2014-08-22 23:33:03 +0000925 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000926 }
927 return SQLITE_OK;
928}
929
drhf7854c72015-10-27 13:24:37 +0000930#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000931/*
drh0df57012015-08-14 15:05:55 +0000932** Provide hints to the cursor. The particular hint given (and the type
933** and number of the varargs parameters) is determined by the eHintType
934** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000935*/
drh0df57012015-08-14 15:05:55 +0000936void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000937 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000938}
drhf7854c72015-10-27 13:24:37 +0000939#endif
940
941/*
942** Provide flag hints to the cursor.
943*/
944void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
945 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
946 pCur->hints = x;
947}
948
drh28935362013-12-07 20:39:19 +0000949
danielk1977599fcba2004-11-08 07:13:13 +0000950#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000951/*
drha3152892007-05-05 11:48:52 +0000952** Given a page number of a regular database page, return the page
953** number for the pointer-map page that contains the entry for the
954** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000955**
956** Return 0 (not a valid page) for pgno==1 since there is
957** no pointer map associated with page 1. The integrity_check logic
958** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000959*/
danielk1977266664d2006-02-10 08:24:21 +0000960static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000961 int nPagesPerMapPage;
962 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000963 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000964 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000965 nPagesPerMapPage = (pBt->usableSize/5)+1;
966 iPtrMap = (pgno-2)/nPagesPerMapPage;
967 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000968 if( ret==PENDING_BYTE_PAGE(pBt) ){
969 ret++;
970 }
971 return ret;
972}
danielk1977a19df672004-11-03 11:37:07 +0000973
danielk1977afcdd022004-10-31 16:25:42 +0000974/*
danielk1977afcdd022004-10-31 16:25:42 +0000975** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000976**
977** This routine updates the pointer map entry for page number 'key'
978** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000979**
980** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
981** a no-op. If an error occurs, the appropriate error code is written
982** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000983*/
drh98add2e2009-07-20 17:11:49 +0000984static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000985 DbPage *pDbPage; /* The pointer map page */
986 u8 *pPtrmap; /* The pointer map data */
987 Pgno iPtrmap; /* The pointer map page number */
988 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000989 int rc; /* Return code from subfunctions */
990
991 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000992
drh1fee73e2007-08-29 04:00:57 +0000993 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000994 /* The master-journal page number must never be used as a pointer map page */
995 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
996
danielk1977ac11ee62005-01-15 12:45:51 +0000997 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000998 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000999 *pRC = SQLITE_CORRUPT_BKPT;
1000 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +00001001 }
danielk1977266664d2006-02-10 08:24:21 +00001002 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001003 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +00001004 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00001005 *pRC = rc;
1006 return;
danielk1977afcdd022004-10-31 16:25:42 +00001007 }
drh203b1ea2018-12-14 03:14:18 +00001008 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1009 /* The first byte of the extra data is the MemPage.isInit byte.
1010 ** If that byte is set, it means this page is also being used
1011 ** as a btree page. */
1012 *pRC = SQLITE_CORRUPT_BKPT;
1013 goto ptrmap_exit;
1014 }
danielk19778c666b12008-07-18 09:34:57 +00001015 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001016 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001017 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001018 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001019 }
drhfc243732011-05-17 15:21:56 +00001020 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001021 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001022
drh615ae552005-01-16 23:21:00 +00001023 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1024 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001025 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001026 if( rc==SQLITE_OK ){
1027 pPtrmap[offset] = eType;
1028 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001029 }
danielk1977afcdd022004-10-31 16:25:42 +00001030 }
1031
drh4925a552009-07-07 11:39:58 +00001032ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001033 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001034}
1035
1036/*
1037** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001038**
1039** This routine retrieves the pointer map entry for page 'key', writing
1040** the type and parent page number to *pEType and *pPgno respectively.
1041** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001042*/
danielk1977aef0bf62005-12-30 16:28:01 +00001043static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001044 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001045 int iPtrmap; /* Pointer map page index */
1046 u8 *pPtrmap; /* Pointer map page data */
1047 int offset; /* Offset of entry in pointer map */
1048 int rc;
1049
drh1fee73e2007-08-29 04:00:57 +00001050 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001051
danielk1977266664d2006-02-10 08:24:21 +00001052 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001053 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001054 if( rc!=0 ){
1055 return rc;
1056 }
danielk19773b8a05f2007-03-19 17:44:26 +00001057 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001058
danielk19778c666b12008-07-18 09:34:57 +00001059 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001060 if( offset<0 ){
1061 sqlite3PagerUnref(pDbPage);
1062 return SQLITE_CORRUPT_BKPT;
1063 }
1064 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001065 assert( pEType!=0 );
1066 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001067 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001068
danielk19773b8a05f2007-03-19 17:44:26 +00001069 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001070 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001071 return SQLITE_OK;
1072}
1073
danielk197785d90ca2008-07-19 14:25:15 +00001074#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001075 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001076 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001077 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001078#endif
danielk1977afcdd022004-10-31 16:25:42 +00001079
drh0d316a42002-08-11 20:10:47 +00001080/*
drh271efa52004-05-30 19:19:05 +00001081** Given a btree page and a cell index (0 means the first cell on
1082** the page, 1 means the second cell, and so forth) return a pointer
1083** to the cell content.
1084**
drhf44890a2015-06-27 03:58:15 +00001085** findCellPastPtr() does the same except it skips past the initial
1086** 4-byte child pointer found on interior pages, if there is one.
1087**
drh271efa52004-05-30 19:19:05 +00001088** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001089*/
drh1688c862008-07-18 02:44:17 +00001090#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001091 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001092#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001093 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001094
drh43605152004-05-29 21:46:49 +00001095
1096/*
drh5fa60512015-06-19 17:19:34 +00001097** This is common tail processing for btreeParseCellPtr() and
1098** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1099** on a single B-tree page. Make necessary adjustments to the CellInfo
1100** structure.
drh43605152004-05-29 21:46:49 +00001101*/
drh5fa60512015-06-19 17:19:34 +00001102static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1103 MemPage *pPage, /* Page containing the cell */
1104 u8 *pCell, /* Pointer to the cell text. */
1105 CellInfo *pInfo /* Fill in this structure */
1106){
1107 /* If the payload will not fit completely on the local page, we have
1108 ** to decide how much to store locally and how much to spill onto
1109 ** overflow pages. The strategy is to minimize the amount of unused
1110 ** space on overflow pages while keeping the amount of local storage
1111 ** in between minLocal and maxLocal.
1112 **
1113 ** Warning: changing the way overflow payload is distributed in any
1114 ** way will result in an incompatible file format.
1115 */
1116 int minLocal; /* Minimum amount of payload held locally */
1117 int maxLocal; /* Maximum amount of payload held locally */
1118 int surplus; /* Overflow payload available for local storage */
1119
1120 minLocal = pPage->minLocal;
1121 maxLocal = pPage->maxLocal;
1122 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1123 testcase( surplus==maxLocal );
1124 testcase( surplus==maxLocal+1 );
1125 if( surplus <= maxLocal ){
1126 pInfo->nLocal = (u16)surplus;
1127 }else{
1128 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001129 }
drh45ac1c72015-12-18 03:59:16 +00001130 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001131}
1132
1133/*
drh5fa60512015-06-19 17:19:34 +00001134** The following routines are implementations of the MemPage.xParseCell()
1135** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001136**
drh5fa60512015-06-19 17:19:34 +00001137** Parse a cell content block and fill in the CellInfo structure.
1138**
1139** btreeParseCellPtr() => table btree leaf nodes
1140** btreeParseCellNoPayload() => table btree internal nodes
1141** btreeParseCellPtrIndex() => index btree nodes
1142**
1143** There is also a wrapper function btreeParseCell() that works for
1144** all MemPage types and that references the cell by index rather than
1145** by pointer.
drh43605152004-05-29 21:46:49 +00001146*/
drh5fa60512015-06-19 17:19:34 +00001147static void btreeParseCellPtrNoPayload(
1148 MemPage *pPage, /* Page containing the cell */
1149 u8 *pCell, /* Pointer to the cell text. */
1150 CellInfo *pInfo /* Fill in this structure */
1151){
1152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1153 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001154 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001155#ifndef SQLITE_DEBUG
1156 UNUSED_PARAMETER(pPage);
1157#endif
drh5fa60512015-06-19 17:19:34 +00001158 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1159 pInfo->nPayload = 0;
1160 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001161 pInfo->pPayload = 0;
1162 return;
1163}
danielk197730548662009-07-09 05:07:37 +00001164static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001165 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001166 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001167 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001168){
drh3e28ff52014-09-24 00:59:08 +00001169 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001170 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001171 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001172
drh1fee73e2007-08-29 04:00:57 +00001173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001174 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001175 assert( pPage->intKeyLeaf );
1176 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001177 pIter = pCell;
1178
1179 /* The next block of code is equivalent to:
1180 **
1181 ** pIter += getVarint32(pIter, nPayload);
1182 **
1183 ** The code is inlined to avoid a function call.
1184 */
1185 nPayload = *pIter;
1186 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001187 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001188 nPayload &= 0x7f;
1189 do{
1190 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001192 }
drh56cb04e2015-06-19 18:24:37 +00001193 pIter++;
1194
1195 /* The next block of code is equivalent to:
1196 **
1197 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1198 **
1199 ** The code is inlined to avoid a function call.
1200 */
1201 iKey = *pIter;
1202 if( iKey>=0x80 ){
1203 u8 *pEnd = &pIter[7];
1204 iKey &= 0x7f;
1205 while(1){
1206 iKey = (iKey<<7) | (*++pIter & 0x7f);
1207 if( (*pIter)<0x80 ) break;
1208 if( pIter>=pEnd ){
1209 iKey = (iKey<<8) | *++pIter;
1210 break;
1211 }
1212 }
1213 }
1214 pIter++;
1215
1216 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001217 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001218 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001219 testcase( nPayload==pPage->maxLocal );
1220 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001221 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001222 /* This is the (easy) common case where the entire payload fits
1223 ** on the local page. No overflow is required.
1224 */
drhab1cc582014-09-23 21:25:19 +00001225 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1226 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001227 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001228 }else{
drh5fa60512015-06-19 17:19:34 +00001229 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001230 }
drh3aac2dd2004-04-26 14:10:20 +00001231}
drh5fa60512015-06-19 17:19:34 +00001232static void btreeParseCellPtrIndex(
1233 MemPage *pPage, /* Page containing the cell */
1234 u8 *pCell, /* Pointer to the cell text. */
1235 CellInfo *pInfo /* Fill in this structure */
1236){
1237 u8 *pIter; /* For scanning through pCell */
1238 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001239
drh5fa60512015-06-19 17:19:34 +00001240 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1241 assert( pPage->leaf==0 || pPage->leaf==1 );
1242 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001243 pIter = pCell + pPage->childPtrSize;
1244 nPayload = *pIter;
1245 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001246 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001247 nPayload &= 0x7f;
1248 do{
1249 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1250 }while( *(pIter)>=0x80 && pIter<pEnd );
1251 }
1252 pIter++;
1253 pInfo->nKey = nPayload;
1254 pInfo->nPayload = nPayload;
1255 pInfo->pPayload = pIter;
1256 testcase( nPayload==pPage->maxLocal );
1257 testcase( nPayload==pPage->maxLocal+1 );
1258 if( nPayload<=pPage->maxLocal ){
1259 /* This is the (easy) common case where the entire payload fits
1260 ** on the local page. No overflow is required.
1261 */
1262 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1263 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1264 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001265 }else{
1266 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001267 }
1268}
danielk197730548662009-07-09 05:07:37 +00001269static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001270 MemPage *pPage, /* Page containing the cell */
1271 int iCell, /* The cell index. First cell is 0 */
1272 CellInfo *pInfo /* Fill in this structure */
1273){
drh5fa60512015-06-19 17:19:34 +00001274 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001275}
drh3aac2dd2004-04-26 14:10:20 +00001276
1277/*
drh5fa60512015-06-19 17:19:34 +00001278** The following routines are implementations of the MemPage.xCellSize
1279** method.
1280**
drh43605152004-05-29 21:46:49 +00001281** Compute the total number of bytes that a Cell needs in the cell
1282** data area of the btree-page. The return number includes the cell
1283** data header and the local payload, but not any overflow page or
1284** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001285**
drh5fa60512015-06-19 17:19:34 +00001286** cellSizePtrNoPayload() => table internal nodes
1287** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001288*/
danielk1977ae5558b2009-04-29 11:31:47 +00001289static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001290 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1291 u8 *pEnd; /* End mark for a varint */
1292 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001293
1294#ifdef SQLITE_DEBUG
1295 /* The value returned by this function should always be the same as
1296 ** the (CellInfo.nSize) value found by doing a full parse of the
1297 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1298 ** this function verifies that this invariant is not violated. */
1299 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001300 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001301#endif
1302
drh3e28ff52014-09-24 00:59:08 +00001303 nSize = *pIter;
1304 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001305 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001306 nSize &= 0x7f;
1307 do{
1308 nSize = (nSize<<7) | (*++pIter & 0x7f);
1309 }while( *(pIter)>=0x80 && pIter<pEnd );
1310 }
1311 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001312 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001313 /* pIter now points at the 64-bit integer key value, a variable length
1314 ** integer. The following block moves pIter to point at the first byte
1315 ** past the end of the key value. */
1316 pEnd = &pIter[9];
1317 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001318 }
drh0a45c272009-07-08 01:49:11 +00001319 testcase( nSize==pPage->maxLocal );
1320 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001321 if( nSize<=pPage->maxLocal ){
1322 nSize += (u32)(pIter - pCell);
1323 if( nSize<4 ) nSize = 4;
1324 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001325 int minLocal = pPage->minLocal;
1326 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001327 testcase( nSize==pPage->maxLocal );
1328 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001329 if( nSize>pPage->maxLocal ){
1330 nSize = minLocal;
1331 }
drh3e28ff52014-09-24 00:59:08 +00001332 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001333 }
drhdc41d602014-09-22 19:51:35 +00001334 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001335 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001336}
drh25ada072015-06-19 15:07:14 +00001337static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1338 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1339 u8 *pEnd; /* End mark for a varint */
1340
1341#ifdef SQLITE_DEBUG
1342 /* The value returned by this function should always be the same as
1343 ** the (CellInfo.nSize) value found by doing a full parse of the
1344 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1345 ** this function verifies that this invariant is not violated. */
1346 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001347 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001348#else
1349 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001350#endif
1351
1352 assert( pPage->childPtrSize==4 );
1353 pEnd = pIter + 9;
1354 while( (*pIter++)&0x80 && pIter<pEnd );
1355 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1356 return (u16)(pIter - pCell);
1357}
1358
drh0ee3dbe2009-10-16 15:05:18 +00001359
1360#ifdef SQLITE_DEBUG
1361/* This variation on cellSizePtr() is used inside of assert() statements
1362** only. */
drha9121e42008-02-19 14:59:35 +00001363static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001364 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001365}
danielk1977bc6ada42004-06-30 08:20:16 +00001366#endif
drh3b7511c2001-05-26 13:15:44 +00001367
danielk197779a40da2005-01-16 08:00:01 +00001368#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001369/*
drh0f1bf4c2019-01-13 20:17:21 +00001370** The cell pCell is currently part of page pSrc but will ultimately be part
1371** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1372** pointer to an overflow page, insert an entry into the pointer-map for
1373** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001374*/
drh0f1bf4c2019-01-13 20:17:21 +00001375static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001376 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001377 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001378 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001379 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001380 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001381 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001382 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1383 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001384 *pRC = SQLITE_CORRUPT_BKPT;
1385 return;
1386 }
1387 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001388 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001389 }
danielk1977ac11ee62005-01-15 12:45:51 +00001390}
danielk197779a40da2005-01-16 08:00:01 +00001391#endif
1392
danielk1977ac11ee62005-01-15 12:45:51 +00001393
drhda200cc2004-05-09 11:51:38 +00001394/*
dane6d065a2017-02-24 19:58:22 +00001395** Defragment the page given. This routine reorganizes cells within the
1396** page so that there are no free-blocks on the free-block list.
1397**
1398** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1399** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001400**
1401** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1402** b-tree page so that there are no freeblocks or fragment bytes, all
1403** unused bytes are contained in the unallocated space region, and all
1404** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001405*/
dane6d065a2017-02-24 19:58:22 +00001406static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001407 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001408 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001409 int hdr; /* Offset to the page header */
1410 int size; /* Size of a cell */
1411 int usableSize; /* Number of usable bytes on a page */
1412 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001413 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001414 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001415 unsigned char *data; /* The page data */
1416 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001417 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001418 int iCellFirst; /* First allowable cell index */
1419 int iCellLast; /* Last possible cell index */
1420
danielk19773b8a05f2007-03-19 17:44:26 +00001421 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001422 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001423 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001424 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001425 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001426 temp = 0;
1427 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001428 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001429 cellOffset = pPage->cellOffset;
1430 nCell = pPage->nCell;
drh45616c72019-02-28 13:21:36 +00001431 assert( nCell==get2byte(&data[hdr+3]) || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001432 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001433 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001434
1435 /* This block handles pages with two or fewer free blocks and nMaxFrag
1436 ** or fewer fragmented bytes. In this case it is faster to move the
1437 ** two (or one) blocks of cells using memmove() and add the required
1438 ** offsets to each pointer in the cell-pointer array than it is to
1439 ** reconstruct the entire page. */
1440 if( (int)data[hdr+7]<=nMaxFrag ){
1441 int iFree = get2byte(&data[hdr+1]);
drh119e1ff2019-03-30 18:39:13 +00001442 if( iFree>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001443 if( iFree ){
1444 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001445 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001446 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1447 u8 *pEnd = &data[cellOffset + nCell*2];
1448 u8 *pAddr;
1449 int sz2 = 0;
1450 int sz = get2byte(&data[iFree+2]);
1451 int top = get2byte(&data[hdr+5]);
drh4b9e7362020-02-18 23:58:58 +00001452 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001453 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001454 }
dane6d065a2017-02-24 19:58:22 +00001455 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001456 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001457 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001458 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001459 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1460 sz += sz2;
drh3b76c452020-01-03 17:40:30 +00001461 }else if( NEVER(iFree+sz>usableSize) ){
dandcc427c2019-03-21 21:18:36 +00001462 return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001463 }
dandcc427c2019-03-21 21:18:36 +00001464
dane6d065a2017-02-24 19:58:22 +00001465 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001466 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001467 memmove(&data[cbrk], &data[top], iFree-top);
1468 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1469 pc = get2byte(pAddr);
1470 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1471 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1472 }
1473 goto defragment_out;
1474 }
1475 }
1476 }
1477
drh281b21d2008-08-22 12:57:08 +00001478 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001479 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001480 for(i=0; i<nCell; i++){
1481 u8 *pAddr; /* The i-th cell pointer */
1482 pAddr = &data[cellOffset + i*2];
1483 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001484 testcase( pc==iCellFirst );
1485 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001486 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001487 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001488 */
1489 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001490 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001491 }
drh17146622009-07-07 17:38:38 +00001492 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001493 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001494 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001495 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001496 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001497 }
drh7157e1d2009-07-09 13:25:32 +00001498 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001499 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001500 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001501 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001502 if( temp==0 ){
1503 int x;
1504 if( cbrk==pc ) continue;
1505 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1506 x = get2byte(&data[hdr+5]);
1507 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1508 src = temp;
1509 }
1510 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001511 }
dane6d065a2017-02-24 19:58:22 +00001512 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001513
1514 defragment_out:
drhb0ea9432019-02-09 21:06:40 +00001515 assert( pPage->nFree>=0 );
dan3b2ede12017-02-25 16:24:02 +00001516 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001517 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001518 }
drh17146622009-07-07 17:38:38 +00001519 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001520 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001521 data[hdr+1] = 0;
1522 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001523 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001524 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001525 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001526}
1527
drha059ad02001-04-17 20:09:11 +00001528/*
dan8e9ba0c2014-10-14 17:27:04 +00001529** Search the free-list on page pPg for space to store a cell nByte bytes in
1530** size. If one can be found, return a pointer to the space and remove it
1531** from the free-list.
1532**
1533** If no suitable space can be found on the free-list, return NULL.
1534**
drhba0f9992014-10-30 20:48:44 +00001535** This function may detect corruption within pPg. If corruption is
1536** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001537**
drhb7580e82015-06-25 18:36:13 +00001538** Slots on the free list that are between 1 and 3 bytes larger than nByte
1539** will be ignored if adding the extra space to the fragmentation count
1540** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001541*/
drhb7580e82015-06-25 18:36:13 +00001542static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
drh298f45c2019-02-08 22:34:59 +00001543 const int hdr = pPg->hdrOffset; /* Offset to page header */
1544 u8 * const aData = pPg->aData; /* Page data */
1545 int iAddr = hdr + 1; /* Address of ptr to pc */
1546 int pc = get2byte(&aData[iAddr]); /* Address of a free slot */
1547 int x; /* Excess size of the slot */
1548 int maxPC = pPg->pBt->usableSize - nByte; /* Max address for a usable slot */
1549 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001550
drhb7580e82015-06-25 18:36:13 +00001551 assert( pc>0 );
drh298f45c2019-02-08 22:34:59 +00001552 while( pc<=maxPC ){
drh113762a2014-11-19 16:36:25 +00001553 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1554 ** freeblock form a big-endian integer which is the size of the freeblock
1555 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001556 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001557 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001558 testcase( x==4 );
1559 testcase( x==3 );
drh298f45c2019-02-08 22:34:59 +00001560 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001561 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1562 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001563 if( aData[hdr+7]>57 ) return 0;
1564
dan8e9ba0c2014-10-14 17:27:04 +00001565 /* Remove the slot from the free-list. Update the number of
1566 ** fragmented bytes within the page. */
1567 memcpy(&aData[iAddr], &aData[pc], 2);
1568 aData[hdr+7] += (u8)x;
drh298f45c2019-02-08 22:34:59 +00001569 }else if( x+pc > maxPC ){
1570 /* This slot extends off the end of the usable part of the page */
1571 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1572 return 0;
dan8e9ba0c2014-10-14 17:27:04 +00001573 }else{
1574 /* The slot remains on the free-list. Reduce its size to account
drh298f45c2019-02-08 22:34:59 +00001575 ** for the portion used by the new allocation. */
dan8e9ba0c2014-10-14 17:27:04 +00001576 put2byte(&aData[pc+2], x);
1577 }
1578 return &aData[pc + x];
1579 }
drhb7580e82015-06-25 18:36:13 +00001580 iAddr = pc;
1581 pc = get2byte(&aData[pc]);
drh2a934d72019-03-13 10:29:16 +00001582 if( pc<=iAddr+size ){
drh298f45c2019-02-08 22:34:59 +00001583 if( pc ){
1584 /* The next slot in the chain is not past the end of the current slot */
1585 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1586 }
1587 return 0;
1588 }
drh87d63c92017-08-23 23:09:03 +00001589 }
drh298f45c2019-02-08 22:34:59 +00001590 if( pc>maxPC+nByte-4 ){
1591 /* The free slot chain extends off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001592 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001593 }
dan8e9ba0c2014-10-14 17:27:04 +00001594 return 0;
1595}
1596
1597/*
danielk19776011a752009-04-01 16:25:32 +00001598** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001599** as the first argument. Write into *pIdx the index into pPage->aData[]
1600** of the first byte of allocated space. Return either SQLITE_OK or
1601** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001602**
drh0a45c272009-07-08 01:49:11 +00001603** The caller guarantees that there is sufficient space to make the
1604** allocation. This routine might need to defragment in order to bring
1605** all the space together, however. This routine will avoid using
1606** the first two bytes past the cell pointer area since presumably this
1607** allocation is being made in order to insert a new cell, so we will
1608** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001609*/
drh0a45c272009-07-08 01:49:11 +00001610static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001611 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1612 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001613 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001614 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001615 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001616
danielk19773b8a05f2007-03-19 17:44:26 +00001617 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001618 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001620 assert( nByte>=0 ); /* Minimum cell size is 4 */
1621 assert( pPage->nFree>=nByte );
1622 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001623 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001624
drh0a45c272009-07-08 01:49:11 +00001625 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1626 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001627 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001628 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1629 ** and the reserved space is zero (the usual value for reserved space)
1630 ** then the cell content offset of an empty page wants to be 65536.
1631 ** However, that integer is too large to be stored in a 2-byte unsigned
1632 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001633 top = get2byte(&data[hdr+5]);
drhdfcecdf2019-05-08 00:17:45 +00001634 assert( top<=(int)pPage->pBt->usableSize ); /* by btreeComputeFreeSpace() */
drhded340e2015-06-25 15:04:56 +00001635 if( gap>top ){
drh291508f2019-05-08 04:33:17 +00001636 if( top==0 && pPage->pBt->usableSize==65536 ){
drhded340e2015-06-25 15:04:56 +00001637 top = 65536;
1638 }else{
daneebf2f52017-11-18 17:30:08 +00001639 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001640 }
1641 }
drh43605152004-05-29 21:46:49 +00001642
drhd4a67442019-02-11 19:27:36 +00001643 /* If there is enough space between gap and top for one more cell pointer,
1644 ** and if the freelist is not empty, then search the
1645 ** freelist looking for a slot big enough to satisfy the request.
drh4c04f3c2014-08-20 11:56:14 +00001646 */
drh5e2f8b92001-05-28 00:41:15 +00001647 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001648 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001649 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001650 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001651 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001652 if( pSpace ){
drh3b76c452020-01-03 17:40:30 +00001653 int g2;
drh2b96b692019-08-05 16:22:20 +00001654 assert( pSpace+nByte<=data+pPage->pBt->usableSize );
drh3b76c452020-01-03 17:40:30 +00001655 *pIdx = g2 = (int)(pSpace-data);
1656 if( NEVER(g2<=gap) ){
drh2b96b692019-08-05 16:22:20 +00001657 return SQLITE_CORRUPT_PAGE(pPage);
1658 }else{
1659 return SQLITE_OK;
1660 }
drhb7580e82015-06-25 18:36:13 +00001661 }else if( rc ){
1662 return rc;
drh9e572e62004-04-23 23:43:10 +00001663 }
1664 }
drh43605152004-05-29 21:46:49 +00001665
drh4c04f3c2014-08-20 11:56:14 +00001666 /* The request could not be fulfilled using a freelist slot. Check
1667 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001668 */
1669 testcase( gap+2+nByte==top );
1670 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001671 assert( pPage->nCell>0 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00001672 assert( pPage->nFree>=0 );
dane6d065a2017-02-24 19:58:22 +00001673 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001674 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001675 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001676 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001677 }
1678
1679
drh43605152004-05-29 21:46:49 +00001680 /* Allocate memory from the gap in between the cell pointer array
drh5860a612019-02-12 16:58:26 +00001681 ** and the cell content area. The btreeComputeFreeSpace() call has already
drhc314dc72009-07-21 11:52:34 +00001682 ** validated the freelist. Given that the freelist is valid, there
1683 ** is no way that the allocation can extend off the end of the page.
1684 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001685 */
drh0a45c272009-07-08 01:49:11 +00001686 top -= nByte;
drh43605152004-05-29 21:46:49 +00001687 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001688 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001689 *pIdx = top;
1690 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001691}
1692
1693/*
drh9e572e62004-04-23 23:43:10 +00001694** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001695** The first byte of the new free block is pPage->aData[iStart]
1696** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001697**
drh5f5c7532014-08-20 17:56:27 +00001698** Adjacent freeblocks are coalesced.
1699**
drh5860a612019-02-12 16:58:26 +00001700** Even though the freeblock list was checked by btreeComputeFreeSpace(),
drh5f5c7532014-08-20 17:56:27 +00001701** that routine will not detect overlap between cells or freeblocks. Nor
1702** does it detect cells or freeblocks that encrouch into the reserved bytes
1703** at the end of the page. So do additional corruption checks inside this
1704** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001705*/
drh5f5c7532014-08-20 17:56:27 +00001706static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001707 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001708 u16 iFreeBlk; /* Address of the next freeblock */
1709 u8 hdr; /* Page header size. 0 or 100 */
1710 u8 nFrag = 0; /* Reduction in fragmentation */
1711 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001712 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001713 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001714 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001715
drh9e572e62004-04-23 23:43:10 +00001716 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001717 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001718 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001719 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001720 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001721 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001722 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001723
drh5f5c7532014-08-20 17:56:27 +00001724 /* The list of freeblocks must be in ascending order. Find the
1725 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001726 */
drh43605152004-05-29 21:46:49 +00001727 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001728 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001729 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1730 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1731 }else{
drh85f071b2016-09-17 19:34:32 +00001732 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1733 if( iFreeBlk<iPtr+4 ){
drh05e8c542020-01-14 16:39:54 +00001734 if( iFreeBlk==0 ) break; /* TH3: corrupt082.100 */
daneebf2f52017-11-18 17:30:08 +00001735 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001736 }
drh7bc4c452014-08-20 18:43:44 +00001737 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001738 }
drh628b1a32020-01-05 21:53:15 +00001739 if( iFreeBlk>pPage->pBt->usableSize-4 ){ /* TH3: corrupt081.100 */
daneebf2f52017-11-18 17:30:08 +00001740 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001741 }
drh7bc4c452014-08-20 18:43:44 +00001742 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1743
1744 /* At this point:
1745 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001746 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001747 **
1748 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1749 */
1750 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1751 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001752 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001753 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drh3b76c452020-01-03 17:40:30 +00001754 if( NEVER(iEnd > pPage->pBt->usableSize) ){
daneebf2f52017-11-18 17:30:08 +00001755 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001756 }
drh7bc4c452014-08-20 18:43:44 +00001757 iSize = iEnd - iStart;
1758 iFreeBlk = get2byte(&data[iFreeBlk]);
1759 }
1760
drh3f387402014-09-24 01:23:00 +00001761 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1762 ** pointer in the page header) then check to see if iStart should be
1763 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001764 */
1765 if( iPtr>hdr+1 ){
1766 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1767 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001768 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001769 nFrag += iStart - iPtrEnd;
1770 iSize = iEnd - iPtr;
1771 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001772 }
drh9e572e62004-04-23 23:43:10 +00001773 }
daneebf2f52017-11-18 17:30:08 +00001774 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001775 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001776 }
drh5e398e42017-08-23 20:36:06 +00001777 x = get2byte(&data[hdr+5]);
1778 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001779 /* The new freeblock is at the beginning of the cell content area,
1780 ** so just extend the cell content area rather than create another
1781 ** freelist entry */
drh3b76c452020-01-03 17:40:30 +00001782 if( iStart<x ) return SQLITE_CORRUPT_PAGE(pPage);
drh48118e42020-01-29 13:50:11 +00001783 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001784 put2byte(&data[hdr+1], iFreeBlk);
1785 put2byte(&data[hdr+5], iEnd);
1786 }else{
1787 /* Insert the new freeblock into the freelist */
1788 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001789 }
drh5e398e42017-08-23 20:36:06 +00001790 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1791 /* Overwrite deleted information with zeros when the secure_delete
1792 ** option is enabled */
1793 memset(&data[iStart], 0, iSize);
1794 }
1795 put2byte(&data[iStart], iFreeBlk);
1796 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001797 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001798 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001799}
1800
1801/*
drh271efa52004-05-30 19:19:05 +00001802** Decode the flags byte (the first byte of the header) for a page
1803** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001804**
1805** Only the following combinations are supported. Anything different
1806** indicates a corrupt database files:
1807**
1808** PTF_ZERODATA
1809** PTF_ZERODATA | PTF_LEAF
1810** PTF_LEAFDATA | PTF_INTKEY
1811** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001812*/
drh44845222008-07-17 18:39:57 +00001813static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001814 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001815
1816 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001817 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001818 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001819 flagByte &= ~PTF_LEAF;
1820 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001821 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001822 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001823 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001824 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1825 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001826 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001827 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1828 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001829 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001830 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001831 if( pPage->leaf ){
1832 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001833 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001834 }else{
1835 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001836 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001837 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001838 }
drh271efa52004-05-30 19:19:05 +00001839 pPage->maxLocal = pBt->maxLeaf;
1840 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001841 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001842 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1843 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001844 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001845 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1846 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001847 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001848 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001849 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001850 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001851 pPage->maxLocal = pBt->maxLocal;
1852 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001853 }else{
drhfdab0262014-11-20 15:30:50 +00001854 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1855 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001856 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001857 }
drhc9166342012-01-05 23:32:06 +00001858 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001859 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001860}
1861
1862/*
drhb0ea9432019-02-09 21:06:40 +00001863** Compute the amount of freespace on the page. In other words, fill
1864** in the pPage->nFree field.
drh7e3b0a02001-04-28 16:52:40 +00001865*/
drhb0ea9432019-02-09 21:06:40 +00001866static int btreeComputeFreeSpace(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001867 int pc; /* Address of a freeblock within pPage->aData[] */
1868 u8 hdr; /* Offset to beginning of page header */
1869 u8 *data; /* Equal to pPage->aData */
drh14e845a2017-05-25 21:35:56 +00001870 int usableSize; /* Amount of usable space on each page */
drh14e845a2017-05-25 21:35:56 +00001871 int nFree; /* Number of unused bytes on the page */
1872 int top; /* First byte of the cell content area */
1873 int iCellFirst; /* First allowable cell or freeblock offset */
1874 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001875
danielk197771d5d2c2008-09-29 11:49:47 +00001876 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001877 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001878 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001879 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001880 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1881 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drhb0ea9432019-02-09 21:06:40 +00001882 assert( pPage->isInit==1 );
1883 assert( pPage->nFree<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001884
drhb0ea9432019-02-09 21:06:40 +00001885 usableSize = pPage->pBt->usableSize;
drh14e845a2017-05-25 21:35:56 +00001886 hdr = pPage->hdrOffset;
1887 data = pPage->aData;
drh14e845a2017-05-25 21:35:56 +00001888 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1889 ** the start of the cell content area. A zero value for this integer is
1890 ** interpreted as 65536. */
1891 top = get2byteNotZero(&data[hdr+5]);
drhb0ea9432019-02-09 21:06:40 +00001892 iCellFirst = hdr + 8 + pPage->childPtrSize + 2*pPage->nCell;
drh14e845a2017-05-25 21:35:56 +00001893 iCellLast = usableSize - 4;
danielk197793c829c2009-06-03 17:26:17 +00001894
drh14e845a2017-05-25 21:35:56 +00001895 /* Compute the total free space on the page
1896 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1897 ** start of the first freeblock on the page, or is zero if there are no
1898 ** freeblocks. */
1899 pc = get2byte(&data[hdr+1]);
1900 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1901 if( pc>0 ){
1902 u32 next, size;
dan9a20ea92020-01-03 15:51:23 +00001903 if( pc<top ){
drh14e845a2017-05-25 21:35:56 +00001904 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1905 ** always be at least one cell before the first freeblock.
1906 */
daneebf2f52017-11-18 17:30:08 +00001907 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001908 }
drh14e845a2017-05-25 21:35:56 +00001909 while( 1 ){
1910 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001911 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001912 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001913 }
1914 next = get2byte(&data[pc]);
1915 size = get2byte(&data[pc+2]);
1916 nFree = nFree + size;
1917 if( next<=pc+size+3 ) break;
1918 pc = next;
1919 }
1920 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001921 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001922 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001923 }
1924 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001925 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001926 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001927 }
danielk197771d5d2c2008-09-29 11:49:47 +00001928 }
drh14e845a2017-05-25 21:35:56 +00001929
1930 /* At this point, nFree contains the sum of the offset to the start
1931 ** of the cell-content area plus the number of free bytes within
1932 ** the cell-content area. If this is greater than the usable-size
1933 ** of the page, then the page must be corrupted. This check also
1934 ** serves to verify that the offset to the start of the cell-content
1935 ** area, according to the page header, lies within the page.
1936 */
drhdfcecdf2019-05-08 00:17:45 +00001937 if( nFree>usableSize || nFree<iCellFirst ){
daneebf2f52017-11-18 17:30:08 +00001938 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001939 }
1940 pPage->nFree = (u16)(nFree - iCellFirst);
drhb0ea9432019-02-09 21:06:40 +00001941 return SQLITE_OK;
1942}
1943
1944/*
drh5860a612019-02-12 16:58:26 +00001945** Do additional sanity check after btreeInitPage() if
1946** PRAGMA cell_size_check=ON
1947*/
1948static SQLITE_NOINLINE int btreeCellSizeCheck(MemPage *pPage){
1949 int iCellFirst; /* First allowable cell or freeblock offset */
1950 int iCellLast; /* Last possible cell or freeblock offset */
1951 int i; /* Index into the cell pointer array */
1952 int sz; /* Size of a cell */
1953 int pc; /* Address of a freeblock within pPage->aData[] */
1954 u8 *data; /* Equal to pPage->aData */
1955 int usableSize; /* Maximum usable space on the page */
1956 int cellOffset; /* Start of cell content area */
1957
1958 iCellFirst = pPage->cellOffset + 2*pPage->nCell;
1959 usableSize = pPage->pBt->usableSize;
1960 iCellLast = usableSize - 4;
1961 data = pPage->aData;
1962 cellOffset = pPage->cellOffset;
1963 if( !pPage->leaf ) iCellLast--;
1964 for(i=0; i<pPage->nCell; i++){
1965 pc = get2byteAligned(&data[cellOffset+i*2]);
1966 testcase( pc==iCellFirst );
1967 testcase( pc==iCellLast );
1968 if( pc<iCellFirst || pc>iCellLast ){
1969 return SQLITE_CORRUPT_PAGE(pPage);
1970 }
1971 sz = pPage->xCellSize(pPage, &data[pc]);
1972 testcase( pc+sz==usableSize );
1973 if( pc+sz>usableSize ){
1974 return SQLITE_CORRUPT_PAGE(pPage);
1975 }
1976 }
1977 return SQLITE_OK;
1978}
1979
1980/*
drhb0ea9432019-02-09 21:06:40 +00001981** Initialize the auxiliary information for a disk block.
1982**
1983** Return SQLITE_OK on success. If we see that the page does
1984** not contain a well-formed database page, then return
1985** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1986** guarantee that the page is well-formed. It only shows that
1987** we failed to detect any corruption.
1988*/
1989static int btreeInitPage(MemPage *pPage){
drhb0ea9432019-02-09 21:06:40 +00001990 u8 *data; /* Equal to pPage->aData */
1991 BtShared *pBt; /* The main btree structure */
drhb0ea9432019-02-09 21:06:40 +00001992
1993 assert( pPage->pBt!=0 );
1994 assert( pPage->pBt->db!=0 );
1995 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1996 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1997 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1998 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1999 assert( pPage->isInit==0 );
2000
2001 pBt = pPage->pBt;
drh5860a612019-02-12 16:58:26 +00002002 data = pPage->aData + pPage->hdrOffset;
drhb0ea9432019-02-09 21:06:40 +00002003 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2004 ** the b-tree page type. */
drh5860a612019-02-12 16:58:26 +00002005 if( decodeFlags(pPage, data[0]) ){
drhb0ea9432019-02-09 21:06:40 +00002006 return SQLITE_CORRUPT_PAGE(pPage);
2007 }
2008 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2009 pPage->maskPage = (u16)(pBt->pageSize - 1);
2010 pPage->nOverflow = 0;
drh5860a612019-02-12 16:58:26 +00002011 pPage->cellOffset = pPage->hdrOffset + 8 + pPage->childPtrSize;
2012 pPage->aCellIdx = data + pPage->childPtrSize + 8;
2013 pPage->aDataEnd = pPage->aData + pBt->usableSize;
2014 pPage->aDataOfst = pPage->aData + pPage->childPtrSize;
drhb0ea9432019-02-09 21:06:40 +00002015 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2016 ** number of cells on the page. */
drh5860a612019-02-12 16:58:26 +00002017 pPage->nCell = get2byte(&data[3]);
drhb0ea9432019-02-09 21:06:40 +00002018 if( pPage->nCell>MX_CELL(pBt) ){
2019 /* To many cells for a single page. The page must be corrupt */
2020 return SQLITE_CORRUPT_PAGE(pPage);
2021 }
2022 testcase( pPage->nCell==MX_CELL(pBt) );
2023 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2024 ** possible for a root page of a table that contains no rows) then the
2025 ** offset to the cell content area will equal the page size minus the
2026 ** bytes of reserved space. */
2027 assert( pPage->nCell>0
mistachkin065f3bf2019-03-20 05:45:03 +00002028 || get2byteNotZero(&data[5])==(int)pBt->usableSize
drhb0ea9432019-02-09 21:06:40 +00002029 || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00002030 pPage->nFree = -1; /* Indicate that this value is yet uncomputed */
drh14e845a2017-05-25 21:35:56 +00002031 pPage->isInit = 1;
drh5860a612019-02-12 16:58:26 +00002032 if( pBt->db->flags & SQLITE_CellSizeCk ){
2033 return btreeCellSizeCheck(pPage);
2034 }
drh9e572e62004-04-23 23:43:10 +00002035 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00002036}
2037
2038/*
drh8b2f49b2001-06-08 00:21:52 +00002039** Set up a raw page so that it looks like a database page holding
2040** no entries.
drhbd03cae2001-06-02 02:40:57 +00002041*/
drh9e572e62004-04-23 23:43:10 +00002042static void zeroPage(MemPage *pPage, int flags){
2043 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00002044 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002045 u8 hdr = pPage->hdrOffset;
2046 u16 first;
drh9e572e62004-04-23 23:43:10 +00002047
danielk19773b8a05f2007-03-19 17:44:26 +00002048 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00002049 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2050 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00002051 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00002052 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00002053 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00002054 memset(&data[hdr], 0, pBt->usableSize - hdr);
2055 }
drh1bd10f82008-12-10 21:19:56 +00002056 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002057 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002058 memset(&data[hdr+1], 0, 4);
2059 data[hdr+7] = 0;
2060 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002061 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002062 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002063 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002064 pPage->aDataEnd = &data[pBt->usableSize];
2065 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002066 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002067 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002068 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2069 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002070 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002071 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002072}
2073
drh897a8202008-09-18 01:08:15 +00002074
2075/*
2076** Convert a DbPage obtained from the pager into a MemPage used by
2077** the btree layer.
2078*/
2079static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2080 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002081 if( pgno!=pPage->pgno ){
2082 pPage->aData = sqlite3PagerGetData(pDbPage);
2083 pPage->pDbPage = pDbPage;
2084 pPage->pBt = pBt;
2085 pPage->pgno = pgno;
2086 pPage->hdrOffset = pgno==1 ? 100 : 0;
2087 }
2088 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002089 return pPage;
2090}
2091
drhbd03cae2001-06-02 02:40:57 +00002092/*
drh3aac2dd2004-04-26 14:10:20 +00002093** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002094** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002095**
drh7e8c6f12015-05-28 03:28:27 +00002096** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2097** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002098** to fetch the content. Just fill in the content with zeros for now.
2099** If in the future we call sqlite3PagerWrite() on this page, that
2100** means we have started to be concerned about content and the disk
2101** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002102*/
danielk197730548662009-07-09 05:07:37 +00002103static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002104 BtShared *pBt, /* The btree */
2105 Pgno pgno, /* Number of the page to fetch */
2106 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002107 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002108){
drh3aac2dd2004-04-26 14:10:20 +00002109 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002110 DbPage *pDbPage;
2111
drhb00fc3b2013-08-21 23:42:32 +00002112 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002113 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002114 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002115 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002116 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002117 return SQLITE_OK;
2118}
2119
2120/*
danielk1977bea2a942009-01-20 17:06:27 +00002121** Retrieve a page from the pager cache. If the requested page is not
2122** already in the pager cache return NULL. Initialize the MemPage.pBt and
2123** MemPage.aData elements if needed.
2124*/
2125static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2126 DbPage *pDbPage;
2127 assert( sqlite3_mutex_held(pBt->mutex) );
2128 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2129 if( pDbPage ){
2130 return btreePageFromDbPage(pDbPage, pgno, pBt);
2131 }
2132 return 0;
2133}
2134
2135/*
danielk197789d40042008-11-17 14:20:56 +00002136** Return the size of the database file in pages. If there is any kind of
2137** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002138*/
drhb1299152010-03-30 22:58:33 +00002139static Pgno btreePagecount(BtShared *pBt){
drh42925d12020-01-07 13:32:15 +00002140 assert( (pBt->nPage & 0x80000000)==0 || CORRUPT_DB );
drh406dfcb2020-01-07 18:10:01 +00002141 return pBt->nPage;
drhb1299152010-03-30 22:58:33 +00002142}
2143u32 sqlite3BtreeLastPage(Btree *p){
2144 assert( sqlite3BtreeHoldsMutex(p) );
drh406dfcb2020-01-07 18:10:01 +00002145 return btreePagecount(p->pBt) & 0x7fffffff;
danielk197767fd7a92008-09-10 17:53:35 +00002146}
2147
2148/*
drh28f58dd2015-06-27 19:45:03 +00002149** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002150**
drh15a00212015-06-27 20:55:00 +00002151** If pCur!=0 then the page is being fetched as part of a moveToChild()
2152** call. Do additional sanity checking on the page in this case.
2153** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002154**
2155** The page is fetched as read-write unless pCur is not NULL and is
2156** a read-only cursor.
2157**
2158** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002159** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002160*/
2161static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002162 BtShared *pBt, /* The database file */
2163 Pgno pgno, /* Number of the page to get */
2164 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002165 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2166 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002167){
2168 int rc;
drh28f58dd2015-06-27 19:45:03 +00002169 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002170 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002171 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002172 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002173 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002174
danba3cbf32010-06-30 04:29:03 +00002175 if( pgno>btreePagecount(pBt) ){
2176 rc = SQLITE_CORRUPT_BKPT;
drhb0ea9432019-02-09 21:06:40 +00002177 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002178 }
drh9584f582015-11-04 20:22:37 +00002179 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002180 if( rc ){
drhb0ea9432019-02-09 21:06:40 +00002181 goto getAndInitPage_error1;
drh28f58dd2015-06-27 19:45:03 +00002182 }
drh8dd1c252015-11-04 22:31:02 +00002183 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002184 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002185 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002186 rc = btreeInitPage(*ppPage);
2187 if( rc!=SQLITE_OK ){
drhb0ea9432019-02-09 21:06:40 +00002188 goto getAndInitPage_error2;
danielk197789bc4bc2009-07-21 19:25:24 +00002189 }
drhee696e22004-08-30 16:52:17 +00002190 }
drh8dd1c252015-11-04 22:31:02 +00002191 assert( (*ppPage)->pgno==pgno );
2192 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002193
drh15a00212015-06-27 20:55:00 +00002194 /* If obtaining a child page for a cursor, we must verify that the page is
2195 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002196 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002197 rc = SQLITE_CORRUPT_PGNO(pgno);
drhb0ea9432019-02-09 21:06:40 +00002198 goto getAndInitPage_error2;
drh28f58dd2015-06-27 19:45:03 +00002199 }
drh28f58dd2015-06-27 19:45:03 +00002200 return SQLITE_OK;
2201
drhb0ea9432019-02-09 21:06:40 +00002202getAndInitPage_error2:
2203 releasePage(*ppPage);
2204getAndInitPage_error1:
drh352a35a2017-08-15 03:46:47 +00002205 if( pCur ){
2206 pCur->iPage--;
2207 pCur->pPage = pCur->apPage[pCur->iPage];
2208 }
danba3cbf32010-06-30 04:29:03 +00002209 testcase( pgno==0 );
2210 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002211 return rc;
2212}
2213
2214/*
drh3aac2dd2004-04-26 14:10:20 +00002215** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002216** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002217**
2218** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002219*/
drhbbf0f862015-06-27 14:59:26 +00002220static void releasePageNotNull(MemPage *pPage){
2221 assert( pPage->aData );
2222 assert( pPage->pBt );
2223 assert( pPage->pDbPage!=0 );
2224 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2225 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2226 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2227 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002228}
drh3aac2dd2004-04-26 14:10:20 +00002229static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002230 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002231}
drh3908fe92017-09-01 14:50:19 +00002232static void releasePageOne(MemPage *pPage){
2233 assert( pPage!=0 );
2234 assert( pPage->aData );
2235 assert( pPage->pBt );
2236 assert( pPage->pDbPage!=0 );
2237 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2238 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2239 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2240 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2241}
drh3aac2dd2004-04-26 14:10:20 +00002242
2243/*
drh7e8c6f12015-05-28 03:28:27 +00002244** Get an unused page.
2245**
2246** This works just like btreeGetPage() with the addition:
2247**
2248** * If the page is already in use for some other purpose, immediately
2249** release it and return an SQLITE_CURRUPT error.
2250** * Make sure the isInit flag is clear
2251*/
2252static int btreeGetUnusedPage(
2253 BtShared *pBt, /* The btree */
2254 Pgno pgno, /* Number of the page to fetch */
2255 MemPage **ppPage, /* Return the page in this parameter */
2256 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2257){
2258 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2259 if( rc==SQLITE_OK ){
2260 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2261 releasePage(*ppPage);
2262 *ppPage = 0;
2263 return SQLITE_CORRUPT_BKPT;
2264 }
2265 (*ppPage)->isInit = 0;
2266 }else{
2267 *ppPage = 0;
2268 }
2269 return rc;
2270}
2271
drha059ad02001-04-17 20:09:11 +00002272
2273/*
drha6abd042004-06-09 17:37:22 +00002274** During a rollback, when the pager reloads information into the cache
2275** so that the cache is restored to its original state at the start of
2276** the transaction, for each page restored this routine is called.
2277**
2278** This routine needs to reset the extra data section at the end of the
2279** page to agree with the restored data.
2280*/
danielk1977eaa06f62008-09-18 17:34:44 +00002281static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002282 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002283 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002284 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002285 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002286 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002287 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002288 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002289 /* pPage might not be a btree page; it might be an overflow page
2290 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002291 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002292 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002293 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002294 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002295 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002296 }
drha6abd042004-06-09 17:37:22 +00002297 }
2298}
2299
2300/*
drhe5fe6902007-12-07 18:55:28 +00002301** Invoke the busy handler for a btree.
2302*/
danielk19771ceedd32008-11-19 10:22:33 +00002303static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002304 BtShared *pBt = (BtShared*)pArg;
2305 assert( pBt->db );
2306 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002307 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2308 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002309}
2310
2311/*
drhad3e0102004-09-03 23:32:18 +00002312** Open a database file.
2313**
drh382c0242001-10-06 16:33:02 +00002314** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002315** then an ephemeral database is created. The ephemeral database might
2316** be exclusively in memory, or it might use a disk-based memory cache.
2317** Either way, the ephemeral database will be automatically deleted
2318** when sqlite3BtreeClose() is called.
2319**
drhe53831d2007-08-17 01:14:38 +00002320** If zFilename is ":memory:" then an in-memory database is created
2321** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002322**
drh33f111d2012-01-17 15:29:14 +00002323** The "flags" parameter is a bitmask that might contain bits like
2324** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002325**
drhc47fd8e2009-04-30 13:30:32 +00002326** If the database is already opened in the same database connection
2327** and we are in shared cache mode, then the open will fail with an
2328** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2329** objects in the same database connection since doing so will lead
2330** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002331*/
drh23e11ca2004-05-04 17:27:28 +00002332int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002333 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002334 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002335 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002336 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002337 int flags, /* Options */
2338 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002339){
drh7555d8e2009-03-20 13:15:30 +00002340 BtShared *pBt = 0; /* Shared part of btree structure */
2341 Btree *p; /* Handle to return */
2342 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2343 int rc = SQLITE_OK; /* Result code from this function */
2344 u8 nReserve; /* Byte of unused space on each page */
2345 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002346
drh75c014c2010-08-30 15:02:28 +00002347 /* True if opening an ephemeral, temporary database */
2348 const int isTempDb = zFilename==0 || zFilename[0]==0;
2349
danielk1977aef0bf62005-12-30 16:28:01 +00002350 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002351 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002352 */
drhb0a7c9c2010-12-06 21:09:59 +00002353#ifdef SQLITE_OMIT_MEMORYDB
2354 const int isMemdb = 0;
2355#else
2356 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002357 || (isTempDb && sqlite3TempInMemory(db))
2358 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002359#endif
2360
drhe5fe6902007-12-07 18:55:28 +00002361 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002362 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002363 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002364 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2365
2366 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2367 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2368
2369 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2370 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002371
drh75c014c2010-08-30 15:02:28 +00002372 if( isMemdb ){
2373 flags |= BTREE_MEMORY;
2374 }
2375 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2376 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2377 }
drh17435752007-08-16 04:30:38 +00002378 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002379 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002380 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002381 }
2382 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002383 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002384#ifndef SQLITE_OMIT_SHARED_CACHE
2385 p->lock.pBtree = p;
2386 p->lock.iTable = 1;
2387#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002388
drh198bf392006-01-06 21:52:49 +00002389#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002390 /*
2391 ** If this Btree is a candidate for shared cache, try to find an
2392 ** existing BtShared object that we can share with
2393 */
drh4ab9d252012-05-26 20:08:49 +00002394 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002395 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002396 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002397 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002398 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002399 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002400
drhff0587c2007-08-29 17:43:19 +00002401 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002402 if( !zFullPathname ){
2403 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002404 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002405 }
drhafc8b7f2012-05-26 18:06:38 +00002406 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002407 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002408 }else{
2409 rc = sqlite3OsFullPathname(pVfs, zFilename,
2410 nFullPathname, zFullPathname);
2411 if( rc ){
drhc398c652019-11-22 00:42:01 +00002412 if( rc==SQLITE_OK_SYMLINK ){
2413 rc = SQLITE_OK;
2414 }else{
2415 sqlite3_free(zFullPathname);
2416 sqlite3_free(p);
2417 return rc;
2418 }
drhafc8b7f2012-05-26 18:06:38 +00002419 }
drh070ad6b2011-11-17 11:43:19 +00002420 }
drh30ddce62011-10-15 00:16:30 +00002421#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002422 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2423 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002424 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002425 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002426#endif
drh78f82d12008-09-02 00:52:52 +00002427 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002428 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002429 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002430 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002431 int iDb;
2432 for(iDb=db->nDb-1; iDb>=0; iDb--){
2433 Btree *pExisting = db->aDb[iDb].pBt;
2434 if( pExisting && pExisting->pBt==pBt ){
2435 sqlite3_mutex_leave(mutexShared);
2436 sqlite3_mutex_leave(mutexOpen);
2437 sqlite3_free(zFullPathname);
2438 sqlite3_free(p);
2439 return SQLITE_CONSTRAINT;
2440 }
2441 }
drhff0587c2007-08-29 17:43:19 +00002442 p->pBt = pBt;
2443 pBt->nRef++;
2444 break;
2445 }
2446 }
2447 sqlite3_mutex_leave(mutexShared);
2448 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002449 }
drhff0587c2007-08-29 17:43:19 +00002450#ifdef SQLITE_DEBUG
2451 else{
2452 /* In debug mode, we mark all persistent databases as sharable
2453 ** even when they are not. This exercises the locking code and
2454 ** gives more opportunity for asserts(sqlite3_mutex_held())
2455 ** statements to find locking problems.
2456 */
2457 p->sharable = 1;
2458 }
2459#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002460 }
2461#endif
drha059ad02001-04-17 20:09:11 +00002462 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002463 /*
2464 ** The following asserts make sure that structures used by the btree are
2465 ** the right size. This is to guard against size changes that result
2466 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002467 */
drh062cf272015-03-23 19:03:51 +00002468 assert( sizeof(i64)==8 );
2469 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002470 assert( sizeof(u32)==4 );
2471 assert( sizeof(u16)==2 );
2472 assert( sizeof(Pgno)==4 );
2473
2474 pBt = sqlite3MallocZero( sizeof(*pBt) );
2475 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002476 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002477 goto btree_open_out;
2478 }
danielk197771d5d2c2008-09-29 11:49:47 +00002479 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002480 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002481 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002482 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002483 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2484 }
2485 if( rc!=SQLITE_OK ){
2486 goto btree_open_out;
2487 }
shanehbd2aaf92010-09-01 02:38:21 +00002488 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002489 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002490 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002491 p->pBt = pBt;
2492
drhe53831d2007-08-17 01:14:38 +00002493 pBt->pCursor = 0;
2494 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002495 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002496#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002497 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002498#elif defined(SQLITE_FAST_SECURE_DELETE)
2499 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002500#endif
drh113762a2014-11-19 16:36:25 +00002501 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2502 ** determined by the 2-byte integer located at an offset of 16 bytes from
2503 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002504 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002505 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2506 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002507 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002508#ifndef SQLITE_OMIT_AUTOVACUUM
2509 /* If the magic name ":memory:" will create an in-memory database, then
2510 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2511 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2512 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2513 ** regular file-name. In this case the auto-vacuum applies as per normal.
2514 */
2515 if( zFilename && !isMemdb ){
2516 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2517 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2518 }
2519#endif
2520 nReserve = 0;
2521 }else{
drh113762a2014-11-19 16:36:25 +00002522 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2523 ** determined by the one-byte unsigned integer found at an offset of 20
2524 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002525 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002526 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002527#ifndef SQLITE_OMIT_AUTOVACUUM
2528 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2529 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2530#endif
2531 }
drhfa9601a2009-06-18 17:22:39 +00002532 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002533 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002534 pBt->usableSize = pBt->pageSize - nReserve;
2535 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002536
2537#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2538 /* Add the new BtShared object to the linked list sharable BtShareds.
2539 */
dan272989b2016-07-06 10:12:02 +00002540 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002541 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002542 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002543 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002544 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002545 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002546 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002547 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002548 goto btree_open_out;
2549 }
drhff0587c2007-08-29 17:43:19 +00002550 }
drhe53831d2007-08-17 01:14:38 +00002551 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002552 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2553 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002554 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002555 }
drheee46cf2004-11-06 00:02:48 +00002556#endif
drh90f5ecb2004-07-22 01:19:35 +00002557 }
danielk1977aef0bf62005-12-30 16:28:01 +00002558
drhcfed7bc2006-03-13 14:28:05 +00002559#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002560 /* If the new Btree uses a sharable pBtShared, then link the new
2561 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002562 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002563 */
drhe53831d2007-08-17 01:14:38 +00002564 if( p->sharable ){
2565 int i;
2566 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002567 for(i=0; i<db->nDb; i++){
2568 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002569 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002570 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002571 p->pNext = pSib;
2572 p->pPrev = 0;
2573 pSib->pPrev = p;
2574 }else{
drh3bfa7e82016-03-22 14:37:59 +00002575 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002576 pSib = pSib->pNext;
2577 }
2578 p->pNext = pSib->pNext;
2579 p->pPrev = pSib;
2580 if( p->pNext ){
2581 p->pNext->pPrev = p;
2582 }
2583 pSib->pNext = p;
2584 }
2585 break;
2586 }
2587 }
danielk1977aef0bf62005-12-30 16:28:01 +00002588 }
danielk1977aef0bf62005-12-30 16:28:01 +00002589#endif
2590 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002591
2592btree_open_out:
2593 if( rc!=SQLITE_OK ){
2594 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002595 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002596 }
drh17435752007-08-16 04:30:38 +00002597 sqlite3_free(pBt);
2598 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002599 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002600 }else{
dan0f5a1862016-08-13 14:30:23 +00002601 sqlite3_file *pFile;
2602
drh75c014c2010-08-30 15:02:28 +00002603 /* If the B-Tree was successfully opened, set the pager-cache size to the
2604 ** default value. Except, when opening on an existing shared pager-cache,
2605 ** do not change the pager-cache size.
2606 */
2607 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2608 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2609 }
dan0f5a1862016-08-13 14:30:23 +00002610
2611 pFile = sqlite3PagerFile(pBt->pPager);
2612 if( pFile->pMethods ){
2613 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2614 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002615 }
drh7555d8e2009-03-20 13:15:30 +00002616 if( mutexOpen ){
2617 assert( sqlite3_mutex_held(mutexOpen) );
2618 sqlite3_mutex_leave(mutexOpen);
2619 }
dan272989b2016-07-06 10:12:02 +00002620 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002621 return rc;
drha059ad02001-04-17 20:09:11 +00002622}
2623
2624/*
drhe53831d2007-08-17 01:14:38 +00002625** Decrement the BtShared.nRef counter. When it reaches zero,
2626** remove the BtShared structure from the sharing list. Return
2627** true if the BtShared.nRef counter reaches zero and return
2628** false if it is still positive.
2629*/
2630static int removeFromSharingList(BtShared *pBt){
2631#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002632 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002633 BtShared *pList;
2634 int removed = 0;
2635
drhd677b3d2007-08-20 22:48:41 +00002636 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002637 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002638 sqlite3_mutex_enter(pMaster);
2639 pBt->nRef--;
2640 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002641 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2642 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002643 }else{
drh78f82d12008-09-02 00:52:52 +00002644 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002645 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002646 pList=pList->pNext;
2647 }
drh34004ce2008-07-11 16:15:17 +00002648 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002649 pList->pNext = pBt->pNext;
2650 }
2651 }
drh3285db22007-09-03 22:00:39 +00002652 if( SQLITE_THREADSAFE ){
2653 sqlite3_mutex_free(pBt->mutex);
2654 }
drhe53831d2007-08-17 01:14:38 +00002655 removed = 1;
2656 }
2657 sqlite3_mutex_leave(pMaster);
2658 return removed;
2659#else
2660 return 1;
2661#endif
2662}
2663
2664/*
drhf7141992008-06-19 00:16:08 +00002665** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002666** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2667** pointer.
drhf7141992008-06-19 00:16:08 +00002668*/
2669static void allocateTempSpace(BtShared *pBt){
2670 if( !pBt->pTmpSpace ){
2671 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002672
2673 /* One of the uses of pBt->pTmpSpace is to format cells before
2674 ** inserting them into a leaf page (function fillInCell()). If
2675 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2676 ** by the various routines that manipulate binary cells. Which
2677 ** can mean that fillInCell() only initializes the first 2 or 3
2678 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2679 ** it into a database page. This is not actually a problem, but it
2680 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2681 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002682 ** zero the first 4 bytes of temp space here.
2683 **
2684 ** Also: Provide four bytes of initialized space before the
2685 ** beginning of pTmpSpace as an area available to prepend the
2686 ** left-child pointer to the beginning of a cell.
2687 */
2688 if( pBt->pTmpSpace ){
2689 memset(pBt->pTmpSpace, 0, 8);
2690 pBt->pTmpSpace += 4;
2691 }
drhf7141992008-06-19 00:16:08 +00002692 }
2693}
2694
2695/*
2696** Free the pBt->pTmpSpace allocation
2697*/
2698static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002699 if( pBt->pTmpSpace ){
2700 pBt->pTmpSpace -= 4;
2701 sqlite3PageFree(pBt->pTmpSpace);
2702 pBt->pTmpSpace = 0;
2703 }
drhf7141992008-06-19 00:16:08 +00002704}
2705
2706/*
drha059ad02001-04-17 20:09:11 +00002707** Close an open database and invalidate all cursors.
2708*/
danielk1977aef0bf62005-12-30 16:28:01 +00002709int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002710 BtShared *pBt = p->pBt;
2711 BtCursor *pCur;
2712
danielk1977aef0bf62005-12-30 16:28:01 +00002713 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002714 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002715 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002716 pCur = pBt->pCursor;
2717 while( pCur ){
2718 BtCursor *pTmp = pCur;
2719 pCur = pCur->pNext;
2720 if( pTmp->pBtree==p ){
2721 sqlite3BtreeCloseCursor(pTmp);
2722 }
drha059ad02001-04-17 20:09:11 +00002723 }
danielk1977aef0bf62005-12-30 16:28:01 +00002724
danielk19778d34dfd2006-01-24 16:37:57 +00002725 /* Rollback any active transaction and free the handle structure.
2726 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2727 ** this handle.
2728 */
drh47b7fc72014-11-11 01:33:57 +00002729 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002730 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002731
danielk1977aef0bf62005-12-30 16:28:01 +00002732 /* If there are still other outstanding references to the shared-btree
2733 ** structure, return now. The remainder of this procedure cleans
2734 ** up the shared-btree.
2735 */
drhe53831d2007-08-17 01:14:38 +00002736 assert( p->wantToLock==0 && p->locked==0 );
2737 if( !p->sharable || removeFromSharingList(pBt) ){
2738 /* The pBt is no longer on the sharing list, so we can access
2739 ** it without having to hold the mutex.
2740 **
2741 ** Clean out and delete the BtShared object.
2742 */
2743 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002744 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002745 if( pBt->xFreeSchema && pBt->pSchema ){
2746 pBt->xFreeSchema(pBt->pSchema);
2747 }
drhb9755982010-07-24 16:34:37 +00002748 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002749 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002750 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002751 }
2752
drhe53831d2007-08-17 01:14:38 +00002753#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002754 assert( p->wantToLock==0 );
2755 assert( p->locked==0 );
2756 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2757 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002758#endif
2759
drhe53831d2007-08-17 01:14:38 +00002760 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002761 return SQLITE_OK;
2762}
2763
2764/*
drh9b0cf342015-11-12 14:57:19 +00002765** Change the "soft" limit on the number of pages in the cache.
2766** Unused and unmodified pages will be recycled when the number of
2767** pages in the cache exceeds this soft limit. But the size of the
2768** cache is allowed to grow larger than this limit if it contains
2769** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002770*/
danielk1977aef0bf62005-12-30 16:28:01 +00002771int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2772 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002773 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002774 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002775 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002776 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002777 return SQLITE_OK;
2778}
2779
drh9b0cf342015-11-12 14:57:19 +00002780/*
2781** Change the "spill" limit on the number of pages in the cache.
2782** If the number of pages exceeds this limit during a write transaction,
2783** the pager might attempt to "spill" pages to the journal early in
2784** order to free up memory.
2785**
2786** The value returned is the current spill size. If zero is passed
2787** as an argument, no changes are made to the spill size setting, so
2788** using mxPage of 0 is a way to query the current spill size.
2789*/
2790int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2791 BtShared *pBt = p->pBt;
2792 int res;
2793 assert( sqlite3_mutex_held(p->db->mutex) );
2794 sqlite3BtreeEnter(p);
2795 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2796 sqlite3BtreeLeave(p);
2797 return res;
2798}
2799
drh18c7e402014-03-14 11:46:10 +00002800#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002801/*
dan5d8a1372013-03-19 19:28:06 +00002802** Change the limit on the amount of the database file that may be
2803** memory mapped.
2804*/
drh9b4c59f2013-04-15 17:03:42 +00002805int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002806 BtShared *pBt = p->pBt;
2807 assert( sqlite3_mutex_held(p->db->mutex) );
2808 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002809 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002810 sqlite3BtreeLeave(p);
2811 return SQLITE_OK;
2812}
drh18c7e402014-03-14 11:46:10 +00002813#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002814
2815/*
drh973b6e32003-02-12 14:09:42 +00002816** Change the way data is synced to disk in order to increase or decrease
2817** how well the database resists damage due to OS crashes and power
2818** failures. Level 1 is the same as asynchronous (no syncs() occur and
2819** there is a high probability of damage) Level 2 is the default. There
2820** is a very low but non-zero probability of damage. Level 3 reduces the
2821** probability of damage to near zero but with a write performance reduction.
2822*/
danielk197793758c82005-01-21 08:13:14 +00002823#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002824int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002825 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002826 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002827){
danielk1977aef0bf62005-12-30 16:28:01 +00002828 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002829 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002830 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002831 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002832 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002833 return SQLITE_OK;
2834}
danielk197793758c82005-01-21 08:13:14 +00002835#endif
drh973b6e32003-02-12 14:09:42 +00002836
drh2c8997b2005-08-27 16:36:48 +00002837/*
drh90f5ecb2004-07-22 01:19:35 +00002838** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002839** Or, if the page size has already been fixed, return SQLITE_READONLY
2840** without changing anything.
drh06f50212004-11-02 14:24:33 +00002841**
2842** The page size must be a power of 2 between 512 and 65536. If the page
2843** size supplied does not meet this constraint then the page size is not
2844** changed.
2845**
2846** Page sizes are constrained to be a power of two so that the region
2847** of the database file used for locking (beginning at PENDING_BYTE,
2848** the first byte past the 1GB boundary, 0x40000000) needs to occur
2849** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002850**
2851** If parameter nReserve is less than zero, then the number of reserved
2852** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002853**
drhc9166342012-01-05 23:32:06 +00002854** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002855** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002856*/
drhce4869f2009-04-02 20:16:58 +00002857int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002858 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002859 BtShared *pBt = p->pBt;
drh45248de2020-04-20 15:18:43 +00002860 assert( nReserve>=-1 && nReserve<=254 );
drhd677b3d2007-08-20 22:48:41 +00002861 sqlite3BtreeEnter(p);
drh45248de2020-04-20 15:18:43 +00002862 if( nReserve>=0 ){
2863 pBt->nReserveWanted = nReserve + 1;
2864 }
drhc9166342012-01-05 23:32:06 +00002865 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002866 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002867 return SQLITE_READONLY;
2868 }
2869 if( nReserve<0 ){
2870 nReserve = pBt->pageSize - pBt->usableSize;
2871 }
drhf49661a2008-12-10 16:45:50 +00002872 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002873 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2874 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002875 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002876 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002877 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002878 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002879 }
drhfa9601a2009-06-18 17:22:39 +00002880 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002881 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002882 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002883 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002884 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002885}
2886
2887/*
2888** Return the currently defined page size
2889*/
danielk1977aef0bf62005-12-30 16:28:01 +00002890int sqlite3BtreeGetPageSize(Btree *p){
2891 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002892}
drh7f751222009-03-17 22:33:00 +00002893
dan0094f372012-09-28 20:23:42 +00002894/*
2895** This function is similar to sqlite3BtreeGetReserve(), except that it
2896** may only be called if it is guaranteed that the b-tree mutex is already
2897** held.
2898**
2899** This is useful in one special case in the backup API code where it is
2900** known that the shared b-tree mutex is held, but the mutex on the
2901** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2902** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002903** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002904*/
2905int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002906 int n;
dan0094f372012-09-28 20:23:42 +00002907 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002908 n = p->pBt->pageSize - p->pBt->usableSize;
2909 return n;
dan0094f372012-09-28 20:23:42 +00002910}
2911
drh7f751222009-03-17 22:33:00 +00002912/*
2913** Return the number of bytes of space at the end of every page that
2914** are intentually left unused. This is the "reserved" space that is
2915** sometimes used by extensions.
drh4d347662020-04-22 00:50:21 +00002916**
2917** The value returned is the larger of the current reserve size and
2918** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2919** The amount of reserve can only grow - never shrink.
drh7f751222009-03-17 22:33:00 +00002920*/
drh45248de2020-04-20 15:18:43 +00002921int sqlite3BtreeGetRequestedReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002922 int n;
2923 sqlite3BtreeEnter(p);
drh45248de2020-04-20 15:18:43 +00002924 n = ((int)p->pBt->nReserveWanted) - 1;
2925 if( n<0 ) n = sqlite3BtreeGetReserveNoMutex(p);
drhd677b3d2007-08-20 22:48:41 +00002926 sqlite3BtreeLeave(p);
2927 return n;
drh2011d5f2004-07-22 02:40:37 +00002928}
drhf8e632b2007-05-08 14:51:36 +00002929
drhad0961b2015-02-21 00:19:25 +00002930
drhf8e632b2007-05-08 14:51:36 +00002931/*
2932** Set the maximum page count for a database if mxPage is positive.
2933** No changes are made if mxPage is 0 or negative.
2934** Regardless of the value of mxPage, return the maximum page count.
2935*/
2936int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002937 int n;
2938 sqlite3BtreeEnter(p);
2939 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2940 sqlite3BtreeLeave(p);
2941 return n;
drhf8e632b2007-05-08 14:51:36 +00002942}
drh5b47efa2010-02-12 18:18:39 +00002943
2944/*
drha5907a82017-06-19 11:44:22 +00002945** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2946**
2947** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2948** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2949** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2950** newFlag==(-1) No changes
2951**
2952** This routine acts as a query if newFlag is less than zero
2953**
2954** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2955** freelist leaf pages are not written back to the database. Thus in-page
2956** deleted content is cleared, but freelist deleted content is not.
2957**
2958** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2959** that freelist leaf pages are written back into the database, increasing
2960** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002961*/
2962int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2963 int b;
drhaf034ed2010-02-12 19:46:26 +00002964 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002965 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002966 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2967 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002968 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002969 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2970 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2971 }
2972 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002973 sqlite3BtreeLeave(p);
2974 return b;
2975}
drh90f5ecb2004-07-22 01:19:35 +00002976
2977/*
danielk1977951af802004-11-05 15:45:09 +00002978** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2979** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2980** is disabled. The default value for the auto-vacuum property is
2981** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2982*/
danielk1977aef0bf62005-12-30 16:28:01 +00002983int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002984#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002985 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002986#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002987 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002988 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002989 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002990
2991 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002992 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002993 rc = SQLITE_READONLY;
2994 }else{
drh076d4662009-02-18 20:31:18 +00002995 pBt->autoVacuum = av ?1:0;
2996 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002997 }
drhd677b3d2007-08-20 22:48:41 +00002998 sqlite3BtreeLeave(p);
2999 return rc;
danielk1977951af802004-11-05 15:45:09 +00003000#endif
3001}
3002
3003/*
3004** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3005** enabled 1 is returned. Otherwise 0.
3006*/
danielk1977aef0bf62005-12-30 16:28:01 +00003007int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00003008#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003009 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00003010#else
drhd677b3d2007-08-20 22:48:41 +00003011 int rc;
3012 sqlite3BtreeEnter(p);
3013 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00003014 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
3015 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
3016 BTREE_AUTOVACUUM_INCR
3017 );
drhd677b3d2007-08-20 22:48:41 +00003018 sqlite3BtreeLeave(p);
3019 return rc;
danielk1977951af802004-11-05 15:45:09 +00003020#endif
3021}
3022
danf5da7db2017-03-16 18:14:39 +00003023/*
3024** If the user has not set the safety-level for this database connection
3025** using "PRAGMA synchronous", and if the safety-level is not already
3026** set to the value passed to this function as the second parameter,
3027** set it so.
3028*/
drh2ed57372017-10-05 20:57:38 +00003029#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3030 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00003031static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
3032 sqlite3 *db;
3033 Db *pDb;
3034 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
3035 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
3036 if( pDb->bSyncSet==0
3037 && pDb->safety_level!=safety_level
3038 && pDb!=&db->aDb[1]
3039 ){
3040 pDb->safety_level = safety_level;
3041 sqlite3PagerSetFlags(pBt->pPager,
3042 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
3043 }
3044 }
3045}
3046#else
danfc8f4b62017-03-16 18:54:42 +00003047# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00003048#endif
danielk1977951af802004-11-05 15:45:09 +00003049
drh0314cf32018-04-28 01:27:09 +00003050/* Forward declaration */
3051static int newDatabase(BtShared*);
3052
3053
danielk1977951af802004-11-05 15:45:09 +00003054/*
drha34b6762004-05-07 13:30:42 +00003055** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00003056** also acquire a readlock on that file.
3057**
3058** SQLITE_OK is returned on success. If the file is not a
3059** well-formed database file, then SQLITE_CORRUPT is returned.
3060** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003061** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003062*/
danielk1977aef0bf62005-12-30 16:28:01 +00003063static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003064 int rc; /* Result code from subfunctions */
3065 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003066 u32 nPage; /* Number of pages in the database */
3067 u32 nPageFile = 0; /* Number of pages in the database file */
3068 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003069
drh1fee73e2007-08-29 04:00:57 +00003070 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003071 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003072 rc = sqlite3PagerSharedLock(pBt->pPager);
3073 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003074 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003075 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003076
3077 /* Do some checking to help insure the file we opened really is
3078 ** a valid database file.
3079 */
drhc2a4bab2010-04-02 12:46:45 +00003080 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003081 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003082 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003083 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003084 }
drh0314cf32018-04-28 01:27:09 +00003085 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3086 nPage = 0;
3087 }
drh97b59a52010-03-31 02:31:33 +00003088 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003089 u32 pageSize;
3090 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003091 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003092 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003093 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3094 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3095 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003096 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003097 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003098 }
dan5cf53532010-05-01 16:40:20 +00003099
3100#ifdef SQLITE_OMIT_WAL
3101 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003102 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003103 }
3104 if( page1[19]>1 ){
3105 goto page1_init_failed;
3106 }
3107#else
dane04dc882010-04-20 18:53:15 +00003108 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003109 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003110 }
dane04dc882010-04-20 18:53:15 +00003111 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003112 goto page1_init_failed;
3113 }
drhe5ae5732008-06-15 02:51:47 +00003114
dana470aeb2010-04-21 11:43:38 +00003115 /* If the write version is set to 2, this database should be accessed
3116 ** in WAL mode. If the log is not already open, open it now. Then
3117 ** return SQLITE_OK and return without populating BtShared.pPage1.
3118 ** The caller detects this and calls this function again. This is
3119 ** required as the version of page 1 currently in the page1 buffer
3120 ** may not be the latest version - there may be a newer one in the log
3121 ** file.
3122 */
drhc9166342012-01-05 23:32:06 +00003123 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003124 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003125 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003126 if( rc!=SQLITE_OK ){
3127 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003128 }else{
danf5da7db2017-03-16 18:14:39 +00003129 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003130 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003131 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003132 return SQLITE_OK;
3133 }
dane04dc882010-04-20 18:53:15 +00003134 }
dan8b5444b2010-04-27 14:37:47 +00003135 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003136 }else{
3137 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003138 }
dan5cf53532010-05-01 16:40:20 +00003139#endif
dane04dc882010-04-20 18:53:15 +00003140
drh113762a2014-11-19 16:36:25 +00003141 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3142 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3143 **
drhe5ae5732008-06-15 02:51:47 +00003144 ** The original design allowed these amounts to vary, but as of
3145 ** version 3.6.0, we require them to be fixed.
3146 */
3147 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3148 goto page1_init_failed;
3149 }
drh113762a2014-11-19 16:36:25 +00003150 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3151 ** determined by the 2-byte integer located at an offset of 16 bytes from
3152 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003153 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003154 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3155 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003156 if( ((pageSize-1)&pageSize)!=0
3157 || pageSize>SQLITE_MAX_PAGE_SIZE
3158 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003159 ){
drh07d183d2005-05-01 22:52:42 +00003160 goto page1_init_failed;
3161 }
drhdcc27002019-01-06 02:06:31 +00003162 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003163 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003164 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3165 ** integer at offset 20 is the number of bytes of space at the end of
3166 ** each page to reserve for extensions.
3167 **
3168 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3169 ** determined by the one-byte unsigned integer found at an offset of 20
3170 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003171 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003172 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003173 /* After reading the first page of the database assuming a page size
3174 ** of BtShared.pageSize, we have discovered that the page-size is
3175 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3176 ** zero and return SQLITE_OK. The caller will call this function
3177 ** again with the correct page-size.
3178 */
drh3908fe92017-09-01 14:50:19 +00003179 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003180 pBt->usableSize = usableSize;
3181 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003182 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003183 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3184 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003185 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003186 }
drh0f1c2eb2018-11-03 17:31:48 +00003187 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003188 rc = SQLITE_CORRUPT_BKPT;
3189 goto page1_init_failed;
3190 }
drh113762a2014-11-19 16:36:25 +00003191 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3192 ** be less than 480. In other words, if the page size is 512, then the
3193 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003194 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003195 goto page1_init_failed;
3196 }
drh43b18e12010-08-17 19:40:08 +00003197 pBt->pageSize = pageSize;
3198 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003199#ifndef SQLITE_OMIT_AUTOVACUUM
3200 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003201 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003202#endif
drh306dc212001-05-21 13:45:10 +00003203 }
drhb6f41482004-05-14 01:58:11 +00003204
3205 /* maxLocal is the maximum amount of payload to store locally for
3206 ** a cell. Make sure it is small enough so that at least minFanout
3207 ** cells can will fit on one page. We assume a 10-byte page header.
3208 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003209 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003210 ** 4-byte child pointer
3211 ** 9-byte nKey value
3212 ** 4-byte nData value
3213 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003214 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003215 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3216 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003217 */
shaneh1df2db72010-08-18 02:28:48 +00003218 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3219 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3220 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3221 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003222 if( pBt->maxLocal>127 ){
3223 pBt->max1bytePayload = 127;
3224 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003225 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003226 }
drh2e38c322004-09-03 18:38:44 +00003227 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003228 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003229 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003230 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003231
drh72f82862001-05-24 21:06:34 +00003232page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003233 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003234 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003235 return rc;
drh306dc212001-05-21 13:45:10 +00003236}
3237
drh85ec3b62013-05-14 23:12:06 +00003238#ifndef NDEBUG
3239/*
3240** Return the number of cursors open on pBt. This is for use
3241** in assert() expressions, so it is only compiled if NDEBUG is not
3242** defined.
3243**
3244** Only write cursors are counted if wrOnly is true. If wrOnly is
3245** false then all cursors are counted.
3246**
3247** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003248** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003249** have been tripped into the CURSOR_FAULT state are not counted.
3250*/
3251static int countValidCursors(BtShared *pBt, int wrOnly){
3252 BtCursor *pCur;
3253 int r = 0;
3254 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003255 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3256 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003257 }
3258 return r;
3259}
3260#endif
3261
drh306dc212001-05-21 13:45:10 +00003262/*
drhb8ca3072001-12-05 00:21:20 +00003263** If there are no outstanding cursors and we are not in the middle
3264** of a transaction but there is a read lock on the database, then
3265** this routine unrefs the first page of the database file which
3266** has the effect of releasing the read lock.
3267**
drhb8ca3072001-12-05 00:21:20 +00003268** If there is a transaction in progress, this routine is a no-op.
3269*/
danielk1977aef0bf62005-12-30 16:28:01 +00003270static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003271 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003272 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003273 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003274 MemPage *pPage1 = pBt->pPage1;
3275 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003276 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003277 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003278 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003279 }
3280}
3281
3282/*
drhe39f2f92009-07-23 01:43:59 +00003283** If pBt points to an empty file then convert that empty file
3284** into a new empty database by initializing the first page of
3285** the database.
drh8b2f49b2001-06-08 00:21:52 +00003286*/
danielk1977aef0bf62005-12-30 16:28:01 +00003287static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003288 MemPage *pP1;
3289 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003290 int rc;
drhd677b3d2007-08-20 22:48:41 +00003291
drh1fee73e2007-08-29 04:00:57 +00003292 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003293 if( pBt->nPage>0 ){
3294 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003295 }
drh3aac2dd2004-04-26 14:10:20 +00003296 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003297 assert( pP1!=0 );
3298 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003299 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003300 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003301 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3302 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003303 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3304 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003305 data[18] = 1;
3306 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003307 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3308 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003309 data[21] = 64;
3310 data[22] = 32;
3311 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003312 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003313 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003314 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003315#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003316 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003317 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003318 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003319 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003320#endif
drhdd3cd972010-03-27 17:12:36 +00003321 pBt->nPage = 1;
3322 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003323 return SQLITE_OK;
3324}
3325
3326/*
danb483eba2012-10-13 19:58:11 +00003327** Initialize the first page of the database file (creating a database
3328** consisting of a single page and no schema objects). Return SQLITE_OK
3329** if successful, or an SQLite error code otherwise.
3330*/
3331int sqlite3BtreeNewDb(Btree *p){
3332 int rc;
3333 sqlite3BtreeEnter(p);
3334 p->pBt->nPage = 0;
3335 rc = newDatabase(p->pBt);
3336 sqlite3BtreeLeave(p);
3337 return rc;
3338}
3339
3340/*
danielk1977ee5741e2004-05-31 10:01:34 +00003341** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003342** is started if the second argument is nonzero, otherwise a read-
3343** transaction. If the second argument is 2 or more and exclusive
3344** transaction is started, meaning that no other process is allowed
3345** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003346** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003347** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003348**
danielk1977ee5741e2004-05-31 10:01:34 +00003349** A write-transaction must be started before attempting any
3350** changes to the database. None of the following routines
3351** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003352**
drh23e11ca2004-05-04 17:27:28 +00003353** sqlite3BtreeCreateTable()
3354** sqlite3BtreeCreateIndex()
3355** sqlite3BtreeClearTable()
3356** sqlite3BtreeDropTable()
3357** sqlite3BtreeInsert()
3358** sqlite3BtreeDelete()
3359** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003360**
drhb8ef32c2005-03-14 02:01:49 +00003361** If an initial attempt to acquire the lock fails because of lock contention
3362** and the database was previously unlocked, then invoke the busy handler
3363** if there is one. But if there was previously a read-lock, do not
3364** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3365** returned when there is already a read-lock in order to avoid a deadlock.
3366**
3367** Suppose there are two processes A and B. A has a read lock and B has
3368** a reserved lock. B tries to promote to exclusive but is blocked because
3369** of A's read lock. A tries to promote to reserved but is blocked by B.
3370** One or the other of the two processes must give way or there can be
3371** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3372** when A already has a read lock, we encourage A to give up and let B
3373** proceed.
drha059ad02001-04-17 20:09:11 +00003374*/
drhbb2d9b12018-06-06 16:28:40 +00003375int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003376 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003377 int rc = SQLITE_OK;
3378
drhd677b3d2007-08-20 22:48:41 +00003379 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003380 btreeIntegrity(p);
3381
danielk1977ee5741e2004-05-31 10:01:34 +00003382 /* If the btree is already in a write-transaction, or it
3383 ** is already in a read-transaction and a read-transaction
3384 ** is requested, this is a no-op.
3385 */
danielk1977aef0bf62005-12-30 16:28:01 +00003386 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003387 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003388 }
dan56c517a2013-09-26 11:04:33 +00003389 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003390
danea933f02018-07-19 11:44:02 +00003391 if( (p->db->flags & SQLITE_ResetDatabase)
3392 && sqlite3PagerIsreadonly(pBt->pPager)==0
3393 ){
3394 pBt->btsFlags &= ~BTS_READ_ONLY;
3395 }
3396
drhb8ef32c2005-03-14 02:01:49 +00003397 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003398 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003399 rc = SQLITE_READONLY;
3400 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003401 }
3402
danielk1977404ca072009-03-16 13:19:36 +00003403#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003404 {
3405 sqlite3 *pBlock = 0;
3406 /* If another database handle has already opened a write transaction
3407 ** on this shared-btree structure and a second write transaction is
3408 ** requested, return SQLITE_LOCKED.
3409 */
3410 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3411 || (pBt->btsFlags & BTS_PENDING)!=0
3412 ){
3413 pBlock = pBt->pWriter->db;
3414 }else if( wrflag>1 ){
3415 BtLock *pIter;
3416 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3417 if( pIter->pBtree!=p ){
3418 pBlock = pIter->pBtree->db;
3419 break;
3420 }
danielk1977641b0f42007-12-21 04:47:25 +00003421 }
3422 }
drh5a1fb182016-01-08 19:34:39 +00003423 if( pBlock ){
3424 sqlite3ConnectionBlocked(p->db, pBlock);
3425 rc = SQLITE_LOCKED_SHAREDCACHE;
3426 goto trans_begun;
3427 }
danielk1977404ca072009-03-16 13:19:36 +00003428 }
danielk1977641b0f42007-12-21 04:47:25 +00003429#endif
3430
danielk1977602b4662009-07-02 07:47:33 +00003431 /* Any read-only or read-write transaction implies a read-lock on
3432 ** page 1. So if some other shared-cache client already has a write-lock
3433 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003434 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3435 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003436
drhc9166342012-01-05 23:32:06 +00003437 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3438 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003439 do {
danielk1977295dc102009-04-01 19:07:03 +00003440 /* Call lockBtree() until either pBt->pPage1 is populated or
3441 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3442 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3443 ** reading page 1 it discovers that the page-size of the database
3444 ** file is not pBt->pageSize. In this case lockBtree() will update
3445 ** pBt->pageSize to the page-size of the file on disk.
3446 */
3447 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003448
drhb8ef32c2005-03-14 02:01:49 +00003449 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003450 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003451 rc = SQLITE_READONLY;
3452 }else{
danielk1977d8293352009-04-30 09:10:37 +00003453 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003454 if( rc==SQLITE_OK ){
3455 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003456 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3457 /* if there was no transaction opened when this function was
3458 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3459 ** code to SQLITE_BUSY. */
3460 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003461 }
drhb8ef32c2005-03-14 02:01:49 +00003462 }
3463 }
3464
danielk1977bd434552009-03-18 10:33:00 +00003465 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003466 unlockBtreeIfUnused(pBt);
3467 }
danf9b76712010-06-01 14:12:45 +00003468 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003469 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003470 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003471
3472 if( rc==SQLITE_OK ){
3473 if( p->inTrans==TRANS_NONE ){
3474 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003475#ifndef SQLITE_OMIT_SHARED_CACHE
3476 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003477 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003478 p->lock.eLock = READ_LOCK;
3479 p->lock.pNext = pBt->pLock;
3480 pBt->pLock = &p->lock;
3481 }
3482#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003483 }
3484 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3485 if( p->inTrans>pBt->inTransaction ){
3486 pBt->inTransaction = p->inTrans;
3487 }
danielk1977404ca072009-03-16 13:19:36 +00003488 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003489 MemPage *pPage1 = pBt->pPage1;
3490#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003491 assert( !pBt->pWriter );
3492 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003493 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3494 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003495#endif
dan59257dc2010-08-04 11:34:31 +00003496
3497 /* If the db-size header field is incorrect (as it may be if an old
3498 ** client has been writing the database file), update it now. Doing
3499 ** this sooner rather than later means the database size can safely
3500 ** re-read the database size from page 1 if a savepoint or transaction
3501 ** rollback occurs within the transaction.
3502 */
3503 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3504 rc = sqlite3PagerWrite(pPage1->pDbPage);
3505 if( rc==SQLITE_OK ){
3506 put4byte(&pPage1->aData[28], pBt->nPage);
3507 }
3508 }
3509 }
danielk1977aef0bf62005-12-30 16:28:01 +00003510 }
3511
drhd677b3d2007-08-20 22:48:41 +00003512trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003513 if( rc==SQLITE_OK ){
3514 if( pSchemaVersion ){
3515 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3516 }
3517 if( wrflag ){
3518 /* This call makes sure that the pager has the correct number of
3519 ** open savepoints. If the second parameter is greater than 0 and
3520 ** the sub-journal is not already open, then it will be opened here.
3521 */
3522 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3523 }
danielk1977fd7f0452008-12-17 17:30:26 +00003524 }
danielk197712dd5492008-12-18 15:45:07 +00003525
danielk1977aef0bf62005-12-30 16:28:01 +00003526 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003527 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003528 return rc;
drha059ad02001-04-17 20:09:11 +00003529}
3530
danielk1977687566d2004-11-02 12:56:41 +00003531#ifndef SQLITE_OMIT_AUTOVACUUM
3532
3533/*
3534** Set the pointer-map entries for all children of page pPage. Also, if
3535** pPage contains cells that point to overflow pages, set the pointer
3536** map entries for the overflow pages as well.
3537*/
3538static int setChildPtrmaps(MemPage *pPage){
3539 int i; /* Counter variable */
3540 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003541 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003542 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003543 Pgno pgno = pPage->pgno;
3544
drh1fee73e2007-08-29 04:00:57 +00003545 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003546 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003547 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003548 nCell = pPage->nCell;
3549
3550 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003551 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003552
drh0f1bf4c2019-01-13 20:17:21 +00003553 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003554
danielk1977687566d2004-11-02 12:56:41 +00003555 if( !pPage->leaf ){
3556 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003557 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003558 }
3559 }
3560
3561 if( !pPage->leaf ){
3562 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003563 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003564 }
3565
danielk1977687566d2004-11-02 12:56:41 +00003566 return rc;
3567}
3568
3569/*
drhf3aed592009-07-08 18:12:49 +00003570** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3571** that it points to iTo. Parameter eType describes the type of pointer to
3572** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003573**
3574** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3575** page of pPage.
3576**
3577** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3578** page pointed to by one of the cells on pPage.
3579**
3580** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3581** overflow page in the list.
3582*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003583static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003585 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003586 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003587 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003588 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003589 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003590 }
danielk1977f78fc082004-11-02 14:40:32 +00003591 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003592 }else{
danielk1977687566d2004-11-02 12:56:41 +00003593 int i;
3594 int nCell;
drha1f75d92015-05-24 10:18:12 +00003595 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003596
drh14e845a2017-05-25 21:35:56 +00003597 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003598 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003599 nCell = pPage->nCell;
3600
danielk1977687566d2004-11-02 12:56:41 +00003601 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003602 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003603 if( eType==PTRMAP_OVERFLOW1 ){
3604 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003605 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003606 if( info.nLocal<info.nPayload ){
3607 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003608 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003609 }
3610 if( iFrom==get4byte(pCell+info.nSize-4) ){
3611 put4byte(pCell+info.nSize-4, iTo);
3612 break;
3613 }
danielk1977687566d2004-11-02 12:56:41 +00003614 }
3615 }else{
3616 if( get4byte(pCell)==iFrom ){
3617 put4byte(pCell, iTo);
3618 break;
3619 }
3620 }
3621 }
3622
3623 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003624 if( eType!=PTRMAP_BTREE ||
3625 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003626 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003627 }
danielk1977687566d2004-11-02 12:56:41 +00003628 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3629 }
danielk1977687566d2004-11-02 12:56:41 +00003630 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003631 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003632}
3633
danielk1977003ba062004-11-04 02:57:33 +00003634
danielk19777701e812005-01-10 12:59:51 +00003635/*
3636** Move the open database page pDbPage to location iFreePage in the
3637** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003638**
3639** The isCommit flag indicates that there is no need to remember that
3640** the journal needs to be sync()ed before database page pDbPage->pgno
3641** can be written to. The caller has already promised not to write to that
3642** page.
danielk19777701e812005-01-10 12:59:51 +00003643*/
danielk1977003ba062004-11-04 02:57:33 +00003644static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003645 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003646 MemPage *pDbPage, /* Open page to move */
3647 u8 eType, /* Pointer map 'type' entry for pDbPage */
3648 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003649 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003650 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003651){
3652 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3653 Pgno iDbPage = pDbPage->pgno;
3654 Pager *pPager = pBt->pPager;
3655 int rc;
3656
danielk1977a0bf2652004-11-04 14:30:04 +00003657 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3658 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003659 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003660 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003661 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003662
drh85b623f2007-12-13 21:54:09 +00003663 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003664 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3665 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003666 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003667 if( rc!=SQLITE_OK ){
3668 return rc;
3669 }
3670 pDbPage->pgno = iFreePage;
3671
3672 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3673 ** that point to overflow pages. The pointer map entries for all these
3674 ** pages need to be changed.
3675 **
3676 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3677 ** pointer to a subsequent overflow page. If this is the case, then
3678 ** the pointer map needs to be updated for the subsequent overflow page.
3679 */
danielk1977a0bf2652004-11-04 14:30:04 +00003680 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003681 rc = setChildPtrmaps(pDbPage);
3682 if( rc!=SQLITE_OK ){
3683 return rc;
3684 }
3685 }else{
3686 Pgno nextOvfl = get4byte(pDbPage->aData);
3687 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003688 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003689 if( rc!=SQLITE_OK ){
3690 return rc;
3691 }
3692 }
3693 }
3694
3695 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3696 ** that it points at iFreePage. Also fix the pointer map entry for
3697 ** iPtrPage.
3698 */
danielk1977a0bf2652004-11-04 14:30:04 +00003699 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003700 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003701 if( rc!=SQLITE_OK ){
3702 return rc;
3703 }
danielk19773b8a05f2007-03-19 17:44:26 +00003704 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003705 if( rc!=SQLITE_OK ){
3706 releasePage(pPtrPage);
3707 return rc;
3708 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003709 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003710 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003711 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003712 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003713 }
danielk1977003ba062004-11-04 02:57:33 +00003714 }
danielk1977003ba062004-11-04 02:57:33 +00003715 return rc;
3716}
3717
danielk1977dddbcdc2007-04-26 14:42:34 +00003718/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003719static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003720
3721/*
dan51f0b6d2013-02-22 20:16:34 +00003722** Perform a single step of an incremental-vacuum. If successful, return
3723** SQLITE_OK. If there is no work to do (and therefore no point in
3724** calling this function again), return SQLITE_DONE. Or, if an error
3725** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003726**
peter.d.reid60ec9142014-09-06 16:39:46 +00003727** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003728** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003729**
dan51f0b6d2013-02-22 20:16:34 +00003730** Parameter nFin is the number of pages that this database would contain
3731** were this function called until it returns SQLITE_DONE.
3732**
3733** If the bCommit parameter is non-zero, this function assumes that the
3734** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003735** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003736** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003737*/
dan51f0b6d2013-02-22 20:16:34 +00003738static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003739 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003740 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003741
drh1fee73e2007-08-29 04:00:57 +00003742 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003743 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003744
3745 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003746 u8 eType;
3747 Pgno iPtrPage;
3748
3749 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003750 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003751 return SQLITE_DONE;
3752 }
3753
3754 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3755 if( rc!=SQLITE_OK ){
3756 return rc;
3757 }
3758 if( eType==PTRMAP_ROOTPAGE ){
3759 return SQLITE_CORRUPT_BKPT;
3760 }
3761
3762 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003763 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003764 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003765 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003766 ** truncated to zero after this function returns, so it doesn't
3767 ** matter if it still contains some garbage entries.
3768 */
3769 Pgno iFreePg;
3770 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003771 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003772 if( rc!=SQLITE_OK ){
3773 return rc;
3774 }
3775 assert( iFreePg==iLastPg );
3776 releasePage(pFreePg);
3777 }
3778 } else {
3779 Pgno iFreePg; /* Index of free page to move pLastPg to */
3780 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003781 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3782 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003783
drhb00fc3b2013-08-21 23:42:32 +00003784 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003785 if( rc!=SQLITE_OK ){
3786 return rc;
3787 }
3788
dan51f0b6d2013-02-22 20:16:34 +00003789 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003790 ** is swapped with the first free page pulled off the free list.
3791 **
dan51f0b6d2013-02-22 20:16:34 +00003792 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003793 ** looping until a free-page located within the first nFin pages
3794 ** of the file is found.
3795 */
dan51f0b6d2013-02-22 20:16:34 +00003796 if( bCommit==0 ){
3797 eMode = BTALLOC_LE;
3798 iNear = nFin;
3799 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003800 do {
3801 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003802 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003803 if( rc!=SQLITE_OK ){
3804 releasePage(pLastPg);
3805 return rc;
3806 }
3807 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003808 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003809 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003810
dane1df4e32013-03-05 11:27:04 +00003811 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003812 releasePage(pLastPg);
3813 if( rc!=SQLITE_OK ){
3814 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003815 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003816 }
3817 }
3818
dan51f0b6d2013-02-22 20:16:34 +00003819 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003820 do {
danielk19773460d192008-12-27 15:23:13 +00003821 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003822 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3823 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003824 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003825 }
3826 return SQLITE_OK;
3827}
3828
3829/*
dan51f0b6d2013-02-22 20:16:34 +00003830** The database opened by the first argument is an auto-vacuum database
3831** nOrig pages in size containing nFree free pages. Return the expected
3832** size of the database in pages following an auto-vacuum operation.
3833*/
3834static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3835 int nEntry; /* Number of entries on one ptrmap page */
3836 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3837 Pgno nFin; /* Return value */
3838
3839 nEntry = pBt->usableSize/5;
3840 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3841 nFin = nOrig - nFree - nPtrmap;
3842 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3843 nFin--;
3844 }
3845 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3846 nFin--;
3847 }
dan51f0b6d2013-02-22 20:16:34 +00003848
3849 return nFin;
3850}
3851
3852/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003853** A write-transaction must be opened before calling this function.
3854** It performs a single unit of work towards an incremental vacuum.
3855**
3856** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003857** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003858** SQLITE_OK is returned. Otherwise an SQLite error code.
3859*/
3860int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003861 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003862 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003863
3864 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003865 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3866 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003867 rc = SQLITE_DONE;
3868 }else{
dan51f0b6d2013-02-22 20:16:34 +00003869 Pgno nOrig = btreePagecount(pBt);
3870 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3871 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3872
dan91384712013-02-24 11:50:43 +00003873 if( nOrig<nFin ){
3874 rc = SQLITE_CORRUPT_BKPT;
3875 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003876 rc = saveAllCursors(pBt, 0, 0);
3877 if( rc==SQLITE_OK ){
3878 invalidateAllOverflowCache(pBt);
3879 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3880 }
dan51f0b6d2013-02-22 20:16:34 +00003881 if( rc==SQLITE_OK ){
3882 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3883 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3884 }
3885 }else{
3886 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003887 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003888 }
drhd677b3d2007-08-20 22:48:41 +00003889 sqlite3BtreeLeave(p);
3890 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003891}
3892
3893/*
danielk19773b8a05f2007-03-19 17:44:26 +00003894** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003895** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003896**
3897** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3898** the database file should be truncated to during the commit process.
3899** i.e. the database has been reorganized so that only the first *pnTrunc
3900** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003901*/
danielk19773460d192008-12-27 15:23:13 +00003902static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003903 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003904 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003905 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003906
drh1fee73e2007-08-29 04:00:57 +00003907 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003908 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003909 assert(pBt->autoVacuum);
3910 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003911 Pgno nFin; /* Number of pages in database after autovacuuming */
3912 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003913 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003914 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003915
drhb1299152010-03-30 22:58:33 +00003916 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003917 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3918 /* It is not possible to create a database for which the final page
3919 ** is either a pointer-map page or the pending-byte page. If one
3920 ** is encountered, this indicates corruption.
3921 */
danielk19773460d192008-12-27 15:23:13 +00003922 return SQLITE_CORRUPT_BKPT;
3923 }
danielk1977ef165ce2009-04-06 17:50:03 +00003924
danielk19773460d192008-12-27 15:23:13 +00003925 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003926 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003927 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003928 if( nFin<nOrig ){
3929 rc = saveAllCursors(pBt, 0, 0);
3930 }
danielk19773460d192008-12-27 15:23:13 +00003931 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003932 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003933 }
danielk19773460d192008-12-27 15:23:13 +00003934 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003935 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3936 put4byte(&pBt->pPage1->aData[32], 0);
3937 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003938 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003939 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003940 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003941 }
3942 if( rc!=SQLITE_OK ){
3943 sqlite3PagerRollback(pPager);
3944 }
danielk1977687566d2004-11-02 12:56:41 +00003945 }
3946
dan0aed84d2013-03-26 14:16:20 +00003947 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003948 return rc;
3949}
danielk1977dddbcdc2007-04-26 14:42:34 +00003950
danielk1977a50d9aa2009-06-08 14:49:45 +00003951#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3952# define setChildPtrmaps(x) SQLITE_OK
3953#endif
danielk1977687566d2004-11-02 12:56:41 +00003954
3955/*
drh80e35f42007-03-30 14:06:34 +00003956** This routine does the first phase of a two-phase commit. This routine
3957** causes a rollback journal to be created (if it does not already exist)
3958** and populated with enough information so that if a power loss occurs
3959** the database can be restored to its original state by playing back
3960** the journal. Then the contents of the journal are flushed out to
3961** the disk. After the journal is safely on oxide, the changes to the
3962** database are written into the database file and flushed to oxide.
3963** At the end of this call, the rollback journal still exists on the
3964** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003965** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003966** commit process.
3967**
3968** This call is a no-op if no write-transaction is currently active on pBt.
3969**
3970** Otherwise, sync the database file for the btree pBt. zMaster points to
3971** the name of a master journal file that should be written into the
3972** individual journal file, or is NULL, indicating no master journal file
3973** (single database transaction).
3974**
3975** When this is called, the master journal should already have been
3976** created, populated with this journal pointer and synced to disk.
3977**
3978** Once this is routine has returned, the only thing required to commit
3979** the write-transaction for this database file is to delete the journal.
3980*/
3981int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3982 int rc = SQLITE_OK;
3983 if( p->inTrans==TRANS_WRITE ){
3984 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003985 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003986#ifndef SQLITE_OMIT_AUTOVACUUM
3987 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003988 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003989 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003990 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003991 return rc;
3992 }
3993 }
danbc1a3c62013-02-23 16:40:46 +00003994 if( pBt->bDoTruncate ){
3995 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3996 }
drh80e35f42007-03-30 14:06:34 +00003997#endif
drh49b9d332009-01-02 18:10:42 +00003998 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003999 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004000 }
4001 return rc;
4002}
4003
4004/*
danielk197794b30732009-07-02 17:21:57 +00004005** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4006** at the conclusion of a transaction.
4007*/
4008static void btreeEndTransaction(Btree *p){
4009 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00004010 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00004011 assert( sqlite3BtreeHoldsMutex(p) );
4012
danbc1a3c62013-02-23 16:40:46 +00004013#ifndef SQLITE_OMIT_AUTOVACUUM
4014 pBt->bDoTruncate = 0;
4015#endif
danc0537fe2013-06-28 19:41:43 +00004016 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00004017 /* If there are other active statements that belong to this database
4018 ** handle, downgrade to a read-only transaction. The other statements
4019 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00004020 downgradeAllSharedCacheTableLocks(p);
4021 p->inTrans = TRANS_READ;
4022 }else{
4023 /* If the handle had any kind of transaction open, decrement the
4024 ** transaction count of the shared btree. If the transaction count
4025 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4026 ** call below will unlock the pager. */
4027 if( p->inTrans!=TRANS_NONE ){
4028 clearAllSharedCacheTableLocks(p);
4029 pBt->nTransaction--;
4030 if( 0==pBt->nTransaction ){
4031 pBt->inTransaction = TRANS_NONE;
4032 }
4033 }
4034
4035 /* Set the current transaction state to TRANS_NONE and unlock the
4036 ** pager if this call closed the only read or write transaction. */
4037 p->inTrans = TRANS_NONE;
4038 unlockBtreeIfUnused(pBt);
4039 }
4040
4041 btreeIntegrity(p);
4042}
4043
4044/*
drh2aa679f2001-06-25 02:11:07 +00004045** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00004046**
drh6e345992007-03-30 11:12:08 +00004047** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00004048** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4049** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4050** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00004051** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00004052** routine has to do is delete or truncate or zero the header in the
4053** the rollback journal (which causes the transaction to commit) and
4054** drop locks.
drh6e345992007-03-30 11:12:08 +00004055**
dan60939d02011-03-29 15:40:55 +00004056** Normally, if an error occurs while the pager layer is attempting to
4057** finalize the underlying journal file, this function returns an error and
4058** the upper layer will attempt a rollback. However, if the second argument
4059** is non-zero then this b-tree transaction is part of a multi-file
4060** transaction. In this case, the transaction has already been committed
4061** (by deleting a master journal file) and the caller will ignore this
4062** functions return code. So, even if an error occurs in the pager layer,
4063** reset the b-tree objects internal state to indicate that the write
4064** transaction has been closed. This is quite safe, as the pager will have
4065** transitioned to the error state.
4066**
drh5e00f6c2001-09-13 13:46:56 +00004067** This will release the write lock on the database file. If there
4068** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004069*/
dan60939d02011-03-29 15:40:55 +00004070int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004071
drh075ed302010-10-14 01:17:30 +00004072 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004073 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004074 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004075
4076 /* If the handle has a write-transaction open, commit the shared-btrees
4077 ** transaction and set the shared state to TRANS_READ.
4078 */
4079 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004080 int rc;
drh075ed302010-10-14 01:17:30 +00004081 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004082 assert( pBt->inTransaction==TRANS_WRITE );
4083 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004084 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004085 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004086 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004087 return rc;
4088 }
drh3da9c042014-12-22 18:41:21 +00004089 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004090 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004091 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004092 }
danielk1977aef0bf62005-12-30 16:28:01 +00004093
danielk197794b30732009-07-02 17:21:57 +00004094 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004095 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004096 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004097}
4098
drh80e35f42007-03-30 14:06:34 +00004099/*
4100** Do both phases of a commit.
4101*/
4102int sqlite3BtreeCommit(Btree *p){
4103 int rc;
drhd677b3d2007-08-20 22:48:41 +00004104 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004105 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4106 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004107 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004108 }
drhd677b3d2007-08-20 22:48:41 +00004109 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004110 return rc;
4111}
4112
drhc39e0002004-05-07 23:50:57 +00004113/*
drhfb982642007-08-30 01:19:59 +00004114** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004115** code to errCode for every cursor on any BtShared that pBtree
4116** references. Or if the writeOnly flag is set to 1, then only
4117** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004118**
drh47b7fc72014-11-11 01:33:57 +00004119** Every cursor is a candidate to be tripped, including cursors
4120** that belong to other database connections that happen to be
4121** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004122**
dan80231042014-11-12 14:56:02 +00004123** This routine gets called when a rollback occurs. If the writeOnly
4124** flag is true, then only write-cursors need be tripped - read-only
4125** cursors save their current positions so that they may continue
4126** following the rollback. Or, if writeOnly is false, all cursors are
4127** tripped. In general, writeOnly is false if the transaction being
4128** rolled back modified the database schema. In this case b-tree root
4129** pages may be moved or deleted from the database altogether, making
4130** it unsafe for read cursors to continue.
4131**
4132** If the writeOnly flag is true and an error is encountered while
4133** saving the current position of a read-only cursor, all cursors,
4134** including all read-cursors are tripped.
4135**
4136** SQLITE_OK is returned if successful, or if an error occurs while
4137** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004138*/
dan80231042014-11-12 14:56:02 +00004139int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004140 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004141 int rc = SQLITE_OK;
4142
drh47b7fc72014-11-11 01:33:57 +00004143 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004144 if( pBtree ){
4145 sqlite3BtreeEnter(pBtree);
4146 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004147 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004148 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004149 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004150 if( rc!=SQLITE_OK ){
4151 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4152 break;
4153 }
4154 }
4155 }else{
4156 sqlite3BtreeClearCursor(p);
4157 p->eState = CURSOR_FAULT;
4158 p->skipNext = errCode;
4159 }
drh85ef6302017-08-02 15:50:09 +00004160 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004161 }
dan80231042014-11-12 14:56:02 +00004162 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004163 }
dan80231042014-11-12 14:56:02 +00004164 return rc;
drhfb982642007-08-30 01:19:59 +00004165}
4166
4167/*
drh41422652019-05-10 14:34:18 +00004168** Set the pBt->nPage field correctly, according to the current
4169** state of the database. Assume pBt->pPage1 is valid.
4170*/
4171static void btreeSetNPage(BtShared *pBt, MemPage *pPage1){
4172 int nPage = get4byte(&pPage1->aData[28]);
4173 testcase( nPage==0 );
4174 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4175 testcase( pBt->nPage!=nPage );
4176 pBt->nPage = nPage;
4177}
4178
4179/*
drh47b7fc72014-11-11 01:33:57 +00004180** Rollback the transaction in progress.
4181**
4182** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4183** Only write cursors are tripped if writeOnly is true but all cursors are
4184** tripped if writeOnly is false. Any attempt to use
4185** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004186**
4187** This will release the write lock on the database file. If there
4188** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004189*/
drh47b7fc72014-11-11 01:33:57 +00004190int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004191 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004192 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004193 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004194
drh47b7fc72014-11-11 01:33:57 +00004195 assert( writeOnly==1 || writeOnly==0 );
4196 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004197 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004198 if( tripCode==SQLITE_OK ){
4199 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004200 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004201 }else{
4202 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004203 }
drh0f198a72012-02-13 16:43:16 +00004204 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004205 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4206 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4207 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004208 }
danielk1977aef0bf62005-12-30 16:28:01 +00004209 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004210
4211 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004212 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004213
danielk19778d34dfd2006-01-24 16:37:57 +00004214 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004215 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004216 if( rc2!=SQLITE_OK ){
4217 rc = rc2;
4218 }
4219
drh24cd67e2004-05-10 16:18:47 +00004220 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004221 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004222 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004223 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh41422652019-05-10 14:34:18 +00004224 btreeSetNPage(pBt, pPage1);
drh3908fe92017-09-01 14:50:19 +00004225 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004226 }
drh85ec3b62013-05-14 23:12:06 +00004227 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004228 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004229 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004230 }
danielk1977aef0bf62005-12-30 16:28:01 +00004231
danielk197794b30732009-07-02 17:21:57 +00004232 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004233 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004234 return rc;
4235}
4236
4237/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004238** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004239** back independently of the main transaction. You must start a transaction
4240** before starting a subtransaction. The subtransaction is ended automatically
4241** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004242**
4243** Statement subtransactions are used around individual SQL statements
4244** that are contained within a BEGIN...COMMIT block. If a constraint
4245** error occurs within the statement, the effect of that one statement
4246** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004247**
4248** A statement sub-transaction is implemented as an anonymous savepoint. The
4249** value passed as the second parameter is the total number of savepoints,
4250** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4251** are no active savepoints and no other statement-transactions open,
4252** iStatement is 1. This anonymous savepoint can be released or rolled back
4253** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004254*/
danielk1977bd434552009-03-18 10:33:00 +00004255int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004256 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004257 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004258 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004259 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004260 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004261 assert( iStatement>0 );
4262 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004263 assert( pBt->inTransaction==TRANS_WRITE );
4264 /* At the pager level, a statement transaction is a savepoint with
4265 ** an index greater than all savepoints created explicitly using
4266 ** SQL statements. It is illegal to open, release or rollback any
4267 ** such savepoints while the statement transaction savepoint is active.
4268 */
4269 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004270 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004271 return rc;
4272}
4273
4274/*
danielk1977fd7f0452008-12-17 17:30:26 +00004275** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4276** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004277** savepoint identified by parameter iSavepoint, depending on the value
4278** of op.
4279**
4280** Normally, iSavepoint is greater than or equal to zero. However, if op is
4281** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4282** contents of the entire transaction are rolled back. This is different
4283** from a normal transaction rollback, as no locks are released and the
4284** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004285*/
4286int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4287 int rc = SQLITE_OK;
4288 if( p && p->inTrans==TRANS_WRITE ){
4289 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004290 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4291 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4292 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004293 if( op==SAVEPOINT_ROLLBACK ){
4294 rc = saveAllCursors(pBt, 0, 0);
4295 }
4296 if( rc==SQLITE_OK ){
4297 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4298 }
drh9f0bbf92009-01-02 21:08:09 +00004299 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004300 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4301 pBt->nPage = 0;
4302 }
drh9f0bbf92009-01-02 21:08:09 +00004303 rc = newDatabase(pBt);
drh41422652019-05-10 14:34:18 +00004304 btreeSetNPage(pBt, pBt->pPage1);
drhb9b49bf2010-08-05 03:21:39 +00004305
dana9a54652019-04-22 11:47:40 +00004306 /* pBt->nPage might be zero if the database was corrupt when
4307 ** the transaction was started. Otherwise, it must be at least 1. */
4308 assert( CORRUPT_DB || pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004309 }
danielk1977fd7f0452008-12-17 17:30:26 +00004310 sqlite3BtreeLeave(p);
4311 }
4312 return rc;
4313}
4314
4315/*
drh8b2f49b2001-06-08 00:21:52 +00004316** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004317** iTable. If a read-only cursor is requested, it is assumed that
4318** the caller already has at least a read-only transaction open
4319** on the database already. If a write-cursor is requested, then
4320** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004321**
drhe807bdb2016-01-21 17:06:33 +00004322** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4323** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4324** can be used for reading or for writing if other conditions for writing
4325** are also met. These are the conditions that must be met in order
4326** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004327**
drhe807bdb2016-01-21 17:06:33 +00004328** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004329**
drhfe5d71d2007-03-19 11:54:10 +00004330** 2: Other database connections that share the same pager cache
4331** but which are not in the READ_UNCOMMITTED state may not have
4332** cursors open with wrFlag==0 on the same table. Otherwise
4333** the changes made by this write cursor would be visible to
4334** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004335**
4336** 3: The database must be writable (not on read-only media)
4337**
4338** 4: There must be an active transaction.
4339**
drhe807bdb2016-01-21 17:06:33 +00004340** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4341** is set. If FORDELETE is set, that is a hint to the implementation that
4342** this cursor will only be used to seek to and delete entries of an index
4343** as part of a larger DELETE statement. The FORDELETE hint is not used by
4344** this implementation. But in a hypothetical alternative storage engine
4345** in which index entries are automatically deleted when corresponding table
4346** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4347** operations on this cursor can be no-ops and all READ operations can
4348** return a null row (2-bytes: 0x01 0x00).
4349**
drh6446c4d2001-12-15 14:22:18 +00004350** No checking is done to make sure that page iTable really is the
4351** root page of a b-tree. If it is not, then the cursor acquired
4352** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004353**
drhf25a5072009-11-18 23:01:25 +00004354** It is assumed that the sqlite3BtreeCursorZero() has been called
4355** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004356*/
drhd677b3d2007-08-20 22:48:41 +00004357static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004358 Btree *p, /* The btree */
4359 int iTable, /* Root page of table to open */
4360 int wrFlag, /* 1 to write. 0 read-only */
4361 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4362 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004363){
danielk19773e8add92009-07-04 17:16:00 +00004364 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004365 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004366
drh1fee73e2007-08-29 04:00:57 +00004367 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004368 assert( wrFlag==0
4369 || wrFlag==BTREE_WRCSR
4370 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4371 );
danielk197796d48e92009-06-29 06:00:37 +00004372
danielk1977602b4662009-07-02 07:47:33 +00004373 /* The following assert statements verify that if this is a sharable
4374 ** b-tree database, the connection is holding the required table locks,
4375 ** and that no other connection has any open cursor that conflicts with
drhac801802019-11-17 11:47:50 +00004376 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4377 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1))
4378 || iTable<1 );
danielk197796d48e92009-06-29 06:00:37 +00004379 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4380
danielk19773e8add92009-07-04 17:16:00 +00004381 /* Assert that the caller has opened the required transaction. */
4382 assert( p->inTrans>TRANS_NONE );
4383 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4384 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004385 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004386
drh3fbb0222014-09-24 19:47:27 +00004387 if( wrFlag ){
4388 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004389 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004390 }
drhdb561bc2019-10-25 14:46:05 +00004391 if( iTable<=1 ){
4392 if( iTable<1 ){
4393 return SQLITE_CORRUPT_BKPT;
4394 }else if( btreePagecount(pBt)==0 ){
4395 assert( wrFlag==0 );
4396 iTable = 0;
4397 }
danielk19773e8add92009-07-04 17:16:00 +00004398 }
danielk1977aef0bf62005-12-30 16:28:01 +00004399
danielk1977aef0bf62005-12-30 16:28:01 +00004400 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004401 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004402 pCur->pgnoRoot = (Pgno)iTable;
4403 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004404 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004405 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004406 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004407 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004408 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004409 /* If there are two or more cursors on the same btree, then all such
4410 ** cursors *must* have the BTCF_Multiple flag set. */
4411 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4412 if( pX->pgnoRoot==(Pgno)iTable ){
4413 pX->curFlags |= BTCF_Multiple;
4414 pCur->curFlags |= BTCF_Multiple;
4415 }
drha059ad02001-04-17 20:09:11 +00004416 }
drh27fb7462015-06-30 02:47:36 +00004417 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004418 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004419 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004420 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004421}
drhdb561bc2019-10-25 14:46:05 +00004422static int btreeCursorWithLock(
4423 Btree *p, /* The btree */
4424 int iTable, /* Root page of table to open */
4425 int wrFlag, /* 1 to write. 0 read-only */
4426 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4427 BtCursor *pCur /* Space for new cursor */
4428){
4429 int rc;
4430 sqlite3BtreeEnter(p);
4431 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4432 sqlite3BtreeLeave(p);
4433 return rc;
4434}
drhd677b3d2007-08-20 22:48:41 +00004435int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004436 Btree *p, /* The btree */
4437 int iTable, /* Root page of table to open */
4438 int wrFlag, /* 1 to write. 0 read-only */
4439 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4440 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004441){
drhdb561bc2019-10-25 14:46:05 +00004442 if( p->sharable ){
4443 return btreeCursorWithLock(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004444 }else{
drhdb561bc2019-10-25 14:46:05 +00004445 return btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
dan08f901b2015-05-25 19:24:36 +00004446 }
drhd677b3d2007-08-20 22:48:41 +00004447}
drh7f751222009-03-17 22:33:00 +00004448
4449/*
4450** Return the size of a BtCursor object in bytes.
4451**
4452** This interfaces is needed so that users of cursors can preallocate
4453** sufficient storage to hold a cursor. The BtCursor object is opaque
4454** to users so they cannot do the sizeof() themselves - they must call
4455** this routine.
4456*/
4457int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004458 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004459}
4460
drh7f751222009-03-17 22:33:00 +00004461/*
drhf25a5072009-11-18 23:01:25 +00004462** Initialize memory that will be converted into a BtCursor object.
4463**
4464** The simple approach here would be to memset() the entire object
4465** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4466** do not need to be zeroed and they are large, so we can save a lot
4467** of run-time by skipping the initialization of those elements.
4468*/
4469void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004470 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004471}
4472
4473/*
drh5e00f6c2001-09-13 13:46:56 +00004474** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004475** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004476*/
drh3aac2dd2004-04-26 14:10:20 +00004477int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004478 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004479 if( pBtree ){
4480 BtShared *pBt = pCur->pBt;
4481 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004482 assert( pBt->pCursor!=0 );
4483 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004484 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004485 }else{
4486 BtCursor *pPrev = pBt->pCursor;
4487 do{
4488 if( pPrev->pNext==pCur ){
4489 pPrev->pNext = pCur->pNext;
4490 break;
4491 }
4492 pPrev = pPrev->pNext;
4493 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004494 }
drh352a35a2017-08-15 03:46:47 +00004495 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004496 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004497 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004498 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004499 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004500 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004501 }
drh8c42ca92001-06-22 19:15:00 +00004502 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004503}
4504
drh5e2f8b92001-05-28 00:41:15 +00004505/*
drh86057612007-06-26 01:04:48 +00004506** Make sure the BtCursor* given in the argument has a valid
4507** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004508** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004509**
4510** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004511** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004512*/
drh9188b382004-05-14 21:12:22 +00004513#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004514 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4515 if( a->nKey!=b->nKey ) return 0;
4516 if( a->pPayload!=b->pPayload ) return 0;
4517 if( a->nPayload!=b->nPayload ) return 0;
4518 if( a->nLocal!=b->nLocal ) return 0;
4519 if( a->nSize!=b->nSize ) return 0;
4520 return 1;
4521 }
danielk19771cc5ed82007-05-16 17:28:43 +00004522 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004523 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004524 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004525 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004526 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004527 }
danielk19771cc5ed82007-05-16 17:28:43 +00004528#else
4529 #define assertCellInfo(x)
4530#endif
drhc5b41ac2015-06-17 02:11:46 +00004531static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4532 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004533 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004534 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004535 }else{
4536 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004537 }
drhc5b41ac2015-06-17 02:11:46 +00004538}
drh9188b382004-05-14 21:12:22 +00004539
drhea8ffdf2009-07-22 00:35:23 +00004540#ifndef NDEBUG /* The next routine used only within assert() statements */
4541/*
4542** Return true if the given BtCursor is valid. A valid cursor is one
4543** that is currently pointing to a row in a (non-empty) table.
4544** This is a verification routine is used only within assert() statements.
4545*/
4546int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4547 return pCur && pCur->eState==CURSOR_VALID;
4548}
4549#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004550int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4551 assert( pCur!=0 );
4552 return pCur->eState==CURSOR_VALID;
4553}
drhea8ffdf2009-07-22 00:35:23 +00004554
drh9188b382004-05-14 21:12:22 +00004555/*
drha7c90c42016-06-04 20:37:10 +00004556** Return the value of the integer key or "rowid" for a table btree.
4557** This routine is only valid for a cursor that is pointing into a
4558** ordinary table btree. If the cursor points to an index btree or
4559** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004560*/
drha7c90c42016-06-04 20:37:10 +00004561i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004562 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004563 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004564 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004565 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004566 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004567}
drh2af926b2001-05-15 00:39:25 +00004568
drh7b14b652019-12-29 22:08:20 +00004569/*
4570** Pin or unpin a cursor.
4571*/
4572void sqlite3BtreeCursorPin(BtCursor *pCur){
4573 assert( (pCur->curFlags & BTCF_Pinned)==0 );
4574 pCur->curFlags |= BTCF_Pinned;
4575}
4576void sqlite3BtreeCursorUnpin(BtCursor *pCur){
4577 assert( (pCur->curFlags & BTCF_Pinned)!=0 );
4578 pCur->curFlags &= ~BTCF_Pinned;
4579}
4580
drh092457b2017-12-29 15:04:49 +00004581#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004582/*
drh2fc865c2017-12-16 20:20:37 +00004583** Return the offset into the database file for the start of the
4584** payload to which the cursor is pointing.
4585*/
drh092457b2017-12-29 15:04:49 +00004586i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004587 assert( cursorHoldsMutex(pCur) );
4588 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004589 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004590 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004591 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4592}
drh092457b2017-12-29 15:04:49 +00004593#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004594
4595/*
drha7c90c42016-06-04 20:37:10 +00004596** Return the number of bytes of payload for the entry that pCur is
4597** currently pointing to. For table btrees, this will be the amount
4598** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004599**
4600** The caller must guarantee that the cursor is pointing to a non-NULL
4601** valid entry. In other words, the calling procedure must guarantee
4602** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004603*/
drha7c90c42016-06-04 20:37:10 +00004604u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4605 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004606 assert( pCur->eState==CURSOR_VALID );
4607 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004608 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004609}
4610
4611/*
drh53d30dd2019-02-04 21:10:24 +00004612** Return an upper bound on the size of any record for the table
4613** that the cursor is pointing into.
4614**
4615** This is an optimization. Everything will still work if this
4616** routine always returns 2147483647 (which is the largest record
4617** that SQLite can handle) or more. But returning a smaller value might
4618** prevent large memory allocations when trying to interpret a
4619** corrupt datrabase.
4620**
4621** The current implementation merely returns the size of the underlying
4622** database file.
4623*/
4624sqlite3_int64 sqlite3BtreeMaxRecordSize(BtCursor *pCur){
4625 assert( cursorHoldsMutex(pCur) );
4626 assert( pCur->eState==CURSOR_VALID );
4627 return pCur->pBt->pageSize * (sqlite3_int64)pCur->pBt->nPage;
4628}
4629
4630/*
danielk1977d04417962007-05-02 13:16:30 +00004631** Given the page number of an overflow page in the database (parameter
4632** ovfl), this function finds the page number of the next page in the
4633** linked list of overflow pages. If possible, it uses the auto-vacuum
4634** pointer-map data instead of reading the content of page ovfl to do so.
4635**
4636** If an error occurs an SQLite error code is returned. Otherwise:
4637**
danielk1977bea2a942009-01-20 17:06:27 +00004638** The page number of the next overflow page in the linked list is
4639** written to *pPgnoNext. If page ovfl is the last page in its linked
4640** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004641**
danielk1977bea2a942009-01-20 17:06:27 +00004642** If ppPage is not NULL, and a reference to the MemPage object corresponding
4643** to page number pOvfl was obtained, then *ppPage is set to point to that
4644** reference. It is the responsibility of the caller to call releasePage()
4645** on *ppPage to free the reference. In no reference was obtained (because
4646** the pointer-map was used to obtain the value for *pPgnoNext), then
4647** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004648*/
4649static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004650 BtShared *pBt, /* The database file */
4651 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004652 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004653 Pgno *pPgnoNext /* OUT: Next overflow page number */
4654){
4655 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004656 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004657 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004658
drh1fee73e2007-08-29 04:00:57 +00004659 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004660 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004661
4662#ifndef SQLITE_OMIT_AUTOVACUUM
4663 /* Try to find the next page in the overflow list using the
4664 ** autovacuum pointer-map pages. Guess that the next page in
4665 ** the overflow list is page number (ovfl+1). If that guess turns
4666 ** out to be wrong, fall back to loading the data of page
4667 ** number ovfl to determine the next page number.
4668 */
4669 if( pBt->autoVacuum ){
4670 Pgno pgno;
4671 Pgno iGuess = ovfl+1;
4672 u8 eType;
4673
4674 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4675 iGuess++;
4676 }
4677
drhb1299152010-03-30 22:58:33 +00004678 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004679 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004680 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004681 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004682 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004683 }
4684 }
4685 }
4686#endif
4687
danielk1977d8a3f3d2009-07-11 11:45:23 +00004688 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004689 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004690 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004691 assert( rc==SQLITE_OK || pPage==0 );
4692 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004693 next = get4byte(pPage->aData);
4694 }
danielk1977443c0592009-01-16 15:21:05 +00004695 }
danielk197745d68822009-01-16 16:23:38 +00004696
danielk1977bea2a942009-01-20 17:06:27 +00004697 *pPgnoNext = next;
4698 if( ppPage ){
4699 *ppPage = pPage;
4700 }else{
4701 releasePage(pPage);
4702 }
4703 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004704}
4705
danielk1977da107192007-05-04 08:32:13 +00004706/*
4707** Copy data from a buffer to a page, or from a page to a buffer.
4708**
4709** pPayload is a pointer to data stored on database page pDbPage.
4710** If argument eOp is false, then nByte bytes of data are copied
4711** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4712** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4713** of data are copied from the buffer pBuf to pPayload.
4714**
4715** SQLITE_OK is returned on success, otherwise an error code.
4716*/
4717static int copyPayload(
4718 void *pPayload, /* Pointer to page data */
4719 void *pBuf, /* Pointer to buffer */
4720 int nByte, /* Number of bytes to copy */
4721 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4722 DbPage *pDbPage /* Page containing pPayload */
4723){
4724 if( eOp ){
4725 /* Copy data from buffer to page (a write operation) */
4726 int rc = sqlite3PagerWrite(pDbPage);
4727 if( rc!=SQLITE_OK ){
4728 return rc;
4729 }
4730 memcpy(pPayload, pBuf, nByte);
4731 }else{
4732 /* Copy data from page to buffer (a read operation) */
4733 memcpy(pBuf, pPayload, nByte);
4734 }
4735 return SQLITE_OK;
4736}
danielk1977d04417962007-05-02 13:16:30 +00004737
4738/*
danielk19779f8d6402007-05-02 17:48:45 +00004739** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004740** for the entry that the pCur cursor is pointing to. The eOp
4741** argument is interpreted as follows:
4742**
4743** 0: The operation is a read. Populate the overflow cache.
4744** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004745**
4746** A total of "amt" bytes are read or written beginning at "offset".
4747** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004748**
drh3bcdfd22009-07-12 02:32:21 +00004749** The content being read or written might appear on the main page
4750** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004751**
drh42e28f12017-01-27 00:31:59 +00004752** If the current cursor entry uses one or more overflow pages
4753** this function may allocate space for and lazily populate
4754** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004755** Subsequent calls use this cache to make seeking to the supplied offset
4756** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004757**
drh42e28f12017-01-27 00:31:59 +00004758** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004759** invalidated if some other cursor writes to the same table, or if
4760** the cursor is moved to a different row. Additionally, in auto-vacuum
4761** mode, the following events may invalidate an overflow page-list cache.
4762**
4763** * An incremental vacuum,
4764** * A commit in auto_vacuum="full" mode,
4765** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004766*/
danielk19779f8d6402007-05-02 17:48:45 +00004767static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004768 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004769 u32 offset, /* Begin reading this far into payload */
4770 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004771 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004772 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004773){
4774 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004775 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004776 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004777 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004778 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004779#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004780 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004781#endif
drh3aac2dd2004-04-26 14:10:20 +00004782
danielk1977da107192007-05-04 08:32:13 +00004783 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004784 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004785 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004786 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004787 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004788
drh86057612007-06-26 01:04:48 +00004789 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004790 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004791 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004792
drh0b982072016-03-22 14:10:45 +00004793 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004794 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004795 /* Trying to read or write past the end of the data is an error. The
4796 ** conditional above is really:
4797 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4798 ** but is recast into its current form to avoid integer overflow problems
4799 */
daneebf2f52017-11-18 17:30:08 +00004800 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004801 }
danielk1977da107192007-05-04 08:32:13 +00004802
4803 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004804 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004805 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004806 if( a+offset>pCur->info.nLocal ){
4807 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004808 }
drh42e28f12017-01-27 00:31:59 +00004809 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004810 offset = 0;
drha34b6762004-05-07 13:30:42 +00004811 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004812 amt -= a;
drhdd793422001-06-28 01:54:48 +00004813 }else{
drhfa1a98a2004-05-14 19:08:17 +00004814 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004815 }
danielk1977da107192007-05-04 08:32:13 +00004816
dan85753662014-12-11 16:38:18 +00004817
danielk1977da107192007-05-04 08:32:13 +00004818 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004819 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004820 Pgno nextPage;
4821
drhfa1a98a2004-05-14 19:08:17 +00004822 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004823
drha38c9512014-04-01 01:24:34 +00004824 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004825 **
4826 ** The aOverflow[] array is sized at one entry for each overflow page
4827 ** in the overflow chain. The page number of the first overflow page is
4828 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4829 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004830 */
drh42e28f12017-01-27 00:31:59 +00004831 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004832 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004833 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004834 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004835 ){
dan85753662014-12-11 16:38:18 +00004836 Pgno *aNew = (Pgno*)sqlite3Realloc(
4837 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004838 );
4839 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004840 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004841 }else{
dan5a500af2014-03-11 20:33:04 +00004842 pCur->aOverflow = aNew;
4843 }
4844 }
drhcd645532017-01-20 20:43:14 +00004845 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4846 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004847 }else{
4848 /* If the overflow page-list cache has been allocated and the
4849 ** entry for the first required overflow page is valid, skip
4850 ** directly to it.
4851 */
4852 if( pCur->aOverflow[offset/ovflSize] ){
4853 iIdx = (offset/ovflSize);
4854 nextPage = pCur->aOverflow[iIdx];
4855 offset = (offset%ovflSize);
4856 }
danielk19772dec9702007-05-02 16:48:37 +00004857 }
danielk1977da107192007-05-04 08:32:13 +00004858
drhcd645532017-01-20 20:43:14 +00004859 assert( rc==SQLITE_OK && amt>0 );
4860 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004861 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004862 assert( pCur->aOverflow[iIdx]==0
4863 || pCur->aOverflow[iIdx]==nextPage
4864 || CORRUPT_DB );
4865 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004866
danielk1977d04417962007-05-02 13:16:30 +00004867 if( offset>=ovflSize ){
4868 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004869 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004870 ** data is not required. So first try to lookup the overflow
4871 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004872 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004873 */
drha38c9512014-04-01 01:24:34 +00004874 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004875 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004876 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004877 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004878 }else{
danielk1977da107192007-05-04 08:32:13 +00004879 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004880 }
danielk1977da107192007-05-04 08:32:13 +00004881 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004882 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004883 /* Need to read this page properly. It contains some of the
4884 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004885 */
danielk1977cfe9a692004-06-16 12:00:29 +00004886 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004887 if( a + offset > ovflSize ){
4888 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004889 }
danf4ba1092011-10-08 14:57:07 +00004890
4891#ifdef SQLITE_DIRECT_OVERFLOW_READ
4892 /* If all the following are true:
4893 **
4894 ** 1) this is a read operation, and
4895 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004896 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004897 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004898 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004899 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004900 **
4901 ** then data can be read directly from the database file into the
4902 ** output buffer, bypassing the page-cache altogether. This speeds
4903 ** up loading large records that span many overflow pages.
4904 */
drh42e28f12017-01-27 00:31:59 +00004905 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004906 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004907 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004908 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004909 ){
dan09236752018-11-22 19:10:14 +00004910 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004911 u8 aSave[4];
4912 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004913 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004914 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004915 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
drhb9fc4552019-08-15 00:04:44 +00004916 if( rc && nextPage>pBt->nPage ) rc = SQLITE_CORRUPT_BKPT;
danf4ba1092011-10-08 14:57:07 +00004917 nextPage = get4byte(aWrite);
4918 memcpy(aWrite, aSave, 4);
4919 }else
4920#endif
4921
4922 {
4923 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004924 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004925 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004926 );
danf4ba1092011-10-08 14:57:07 +00004927 if( rc==SQLITE_OK ){
4928 aPayload = sqlite3PagerGetData(pDbPage);
4929 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004930 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004931 sqlite3PagerUnref(pDbPage);
4932 offset = 0;
4933 }
4934 }
4935 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004936 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004937 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004938 }
drhcd645532017-01-20 20:43:14 +00004939 if( rc ) break;
4940 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004941 }
drh2af926b2001-05-15 00:39:25 +00004942 }
danielk1977cfe9a692004-06-16 12:00:29 +00004943
danielk1977da107192007-05-04 08:32:13 +00004944 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004945 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004946 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004947 }
danielk1977da107192007-05-04 08:32:13 +00004948 return rc;
drh2af926b2001-05-15 00:39:25 +00004949}
4950
drh72f82862001-05-24 21:06:34 +00004951/*
drhcb3cabd2016-11-25 19:18:28 +00004952** Read part of the payload for the row at which that cursor pCur is currently
4953** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004954** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004955**
drhcb3cabd2016-11-25 19:18:28 +00004956** pCur can be pointing to either a table or an index b-tree.
4957** If pointing to a table btree, then the content section is read. If
4958** pCur is pointing to an index b-tree then the key section is read.
4959**
4960** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4961** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4962** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004963**
drh3aac2dd2004-04-26 14:10:20 +00004964** Return SQLITE_OK on success or an error code if anything goes
4965** wrong. An error is returned if "offset+amt" is larger than
4966** the available payload.
drh72f82862001-05-24 21:06:34 +00004967*/
drhcb3cabd2016-11-25 19:18:28 +00004968int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004969 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004970 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004971 assert( pCur->iPage>=0 && pCur->pPage );
4972 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004973 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004974}
drh83ec2762017-01-26 16:54:47 +00004975
4976/*
4977** This variant of sqlite3BtreePayload() works even if the cursor has not
4978** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4979** interface.
4980*/
danielk19773588ceb2008-06-10 17:30:26 +00004981#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004982static SQLITE_NOINLINE int accessPayloadChecked(
4983 BtCursor *pCur,
4984 u32 offset,
4985 u32 amt,
4986 void *pBuf
4987){
drhcb3cabd2016-11-25 19:18:28 +00004988 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004989 if ( pCur->eState==CURSOR_INVALID ){
4990 return SQLITE_ABORT;
4991 }
dan7a2347e2016-01-07 16:43:54 +00004992 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004993 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004994 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4995}
4996int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4997 if( pCur->eState==CURSOR_VALID ){
4998 assert( cursorOwnsBtShared(pCur) );
4999 return accessPayload(pCur, offset, amt, pBuf, 0);
5000 }else{
5001 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00005002 }
drh2af926b2001-05-15 00:39:25 +00005003}
drhcb3cabd2016-11-25 19:18:28 +00005004#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00005005
drh72f82862001-05-24 21:06:34 +00005006/*
drh0e1c19e2004-05-11 00:58:56 +00005007** Return a pointer to payload information from the entry that the
5008** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00005009** the key if index btrees (pPage->intKey==0) and is the data for
5010** table btrees (pPage->intKey==1). The number of bytes of available
5011** key/data is written into *pAmt. If *pAmt==0, then the value
5012** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00005013**
5014** This routine is an optimization. It is common for the entire key
5015** and data to fit on the local page and for there to be no overflow
5016** pages. When that is so, this routine can be used to access the
5017** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00005018** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00005019** the key/data and copy it into a preallocated buffer.
5020**
5021** The pointer returned by this routine looks directly into the cached
5022** page of the database. The data might change or move the next time
5023** any btree routine is called.
5024*/
drh2a8d2262013-12-09 20:43:22 +00005025static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00005026 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00005027 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00005028){
danf2f72a02017-10-19 15:17:38 +00005029 int amt;
drh352a35a2017-08-15 03:46:47 +00005030 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00005031 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00005032 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00005033 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00005034 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00005035 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00005036 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
5037 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00005038 amt = pCur->info.nLocal;
5039 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
5040 /* There is too little space on the page for the expected amount
5041 ** of local content. Database must be corrupt. */
5042 assert( CORRUPT_DB );
5043 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
5044 }
5045 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00005046 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00005047}
5048
5049
5050/*
drhe51c44f2004-05-30 20:46:09 +00005051** For the entry that cursor pCur is point to, return as
5052** many bytes of the key or data as are available on the local
5053** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00005054**
5055** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00005056** or be destroyed on the next call to any Btree routine,
5057** including calls from other threads against the same cache.
5058** Hence, a mutex on the BtShared should be held prior to calling
5059** this routine.
drh0e1c19e2004-05-11 00:58:56 +00005060**
5061** These routines is used to get quick access to key and data
5062** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00005063*/
drha7c90c42016-06-04 20:37:10 +00005064const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00005065 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00005066}
5067
5068
5069/*
drh8178a752003-01-05 21:41:40 +00005070** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00005071** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00005072**
5073** This function returns SQLITE_CORRUPT if the page-header flags field of
5074** the new child page does not match the flags field of the parent (i.e.
5075** if an intkey page appears to be the parent of a non-intkey page, or
5076** vice-versa).
drh72f82862001-05-24 21:06:34 +00005077*/
drh3aac2dd2004-04-26 14:10:20 +00005078static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00005079 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00005080
dan7a2347e2016-01-07 16:43:54 +00005081 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005082 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005083 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00005084 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005085 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
5086 return SQLITE_CORRUPT_BKPT;
5087 }
drh271efa52004-05-30 19:19:05 +00005088 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005089 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00005090 pCur->aiIdx[pCur->iPage] = pCur->ix;
5091 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005092 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00005093 pCur->iPage++;
5094 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00005095}
5096
drhd879e3e2017-02-13 13:35:55 +00005097#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00005098/*
5099** Page pParent is an internal (non-leaf) tree page. This function
5100** asserts that page number iChild is the left-child if the iIdx'th
5101** cell in page pParent. Or, if iIdx is equal to the total number of
5102** cells in pParent, that page number iChild is the right-child of
5103** the page.
5104*/
5105static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00005106 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
5107 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00005108 assert( iIdx<=pParent->nCell );
5109 if( iIdx==pParent->nCell ){
5110 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5111 }else{
5112 assert( get4byte(findCell(pParent, iIdx))==iChild );
5113 }
5114}
5115#else
5116# define assertParentIndex(x,y,z)
5117#endif
5118
drh72f82862001-05-24 21:06:34 +00005119/*
drh5e2f8b92001-05-28 00:41:15 +00005120** Move the cursor up to the parent page.
5121**
5122** pCur->idx is set to the cell index that contains the pointer
5123** to the page we are coming from. If we are coming from the
5124** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005125** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005126*/
danielk197730548662009-07-09 05:07:37 +00005127static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005128 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005129 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005130 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005131 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005132 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005133 assertParentIndex(
5134 pCur->apPage[pCur->iPage-1],
5135 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005136 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005137 );
dan6c2688c2012-01-12 15:05:03 +00005138 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005139 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005140 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005141 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005142 pLeaf = pCur->pPage;
5143 pCur->pPage = pCur->apPage[--pCur->iPage];
5144 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005145}
5146
5147/*
danielk19778f880a82009-07-13 09:41:45 +00005148** Move the cursor to point to the root page of its b-tree structure.
5149**
5150** If the table has a virtual root page, then the cursor is moved to point
5151** to the virtual root page instead of the actual root page. A table has a
5152** virtual root page when the actual root page contains no cells and a
5153** single child page. This can only happen with the table rooted at page 1.
5154**
5155** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005156** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5157** the cursor is set to point to the first cell located on the root
5158** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005159**
5160** If this function returns successfully, it may be assumed that the
5161** page-header flags indicate that the [virtual] root-page is the expected
5162** kind of b-tree page (i.e. if when opening the cursor the caller did not
5163** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5164** indicating a table b-tree, or if the caller did specify a KeyInfo
5165** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5166** b-tree).
drh72f82862001-05-24 21:06:34 +00005167*/
drh5e2f8b92001-05-28 00:41:15 +00005168static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005169 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005170 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005171
dan7a2347e2016-01-07 16:43:54 +00005172 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005173 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5174 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5175 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005176 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005177 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005178
5179 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005180 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005181 releasePageNotNull(pCur->pPage);
5182 while( --pCur->iPage ){
5183 releasePageNotNull(pCur->apPage[pCur->iPage]);
5184 }
5185 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005186 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005187 }
dana205a482011-08-27 18:48:57 +00005188 }else if( pCur->pgnoRoot==0 ){
5189 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005190 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005191 }else{
drh28f58dd2015-06-27 19:45:03 +00005192 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005193 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5194 if( pCur->eState==CURSOR_FAULT ){
5195 assert( pCur->skipNext!=SQLITE_OK );
5196 return pCur->skipNext;
5197 }
5198 sqlite3BtreeClearCursor(pCur);
5199 }
drh352a35a2017-08-15 03:46:47 +00005200 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005201 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005202 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005203 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005204 return rc;
drh777e4c42006-01-13 04:31:58 +00005205 }
danielk1977172114a2009-07-07 15:47:12 +00005206 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005207 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005208 }
drh352a35a2017-08-15 03:46:47 +00005209 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005210 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005211
5212 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5213 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5214 ** NULL, the caller expects a table b-tree. If this is not the case,
5215 ** return an SQLITE_CORRUPT error.
5216 **
5217 ** Earlier versions of SQLite assumed that this test could not fail
5218 ** if the root page was already loaded when this function was called (i.e.
5219 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5220 ** in such a way that page pRoot is linked into a second b-tree table
5221 ** (or the freelist). */
5222 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5223 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005224 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005225 }
danielk19778f880a82009-07-13 09:41:45 +00005226
drh7ad3eb62016-10-24 01:01:09 +00005227skip_init:
drh75e96b32017-04-01 00:20:06 +00005228 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005229 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005230 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005231
drh352a35a2017-08-15 03:46:47 +00005232 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005233 if( pRoot->nCell>0 ){
5234 pCur->eState = CURSOR_VALID;
5235 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005236 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005237 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005238 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005239 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005240 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005241 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005242 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005243 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005244 }
5245 return rc;
drh72f82862001-05-24 21:06:34 +00005246}
drh2af926b2001-05-15 00:39:25 +00005247
drh5e2f8b92001-05-28 00:41:15 +00005248/*
5249** Move the cursor down to the left-most leaf entry beneath the
5250** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005251**
5252** The left-most leaf is the one with the smallest key - the first
5253** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005254*/
5255static int moveToLeftmost(BtCursor *pCur){
5256 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005257 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005258 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005259
dan7a2347e2016-01-07 16:43:54 +00005260 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005261 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005262 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005263 assert( pCur->ix<pPage->nCell );
5264 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005265 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005266 }
drhd677b3d2007-08-20 22:48:41 +00005267 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005268}
5269
drh2dcc9aa2002-12-04 13:40:25 +00005270/*
5271** Move the cursor down to the right-most leaf entry beneath the
5272** page to which it is currently pointing. Notice the difference
5273** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5274** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5275** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005276**
5277** The right-most entry is the one with the largest key - the last
5278** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005279*/
5280static int moveToRightmost(BtCursor *pCur){
5281 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005282 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005283 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005284
dan7a2347e2016-01-07 16:43:54 +00005285 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005286 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005287 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005288 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005289 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005290 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005291 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005292 }
drh75e96b32017-04-01 00:20:06 +00005293 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005294 assert( pCur->info.nSize==0 );
5295 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5296 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005297}
5298
drh5e00f6c2001-09-13 13:46:56 +00005299/* Move the cursor to the first entry in the table. Return SQLITE_OK
5300** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005301** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005302*/
drh3aac2dd2004-04-26 14:10:20 +00005303int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005304 int rc;
drhd677b3d2007-08-20 22:48:41 +00005305
dan7a2347e2016-01-07 16:43:54 +00005306 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005307 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005308 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005309 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005310 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005311 *pRes = 0;
5312 rc = moveToLeftmost(pCur);
5313 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005314 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005315 *pRes = 1;
5316 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005317 }
drh5e00f6c2001-09-13 13:46:56 +00005318 return rc;
5319}
drh5e2f8b92001-05-28 00:41:15 +00005320
drh9562b552002-02-19 15:00:07 +00005321/* Move the cursor to the last entry in the table. Return SQLITE_OK
5322** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005323** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005324*/
drh3aac2dd2004-04-26 14:10:20 +00005325int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005326 int rc;
drhd677b3d2007-08-20 22:48:41 +00005327
dan7a2347e2016-01-07 16:43:54 +00005328 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005329 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005330
5331 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005332 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005333#ifdef SQLITE_DEBUG
5334 /* This block serves to assert() that the cursor really does point
5335 ** to the last entry in the b-tree. */
5336 int ii;
5337 for(ii=0; ii<pCur->iPage; ii++){
5338 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5339 }
drh352a35a2017-08-15 03:46:47 +00005340 assert( pCur->ix==pCur->pPage->nCell-1 );
5341 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005342#endif
drheb265342019-05-08 23:55:04 +00005343 *pRes = 0;
danielk19773f632d52009-05-02 10:03:09 +00005344 return SQLITE_OK;
5345 }
5346
drh9562b552002-02-19 15:00:07 +00005347 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005348 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005349 assert( pCur->eState==CURSOR_VALID );
5350 *pRes = 0;
5351 rc = moveToRightmost(pCur);
5352 if( rc==SQLITE_OK ){
5353 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005354 }else{
drh44548e72017-08-14 18:13:52 +00005355 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005356 }
drh44548e72017-08-14 18:13:52 +00005357 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005358 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005359 *pRes = 1;
5360 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005361 }
drh9562b552002-02-19 15:00:07 +00005362 return rc;
5363}
5364
drhe14006d2008-03-25 17:23:32 +00005365/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005366** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005367**
drhe63d9992008-08-13 19:11:48 +00005368** For INTKEY tables, the intKey parameter is used. pIdxKey
5369** must be NULL. For index tables, pIdxKey is used and intKey
5370** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005371**
drh5e2f8b92001-05-28 00:41:15 +00005372** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005373** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005374** were present. The cursor might point to an entry that comes
5375** before or after the key.
5376**
drh64022502009-01-09 14:11:04 +00005377** An integer is written into *pRes which is the result of
5378** comparing the key with the entry to which the cursor is
5379** pointing. The meaning of the integer written into
5380** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005381**
5382** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005383** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005384** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005385**
5386** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005387** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005388**
5389** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005390** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005391**
drhb1d607d2015-11-05 22:30:54 +00005392** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5393** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005394*/
drhe63d9992008-08-13 19:11:48 +00005395int sqlite3BtreeMovetoUnpacked(
5396 BtCursor *pCur, /* The cursor to be moved */
5397 UnpackedRecord *pIdxKey, /* Unpacked index key */
5398 i64 intKey, /* The table key */
5399 int biasRight, /* If true, bias the search to the high end */
5400 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005401){
drh72f82862001-05-24 21:06:34 +00005402 int rc;
dan3b9330f2014-02-27 20:44:18 +00005403 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005404
dan7a2347e2016-01-07 16:43:54 +00005405 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005406 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005407 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005408 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005409 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005410
5411 /* If the cursor is already positioned at the point we are trying
5412 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005413 if( pIdxKey==0
5414 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005415 ){
drhe63d9992008-08-13 19:11:48 +00005416 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005417 *pRes = 0;
5418 return SQLITE_OK;
5419 }
drh451e76d2017-01-21 16:54:19 +00005420 if( pCur->info.nKey<intKey ){
5421 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5422 *pRes = -1;
5423 return SQLITE_OK;
5424 }
drh7f11afa2017-01-21 21:47:54 +00005425 /* If the requested key is one more than the previous key, then
5426 ** try to get there using sqlite3BtreeNext() rather than a full
5427 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005428 ** is still obtained without this case, only a little more slowely */
drh0c873bf2019-01-28 00:42:06 +00005429 if( pCur->info.nKey+1==intKey ){
drh7f11afa2017-01-21 21:47:54 +00005430 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005431 rc = sqlite3BtreeNext(pCur, 0);
5432 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005433 getCellInfo(pCur);
5434 if( pCur->info.nKey==intKey ){
5435 return SQLITE_OK;
5436 }
drh2ab792e2017-05-30 18:34:07 +00005437 }else if( rc==SQLITE_DONE ){
5438 rc = SQLITE_OK;
5439 }else{
5440 return rc;
drh451e76d2017-01-21 16:54:19 +00005441 }
5442 }
drha2c20e42008-03-29 16:01:04 +00005443 }
5444 }
5445
dan1fed5da2014-02-25 21:01:25 +00005446 if( pIdxKey ){
5447 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005448 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005449 assert( pIdxKey->default_rc==1
5450 || pIdxKey->default_rc==0
5451 || pIdxKey->default_rc==-1
5452 );
drh13a747e2014-03-03 21:46:55 +00005453 }else{
drhb6e8fd12014-03-06 01:56:33 +00005454 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005455 }
5456
drh5e2f8b92001-05-28 00:41:15 +00005457 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005458 if( rc ){
drh44548e72017-08-14 18:13:52 +00005459 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005460 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005461 *pRes = -1;
5462 return SQLITE_OK;
5463 }
drhd677b3d2007-08-20 22:48:41 +00005464 return rc;
5465 }
drh352a35a2017-08-15 03:46:47 +00005466 assert( pCur->pPage );
5467 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005468 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005469 assert( pCur->pPage->nCell > 0 );
5470 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005471 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005472 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005473 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005474 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005475 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005476 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005477
5478 /* pPage->nCell must be greater than zero. If this is the root-page
5479 ** the cursor would have been INVALID above and this for(;;) loop
5480 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005481 ** would have already detected db corruption. Similarly, pPage must
5482 ** be the right kind (index or table) of b-tree page. Otherwise
5483 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005484 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005485 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005486 lwr = 0;
5487 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005488 assert( biasRight==0 || biasRight==1 );
5489 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005490 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005491 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005492 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005493 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005494 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005495 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005496 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005497 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005498 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005499 }
drh9b2fc612013-11-25 20:14:13 +00005500 }
drhd172f862006-01-12 15:01:15 +00005501 }
drha2c20e42008-03-29 16:01:04 +00005502 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005503 if( nCellKey<intKey ){
5504 lwr = idx+1;
5505 if( lwr>upr ){ c = -1; break; }
5506 }else if( nCellKey>intKey ){
5507 upr = idx-1;
5508 if( lwr>upr ){ c = +1; break; }
5509 }else{
5510 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005511 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005512 if( !pPage->leaf ){
5513 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005514 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005515 }else{
drhd95ef5c2016-11-11 18:19:05 +00005516 pCur->curFlags |= BTCF_ValidNKey;
5517 pCur->info.nKey = nCellKey;
5518 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005519 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005520 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005521 }
drhd793f442013-11-25 14:10:15 +00005522 }
drhebf10b12013-11-25 17:38:26 +00005523 assert( lwr+upr>=0 );
5524 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005525 }
5526 }else{
5527 for(;;){
drhc6827502015-05-28 15:14:32 +00005528 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005529 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005530
drhb2eced52010-08-12 02:41:12 +00005531 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005532 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005533 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005534 ** varint. This information is used to attempt to avoid parsing
5535 ** the entire cell by checking for the cases where the record is
5536 ** stored entirely within the b-tree page by inspecting the first
5537 ** 2 bytes of the cell.
5538 */
drhec3e6b12013-11-25 02:38:55 +00005539 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005540 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005541 /* This branch runs if the record-size field of the cell is a
5542 ** single byte varint and the record fits entirely on the main
5543 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005544 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005545 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005546 }else if( !(pCell[1] & 0x80)
5547 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5548 ){
5549 /* The record-size field is a 2 byte varint and the record
5550 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005551 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005552 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005553 }else{
danielk197711c327a2009-05-04 19:01:26 +00005554 /* The record flows over onto one or more overflow pages. In
5555 ** this case the whole cell needs to be parsed, a buffer allocated
5556 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005557 ** buffer before VdbeRecordCompare() can be called.
5558 **
5559 ** If the record is corrupt, the xRecordCompare routine may read
5560 ** up to two varints past the end of the buffer. An extra 18
5561 ** bytes of padding is allocated at the end of the buffer in
5562 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005563 void *pCellKey;
5564 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5c2f2202019-05-16 20:36:07 +00005565 const int nOverrun = 18; /* Size of the overrun padding */
drh5fa60512015-06-19 17:19:34 +00005566 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005567 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005568 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5569 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5570 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5571 testcase( nCell==2 ); /* Minimum legal index key size */
drh87c3ad42019-01-21 23:18:22 +00005572 if( nCell<2 || nCell/pCur->pBt->usableSize>pCur->pBt->nPage ){
daneebf2f52017-11-18 17:30:08 +00005573 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005574 goto moveto_finish;
5575 }
drh5c2f2202019-05-16 20:36:07 +00005576 pCellKey = sqlite3Malloc( nCell+nOverrun );
danielk19776507ecb2008-03-25 09:56:44 +00005577 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005578 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005579 goto moveto_finish;
5580 }
drh75e96b32017-04-01 00:20:06 +00005581 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005582 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drh5c2f2202019-05-16 20:36:07 +00005583 memset(((u8*)pCellKey)+nCell,0,nOverrun); /* Fix uninit warnings */
drh42e28f12017-01-27 00:31:59 +00005584 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005585 if( rc ){
5586 sqlite3_free(pCellKey);
5587 goto moveto_finish;
5588 }
drh0a31dc22019-03-05 14:39:00 +00005589 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005590 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005591 }
dan38fdead2014-04-01 10:19:02 +00005592 assert(
5593 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005594 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005595 );
drhbb933ef2013-11-25 15:01:38 +00005596 if( c<0 ){
5597 lwr = idx+1;
5598 }else if( c>0 ){
5599 upr = idx-1;
5600 }else{
5601 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005602 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005603 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005604 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005605 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005606 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005607 }
drhebf10b12013-11-25 17:38:26 +00005608 if( lwr>upr ) break;
5609 assert( lwr+upr>=0 );
5610 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005611 }
drh72f82862001-05-24 21:06:34 +00005612 }
drhb07028f2011-10-14 21:49:18 +00005613 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005614 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005615 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005616 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005617 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005618 *pRes = c;
5619 rc = SQLITE_OK;
5620 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005621 }
5622moveto_next_layer:
5623 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005624 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005625 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005626 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005627 }
drh75e96b32017-04-01 00:20:06 +00005628 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005629 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005630 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005631 }
drh1e968a02008-03-25 00:22:21 +00005632moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005633 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005634 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005635 return rc;
5636}
5637
drhd677b3d2007-08-20 22:48:41 +00005638
drh72f82862001-05-24 21:06:34 +00005639/*
drhc39e0002004-05-07 23:50:57 +00005640** Return TRUE if the cursor is not pointing at an entry of the table.
5641**
5642** TRUE will be returned after a call to sqlite3BtreeNext() moves
5643** past the last entry in the table or sqlite3BtreePrev() moves past
5644** the first entry. TRUE is also returned if the table is empty.
5645*/
5646int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005647 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5648 ** have been deleted? This API will need to change to return an error code
5649 ** as well as the boolean result value.
5650 */
5651 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005652}
5653
5654/*
drh5e98e832017-02-17 19:24:06 +00005655** Return an estimate for the number of rows in the table that pCur is
5656** pointing to. Return a negative number if no estimate is currently
5657** available.
5658*/
5659i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5660 i64 n;
5661 u8 i;
5662
5663 assert( cursorOwnsBtShared(pCur) );
5664 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005665
5666 /* Currently this interface is only called by the OP_IfSmaller
5667 ** opcode, and it that case the cursor will always be valid and
5668 ** will always point to a leaf node. */
5669 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005670 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005671
drh352a35a2017-08-15 03:46:47 +00005672 n = pCur->pPage->nCell;
5673 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005674 n *= pCur->apPage[i]->nCell;
5675 }
5676 return n;
5677}
5678
5679/*
drh2ab792e2017-05-30 18:34:07 +00005680** Advance the cursor to the next entry in the database.
5681** Return value:
5682**
5683** SQLITE_OK success
5684** SQLITE_DONE cursor is already pointing at the last element
5685** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005686**
drhee6438d2014-09-01 13:29:32 +00005687** The main entry point is sqlite3BtreeNext(). That routine is optimized
5688** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5689** to the next cell on the current page. The (slower) btreeNext() helper
5690** routine is called when it is necessary to move to a different page or
5691** to restore the cursor.
5692**
drh89997982017-07-11 18:11:33 +00005693** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5694** cursor corresponds to an SQL index and this routine could have been
5695** skipped if the SQL index had been a unique index. The F argument
5696** is a hint to the implement. SQLite btree implementation does not use
5697** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005698*/
drh89997982017-07-11 18:11:33 +00005699static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005700 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005701 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005702 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005703
dan7a2347e2016-01-07 16:43:54 +00005704 assert( cursorOwnsBtShared(pCur) );
drhf66f26a2013-08-19 20:04:10 +00005705 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005706 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005707 rc = restoreCursorPosition(pCur);
5708 if( rc!=SQLITE_OK ){
5709 return rc;
5710 }
5711 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005712 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005713 }
drh0c873bf2019-01-28 00:42:06 +00005714 if( pCur->eState==CURSOR_SKIPNEXT ){
drh9b47ee32013-08-20 03:13:51 +00005715 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005716 if( pCur->skipNext>0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005717 }
danielk1977da184232006-01-05 11:34:32 +00005718 }
danielk1977da184232006-01-05 11:34:32 +00005719
drh352a35a2017-08-15 03:46:47 +00005720 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005721 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005722 if( !pPage->isInit ){
5723 /* The only known way for this to happen is for there to be a
5724 ** recursive SQL function that does a DELETE operation as part of a
5725 ** SELECT which deletes content out from under an active cursor
5726 ** in a corrupt database file where the table being DELETE-ed from
5727 ** has pages in common with the table being queried. See TH3
5728 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5729 ** example. */
5730 return SQLITE_CORRUPT_BKPT;
5731 }
danbb246c42012-01-12 14:25:55 +00005732
5733 /* If the database file is corrupt, it is possible for the value of idx
5734 ** to be invalid here. This can only occur if a second cursor modifies
5735 ** the page while cursor pCur is holding a reference to it. Which can
5736 ** only happen if the database is corrupt in such a way as to link the
drha2d50282019-12-23 18:02:15 +00005737 ** page into more than one b-tree structure.
5738 **
5739 ** Update 2019-12-23: appears to long longer be possible after the
5740 ** addition of anotherValidCursor() condition on balance_deeper(). */
5741 harmless( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005742
danielk197771d5d2c2008-09-29 11:49:47 +00005743 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005744 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005745 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005746 if( rc ) return rc;
5747 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005748 }
drh5e2f8b92001-05-28 00:41:15 +00005749 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005750 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005751 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005752 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005753 }
danielk197730548662009-07-09 05:07:37 +00005754 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005755 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005756 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005757 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005758 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005759 }else{
drhee6438d2014-09-01 13:29:32 +00005760 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005761 }
drh8178a752003-01-05 21:41:40 +00005762 }
drh3aac2dd2004-04-26 14:10:20 +00005763 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005764 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005765 }else{
5766 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005767 }
drh72f82862001-05-24 21:06:34 +00005768}
drh2ab792e2017-05-30 18:34:07 +00005769int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005770 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005771 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005772 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005773 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005774 pCur->info.nSize = 0;
5775 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005776 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005777 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005778 if( (++pCur->ix)>=pPage->nCell ){
5779 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005780 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005781 }
5782 if( pPage->leaf ){
5783 return SQLITE_OK;
5784 }else{
5785 return moveToLeftmost(pCur);
5786 }
5787}
drh72f82862001-05-24 21:06:34 +00005788
drh3b7511c2001-05-26 13:15:44 +00005789/*
drh2ab792e2017-05-30 18:34:07 +00005790** Step the cursor to the back to the previous entry in the database.
5791** Return values:
5792**
5793** SQLITE_OK success
5794** SQLITE_DONE the cursor is already on the first element of the table
5795** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005796**
drhee6438d2014-09-01 13:29:32 +00005797** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5798** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005799** to the previous cell on the current page. The (slower) btreePrevious()
5800** helper routine is called when it is necessary to move to a different page
5801** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005802**
drh89997982017-07-11 18:11:33 +00005803** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5804** the cursor corresponds to an SQL index and this routine could have been
5805** skipped if the SQL index had been a unique index. The F argument is a
5806** hint to the implement. The native SQLite btree implementation does not
5807** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005808*/
drh89997982017-07-11 18:11:33 +00005809static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005810 int rc;
drh8178a752003-01-05 21:41:40 +00005811 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005812
dan7a2347e2016-01-07 16:43:54 +00005813 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005814 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5815 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005816 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005817 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005818 if( rc!=SQLITE_OK ){
5819 return rc;
drhf66f26a2013-08-19 20:04:10 +00005820 }
5821 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005822 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005823 }
drh0c873bf2019-01-28 00:42:06 +00005824 if( CURSOR_SKIPNEXT==pCur->eState ){
drh9b47ee32013-08-20 03:13:51 +00005825 pCur->eState = CURSOR_VALID;
drh0c873bf2019-01-28 00:42:06 +00005826 if( pCur->skipNext<0 ) return SQLITE_OK;
drhf66f26a2013-08-19 20:04:10 +00005827 }
danielk1977da184232006-01-05 11:34:32 +00005828 }
danielk1977da184232006-01-05 11:34:32 +00005829
drh352a35a2017-08-15 03:46:47 +00005830 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005831 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005832 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005833 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005834 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005835 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005836 rc = moveToRightmost(pCur);
5837 }else{
drh75e96b32017-04-01 00:20:06 +00005838 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005839 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005840 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005841 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005842 }
danielk197730548662009-07-09 05:07:37 +00005843 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005844 }
drhee6438d2014-09-01 13:29:32 +00005845 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005846 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005847
drh75e96b32017-04-01 00:20:06 +00005848 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005849 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005850 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005851 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005852 }else{
5853 rc = SQLITE_OK;
5854 }
drh2dcc9aa2002-12-04 13:40:25 +00005855 }
drh2dcc9aa2002-12-04 13:40:25 +00005856 return rc;
5857}
drh2ab792e2017-05-30 18:34:07 +00005858int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005859 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005860 assert( flags==0 || flags==1 );
drh89997982017-07-11 18:11:33 +00005861 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005862 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5863 pCur->info.nSize = 0;
5864 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005865 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005866 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005867 ){
drh89997982017-07-11 18:11:33 +00005868 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005869 }
drh75e96b32017-04-01 00:20:06 +00005870 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005871 return SQLITE_OK;
5872}
drh2dcc9aa2002-12-04 13:40:25 +00005873
5874/*
drh3b7511c2001-05-26 13:15:44 +00005875** Allocate a new page from the database file.
5876**
danielk19773b8a05f2007-03-19 17:44:26 +00005877** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005878** has already been called on the new page.) The new page has also
5879** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005880** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005881**
5882** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005883** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005884**
drh82e647d2013-03-02 03:25:55 +00005885** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005886** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005887** attempt to keep related pages close to each other in the database file,
5888** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005889**
drh82e647d2013-03-02 03:25:55 +00005890** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5891** anywhere on the free-list, then it is guaranteed to be returned. If
5892** eMode is BTALLOC_LT then the page returned will be less than or equal
5893** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5894** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005895*/
drh4f0c5872007-03-26 22:05:01 +00005896static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005897 BtShared *pBt, /* The btree */
5898 MemPage **ppPage, /* Store pointer to the allocated page here */
5899 Pgno *pPgno, /* Store the page number here */
5900 Pgno nearby, /* Search for a page near this one */
5901 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005902){
drh3aac2dd2004-04-26 14:10:20 +00005903 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005904 int rc;
drh35cd6432009-06-05 14:17:21 +00005905 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005906 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005907 MemPage *pTrunk = 0;
5908 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005909 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005910
drh1fee73e2007-08-29 04:00:57 +00005911 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005912 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005913 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005914 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005915 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5916 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005917 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005918 testcase( n==mxPage-1 );
5919 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005920 return SQLITE_CORRUPT_BKPT;
5921 }
drh3aac2dd2004-04-26 14:10:20 +00005922 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005923 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005924 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005925 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005926 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005927
drh82e647d2013-03-02 03:25:55 +00005928 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005929 ** shows that the page 'nearby' is somewhere on the free-list, then
5930 ** the entire-list will be searched for that page.
5931 */
5932#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005933 if( eMode==BTALLOC_EXACT ){
5934 if( nearby<=mxPage ){
5935 u8 eType;
5936 assert( nearby>0 );
5937 assert( pBt->autoVacuum );
5938 rc = ptrmapGet(pBt, nearby, &eType, 0);
5939 if( rc ) return rc;
5940 if( eType==PTRMAP_FREEPAGE ){
5941 searchList = 1;
5942 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005943 }
dan51f0b6d2013-02-22 20:16:34 +00005944 }else if( eMode==BTALLOC_LE ){
5945 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005946 }
5947#endif
5948
5949 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5950 ** first free-list trunk page. iPrevTrunk is initially 1.
5951 */
danielk19773b8a05f2007-03-19 17:44:26 +00005952 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005953 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005954 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005955
5956 /* The code within this loop is run only once if the 'searchList' variable
5957 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005958 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5959 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005960 */
5961 do {
5962 pPrevTrunk = pTrunk;
5963 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005964 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5965 ** is the page number of the next freelist trunk page in the list or
5966 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005967 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005968 }else{
drh113762a2014-11-19 16:36:25 +00005969 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5970 ** stores the page number of the first page of the freelist, or zero if
5971 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005972 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005973 }
drhdf35a082009-07-09 02:24:35 +00005974 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005975 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005976 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005977 }else{
drh7e8c6f12015-05-28 03:28:27 +00005978 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005979 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005980 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005981 pTrunk = 0;
5982 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005983 }
drhb07028f2011-10-14 21:49:18 +00005984 assert( pTrunk!=0 );
5985 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005986 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5987 ** is the number of leaf page pointers to follow. */
5988 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005989 if( k==0 && !searchList ){
5990 /* The trunk has no leaves and the list is not being searched.
5991 ** So extract the trunk page itself and use it as the newly
5992 ** allocated page */
5993 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005994 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005995 if( rc ){
5996 goto end_allocate_page;
5997 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005998 *pPgno = iTrunk;
5999 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6000 *ppPage = pTrunk;
6001 pTrunk = 0;
6002 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00006003 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006004 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00006005 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00006006 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006007#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00006008 }else if( searchList
6009 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
6010 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006011 /* The list is being searched and this trunk page is the page
6012 ** to allocate, regardless of whether it has leaves.
6013 */
dan51f0b6d2013-02-22 20:16:34 +00006014 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006015 *ppPage = pTrunk;
6016 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006017 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006018 if( rc ){
6019 goto end_allocate_page;
6020 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006021 if( k==0 ){
6022 if( !pPrevTrunk ){
6023 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
6024 }else{
danf48c3552010-08-23 15:41:24 +00006025 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
6026 if( rc!=SQLITE_OK ){
6027 goto end_allocate_page;
6028 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006029 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
6030 }
6031 }else{
6032 /* The trunk page is required by the caller but it contains
6033 ** pointers to free-list leaves. The first leaf becomes a trunk
6034 ** page in this case.
6035 */
6036 MemPage *pNewTrunk;
6037 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00006038 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006039 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006040 goto end_allocate_page;
6041 }
drhdf35a082009-07-09 02:24:35 +00006042 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00006043 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006044 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00006045 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006046 }
danielk19773b8a05f2007-03-19 17:44:26 +00006047 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006048 if( rc!=SQLITE_OK ){
6049 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00006050 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006051 }
6052 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
6053 put4byte(&pNewTrunk->aData[4], k-1);
6054 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00006055 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006056 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00006057 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00006058 put4byte(&pPage1->aData[32], iNewTrunk);
6059 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00006060 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00006061 if( rc ){
6062 goto end_allocate_page;
6063 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006064 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
6065 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006066 }
6067 pTrunk = 0;
6068 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
6069#endif
danielk1977e5765212009-06-17 11:13:28 +00006070 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00006071 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00006072 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006073 Pgno iPage;
6074 unsigned char *aData = pTrunk->aData;
6075 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00006076 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006077 closest = 0;
danf38b65a2013-02-22 20:57:47 +00006078 if( eMode==BTALLOC_LE ){
6079 for(i=0; i<k; i++){
6080 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00006081 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00006082 closest = i;
6083 break;
6084 }
6085 }
6086 }else{
6087 int dist;
6088 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6089 for(i=1; i<k; i++){
6090 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6091 if( d2<dist ){
6092 closest = i;
6093 dist = d2;
6094 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006095 }
6096 }
6097 }else{
6098 closest = 0;
6099 }
6100
6101 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006102 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006103 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006104 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006105 goto end_allocate_page;
6106 }
drhdf35a082009-07-09 02:24:35 +00006107 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006108 if( !searchList
6109 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6110 ){
danielk1977bea2a942009-01-20 17:06:27 +00006111 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006112 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006113 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6114 ": %d more free pages\n",
6115 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006116 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6117 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006118 if( closest<k-1 ){
6119 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6120 }
6121 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006122 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006123 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006124 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006125 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006126 if( rc!=SQLITE_OK ){
6127 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006128 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006129 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006130 }
6131 searchList = 0;
6132 }
drhee696e22004-08-30 16:52:17 +00006133 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006134 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006135 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006136 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006137 }else{
danbc1a3c62013-02-23 16:40:46 +00006138 /* There are no pages on the freelist, so append a new page to the
6139 ** database image.
6140 **
6141 ** Normally, new pages allocated by this block can be requested from the
6142 ** pager layer with the 'no-content' flag set. This prevents the pager
6143 ** from trying to read the pages content from disk. However, if the
6144 ** current transaction has already run one or more incremental-vacuum
6145 ** steps, then the page we are about to allocate may contain content
6146 ** that is required in the event of a rollback. In this case, do
6147 ** not set the no-content flag. This causes the pager to load and journal
6148 ** the current page content before overwriting it.
6149 **
6150 ** Note that the pager will not actually attempt to load or journal
6151 ** content for any page that really does lie past the end of the database
6152 ** file on disk. So the effects of disabling the no-content optimization
6153 ** here are confined to those pages that lie between the end of the
6154 ** database image and the end of the database file.
6155 */
drh3f387402014-09-24 01:23:00 +00006156 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006157
drhdd3cd972010-03-27 17:12:36 +00006158 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6159 if( rc ) return rc;
6160 pBt->nPage++;
6161 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006162
danielk1977afcdd022004-10-31 16:25:42 +00006163#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006164 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006165 /* If *pPgno refers to a pointer-map page, allocate two new pages
6166 ** at the end of the file instead of one. The first allocated page
6167 ** becomes a new pointer-map page, the second is used by the caller.
6168 */
danielk1977ac861692009-03-28 10:54:22 +00006169 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006170 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6171 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006172 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006173 if( rc==SQLITE_OK ){
6174 rc = sqlite3PagerWrite(pPg->pDbPage);
6175 releasePage(pPg);
6176 }
6177 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006178 pBt->nPage++;
6179 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006180 }
6181#endif
drhdd3cd972010-03-27 17:12:36 +00006182 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6183 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006184
danielk1977599fcba2004-11-08 07:13:13 +00006185 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006186 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006187 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006188 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006189 if( rc!=SQLITE_OK ){
6190 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006191 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006192 }
drh3a4c1412004-05-09 20:40:11 +00006193 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006194 }
danielk1977599fcba2004-11-08 07:13:13 +00006195
danba14c692019-01-25 13:42:12 +00006196 assert( CORRUPT_DB || *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006197
6198end_allocate_page:
6199 releasePage(pTrunk);
6200 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006201 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6202 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006203 return rc;
6204}
6205
6206/*
danielk1977bea2a942009-01-20 17:06:27 +00006207** This function is used to add page iPage to the database file free-list.
6208** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006209**
danielk1977bea2a942009-01-20 17:06:27 +00006210** The value passed as the second argument to this function is optional.
6211** If the caller happens to have a pointer to the MemPage object
6212** corresponding to page iPage handy, it may pass it as the second value.
6213** Otherwise, it may pass NULL.
6214**
6215** If a pointer to a MemPage object is passed as the second argument,
6216** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006217*/
danielk1977bea2a942009-01-20 17:06:27 +00006218static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6219 MemPage *pTrunk = 0; /* Free-list trunk page */
6220 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6221 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6222 MemPage *pPage; /* Page being freed. May be NULL. */
6223 int rc; /* Return Code */
drh25050f22019-04-09 01:26:31 +00006224 u32 nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006225
danielk1977bea2a942009-01-20 17:06:27 +00006226 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006227 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006228 assert( !pMemPage || pMemPage->pgno==iPage );
6229
drh58b42ad2019-03-25 19:50:19 +00006230 if( iPage<2 || iPage>pBt->nPage ){
6231 return SQLITE_CORRUPT_BKPT;
6232 }
danielk1977bea2a942009-01-20 17:06:27 +00006233 if( pMemPage ){
6234 pPage = pMemPage;
6235 sqlite3PagerRef(pPage->pDbPage);
6236 }else{
6237 pPage = btreePageLookup(pBt, iPage);
6238 }
drh3aac2dd2004-04-26 14:10:20 +00006239
drha34b6762004-05-07 13:30:42 +00006240 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006241 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006242 if( rc ) goto freepage_out;
6243 nFree = get4byte(&pPage1->aData[36]);
6244 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006245
drhc9166342012-01-05 23:32:06 +00006246 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006247 /* If the secure_delete option is enabled, then
6248 ** always fully overwrite deleted information with zeros.
6249 */
drhb00fc3b2013-08-21 23:42:32 +00006250 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006251 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006252 ){
6253 goto freepage_out;
6254 }
6255 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006256 }
drhfcce93f2006-02-22 03:08:32 +00006257
danielk1977687566d2004-11-02 12:56:41 +00006258 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006259 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006260 */
danielk197785d90ca2008-07-19 14:25:15 +00006261 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006262 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006263 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006264 }
danielk1977687566d2004-11-02 12:56:41 +00006265
danielk1977bea2a942009-01-20 17:06:27 +00006266 /* Now manipulate the actual database free-list structure. There are two
6267 ** possibilities. If the free-list is currently empty, or if the first
6268 ** trunk page in the free-list is full, then this page will become a
6269 ** new free-list trunk page. Otherwise, it will become a leaf of the
6270 ** first trunk page in the current free-list. This block tests if it
6271 ** is possible to add the page as a new free-list leaf.
6272 */
6273 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006274 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006275
6276 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006277 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006278 if( rc!=SQLITE_OK ){
6279 goto freepage_out;
6280 }
6281
6282 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006283 assert( pBt->usableSize>32 );
6284 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006285 rc = SQLITE_CORRUPT_BKPT;
6286 goto freepage_out;
6287 }
drheeb844a2009-08-08 18:01:07 +00006288 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006289 /* In this case there is room on the trunk page to insert the page
6290 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006291 **
6292 ** Note that the trunk page is not really full until it contains
6293 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6294 ** coded. But due to a coding error in versions of SQLite prior to
6295 ** 3.6.0, databases with freelist trunk pages holding more than
6296 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6297 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006298 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006299 ** for now. At some point in the future (once everyone has upgraded
6300 ** to 3.6.0 or later) we should consider fixing the conditional above
6301 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006302 **
6303 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6304 ** avoid using the last six entries in the freelist trunk page array in
6305 ** order that database files created by newer versions of SQLite can be
6306 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006307 */
danielk19773b8a05f2007-03-19 17:44:26 +00006308 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006309 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006310 put4byte(&pTrunk->aData[4], nLeaf+1);
6311 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006312 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006313 sqlite3PagerDontWrite(pPage->pDbPage);
6314 }
danielk1977bea2a942009-01-20 17:06:27 +00006315 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006316 }
drh3a4c1412004-05-09 20:40:11 +00006317 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006318 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006319 }
drh3b7511c2001-05-26 13:15:44 +00006320 }
danielk1977bea2a942009-01-20 17:06:27 +00006321
6322 /* If control flows to this point, then it was not possible to add the
6323 ** the page being freed as a leaf page of the first trunk in the free-list.
6324 ** Possibly because the free-list is empty, or possibly because the
6325 ** first trunk in the free-list is full. Either way, the page being freed
6326 ** will become the new first trunk page in the free-list.
6327 */
drhb00fc3b2013-08-21 23:42:32 +00006328 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006329 goto freepage_out;
6330 }
6331 rc = sqlite3PagerWrite(pPage->pDbPage);
6332 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006333 goto freepage_out;
6334 }
6335 put4byte(pPage->aData, iTrunk);
6336 put4byte(&pPage->aData[4], 0);
6337 put4byte(&pPage1->aData[32], iPage);
6338 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6339
6340freepage_out:
6341 if( pPage ){
6342 pPage->isInit = 0;
6343 }
6344 releasePage(pPage);
6345 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006346 return rc;
6347}
drhc314dc72009-07-21 11:52:34 +00006348static void freePage(MemPage *pPage, int *pRC){
6349 if( (*pRC)==SQLITE_OK ){
6350 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6351 }
danielk1977bea2a942009-01-20 17:06:27 +00006352}
drh3b7511c2001-05-26 13:15:44 +00006353
6354/*
drh8d7f1632018-01-23 13:30:38 +00006355** Free any overflow pages associated with the given Cell. Store
6356** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006357*/
drh9bfdc252014-09-24 02:05:41 +00006358static int clearCell(
6359 MemPage *pPage, /* The page that contains the Cell */
6360 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006361 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006362){
drh60172a52017-08-02 18:27:50 +00006363 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006364 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006365 int rc;
drh94440812007-03-06 11:42:19 +00006366 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006367 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006368
drh1fee73e2007-08-29 04:00:57 +00006369 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006370 pPage->xParseCell(pPage, pCell, pInfo);
6371 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006372 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006373 }
drh6fcf83a2018-05-05 01:23:28 +00006374 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6375 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6376 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006377 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006378 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006379 }
drh80159da2016-12-09 17:32:51 +00006380 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006381 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006382 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006383 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006384 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006385 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006386 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006387 );
drh72365832007-03-06 15:53:44 +00006388 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006389 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006390 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006391 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006392 /* 0 is not a legal page number and page 1 cannot be an
6393 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6394 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006395 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006396 }
danielk1977bea2a942009-01-20 17:06:27 +00006397 if( nOvfl ){
6398 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6399 if( rc ) return rc;
6400 }
dan887d4b22010-02-25 12:09:16 +00006401
shaneh1da207e2010-03-09 14:41:12 +00006402 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006403 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6404 ){
6405 /* There is no reason any cursor should have an outstanding reference
6406 ** to an overflow page belonging to a cell that is being deleted/updated.
6407 ** So if there exists more than one reference to this page, then it
6408 ** must not really be an overflow page and the database must be corrupt.
6409 ** It is helpful to detect this before calling freePage2(), as
6410 ** freePage2() may zero the page contents if secure-delete mode is
6411 ** enabled. If this 'overflow' page happens to be a page that the
6412 ** caller is iterating through or using in some other way, this
6413 ** can be problematic.
6414 */
6415 rc = SQLITE_CORRUPT_BKPT;
6416 }else{
6417 rc = freePage2(pBt, pOvfl, ovflPgno);
6418 }
6419
danielk1977bea2a942009-01-20 17:06:27 +00006420 if( pOvfl ){
6421 sqlite3PagerUnref(pOvfl->pDbPage);
6422 }
drh3b7511c2001-05-26 13:15:44 +00006423 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006424 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006425 }
drh5e2f8b92001-05-28 00:41:15 +00006426 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006427}
6428
6429/*
drh91025292004-05-03 19:49:32 +00006430** Create the byte sequence used to represent a cell on page pPage
6431** and write that byte sequence into pCell[]. Overflow pages are
6432** allocated and filled in as necessary. The calling procedure
6433** is responsible for making sure sufficient space has been allocated
6434** for pCell[].
6435**
6436** Note that pCell does not necessary need to point to the pPage->aData
6437** area. pCell might point to some temporary storage. The cell will
6438** be constructed in this temporary area then copied into pPage->aData
6439** later.
drh3b7511c2001-05-26 13:15:44 +00006440*/
6441static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006442 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006443 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006444 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006445 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006446){
drh3b7511c2001-05-26 13:15:44 +00006447 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006448 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006449 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006450 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006451 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006452 unsigned char *pPrior;
6453 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006454 BtShared *pBt;
6455 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006456 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006457
drh1fee73e2007-08-29 04:00:57 +00006458 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006459
drhc5053fb2008-11-27 02:22:10 +00006460 /* pPage is not necessarily writeable since pCell might be auxiliary
6461 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006462 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006463 || sqlite3PagerIswriteable(pPage->pDbPage) );
6464
drh91025292004-05-03 19:49:32 +00006465 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006466 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006467 if( pPage->intKey ){
6468 nPayload = pX->nData + pX->nZero;
6469 pSrc = pX->pData;
6470 nSrc = pX->nData;
6471 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006472 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006473 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006474 }else{
drh8eeb4462016-05-21 20:03:42 +00006475 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6476 nSrc = nPayload = (int)pX->nKey;
6477 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006478 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006479 }
drhdfc2daa2016-05-21 23:25:29 +00006480
6481 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006482 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006483 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006484 /* This is the common case where everything fits on the btree page
6485 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006486 n = nHeader + nPayload;
6487 testcase( n==3 );
6488 testcase( n==4 );
6489 if( n<4 ) n = 4;
6490 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006491 assert( nSrc<=nPayload );
6492 testcase( nSrc<nPayload );
6493 memcpy(pPayload, pSrc, nSrc);
6494 memset(pPayload+nSrc, 0, nPayload-nSrc);
6495 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006496 }
drh5e27e1d2017-08-23 14:45:59 +00006497
6498 /* If we reach this point, it means that some of the content will need
6499 ** to spill onto overflow pages.
6500 */
6501 mn = pPage->minLocal;
6502 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6503 testcase( n==pPage->maxLocal );
6504 testcase( n==pPage->maxLocal+1 );
6505 if( n > pPage->maxLocal ) n = mn;
6506 spaceLeft = n;
6507 *pnSize = n + nHeader + 4;
6508 pPrior = &pCell[nHeader+n];
6509 pToRelease = 0;
6510 pgnoOvfl = 0;
6511 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006512
drh6200c882014-09-23 22:36:25 +00006513 /* At this point variables should be set as follows:
6514 **
6515 ** nPayload Total payload size in bytes
6516 ** pPayload Begin writing payload here
6517 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6518 ** that means content must spill into overflow pages.
6519 ** *pnSize Size of the local cell (not counting overflow pages)
6520 ** pPrior Where to write the pgno of the first overflow page
6521 **
6522 ** Use a call to btreeParseCellPtr() to verify that the values above
6523 ** were computed correctly.
6524 */
drhd879e3e2017-02-13 13:35:55 +00006525#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006526 {
6527 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006528 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006529 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006530 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006531 assert( *pnSize == info.nSize );
6532 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006533 }
6534#endif
6535
6536 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006537 while( 1 ){
6538 n = nPayload;
6539 if( n>spaceLeft ) n = spaceLeft;
6540
6541 /* If pToRelease is not zero than pPayload points into the data area
6542 ** of pToRelease. Make sure pToRelease is still writeable. */
6543 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6544
6545 /* If pPayload is part of the data area of pPage, then make sure pPage
6546 ** is still writeable */
6547 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6548 || sqlite3PagerIswriteable(pPage->pDbPage) );
6549
6550 if( nSrc>=n ){
6551 memcpy(pPayload, pSrc, n);
6552 }else if( nSrc>0 ){
6553 n = nSrc;
6554 memcpy(pPayload, pSrc, n);
6555 }else{
6556 memset(pPayload, 0, n);
6557 }
6558 nPayload -= n;
6559 if( nPayload<=0 ) break;
6560 pPayload += n;
6561 pSrc += n;
6562 nSrc -= n;
6563 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006564 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006565 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006566#ifndef SQLITE_OMIT_AUTOVACUUM
6567 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006568 if( pBt->autoVacuum ){
6569 do{
6570 pgnoOvfl++;
6571 } while(
6572 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6573 );
danielk1977b39f70b2007-05-17 18:28:11 +00006574 }
danielk1977afcdd022004-10-31 16:25:42 +00006575#endif
drhf49661a2008-12-10 16:45:50 +00006576 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006577#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006578 /* If the database supports auto-vacuum, and the second or subsequent
6579 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006580 ** for that page now.
6581 **
6582 ** If this is the first overflow page, then write a partial entry
6583 ** to the pointer-map. If we write nothing to this pointer-map slot,
6584 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006585 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006586 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006587 */
danielk19774ef24492007-05-23 09:52:41 +00006588 if( pBt->autoVacuum && rc==SQLITE_OK ){
6589 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006590 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006591 if( rc ){
6592 releasePage(pOvfl);
6593 }
danielk1977afcdd022004-10-31 16:25:42 +00006594 }
6595#endif
drh3b7511c2001-05-26 13:15:44 +00006596 if( rc ){
drh9b171272004-05-08 02:03:22 +00006597 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006598 return rc;
6599 }
drhc5053fb2008-11-27 02:22:10 +00006600
6601 /* If pToRelease is not zero than pPrior points into the data area
6602 ** of pToRelease. Make sure pToRelease is still writeable. */
6603 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6604
6605 /* If pPrior is part of the data area of pPage, then make sure pPage
6606 ** is still writeable */
6607 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6608 || sqlite3PagerIswriteable(pPage->pDbPage) );
6609
drh3aac2dd2004-04-26 14:10:20 +00006610 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006611 releasePage(pToRelease);
6612 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006613 pPrior = pOvfl->aData;
6614 put4byte(pPrior, 0);
6615 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006616 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006617 }
drhdd793422001-06-28 01:54:48 +00006618 }
drh9b171272004-05-08 02:03:22 +00006619 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006620 return SQLITE_OK;
6621}
6622
drh14acc042001-06-10 19:56:58 +00006623/*
6624** Remove the i-th cell from pPage. This routine effects pPage only.
6625** The cell content is not freed or deallocated. It is assumed that
6626** the cell content has been copied someplace else. This routine just
6627** removes the reference to the cell from pPage.
6628**
6629** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006630*/
drh98add2e2009-07-20 17:11:49 +00006631static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006632 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006633 u8 *data; /* pPage->aData */
6634 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006635 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006636 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006637
drh98add2e2009-07-20 17:11:49 +00006638 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006639 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006640 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006641 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006642 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhb0ea9432019-02-09 21:06:40 +00006643 assert( pPage->nFree>=0 );
drhda200cc2004-05-09 11:51:38 +00006644 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006645 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006646 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006647 hdr = pPage->hdrOffset;
6648 testcase( pc==get2byte(&data[hdr+5]) );
6649 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006650 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006651 *pRC = SQLITE_CORRUPT_BKPT;
6652 return;
shane0af3f892008-11-12 04:55:34 +00006653 }
shanedcc50b72008-11-13 18:29:50 +00006654 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006655 if( rc ){
6656 *pRC = rc;
6657 return;
shanedcc50b72008-11-13 18:29:50 +00006658 }
drh14acc042001-06-10 19:56:58 +00006659 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006660 if( pPage->nCell==0 ){
6661 memset(&data[hdr+1], 0, 4);
6662 data[hdr+7] = 0;
6663 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6664 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6665 - pPage->childPtrSize - 8;
6666 }else{
6667 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6668 put2byte(&data[hdr+3], pPage->nCell);
6669 pPage->nFree += 2;
6670 }
drh14acc042001-06-10 19:56:58 +00006671}
6672
6673/*
6674** Insert a new cell on pPage at cell index "i". pCell points to the
6675** content of the cell.
6676**
6677** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006678** will not fit, then make a copy of the cell content into pTemp if
6679** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006680** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006681** in pTemp or the original pCell) and also record its index.
6682** Allocating a new entry in pPage->aCell[] implies that
6683** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006684**
6685** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006686*/
drh98add2e2009-07-20 17:11:49 +00006687static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006688 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006689 int i, /* New cell becomes the i-th cell of the page */
6690 u8 *pCell, /* Content of the new cell */
6691 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006692 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006693 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6694 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006695){
drh383d30f2010-02-26 13:07:37 +00006696 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006697 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006698 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006699 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006700
drhcb89f4a2016-05-21 11:23:26 +00006701 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006702 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006703 assert( MX_CELL(pPage->pBt)<=10921 );
6704 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006705 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6706 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006707 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh996f5cc2019-07-17 16:18:01 +00006708 assert( sz==pPage->xCellSize(pPage, pCell) || CORRUPT_DB );
drhb0ea9432019-02-09 21:06:40 +00006709 assert( pPage->nFree>=0 );
drh43605152004-05-29 21:46:49 +00006710 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006711 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006712 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006713 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006714 }
danielk19774dbaa892009-06-16 16:50:22 +00006715 if( iChild ){
6716 put4byte(pCell, iChild);
6717 }
drh43605152004-05-29 21:46:49 +00006718 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006719 /* Comparison against ArraySize-1 since we hold back one extra slot
6720 ** as a contingency. In other words, never need more than 3 overflow
6721 ** slots but 4 are allocated, just to be safe. */
6722 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006723 pPage->apOvfl[j] = pCell;
6724 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006725
6726 /* When multiple overflows occur, they are always sequential and in
6727 ** sorted order. This invariants arise because multiple overflows can
6728 ** only occur when inserting divider cells into the parent page during
6729 ** balancing, and the dividers are adjacent and sorted.
6730 */
6731 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6732 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006733 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006734 int rc = sqlite3PagerWrite(pPage->pDbPage);
6735 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006736 *pRC = rc;
6737 return;
danielk19776e465eb2007-08-21 13:11:00 +00006738 }
6739 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006740 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006741 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006742 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006743 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006744 /* The allocateSpace() routine guarantees the following properties
6745 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006746 assert( idx >= 0 );
6747 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006748 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006749 pPage->nFree -= (u16)(2 + sz);
danielk19774dbaa892009-06-16 16:50:22 +00006750 if( iChild ){
drhd12db3d2019-01-14 05:48:10 +00006751 /* In a corrupt database where an entry in the cell index section of
6752 ** a btree page has a value of 3 or less, the pCell value might point
6753 ** as many as 4 bytes in front of the start of the aData buffer for
6754 ** the source page. Make sure this does not cause problems by not
6755 ** reading the first 4 bytes */
6756 memcpy(&data[idx+4], pCell+4, sz-4);
danielk19774dbaa892009-06-16 16:50:22 +00006757 put4byte(&data[idx], iChild);
drhd12db3d2019-01-14 05:48:10 +00006758 }else{
6759 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006760 }
drh2c8fb922015-06-25 19:53:48 +00006761 pIns = pPage->aCellIdx + i*2;
6762 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6763 put2byte(pIns, idx);
6764 pPage->nCell++;
6765 /* increment the cell count */
6766 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
drh56785a02019-02-16 22:45:55 +00006767 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell || CORRUPT_DB );
danielk1977a19df672004-11-03 11:37:07 +00006768#ifndef SQLITE_OMIT_AUTOVACUUM
6769 if( pPage->pBt->autoVacuum ){
6770 /* The cell may contain a pointer to an overflow page. If so, write
6771 ** the entry for the overflow page into the pointer map.
6772 */
drh0f1bf4c2019-01-13 20:17:21 +00006773 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006774 }
6775#endif
drh14acc042001-06-10 19:56:58 +00006776 }
6777}
6778
6779/*
drhe3dadac2019-01-23 19:25:59 +00006780** The following parameters determine how many adjacent pages get involved
6781** in a balancing operation. NN is the number of neighbors on either side
6782** of the page that participate in the balancing operation. NB is the
6783** total number of pages that participate, including the target page and
6784** NN neighbors on either side.
6785**
6786** The minimum value of NN is 1 (of course). Increasing NN above 1
6787** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6788** in exchange for a larger degradation in INSERT and UPDATE performance.
6789** The value of NN appears to give the best results overall.
6790**
6791** (Later:) The description above makes it seem as if these values are
6792** tunable - as if you could change them and recompile and it would all work.
6793** But that is unlikely. NB has been 3 since the inception of SQLite and
6794** we have never tested any other value.
6795*/
6796#define NN 1 /* Number of neighbors on either side of pPage */
6797#define NB 3 /* (NN*2+1): Total pages involved in the balance */
6798
6799/*
drh1ffd2472015-06-23 02:37:30 +00006800** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006801** consecutive sequence of cells that might be held on multiple pages.
drhe3dadac2019-01-23 19:25:59 +00006802**
6803** The cells in this array are the divider cell or cells from the pParent
6804** page plus up to three child pages. There are a total of nCell cells.
6805**
6806** pRef is a pointer to one of the pages that contributes cells. This is
6807** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6808** which should be common to all pages that contribute cells to this array.
6809**
6810** apCell[] and szCell[] hold, respectively, pointers to the start of each
6811** cell and the size of each cell. Some of the apCell[] pointers might refer
6812** to overflow cells. In other words, some apCel[] pointers might not point
6813** to content area of the pages.
6814**
6815** A szCell[] of zero means the size of that cell has not yet been computed.
6816**
6817** The cells come from as many as four different pages:
6818**
6819** -----------
6820** | Parent |
6821** -----------
6822** / | \
6823** / | \
6824** --------- --------- ---------
6825** |Child-1| |Child-2| |Child-3|
6826** --------- --------- ---------
6827**
drh26b7ec82019-02-01 14:50:43 +00006828** The order of cells is in the array is for an index btree is:
drhe3dadac2019-01-23 19:25:59 +00006829**
6830** 1. All cells from Child-1 in order
6831** 2. The first divider cell from Parent
6832** 3. All cells from Child-2 in order
6833** 4. The second divider cell from Parent
6834** 5. All cells from Child-3 in order
6835**
drh26b7ec82019-02-01 14:50:43 +00006836** For a table-btree (with rowids) the items 2 and 4 are empty because
6837** content exists only in leaves and there are no divider cells.
6838**
6839** For an index btree, the apEnd[] array holds pointer to the end of page
6840** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6841** respectively. The ixNx[] array holds the number of cells contained in
6842** each of these 5 stages, and all stages to the left. Hence:
6843**
drhe3dadac2019-01-23 19:25:59 +00006844** ixNx[0] = Number of cells in Child-1.
6845** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6846** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6847** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6848** ixNx[4] = Total number of cells.
drh26b7ec82019-02-01 14:50:43 +00006849**
6850** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6851** are used and they point to the leaf pages only, and the ixNx value are:
6852**
6853** ixNx[0] = Number of cells in Child-1.
drh9c7e44c2019-02-14 15:27:12 +00006854** ixNx[1] = Number of cells in Child-1 and Child-2.
6855** ixNx[2] = Total number of cells.
6856**
6857** Sometimes when deleting, a child page can have zero cells. In those
6858** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6859** entries, shift down. The end result is that each ixNx[] entry should
6860** be larger than the previous
drhfa1a98a2004-05-14 19:08:17 +00006861*/
drh1ffd2472015-06-23 02:37:30 +00006862typedef struct CellArray CellArray;
6863struct CellArray {
6864 int nCell; /* Number of cells in apCell[] */
6865 MemPage *pRef; /* Reference page */
6866 u8 **apCell; /* All cells begin balanced */
6867 u16 *szCell; /* Local size of all cells in apCell[] */
drhe3dadac2019-01-23 19:25:59 +00006868 u8 *apEnd[NB*2]; /* MemPage.aDataEnd values */
6869 int ixNx[NB*2]; /* Index of at which we move to the next apEnd[] */
drh1ffd2472015-06-23 02:37:30 +00006870};
drhfa1a98a2004-05-14 19:08:17 +00006871
drh1ffd2472015-06-23 02:37:30 +00006872/*
6873** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6874** computed.
6875*/
6876static void populateCellCache(CellArray *p, int idx, int N){
6877 assert( idx>=0 && idx+N<=p->nCell );
6878 while( N>0 ){
6879 assert( p->apCell[idx]!=0 );
6880 if( p->szCell[idx]==0 ){
6881 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6882 }else{
6883 assert( CORRUPT_DB ||
6884 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6885 }
6886 idx++;
6887 N--;
drhfa1a98a2004-05-14 19:08:17 +00006888 }
drh1ffd2472015-06-23 02:37:30 +00006889}
6890
6891/*
6892** Return the size of the Nth element of the cell array
6893*/
6894static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6895 assert( N>=0 && N<p->nCell );
6896 assert( p->szCell[N]==0 );
6897 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6898 return p->szCell[N];
6899}
6900static u16 cachedCellSize(CellArray *p, int N){
6901 assert( N>=0 && N<p->nCell );
6902 if( p->szCell[N] ) return p->szCell[N];
6903 return computeCellSize(p, N);
6904}
6905
6906/*
dan8e9ba0c2014-10-14 17:27:04 +00006907** Array apCell[] contains pointers to nCell b-tree page cells. The
6908** szCell[] array contains the size in bytes of each cell. This function
6909** replaces the current contents of page pPg with the contents of the cell
6910** array.
6911**
6912** Some of the cells in apCell[] may currently be stored in pPg. This
6913** function works around problems caused by this by making a copy of any
6914** such cells before overwriting the page data.
6915**
6916** The MemPage.nFree field is invalidated by this function. It is the
6917** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006918*/
drh658873b2015-06-22 20:02:04 +00006919static int rebuildPage(
drhe3dadac2019-01-23 19:25:59 +00006920 CellArray *pCArray, /* Content to be added to page pPg */
6921 int iFirst, /* First cell in pCArray to use */
dan33ea4862014-10-09 19:35:37 +00006922 int nCell, /* Final number of cells on page */
drhe3dadac2019-01-23 19:25:59 +00006923 MemPage *pPg /* The page to be reconstructed */
dan33ea4862014-10-09 19:35:37 +00006924){
6925 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6926 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6927 const int usableSize = pPg->pBt->usableSize;
6928 u8 * const pEnd = &aData[usableSize];
drhe3dadac2019-01-23 19:25:59 +00006929 int i = iFirst; /* Which cell to copy from pCArray*/
drha0466432019-01-29 16:41:13 +00006930 u32 j; /* Start of cell content area */
drhe3dadac2019-01-23 19:25:59 +00006931 int iEnd = i+nCell; /* Loop terminator */
dan33ea4862014-10-09 19:35:37 +00006932 u8 *pCellptr = pPg->aCellIdx;
6933 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6934 u8 *pData;
drhe3dadac2019-01-23 19:25:59 +00006935 int k; /* Current slot in pCArray->apEnd[] */
6936 u8 *pSrcEnd; /* Current pCArray->apEnd[k] value */
dan33ea4862014-10-09 19:35:37 +00006937
drhe3dadac2019-01-23 19:25:59 +00006938 assert( i<iEnd );
6939 j = get2byte(&aData[hdr+5]);
drh3b76c452020-01-03 17:40:30 +00006940 if( NEVER(j>(u32)usableSize) ){ j = 0; }
drhe3dadac2019-01-23 19:25:59 +00006941 memcpy(&pTmp[j], &aData[j], usableSize - j);
6942
6943 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
6944 pSrcEnd = pCArray->apEnd[k];
dan33ea4862014-10-09 19:35:37 +00006945
dan8e9ba0c2014-10-14 17:27:04 +00006946 pData = pEnd;
drhe3dadac2019-01-23 19:25:59 +00006947 while( 1/*exit by break*/ ){
6948 u8 *pCell = pCArray->apCell[i];
6949 u16 sz = pCArray->szCell[i];
6950 assert( sz>0 );
drh8b0ba7b2015-12-16 13:07:35 +00006951 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhb2b61bb2020-01-04 14:50:06 +00006952 if( ((uptr)(pCell+sz))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006953 pCell = &pTmp[pCell - aData];
drhe3dadac2019-01-23 19:25:59 +00006954 }else if( (uptr)(pCell+sz)>(uptr)pSrcEnd
6955 && (uptr)(pCell)<(uptr)pSrcEnd
6956 ){
6957 return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006958 }
drhe3dadac2019-01-23 19:25:59 +00006959
6960 pData -= sz;
dan33ea4862014-10-09 19:35:37 +00006961 put2byte(pCellptr, (pData - aData));
6962 pCellptr += 2;
drhe5cf3e92020-01-04 12:34:44 +00006963 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
drhe3dadac2019-01-23 19:25:59 +00006964 memcpy(pData, pCell, sz);
drhe5cf3e92020-01-04 12:34:44 +00006965 assert( sz==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6966 testcase( sz!=pPg->xCellSize(pPg,pCell) )
drhe3dadac2019-01-23 19:25:59 +00006967 i++;
6968 if( i>=iEnd ) break;
6969 if( pCArray->ixNx[k]<=i ){
6970 k++;
6971 pSrcEnd = pCArray->apEnd[k];
6972 }
dan33ea4862014-10-09 19:35:37 +00006973 }
6974
dand7b545b2014-10-13 18:03:27 +00006975 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006976 pPg->nCell = nCell;
6977 pPg->nOverflow = 0;
6978
6979 put2byte(&aData[hdr+1], 0);
6980 put2byte(&aData[hdr+3], pPg->nCell);
6981 put2byte(&aData[hdr+5], pData - aData);
6982 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006983 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006984}
6985
dan8e9ba0c2014-10-14 17:27:04 +00006986/*
drhe3dadac2019-01-23 19:25:59 +00006987** The pCArray objects contains pointers to b-tree cells and the cell sizes.
6988** This function attempts to add the cells stored in the array to page pPg.
6989** If it cannot (because the page needs to be defragmented before the cells
6990** will fit), non-zero is returned. Otherwise, if the cells are added
6991** successfully, zero is returned.
dan8e9ba0c2014-10-14 17:27:04 +00006992**
6993** Argument pCellptr points to the first entry in the cell-pointer array
6994** (part of page pPg) to populate. After cell apCell[0] is written to the
6995** page body, a 16-bit offset is written to pCellptr. And so on, for each
6996** cell in the array. It is the responsibility of the caller to ensure
6997** that it is safe to overwrite this part of the cell-pointer array.
6998**
6999** When this function is called, *ppData points to the start of the
7000** content area on page pPg. If the size of the content area is extended,
7001** *ppData is updated to point to the new start of the content area
7002** before returning.
7003**
7004** Finally, argument pBegin points to the byte immediately following the
7005** end of the space required by this page for the cell-pointer area (for
7006** all cells - not just those inserted by the current call). If the content
7007** area must be extended to before this point in order to accomodate all
7008** cells in apCell[], then the cells do not fit and non-zero is returned.
7009*/
dand7b545b2014-10-13 18:03:27 +00007010static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00007011 MemPage *pPg, /* Page to add cells to */
7012 u8 *pBegin, /* End of cell-pointer array */
drhe3dadac2019-01-23 19:25:59 +00007013 u8 **ppData, /* IN/OUT: Page content-area pointer */
dan8e9ba0c2014-10-14 17:27:04 +00007014 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00007015 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00007016 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00007017 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007018){
drhe3dadac2019-01-23 19:25:59 +00007019 int i = iFirst; /* Loop counter - cell index to insert */
7020 u8 *aData = pPg->aData; /* Complete page */
7021 u8 *pData = *ppData; /* Content area. A subset of aData[] */
7022 int iEnd = iFirst + nCell; /* End of loop. One past last cell to ins */
7023 int k; /* Current slot in pCArray->apEnd[] */
7024 u8 *pEnd; /* Maximum extent of cell data */
dan23eba452014-10-24 18:43:57 +00007025 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhe3dadac2019-01-23 19:25:59 +00007026 if( iEnd<=iFirst ) return 0;
7027 for(k=0; pCArray->ixNx[k]<=i && ALWAYS(k<NB*2); k++){}
7028 pEnd = pCArray->apEnd[k];
7029 while( 1 /*Exit by break*/ ){
drhf7838932015-06-23 15:36:34 +00007030 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00007031 u8 *pSlot;
dan666a42f2019-08-24 21:02:47 +00007032 assert( pCArray->szCell[i]!=0 );
7033 sz = pCArray->szCell[i];
drhb7580e82015-06-25 18:36:13 +00007034 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00007035 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00007036 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00007037 pSlot = pData;
7038 }
drh48310f82015-10-10 16:41:28 +00007039 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7040 ** database. But they might for a corrupt database. Hence use memmove()
7041 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7042 assert( (pSlot+sz)<=pCArray->apCell[i]
7043 || pSlot>=(pCArray->apCell[i]+sz)
7044 || CORRUPT_DB );
drhe3dadac2019-01-23 19:25:59 +00007045 if( (uptr)(pCArray->apCell[i]+sz)>(uptr)pEnd
7046 && (uptr)(pCArray->apCell[i])<(uptr)pEnd
7047 ){
7048 assert( CORRUPT_DB );
7049 (void)SQLITE_CORRUPT_BKPT;
7050 return 1;
7051 }
drh48310f82015-10-10 16:41:28 +00007052 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00007053 put2byte(pCellptr, (pSlot - aData));
7054 pCellptr += 2;
drhe3dadac2019-01-23 19:25:59 +00007055 i++;
7056 if( i>=iEnd ) break;
7057 if( pCArray->ixNx[k]<=i ){
7058 k++;
7059 pEnd = pCArray->apEnd[k];
7060 }
dand7b545b2014-10-13 18:03:27 +00007061 }
7062 *ppData = pData;
7063 return 0;
7064}
7065
dan8e9ba0c2014-10-14 17:27:04 +00007066/*
drhe3dadac2019-01-23 19:25:59 +00007067** The pCArray object contains pointers to b-tree cells and their sizes.
7068**
7069** This function adds the space associated with each cell in the array
7070** that is currently stored within the body of pPg to the pPg free-list.
7071** The cell-pointers and other fields of the page are not updated.
dan8e9ba0c2014-10-14 17:27:04 +00007072**
7073** This function returns the total number of cells added to the free-list.
7074*/
dand7b545b2014-10-13 18:03:27 +00007075static int pageFreeArray(
7076 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00007077 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00007078 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00007079 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00007080){
7081 u8 * const aData = pPg->aData;
7082 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00007083 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00007084 int nRet = 0;
7085 int i;
drhf7838932015-06-23 15:36:34 +00007086 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00007087 u8 *pFree = 0;
7088 int szFree = 0;
7089
drhf7838932015-06-23 15:36:34 +00007090 for(i=iFirst; i<iEnd; i++){
7091 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00007092 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00007093 int sz;
7094 /* No need to use cachedCellSize() here. The sizes of all cells that
7095 ** are to be freed have already been computing while deciding which
7096 ** cells need freeing */
7097 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00007098 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00007099 if( pFree ){
7100 assert( pFree>aData && (pFree - aData)<65536 );
7101 freeSpace(pPg, (u16)(pFree - aData), szFree);
7102 }
dand7b545b2014-10-13 18:03:27 +00007103 pFree = pCell;
7104 szFree = sz;
drh64f7ee02020-01-04 17:55:01 +00007105 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00007106 }else{
7107 pFree = pCell;
7108 szFree += sz;
7109 }
7110 nRet++;
7111 }
7112 }
drhfefa0942014-11-05 21:21:08 +00007113 if( pFree ){
7114 assert( pFree>aData && (pFree - aData)<65536 );
7115 freeSpace(pPg, (u16)(pFree - aData), szFree);
7116 }
dand7b545b2014-10-13 18:03:27 +00007117 return nRet;
7118}
7119
dand7b545b2014-10-13 18:03:27 +00007120/*
drha0466432019-01-29 16:41:13 +00007121** pCArray contains pointers to and sizes of all cells in the page being
drhe3dadac2019-01-23 19:25:59 +00007122** balanced. The current page, pPg, has pPg->nCell cells starting with
7123** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
drh5ab63772014-11-27 03:46:04 +00007124** starting at apCell[iNew].
7125**
7126** This routine makes the necessary adjustments to pPg so that it contains
7127** the correct cells after being balanced.
7128**
dand7b545b2014-10-13 18:03:27 +00007129** The pPg->nFree field is invalid when this function returns. It is the
7130** responsibility of the caller to set it correctly.
7131*/
drh658873b2015-06-22 20:02:04 +00007132static int editPage(
dan09c68402014-10-11 20:00:24 +00007133 MemPage *pPg, /* Edit this page */
7134 int iOld, /* Index of first cell currently on page */
7135 int iNew, /* Index of new first cell on page */
7136 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00007137 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00007138){
dand7b545b2014-10-13 18:03:27 +00007139 u8 * const aData = pPg->aData;
7140 const int hdr = pPg->hdrOffset;
7141 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
7142 int nCell = pPg->nCell; /* Cells stored on pPg */
7143 u8 *pData;
7144 u8 *pCellptr;
7145 int i;
7146 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
7147 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00007148
7149#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00007150 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
7151 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00007152#endif
7153
dand7b545b2014-10-13 18:03:27 +00007154 /* Remove cells from the start and end of the page */
drha0466432019-01-29 16:41:13 +00007155 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007156 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00007157 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
drha0466432019-01-29 16:41:13 +00007158 if( nShift>nCell ) return SQLITE_CORRUPT_BKPT;
dand7b545b2014-10-13 18:03:27 +00007159 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
7160 nCell -= nShift;
7161 }
7162 if( iNewEnd < iOldEnd ){
drha0466432019-01-29 16:41:13 +00007163 int nTail = pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
7164 assert( nCell>=nTail );
7165 nCell -= nTail;
dand7b545b2014-10-13 18:03:27 +00007166 }
dan09c68402014-10-11 20:00:24 +00007167
drh5ab63772014-11-27 03:46:04 +00007168 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00007169 if( pData<pBegin ) goto editpage_fail;
7170
7171 /* Add cells to the start of the page */
7172 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00007173 int nAdd = MIN(nNew,iOld-iNew);
7174 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
drha0466432019-01-29 16:41:13 +00007175 assert( nAdd>=0 );
dand7b545b2014-10-13 18:03:27 +00007176 pCellptr = pPg->aCellIdx;
7177 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
7178 if( pageInsertArray(
7179 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007180 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00007181 ) ) goto editpage_fail;
7182 nCell += nAdd;
7183 }
7184
7185 /* Add any overflow cells */
7186 for(i=0; i<pPg->nOverflow; i++){
7187 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
7188 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00007189 pCellptr = &pPg->aCellIdx[iCell * 2];
drh4b986b22019-03-08 14:02:11 +00007190 if( nCell>iCell ){
7191 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
7192 }
dand7b545b2014-10-13 18:03:27 +00007193 nCell++;
dan666a42f2019-08-24 21:02:47 +00007194 cachedCellSize(pCArray, iCell+iNew);
dand7b545b2014-10-13 18:03:27 +00007195 if( pageInsertArray(
7196 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007197 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00007198 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007199 }
dand7b545b2014-10-13 18:03:27 +00007200 }
dan09c68402014-10-11 20:00:24 +00007201
dand7b545b2014-10-13 18:03:27 +00007202 /* Append cells to the end of the page */
drha0466432019-01-29 16:41:13 +00007203 assert( nCell>=0 );
dand7b545b2014-10-13 18:03:27 +00007204 pCellptr = &pPg->aCellIdx[nCell*2];
7205 if( pageInsertArray(
7206 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00007207 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00007208 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00007209
dand7b545b2014-10-13 18:03:27 +00007210 pPg->nCell = nNew;
7211 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00007212
dand7b545b2014-10-13 18:03:27 +00007213 put2byte(&aData[hdr+3], pPg->nCell);
7214 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00007215
7216#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00007217 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00007218 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00007219 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00007220 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007221 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007222 }
drh1ffd2472015-06-23 02:37:30 +00007223 assert( 0==memcmp(pCell, &aData[iOff],
7224 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007225 }
dan09c68402014-10-11 20:00:24 +00007226#endif
7227
drh658873b2015-06-22 20:02:04 +00007228 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007229 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007230 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007231 populateCellCache(pCArray, iNew, nNew);
drhe3dadac2019-01-23 19:25:59 +00007232 return rebuildPage(pCArray, iNew, nNew, pPg);
drhfa1a98a2004-05-14 19:08:17 +00007233}
7234
danielk1977ac245ec2005-01-14 13:50:11 +00007235
drh615ae552005-01-16 23:21:00 +00007236#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007237/*
7238** This version of balance() handles the common special case where
7239** a new entry is being inserted on the extreme right-end of the
7240** tree, in other words, when the new entry will become the largest
7241** entry in the tree.
7242**
drhc314dc72009-07-21 11:52:34 +00007243** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007244** a new page to the right-hand side and put the one new entry in
7245** that page. This leaves the right side of the tree somewhat
7246** unbalanced. But odds are that we will be inserting new entries
7247** at the end soon afterwards so the nearly empty page will quickly
7248** fill up. On average.
7249**
7250** pPage is the leaf page which is the right-most page in the tree.
7251** pParent is its parent. pPage must have a single overflow entry
7252** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007253**
7254** The pSpace buffer is used to store a temporary copy of the divider
7255** cell that will be inserted into pParent. Such a cell consists of a 4
7256** byte page number followed by a variable length integer. In other
7257** words, at most 13 bytes. Hence the pSpace buffer must be at
7258** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007259*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007260static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7261 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007262 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007263 int rc; /* Return Code */
7264 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007265
drh1fee73e2007-08-29 04:00:57 +00007266 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007267 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007268 assert( pPage->nOverflow==1 );
drhb0ea9432019-02-09 21:06:40 +00007269
drh6301c432018-12-13 21:52:18 +00007270 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drh68133502019-02-11 17:22:30 +00007271 assert( pPage->nFree>=0 );
7272 assert( pParent->nFree>=0 );
drhd677b3d2007-08-20 22:48:41 +00007273
danielk1977a50d9aa2009-06-08 14:49:45 +00007274 /* Allocate a new page. This page will become the right-sibling of
7275 ** pPage. Make the parent page writable, so that the new divider cell
7276 ** may be inserted. If both these operations are successful, proceed.
7277 */
drh4f0c5872007-03-26 22:05:01 +00007278 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007279
danielk1977eaa06f62008-09-18 17:34:44 +00007280 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007281
7282 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007283 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007284 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007285 u8 *pStop;
drhe3dadac2019-01-23 19:25:59 +00007286 CellArray b;
danielk19776f235cc2009-06-04 14:46:08 +00007287
drhc5053fb2008-11-27 02:22:10 +00007288 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danba14c692019-01-25 13:42:12 +00007289 assert( CORRUPT_DB || pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
danielk1977e56b60e2009-06-10 09:11:06 +00007290 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drhe3dadac2019-01-23 19:25:59 +00007291 b.nCell = 1;
7292 b.pRef = pPage;
7293 b.apCell = &pCell;
7294 b.szCell = &szCell;
7295 b.apEnd[0] = pPage->aDataEnd;
7296 b.ixNx[0] = 2;
7297 rc = rebuildPage(&b, 0, 1, pNew);
7298 if( NEVER(rc) ){
7299 releasePage(pNew);
7300 return rc;
7301 }
dan8e9ba0c2014-10-14 17:27:04 +00007302 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007303
7304 /* If this is an auto-vacuum database, update the pointer map
7305 ** with entries for the new page, and any pointer from the
7306 ** cell on the page to an overflow page. If either of these
7307 ** operations fails, the return code is set, but the contents
7308 ** of the parent page are still manipulated by thh code below.
7309 ** That is Ok, at this point the parent page is guaranteed to
7310 ** be marked as dirty. Returning an error code will cause a
7311 ** rollback, undoing any changes made to the parent page.
7312 */
7313 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007314 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7315 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007316 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007317 }
7318 }
danielk1977eaa06f62008-09-18 17:34:44 +00007319
danielk19776f235cc2009-06-04 14:46:08 +00007320 /* Create a divider cell to insert into pParent. The divider cell
7321 ** consists of a 4-byte page number (the page number of pPage) and
7322 ** a variable length key value (which must be the same value as the
7323 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007324 **
danielk19776f235cc2009-06-04 14:46:08 +00007325 ** To find the largest key value on pPage, first find the right-most
7326 ** cell on pPage. The first two fields of this cell are the
7327 ** record-length (a variable length integer at most 32-bits in size)
7328 ** and the key value (a variable length integer, may have any value).
7329 ** The first of the while(...) loops below skips over the record-length
7330 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007331 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007332 */
danielk1977eaa06f62008-09-18 17:34:44 +00007333 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007334 pStop = &pCell[9];
7335 while( (*(pCell++)&0x80) && pCell<pStop );
7336 pStop = &pCell[9];
7337 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7338
danielk19774dbaa892009-06-16 16:50:22 +00007339 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007340 if( rc==SQLITE_OK ){
7341 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7342 0, pPage->pgno, &rc);
7343 }
danielk19776f235cc2009-06-04 14:46:08 +00007344
7345 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007346 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7347
danielk1977e08a3c42008-09-18 18:17:03 +00007348 /* Release the reference to the new page. */
7349 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007350 }
7351
danielk1977eaa06f62008-09-18 17:34:44 +00007352 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007353}
drh615ae552005-01-16 23:21:00 +00007354#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007355
danielk19774dbaa892009-06-16 16:50:22 +00007356#if 0
drhc3b70572003-01-04 19:44:07 +00007357/*
danielk19774dbaa892009-06-16 16:50:22 +00007358** This function does not contribute anything to the operation of SQLite.
7359** it is sometimes activated temporarily while debugging code responsible
7360** for setting pointer-map entries.
7361*/
7362static int ptrmapCheckPages(MemPage **apPage, int nPage){
7363 int i, j;
7364 for(i=0; i<nPage; i++){
7365 Pgno n;
7366 u8 e;
7367 MemPage *pPage = apPage[i];
7368 BtShared *pBt = pPage->pBt;
7369 assert( pPage->isInit );
7370
7371 for(j=0; j<pPage->nCell; j++){
7372 CellInfo info;
7373 u8 *z;
7374
7375 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007376 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007377 if( info.nLocal<info.nPayload ){
7378 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007379 ptrmapGet(pBt, ovfl, &e, &n);
7380 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7381 }
7382 if( !pPage->leaf ){
7383 Pgno child = get4byte(z);
7384 ptrmapGet(pBt, child, &e, &n);
7385 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7386 }
7387 }
7388 if( !pPage->leaf ){
7389 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7390 ptrmapGet(pBt, child, &e, &n);
7391 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7392 }
7393 }
7394 return 1;
7395}
7396#endif
7397
danielk1977cd581a72009-06-23 15:43:39 +00007398/*
7399** This function is used to copy the contents of the b-tree node stored
7400** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7401** the pointer-map entries for each child page are updated so that the
7402** parent page stored in the pointer map is page pTo. If pFrom contained
7403** any cells with overflow page pointers, then the corresponding pointer
7404** map entries are also updated so that the parent page is page pTo.
7405**
7406** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007407** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007408**
danielk197730548662009-07-09 05:07:37 +00007409** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007410**
7411** The performance of this function is not critical. It is only used by
7412** the balance_shallower() and balance_deeper() procedures, neither of
7413** which are called often under normal circumstances.
7414*/
drhc314dc72009-07-21 11:52:34 +00007415static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7416 if( (*pRC)==SQLITE_OK ){
7417 BtShared * const pBt = pFrom->pBt;
7418 u8 * const aFrom = pFrom->aData;
7419 u8 * const aTo = pTo->aData;
7420 int const iFromHdr = pFrom->hdrOffset;
7421 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007422 int rc;
drhc314dc72009-07-21 11:52:34 +00007423 int iData;
7424
7425
7426 assert( pFrom->isInit );
7427 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007428 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007429
7430 /* Copy the b-tree node content from page pFrom to page pTo. */
7431 iData = get2byte(&aFrom[iFromHdr+5]);
7432 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7433 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7434
7435 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007436 ** match the new data. The initialization of pTo can actually fail under
7437 ** fairly obscure circumstances, even though it is a copy of initialized
7438 ** page pFrom.
7439 */
drhc314dc72009-07-21 11:52:34 +00007440 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007441 rc = btreeInitPage(pTo);
drh8357c662019-02-11 22:50:01 +00007442 if( rc==SQLITE_OK ) rc = btreeComputeFreeSpace(pTo);
dan89e060e2009-12-05 18:03:50 +00007443 if( rc!=SQLITE_OK ){
7444 *pRC = rc;
7445 return;
7446 }
drhc314dc72009-07-21 11:52:34 +00007447
7448 /* If this is an auto-vacuum database, update the pointer-map entries
7449 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7450 */
7451 if( ISAUTOVACUUM ){
7452 *pRC = setChildPtrmaps(pTo);
7453 }
danielk1977cd581a72009-06-23 15:43:39 +00007454 }
danielk1977cd581a72009-06-23 15:43:39 +00007455}
7456
7457/*
danielk19774dbaa892009-06-16 16:50:22 +00007458** This routine redistributes cells on the iParentIdx'th child of pParent
7459** (hereafter "the page") and up to 2 siblings so that all pages have about the
7460** same amount of free space. Usually a single sibling on either side of the
7461** page are used in the balancing, though both siblings might come from one
7462** side if the page is the first or last child of its parent. If the page
7463** has fewer than 2 siblings (something which can only happen if the page
7464** is a root page or a child of a root page) then all available siblings
7465** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007466**
danielk19774dbaa892009-06-16 16:50:22 +00007467** The number of siblings of the page might be increased or decreased by
7468** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007469**
danielk19774dbaa892009-06-16 16:50:22 +00007470** Note that when this routine is called, some of the cells on the page
7471** might not actually be stored in MemPage.aData[]. This can happen
7472** if the page is overfull. This routine ensures that all cells allocated
7473** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007474**
danielk19774dbaa892009-06-16 16:50:22 +00007475** In the course of balancing the page and its siblings, cells may be
7476** inserted into or removed from the parent page (pParent). Doing so
7477** may cause the parent page to become overfull or underfull. If this
7478** happens, it is the responsibility of the caller to invoke the correct
7479** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007480**
drh5e00f6c2001-09-13 13:46:56 +00007481** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007482** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007483** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007484**
7485** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007486** buffer big enough to hold one page. If while inserting cells into the parent
7487** page (pParent) the parent page becomes overfull, this buffer is
7488** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007489** a maximum of four divider cells into the parent page, and the maximum
7490** size of a cell stored within an internal node is always less than 1/4
7491** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7492** enough for all overflow cells.
7493**
7494** If aOvflSpace is set to a null pointer, this function returns
7495** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007496*/
danielk19774dbaa892009-06-16 16:50:22 +00007497static int balance_nonroot(
7498 MemPage *pParent, /* Parent page of siblings being balanced */
7499 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007500 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007501 int isRoot, /* True if pParent is a root-page */
7502 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007503){
drh16a9b832007-05-05 18:39:25 +00007504 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007505 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007506 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007507 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007508 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007509 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007510 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007511 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007512 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007513 int usableSpace; /* Bytes in pPage beyond the header */
7514 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007515 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007516 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007517 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007518 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007519 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007520 u8 *pRight; /* Location in parent of right-sibling pointer */
7521 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007522 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7523 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007524 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007525 u8 *aSpace1; /* Space for copies of dividers cells */
7526 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007527 u8 abDone[NB+2]; /* True after i'th new page is populated */
7528 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007529 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007530 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007531 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007532
dan33ea4862014-10-09 19:35:37 +00007533 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007534 b.nCell = 0;
7535 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007536 pBt = pParent->pBt;
7537 assert( sqlite3_mutex_held(pBt->mutex) );
7538 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007539
danielk19774dbaa892009-06-16 16:50:22 +00007540 /* At this point pParent may have at most one overflow cell. And if
7541 ** this overflow cell is present, it must be the cell with
7542 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007543 ** is called (indirectly) from sqlite3BtreeDelete().
7544 */
danielk19774dbaa892009-06-16 16:50:22 +00007545 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007546 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007547
danielk197711a8a862009-06-17 11:49:52 +00007548 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007549 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007550 }
drh68133502019-02-11 17:22:30 +00007551 assert( pParent->nFree>=0 );
danielk197711a8a862009-06-17 11:49:52 +00007552
danielk1977a50d9aa2009-06-08 14:49:45 +00007553 /* Find the sibling pages to balance. Also locate the cells in pParent
7554 ** that divide the siblings. An attempt is made to find NN siblings on
7555 ** either side of pPage. More siblings are taken from one side, however,
7556 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007557 ** has NB or fewer children then all children of pParent are taken.
7558 **
7559 ** This loop also drops the divider cells from the parent page. This
7560 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007561 ** overflow cells in the parent page, since if any existed they will
7562 ** have already been removed.
7563 */
danielk19774dbaa892009-06-16 16:50:22 +00007564 i = pParent->nOverflow + pParent->nCell;
7565 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007566 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007567 }else{
dan7d6885a2012-08-08 14:04:56 +00007568 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007569 if( iParentIdx==0 ){
7570 nxDiv = 0;
7571 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007572 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007573 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007574 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007575 }
dan7d6885a2012-08-08 14:04:56 +00007576 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007577 }
dan7d6885a2012-08-08 14:04:56 +00007578 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007579 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7580 pRight = &pParent->aData[pParent->hdrOffset+8];
7581 }else{
7582 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7583 }
7584 pgno = get4byte(pRight);
7585 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007586 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007587 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007588 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007589 goto balance_cleanup;
7590 }
drh85a379b2019-02-09 22:33:44 +00007591 if( apOld[i]->nFree<0 ){
7592 rc = btreeComputeFreeSpace(apOld[i]);
7593 if( rc ){
7594 memset(apOld, 0, (i)*sizeof(MemPage*));
7595 goto balance_cleanup;
7596 }
7597 }
danielk19774dbaa892009-06-16 16:50:22 +00007598 if( (i--)==0 ) break;
7599
drh9cc5b4e2016-12-26 01:41:33 +00007600 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007601 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007602 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007603 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007604 pParent->nOverflow = 0;
7605 }else{
7606 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7607 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007608 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007609
7610 /* Drop the cell from the parent page. apDiv[i] still points to
7611 ** the cell within the parent, even though it has been dropped.
7612 ** This is safe because dropping a cell only overwrites the first
7613 ** four bytes of it, and this function does not need the first
7614 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007615 ** later on.
7616 **
drh8a575d92011-10-12 17:00:28 +00007617 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007618 ** the dropCell() routine will overwrite the entire cell with zeroes.
7619 ** In this case, temporarily copy the cell into the aOvflSpace[]
7620 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7621 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007622 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007623 int iOff;
7624
7625 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007626 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007627 rc = SQLITE_CORRUPT_BKPT;
7628 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7629 goto balance_cleanup;
7630 }else{
7631 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7632 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7633 }
drh5b47efa2010-02-12 18:18:39 +00007634 }
drh98add2e2009-07-20 17:11:49 +00007635 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007636 }
drh8b2f49b2001-06-08 00:21:52 +00007637 }
7638
drha9121e42008-02-19 14:59:35 +00007639 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007640 ** alignment */
drhf012dc42019-03-19 15:36:46 +00007641 nMaxCells = nOld*(MX_CELL(pBt) + ArraySize(pParent->apOvfl));
drha9121e42008-02-19 14:59:35 +00007642 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007643
drh8b2f49b2001-06-08 00:21:52 +00007644 /*
danielk1977634f2982005-03-28 08:44:07 +00007645 ** Allocate space for memory structures
7646 */
drhfacf0302008-06-17 15:12:00 +00007647 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007648 nMaxCells*sizeof(u8*) /* b.apCell */
7649 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007650 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007651
drhf012dc42019-03-19 15:36:46 +00007652 assert( szScratch<=7*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007653 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007654 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007655 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007656 goto balance_cleanup;
7657 }
drh1ffd2472015-06-23 02:37:30 +00007658 b.szCell = (u16*)&b.apCell[nMaxCells];
7659 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007660 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007661
7662 /*
7663 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007664 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007665 ** into space obtained from aSpace1[]. The divider cells have already
7666 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007667 **
7668 ** If the siblings are on leaf pages, then the child pointers of the
7669 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007670 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007671 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007672 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007673 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007674 **
7675 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7676 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007677 */
drh1ffd2472015-06-23 02:37:30 +00007678 b.pRef = apOld[0];
7679 leafCorrection = b.pRef->leaf*4;
7680 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007681 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007682 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007683 int limit = pOld->nCell;
7684 u8 *aData = pOld->aData;
7685 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007686 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007687 u8 *piEnd;
drhe12ca5a2019-05-02 15:56:39 +00007688 VVA_ONLY( int nCellAtStart = b.nCell; )
danielk19774dbaa892009-06-16 16:50:22 +00007689
drh73d340a2015-05-28 11:23:11 +00007690 /* Verify that all sibling pages are of the same "type" (table-leaf,
7691 ** table-interior, index-leaf, or index-interior).
7692 */
7693 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7694 rc = SQLITE_CORRUPT_BKPT;
7695 goto balance_cleanup;
7696 }
7697
drhfe647dc2015-06-23 18:24:25 +00007698 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007699 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007700 ** in the correct spot.
7701 **
7702 ** Note that when there are multiple overflow cells, it is always the
7703 ** case that they are sequential and adjacent. This invariant arises
7704 ** because multiple overflows can only occurs when inserting divider
7705 ** cells into a parent on a prior balance, and divider cells are always
7706 ** adjacent and are inserted in order. There is an assert() tagged
7707 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7708 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007709 **
7710 ** This must be done in advance. Once the balance starts, the cell
7711 ** offset section of the btree page will be overwritten and we will no
7712 ** long be able to find the cells if a pointer to each cell is not saved
7713 ** first.
7714 */
drh36b78ee2016-01-20 01:32:00 +00007715 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007716 if( pOld->nOverflow>0 ){
drh27e80a32019-08-15 13:17:49 +00007717 if( NEVER(limit<pOld->aiOvfl[0]) ){
drhe12ca5a2019-05-02 15:56:39 +00007718 rc = SQLITE_CORRUPT_BKPT;
7719 goto balance_cleanup;
7720 }
drhfe647dc2015-06-23 18:24:25 +00007721 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007722 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007723 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007724 piCell += 2;
7725 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007726 }
drhfe647dc2015-06-23 18:24:25 +00007727 for(k=0; k<pOld->nOverflow; k++){
7728 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007729 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007730 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007731 }
drh1ffd2472015-06-23 02:37:30 +00007732 }
drhfe647dc2015-06-23 18:24:25 +00007733 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7734 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007735 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007736 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007737 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007738 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007739 }
drhe12ca5a2019-05-02 15:56:39 +00007740 assert( (b.nCell-nCellAtStart)==(pOld->nCell+pOld->nOverflow) );
drh4edfdd32015-06-23 14:49:42 +00007741
drh1ffd2472015-06-23 02:37:30 +00007742 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007743 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007744 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007745 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007746 assert( b.nCell<nMaxCells );
7747 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007748 pTemp = &aSpace1[iSpace1];
7749 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007750 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007751 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007752 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007753 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007754 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007755 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007756 if( !pOld->leaf ){
7757 assert( leafCorrection==0 );
7758 assert( pOld->hdrOffset==0 );
7759 /* The right pointer of the child page pOld becomes the left
7760 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007761 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007762 }else{
7763 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007764 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007765 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7766 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007767 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7768 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007769 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007770 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007771 }
7772 }
drh1ffd2472015-06-23 02:37:30 +00007773 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007774 }
drh8b2f49b2001-06-08 00:21:52 +00007775 }
7776
7777 /*
drh1ffd2472015-06-23 02:37:30 +00007778 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007779 ** Store this number in "k". Also compute szNew[] which is the total
7780 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007781 ** in b.apCell[] of the cell that divides page i from page i+1.
7782 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007783 **
drh96f5b762004-05-16 16:24:36 +00007784 ** Values computed by this block:
7785 **
7786 ** k: The total number of sibling pages
7787 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007788 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007789 ** the right of the i-th sibling page.
7790 ** usableSpace: Number of bytes of space available on each sibling.
7791 **
drh8b2f49b2001-06-08 00:21:52 +00007792 */
drh43605152004-05-29 21:46:49 +00007793 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh26b7ec82019-02-01 14:50:43 +00007794 for(i=k=0; i<nOld; i++, k++){
drh658873b2015-06-22 20:02:04 +00007795 MemPage *p = apOld[i];
drh26b7ec82019-02-01 14:50:43 +00007796 b.apEnd[k] = p->aDataEnd;
7797 b.ixNx[k] = cntOld[i];
drh9c7e44c2019-02-14 15:27:12 +00007798 if( k && b.ixNx[k]==b.ixNx[k-1] ){
7799 k--; /* Omit b.ixNx[] entry for child pages with no cells */
7800 }
drh26b7ec82019-02-01 14:50:43 +00007801 if( !leafData ){
7802 k++;
7803 b.apEnd[k] = pParent->aDataEnd;
7804 b.ixNx[k] = cntOld[i]+1;
7805 }
drhb0ea9432019-02-09 21:06:40 +00007806 assert( p->nFree>=0 );
drh658873b2015-06-22 20:02:04 +00007807 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007808 for(j=0; j<p->nOverflow; j++){
7809 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7810 }
7811 cntNew[i] = cntOld[i];
7812 }
7813 k = nOld;
7814 for(i=0; i<k; i++){
7815 int sz;
7816 while( szNew[i]>usableSpace ){
7817 if( i+1>=k ){
7818 k = i+2;
7819 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7820 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007821 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007822 }
drh1ffd2472015-06-23 02:37:30 +00007823 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007824 szNew[i] -= sz;
7825 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007826 if( cntNew[i]<b.nCell ){
7827 sz = 2 + cachedCellSize(&b, cntNew[i]);
7828 }else{
7829 sz = 0;
7830 }
drh658873b2015-06-22 20:02:04 +00007831 }
7832 szNew[i+1] += sz;
7833 cntNew[i]--;
7834 }
drh1ffd2472015-06-23 02:37:30 +00007835 while( cntNew[i]<b.nCell ){
7836 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007837 if( szNew[i]+sz>usableSpace ) break;
7838 szNew[i] += sz;
7839 cntNew[i]++;
7840 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007841 if( cntNew[i]<b.nCell ){
7842 sz = 2 + cachedCellSize(&b, cntNew[i]);
7843 }else{
7844 sz = 0;
7845 }
drh658873b2015-06-22 20:02:04 +00007846 }
7847 szNew[i+1] -= sz;
7848 }
drh1ffd2472015-06-23 02:37:30 +00007849 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007850 k = i+1;
drh672073a2015-06-24 12:07:40 +00007851 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007852 rc = SQLITE_CORRUPT_BKPT;
7853 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007854 }
7855 }
drh96f5b762004-05-16 16:24:36 +00007856
7857 /*
7858 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007859 ** on the left side (siblings with smaller keys). The left siblings are
7860 ** always nearly full, while the right-most sibling might be nearly empty.
7861 ** The next block of code attempts to adjust the packing of siblings to
7862 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007863 **
7864 ** This adjustment is more than an optimization. The packing above might
7865 ** be so out of balance as to be illegal. For example, the right-most
7866 ** sibling might be completely empty. This adjustment is not optional.
7867 */
drh6019e162001-07-02 17:51:45 +00007868 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007869 int szRight = szNew[i]; /* Size of sibling on the right */
7870 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7871 int r; /* Index of right-most cell in left sibling */
7872 int d; /* Index of first cell to the left of right sibling */
7873
7874 r = cntNew[i-1] - 1;
7875 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007876 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007877 do{
drh1ffd2472015-06-23 02:37:30 +00007878 assert( d<nMaxCells );
7879 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007880 (void)cachedCellSize(&b, r);
7881 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007882 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007883 break;
7884 }
7885 szRight += b.szCell[d] + 2;
7886 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007887 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007888 r--;
7889 d--;
drh672073a2015-06-24 12:07:40 +00007890 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007891 szNew[i] = szRight;
7892 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007893 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7894 rc = SQLITE_CORRUPT_BKPT;
7895 goto balance_cleanup;
7896 }
drh6019e162001-07-02 17:51:45 +00007897 }
drh09d0deb2005-08-02 17:13:09 +00007898
drh2a0df922014-10-30 23:14:56 +00007899 /* Sanity check: For a non-corrupt database file one of the follwing
7900 ** must be true:
7901 ** (1) We found one or more cells (cntNew[0])>0), or
7902 ** (2) pPage is a virtual root page. A virtual root page is when
7903 ** the real root page is page 1 and we are the only child of
7904 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007905 */
drh2a0df922014-10-30 23:14:56 +00007906 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007907 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7908 apOld[0]->pgno, apOld[0]->nCell,
7909 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7910 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007911 ));
7912
drh8b2f49b2001-06-08 00:21:52 +00007913 /*
drh6b308672002-07-08 02:16:37 +00007914 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007915 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007916 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007917 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007918 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007919 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007920 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007921 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007922 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007923 nNew++;
danielk197728129562005-01-11 10:25:06 +00007924 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007925 }else{
drh7aa8f852006-03-28 00:24:44 +00007926 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007927 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007928 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007929 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007930 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007931 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007932 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007933
7934 /* Set the pointer-map entry for the new sibling page. */
7935 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007936 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007937 if( rc!=SQLITE_OK ){
7938 goto balance_cleanup;
7939 }
7940 }
drh6b308672002-07-08 02:16:37 +00007941 }
drh8b2f49b2001-06-08 00:21:52 +00007942 }
7943
7944 /*
dan33ea4862014-10-09 19:35:37 +00007945 ** Reassign page numbers so that the new pages are in ascending order.
7946 ** This helps to keep entries in the disk file in order so that a scan
7947 ** of the table is closer to a linear scan through the file. That in turn
7948 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007949 **
dan33ea4862014-10-09 19:35:37 +00007950 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7951 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007952 **
dan33ea4862014-10-09 19:35:37 +00007953 ** When NB==3, this one optimization makes the database about 25% faster
7954 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007955 */
dan33ea4862014-10-09 19:35:37 +00007956 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007957 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007958 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007959 for(j=0; j<i; j++){
7960 if( aPgno[j]==aPgno[i] ){
7961 /* This branch is taken if the set of sibling pages somehow contains
7962 ** duplicate entries. This can happen if the database is corrupt.
7963 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007964 ** we do the detection here in order to avoid populating the pager
7965 ** cache with two separate objects associated with the same
7966 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007967 assert( CORRUPT_DB );
7968 rc = SQLITE_CORRUPT_BKPT;
7969 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007970 }
7971 }
dan33ea4862014-10-09 19:35:37 +00007972 }
7973 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007974 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007975 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007976 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007977 }
drh00fe08a2014-10-31 00:05:23 +00007978 pgno = aPgOrder[iBest];
7979 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007980 if( iBest!=i ){
7981 if( iBest>i ){
7982 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7983 }
7984 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7985 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007986 }
7987 }
dan33ea4862014-10-09 19:35:37 +00007988
7989 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7990 "%d(%d nc=%d) %d(%d nc=%d)\n",
7991 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007992 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007993 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007994 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007995 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007996 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007997 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7998 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7999 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
8000 ));
danielk19774dbaa892009-06-16 16:50:22 +00008001
8002 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
drh55f66b32019-07-16 19:44:32 +00008003 assert( nNew>=1 && nNew<=ArraySize(apNew) );
8004 assert( apNew[nNew-1]!=0 );
danielk19774dbaa892009-06-16 16:50:22 +00008005 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00008006
dan33ea4862014-10-09 19:35:37 +00008007 /* If the sibling pages are not leaves, ensure that the right-child pointer
8008 ** of the right-most new sibling page is set to the value that was
8009 ** originally in the same field of the right-most old sibling page. */
8010 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
8011 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
8012 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
8013 }
danielk1977ac11ee62005-01-15 12:45:51 +00008014
dan33ea4862014-10-09 19:35:37 +00008015 /* Make any required updates to pointer map entries associated with
8016 ** cells stored on sibling pages following the balance operation. Pointer
8017 ** map entries associated with divider cells are set by the insertCell()
8018 ** routine. The associated pointer map entries are:
8019 **
8020 ** a) if the cell contains a reference to an overflow chain, the
8021 ** entry associated with the first page in the overflow chain, and
8022 **
8023 ** b) if the sibling pages are not leaves, the child page associated
8024 ** with the cell.
8025 **
8026 ** If the sibling pages are not leaves, then the pointer map entry
8027 ** associated with the right-child of each sibling may also need to be
8028 ** updated. This happens below, after the sibling pages have been
8029 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00008030 */
dan33ea4862014-10-09 19:35:37 +00008031 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00008032 MemPage *pOld;
8033 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00008034 int cntOldNext = pNew->nCell + pNew->nOverflow;
dan33ea4862014-10-09 19:35:37 +00008035 int iNew = 0;
8036 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00008037
drh1ffd2472015-06-23 02:37:30 +00008038 for(i=0; i<b.nCell; i++){
8039 u8 *pCell = b.apCell[i];
drh9c7e44c2019-02-14 15:27:12 +00008040 while( i==cntOldNext ){
8041 iOld++;
8042 assert( iOld<nNew || iOld<nOld );
drhdd2d9a32019-05-07 17:47:43 +00008043 assert( iOld>=0 && iOld<NB );
drh9c7e44c2019-02-14 15:27:12 +00008044 pOld = iOld<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00008045 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
drh4b70f112004-05-02 21:12:19 +00008046 }
dan33ea4862014-10-09 19:35:37 +00008047 if( i==cntNew[iNew] ){
8048 pNew = apNew[++iNew];
8049 if( !leafData ) continue;
8050 }
danielk197785d90ca2008-07-19 14:25:15 +00008051
dan33ea4862014-10-09 19:35:37 +00008052 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00008053 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00008054 ** or else the divider cell to the left of sibling page iOld. So,
8055 ** if sibling page iOld had the same page number as pNew, and if
8056 ** pCell really was a part of sibling page iOld (not a divider or
8057 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00008058 if( iOld>=nNew
8059 || pNew->pgno!=aPgno[iOld]
drh9c7e44c2019-02-14 15:27:12 +00008060 || !SQLITE_WITHIN(pCell,pOld->aData,pOld->aDataEnd)
drhd52d52b2014-12-06 02:05:44 +00008061 ){
dan33ea4862014-10-09 19:35:37 +00008062 if( !leafCorrection ){
8063 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
8064 }
drh1ffd2472015-06-23 02:37:30 +00008065 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00008066 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00008067 }
drhea82b372015-06-23 21:35:28 +00008068 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00008069 }
drh14acc042001-06-10 19:56:58 +00008070 }
8071 }
dan33ea4862014-10-09 19:35:37 +00008072
8073 /* Insert new divider cells into pParent. */
8074 for(i=0; i<nNew-1; i++){
8075 u8 *pCell;
8076 u8 *pTemp;
8077 int sz;
8078 MemPage *pNew = apNew[i];
8079 j = cntNew[i];
8080
8081 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00008082 assert( b.apCell[j]!=0 );
8083 pCell = b.apCell[j];
8084 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00008085 pTemp = &aOvflSpace[iOvflSpace];
8086 if( !pNew->leaf ){
8087 memcpy(&pNew->aData[8], pCell, 4);
8088 }else if( leafData ){
8089 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00008090 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00008091 ** cell consists of the integer key for the right-most cell of
8092 ** the sibling-page assembled above only.
8093 */
8094 CellInfo info;
8095 j--;
drh1ffd2472015-06-23 02:37:30 +00008096 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00008097 pCell = pTemp;
8098 sz = 4 + putVarint(&pCell[4], info.nKey);
8099 pTemp = 0;
8100 }else{
8101 pCell -= 4;
8102 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8103 ** previously stored on a leaf node, and its reported size was 4
8104 ** bytes, then it may actually be smaller than this
8105 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8106 ** any cell). But it is important to pass the correct size to
8107 ** insertCell(), so reparse the cell now.
8108 **
drhc1fb2b82016-03-09 03:29:27 +00008109 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8110 ** and WITHOUT ROWID tables with exactly one column which is the
8111 ** primary key.
dan33ea4862014-10-09 19:35:37 +00008112 */
drh1ffd2472015-06-23 02:37:30 +00008113 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00008114 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00008115 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00008116 }
8117 }
8118 iOvflSpace += sz;
8119 assert( sz<=pBt->maxLocal+23 );
8120 assert( iOvflSpace <= (int)pBt->pageSize );
8121 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
drhd2cfbea2019-05-08 03:34:53 +00008122 if( rc!=SQLITE_OK ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00008123 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
8124 }
8125
8126 /* Now update the actual sibling pages. The order in which they are updated
8127 ** is important, as this code needs to avoid disrupting any page from which
8128 ** cells may still to be read. In practice, this means:
8129 **
drhd836d422014-10-31 14:26:36 +00008130 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8131 ** then it is not safe to update page apNew[iPg] until after
8132 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008133 **
drhd836d422014-10-31 14:26:36 +00008134 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8135 ** then it is not safe to update page apNew[iPg] until after
8136 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00008137 **
8138 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00008139 **
8140 ** The iPg value in the following loop starts at nNew-1 goes down
8141 ** to 0, then back up to nNew-1 again, thus making two passes over
8142 ** the pages. On the initial downward pass, only condition (1) above
8143 ** needs to be tested because (2) will always be true from the previous
8144 ** step. On the upward pass, both conditions are always true, so the
8145 ** upwards pass simply processes pages that were missed on the downward
8146 ** pass.
dan33ea4862014-10-09 19:35:37 +00008147 */
drhbec021b2014-10-31 12:22:00 +00008148 for(i=1-nNew; i<nNew; i++){
8149 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00008150 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00008151 if( abDone[iPg] ) continue; /* Skip pages already processed */
8152 if( i>=0 /* On the upwards pass, or... */
8153 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00008154 ){
dan09c68402014-10-11 20:00:24 +00008155 int iNew;
8156 int iOld;
8157 int nNewCell;
8158
drhd836d422014-10-31 14:26:36 +00008159 /* Verify condition (1): If cells are moving left, update iPg
8160 ** only after iPg-1 has already been updated. */
8161 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
8162
8163 /* Verify condition (2): If cells are moving right, update iPg
8164 ** only after iPg+1 has already been updated. */
8165 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
8166
dan09c68402014-10-11 20:00:24 +00008167 if( iPg==0 ){
8168 iNew = iOld = 0;
8169 nNewCell = cntNew[0];
8170 }else{
drh1ffd2472015-06-23 02:37:30 +00008171 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00008172 iNew = cntNew[iPg-1] + !leafData;
8173 nNewCell = cntNew[iPg] - iNew;
8174 }
8175
drh1ffd2472015-06-23 02:37:30 +00008176 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00008177 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00008178 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00008179 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00008180 assert( apNew[iPg]->nOverflow==0 );
8181 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00008182 }
8183 }
drhd836d422014-10-31 14:26:36 +00008184
8185 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00008186 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
8187
drh7aa8f852006-03-28 00:24:44 +00008188 assert( nOld>0 );
8189 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00008190
danielk197713bd99f2009-06-24 05:40:34 +00008191 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
8192 /* The root page of the b-tree now contains no cells. The only sibling
8193 ** page is the right-child of the parent. Copy the contents of the
8194 ** child page into the parent, decreasing the overall height of the
8195 ** b-tree structure by one. This is described as the "balance-shallower"
8196 ** sub-algorithm in some documentation.
8197 **
8198 ** If this is an auto-vacuum database, the call to copyNodeContent()
8199 ** sets all pointer-map entries corresponding to database image pages
8200 ** for which the pointer is stored within the content being copied.
8201 **
drh768f2902014-10-31 02:51:41 +00008202 ** It is critical that the child page be defragmented before being
8203 ** copied into the parent, because if the parent is page 1 then it will
8204 ** by smaller than the child due to the database header, and so all the
8205 ** free space needs to be up front.
8206 */
drh9b5351d2015-09-30 14:19:08 +00008207 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00008208 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00008209 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00008210 assert( apNew[0]->nFree ==
drh1c960262019-03-25 18:44:08 +00008211 (get2byteNotZero(&apNew[0]->aData[5]) - apNew[0]->cellOffset
8212 - apNew[0]->nCell*2)
drh768f2902014-10-31 02:51:41 +00008213 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00008214 );
drhc314dc72009-07-21 11:52:34 +00008215 copyNodeContent(apNew[0], pParent, &rc);
8216 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00008217 }else if( ISAUTOVACUUM && !leafCorrection ){
8218 /* Fix the pointer map entries associated with the right-child of each
8219 ** sibling page. All other pointer map entries have already been taken
8220 ** care of. */
8221 for(i=0; i<nNew; i++){
8222 u32 key = get4byte(&apNew[i]->aData[8]);
8223 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00008224 }
dan33ea4862014-10-09 19:35:37 +00008225 }
danielk19774dbaa892009-06-16 16:50:22 +00008226
dan33ea4862014-10-09 19:35:37 +00008227 assert( pParent->isInit );
8228 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00008229 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00008230
dan33ea4862014-10-09 19:35:37 +00008231 /* Free any old pages that were not reused as new pages.
8232 */
8233 for(i=nNew; i<nOld; i++){
8234 freePage(apOld[i], &rc);
8235 }
danielk19774dbaa892009-06-16 16:50:22 +00008236
8237#if 0
dan33ea4862014-10-09 19:35:37 +00008238 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00008239 /* The ptrmapCheckPages() contains assert() statements that verify that
8240 ** all pointer map pages are set correctly. This is helpful while
8241 ** debugging. This is usually disabled because a corrupt database may
8242 ** cause an assert() statement to fail. */
8243 ptrmapCheckPages(apNew, nNew);
8244 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00008245 }
dan33ea4862014-10-09 19:35:37 +00008246#endif
danielk1977cd581a72009-06-23 15:43:39 +00008247
drh8b2f49b2001-06-08 00:21:52 +00008248 /*
drh14acc042001-06-10 19:56:58 +00008249 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008250 */
drh14acc042001-06-10 19:56:58 +00008251balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008252 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008253 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008254 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008255 }
drh14acc042001-06-10 19:56:58 +00008256 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008257 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008258 }
danielk1977eaa06f62008-09-18 17:34:44 +00008259
drh8b2f49b2001-06-08 00:21:52 +00008260 return rc;
8261}
8262
drh43605152004-05-29 21:46:49 +00008263
8264/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008265** This function is called when the root page of a b-tree structure is
8266** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008267**
danielk1977a50d9aa2009-06-08 14:49:45 +00008268** A new child page is allocated and the contents of the current root
8269** page, including overflow cells, are copied into the child. The root
8270** page is then overwritten to make it an empty page with the right-child
8271** pointer pointing to the new page.
8272**
8273** Before returning, all pointer-map entries corresponding to pages
8274** that the new child-page now contains pointers to are updated. The
8275** entry corresponding to the new right-child pointer of the root
8276** page is also updated.
8277**
8278** If successful, *ppChild is set to contain a reference to the child
8279** page and SQLITE_OK is returned. In this case the caller is required
8280** to call releasePage() on *ppChild exactly once. If an error occurs,
8281** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008282*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008283static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8284 int rc; /* Return value from subprocedures */
8285 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008286 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008287 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008288
danielk1977a50d9aa2009-06-08 14:49:45 +00008289 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008290 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008291
danielk1977a50d9aa2009-06-08 14:49:45 +00008292 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8293 ** page that will become the new right-child of pPage. Copy the contents
8294 ** of the node stored on pRoot into the new child page.
8295 */
drh98add2e2009-07-20 17:11:49 +00008296 rc = sqlite3PagerWrite(pRoot->pDbPage);
8297 if( rc==SQLITE_OK ){
8298 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008299 copyNodeContent(pRoot, pChild, &rc);
8300 if( ISAUTOVACUUM ){
8301 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008302 }
8303 }
8304 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008305 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008306 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008307 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008308 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008309 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8310 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drh12fe9a02019-02-19 16:42:54 +00008311 assert( pChild->nCell==pRoot->nCell || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00008312
danielk1977a50d9aa2009-06-08 14:49:45 +00008313 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8314
8315 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008316 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8317 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8318 memcpy(pChild->apOvfl, pRoot->apOvfl,
8319 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008320 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008321
8322 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8323 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8324 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8325
8326 *ppChild = pChild;
8327 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008328}
8329
8330/*
drha2d50282019-12-23 18:02:15 +00008331** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8332** on the same B-tree as pCur.
8333**
8334** This can if a database is corrupt with two or more SQL tables
8335** pointing to the same b-tree. If an insert occurs on one SQL table
8336** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8337** table linked to the same b-tree. If the secondary insert causes a
8338** rebalance, that can change content out from under the cursor on the
8339** first SQL table, violating invariants on the first insert.
8340*/
8341static int anotherValidCursor(BtCursor *pCur){
8342 BtCursor *pOther;
8343 for(pOther=pCur->pBt->pCursor; pOther; pOther=pOther->pNext){
8344 if( pOther!=pCur
8345 && pOther->eState==CURSOR_VALID
8346 && pOther->pPage==pCur->pPage
8347 ){
8348 return SQLITE_CORRUPT_BKPT;
8349 }
8350 }
8351 return SQLITE_OK;
8352}
8353
8354/*
danielk197771d5d2c2008-09-29 11:49:47 +00008355** The page that pCur currently points to has just been modified in
8356** some way. This function figures out if this modification means the
8357** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008358** routine. Balancing routines are:
8359**
8360** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008361** balance_deeper()
8362** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008363*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008364static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008365 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008366 const int nMin = pCur->pBt->usableSize * 2 / 3;
8367 u8 aBalanceQuickSpace[13];
8368 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008369
drhcc5f8a42016-02-06 22:32:06 +00008370 VVA_ONLY( int balance_quick_called = 0 );
8371 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008372
8373 do {
dan01fd42b2019-07-13 09:55:33 +00008374 int iPage;
drh352a35a2017-08-15 03:46:47 +00008375 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008376
drha941ff72019-02-12 00:58:10 +00008377 if( NEVER(pPage->nFree<0) && btreeComputeFreeSpace(pPage) ) break;
dan01fd42b2019-07-13 09:55:33 +00008378 if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8379 break;
8380 }else if( (iPage = pCur->iPage)==0 ){
drha2d50282019-12-23 18:02:15 +00008381 if( pPage->nOverflow && (rc = anotherValidCursor(pCur))==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008382 /* The root page of the b-tree is overfull. In this case call the
8383 ** balance_deeper() function to create a new child for the root-page
8384 ** and copy the current contents of the root-page to it. The
8385 ** next iteration of the do-loop will balance the child page.
8386 */
drhcc5f8a42016-02-06 22:32:06 +00008387 assert( balance_deeper_called==0 );
8388 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008389 rc = balance_deeper(pPage, &pCur->apPage[1]);
8390 if( rc==SQLITE_OK ){
8391 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008392 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008393 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008394 pCur->apPage[0] = pPage;
8395 pCur->pPage = pCur->apPage[1];
8396 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008397 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008398 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008399 break;
8400 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008401 }else{
8402 MemPage * const pParent = pCur->apPage[iPage-1];
8403 int const iIdx = pCur->aiIdx[iPage-1];
8404
8405 rc = sqlite3PagerWrite(pParent->pDbPage);
drh68133502019-02-11 17:22:30 +00008406 if( rc==SQLITE_OK && pParent->nFree<0 ){
8407 rc = btreeComputeFreeSpace(pParent);
8408 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008409 if( rc==SQLITE_OK ){
8410#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008411 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008412 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008413 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008414 && pParent->pgno!=1
8415 && pParent->nCell==iIdx
8416 ){
8417 /* Call balance_quick() to create a new sibling of pPage on which
8418 ** to store the overflow cell. balance_quick() inserts a new cell
8419 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008420 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008421 ** use either balance_nonroot() or balance_deeper(). Until this
8422 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8423 ** buffer.
8424 **
8425 ** The purpose of the following assert() is to check that only a
8426 ** single call to balance_quick() is made for each call to this
8427 ** function. If this were not verified, a subtle bug involving reuse
8428 ** of the aBalanceQuickSpace[] might sneak in.
8429 */
drhcc5f8a42016-02-06 22:32:06 +00008430 assert( balance_quick_called==0 );
8431 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008432 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8433 }else
8434#endif
8435 {
8436 /* In this case, call balance_nonroot() to redistribute cells
8437 ** between pPage and up to 2 of its sibling pages. This involves
8438 ** modifying the contents of pParent, which may cause pParent to
8439 ** become overfull or underfull. The next iteration of the do-loop
8440 ** will balance the parent page to correct this.
8441 **
8442 ** If the parent page becomes overfull, the overflow cell or cells
8443 ** are stored in the pSpace buffer allocated immediately below.
8444 ** A subsequent iteration of the do-loop will deal with this by
8445 ** calling balance_nonroot() (balance_deeper() may be called first,
8446 ** but it doesn't deal with overflow cells - just moves them to a
8447 ** different page). Once this subsequent call to balance_nonroot()
8448 ** has completed, it is safe to release the pSpace buffer used by
8449 ** the previous call, as the overflow cell data will have been
8450 ** copied either into the body of a database page or into the new
8451 ** pSpace buffer passed to the latter call to balance_nonroot().
8452 */
8453 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008454 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8455 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008456 if( pFree ){
8457 /* If pFree is not NULL, it points to the pSpace buffer used
8458 ** by a previous call to balance_nonroot(). Its contents are
8459 ** now stored either on real database pages or within the
8460 ** new pSpace buffer, so it may be safely freed here. */
8461 sqlite3PageFree(pFree);
8462 }
8463
danielk19774dbaa892009-06-16 16:50:22 +00008464 /* The pSpace buffer will be freed after the next call to
8465 ** balance_nonroot(), or just before this function returns, whichever
8466 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008467 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008468 }
8469 }
8470
8471 pPage->nOverflow = 0;
8472
8473 /* The next iteration of the do-loop balances the parent page. */
8474 releasePage(pPage);
8475 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008476 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008477 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008478 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008479 }while( rc==SQLITE_OK );
8480
8481 if( pFree ){
8482 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008483 }
8484 return rc;
8485}
8486
drh3de5d162018-05-03 03:59:02 +00008487/* Overwrite content from pX into pDest. Only do the write if the
8488** content is different from what is already there.
8489*/
8490static int btreeOverwriteContent(
8491 MemPage *pPage, /* MemPage on which writing will occur */
8492 u8 *pDest, /* Pointer to the place to start writing */
8493 const BtreePayload *pX, /* Source of data to write */
8494 int iOffset, /* Offset of first byte to write */
8495 int iAmt /* Number of bytes to be written */
8496){
8497 int nData = pX->nData - iOffset;
8498 if( nData<=0 ){
8499 /* Overwritting with zeros */
8500 int i;
8501 for(i=0; i<iAmt && pDest[i]==0; i++){}
8502 if( i<iAmt ){
8503 int rc = sqlite3PagerWrite(pPage->pDbPage);
8504 if( rc ) return rc;
8505 memset(pDest + i, 0, iAmt - i);
8506 }
8507 }else{
8508 if( nData<iAmt ){
8509 /* Mixed read data and zeros at the end. Make a recursive call
8510 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008511 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8512 iAmt-nData);
8513 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008514 iAmt = nData;
8515 }
8516 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8517 int rc = sqlite3PagerWrite(pPage->pDbPage);
8518 if( rc ) return rc;
drh55469bb2019-01-24 13:36:47 +00008519 /* In a corrupt database, it is possible for the source and destination
8520 ** buffers to overlap. This is harmless since the database is already
8521 ** corrupt but it does cause valgrind and ASAN warnings. So use
8522 ** memmove(). */
8523 memmove(pDest, ((u8*)pX->pData) + iOffset, iAmt);
drh3de5d162018-05-03 03:59:02 +00008524 }
8525 }
8526 return SQLITE_OK;
8527}
8528
8529/*
8530** Overwrite the cell that cursor pCur is pointing to with fresh content
8531** contained in pX.
8532*/
8533static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8534 int iOffset; /* Next byte of pX->pData to write */
8535 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8536 int rc; /* Return code */
8537 MemPage *pPage = pCur->pPage; /* Page being written */
8538 BtShared *pBt; /* Btree */
8539 Pgno ovflPgno; /* Next overflow page to write */
8540 u32 ovflPageSize; /* Size to write on overflow page */
8541
drh27e80a32019-08-15 13:17:49 +00008542 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd
8543 || pCur->info.pPayload < pPage->aData + pPage->cellOffset
8544 ){
drh4f84e9c2018-05-03 13:56:23 +00008545 return SQLITE_CORRUPT_BKPT;
8546 }
drh3de5d162018-05-03 03:59:02 +00008547 /* Overwrite the local portion first */
8548 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8549 0, pCur->info.nLocal);
8550 if( rc ) return rc;
8551 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8552
8553 /* Now overwrite the overflow pages */
8554 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008555 assert( nTotal>=0 );
8556 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008557 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8558 pBt = pPage->pBt;
8559 ovflPageSize = pBt->usableSize - 4;
8560 do{
8561 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8562 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008563 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008564 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008565 }else{
drh30f7a252018-05-07 11:29:59 +00008566 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008567 ovflPgno = get4byte(pPage->aData);
8568 }else{
8569 ovflPageSize = nTotal - iOffset;
8570 }
8571 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8572 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008573 }
drhd5aa9262018-05-03 16:56:06 +00008574 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008575 if( rc ) return rc;
8576 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008577 }while( iOffset<nTotal );
8578 return SQLITE_OK;
8579}
8580
drhf74b8d92002-09-01 23:20:45 +00008581
8582/*
drh8eeb4462016-05-21 20:03:42 +00008583** Insert a new record into the BTree. The content of the new record
8584** is described by the pX object. The pCur cursor is used only to
8585** define what table the record should be inserted into, and is left
8586** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008587**
drh8eeb4462016-05-21 20:03:42 +00008588** For a table btree (used for rowid tables), only the pX.nKey value of
8589** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8590** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8591** hold the content of the row.
8592**
8593** For an index btree (used for indexes and WITHOUT ROWID tables), the
8594** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8595** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008596**
8597** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008598** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8599** been performed. In other words, if seekResult!=0 then the cursor
8600** is currently pointing to a cell that will be adjacent to the cell
8601** to be inserted. If seekResult<0 then pCur points to a cell that is
8602** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8603** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008604**
drheaf6ae22016-11-09 20:14:34 +00008605** If seekResult==0, that means pCur is pointing at some unknown location.
8606** In that case, this routine must seek the cursor to the correct insertion
8607** point for (pKey,nKey) before doing the insertion. For index btrees,
8608** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8609** key values and pX->aMem can be used instead of pX->pKey to avoid having
8610** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008611*/
drh3aac2dd2004-04-26 14:10:20 +00008612int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008613 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008614 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008615 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008616 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008617){
drh3b7511c2001-05-26 13:15:44 +00008618 int rc;
drh3e9ca092009-09-08 01:14:48 +00008619 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008620 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008621 int idx;
drh3b7511c2001-05-26 13:15:44 +00008622 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008623 Btree *p = pCur->pBtree;
8624 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008625 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008626 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008627
danf91c1312017-01-10 20:04:38 +00008628 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8629
drh98add2e2009-07-20 17:11:49 +00008630 if( pCur->eState==CURSOR_FAULT ){
8631 assert( pCur->skipNext!=SQLITE_OK );
8632 return pCur->skipNext;
8633 }
8634
dan7a2347e2016-01-07 16:43:54 +00008635 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008636 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8637 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008638 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008639 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8640
danielk197731d31b82009-07-13 13:18:07 +00008641 /* Assert that the caller has been consistent. If this cursor was opened
8642 ** expecting an index b-tree, then the caller should be inserting blob
8643 ** keys with no associated data. If the cursor was opened expecting an
8644 ** intkey table, the caller should be inserting integer keys with a
8645 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008646 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008647
danielk19779c3acf32009-05-02 07:36:49 +00008648 /* Save the positions of any other cursors open on this table.
8649 **
danielk19773509a652009-07-06 18:56:13 +00008650 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008651 ** example, when inserting data into a table with auto-generated integer
8652 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8653 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008654 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008655 ** that the cursor is already where it needs to be and returns without
8656 ** doing any work. To avoid thwarting these optimizations, it is important
8657 ** not to clear the cursor here.
8658 */
drh27fb7462015-06-30 02:47:36 +00008659 if( pCur->curFlags & BTCF_Multiple ){
8660 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8661 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008662 }
8663
danielk197771d5d2c2008-09-29 11:49:47 +00008664 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008665 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008666 /* If this is an insert into a table b-tree, invalidate any incrblob
8667 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008668 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008669
danf91c1312017-01-10 20:04:38 +00008670 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008671 ** to a row with the same key as the new entry being inserted.
8672 */
8673#ifdef SQLITE_DEBUG
8674 if( flags & BTREE_SAVEPOSITION ){
8675 assert( pCur->curFlags & BTCF_ValidNKey );
8676 assert( pX->nKey==pCur->info.nKey );
drhd720d392018-05-07 17:27:04 +00008677 assert( loc==0 );
8678 }
8679#endif
danf91c1312017-01-10 20:04:38 +00008680
drhd720d392018-05-07 17:27:04 +00008681 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8682 ** that the cursor is not pointing to a row to be overwritten.
8683 ** So do a complete check.
8684 */
drh7a1c28d2016-11-10 20:42:08 +00008685 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008686 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008687 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008688 assert( pX->nData>=0 && pX->nZero>=0 );
8689 if( pCur->info.nSize!=0
8690 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8691 ){
drhd720d392018-05-07 17:27:04 +00008692 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008693 return btreeOverwriteCell(pCur, pX);
8694 }
drhd720d392018-05-07 17:27:04 +00008695 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008696 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008697 /* The cursor is *not* pointing to the cell to be overwritten, nor
8698 ** to an adjacent cell. Move the cursor so that it is pointing either
8699 ** to the cell to be overwritten or an adjacent cell.
8700 */
danf91c1312017-01-10 20:04:38 +00008701 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008702 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008703 }
drhd720d392018-05-07 17:27:04 +00008704 }else{
8705 /* This is an index or a WITHOUT ROWID table */
8706
8707 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8708 ** to a row with the same key as the new entry being inserted.
8709 */
8710 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8711
8712 /* If the cursor is not already pointing either to the cell to be
8713 ** overwritten, or if a new cell is being inserted, if the cursor is
8714 ** not pointing to an immediately adjacent cell, then move the cursor
8715 ** so that it does.
8716 */
8717 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8718 if( pX->nMem ){
8719 UnpackedRecord r;
8720 r.pKeyInfo = pCur->pKeyInfo;
8721 r.aMem = pX->aMem;
8722 r.nField = pX->nMem;
8723 r.default_rc = 0;
8724 r.errCode = 0;
8725 r.r1 = 0;
8726 r.r2 = 0;
8727 r.eqSeen = 0;
8728 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8729 }else{
8730 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8731 }
8732 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008733 }
drh89ee2292018-05-07 18:41:19 +00008734
8735 /* If the cursor is currently pointing to an entry to be overwritten
8736 ** and the new content is the same as as the old, then use the
8737 ** overwrite optimization.
8738 */
8739 if( loc==0 ){
8740 getCellInfo(pCur);
8741 if( pCur->info.nKey==pX->nKey ){
8742 BtreePayload x2;
8743 x2.pData = pX->pKey;
8744 x2.nData = pX->nKey;
8745 x2.nZero = 0;
8746 return btreeOverwriteCell(pCur, &x2);
8747 }
8748 }
8749
danielk1977da184232006-01-05 11:34:32 +00008750 }
drh0e5ce802019-12-20 12:33:17 +00008751 assert( pCur->eState==CURSOR_VALID
8752 || (pCur->eState==CURSOR_INVALID && loc)
8753 || CORRUPT_DB );
danielk1977da184232006-01-05 11:34:32 +00008754
drh352a35a2017-08-15 03:46:47 +00008755 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008756 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008757 assert( pPage->leaf || !pPage->intKey );
drhb0ea9432019-02-09 21:06:40 +00008758 if( pPage->nFree<0 ){
8759 rc = btreeComputeFreeSpace(pPage);
8760 if( rc ) return rc;
8761 }
danielk19778f880a82009-07-13 09:41:45 +00008762
drh3a4c1412004-05-09 20:40:11 +00008763 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008764 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008765 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008766 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008767 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008768 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008769 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008770 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008771 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008772 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008773 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008774 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008775 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008776 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008777 rc = sqlite3PagerWrite(pPage->pDbPage);
8778 if( rc ){
8779 goto end_insert;
8780 }
danielk197771d5d2c2008-09-29 11:49:47 +00008781 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008782 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008783 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008784 }
drh80159da2016-12-09 17:32:51 +00008785 rc = clearCell(pPage, oldCell, &info);
drh554a19d2019-08-12 18:26:46 +00008786 testcase( pCur->curFlags & BTCF_ValidOvfl );
8787 invalidateOverflowCache(pCur);
danca66f6c2017-06-08 11:14:08 +00008788 if( info.nSize==szNew && info.nLocal==info.nPayload
8789 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8790 ){
drhf9238252016-12-09 18:09:42 +00008791 /* Overwrite the old cell with the new if they are the same size.
8792 ** We could also try to do this if the old cell is smaller, then add
8793 ** the leftover space to the free list. But experiments show that
8794 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008795 ** calling dropCell() and insertCell().
8796 **
8797 ** This optimization cannot be used on an autovacuum database if the
8798 ** new entry uses overflow pages, as the insertCell() call below is
8799 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008800 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh93788182019-07-22 23:24:01 +00008801 if( oldCell < pPage->aData+pPage->hdrOffset+10 ){
8802 return SQLITE_CORRUPT_BKPT;
8803 }
8804 if( oldCell+szNew > pPage->aDataEnd ){
8805 return SQLITE_CORRUPT_BKPT;
8806 }
drh80159da2016-12-09 17:32:51 +00008807 memcpy(oldCell, newCell, szNew);
8808 return SQLITE_OK;
8809 }
8810 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008811 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008812 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008813 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008814 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008815 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008816 }else{
drh4b70f112004-05-02 21:12:19 +00008817 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008818 }
drh98add2e2009-07-20 17:11:49 +00008819 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008820 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008821 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008822
mistachkin48864df2013-03-21 21:20:32 +00008823 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008824 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008825 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008826 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008827 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008828 ** Previous versions of SQLite called moveToRoot() to move the cursor
8829 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008830 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8831 ** set the cursor state to "invalid". This makes common insert operations
8832 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008833 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008834 ** There is a subtle but important optimization here too. When inserting
8835 ** multiple records into an intkey b-tree using a single cursor (as can
8836 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8837 ** is advantageous to leave the cursor pointing to the last entry in
8838 ** the b-tree if possible. If the cursor is left pointing to the last
8839 ** entry in the table, and the next row inserted has an integer key
8840 ** larger than the largest existing key, it is possible to insert the
8841 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008842 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008843 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008844 if( pPage->nOverflow ){
8845 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008846 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008847 rc = balance(pCur);
8848
8849 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008850 ** fails. Internal data structure corruption will result otherwise.
8851 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8852 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008853 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008854 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008855 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008856 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008857 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008858 assert( pCur->pKey==0 );
8859 pCur->pKey = sqlite3Malloc( pX->nKey );
8860 if( pCur->pKey==0 ){
8861 rc = SQLITE_NOMEM;
8862 }else{
8863 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8864 }
8865 }
8866 pCur->eState = CURSOR_REQUIRESEEK;
8867 pCur->nKey = pX->nKey;
8868 }
danielk19773f632d52009-05-02 10:03:09 +00008869 }
drh352a35a2017-08-15 03:46:47 +00008870 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008871
drh2e38c322004-09-03 18:38:44 +00008872end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008873 return rc;
8874}
8875
8876/*
danf0ee1d32015-09-12 19:26:11 +00008877** Delete the entry that the cursor is pointing to.
8878**
drhe807bdb2016-01-21 17:06:33 +00008879** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8880** the cursor is left pointing at an arbitrary location after the delete.
8881** But if that bit is set, then the cursor is left in a state such that
8882** the next call to BtreeNext() or BtreePrev() moves it to the same row
8883** as it would have been on if the call to BtreeDelete() had been omitted.
8884**
drhdef19e32016-01-27 16:26:25 +00008885** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8886** associated with a single table entry and its indexes. Only one of those
8887** deletes is considered the "primary" delete. The primary delete occurs
8888** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8889** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8890** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008891** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008892*/
drhe807bdb2016-01-21 17:06:33 +00008893int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008894 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008895 BtShared *pBt = p->pBt;
8896 int rc; /* Return code */
8897 MemPage *pPage; /* Page to delete cell from */
8898 unsigned char *pCell; /* Pointer to cell to delete */
8899 int iCellIdx; /* Index of cell to delete */
8900 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008901 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008902 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008903 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008904
dan7a2347e2016-01-07 16:43:54 +00008905 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008906 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008907 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008908 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008909 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8910 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drhdef19e32016-01-27 16:26:25 +00008911 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danb560a712019-03-13 15:29:14 +00008912 if( pCur->eState==CURSOR_REQUIRESEEK ){
8913 rc = btreeRestoreCursorPosition(pCur);
8914 if( rc ) return rc;
8915 }
8916 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008917
danielk19774dbaa892009-06-16 16:50:22 +00008918 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008919 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008920 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008921 pCell = findCell(pPage, iCellIdx);
drhb0ea9432019-02-09 21:06:40 +00008922 if( pPage->nFree<0 && btreeComputeFreeSpace(pPage) ) return SQLITE_CORRUPT;
danielk19774dbaa892009-06-16 16:50:22 +00008923
drhbfc7a8b2016-04-09 17:04:05 +00008924 /* If the bPreserve flag is set to true, then the cursor position must
8925 ** be preserved following this delete operation. If the current delete
8926 ** will cause a b-tree rebalance, then this is done by saving the cursor
8927 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8928 ** returning.
8929 **
8930 ** Or, if the current delete will not cause a rebalance, then the cursor
8931 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8932 ** before or after the deleted entry. In this case set bSkipnext to true. */
8933 if( bPreserve ){
8934 if( !pPage->leaf
8935 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008936 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008937 ){
8938 /* A b-tree rebalance will be required after deleting this entry.
8939 ** Save the cursor key. */
8940 rc = saveCursorKey(pCur);
8941 if( rc ) return rc;
8942 }else{
8943 bSkipnext = 1;
8944 }
8945 }
8946
danielk19774dbaa892009-06-16 16:50:22 +00008947 /* If the page containing the entry to delete is not a leaf page, move
8948 ** the cursor to the largest entry in the tree that is smaller than
8949 ** the entry being deleted. This cell will replace the cell being deleted
8950 ** from the internal node. The 'previous' entry is used for this instead
8951 ** of the 'next' entry, as the previous entry is always a part of the
8952 ** sub-tree headed by the child page of the cell being deleted. This makes
8953 ** balancing the tree following the delete operation easier. */
8954 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008955 rc = sqlite3BtreePrevious(pCur, 0);
8956 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008957 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008958 }
8959
8960 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008961 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008962 if( pCur->curFlags & BTCF_Multiple ){
8963 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8964 if( rc ) return rc;
8965 }
drhd60f4f42012-03-23 14:23:52 +00008966
8967 /* If this is a delete operation to remove a row from a table b-tree,
8968 ** invalidate any incrblob cursors open on the row being deleted. */
8969 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008970 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008971 }
8972
danf0ee1d32015-09-12 19:26:11 +00008973 /* Make the page containing the entry to be deleted writable. Then free any
8974 ** overflow pages associated with the entry and finally remove the cell
8975 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008976 rc = sqlite3PagerWrite(pPage->pDbPage);
8977 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008978 rc = clearCell(pPage, pCell, &info);
8979 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008980 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008981
danielk19774dbaa892009-06-16 16:50:22 +00008982 /* If the cell deleted was not located on a leaf page, then the cursor
8983 ** is currently pointing to the largest entry in the sub-tree headed
8984 ** by the child-page of the cell that was just deleted from an internal
8985 ** node. The cell from the leaf node needs to be moved to the internal
8986 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008987 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008988 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008989 int nCell;
drh352a35a2017-08-15 03:46:47 +00008990 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008991 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008992
drhb0ea9432019-02-09 21:06:40 +00008993 if( pLeaf->nFree<0 ){
8994 rc = btreeComputeFreeSpace(pLeaf);
8995 if( rc ) return rc;
8996 }
drh352a35a2017-08-15 03:46:47 +00008997 if( iCellDepth<pCur->iPage-1 ){
8998 n = pCur->apPage[iCellDepth+1]->pgno;
8999 }else{
9000 n = pCur->pPage->pgno;
9001 }
danielk19774dbaa892009-06-16 16:50:22 +00009002 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00009003 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00009004 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00009005 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00009006 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00009007 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00009008 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00009009 if( rc==SQLITE_OK ){
9010 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
9011 }
drh98add2e2009-07-20 17:11:49 +00009012 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00009013 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00009014 }
danielk19774dbaa892009-06-16 16:50:22 +00009015
9016 /* Balance the tree. If the entry deleted was located on a leaf page,
9017 ** then the cursor still points to that page. In this case the first
9018 ** call to balance() repairs the tree, and the if(...) condition is
9019 ** never true.
9020 **
9021 ** Otherwise, if the entry deleted was on an internal node page, then
9022 ** pCur is pointing to the leaf page from which a cell was removed to
9023 ** replace the cell deleted from the internal node. This is slightly
9024 ** tricky as the leaf node may be underfull, and the internal node may
9025 ** be either under or overfull. In this case run the balancing algorithm
9026 ** on the leaf node first. If the balance proceeds far enough up the
9027 ** tree that we can be sure that any problem in the internal node has
9028 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9029 ** walk the cursor up the tree to the internal node and balance it as
9030 ** well. */
9031 rc = balance(pCur);
9032 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00009033 releasePageNotNull(pCur->pPage);
9034 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00009035 while( pCur->iPage>iCellDepth ){
9036 releasePage(pCur->apPage[pCur->iPage--]);
9037 }
drh352a35a2017-08-15 03:46:47 +00009038 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00009039 rc = balance(pCur);
9040 }
9041
danielk19776b456a22005-03-21 04:04:02 +00009042 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00009043 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00009044 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00009045 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00009046 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00009047 pCur->eState = CURSOR_SKIPNEXT;
9048 if( iCellIdx>=pPage->nCell ){
9049 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00009050 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00009051 }else{
9052 pCur->skipNext = 1;
9053 }
9054 }else{
9055 rc = moveToRoot(pCur);
9056 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00009057 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00009058 pCur->eState = CURSOR_REQUIRESEEK;
9059 }
drh44548e72017-08-14 18:13:52 +00009060 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00009061 }
danielk19776b456a22005-03-21 04:04:02 +00009062 }
drh5e2f8b92001-05-28 00:41:15 +00009063 return rc;
drh3b7511c2001-05-26 13:15:44 +00009064}
drh8b2f49b2001-06-08 00:21:52 +00009065
9066/*
drhc6b52df2002-01-04 03:09:29 +00009067** Create a new BTree table. Write into *piTable the page
9068** number for the root page of the new table.
9069**
drhab01f612004-05-22 02:55:23 +00009070** The type of type is determined by the flags parameter. Only the
9071** following values of flags are currently in use. Other values for
9072** flags might not work:
9073**
9074** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9075** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00009076*/
drhd4187c72010-08-30 22:15:45 +00009077static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00009078 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009079 MemPage *pRoot;
9080 Pgno pgnoRoot;
9081 int rc;
drhd4187c72010-08-30 22:15:45 +00009082 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00009083
drh1fee73e2007-08-29 04:00:57 +00009084 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009085 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00009086 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00009087
danielk1977003ba062004-11-04 02:57:33 +00009088#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00009089 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00009090 if( rc ){
9091 return rc;
9092 }
danielk1977003ba062004-11-04 02:57:33 +00009093#else
danielk1977687566d2004-11-02 12:56:41 +00009094 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00009095 Pgno pgnoMove; /* Move a page here to make room for the root-page */
9096 MemPage *pPageMove; /* The page to move to. */
9097
danielk197720713f32007-05-03 11:43:33 +00009098 /* Creating a new table may probably require moving an existing database
9099 ** to make room for the new tables root page. In case this page turns
9100 ** out to be an overflow page, delete all overflow page-map caches
9101 ** held by open cursors.
9102 */
danielk197792d4d7a2007-05-04 12:05:56 +00009103 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00009104
danielk1977003ba062004-11-04 02:57:33 +00009105 /* Read the value of meta[3] from the database to determine where the
9106 ** root page of the new table should go. meta[3] is the largest root-page
9107 ** created so far, so the new root-page is (meta[3]+1).
9108 */
danielk1977602b4662009-07-02 07:47:33 +00009109 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00009110 pgnoRoot++;
9111
danielk1977599fcba2004-11-08 07:13:13 +00009112 /* The new root-page may not be allocated on a pointer-map page, or the
9113 ** PENDING_BYTE page.
9114 */
drh72190432008-01-31 14:54:43 +00009115 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00009116 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00009117 pgnoRoot++;
9118 }
drh499e15b2015-05-22 12:37:37 +00009119 assert( pgnoRoot>=3 || CORRUPT_DB );
9120 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00009121
9122 /* Allocate a page. The page that currently resides at pgnoRoot will
9123 ** be moved to the allocated page (unless the allocated page happens
9124 ** to reside at pgnoRoot).
9125 */
dan51f0b6d2013-02-22 20:16:34 +00009126 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00009127 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00009128 return rc;
9129 }
danielk1977003ba062004-11-04 02:57:33 +00009130
9131 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00009132 /* pgnoRoot is the page that will be used for the root-page of
9133 ** the new table (assuming an error did not occur). But we were
9134 ** allocated pgnoMove. If required (i.e. if it was not allocated
9135 ** by extending the file), the current page at position pgnoMove
9136 ** is already journaled.
9137 */
drheeb844a2009-08-08 18:01:07 +00009138 u8 eType = 0;
9139 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00009140
danf7679ad2013-04-03 11:38:36 +00009141 /* Save the positions of any open cursors. This is required in
9142 ** case they are holding a reference to an xFetch reference
9143 ** corresponding to page pgnoRoot. */
9144 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00009145 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00009146 if( rc!=SQLITE_OK ){
9147 return rc;
9148 }
danielk1977f35843b2007-04-07 15:03:17 +00009149
9150 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00009151 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009152 if( rc!=SQLITE_OK ){
9153 return rc;
9154 }
9155 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00009156 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
9157 rc = SQLITE_CORRUPT_BKPT;
9158 }
9159 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00009160 releasePage(pRoot);
9161 return rc;
9162 }
drhccae6022005-02-26 17:31:26 +00009163 assert( eType!=PTRMAP_ROOTPAGE );
9164 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00009165 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00009166 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00009167
9168 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00009169 if( rc!=SQLITE_OK ){
9170 return rc;
9171 }
drhb00fc3b2013-08-21 23:42:32 +00009172 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00009173 if( rc!=SQLITE_OK ){
9174 return rc;
9175 }
danielk19773b8a05f2007-03-19 17:44:26 +00009176 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00009177 if( rc!=SQLITE_OK ){
9178 releasePage(pRoot);
9179 return rc;
9180 }
9181 }else{
9182 pRoot = pPageMove;
9183 }
9184
danielk197742741be2005-01-08 12:42:39 +00009185 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00009186 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00009187 if( rc ){
9188 releasePage(pRoot);
9189 return rc;
9190 }
drhbf592832010-03-30 15:51:12 +00009191
9192 /* When the new root page was allocated, page 1 was made writable in
9193 ** order either to increase the database filesize, or to decrement the
9194 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9195 */
9196 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00009197 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00009198 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00009199 releasePage(pRoot);
9200 return rc;
9201 }
danielk197742741be2005-01-08 12:42:39 +00009202
danielk1977003ba062004-11-04 02:57:33 +00009203 }else{
drh4f0c5872007-03-26 22:05:01 +00009204 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00009205 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00009206 }
9207#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009208 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00009209 if( createTabFlags & BTREE_INTKEY ){
9210 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
9211 }else{
9212 ptfFlags = PTF_ZERODATA | PTF_LEAF;
9213 }
9214 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00009215 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00009216 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00009217 *piTable = (int)pgnoRoot;
9218 return SQLITE_OK;
9219}
drhd677b3d2007-08-20 22:48:41 +00009220int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
9221 int rc;
9222 sqlite3BtreeEnter(p);
9223 rc = btreeCreateTable(p, piTable, flags);
9224 sqlite3BtreeLeave(p);
9225 return rc;
9226}
drh8b2f49b2001-06-08 00:21:52 +00009227
9228/*
9229** Erase the given database page and all its children. Return
9230** the page to the freelist.
9231*/
drh4b70f112004-05-02 21:12:19 +00009232static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00009233 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00009234 Pgno pgno, /* Page number to clear */
9235 int freePageFlag, /* Deallocate page if true */
9236 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00009237){
danielk1977146ba992009-07-22 14:08:13 +00009238 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00009239 int rc;
drh4b70f112004-05-02 21:12:19 +00009240 unsigned char *pCell;
9241 int i;
dan8ce71842014-01-14 20:14:09 +00009242 int hdr;
drh80159da2016-12-09 17:32:51 +00009243 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00009244
drh1fee73e2007-08-29 04:00:57 +00009245 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00009246 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00009247 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00009248 }
drh28f58dd2015-06-27 19:45:03 +00009249 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00009250 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00009251 if( pPage->bBusy ){
9252 rc = SQLITE_CORRUPT_BKPT;
9253 goto cleardatabasepage_out;
9254 }
9255 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00009256 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00009257 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00009258 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00009259 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00009260 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009261 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009262 }
drh80159da2016-12-09 17:32:51 +00009263 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00009264 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00009265 }
drha34b6762004-05-07 13:30:42 +00009266 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00009267 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00009268 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00009269 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00009270 assert( pPage->intKey || CORRUPT_DB );
9271 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00009272 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00009273 }
9274 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00009275 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00009276 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00009277 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00009278 }
danielk19776b456a22005-03-21 04:04:02 +00009279
9280cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00009281 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00009282 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00009283 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009284}
9285
9286/*
drhab01f612004-05-22 02:55:23 +00009287** Delete all information from a single table in the database. iTable is
9288** the page number of the root of the table. After this routine returns,
9289** the root page is empty, but still exists.
9290**
9291** This routine will fail with SQLITE_LOCKED if there are any open
9292** read cursors on the table. Open write cursors are moved to the
9293** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00009294**
9295** If pnChange is not NULL, then table iTable must be an intkey table. The
9296** integer value pointed to by pnChange is incremented by the number of
9297** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00009298*/
danielk1977c7af4842008-10-27 13:59:33 +00009299int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00009300 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009301 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009302 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009303 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009304
drhc046e3e2009-07-15 11:26:44 +00009305 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009306
drhc046e3e2009-07-15 11:26:44 +00009307 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009308 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9309 ** is the root of a table b-tree - if it is not, the following call is
9310 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009311 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009312 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009313 }
drhd677b3d2007-08-20 22:48:41 +00009314 sqlite3BtreeLeave(p);
9315 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009316}
9317
9318/*
drh079a3072014-03-19 14:10:55 +00009319** Delete all information from the single table that pCur is open on.
9320**
9321** This routine only work for pCur on an ephemeral table.
9322*/
9323int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9324 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9325}
9326
9327/*
drh8b2f49b2001-06-08 00:21:52 +00009328** Erase all information in a table and add the root of the table to
9329** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009330** page 1) is never added to the freelist.
9331**
9332** This routine will fail with SQLITE_LOCKED if there are any open
9333** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009334**
9335** If AUTOVACUUM is enabled and the page at iTable is not the last
9336** root page in the database file, then the last root page
9337** in the database file is moved into the slot formerly occupied by
9338** iTable and that last slot formerly occupied by the last root page
9339** is added to the freelist instead of iTable. In this say, all
9340** root pages are kept at the beginning of the database file, which
9341** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9342** page number that used to be the last root page in the file before
9343** the move. If no page gets moved, *piMoved is set to 0.
9344** The last root page is recorded in meta[3] and the value of
9345** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009346*/
danielk197789d40042008-11-17 14:20:56 +00009347static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009348 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009349 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009350 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009351
drh1fee73e2007-08-29 04:00:57 +00009352 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009353 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009354 assert( iTable>=2 );
drh9a518842019-03-08 01:52:30 +00009355 if( iTable>btreePagecount(pBt) ){
9356 return SQLITE_CORRUPT_BKPT;
9357 }
drh055f2982016-01-15 15:06:41 +00009358
drhb00fc3b2013-08-21 23:42:32 +00009359 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009360 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009361 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009362 if( rc ){
9363 releasePage(pPage);
9364 return rc;
9365 }
danielk1977a0bf2652004-11-04 14:30:04 +00009366
drh205f48e2004-11-05 00:43:11 +00009367 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009368
danielk1977a0bf2652004-11-04 14:30:04 +00009369#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009370 freePage(pPage, &rc);
9371 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009372#else
drh055f2982016-01-15 15:06:41 +00009373 if( pBt->autoVacuum ){
9374 Pgno maxRootPgno;
9375 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009376
drh055f2982016-01-15 15:06:41 +00009377 if( iTable==maxRootPgno ){
9378 /* If the table being dropped is the table with the largest root-page
9379 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009380 */
drhc314dc72009-07-21 11:52:34 +00009381 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009382 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009383 if( rc!=SQLITE_OK ){
9384 return rc;
9385 }
9386 }else{
9387 /* The table being dropped does not have the largest root-page
9388 ** number in the database. So move the page that does into the
9389 ** gap left by the deleted root-page.
9390 */
9391 MemPage *pMove;
9392 releasePage(pPage);
9393 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9394 if( rc!=SQLITE_OK ){
9395 return rc;
9396 }
9397 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9398 releasePage(pMove);
9399 if( rc!=SQLITE_OK ){
9400 return rc;
9401 }
9402 pMove = 0;
9403 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9404 freePage(pMove, &rc);
9405 releasePage(pMove);
9406 if( rc!=SQLITE_OK ){
9407 return rc;
9408 }
9409 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009410 }
drh055f2982016-01-15 15:06:41 +00009411
9412 /* Set the new 'max-root-page' value in the database header. This
9413 ** is the old value less one, less one more if that happens to
9414 ** be a root-page number, less one again if that is the
9415 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009416 */
drh055f2982016-01-15 15:06:41 +00009417 maxRootPgno--;
9418 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9419 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9420 maxRootPgno--;
9421 }
9422 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9423
9424 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9425 }else{
9426 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009427 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009428 }
drh055f2982016-01-15 15:06:41 +00009429#endif
drh8b2f49b2001-06-08 00:21:52 +00009430 return rc;
9431}
drhd677b3d2007-08-20 22:48:41 +00009432int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9433 int rc;
9434 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009435 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009436 sqlite3BtreeLeave(p);
9437 return rc;
9438}
drh8b2f49b2001-06-08 00:21:52 +00009439
drh001bbcb2003-03-19 03:14:00 +00009440
drh8b2f49b2001-06-08 00:21:52 +00009441/*
danielk1977602b4662009-07-02 07:47:33 +00009442** This function may only be called if the b-tree connection already
9443** has a read or write transaction open on the database.
9444**
drh23e11ca2004-05-04 17:27:28 +00009445** Read the meta-information out of a database file. Meta[0]
9446** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009447** through meta[15] are available for use by higher layers. Meta[0]
9448** is read-only, the others are read/write.
9449**
9450** The schema layer numbers meta values differently. At the schema
9451** layer (and the SetCookie and ReadCookie opcodes) the number of
9452** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009453**
9454** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9455** of reading the value out of the header, it instead loads the "DataVersion"
9456** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9457** database file. It is a number computed by the pager. But its access
9458** pattern is the same as header meta values, and so it is convenient to
9459** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009460*/
danielk1977602b4662009-07-02 07:47:33 +00009461void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009462 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009463
drhd677b3d2007-08-20 22:48:41 +00009464 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009465 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009466 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009467 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009468 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009469
drh91618562014-12-19 19:28:02 +00009470 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009471 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009472 }else{
9473 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9474 }
drhae157872004-08-14 19:20:09 +00009475
danielk1977602b4662009-07-02 07:47:33 +00009476 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9477 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009478#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009479 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9480 pBt->btsFlags |= BTS_READ_ONLY;
9481 }
danielk1977003ba062004-11-04 02:57:33 +00009482#endif
drhae157872004-08-14 19:20:09 +00009483
drhd677b3d2007-08-20 22:48:41 +00009484 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009485}
9486
9487/*
drh23e11ca2004-05-04 17:27:28 +00009488** Write meta-information back into the database. Meta[0] is
9489** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009490*/
danielk1977aef0bf62005-12-30 16:28:01 +00009491int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9492 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009493 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009494 int rc;
drh23e11ca2004-05-04 17:27:28 +00009495 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009496 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009497 assert( p->inTrans==TRANS_WRITE );
9498 assert( pBt->pPage1!=0 );
9499 pP1 = pBt->pPage1->aData;
9500 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9501 if( rc==SQLITE_OK ){
9502 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009503#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009504 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009505 assert( pBt->autoVacuum || iMeta==0 );
9506 assert( iMeta==0 || iMeta==1 );
9507 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009508 }
drh64022502009-01-09 14:11:04 +00009509#endif
drh5df72a52002-06-06 23:16:05 +00009510 }
drhd677b3d2007-08-20 22:48:41 +00009511 sqlite3BtreeLeave(p);
9512 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009513}
drh8c42ca92001-06-22 19:15:00 +00009514
danielk1977a5533162009-02-24 10:01:51 +00009515#ifndef SQLITE_OMIT_BTREECOUNT
9516/*
9517** The first argument, pCur, is a cursor opened on some b-tree. Count the
9518** number of entries in the b-tree and write the result to *pnEntry.
9519**
9520** SQLITE_OK is returned if the operation is successfully executed.
9521** Otherwise, if an error is encountered (i.e. an IO error or database
9522** corruption) an SQLite error code is returned.
9523*/
drh21f6daa2019-10-11 14:21:48 +00009524int sqlite3BtreeCount(sqlite3 *db, BtCursor *pCur, i64 *pnEntry){
danielk1977a5533162009-02-24 10:01:51 +00009525 i64 nEntry = 0; /* Value to return in *pnEntry */
9526 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009527
drh44548e72017-08-14 18:13:52 +00009528 rc = moveToRoot(pCur);
9529 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009530 *pnEntry = 0;
9531 return SQLITE_OK;
9532 }
danielk1977a5533162009-02-24 10:01:51 +00009533
9534 /* Unless an error occurs, the following loop runs one iteration for each
9535 ** page in the B-Tree structure (not including overflow pages).
9536 */
dan892edb62020-03-30 13:35:05 +00009537 while( rc==SQLITE_OK && !AtomicLoad(&db->u1.isInterrupted) ){
danielk1977a5533162009-02-24 10:01:51 +00009538 int iIdx; /* Index of child node in parent */
9539 MemPage *pPage; /* Current page of the b-tree */
9540
9541 /* If this is a leaf page or the tree is not an int-key tree, then
9542 ** this page contains countable entries. Increment the entry counter
9543 ** accordingly.
9544 */
drh352a35a2017-08-15 03:46:47 +00009545 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009546 if( pPage->leaf || !pPage->intKey ){
9547 nEntry += pPage->nCell;
9548 }
9549
9550 /* pPage is a leaf node. This loop navigates the cursor so that it
9551 ** points to the first interior cell that it points to the parent of
9552 ** the next page in the tree that has not yet been visited. The
9553 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9554 ** of the page, or to the number of cells in the page if the next page
9555 ** to visit is the right-child of its parent.
9556 **
9557 ** If all pages in the tree have been visited, return SQLITE_OK to the
9558 ** caller.
9559 */
9560 if( pPage->leaf ){
9561 do {
9562 if( pCur->iPage==0 ){
9563 /* All pages of the b-tree have been visited. Return successfully. */
9564 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009565 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009566 }
danielk197730548662009-07-09 05:07:37 +00009567 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009568 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009569
drh75e96b32017-04-01 00:20:06 +00009570 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009571 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009572 }
9573
9574 /* Descend to the child node of the cell that the cursor currently
9575 ** points at. This is the right-child if (iIdx==pPage->nCell).
9576 */
drh75e96b32017-04-01 00:20:06 +00009577 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009578 if( iIdx==pPage->nCell ){
9579 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9580 }else{
9581 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9582 }
9583 }
9584
shanebe217792009-03-05 04:20:31 +00009585 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009586 return rc;
9587}
9588#endif
drhdd793422001-06-28 01:54:48 +00009589
drhdd793422001-06-28 01:54:48 +00009590/*
drh5eddca62001-06-30 21:53:53 +00009591** Return the pager associated with a BTree. This routine is used for
9592** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009593*/
danielk1977aef0bf62005-12-30 16:28:01 +00009594Pager *sqlite3BtreePager(Btree *p){
9595 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009596}
drh5eddca62001-06-30 21:53:53 +00009597
drhb7f91642004-10-31 02:22:47 +00009598#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009599/*
9600** Append a message to the error message string.
9601*/
drh2e38c322004-09-03 18:38:44 +00009602static void checkAppendMsg(
9603 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009604 const char *zFormat,
9605 ...
9606){
9607 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009608 if( !pCheck->mxErr ) return;
9609 pCheck->mxErr--;
9610 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009611 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009612 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009613 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009614 }
drh867db832014-09-26 02:41:05 +00009615 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009616 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009617 }
drh0cdbe1a2018-05-09 13:46:26 +00009618 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009619 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009620 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009621 pCheck->mallocFailed = 1;
9622 }
drh5eddca62001-06-30 21:53:53 +00009623}
drhb7f91642004-10-31 02:22:47 +00009624#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009625
drhb7f91642004-10-31 02:22:47 +00009626#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009627
9628/*
9629** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9630** corresponds to page iPg is already set.
9631*/
9632static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9633 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9634 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9635}
9636
9637/*
9638** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9639*/
9640static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9641 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9642 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9643}
9644
9645
drh5eddca62001-06-30 21:53:53 +00009646/*
9647** Add 1 to the reference count for page iPage. If this is the second
9648** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009649** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009650** if this is the first reference to the page.
9651**
9652** Also check that the page number is in bounds.
9653*/
drh867db832014-09-26 02:41:05 +00009654static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009655 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009656 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009657 return 1;
9658 }
dan1235bb12012-04-03 17:43:28 +00009659 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009660 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009661 return 1;
9662 }
dan892edb62020-03-30 13:35:05 +00009663 if( AtomicLoad(&pCheck->db->u1.isInterrupted) ) return 1;
dan1235bb12012-04-03 17:43:28 +00009664 setPageReferenced(pCheck, iPage);
9665 return 0;
drh5eddca62001-06-30 21:53:53 +00009666}
9667
danielk1977afcdd022004-10-31 16:25:42 +00009668#ifndef SQLITE_OMIT_AUTOVACUUM
9669/*
9670** Check that the entry in the pointer-map for page iChild maps to
9671** page iParent, pointer type ptrType. If not, append an error message
9672** to pCheck.
9673*/
9674static void checkPtrmap(
9675 IntegrityCk *pCheck, /* Integrity check context */
9676 Pgno iChild, /* Child page number */
9677 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009678 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009679){
9680 int rc;
9681 u8 ePtrmapType;
9682 Pgno iPtrmapParent;
9683
9684 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9685 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009686 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009687 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009688 return;
9689 }
9690
9691 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009692 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009693 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9694 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9695 }
9696}
9697#endif
9698
drh5eddca62001-06-30 21:53:53 +00009699/*
9700** Check the integrity of the freelist or of an overflow page list.
9701** Verify that the number of pages on the list is N.
9702*/
drh30e58752002-03-02 20:41:57 +00009703static void checkList(
9704 IntegrityCk *pCheck, /* Integrity checking context */
9705 int isFreeList, /* True for a freelist. False for overflow page list */
9706 int iPage, /* Page number for first page in the list */
drheaac9992019-02-26 16:17:06 +00009707 u32 N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009708){
9709 int i;
drheaac9992019-02-26 16:17:06 +00009710 u32 expected = N;
drh91d58662018-07-20 13:39:28 +00009711 int nErrAtStart = pCheck->nErr;
9712 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009713 DbPage *pOvflPage;
9714 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009715 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009716 N--;
drh9584f582015-11-04 20:22:37 +00009717 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009718 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009719 break;
9720 }
danielk19773b8a05f2007-03-19 17:44:26 +00009721 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009722 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009723 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009724#ifndef SQLITE_OMIT_AUTOVACUUM
9725 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009726 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009727 }
9728#endif
drhae104742018-12-14 17:57:01 +00009729 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009730 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009731 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009732 N--;
9733 }else{
drhae104742018-12-14 17:57:01 +00009734 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009735 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009736#ifndef SQLITE_OMIT_AUTOVACUUM
9737 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009738 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009739 }
9740#endif
drh867db832014-09-26 02:41:05 +00009741 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009742 }
9743 N -= n;
drh30e58752002-03-02 20:41:57 +00009744 }
drh30e58752002-03-02 20:41:57 +00009745 }
danielk1977afcdd022004-10-31 16:25:42 +00009746#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009747 else{
9748 /* If this database supports auto-vacuum and iPage is not the last
9749 ** page in this overflow list, check that the pointer-map entry for
9750 ** the following page matches iPage.
9751 */
9752 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009753 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009754 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009755 }
danielk1977afcdd022004-10-31 16:25:42 +00009756 }
9757#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009758 iPage = get4byte(pOvflData);
9759 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009760 }
9761 if( N && nErrAtStart==pCheck->nErr ){
9762 checkAppendMsg(pCheck,
9763 "%s is %d but should be %d",
9764 isFreeList ? "size" : "overflow list length",
9765 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009766 }
9767}
drhb7f91642004-10-31 02:22:47 +00009768#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009769
drh67731a92015-04-16 11:56:03 +00009770/*
9771** An implementation of a min-heap.
9772**
9773** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009774** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009775** and aHeap[N*2+1].
9776**
9777** The heap property is this: Every node is less than or equal to both
9778** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009779** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009780**
9781** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9782** the heap, preserving the heap property. The btreeHeapPull() routine
9783** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009784** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009785** property.
9786**
9787** This heap is used for cell overlap and coverage testing. Each u32
9788** entry represents the span of a cell or freeblock on a btree page.
9789** The upper 16 bits are the index of the first byte of a range and the
9790** lower 16 bits are the index of the last byte of that range.
9791*/
9792static void btreeHeapInsert(u32 *aHeap, u32 x){
9793 u32 j, i = ++aHeap[0];
9794 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009795 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009796 x = aHeap[j];
9797 aHeap[j] = aHeap[i];
9798 aHeap[i] = x;
9799 i = j;
9800 }
9801}
9802static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9803 u32 j, i, x;
9804 if( (x = aHeap[0])==0 ) return 0;
9805 *pOut = aHeap[1];
9806 aHeap[1] = aHeap[x];
9807 aHeap[x] = 0xffffffff;
9808 aHeap[0]--;
9809 i = 1;
9810 while( (j = i*2)<=aHeap[0] ){
9811 if( aHeap[j]>aHeap[j+1] ) j++;
9812 if( aHeap[i]<aHeap[j] ) break;
9813 x = aHeap[i];
9814 aHeap[i] = aHeap[j];
9815 aHeap[j] = x;
9816 i = j;
9817 }
9818 return 1;
9819}
9820
drhb7f91642004-10-31 02:22:47 +00009821#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009822/*
9823** Do various sanity checks on a single page of a tree. Return
9824** the tree depth. Root pages return 0. Parents of root pages
9825** return 1, and so forth.
9826**
9827** These checks are done:
9828**
9829** 1. Make sure that cells and freeblocks do not overlap
9830** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009831** 2. Make sure integer cell keys are in order.
9832** 3. Check the integrity of overflow pages.
9833** 4. Recursively call checkTreePage on all children.
9834** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009835*/
9836static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009837 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009838 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009839 i64 *piMinKey, /* Write minimum integer primary key here */
9840 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009841){
drhcbc6b712015-07-02 16:17:30 +00009842 MemPage *pPage = 0; /* The page being analyzed */
9843 int i; /* Loop counter */
9844 int rc; /* Result code from subroutine call */
9845 int depth = -1, d2; /* Depth of a subtree */
9846 int pgno; /* Page number */
9847 int nFrag; /* Number of fragmented bytes on the page */
9848 int hdr; /* Offset to the page header */
9849 int cellStart; /* Offset to the start of the cell pointer array */
9850 int nCell; /* Number of cells */
9851 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9852 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9853 ** False if IPK must be strictly less than maxKey */
9854 u8 *data; /* Page content */
9855 u8 *pCell; /* Cell content */
9856 u8 *pCellIdx; /* Next element of the cell pointer array */
9857 BtShared *pBt; /* The BtShared object that owns pPage */
9858 u32 pc; /* Address of a cell */
9859 u32 usableSize; /* Usable size of the page */
9860 u32 contentOffset; /* Offset to the start of the cell content area */
9861 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009862 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009863 const char *saved_zPfx = pCheck->zPfx;
9864 int saved_v1 = pCheck->v1;
9865 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009866 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009867
drh5eddca62001-06-30 21:53:53 +00009868 /* Check that the page exists
9869 */
drhd9cb6ac2005-10-20 07:28:17 +00009870 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009871 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009872 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009873 if( checkRef(pCheck, iPage) ) return 0;
9874 pCheck->zPfx = "Page %d: ";
9875 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009876 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009877 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009878 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009879 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009880 }
danielk197793caf5a2009-07-11 06:55:33 +00009881
9882 /* Clear MemPage.isInit to make sure the corruption detection code in
9883 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009884 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009885 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009886 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009887 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009888 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009889 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009890 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009891 }
drhb0ea9432019-02-09 21:06:40 +00009892 if( (rc = btreeComputeFreeSpace(pPage))!=0 ){
9893 assert( rc==SQLITE_CORRUPT );
9894 checkAppendMsg(pCheck, "free space corruption", rc);
9895 goto end_of_check;
9896 }
drhcbc6b712015-07-02 16:17:30 +00009897 data = pPage->aData;
9898 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009899
drhcbc6b712015-07-02 16:17:30 +00009900 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009901 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009902 contentOffset = get2byteNotZero(&data[hdr+5]);
9903 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9904
9905 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9906 ** number of cells on the page. */
9907 nCell = get2byte(&data[hdr+3]);
9908 assert( pPage->nCell==nCell );
9909
9910 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9911 ** immediately follows the b-tree page header. */
9912 cellStart = hdr + 12 - 4*pPage->leaf;
9913 assert( pPage->aCellIdx==&data[cellStart] );
9914 pCellIdx = &data[cellStart + 2*(nCell-1)];
9915
9916 if( !pPage->leaf ){
9917 /* Analyze the right-child page of internal pages */
9918 pgno = get4byte(&data[hdr+8]);
9919#ifndef SQLITE_OMIT_AUTOVACUUM
9920 if( pBt->autoVacuum ){
9921 pCheck->zPfx = "On page %d at right child: ";
9922 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9923 }
9924#endif
9925 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9926 keyCanBeEqual = 0;
9927 }else{
9928 /* For leaf pages, the coverage check will occur in the same loop
9929 ** as the other cell checks, so initialize the heap. */
9930 heap = pCheck->heap;
9931 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009932 }
9933
drhcbc6b712015-07-02 16:17:30 +00009934 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9935 ** integer offsets to the cell contents. */
9936 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009937 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009938
drhcbc6b712015-07-02 16:17:30 +00009939 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009940 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009941 assert( pCellIdx==&data[cellStart + i*2] );
9942 pc = get2byteAligned(pCellIdx);
9943 pCellIdx -= 2;
9944 if( pc<contentOffset || pc>usableSize-4 ){
9945 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9946 pc, contentOffset, usableSize-4);
9947 doCoverageCheck = 0;
9948 continue;
shaneh195475d2010-02-19 04:28:08 +00009949 }
drhcbc6b712015-07-02 16:17:30 +00009950 pCell = &data[pc];
9951 pPage->xParseCell(pPage, pCell, &info);
9952 if( pc+info.nSize>usableSize ){
9953 checkAppendMsg(pCheck, "Extends off end of page");
9954 doCoverageCheck = 0;
9955 continue;
drh5eddca62001-06-30 21:53:53 +00009956 }
9957
drhcbc6b712015-07-02 16:17:30 +00009958 /* Check for integer primary key out of range */
9959 if( pPage->intKey ){
9960 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9961 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9962 }
9963 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009964 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009965 }
9966
9967 /* Check the content overflow list */
9968 if( info.nPayload>info.nLocal ){
drheaac9992019-02-26 16:17:06 +00009969 u32 nPage; /* Number of pages on the overflow chain */
drhcbc6b712015-07-02 16:17:30 +00009970 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009971 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009972 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009973 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009974#ifndef SQLITE_OMIT_AUTOVACUUM
9975 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009976 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009977 }
9978#endif
drh867db832014-09-26 02:41:05 +00009979 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009980 }
9981
drh5eddca62001-06-30 21:53:53 +00009982 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009983 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009984 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009985#ifndef SQLITE_OMIT_AUTOVACUUM
9986 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009987 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009988 }
9989#endif
drhcbc6b712015-07-02 16:17:30 +00009990 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9991 keyCanBeEqual = 0;
9992 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009993 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009994 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009995 }
drhcbc6b712015-07-02 16:17:30 +00009996 }else{
9997 /* Populate the coverage-checking heap for leaf pages */
9998 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009999 }
10000 }
drhcbc6b712015-07-02 16:17:30 +000010001 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +000010002
drh5eddca62001-06-30 21:53:53 +000010003 /* Check for complete coverage of the page
10004 */
drh867db832014-09-26 02:41:05 +000010005 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +000010006 if( doCoverageCheck && pCheck->mxErr>0 ){
10007 /* For leaf pages, the min-heap has already been initialized and the
10008 ** cells have already been inserted. But for internal pages, that has
10009 ** not yet been done, so do it now */
10010 if( !pPage->leaf ){
10011 heap = pCheck->heap;
10012 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +000010013 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +000010014 u32 size;
10015 pc = get2byteAligned(&data[cellStart+i*2]);
10016 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +000010017 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +000010018 }
drh2e38c322004-09-03 18:38:44 +000010019 }
drhcbc6b712015-07-02 16:17:30 +000010020 /* Add the freeblocks to the min-heap
10021 **
10022 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +000010023 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +000010024 ** freeblocks on the page.
10025 */
drh8c2bbb62009-07-10 02:52:20 +000010026 i = get2byte(&data[hdr+1]);
10027 while( i>0 ){
10028 int size, j;
drh5860a612019-02-12 16:58:26 +000010029 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010030 size = get2byte(&data[i+2]);
drh5860a612019-02-12 16:58:26 +000010031 assert( (u32)(i+size)<=usableSize ); /* due to btreeComputeFreeSpace() */
drhe56d4302015-07-08 01:22:52 +000010032 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +000010033 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10034 ** big-endian integer which is the offset in the b-tree page of the next
10035 ** freeblock in the chain, or zero if the freeblock is the last on the
10036 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +000010037 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +000010038 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10039 ** increasing offset. */
drh5860a612019-02-12 16:58:26 +000010040 assert( j==0 || j>i+size ); /* Enforced by btreeComputeFreeSpace() */
10041 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeComputeFreeSpace() */
drh8c2bbb62009-07-10 02:52:20 +000010042 i = j;
drh2e38c322004-09-03 18:38:44 +000010043 }
drhcbc6b712015-07-02 16:17:30 +000010044 /* Analyze the min-heap looking for overlap between cells and/or
10045 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +000010046 **
10047 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10048 ** There is an implied first entry the covers the page header, the cell
10049 ** pointer index, and the gap between the cell pointer index and the start
10050 ** of cell content.
10051 **
10052 ** The loop below pulls entries from the min-heap in order and compares
10053 ** the start_address against the previous end_address. If there is an
10054 ** overlap, that means bytes are used multiple times. If there is a gap,
10055 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +000010056 */
10057 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +000010058 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +000010059 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +000010060 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +000010061 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +000010062 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +000010063 break;
drh67731a92015-04-16 11:56:03 +000010064 }else{
drhcbc6b712015-07-02 16:17:30 +000010065 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +000010066 prev = x;
drh2e38c322004-09-03 18:38:44 +000010067 }
10068 }
drhcbc6b712015-07-02 16:17:30 +000010069 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +000010070 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10071 ** is stored in the fifth field of the b-tree page header.
10072 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10073 ** number of fragmented free bytes within the cell content area.
10074 */
drhcbc6b712015-07-02 16:17:30 +000010075 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +000010076 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +000010077 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +000010078 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +000010079 }
10080 }
drh867db832014-09-26 02:41:05 +000010081
10082end_of_check:
drh72e191e2015-07-04 11:14:20 +000010083 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +000010084 releasePage(pPage);
drh867db832014-09-26 02:41:05 +000010085 pCheck->zPfx = saved_zPfx;
10086 pCheck->v1 = saved_v1;
10087 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +000010088 return depth+1;
drh5eddca62001-06-30 21:53:53 +000010089}
drhb7f91642004-10-31 02:22:47 +000010090#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +000010091
drhb7f91642004-10-31 02:22:47 +000010092#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +000010093/*
10094** This routine does a complete check of the given BTree file. aRoot[] is
10095** an array of pages numbers were each page number is the root page of
10096** a table. nRoot is the number of entries in aRoot.
10097**
danielk19773509a652009-07-06 18:56:13 +000010098** A read-only or read-write transaction must be opened before calling
10099** this function.
10100**
drhc890fec2008-08-01 20:10:08 +000010101** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +000010102** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +000010103** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +000010104** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +000010105*/
drh1dcdbc02007-01-27 02:24:54 +000010106char *sqlite3BtreeIntegrityCheck(
drh21f6daa2019-10-11 14:21:48 +000010107 sqlite3 *db, /* Database connection that is running the check */
drh1dcdbc02007-01-27 02:24:54 +000010108 Btree *p, /* The btree to be checked */
10109 int *aRoot, /* An array of root pages numbers for individual trees */
10110 int nRoot, /* Number of entries in aRoot[] */
10111 int mxErr, /* Stop reporting errors after this many */
10112 int *pnErr /* Write number of errors seen to this variable */
10113){
danielk197789d40042008-11-17 14:20:56 +000010114 Pgno i;
drhaaab5722002-02-19 13:39:21 +000010115 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +000010116 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +000010117 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +000010118 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +000010119 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +000010120
drhd677b3d2007-08-20 22:48:41 +000010121 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +000010122 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +000010123 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
10124 assert( nRef>=0 );
drh21f6daa2019-10-11 14:21:48 +000010125 sCheck.db = db;
drh5eddca62001-06-30 21:53:53 +000010126 sCheck.pBt = pBt;
10127 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +000010128 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +000010129 sCheck.mxErr = mxErr;
10130 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +000010131 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +000010132 sCheck.zPfx = 0;
10133 sCheck.v1 = 0;
10134 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +000010135 sCheck.aPgRef = 0;
10136 sCheck.heap = 0;
10137 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +000010138 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +000010139 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +000010140 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +000010141 }
dan1235bb12012-04-03 17:43:28 +000010142
10143 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
10144 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +000010145 sCheck.mallocFailed = 1;
10146 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +000010147 }
drhe05b3f82015-07-01 17:53:49 +000010148 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
10149 if( sCheck.heap==0 ){
10150 sCheck.mallocFailed = 1;
10151 goto integrity_ck_cleanup;
10152 }
10153
drh42cac6d2004-11-20 20:31:11 +000010154 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +000010155 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +000010156
10157 /* Check the integrity of the freelist
10158 */
drh867db832014-09-26 02:41:05 +000010159 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +000010160 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +000010161 get4byte(&pBt->pPage1->aData[36]));
10162 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +000010163
10164 /* Check all the tables.
10165 */
drh040d77a2018-07-20 15:44:09 +000010166#ifndef SQLITE_OMIT_AUTOVACUUM
10167 if( pBt->autoVacuum ){
10168 int mx = 0;
10169 int mxInHdr;
10170 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
10171 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
10172 if( mx!=mxInHdr ){
10173 checkAppendMsg(&sCheck,
10174 "max rootpage (%d) disagrees with header (%d)",
10175 mx, mxInHdr
10176 );
10177 }
10178 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
10179 checkAppendMsg(&sCheck,
10180 "incremental_vacuum enabled with a max rootpage of zero"
10181 );
10182 }
10183#endif
drhcbc6b712015-07-02 16:17:30 +000010184 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +000010185 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +000010186 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +000010187 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +000010188 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +000010189#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +000010190 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +000010191 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +000010192 }
10193#endif
drhcbc6b712015-07-02 16:17:30 +000010194 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +000010195 }
drhcbc6b712015-07-02 16:17:30 +000010196 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +000010197
10198 /* Make sure every page in the file is referenced
10199 */
drh1dcdbc02007-01-27 02:24:54 +000010200 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +000010201#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +000010202 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +000010203 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +000010204 }
danielk1977afcdd022004-10-31 16:25:42 +000010205#else
10206 /* If the database supports auto-vacuum, make sure no tables contain
10207 ** references to pointer-map pages.
10208 */
dan1235bb12012-04-03 17:43:28 +000010209 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +000010210 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010211 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +000010212 }
dan1235bb12012-04-03 17:43:28 +000010213 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +000010214 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +000010215 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +000010216 }
10217#endif
drh5eddca62001-06-30 21:53:53 +000010218 }
10219
drh5eddca62001-06-30 21:53:53 +000010220 /* Clean up and report errors.
10221 */
drhe05b3f82015-07-01 17:53:49 +000010222integrity_ck_cleanup:
10223 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +000010224 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +000010225 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +000010226 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010227 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +000010228 }
drh1dcdbc02007-01-27 02:24:54 +000010229 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +000010230 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +000010231 /* Make sure this analysis did not leave any unref() pages. */
10232 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
10233 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +000010234 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +000010235}
drhb7f91642004-10-31 02:22:47 +000010236#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +000010237
drh73509ee2003-04-06 20:44:45 +000010238/*
drhd4e0bb02012-05-27 01:19:04 +000010239** Return the full pathname of the underlying database file. Return
10240** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +000010241**
10242** The pager filename is invariant as long as the pager is
10243** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +000010244*/
danielk1977aef0bf62005-12-30 16:28:01 +000010245const char *sqlite3BtreeGetFilename(Btree *p){
10246 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +000010247 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +000010248}
10249
10250/*
danielk19775865e3d2004-06-14 06:03:57 +000010251** Return the pathname of the journal file for this database. The return
10252** value of this routine is the same regardless of whether the journal file
10253** has been created or not.
drhd0679ed2007-08-28 22:24:34 +000010254**
10255** The pager journal filename is invariant as long as the pager is
10256** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +000010257*/
danielk1977aef0bf62005-12-30 16:28:01 +000010258const char *sqlite3BtreeGetJournalname(Btree *p){
10259 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +000010260 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +000010261}
10262
danielk19771d850a72004-05-31 08:26:49 +000010263/*
10264** Return non-zero if a transaction is active.
10265*/
danielk1977aef0bf62005-12-30 16:28:01 +000010266int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +000010267 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +000010268 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +000010269}
10270
dana550f2d2010-08-02 10:47:05 +000010271#ifndef SQLITE_OMIT_WAL
10272/*
10273** Run a checkpoint on the Btree passed as the first argument.
10274**
10275** Return SQLITE_LOCKED if this or any other connection has an open
10276** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +000010277**
dancdc1f042010-11-18 12:11:05 +000010278** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +000010279*/
dancdc1f042010-11-18 12:11:05 +000010280int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +000010281 int rc = SQLITE_OK;
10282 if( p ){
10283 BtShared *pBt = p->pBt;
10284 sqlite3BtreeEnter(p);
10285 if( pBt->inTransaction!=TRANS_NONE ){
10286 rc = SQLITE_LOCKED;
10287 }else{
dan7fb89902016-08-12 16:21:15 +000010288 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +000010289 }
10290 sqlite3BtreeLeave(p);
10291 }
10292 return rc;
10293}
10294#endif
10295
danielk19771d850a72004-05-31 08:26:49 +000010296/*
danielk19772372c2b2006-06-27 16:34:56 +000010297** Return non-zero if a read (or write) transaction is active.
10298*/
10299int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +000010300 assert( p );
drhe5fe6902007-12-07 18:55:28 +000010301 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +000010302 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +000010303}
10304
danielk197704103022009-02-03 16:51:24 +000010305int sqlite3BtreeIsInBackup(Btree *p){
10306 assert( p );
10307 assert( sqlite3_mutex_held(p->db->mutex) );
10308 return p->nBackup!=0;
10309}
10310
danielk19772372c2b2006-06-27 16:34:56 +000010311/*
danielk1977da184232006-01-05 11:34:32 +000010312** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010313** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010314** purposes (for example, to store a high-level schema associated with
10315** the shared-btree). The btree layer manages reference counting issues.
10316**
10317** The first time this is called on a shared-btree, nBytes bytes of memory
10318** are allocated, zeroed, and returned to the caller. For each subsequent
10319** call the nBytes parameter is ignored and a pointer to the same blob
10320** of memory returned.
10321**
danielk1977171bfed2008-06-23 09:50:50 +000010322** If the nBytes parameter is 0 and the blob of memory has not yet been
10323** allocated, a null pointer is returned. If the blob has already been
10324** allocated, it is returned as normal.
10325**
danielk1977da184232006-01-05 11:34:32 +000010326** Just before the shared-btree is closed, the function passed as the
10327** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010328** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010329** on the memory, the btree layer does that.
10330*/
10331void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10332 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010333 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010334 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010335 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010336 pBt->xFreeSchema = xFree;
10337 }
drh27641702007-08-22 02:56:42 +000010338 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010339 return pBt->pSchema;
10340}
10341
danielk1977c87d34d2006-01-06 13:00:28 +000010342/*
danielk1977404ca072009-03-16 13:19:36 +000010343** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10344** btree as the argument handle holds an exclusive lock on the
10345** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010346*/
10347int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010348 int rc;
drhe5fe6902007-12-07 18:55:28 +000010349 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010350 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010351 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10352 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010353 sqlite3BtreeLeave(p);
10354 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010355}
10356
drha154dcd2006-03-22 22:10:07 +000010357
10358#ifndef SQLITE_OMIT_SHARED_CACHE
10359/*
10360** Obtain a lock on the table whose root page is iTab. The
10361** lock is a write lock if isWritelock is true or a read lock
10362** if it is false.
10363*/
danielk1977c00da102006-01-07 13:21:04 +000010364int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010365 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010366 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010367 if( p->sharable ){
10368 u8 lockType = READ_LOCK + isWriteLock;
10369 assert( READ_LOCK+1==WRITE_LOCK );
10370 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010371
drh6a9ad3d2008-04-02 16:29:30 +000010372 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010373 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010374 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010375 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010376 }
10377 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010378 }
10379 return rc;
10380}
drha154dcd2006-03-22 22:10:07 +000010381#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010382
danielk1977b4e9af92007-05-01 17:49:49 +000010383#ifndef SQLITE_OMIT_INCRBLOB
10384/*
10385** Argument pCsr must be a cursor opened for writing on an
10386** INTKEY table currently pointing at a valid table entry.
10387** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010388**
10389** Only the data content may only be modified, it is not possible to
10390** change the length of the data stored. If this function is called with
10391** parameters that attempt to write past the end of the existing data,
10392** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010393*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010394int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010395 int rc;
dan7a2347e2016-01-07 16:43:54 +000010396 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010397 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010398 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010399
danielk1977c9000e62009-07-08 13:55:28 +000010400 rc = restoreCursorPosition(pCsr);
10401 if( rc!=SQLITE_OK ){
10402 return rc;
10403 }
danielk19773588ceb2008-06-10 17:30:26 +000010404 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10405 if( pCsr->eState!=CURSOR_VALID ){
10406 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010407 }
10408
dan227a1c42013-04-03 11:17:39 +000010409 /* Save the positions of all other cursors open on this table. This is
10410 ** required in case any of them are holding references to an xFetch
10411 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010412 **
drh3f387402014-09-24 01:23:00 +000010413 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010414 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10415 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010416 */
drh370c9f42013-04-03 20:04:04 +000010417 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10418 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010419
danielk1977c9000e62009-07-08 13:55:28 +000010420 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010421 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010422 ** (b) there is a read/write transaction open,
10423 ** (c) the connection holds a write-lock on the table (if required),
10424 ** (d) there are no conflicting read-locks, and
10425 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010426 */
drh036dbec2014-03-11 23:40:44 +000010427 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010428 return SQLITE_READONLY;
10429 }
drhc9166342012-01-05 23:32:06 +000010430 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10431 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010432 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10433 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010434 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010435
drhfb192682009-07-11 18:26:28 +000010436 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010437}
danielk19772dec9702007-05-02 16:48:37 +000010438
10439/*
dan5a500af2014-03-11 20:33:04 +000010440** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010441*/
dan5a500af2014-03-11 20:33:04 +000010442void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010443 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010444 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010445}
danielk1977b4e9af92007-05-01 17:49:49 +000010446#endif
dane04dc882010-04-20 18:53:15 +000010447
10448/*
10449** Set both the "read version" (single byte at byte offset 18) and
10450** "write version" (single byte at byte offset 19) fields in the database
10451** header to iVersion.
10452*/
10453int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10454 BtShared *pBt = pBtree->pBt;
10455 int rc; /* Return code */
10456
dane04dc882010-04-20 18:53:15 +000010457 assert( iVersion==1 || iVersion==2 );
10458
danb9780022010-04-21 18:37:57 +000010459 /* If setting the version fields to 1, do not automatically open the
10460 ** WAL connection, even if the version fields are currently set to 2.
10461 */
drhc9166342012-01-05 23:32:06 +000010462 pBt->btsFlags &= ~BTS_NO_WAL;
10463 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010464
drhbb2d9b12018-06-06 16:28:40 +000010465 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010466 if( rc==SQLITE_OK ){
10467 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010468 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010469 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010470 if( rc==SQLITE_OK ){
10471 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10472 if( rc==SQLITE_OK ){
10473 aData[18] = (u8)iVersion;
10474 aData[19] = (u8)iVersion;
10475 }
10476 }
10477 }
dane04dc882010-04-20 18:53:15 +000010478 }
10479
drhc9166342012-01-05 23:32:06 +000010480 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010481 return rc;
10482}
dan428c2182012-08-06 18:50:11 +000010483
drhe0997b32015-03-20 14:57:50 +000010484/*
10485** Return true if the cursor has a hint specified. This routine is
10486** only used from within assert() statements
10487*/
10488int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10489 return (pCsr->hints & mask)!=0;
10490}
drhe0997b32015-03-20 14:57:50 +000010491
drh781597f2014-05-21 08:21:07 +000010492/*
10493** Return true if the given Btree is read-only.
10494*/
10495int sqlite3BtreeIsReadonly(Btree *p){
10496 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10497}
drhdef68892014-11-04 12:11:23 +000010498
10499/*
10500** Return the size of the header added to each page by this module.
10501*/
drh37c057b2014-12-30 00:57:29 +000010502int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010503
drh5a1fb182016-01-08 19:34:39 +000010504#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010505/*
10506** Return true if the Btree passed as the only argument is sharable.
10507*/
10508int sqlite3BtreeSharable(Btree *p){
10509 return p->sharable;
10510}
dan272989b2016-07-06 10:12:02 +000010511
10512/*
10513** Return the number of connections to the BtShared object accessed by
10514** the Btree handle passed as the only argument. For private caches
10515** this is always 1. For shared caches it may be 1 or greater.
10516*/
10517int sqlite3BtreeConnectionCount(Btree *p){
10518 testcase( p->sharable );
10519 return p->pBt->nRef;
10520}
drh5a1fb182016-01-08 19:34:39 +000010521#endif