blob: 52c0c47dd5352e5ec93f49b2511c3bf188750a2b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000502 i64 iRow, /* The rowid that might be changing */
503 int isClearTable /* True if all rows are being deleted */
504){
505 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000506 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000507 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000508 pBtree->hasIncrblobCur = 0;
509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510 if( (p->curFlags & BTCF_Incrblob)!=0 ){
511 pBtree->hasIncrblobCur = 1;
512 if( isClearTable || p->info.nKey==iRow ){
513 p->eState = CURSOR_INVALID;
514 }
danielk197796d48e92009-06-29 06:00:37 +0000515 }
516 }
517}
518
danielk197792d4d7a2007-05-04 12:05:56 +0000519#else
dan5a500af2014-03-11 20:33:04 +0000520 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000521 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000522#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000523
drh980b1a72006-08-16 16:42:48 +0000524/*
danielk1977bea2a942009-01-20 17:06:27 +0000525** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526** when a page that previously contained data becomes a free-list leaf
527** page.
528**
529** The BtShared.pHasContent bitvec exists to work around an obscure
530** bug caused by the interaction of two useful IO optimizations surrounding
531** free-list leaf pages:
532**
533** 1) When all data is deleted from a page and the page becomes
534** a free-list leaf page, the page is not written to the database
535** (as free-list leaf pages contain no meaningful data). Sometimes
536** such a page is not even journalled (as it will not be modified,
537** why bother journalling it?).
538**
539** 2) When a free-list leaf page is reused, its content is not read
540** from the database or written to the journal file (why should it
541** be, if it is not at all meaningful?).
542**
543** By themselves, these optimizations work fine and provide a handy
544** performance boost to bulk delete or insert operations. However, if
545** a page is moved to the free-list and then reused within the same
546** transaction, a problem comes up. If the page is not journalled when
547** it is moved to the free-list and it is also not journalled when it
548** is extracted from the free-list and reused, then the original data
549** may be lost. In the event of a rollback, it may not be possible
550** to restore the database to its original configuration.
551**
552** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553** moved to become a free-list leaf page, the corresponding bit is
554** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000555** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000556** set in BtShared.pHasContent. The contents of the bitvec are cleared
557** at the end of every transaction.
558*/
559static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560 int rc = SQLITE_OK;
561 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000562 assert( pgno<=pBt->nPage );
563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000564 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000565 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000566 }
567 }
568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570 }
571 return rc;
572}
573
574/*
575** Query the BtShared.pHasContent vector.
576**
577** This function is called when a free-list leaf page is removed from the
578** free-list for reuse. It returns false if it is safe to retrieve the
579** page from the pager layer with the 'no-content' flag set. True otherwise.
580*/
581static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582 Bitvec *p = pBt->pHasContent;
583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584}
585
586/*
587** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588** invoked at the conclusion of each write-transaction.
589*/
590static void btreeClearHasContent(BtShared *pBt){
591 sqlite3BitvecDestroy(pBt->pHasContent);
592 pBt->pHasContent = 0;
593}
594
595/*
drh138eeeb2013-03-27 03:15:23 +0000596** Release all of the apPage[] pages for a cursor.
597*/
598static void btreeReleaseAllCursorPages(BtCursor *pCur){
599 int i;
600 for(i=0; i<=pCur->iPage; i++){
601 releasePage(pCur->apPage[i]);
602 pCur->apPage[i] = 0;
603 }
604 pCur->iPage = -1;
605}
606
danf0ee1d32015-09-12 19:26:11 +0000607/*
608** The cursor passed as the only argument must point to a valid entry
609** when this function is called (i.e. have eState==CURSOR_VALID). This
610** function saves the current cursor key in variables pCur->nKey and
611** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612** code otherwise.
613**
614** If the cursor is open on an intkey table, then the integer key
615** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617** set to point to a malloced buffer pCur->nKey bytes in size containing
618** the key.
619*/
620static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000621 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000622 assert( CURSOR_VALID==pCur->eState );
623 assert( 0==pCur->pKey );
624 assert( cursorHoldsMutex(pCur) );
625
drha7c90c42016-06-04 20:37:10 +0000626 if( pCur->curIntKey ){
627 /* Only the rowid is required for a table btree */
628 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629 }else{
630 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000631 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000632 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000633 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000634 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000635 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000636 if( rc==SQLITE_OK ){
637 pCur->pKey = pKey;
638 }else{
639 sqlite3_free(pKey);
640 }
641 }else{
mistachkinfad30392016-02-13 23:43:46 +0000642 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000643 }
644 }
645 assert( !pCur->curIntKey || !pCur->pKey );
646 return rc;
647}
drh138eeeb2013-03-27 03:15:23 +0000648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Save the current cursor position in the variables BtCursor.nKey
651** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000652**
653** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000655*/
656static int saveCursorPosition(BtCursor *pCur){
657 int rc;
658
drhd2f83132015-03-25 17:35:01 +0000659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000660 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000662
drhd2f83132015-03-25 17:35:01 +0000663 if( pCur->eState==CURSOR_SKIPNEXT ){
664 pCur->eState = CURSOR_VALID;
665 }else{
666 pCur->skipNext = 0;
667 }
drh980b1a72006-08-16 16:42:48 +0000668
danf0ee1d32015-09-12 19:26:11 +0000669 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000670 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000671 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000672 pCur->eState = CURSOR_REQUIRESEEK;
673 }
674
dane755e102015-09-30 12:59:12 +0000675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000676 return rc;
677}
678
drh637f3d82014-08-22 22:26:07 +0000679/* Forward reference */
680static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681
drh980b1a72006-08-16 16:42:48 +0000682/*
drh0ee3dbe2009-10-16 15:05:18 +0000683** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000684** the table with root-page iRoot. "Saving the cursor position" means that
685** the location in the btree is remembered in such a way that it can be
686** moved back to the same spot after the btree has been modified. This
687** routine is called just before cursor pExcept is used to modify the
688** table, for example in BtreeDelete() or BtreeInsert().
689**
drh27fb7462015-06-30 02:47:36 +0000690** If there are two or more cursors on the same btree, then all such
691** cursors should have their BTCF_Multiple flag set. The btreeCursor()
692** routine enforces that rule. This routine only needs to be called in
693** the uncommon case when pExpect has the BTCF_Multiple flag set.
694**
695** If pExpect!=NULL and if no other cursors are found on the same root-page,
696** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697** pointless call to this routine.
698**
drh637f3d82014-08-22 22:26:07 +0000699** Implementation note: This routine merely checks to see if any cursors
700** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
701** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000702*/
703static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000705 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000706 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000707 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709 }
drh27fb7462015-06-30 02:47:36 +0000710 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000713}
714
715/* This helper routine to saveAllCursors does the actual work of saving
716** the cursors if and when a cursor is found that actually requires saving.
717** The common case is that no cursors need to be saved, so this routine is
718** broken out from its caller to avoid unnecessary stack pointer movement.
719*/
720static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000721 BtCursor *p, /* The first cursor that needs saving */
722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
723 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000724){
725 do{
drh138eeeb2013-03-27 03:15:23 +0000726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000728 int rc = saveCursorPosition(p);
729 if( SQLITE_OK!=rc ){
730 return rc;
731 }
732 }else{
733 testcase( p->iPage>0 );
734 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000735 }
736 }
drh637f3d82014-08-22 22:26:07 +0000737 p = p->pNext;
738 }while( p );
drh980b1a72006-08-16 16:42:48 +0000739 return SQLITE_OK;
740}
741
742/*
drhbf700f32007-03-31 02:36:44 +0000743** Clear the current cursor position.
744*/
danielk1977be51a652008-10-08 17:58:48 +0000745void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000746 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000747 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000748 pCur->pKey = 0;
749 pCur->eState = CURSOR_INVALID;
750}
751
752/*
danielk19773509a652009-07-06 18:56:13 +0000753** In this version of BtreeMoveto, pKey is a packed index record
754** such as is generated by the OP_MakeRecord opcode. Unpack the
755** record and then call BtreeMovetoUnpacked() to do the work.
756*/
757static int btreeMoveto(
758 BtCursor *pCur, /* Cursor open on the btree to be searched */
759 const void *pKey, /* Packed key if the btree is an index */
760 i64 nKey, /* Integer key for tables. Size of pKey for indices */
761 int bias, /* Bias search to the high end */
762 int *pRes /* Write search results here */
763){
764 int rc; /* Status code */
765 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000766
767 if( pKey ){
768 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000769 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000770 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000771 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000772 if( pIdxKey->nField==0 ){
drha582b012016-12-21 19:45:54 +0000773 rc = SQLITE_CORRUPT_BKPT;
774 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000775 }
danielk19773509a652009-07-06 18:56:13 +0000776 }else{
777 pIdxKey = 0;
778 }
779 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000780moveto_done:
781 if( pIdxKey ){
782 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000783 }
784 return rc;
785}
786
787/*
drh980b1a72006-08-16 16:42:48 +0000788** Restore the cursor to the position it was in (or as close to as possible)
789** when saveCursorPosition() was called. Note that this call deletes the
790** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000791** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000792** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000793*/
danielk197730548662009-07-09 05:07:37 +0000794static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000795 int rc;
drhd2f83132015-03-25 17:35:01 +0000796 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000797 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000798 assert( pCur->eState>=CURSOR_REQUIRESEEK );
799 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000800 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000801 }
drh980b1a72006-08-16 16:42:48 +0000802 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000803 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000804 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000805 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000806 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000807 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000808 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000809 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
810 pCur->eState = CURSOR_SKIPNEXT;
811 }
drh980b1a72006-08-16 16:42:48 +0000812 }
813 return rc;
814}
815
drha3460582008-07-11 21:02:53 +0000816#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000817 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000818 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000819 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000820
drha3460582008-07-11 21:02:53 +0000821/*
drh6848dad2014-08-22 23:33:03 +0000822** Determine whether or not a cursor has moved from the position where
823** it was last placed, or has been invalidated for any other reason.
824** Cursors can move when the row they are pointing at is deleted out
825** from under them, for example. Cursor might also move if a btree
826** is rebalanced.
drha3460582008-07-11 21:02:53 +0000827**
drh6848dad2014-08-22 23:33:03 +0000828** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000829**
drh6848dad2014-08-22 23:33:03 +0000830** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
831** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000832*/
drh6848dad2014-08-22 23:33:03 +0000833int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000834 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000835}
836
837/*
838** This routine restores a cursor back to its original position after it
839** has been moved by some outside activity (such as a btree rebalance or
840** a row having been deleted out from under the cursor).
841**
842** On success, the *pDifferentRow parameter is false if the cursor is left
843** pointing at exactly the same row. *pDifferntRow is the row the cursor
844** was pointing to has been deleted, forcing the cursor to point to some
845** nearby row.
846**
847** This routine should only be called for a cursor that just returned
848** TRUE from sqlite3BtreeCursorHasMoved().
849*/
850int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000851 int rc;
852
drh6848dad2014-08-22 23:33:03 +0000853 assert( pCur!=0 );
854 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000855 rc = restoreCursorPosition(pCur);
856 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000857 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000858 return rc;
859 }
drh606a3572015-03-25 18:29:10 +0000860 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000861 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000862 }else{
drh606a3572015-03-25 18:29:10 +0000863 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000864 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000865 }
866 return SQLITE_OK;
867}
868
drhf7854c72015-10-27 13:24:37 +0000869#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000870/*
drh0df57012015-08-14 15:05:55 +0000871** Provide hints to the cursor. The particular hint given (and the type
872** and number of the varargs parameters) is determined by the eHintType
873** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000874*/
drh0df57012015-08-14 15:05:55 +0000875void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000876 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000877}
drhf7854c72015-10-27 13:24:37 +0000878#endif
879
880/*
881** Provide flag hints to the cursor.
882*/
883void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
884 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
885 pCur->hints = x;
886}
887
drh28935362013-12-07 20:39:19 +0000888
danielk1977599fcba2004-11-08 07:13:13 +0000889#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000890/*
drha3152892007-05-05 11:48:52 +0000891** Given a page number of a regular database page, return the page
892** number for the pointer-map page that contains the entry for the
893** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000894**
895** Return 0 (not a valid page) for pgno==1 since there is
896** no pointer map associated with page 1. The integrity_check logic
897** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000898*/
danielk1977266664d2006-02-10 08:24:21 +0000899static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000900 int nPagesPerMapPage;
901 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000902 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000903 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000904 nPagesPerMapPage = (pBt->usableSize/5)+1;
905 iPtrMap = (pgno-2)/nPagesPerMapPage;
906 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000907 if( ret==PENDING_BYTE_PAGE(pBt) ){
908 ret++;
909 }
910 return ret;
911}
danielk1977a19df672004-11-03 11:37:07 +0000912
danielk1977afcdd022004-10-31 16:25:42 +0000913/*
danielk1977afcdd022004-10-31 16:25:42 +0000914** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000915**
916** This routine updates the pointer map entry for page number 'key'
917** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000918**
919** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
920** a no-op. If an error occurs, the appropriate error code is written
921** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000922*/
drh98add2e2009-07-20 17:11:49 +0000923static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000924 DbPage *pDbPage; /* The pointer map page */
925 u8 *pPtrmap; /* The pointer map data */
926 Pgno iPtrmap; /* The pointer map page number */
927 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000928 int rc; /* Return code from subfunctions */
929
930 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000931
drh1fee73e2007-08-29 04:00:57 +0000932 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000933 /* The master-journal page number must never be used as a pointer map page */
934 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
935
danielk1977ac11ee62005-01-15 12:45:51 +0000936 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000937 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000938 *pRC = SQLITE_CORRUPT_BKPT;
939 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000940 }
danielk1977266664d2006-02-10 08:24:21 +0000941 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000942 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000943 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000944 *pRC = rc;
945 return;
danielk1977afcdd022004-10-31 16:25:42 +0000946 }
danielk19778c666b12008-07-18 09:34:57 +0000947 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000948 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000949 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000950 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000951 }
drhfc243732011-05-17 15:21:56 +0000952 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000953 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000954
drh615ae552005-01-16 23:21:00 +0000955 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
956 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000957 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000958 if( rc==SQLITE_OK ){
959 pPtrmap[offset] = eType;
960 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000961 }
danielk1977afcdd022004-10-31 16:25:42 +0000962 }
963
drh4925a552009-07-07 11:39:58 +0000964ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000965 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000966}
967
968/*
969** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000970**
971** This routine retrieves the pointer map entry for page 'key', writing
972** the type and parent page number to *pEType and *pPgno respectively.
973** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000974*/
danielk1977aef0bf62005-12-30 16:28:01 +0000975static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000976 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000977 int iPtrmap; /* Pointer map page index */
978 u8 *pPtrmap; /* Pointer map page data */
979 int offset; /* Offset of entry in pointer map */
980 int rc;
981
drh1fee73e2007-08-29 04:00:57 +0000982 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000983
danielk1977266664d2006-02-10 08:24:21 +0000984 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000985 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000986 if( rc!=0 ){
987 return rc;
988 }
danielk19773b8a05f2007-03-19 17:44:26 +0000989 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000990
danielk19778c666b12008-07-18 09:34:57 +0000991 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000992 if( offset<0 ){
993 sqlite3PagerUnref(pDbPage);
994 return SQLITE_CORRUPT_BKPT;
995 }
996 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000997 assert( pEType!=0 );
998 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000999 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001000
danielk19773b8a05f2007-03-19 17:44:26 +00001001 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001002 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001003 return SQLITE_OK;
1004}
1005
danielk197785d90ca2008-07-19 14:25:15 +00001006#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001007 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001008 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001009 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001010#endif
danielk1977afcdd022004-10-31 16:25:42 +00001011
drh0d316a42002-08-11 20:10:47 +00001012/*
drh271efa52004-05-30 19:19:05 +00001013** Given a btree page and a cell index (0 means the first cell on
1014** the page, 1 means the second cell, and so forth) return a pointer
1015** to the cell content.
1016**
drhf44890a2015-06-27 03:58:15 +00001017** findCellPastPtr() does the same except it skips past the initial
1018** 4-byte child pointer found on interior pages, if there is one.
1019**
drh271efa52004-05-30 19:19:05 +00001020** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001021*/
drh1688c862008-07-18 02:44:17 +00001022#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001023 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001024#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001025 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001026
drh43605152004-05-29 21:46:49 +00001027
1028/*
drh5fa60512015-06-19 17:19:34 +00001029** This is common tail processing for btreeParseCellPtr() and
1030** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1031** on a single B-tree page. Make necessary adjustments to the CellInfo
1032** structure.
drh43605152004-05-29 21:46:49 +00001033*/
drh5fa60512015-06-19 17:19:34 +00001034static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1035 MemPage *pPage, /* Page containing the cell */
1036 u8 *pCell, /* Pointer to the cell text. */
1037 CellInfo *pInfo /* Fill in this structure */
1038){
1039 /* If the payload will not fit completely on the local page, we have
1040 ** to decide how much to store locally and how much to spill onto
1041 ** overflow pages. The strategy is to minimize the amount of unused
1042 ** space on overflow pages while keeping the amount of local storage
1043 ** in between minLocal and maxLocal.
1044 **
1045 ** Warning: changing the way overflow payload is distributed in any
1046 ** way will result in an incompatible file format.
1047 */
1048 int minLocal; /* Minimum amount of payload held locally */
1049 int maxLocal; /* Maximum amount of payload held locally */
1050 int surplus; /* Overflow payload available for local storage */
1051
1052 minLocal = pPage->minLocal;
1053 maxLocal = pPage->maxLocal;
1054 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1055 testcase( surplus==maxLocal );
1056 testcase( surplus==maxLocal+1 );
1057 if( surplus <= maxLocal ){
1058 pInfo->nLocal = (u16)surplus;
1059 }else{
1060 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001061 }
drh45ac1c72015-12-18 03:59:16 +00001062 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001063}
1064
1065/*
drh5fa60512015-06-19 17:19:34 +00001066** The following routines are implementations of the MemPage.xParseCell()
1067** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001068**
drh5fa60512015-06-19 17:19:34 +00001069** Parse a cell content block and fill in the CellInfo structure.
1070**
1071** btreeParseCellPtr() => table btree leaf nodes
1072** btreeParseCellNoPayload() => table btree internal nodes
1073** btreeParseCellPtrIndex() => index btree nodes
1074**
1075** There is also a wrapper function btreeParseCell() that works for
1076** all MemPage types and that references the cell by index rather than
1077** by pointer.
drh43605152004-05-29 21:46:49 +00001078*/
drh5fa60512015-06-19 17:19:34 +00001079static void btreeParseCellPtrNoPayload(
1080 MemPage *pPage, /* Page containing the cell */
1081 u8 *pCell, /* Pointer to the cell text. */
1082 CellInfo *pInfo /* Fill in this structure */
1083){
1084 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1085 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001086 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001087#ifndef SQLITE_DEBUG
1088 UNUSED_PARAMETER(pPage);
1089#endif
drh5fa60512015-06-19 17:19:34 +00001090 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1091 pInfo->nPayload = 0;
1092 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001093 pInfo->pPayload = 0;
1094 return;
1095}
danielk197730548662009-07-09 05:07:37 +00001096static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001097 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001098 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001099 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001100){
drh3e28ff52014-09-24 00:59:08 +00001101 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001102 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001103 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001104
drh1fee73e2007-08-29 04:00:57 +00001105 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001106 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001107 assert( pPage->intKeyLeaf );
1108 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001109 pIter = pCell;
1110
1111 /* The next block of code is equivalent to:
1112 **
1113 ** pIter += getVarint32(pIter, nPayload);
1114 **
1115 ** The code is inlined to avoid a function call.
1116 */
1117 nPayload = *pIter;
1118 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001119 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001120 nPayload &= 0x7f;
1121 do{
1122 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1123 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001124 }
drh56cb04e2015-06-19 18:24:37 +00001125 pIter++;
1126
1127 /* The next block of code is equivalent to:
1128 **
1129 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1130 **
1131 ** The code is inlined to avoid a function call.
1132 */
1133 iKey = *pIter;
1134 if( iKey>=0x80 ){
1135 u8 *pEnd = &pIter[7];
1136 iKey &= 0x7f;
1137 while(1){
1138 iKey = (iKey<<7) | (*++pIter & 0x7f);
1139 if( (*pIter)<0x80 ) break;
1140 if( pIter>=pEnd ){
1141 iKey = (iKey<<8) | *++pIter;
1142 break;
1143 }
1144 }
1145 }
1146 pIter++;
1147
1148 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001149 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001150 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001151 testcase( nPayload==pPage->maxLocal );
1152 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001153 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001154 /* This is the (easy) common case where the entire payload fits
1155 ** on the local page. No overflow is required.
1156 */
drhab1cc582014-09-23 21:25:19 +00001157 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1158 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001159 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001160 }else{
drh5fa60512015-06-19 17:19:34 +00001161 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001162 }
drh3aac2dd2004-04-26 14:10:20 +00001163}
drh5fa60512015-06-19 17:19:34 +00001164static void btreeParseCellPtrIndex(
1165 MemPage *pPage, /* Page containing the cell */
1166 u8 *pCell, /* Pointer to the cell text. */
1167 CellInfo *pInfo /* Fill in this structure */
1168){
1169 u8 *pIter; /* For scanning through pCell */
1170 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001171
drh5fa60512015-06-19 17:19:34 +00001172 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1173 assert( pPage->leaf==0 || pPage->leaf==1 );
1174 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001175 pIter = pCell + pPage->childPtrSize;
1176 nPayload = *pIter;
1177 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001178 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001179 nPayload &= 0x7f;
1180 do{
1181 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1182 }while( *(pIter)>=0x80 && pIter<pEnd );
1183 }
1184 pIter++;
1185 pInfo->nKey = nPayload;
1186 pInfo->nPayload = nPayload;
1187 pInfo->pPayload = pIter;
1188 testcase( nPayload==pPage->maxLocal );
1189 testcase( nPayload==pPage->maxLocal+1 );
1190 if( nPayload<=pPage->maxLocal ){
1191 /* This is the (easy) common case where the entire payload fits
1192 ** on the local page. No overflow is required.
1193 */
1194 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1195 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1196 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001197 }else{
1198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001199 }
1200}
danielk197730548662009-07-09 05:07:37 +00001201static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001202 MemPage *pPage, /* Page containing the cell */
1203 int iCell, /* The cell index. First cell is 0 */
1204 CellInfo *pInfo /* Fill in this structure */
1205){
drh5fa60512015-06-19 17:19:34 +00001206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001207}
drh3aac2dd2004-04-26 14:10:20 +00001208
1209/*
drh5fa60512015-06-19 17:19:34 +00001210** The following routines are implementations of the MemPage.xCellSize
1211** method.
1212**
drh43605152004-05-29 21:46:49 +00001213** Compute the total number of bytes that a Cell needs in the cell
1214** data area of the btree-page. The return number includes the cell
1215** data header and the local payload, but not any overflow page or
1216** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001217**
drh5fa60512015-06-19 17:19:34 +00001218** cellSizePtrNoPayload() => table internal nodes
1219** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001220*/
danielk1977ae5558b2009-04-29 11:31:47 +00001221static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1223 u8 *pEnd; /* End mark for a varint */
1224 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001225
1226#ifdef SQLITE_DEBUG
1227 /* The value returned by this function should always be the same as
1228 ** the (CellInfo.nSize) value found by doing a full parse of the
1229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1230 ** this function verifies that this invariant is not violated. */
1231 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001232 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001233#endif
1234
drh3e28ff52014-09-24 00:59:08 +00001235 nSize = *pIter;
1236 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001237 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001238 nSize &= 0x7f;
1239 do{
1240 nSize = (nSize<<7) | (*++pIter & 0x7f);
1241 }while( *(pIter)>=0x80 && pIter<pEnd );
1242 }
1243 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001244 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001245 /* pIter now points at the 64-bit integer key value, a variable length
1246 ** integer. The following block moves pIter to point at the first byte
1247 ** past the end of the key value. */
1248 pEnd = &pIter[9];
1249 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001250 }
drh0a45c272009-07-08 01:49:11 +00001251 testcase( nSize==pPage->maxLocal );
1252 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001253 if( nSize<=pPage->maxLocal ){
1254 nSize += (u32)(pIter - pCell);
1255 if( nSize<4 ) nSize = 4;
1256 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001257 int minLocal = pPage->minLocal;
1258 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001259 testcase( nSize==pPage->maxLocal );
1260 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001261 if( nSize>pPage->maxLocal ){
1262 nSize = minLocal;
1263 }
drh3e28ff52014-09-24 00:59:08 +00001264 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001265 }
drhdc41d602014-09-22 19:51:35 +00001266 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001267 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001268}
drh25ada072015-06-19 15:07:14 +00001269static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1270 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1271 u8 *pEnd; /* End mark for a varint */
1272
1273#ifdef SQLITE_DEBUG
1274 /* The value returned by this function should always be the same as
1275 ** the (CellInfo.nSize) value found by doing a full parse of the
1276 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1277 ** this function verifies that this invariant is not violated. */
1278 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001279 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001280#else
1281 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001282#endif
1283
1284 assert( pPage->childPtrSize==4 );
1285 pEnd = pIter + 9;
1286 while( (*pIter++)&0x80 && pIter<pEnd );
1287 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1288 return (u16)(pIter - pCell);
1289}
1290
drh0ee3dbe2009-10-16 15:05:18 +00001291
1292#ifdef SQLITE_DEBUG
1293/* This variation on cellSizePtr() is used inside of assert() statements
1294** only. */
drha9121e42008-02-19 14:59:35 +00001295static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001296 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001297}
danielk1977bc6ada42004-06-30 08:20:16 +00001298#endif
drh3b7511c2001-05-26 13:15:44 +00001299
danielk197779a40da2005-01-16 08:00:01 +00001300#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001301/*
danielk197726836652005-01-17 01:33:13 +00001302** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001303** to an overflow page, insert an entry into the pointer-map
1304** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001305*/
drh98add2e2009-07-20 17:11:49 +00001306static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001307 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001308 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001309 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001310 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001311 if( info.nLocal<info.nPayload ){
1312 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001313 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001314 }
danielk1977ac11ee62005-01-15 12:45:51 +00001315}
danielk197779a40da2005-01-16 08:00:01 +00001316#endif
1317
danielk1977ac11ee62005-01-15 12:45:51 +00001318
drhda200cc2004-05-09 11:51:38 +00001319/*
dane6d065a2017-02-24 19:58:22 +00001320** Defragment the page given. This routine reorganizes cells within the
1321** page so that there are no free-blocks on the free-block list.
1322**
1323** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1324** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001325**
1326** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1327** b-tree page so that there are no freeblocks or fragment bytes, all
1328** unused bytes are contained in the unallocated space region, and all
1329** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001330*/
dane6d065a2017-02-24 19:58:22 +00001331static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001332 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001333 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001334 int hdr; /* Offset to the page header */
1335 int size; /* Size of a cell */
1336 int usableSize; /* Number of usable bytes on a page */
1337 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001338 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001339 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001340 unsigned char *data; /* The page data */
1341 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001342 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001343 int iCellFirst; /* First allowable cell index */
1344 int iCellLast; /* Last possible cell index */
1345
danielk19773b8a05f2007-03-19 17:44:26 +00001346 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001347 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001348 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001349 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001351 temp = 0;
1352 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001353 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001354 cellOffset = pPage->cellOffset;
1355 nCell = pPage->nCell;
1356 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001357 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001358 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001359
1360 /* This block handles pages with two or fewer free blocks and nMaxFrag
1361 ** or fewer fragmented bytes. In this case it is faster to move the
1362 ** two (or one) blocks of cells using memmove() and add the required
1363 ** offsets to each pointer in the cell-pointer array than it is to
1364 ** reconstruct the entire page. */
1365 if( (int)data[hdr+7]<=nMaxFrag ){
1366 int iFree = get2byte(&data[hdr+1]);
1367 if( iFree ){
1368 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001369
1370 /* pageFindSlot() has already verified that free blocks are sorted
1371 ** in order of offset within the page, and that no block extends
1372 ** past the end of the page. Provided the two free slots do not
1373 ** overlap, this guarantees that the memmove() calls below will not
1374 ** overwrite the usableSize byte buffer, even if the database page
1375 ** is corrupt. */
1376 assert( iFree2==0 || iFree2>iFree );
1377 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1378 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1379
dane6d065a2017-02-24 19:58:22 +00001380 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1381 u8 *pEnd = &data[cellOffset + nCell*2];
1382 u8 *pAddr;
1383 int sz2 = 0;
1384 int sz = get2byte(&data[iFree+2]);
1385 int top = get2byte(&data[hdr+5]);
1386 if( iFree2 ){
dan30741eb2017-03-03 20:02:53 +00001387 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_BKPT;
dane6d065a2017-02-24 19:58:22 +00001388 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001389 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001390 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1391 sz += sz2;
1392 }
1393 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001394 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001395 memmove(&data[cbrk], &data[top], iFree-top);
1396 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1397 pc = get2byte(pAddr);
1398 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1399 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1400 }
1401 goto defragment_out;
1402 }
1403 }
1404 }
1405
drh281b21d2008-08-22 12:57:08 +00001406 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001407 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001408 for(i=0; i<nCell; i++){
1409 u8 *pAddr; /* The i-th cell pointer */
1410 pAddr = &data[cellOffset + i*2];
1411 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001412 testcase( pc==iCellFirst );
1413 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001414 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001415 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001416 */
1417 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001418 return SQLITE_CORRUPT_BKPT;
1419 }
drh17146622009-07-07 17:38:38 +00001420 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001421 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001422 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001423 if( cbrk<iCellFirst || pc+size>usableSize ){
1424 return SQLITE_CORRUPT_BKPT;
1425 }
drh7157e1d2009-07-09 13:25:32 +00001426 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001427 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001428 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001429 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001430 if( temp==0 ){
1431 int x;
1432 if( cbrk==pc ) continue;
1433 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1434 x = get2byte(&data[hdr+5]);
1435 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1436 src = temp;
1437 }
1438 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001439 }
dane6d065a2017-02-24 19:58:22 +00001440 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001441
1442 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001443 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1444 return SQLITE_CORRUPT_BKPT;
1445 }
drh17146622009-07-07 17:38:38 +00001446 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001447 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001448 data[hdr+1] = 0;
1449 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001450 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001451 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001452 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001453}
1454
drha059ad02001-04-17 20:09:11 +00001455/*
dan8e9ba0c2014-10-14 17:27:04 +00001456** Search the free-list on page pPg for space to store a cell nByte bytes in
1457** size. If one can be found, return a pointer to the space and remove it
1458** from the free-list.
1459**
1460** If no suitable space can be found on the free-list, return NULL.
1461**
drhba0f9992014-10-30 20:48:44 +00001462** This function may detect corruption within pPg. If corruption is
1463** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001464**
drhb7580e82015-06-25 18:36:13 +00001465** Slots on the free list that are between 1 and 3 bytes larger than nByte
1466** will be ignored if adding the extra space to the fragmentation count
1467** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001468*/
drhb7580e82015-06-25 18:36:13 +00001469static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001470 const int hdr = pPg->hdrOffset;
1471 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001472 int iAddr = hdr + 1;
1473 int pc = get2byte(&aData[iAddr]);
1474 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001475 int usableSize = pPg->pBt->usableSize;
1476
drhb7580e82015-06-25 18:36:13 +00001477 assert( pc>0 );
1478 do{
dan8e9ba0c2014-10-14 17:27:04 +00001479 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001480 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1481 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001482 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001483 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001484 return 0;
1485 }
drh113762a2014-11-19 16:36:25 +00001486 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1487 ** freeblock form a big-endian integer which is the size of the freeblock
1488 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001489 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001490 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001491 testcase( x==4 );
1492 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001493 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1494 *pRc = SQLITE_CORRUPT_BKPT;
1495 return 0;
1496 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001497 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1498 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001499 if( aData[hdr+7]>57 ) return 0;
1500
dan8e9ba0c2014-10-14 17:27:04 +00001501 /* Remove the slot from the free-list. Update the number of
1502 ** fragmented bytes within the page. */
1503 memcpy(&aData[iAddr], &aData[pc], 2);
1504 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001505 }else{
1506 /* The slot remains on the free-list. Reduce its size to account
1507 ** for the portion used by the new allocation. */
1508 put2byte(&aData[pc+2], x);
1509 }
1510 return &aData[pc + x];
1511 }
drhb7580e82015-06-25 18:36:13 +00001512 iAddr = pc;
1513 pc = get2byte(&aData[pc]);
1514 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001515
1516 return 0;
1517}
1518
1519/*
danielk19776011a752009-04-01 16:25:32 +00001520** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001521** as the first argument. Write into *pIdx the index into pPage->aData[]
1522** of the first byte of allocated space. Return either SQLITE_OK or
1523** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001524**
drh0a45c272009-07-08 01:49:11 +00001525** The caller guarantees that there is sufficient space to make the
1526** allocation. This routine might need to defragment in order to bring
1527** all the space together, however. This routine will avoid using
1528** the first two bytes past the cell pointer area since presumably this
1529** allocation is being made in order to insert a new cell, so we will
1530** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001531*/
drh0a45c272009-07-08 01:49:11 +00001532static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001533 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1534 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001535 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001536 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001537 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001538
danielk19773b8a05f2007-03-19 17:44:26 +00001539 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001540 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001541 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001542 assert( nByte>=0 ); /* Minimum cell size is 4 */
1543 assert( pPage->nFree>=nByte );
1544 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001545 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001546
drh0a45c272009-07-08 01:49:11 +00001547 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1548 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001549 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001550 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1551 ** and the reserved space is zero (the usual value for reserved space)
1552 ** then the cell content offset of an empty page wants to be 65536.
1553 ** However, that integer is too large to be stored in a 2-byte unsigned
1554 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001555 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001556 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001557 if( gap>top ){
1558 if( top==0 && pPage->pBt->usableSize==65536 ){
1559 top = 65536;
1560 }else{
1561 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001562 }
1563 }
drh43605152004-05-29 21:46:49 +00001564
drh4c04f3c2014-08-20 11:56:14 +00001565 /* If there is enough space between gap and top for one more cell pointer
1566 ** array entry offset, and if the freelist is not empty, then search the
1567 ** freelist looking for a free slot big enough to satisfy the request.
1568 */
drh5e2f8b92001-05-28 00:41:15 +00001569 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001570 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001571 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001572 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001573 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001574 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001575 assert( pSpace>=data && (pSpace - data)<65536 );
1576 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001577 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001578 }else if( rc ){
1579 return rc;
drh9e572e62004-04-23 23:43:10 +00001580 }
1581 }
drh43605152004-05-29 21:46:49 +00001582
drh4c04f3c2014-08-20 11:56:14 +00001583 /* The request could not be fulfilled using a freelist slot. Check
1584 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001585 */
1586 testcase( gap+2+nByte==top );
1587 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001588 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001589 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001590 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001591 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001592 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001593 }
1594
1595
drh43605152004-05-29 21:46:49 +00001596 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001597 ** and the cell content area. The btreeInitPage() call has already
1598 ** validated the freelist. Given that the freelist is valid, there
1599 ** is no way that the allocation can extend off the end of the page.
1600 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001601 */
drh0a45c272009-07-08 01:49:11 +00001602 top -= nByte;
drh43605152004-05-29 21:46:49 +00001603 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001604 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001605 *pIdx = top;
1606 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001607}
1608
1609/*
drh9e572e62004-04-23 23:43:10 +00001610** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001611** The first byte of the new free block is pPage->aData[iStart]
1612** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001613**
drh5f5c7532014-08-20 17:56:27 +00001614** Adjacent freeblocks are coalesced.
1615**
1616** Note that even though the freeblock list was checked by btreeInitPage(),
1617** that routine will not detect overlap between cells or freeblocks. Nor
1618** does it detect cells or freeblocks that encrouch into the reserved bytes
1619** at the end of the page. So do additional corruption checks inside this
1620** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001621*/
drh5f5c7532014-08-20 17:56:27 +00001622static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001623 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001624 u16 iFreeBlk; /* Address of the next freeblock */
1625 u8 hdr; /* Page header size. 0 or 100 */
1626 u8 nFrag = 0; /* Reduction in fragmentation */
1627 u16 iOrigSize = iSize; /* Original value of iSize */
1628 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1629 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001630 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001631
drh9e572e62004-04-23 23:43:10 +00001632 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001633 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001634 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001635 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001637 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001638 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001639
drh5f5c7532014-08-20 17:56:27 +00001640 /* Overwrite deleted information with zeros when the secure_delete
1641 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001642 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001643 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001644 }
drhfcce93f2006-02-22 03:08:32 +00001645
drh5f5c7532014-08-20 17:56:27 +00001646 /* The list of freeblocks must be in ascending order. Find the
1647 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001648 */
drh43605152004-05-29 21:46:49 +00001649 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001650 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001651 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1652 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1653 }else{
drh85f071b2016-09-17 19:34:32 +00001654 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1655 if( iFreeBlk<iPtr+4 ){
1656 if( iFreeBlk==0 ) break;
1657 return SQLITE_CORRUPT_BKPT;
1658 }
drh7bc4c452014-08-20 18:43:44 +00001659 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001660 }
drh7bc4c452014-08-20 18:43:44 +00001661 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1662 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1663
1664 /* At this point:
1665 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001666 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001667 **
1668 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1669 */
1670 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1671 nFrag = iFreeBlk - iEnd;
1672 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1673 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001674 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001675 iSize = iEnd - iStart;
1676 iFreeBlk = get2byte(&data[iFreeBlk]);
1677 }
1678
drh3f387402014-09-24 01:23:00 +00001679 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1680 ** pointer in the page header) then check to see if iStart should be
1681 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001682 */
1683 if( iPtr>hdr+1 ){
1684 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1685 if( iPtrEnd+3>=iStart ){
1686 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1687 nFrag += iStart - iPtrEnd;
1688 iSize = iEnd - iPtr;
1689 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001690 }
drh9e572e62004-04-23 23:43:10 +00001691 }
drh7bc4c452014-08-20 18:43:44 +00001692 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1693 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001694 }
drh7bc4c452014-08-20 18:43:44 +00001695 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001696 /* The new freeblock is at the beginning of the cell content area,
1697 ** so just extend the cell content area rather than create another
1698 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001699 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001700 put2byte(&data[hdr+1], iFreeBlk);
1701 put2byte(&data[hdr+5], iEnd);
1702 }else{
1703 /* Insert the new freeblock into the freelist */
1704 put2byte(&data[iPtr], iStart);
1705 put2byte(&data[iStart], iFreeBlk);
1706 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001707 }
drh5f5c7532014-08-20 17:56:27 +00001708 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001709 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001710}
1711
1712/*
drh271efa52004-05-30 19:19:05 +00001713** Decode the flags byte (the first byte of the header) for a page
1714** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001715**
1716** Only the following combinations are supported. Anything different
1717** indicates a corrupt database files:
1718**
1719** PTF_ZERODATA
1720** PTF_ZERODATA | PTF_LEAF
1721** PTF_LEAFDATA | PTF_INTKEY
1722** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001723*/
drh44845222008-07-17 18:39:57 +00001724static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001725 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001726
1727 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001728 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001729 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001730 flagByte &= ~PTF_LEAF;
1731 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001732 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001733 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001734 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001735 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1736 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001737 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001738 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1739 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001740 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001741 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001742 if( pPage->leaf ){
1743 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001744 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001745 }else{
1746 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001747 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001748 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001749 }
drh271efa52004-05-30 19:19:05 +00001750 pPage->maxLocal = pBt->maxLeaf;
1751 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001752 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001753 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1754 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001755 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001756 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1757 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001758 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001759 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001760 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001761 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001762 pPage->maxLocal = pBt->maxLocal;
1763 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001764 }else{
drhfdab0262014-11-20 15:30:50 +00001765 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1766 ** an error. */
drh44845222008-07-17 18:39:57 +00001767 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001768 }
drhc9166342012-01-05 23:32:06 +00001769 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001770 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001771}
1772
1773/*
drh7e3b0a02001-04-28 16:52:40 +00001774** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001775**
1776** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001777** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001778** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1779** guarantee that the page is well-formed. It only shows that
1780** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001781*/
danielk197730548662009-07-09 05:07:37 +00001782static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001783
danielk197771d5d2c2008-09-29 11:49:47 +00001784 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001785 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001786 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001787 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001788 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1789 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001790
1791 if( !pPage->isInit ){
drh380c08e2016-12-13 20:30:29 +00001792 int pc; /* Address of a freeblock within pPage->aData[] */
drhf49661a2008-12-10 16:45:50 +00001793 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001794 u8 *data; /* Equal to pPage->aData */
1795 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001796 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001797 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001798 int nFree; /* Number of unused bytes on the page */
1799 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001800 int iCellFirst; /* First allowable cell or freeblock offset */
1801 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001802
1803 pBt = pPage->pBt;
1804
danielk1977eaa06f62008-09-18 17:34:44 +00001805 hdr = pPage->hdrOffset;
1806 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001807 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1808 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001809 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001810 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1811 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001812 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001813 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001814 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001815 pPage->aDataEnd = &data[usableSize];
1816 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001817 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001818 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1819 ** the start of the cell content area. A zero value for this integer is
1820 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001821 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001822 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1823 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 pPage->nCell = get2byte(&data[hdr+3]);
1825 if( pPage->nCell>MX_CELL(pBt) ){
1826 /* To many cells for a single page. The page must be corrupt */
1827 return SQLITE_CORRUPT_BKPT;
1828 }
drhb908d762009-07-08 16:54:40 +00001829 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001830 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1831 ** possible for a root page of a table that contains no rows) then the
1832 ** offset to the cell content area will equal the page size minus the
1833 ** bytes of reserved space. */
1834 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001835
shane5eff7cf2009-08-10 03:57:58 +00001836 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001837 ** of page when parsing a cell.
1838 **
1839 ** The following block of code checks early to see if a cell extends
1840 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1841 ** returned if it does.
1842 */
drh0a45c272009-07-08 01:49:11 +00001843 iCellFirst = cellOffset + 2*pPage->nCell;
1844 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001845 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001846 int i; /* Index into the cell pointer array */
1847 int sz; /* Size of a cell */
1848
drh69e931e2009-06-03 21:04:35 +00001849 if( !pPage->leaf ) iCellLast--;
1850 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001851 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001852 testcase( pc==iCellFirst );
1853 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001854 if( pc<iCellFirst || pc>iCellLast ){
1855 return SQLITE_CORRUPT_BKPT;
1856 }
drh25ada072015-06-19 15:07:14 +00001857 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001858 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001859 if( pc+sz>usableSize ){
1860 return SQLITE_CORRUPT_BKPT;
1861 }
1862 }
drh0a45c272009-07-08 01:49:11 +00001863 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001864 }
drh69e931e2009-06-03 21:04:35 +00001865
drhfdab0262014-11-20 15:30:50 +00001866 /* Compute the total free space on the page
1867 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1868 ** start of the first freeblock on the page, or is zero if there are no
1869 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001870 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001871 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
drh77dc0ed2016-12-12 01:30:01 +00001872 if( pc>0 ){
1873 u32 next, size;
1874 if( pc<iCellFirst ){
drhfdab0262014-11-20 15:30:50 +00001875 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1876 ** always be at least one cell before the first freeblock.
drhfdab0262014-11-20 15:30:50 +00001877 */
danielk1977eaa06f62008-09-18 17:34:44 +00001878 return SQLITE_CORRUPT_BKPT;
1879 }
drh77dc0ed2016-12-12 01:30:01 +00001880 while( 1 ){
1881 if( pc>iCellLast ){
1882 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */
1883 }
1884 next = get2byte(&data[pc]);
1885 size = get2byte(&data[pc+2]);
1886 nFree = nFree + size;
1887 if( next<=pc+size+3 ) break;
1888 pc = next;
danielk1977eaa06f62008-09-18 17:34:44 +00001889 }
drh77dc0ed2016-12-12 01:30:01 +00001890 if( next>0 ){
1891 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */
1892 }
drh380c08e2016-12-13 20:30:29 +00001893 if( pc+size>(unsigned int)usableSize ){
drh77dc0ed2016-12-12 01:30:01 +00001894 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */
1895 }
danielk1977eaa06f62008-09-18 17:34:44 +00001896 }
danielk197793c829c2009-06-03 17:26:17 +00001897
1898 /* At this point, nFree contains the sum of the offset to the start
1899 ** of the cell-content area plus the number of free bytes within
1900 ** the cell-content area. If this is greater than the usable-size
1901 ** of the page, then the page must be corrupted. This check also
1902 ** serves to verify that the offset to the start of the cell-content
1903 ** area, according to the page header, lies within the page.
1904 */
1905 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001906 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001907 }
shane5eff7cf2009-08-10 03:57:58 +00001908 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001909 pPage->isInit = 1;
1910 }
drh9e572e62004-04-23 23:43:10 +00001911 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001912}
1913
1914/*
drh8b2f49b2001-06-08 00:21:52 +00001915** Set up a raw page so that it looks like a database page holding
1916** no entries.
drhbd03cae2001-06-02 02:40:57 +00001917*/
drh9e572e62004-04-23 23:43:10 +00001918static void zeroPage(MemPage *pPage, int flags){
1919 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001920 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001921 u8 hdr = pPage->hdrOffset;
1922 u16 first;
drh9e572e62004-04-23 23:43:10 +00001923
danielk19773b8a05f2007-03-19 17:44:26 +00001924 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001925 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1926 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001927 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001928 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001929 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001930 memset(&data[hdr], 0, pBt->usableSize - hdr);
1931 }
drh1bd10f82008-12-10 21:19:56 +00001932 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001933 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001934 memset(&data[hdr+1], 0, 4);
1935 data[hdr+7] = 0;
1936 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001937 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001938 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001939 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001940 pPage->aDataEnd = &data[pBt->usableSize];
1941 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001942 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001943 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001944 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1945 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001946 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001947 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001948}
1949
drh897a8202008-09-18 01:08:15 +00001950
1951/*
1952** Convert a DbPage obtained from the pager into a MemPage used by
1953** the btree layer.
1954*/
1955static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1956 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001957 if( pgno!=pPage->pgno ){
1958 pPage->aData = sqlite3PagerGetData(pDbPage);
1959 pPage->pDbPage = pDbPage;
1960 pPage->pBt = pBt;
1961 pPage->pgno = pgno;
1962 pPage->hdrOffset = pgno==1 ? 100 : 0;
1963 }
1964 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001965 return pPage;
1966}
1967
drhbd03cae2001-06-02 02:40:57 +00001968/*
drh3aac2dd2004-04-26 14:10:20 +00001969** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001970** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001971**
drh7e8c6f12015-05-28 03:28:27 +00001972** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1973** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001974** to fetch the content. Just fill in the content with zeros for now.
1975** If in the future we call sqlite3PagerWrite() on this page, that
1976** means we have started to be concerned about content and the disk
1977** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001978*/
danielk197730548662009-07-09 05:07:37 +00001979static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001980 BtShared *pBt, /* The btree */
1981 Pgno pgno, /* Number of the page to fetch */
1982 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001983 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001984){
drh3aac2dd2004-04-26 14:10:20 +00001985 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001986 DbPage *pDbPage;
1987
drhb00fc3b2013-08-21 23:42:32 +00001988 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001989 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001990 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001991 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001992 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001993 return SQLITE_OK;
1994}
1995
1996/*
danielk1977bea2a942009-01-20 17:06:27 +00001997** Retrieve a page from the pager cache. If the requested page is not
1998** already in the pager cache return NULL. Initialize the MemPage.pBt and
1999** MemPage.aData elements if needed.
2000*/
2001static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2002 DbPage *pDbPage;
2003 assert( sqlite3_mutex_held(pBt->mutex) );
2004 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2005 if( pDbPage ){
2006 return btreePageFromDbPage(pDbPage, pgno, pBt);
2007 }
2008 return 0;
2009}
2010
2011/*
danielk197789d40042008-11-17 14:20:56 +00002012** Return the size of the database file in pages. If there is any kind of
2013** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002014*/
drhb1299152010-03-30 22:58:33 +00002015static Pgno btreePagecount(BtShared *pBt){
2016 return pBt->nPage;
2017}
2018u32 sqlite3BtreeLastPage(Btree *p){
2019 assert( sqlite3BtreeHoldsMutex(p) );
2020 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002021 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002022}
2023
2024/*
drh28f58dd2015-06-27 19:45:03 +00002025** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002026**
drh15a00212015-06-27 20:55:00 +00002027** If pCur!=0 then the page is being fetched as part of a moveToChild()
2028** call. Do additional sanity checking on the page in this case.
2029** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002030**
2031** The page is fetched as read-write unless pCur is not NULL and is
2032** a read-only cursor.
2033**
2034** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002035** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002036*/
2037static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002038 BtShared *pBt, /* The database file */
2039 Pgno pgno, /* Number of the page to get */
2040 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002041 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2042 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002043){
2044 int rc;
drh28f58dd2015-06-27 19:45:03 +00002045 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002046 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002047 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2048 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002049 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002050
danba3cbf32010-06-30 04:29:03 +00002051 if( pgno>btreePagecount(pBt) ){
2052 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002053 goto getAndInitPage_error;
2054 }
drh9584f582015-11-04 20:22:37 +00002055 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002056 if( rc ){
2057 goto getAndInitPage_error;
2058 }
drh8dd1c252015-11-04 22:31:02 +00002059 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002060 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002061 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002062 rc = btreeInitPage(*ppPage);
2063 if( rc!=SQLITE_OK ){
2064 releasePage(*ppPage);
2065 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002066 }
drhee696e22004-08-30 16:52:17 +00002067 }
drh8dd1c252015-11-04 22:31:02 +00002068 assert( (*ppPage)->pgno==pgno );
2069 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002070
drh15a00212015-06-27 20:55:00 +00002071 /* If obtaining a child page for a cursor, we must verify that the page is
2072 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002073 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002074 rc = SQLITE_CORRUPT_BKPT;
2075 releasePage(*ppPage);
2076 goto getAndInitPage_error;
2077 }
drh28f58dd2015-06-27 19:45:03 +00002078 return SQLITE_OK;
2079
2080getAndInitPage_error:
2081 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002082 testcase( pgno==0 );
2083 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002084 return rc;
2085}
2086
2087/*
drh3aac2dd2004-04-26 14:10:20 +00002088** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002089** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002090*/
drhbbf0f862015-06-27 14:59:26 +00002091static void releasePageNotNull(MemPage *pPage){
2092 assert( pPage->aData );
2093 assert( pPage->pBt );
2094 assert( pPage->pDbPage!=0 );
2095 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2096 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2097 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2098 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002099}
drh3aac2dd2004-04-26 14:10:20 +00002100static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002101 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002102}
2103
2104/*
drh7e8c6f12015-05-28 03:28:27 +00002105** Get an unused page.
2106**
2107** This works just like btreeGetPage() with the addition:
2108**
2109** * If the page is already in use for some other purpose, immediately
2110** release it and return an SQLITE_CURRUPT error.
2111** * Make sure the isInit flag is clear
2112*/
2113static int btreeGetUnusedPage(
2114 BtShared *pBt, /* The btree */
2115 Pgno pgno, /* Number of the page to fetch */
2116 MemPage **ppPage, /* Return the page in this parameter */
2117 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2118){
2119 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2120 if( rc==SQLITE_OK ){
2121 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2122 releasePage(*ppPage);
2123 *ppPage = 0;
2124 return SQLITE_CORRUPT_BKPT;
2125 }
2126 (*ppPage)->isInit = 0;
2127 }else{
2128 *ppPage = 0;
2129 }
2130 return rc;
2131}
2132
drha059ad02001-04-17 20:09:11 +00002133
2134/*
drha6abd042004-06-09 17:37:22 +00002135** During a rollback, when the pager reloads information into the cache
2136** so that the cache is restored to its original state at the start of
2137** the transaction, for each page restored this routine is called.
2138**
2139** This routine needs to reset the extra data section at the end of the
2140** page to agree with the restored data.
2141*/
danielk1977eaa06f62008-09-18 17:34:44 +00002142static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002143 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002144 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002145 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002146 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002148 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002149 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002150 /* pPage might not be a btree page; it might be an overflow page
2151 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002152 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002153 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002154 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002155 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002156 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002157 }
drha6abd042004-06-09 17:37:22 +00002158 }
2159}
2160
2161/*
drhe5fe6902007-12-07 18:55:28 +00002162** Invoke the busy handler for a btree.
2163*/
danielk19771ceedd32008-11-19 10:22:33 +00002164static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002165 BtShared *pBt = (BtShared*)pArg;
2166 assert( pBt->db );
2167 assert( sqlite3_mutex_held(pBt->db->mutex) );
2168 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2169}
2170
2171/*
drhad3e0102004-09-03 23:32:18 +00002172** Open a database file.
2173**
drh382c0242001-10-06 16:33:02 +00002174** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002175** then an ephemeral database is created. The ephemeral database might
2176** be exclusively in memory, or it might use a disk-based memory cache.
2177** Either way, the ephemeral database will be automatically deleted
2178** when sqlite3BtreeClose() is called.
2179**
drhe53831d2007-08-17 01:14:38 +00002180** If zFilename is ":memory:" then an in-memory database is created
2181** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002182**
drh33f111d2012-01-17 15:29:14 +00002183** The "flags" parameter is a bitmask that might contain bits like
2184** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002185**
drhc47fd8e2009-04-30 13:30:32 +00002186** If the database is already opened in the same database connection
2187** and we are in shared cache mode, then the open will fail with an
2188** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2189** objects in the same database connection since doing so will lead
2190** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002191*/
drh23e11ca2004-05-04 17:27:28 +00002192int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002193 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002194 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002195 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002196 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002197 int flags, /* Options */
2198 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002199){
drh7555d8e2009-03-20 13:15:30 +00002200 BtShared *pBt = 0; /* Shared part of btree structure */
2201 Btree *p; /* Handle to return */
2202 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2203 int rc = SQLITE_OK; /* Result code from this function */
2204 u8 nReserve; /* Byte of unused space on each page */
2205 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002206
drh75c014c2010-08-30 15:02:28 +00002207 /* True if opening an ephemeral, temporary database */
2208 const int isTempDb = zFilename==0 || zFilename[0]==0;
2209
danielk1977aef0bf62005-12-30 16:28:01 +00002210 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002211 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002212 */
drhb0a7c9c2010-12-06 21:09:59 +00002213#ifdef SQLITE_OMIT_MEMORYDB
2214 const int isMemdb = 0;
2215#else
2216 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002217 || (isTempDb && sqlite3TempInMemory(db))
2218 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002219#endif
2220
drhe5fe6902007-12-07 18:55:28 +00002221 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002222 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002223 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002224 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2225
2226 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2227 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2228
2229 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2230 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002231
drh75c014c2010-08-30 15:02:28 +00002232 if( isMemdb ){
2233 flags |= BTREE_MEMORY;
2234 }
2235 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2236 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2237 }
drh17435752007-08-16 04:30:38 +00002238 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002239 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002240 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002241 }
2242 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002243 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002244#ifndef SQLITE_OMIT_SHARED_CACHE
2245 p->lock.pBtree = p;
2246 p->lock.iTable = 1;
2247#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002248
drh198bf392006-01-06 21:52:49 +00002249#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002250 /*
2251 ** If this Btree is a candidate for shared cache, try to find an
2252 ** existing BtShared object that we can share with
2253 */
drh4ab9d252012-05-26 20:08:49 +00002254 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002255 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002256 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002257 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002258 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002259 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002260
drhff0587c2007-08-29 17:43:19 +00002261 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002262 if( !zFullPathname ){
2263 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002264 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002265 }
drhafc8b7f2012-05-26 18:06:38 +00002266 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002267 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002268 }else{
2269 rc = sqlite3OsFullPathname(pVfs, zFilename,
2270 nFullPathname, zFullPathname);
2271 if( rc ){
2272 sqlite3_free(zFullPathname);
2273 sqlite3_free(p);
2274 return rc;
2275 }
drh070ad6b2011-11-17 11:43:19 +00002276 }
drh30ddce62011-10-15 00:16:30 +00002277#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002278 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2279 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002280 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002281 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002282#endif
drh78f82d12008-09-02 00:52:52 +00002283 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002284 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002285 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002286 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002287 int iDb;
2288 for(iDb=db->nDb-1; iDb>=0; iDb--){
2289 Btree *pExisting = db->aDb[iDb].pBt;
2290 if( pExisting && pExisting->pBt==pBt ){
2291 sqlite3_mutex_leave(mutexShared);
2292 sqlite3_mutex_leave(mutexOpen);
2293 sqlite3_free(zFullPathname);
2294 sqlite3_free(p);
2295 return SQLITE_CONSTRAINT;
2296 }
2297 }
drhff0587c2007-08-29 17:43:19 +00002298 p->pBt = pBt;
2299 pBt->nRef++;
2300 break;
2301 }
2302 }
2303 sqlite3_mutex_leave(mutexShared);
2304 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002305 }
drhff0587c2007-08-29 17:43:19 +00002306#ifdef SQLITE_DEBUG
2307 else{
2308 /* In debug mode, we mark all persistent databases as sharable
2309 ** even when they are not. This exercises the locking code and
2310 ** gives more opportunity for asserts(sqlite3_mutex_held())
2311 ** statements to find locking problems.
2312 */
2313 p->sharable = 1;
2314 }
2315#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002316 }
2317#endif
drha059ad02001-04-17 20:09:11 +00002318 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002319 /*
2320 ** The following asserts make sure that structures used by the btree are
2321 ** the right size. This is to guard against size changes that result
2322 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002323 */
drh062cf272015-03-23 19:03:51 +00002324 assert( sizeof(i64)==8 );
2325 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002326 assert( sizeof(u32)==4 );
2327 assert( sizeof(u16)==2 );
2328 assert( sizeof(Pgno)==4 );
2329
2330 pBt = sqlite3MallocZero( sizeof(*pBt) );
2331 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002332 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002333 goto btree_open_out;
2334 }
danielk197771d5d2c2008-09-29 11:49:47 +00002335 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002336 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002337 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002338 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002339 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2340 }
2341 if( rc!=SQLITE_OK ){
2342 goto btree_open_out;
2343 }
shanehbd2aaf92010-09-01 02:38:21 +00002344 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002345 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002346 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002347 p->pBt = pBt;
2348
drhe53831d2007-08-17 01:14:38 +00002349 pBt->pCursor = 0;
2350 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002351 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002352#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002353 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002354#endif
drh113762a2014-11-19 16:36:25 +00002355 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2356 ** determined by the 2-byte integer located at an offset of 16 bytes from
2357 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002358 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002359 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2360 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002361 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002362#ifndef SQLITE_OMIT_AUTOVACUUM
2363 /* If the magic name ":memory:" will create an in-memory database, then
2364 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2365 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2366 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2367 ** regular file-name. In this case the auto-vacuum applies as per normal.
2368 */
2369 if( zFilename && !isMemdb ){
2370 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2371 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2372 }
2373#endif
2374 nReserve = 0;
2375 }else{
drh113762a2014-11-19 16:36:25 +00002376 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2377 ** determined by the one-byte unsigned integer found at an offset of 20
2378 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002379 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002380 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002381#ifndef SQLITE_OMIT_AUTOVACUUM
2382 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2383 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2384#endif
2385 }
drhfa9601a2009-06-18 17:22:39 +00002386 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002387 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002388 pBt->usableSize = pBt->pageSize - nReserve;
2389 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002390
2391#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2392 /* Add the new BtShared object to the linked list sharable BtShareds.
2393 */
dan272989b2016-07-06 10:12:02 +00002394 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002395 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002396 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002397 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002398 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002399 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002400 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002401 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002402 goto btree_open_out;
2403 }
drhff0587c2007-08-29 17:43:19 +00002404 }
drhe53831d2007-08-17 01:14:38 +00002405 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002406 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2407 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002408 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002409 }
drheee46cf2004-11-06 00:02:48 +00002410#endif
drh90f5ecb2004-07-22 01:19:35 +00002411 }
danielk1977aef0bf62005-12-30 16:28:01 +00002412
drhcfed7bc2006-03-13 14:28:05 +00002413#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002414 /* If the new Btree uses a sharable pBtShared, then link the new
2415 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002416 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002417 */
drhe53831d2007-08-17 01:14:38 +00002418 if( p->sharable ){
2419 int i;
2420 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002421 for(i=0; i<db->nDb; i++){
2422 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002423 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002424 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002425 p->pNext = pSib;
2426 p->pPrev = 0;
2427 pSib->pPrev = p;
2428 }else{
drh3bfa7e82016-03-22 14:37:59 +00002429 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002430 pSib = pSib->pNext;
2431 }
2432 p->pNext = pSib->pNext;
2433 p->pPrev = pSib;
2434 if( p->pNext ){
2435 p->pNext->pPrev = p;
2436 }
2437 pSib->pNext = p;
2438 }
2439 break;
2440 }
2441 }
danielk1977aef0bf62005-12-30 16:28:01 +00002442 }
danielk1977aef0bf62005-12-30 16:28:01 +00002443#endif
2444 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002445
2446btree_open_out:
2447 if( rc!=SQLITE_OK ){
2448 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002449 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002450 }
drh17435752007-08-16 04:30:38 +00002451 sqlite3_free(pBt);
2452 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002453 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002454 }else{
dan0f5a1862016-08-13 14:30:23 +00002455 sqlite3_file *pFile;
2456
drh75c014c2010-08-30 15:02:28 +00002457 /* If the B-Tree was successfully opened, set the pager-cache size to the
2458 ** default value. Except, when opening on an existing shared pager-cache,
2459 ** do not change the pager-cache size.
2460 */
2461 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2462 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2463 }
dan0f5a1862016-08-13 14:30:23 +00002464
2465 pFile = sqlite3PagerFile(pBt->pPager);
2466 if( pFile->pMethods ){
2467 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2468 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002469 }
drh7555d8e2009-03-20 13:15:30 +00002470 if( mutexOpen ){
2471 assert( sqlite3_mutex_held(mutexOpen) );
2472 sqlite3_mutex_leave(mutexOpen);
2473 }
dan272989b2016-07-06 10:12:02 +00002474 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002475 return rc;
drha059ad02001-04-17 20:09:11 +00002476}
2477
2478/*
drhe53831d2007-08-17 01:14:38 +00002479** Decrement the BtShared.nRef counter. When it reaches zero,
2480** remove the BtShared structure from the sharing list. Return
2481** true if the BtShared.nRef counter reaches zero and return
2482** false if it is still positive.
2483*/
2484static int removeFromSharingList(BtShared *pBt){
2485#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002486 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002487 BtShared *pList;
2488 int removed = 0;
2489
drhd677b3d2007-08-20 22:48:41 +00002490 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002491 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002492 sqlite3_mutex_enter(pMaster);
2493 pBt->nRef--;
2494 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002495 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2496 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002497 }else{
drh78f82d12008-09-02 00:52:52 +00002498 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002499 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002500 pList=pList->pNext;
2501 }
drh34004ce2008-07-11 16:15:17 +00002502 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002503 pList->pNext = pBt->pNext;
2504 }
2505 }
drh3285db22007-09-03 22:00:39 +00002506 if( SQLITE_THREADSAFE ){
2507 sqlite3_mutex_free(pBt->mutex);
2508 }
drhe53831d2007-08-17 01:14:38 +00002509 removed = 1;
2510 }
2511 sqlite3_mutex_leave(pMaster);
2512 return removed;
2513#else
2514 return 1;
2515#endif
2516}
2517
2518/*
drhf7141992008-06-19 00:16:08 +00002519** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002520** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2521** pointer.
drhf7141992008-06-19 00:16:08 +00002522*/
2523static void allocateTempSpace(BtShared *pBt){
2524 if( !pBt->pTmpSpace ){
2525 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002526
2527 /* One of the uses of pBt->pTmpSpace is to format cells before
2528 ** inserting them into a leaf page (function fillInCell()). If
2529 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2530 ** by the various routines that manipulate binary cells. Which
2531 ** can mean that fillInCell() only initializes the first 2 or 3
2532 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2533 ** it into a database page. This is not actually a problem, but it
2534 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2535 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002536 ** zero the first 4 bytes of temp space here.
2537 **
2538 ** Also: Provide four bytes of initialized space before the
2539 ** beginning of pTmpSpace as an area available to prepend the
2540 ** left-child pointer to the beginning of a cell.
2541 */
2542 if( pBt->pTmpSpace ){
2543 memset(pBt->pTmpSpace, 0, 8);
2544 pBt->pTmpSpace += 4;
2545 }
drhf7141992008-06-19 00:16:08 +00002546 }
2547}
2548
2549/*
2550** Free the pBt->pTmpSpace allocation
2551*/
2552static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002553 if( pBt->pTmpSpace ){
2554 pBt->pTmpSpace -= 4;
2555 sqlite3PageFree(pBt->pTmpSpace);
2556 pBt->pTmpSpace = 0;
2557 }
drhf7141992008-06-19 00:16:08 +00002558}
2559
2560/*
drha059ad02001-04-17 20:09:11 +00002561** Close an open database and invalidate all cursors.
2562*/
danielk1977aef0bf62005-12-30 16:28:01 +00002563int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002564 BtShared *pBt = p->pBt;
2565 BtCursor *pCur;
2566
danielk1977aef0bf62005-12-30 16:28:01 +00002567 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002568 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002569 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002570 pCur = pBt->pCursor;
2571 while( pCur ){
2572 BtCursor *pTmp = pCur;
2573 pCur = pCur->pNext;
2574 if( pTmp->pBtree==p ){
2575 sqlite3BtreeCloseCursor(pTmp);
2576 }
drha059ad02001-04-17 20:09:11 +00002577 }
danielk1977aef0bf62005-12-30 16:28:01 +00002578
danielk19778d34dfd2006-01-24 16:37:57 +00002579 /* Rollback any active transaction and free the handle structure.
2580 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2581 ** this handle.
2582 */
drh47b7fc72014-11-11 01:33:57 +00002583 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002584 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002585
danielk1977aef0bf62005-12-30 16:28:01 +00002586 /* If there are still other outstanding references to the shared-btree
2587 ** structure, return now. The remainder of this procedure cleans
2588 ** up the shared-btree.
2589 */
drhe53831d2007-08-17 01:14:38 +00002590 assert( p->wantToLock==0 && p->locked==0 );
2591 if( !p->sharable || removeFromSharingList(pBt) ){
2592 /* The pBt is no longer on the sharing list, so we can access
2593 ** it without having to hold the mutex.
2594 **
2595 ** Clean out and delete the BtShared object.
2596 */
2597 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002598 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002599 if( pBt->xFreeSchema && pBt->pSchema ){
2600 pBt->xFreeSchema(pBt->pSchema);
2601 }
drhb9755982010-07-24 16:34:37 +00002602 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002603 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002604 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002605 }
2606
drhe53831d2007-08-17 01:14:38 +00002607#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002608 assert( p->wantToLock==0 );
2609 assert( p->locked==0 );
2610 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2611 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002612#endif
2613
drhe53831d2007-08-17 01:14:38 +00002614 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002615 return SQLITE_OK;
2616}
2617
2618/*
drh9b0cf342015-11-12 14:57:19 +00002619** Change the "soft" limit on the number of pages in the cache.
2620** Unused and unmodified pages will be recycled when the number of
2621** pages in the cache exceeds this soft limit. But the size of the
2622** cache is allowed to grow larger than this limit if it contains
2623** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002624*/
danielk1977aef0bf62005-12-30 16:28:01 +00002625int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2626 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002627 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002628 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002629 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002630 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002631 return SQLITE_OK;
2632}
2633
drh9b0cf342015-11-12 14:57:19 +00002634/*
2635** Change the "spill" limit on the number of pages in the cache.
2636** If the number of pages exceeds this limit during a write transaction,
2637** the pager might attempt to "spill" pages to the journal early in
2638** order to free up memory.
2639**
2640** The value returned is the current spill size. If zero is passed
2641** as an argument, no changes are made to the spill size setting, so
2642** using mxPage of 0 is a way to query the current spill size.
2643*/
2644int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2645 BtShared *pBt = p->pBt;
2646 int res;
2647 assert( sqlite3_mutex_held(p->db->mutex) );
2648 sqlite3BtreeEnter(p);
2649 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2650 sqlite3BtreeLeave(p);
2651 return res;
2652}
2653
drh18c7e402014-03-14 11:46:10 +00002654#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002655/*
dan5d8a1372013-03-19 19:28:06 +00002656** Change the limit on the amount of the database file that may be
2657** memory mapped.
2658*/
drh9b4c59f2013-04-15 17:03:42 +00002659int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002660 BtShared *pBt = p->pBt;
2661 assert( sqlite3_mutex_held(p->db->mutex) );
2662 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002663 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002664 sqlite3BtreeLeave(p);
2665 return SQLITE_OK;
2666}
drh18c7e402014-03-14 11:46:10 +00002667#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002668
2669/*
drh973b6e32003-02-12 14:09:42 +00002670** Change the way data is synced to disk in order to increase or decrease
2671** how well the database resists damage due to OS crashes and power
2672** failures. Level 1 is the same as asynchronous (no syncs() occur and
2673** there is a high probability of damage) Level 2 is the default. There
2674** is a very low but non-zero probability of damage. Level 3 reduces the
2675** probability of damage to near zero but with a write performance reduction.
2676*/
danielk197793758c82005-01-21 08:13:14 +00002677#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002678int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002679 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002680 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002681){
danielk1977aef0bf62005-12-30 16:28:01 +00002682 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002683 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002684 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002685 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002686 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002687 return SQLITE_OK;
2688}
danielk197793758c82005-01-21 08:13:14 +00002689#endif
drh973b6e32003-02-12 14:09:42 +00002690
drh2c8997b2005-08-27 16:36:48 +00002691/*
drh90f5ecb2004-07-22 01:19:35 +00002692** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002693** Or, if the page size has already been fixed, return SQLITE_READONLY
2694** without changing anything.
drh06f50212004-11-02 14:24:33 +00002695**
2696** The page size must be a power of 2 between 512 and 65536. If the page
2697** size supplied does not meet this constraint then the page size is not
2698** changed.
2699**
2700** Page sizes are constrained to be a power of two so that the region
2701** of the database file used for locking (beginning at PENDING_BYTE,
2702** the first byte past the 1GB boundary, 0x40000000) needs to occur
2703** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002704**
2705** If parameter nReserve is less than zero, then the number of reserved
2706** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002707**
drhc9166342012-01-05 23:32:06 +00002708** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002709** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002710*/
drhce4869f2009-04-02 20:16:58 +00002711int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002712 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002713 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002714 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002715 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002716#if SQLITE_HAS_CODEC
2717 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2718#endif
drhc9166342012-01-05 23:32:06 +00002719 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002720 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002721 return SQLITE_READONLY;
2722 }
2723 if( nReserve<0 ){
2724 nReserve = pBt->pageSize - pBt->usableSize;
2725 }
drhf49661a2008-12-10 16:45:50 +00002726 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002727 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2728 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002729 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002730 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002731 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002732 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002733 }
drhfa9601a2009-06-18 17:22:39 +00002734 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002735 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002736 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002737 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002738 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002739}
2740
2741/*
2742** Return the currently defined page size
2743*/
danielk1977aef0bf62005-12-30 16:28:01 +00002744int sqlite3BtreeGetPageSize(Btree *p){
2745 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002746}
drh7f751222009-03-17 22:33:00 +00002747
dan0094f372012-09-28 20:23:42 +00002748/*
2749** This function is similar to sqlite3BtreeGetReserve(), except that it
2750** may only be called if it is guaranteed that the b-tree mutex is already
2751** held.
2752**
2753** This is useful in one special case in the backup API code where it is
2754** known that the shared b-tree mutex is held, but the mutex on the
2755** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2756** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002757** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002758*/
2759int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002760 int n;
dan0094f372012-09-28 20:23:42 +00002761 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002762 n = p->pBt->pageSize - p->pBt->usableSize;
2763 return n;
dan0094f372012-09-28 20:23:42 +00002764}
2765
drh7f751222009-03-17 22:33:00 +00002766/*
2767** Return the number of bytes of space at the end of every page that
2768** are intentually left unused. This is the "reserved" space that is
2769** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002770**
2771** If SQLITE_HAS_MUTEX is defined then the number returned is the
2772** greater of the current reserved space and the maximum requested
2773** reserve space.
drh7f751222009-03-17 22:33:00 +00002774*/
drhad0961b2015-02-21 00:19:25 +00002775int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002776 int n;
2777 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002778 n = sqlite3BtreeGetReserveNoMutex(p);
2779#ifdef SQLITE_HAS_CODEC
2780 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2781#endif
drhd677b3d2007-08-20 22:48:41 +00002782 sqlite3BtreeLeave(p);
2783 return n;
drh2011d5f2004-07-22 02:40:37 +00002784}
drhf8e632b2007-05-08 14:51:36 +00002785
drhad0961b2015-02-21 00:19:25 +00002786
drhf8e632b2007-05-08 14:51:36 +00002787/*
2788** Set the maximum page count for a database if mxPage is positive.
2789** No changes are made if mxPage is 0 or negative.
2790** Regardless of the value of mxPage, return the maximum page count.
2791*/
2792int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002793 int n;
2794 sqlite3BtreeEnter(p);
2795 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2796 sqlite3BtreeLeave(p);
2797 return n;
drhf8e632b2007-05-08 14:51:36 +00002798}
drh5b47efa2010-02-12 18:18:39 +00002799
2800/*
drhc9166342012-01-05 23:32:06 +00002801** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2802** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002803** setting after the change.
2804*/
2805int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2806 int b;
drhaf034ed2010-02-12 19:46:26 +00002807 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002808 sqlite3BtreeEnter(p);
2809 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002810 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2811 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002812 }
drhc9166342012-01-05 23:32:06 +00002813 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002814 sqlite3BtreeLeave(p);
2815 return b;
2816}
drh90f5ecb2004-07-22 01:19:35 +00002817
2818/*
danielk1977951af802004-11-05 15:45:09 +00002819** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2820** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2821** is disabled. The default value for the auto-vacuum property is
2822** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2823*/
danielk1977aef0bf62005-12-30 16:28:01 +00002824int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002825#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002826 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002827#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002828 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002829 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002830 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002831
2832 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002833 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002834 rc = SQLITE_READONLY;
2835 }else{
drh076d4662009-02-18 20:31:18 +00002836 pBt->autoVacuum = av ?1:0;
2837 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002838 }
drhd677b3d2007-08-20 22:48:41 +00002839 sqlite3BtreeLeave(p);
2840 return rc;
danielk1977951af802004-11-05 15:45:09 +00002841#endif
2842}
2843
2844/*
2845** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2846** enabled 1 is returned. Otherwise 0.
2847*/
danielk1977aef0bf62005-12-30 16:28:01 +00002848int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002849#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002850 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002851#else
drhd677b3d2007-08-20 22:48:41 +00002852 int rc;
2853 sqlite3BtreeEnter(p);
2854 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002855 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2856 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2857 BTREE_AUTOVACUUM_INCR
2858 );
drhd677b3d2007-08-20 22:48:41 +00002859 sqlite3BtreeLeave(p);
2860 return rc;
danielk1977951af802004-11-05 15:45:09 +00002861#endif
2862}
2863
danf5da7db2017-03-16 18:14:39 +00002864/*
2865** If the user has not set the safety-level for this database connection
2866** using "PRAGMA synchronous", and if the safety-level is not already
2867** set to the value passed to this function as the second parameter,
2868** set it so.
2869*/
2870#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2871static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2872 sqlite3 *db;
2873 Db *pDb;
2874 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2875 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2876 if( pDb->bSyncSet==0
2877 && pDb->safety_level!=safety_level
2878 && pDb!=&db->aDb[1]
2879 ){
2880 pDb->safety_level = safety_level;
2881 sqlite3PagerSetFlags(pBt->pPager,
2882 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2883 }
2884 }
2885}
2886#else
danfc8f4b62017-03-16 18:54:42 +00002887# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002888#endif
danielk1977951af802004-11-05 15:45:09 +00002889
2890/*
drha34b6762004-05-07 13:30:42 +00002891** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002892** also acquire a readlock on that file.
2893**
2894** SQLITE_OK is returned on success. If the file is not a
2895** well-formed database file, then SQLITE_CORRUPT is returned.
2896** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002897** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002898*/
danielk1977aef0bf62005-12-30 16:28:01 +00002899static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002900 int rc; /* Result code from subfunctions */
2901 MemPage *pPage1; /* Page 1 of the database file */
2902 int nPage; /* Number of pages in the database */
2903 int nPageFile = 0; /* Number of pages in the database file */
2904 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002905
drh1fee73e2007-08-29 04:00:57 +00002906 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002907 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002908 rc = sqlite3PagerSharedLock(pBt->pPager);
2909 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002910 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002911 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002912
2913 /* Do some checking to help insure the file we opened really is
2914 ** a valid database file.
2915 */
drhc2a4bab2010-04-02 12:46:45 +00002916 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002917 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002918 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002919 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002920 }
2921 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002922 u32 pageSize;
2923 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002924 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002925 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002926 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2927 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2928 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002929 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002930 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002931 }
dan5cf53532010-05-01 16:40:20 +00002932
2933#ifdef SQLITE_OMIT_WAL
2934 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002935 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002936 }
2937 if( page1[19]>1 ){
2938 goto page1_init_failed;
2939 }
2940#else
dane04dc882010-04-20 18:53:15 +00002941 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002942 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002943 }
dane04dc882010-04-20 18:53:15 +00002944 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002945 goto page1_init_failed;
2946 }
drhe5ae5732008-06-15 02:51:47 +00002947
dana470aeb2010-04-21 11:43:38 +00002948 /* If the write version is set to 2, this database should be accessed
2949 ** in WAL mode. If the log is not already open, open it now. Then
2950 ** return SQLITE_OK and return without populating BtShared.pPage1.
2951 ** The caller detects this and calls this function again. This is
2952 ** required as the version of page 1 currently in the page1 buffer
2953 ** may not be the latest version - there may be a newer one in the log
2954 ** file.
2955 */
drhc9166342012-01-05 23:32:06 +00002956 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002957 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002958 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002959 if( rc!=SQLITE_OK ){
2960 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002961 }else{
danf5da7db2017-03-16 18:14:39 +00002962 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00002963 if( isOpen==0 ){
2964 releasePage(pPage1);
2965 return SQLITE_OK;
2966 }
dane04dc882010-04-20 18:53:15 +00002967 }
dan8b5444b2010-04-27 14:37:47 +00002968 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00002969 }else{
2970 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00002971 }
dan5cf53532010-05-01 16:40:20 +00002972#endif
dane04dc882010-04-20 18:53:15 +00002973
drh113762a2014-11-19 16:36:25 +00002974 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2975 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2976 **
drhe5ae5732008-06-15 02:51:47 +00002977 ** The original design allowed these amounts to vary, but as of
2978 ** version 3.6.0, we require them to be fixed.
2979 */
2980 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2981 goto page1_init_failed;
2982 }
drh113762a2014-11-19 16:36:25 +00002983 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2984 ** determined by the 2-byte integer located at an offset of 16 bytes from
2985 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002986 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002987 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2988 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002989 if( ((pageSize-1)&pageSize)!=0
2990 || pageSize>SQLITE_MAX_PAGE_SIZE
2991 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002992 ){
drh07d183d2005-05-01 22:52:42 +00002993 goto page1_init_failed;
2994 }
2995 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002996 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2997 ** integer at offset 20 is the number of bytes of space at the end of
2998 ** each page to reserve for extensions.
2999 **
3000 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3001 ** determined by the one-byte unsigned integer found at an offset of 20
3002 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003003 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003004 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003005 /* After reading the first page of the database assuming a page size
3006 ** of BtShared.pageSize, we have discovered that the page-size is
3007 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3008 ** zero and return SQLITE_OK. The caller will call this function
3009 ** again with the correct page-size.
3010 */
3011 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00003012 pBt->usableSize = usableSize;
3013 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003014 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003015 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3016 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003017 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003018 }
danecac6702011-02-09 18:19:20 +00003019 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003020 rc = SQLITE_CORRUPT_BKPT;
3021 goto page1_init_failed;
3022 }
drh113762a2014-11-19 16:36:25 +00003023 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3024 ** be less than 480. In other words, if the page size is 512, then the
3025 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003026 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003027 goto page1_init_failed;
3028 }
drh43b18e12010-08-17 19:40:08 +00003029 pBt->pageSize = pageSize;
3030 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003031#ifndef SQLITE_OMIT_AUTOVACUUM
3032 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003033 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003034#endif
drh306dc212001-05-21 13:45:10 +00003035 }
drhb6f41482004-05-14 01:58:11 +00003036
3037 /* maxLocal is the maximum amount of payload to store locally for
3038 ** a cell. Make sure it is small enough so that at least minFanout
3039 ** cells can will fit on one page. We assume a 10-byte page header.
3040 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003041 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003042 ** 4-byte child pointer
3043 ** 9-byte nKey value
3044 ** 4-byte nData value
3045 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003046 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003047 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3048 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003049 */
shaneh1df2db72010-08-18 02:28:48 +00003050 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3051 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3052 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3053 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003054 if( pBt->maxLocal>127 ){
3055 pBt->max1bytePayload = 127;
3056 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003057 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003058 }
drh2e38c322004-09-03 18:38:44 +00003059 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003060 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003061 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003062 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003063
drh72f82862001-05-24 21:06:34 +00003064page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003065 releasePage(pPage1);
3066 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003067 return rc;
drh306dc212001-05-21 13:45:10 +00003068}
3069
drh85ec3b62013-05-14 23:12:06 +00003070#ifndef NDEBUG
3071/*
3072** Return the number of cursors open on pBt. This is for use
3073** in assert() expressions, so it is only compiled if NDEBUG is not
3074** defined.
3075**
3076** Only write cursors are counted if wrOnly is true. If wrOnly is
3077** false then all cursors are counted.
3078**
3079** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003080** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003081** have been tripped into the CURSOR_FAULT state are not counted.
3082*/
3083static int countValidCursors(BtShared *pBt, int wrOnly){
3084 BtCursor *pCur;
3085 int r = 0;
3086 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003087 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3088 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003089 }
3090 return r;
3091}
3092#endif
3093
drh306dc212001-05-21 13:45:10 +00003094/*
drhb8ca3072001-12-05 00:21:20 +00003095** If there are no outstanding cursors and we are not in the middle
3096** of a transaction but there is a read lock on the database, then
3097** this routine unrefs the first page of the database file which
3098** has the effect of releasing the read lock.
3099**
drhb8ca3072001-12-05 00:21:20 +00003100** If there is a transaction in progress, this routine is a no-op.
3101*/
danielk1977aef0bf62005-12-30 16:28:01 +00003102static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003103 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003104 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003105 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003106 MemPage *pPage1 = pBt->pPage1;
3107 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003108 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003109 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003110 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003111 }
3112}
3113
3114/*
drhe39f2f92009-07-23 01:43:59 +00003115** If pBt points to an empty file then convert that empty file
3116** into a new empty database by initializing the first page of
3117** the database.
drh8b2f49b2001-06-08 00:21:52 +00003118*/
danielk1977aef0bf62005-12-30 16:28:01 +00003119static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003120 MemPage *pP1;
3121 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003122 int rc;
drhd677b3d2007-08-20 22:48:41 +00003123
drh1fee73e2007-08-29 04:00:57 +00003124 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003125 if( pBt->nPage>0 ){
3126 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003127 }
drh3aac2dd2004-04-26 14:10:20 +00003128 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003129 assert( pP1!=0 );
3130 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003131 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003132 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003133 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3134 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003135 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3136 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003137 data[18] = 1;
3138 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003139 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3140 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003141 data[21] = 64;
3142 data[22] = 32;
3143 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003144 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003145 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003146 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003147#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003148 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003149 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003150 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003151 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003152#endif
drhdd3cd972010-03-27 17:12:36 +00003153 pBt->nPage = 1;
3154 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003155 return SQLITE_OK;
3156}
3157
3158/*
danb483eba2012-10-13 19:58:11 +00003159** Initialize the first page of the database file (creating a database
3160** consisting of a single page and no schema objects). Return SQLITE_OK
3161** if successful, or an SQLite error code otherwise.
3162*/
3163int sqlite3BtreeNewDb(Btree *p){
3164 int rc;
3165 sqlite3BtreeEnter(p);
3166 p->pBt->nPage = 0;
3167 rc = newDatabase(p->pBt);
3168 sqlite3BtreeLeave(p);
3169 return rc;
3170}
3171
3172/*
danielk1977ee5741e2004-05-31 10:01:34 +00003173** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003174** is started if the second argument is nonzero, otherwise a read-
3175** transaction. If the second argument is 2 or more and exclusive
3176** transaction is started, meaning that no other process is allowed
3177** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003178** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003179** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003180**
danielk1977ee5741e2004-05-31 10:01:34 +00003181** A write-transaction must be started before attempting any
3182** changes to the database. None of the following routines
3183** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003184**
drh23e11ca2004-05-04 17:27:28 +00003185** sqlite3BtreeCreateTable()
3186** sqlite3BtreeCreateIndex()
3187** sqlite3BtreeClearTable()
3188** sqlite3BtreeDropTable()
3189** sqlite3BtreeInsert()
3190** sqlite3BtreeDelete()
3191** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003192**
drhb8ef32c2005-03-14 02:01:49 +00003193** If an initial attempt to acquire the lock fails because of lock contention
3194** and the database was previously unlocked, then invoke the busy handler
3195** if there is one. But if there was previously a read-lock, do not
3196** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3197** returned when there is already a read-lock in order to avoid a deadlock.
3198**
3199** Suppose there are two processes A and B. A has a read lock and B has
3200** a reserved lock. B tries to promote to exclusive but is blocked because
3201** of A's read lock. A tries to promote to reserved but is blocked by B.
3202** One or the other of the two processes must give way or there can be
3203** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3204** when A already has a read lock, we encourage A to give up and let B
3205** proceed.
drha059ad02001-04-17 20:09:11 +00003206*/
danielk1977aef0bf62005-12-30 16:28:01 +00003207int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3208 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003209 int rc = SQLITE_OK;
3210
drhd677b3d2007-08-20 22:48:41 +00003211 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003212 btreeIntegrity(p);
3213
danielk1977ee5741e2004-05-31 10:01:34 +00003214 /* If the btree is already in a write-transaction, or it
3215 ** is already in a read-transaction and a read-transaction
3216 ** is requested, this is a no-op.
3217 */
danielk1977aef0bf62005-12-30 16:28:01 +00003218 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003219 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003220 }
dan56c517a2013-09-26 11:04:33 +00003221 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003222
3223 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003224 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003225 rc = SQLITE_READONLY;
3226 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003227 }
3228
danielk1977404ca072009-03-16 13:19:36 +00003229#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003230 {
3231 sqlite3 *pBlock = 0;
3232 /* If another database handle has already opened a write transaction
3233 ** on this shared-btree structure and a second write transaction is
3234 ** requested, return SQLITE_LOCKED.
3235 */
3236 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3237 || (pBt->btsFlags & BTS_PENDING)!=0
3238 ){
3239 pBlock = pBt->pWriter->db;
3240 }else if( wrflag>1 ){
3241 BtLock *pIter;
3242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3243 if( pIter->pBtree!=p ){
3244 pBlock = pIter->pBtree->db;
3245 break;
3246 }
danielk1977641b0f42007-12-21 04:47:25 +00003247 }
3248 }
drh5a1fb182016-01-08 19:34:39 +00003249 if( pBlock ){
3250 sqlite3ConnectionBlocked(p->db, pBlock);
3251 rc = SQLITE_LOCKED_SHAREDCACHE;
3252 goto trans_begun;
3253 }
danielk1977404ca072009-03-16 13:19:36 +00003254 }
danielk1977641b0f42007-12-21 04:47:25 +00003255#endif
3256
danielk1977602b4662009-07-02 07:47:33 +00003257 /* Any read-only or read-write transaction implies a read-lock on
3258 ** page 1. So if some other shared-cache client already has a write-lock
3259 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003260 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3261 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003262
drhc9166342012-01-05 23:32:06 +00003263 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3264 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003265 do {
danielk1977295dc102009-04-01 19:07:03 +00003266 /* Call lockBtree() until either pBt->pPage1 is populated or
3267 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3268 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3269 ** reading page 1 it discovers that the page-size of the database
3270 ** file is not pBt->pageSize. In this case lockBtree() will update
3271 ** pBt->pageSize to the page-size of the file on disk.
3272 */
3273 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003274
drhb8ef32c2005-03-14 02:01:49 +00003275 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003276 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003277 rc = SQLITE_READONLY;
3278 }else{
danielk1977d8293352009-04-30 09:10:37 +00003279 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003280 if( rc==SQLITE_OK ){
3281 rc = newDatabase(pBt);
3282 }
drhb8ef32c2005-03-14 02:01:49 +00003283 }
3284 }
3285
danielk1977bd434552009-03-18 10:33:00 +00003286 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003287 unlockBtreeIfUnused(pBt);
3288 }
danf9b76712010-06-01 14:12:45 +00003289 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003290 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003291
3292 if( rc==SQLITE_OK ){
3293 if( p->inTrans==TRANS_NONE ){
3294 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003295#ifndef SQLITE_OMIT_SHARED_CACHE
3296 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003297 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003298 p->lock.eLock = READ_LOCK;
3299 p->lock.pNext = pBt->pLock;
3300 pBt->pLock = &p->lock;
3301 }
3302#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003303 }
3304 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3305 if( p->inTrans>pBt->inTransaction ){
3306 pBt->inTransaction = p->inTrans;
3307 }
danielk1977404ca072009-03-16 13:19:36 +00003308 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003309 MemPage *pPage1 = pBt->pPage1;
3310#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003311 assert( !pBt->pWriter );
3312 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003313 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3314 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003315#endif
dan59257dc2010-08-04 11:34:31 +00003316
3317 /* If the db-size header field is incorrect (as it may be if an old
3318 ** client has been writing the database file), update it now. Doing
3319 ** this sooner rather than later means the database size can safely
3320 ** re-read the database size from page 1 if a savepoint or transaction
3321 ** rollback occurs within the transaction.
3322 */
3323 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3324 rc = sqlite3PagerWrite(pPage1->pDbPage);
3325 if( rc==SQLITE_OK ){
3326 put4byte(&pPage1->aData[28], pBt->nPage);
3327 }
3328 }
3329 }
danielk1977aef0bf62005-12-30 16:28:01 +00003330 }
3331
drhd677b3d2007-08-20 22:48:41 +00003332
3333trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003334 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003335 /* This call makes sure that the pager has the correct number of
3336 ** open savepoints. If the second parameter is greater than 0 and
3337 ** the sub-journal is not already open, then it will be opened here.
3338 */
danielk1977fd7f0452008-12-17 17:30:26 +00003339 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3340 }
danielk197712dd5492008-12-18 15:45:07 +00003341
danielk1977aef0bf62005-12-30 16:28:01 +00003342 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003343 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003344 return rc;
drha059ad02001-04-17 20:09:11 +00003345}
3346
danielk1977687566d2004-11-02 12:56:41 +00003347#ifndef SQLITE_OMIT_AUTOVACUUM
3348
3349/*
3350** Set the pointer-map entries for all children of page pPage. Also, if
3351** pPage contains cells that point to overflow pages, set the pointer
3352** map entries for the overflow pages as well.
3353*/
3354static int setChildPtrmaps(MemPage *pPage){
3355 int i; /* Counter variable */
3356 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003357 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003358 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003359 Pgno pgno = pPage->pgno;
3360
drh1fee73e2007-08-29 04:00:57 +00003361 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003362 rc = btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003363 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003364 nCell = pPage->nCell;
3365
3366 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003367 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003368
drh98add2e2009-07-20 17:11:49 +00003369 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003370
danielk1977687566d2004-11-02 12:56:41 +00003371 if( !pPage->leaf ){
3372 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003373 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003374 }
3375 }
3376
3377 if( !pPage->leaf ){
3378 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003379 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003380 }
3381
danielk1977687566d2004-11-02 12:56:41 +00003382 return rc;
3383}
3384
3385/*
drhf3aed592009-07-08 18:12:49 +00003386** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3387** that it points to iTo. Parameter eType describes the type of pointer to
3388** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003389**
3390** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3391** page of pPage.
3392**
3393** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3394** page pointed to by one of the cells on pPage.
3395**
3396** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3397** overflow page in the list.
3398*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003399static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003400 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003401 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003402 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003403 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003404 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003405 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003406 }
danielk1977f78fc082004-11-02 14:40:32 +00003407 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003408 }else{
danielk1977687566d2004-11-02 12:56:41 +00003409 int i;
3410 int nCell;
drha1f75d92015-05-24 10:18:12 +00003411 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003412
drha1f75d92015-05-24 10:18:12 +00003413 rc = btreeInitPage(pPage);
3414 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003415 nCell = pPage->nCell;
3416
danielk1977687566d2004-11-02 12:56:41 +00003417 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003418 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003419 if( eType==PTRMAP_OVERFLOW1 ){
3420 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003421 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003422 if( info.nLocal<info.nPayload ){
3423 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3424 return SQLITE_CORRUPT_BKPT;
3425 }
3426 if( iFrom==get4byte(pCell+info.nSize-4) ){
3427 put4byte(pCell+info.nSize-4, iTo);
3428 break;
3429 }
danielk1977687566d2004-11-02 12:56:41 +00003430 }
3431 }else{
3432 if( get4byte(pCell)==iFrom ){
3433 put4byte(pCell, iTo);
3434 break;
3435 }
3436 }
3437 }
3438
3439 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003440 if( eType!=PTRMAP_BTREE ||
3441 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003442 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003443 }
danielk1977687566d2004-11-02 12:56:41 +00003444 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3445 }
danielk1977687566d2004-11-02 12:56:41 +00003446 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003447 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003448}
3449
danielk1977003ba062004-11-04 02:57:33 +00003450
danielk19777701e812005-01-10 12:59:51 +00003451/*
3452** Move the open database page pDbPage to location iFreePage in the
3453** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003454**
3455** The isCommit flag indicates that there is no need to remember that
3456** the journal needs to be sync()ed before database page pDbPage->pgno
3457** can be written to. The caller has already promised not to write to that
3458** page.
danielk19777701e812005-01-10 12:59:51 +00003459*/
danielk1977003ba062004-11-04 02:57:33 +00003460static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003461 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003462 MemPage *pDbPage, /* Open page to move */
3463 u8 eType, /* Pointer map 'type' entry for pDbPage */
3464 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003465 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003466 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003467){
3468 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3469 Pgno iDbPage = pDbPage->pgno;
3470 Pager *pPager = pBt->pPager;
3471 int rc;
3472
danielk1977a0bf2652004-11-04 14:30:04 +00003473 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3474 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003475 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003476 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003477
drh85b623f2007-12-13 21:54:09 +00003478 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003479 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3480 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003481 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003482 if( rc!=SQLITE_OK ){
3483 return rc;
3484 }
3485 pDbPage->pgno = iFreePage;
3486
3487 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3488 ** that point to overflow pages. The pointer map entries for all these
3489 ** pages need to be changed.
3490 **
3491 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3492 ** pointer to a subsequent overflow page. If this is the case, then
3493 ** the pointer map needs to be updated for the subsequent overflow page.
3494 */
danielk1977a0bf2652004-11-04 14:30:04 +00003495 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003496 rc = setChildPtrmaps(pDbPage);
3497 if( rc!=SQLITE_OK ){
3498 return rc;
3499 }
3500 }else{
3501 Pgno nextOvfl = get4byte(pDbPage->aData);
3502 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003503 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003504 if( rc!=SQLITE_OK ){
3505 return rc;
3506 }
3507 }
3508 }
3509
3510 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3511 ** that it points at iFreePage. Also fix the pointer map entry for
3512 ** iPtrPage.
3513 */
danielk1977a0bf2652004-11-04 14:30:04 +00003514 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003515 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003516 if( rc!=SQLITE_OK ){
3517 return rc;
3518 }
danielk19773b8a05f2007-03-19 17:44:26 +00003519 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003520 if( rc!=SQLITE_OK ){
3521 releasePage(pPtrPage);
3522 return rc;
3523 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003524 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003525 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003526 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003527 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003528 }
danielk1977003ba062004-11-04 02:57:33 +00003529 }
danielk1977003ba062004-11-04 02:57:33 +00003530 return rc;
3531}
3532
danielk1977dddbcdc2007-04-26 14:42:34 +00003533/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003534static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003535
3536/*
dan51f0b6d2013-02-22 20:16:34 +00003537** Perform a single step of an incremental-vacuum. If successful, return
3538** SQLITE_OK. If there is no work to do (and therefore no point in
3539** calling this function again), return SQLITE_DONE. Or, if an error
3540** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003541**
peter.d.reid60ec9142014-09-06 16:39:46 +00003542** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003543** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003544**
dan51f0b6d2013-02-22 20:16:34 +00003545** Parameter nFin is the number of pages that this database would contain
3546** were this function called until it returns SQLITE_DONE.
3547**
3548** If the bCommit parameter is non-zero, this function assumes that the
3549** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003550** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003551** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003552*/
dan51f0b6d2013-02-22 20:16:34 +00003553static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003554 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003555 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003556
drh1fee73e2007-08-29 04:00:57 +00003557 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003558 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003559
3560 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003561 u8 eType;
3562 Pgno iPtrPage;
3563
3564 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003565 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003566 return SQLITE_DONE;
3567 }
3568
3569 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3570 if( rc!=SQLITE_OK ){
3571 return rc;
3572 }
3573 if( eType==PTRMAP_ROOTPAGE ){
3574 return SQLITE_CORRUPT_BKPT;
3575 }
3576
3577 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003578 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003579 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003580 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003581 ** truncated to zero after this function returns, so it doesn't
3582 ** matter if it still contains some garbage entries.
3583 */
3584 Pgno iFreePg;
3585 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003586 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003587 if( rc!=SQLITE_OK ){
3588 return rc;
3589 }
3590 assert( iFreePg==iLastPg );
3591 releasePage(pFreePg);
3592 }
3593 } else {
3594 Pgno iFreePg; /* Index of free page to move pLastPg to */
3595 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003596 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3597 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003598
drhb00fc3b2013-08-21 23:42:32 +00003599 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003600 if( rc!=SQLITE_OK ){
3601 return rc;
3602 }
3603
dan51f0b6d2013-02-22 20:16:34 +00003604 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003605 ** is swapped with the first free page pulled off the free list.
3606 **
dan51f0b6d2013-02-22 20:16:34 +00003607 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003608 ** looping until a free-page located within the first nFin pages
3609 ** of the file is found.
3610 */
dan51f0b6d2013-02-22 20:16:34 +00003611 if( bCommit==0 ){
3612 eMode = BTALLOC_LE;
3613 iNear = nFin;
3614 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003615 do {
3616 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003617 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003618 if( rc!=SQLITE_OK ){
3619 releasePage(pLastPg);
3620 return rc;
3621 }
3622 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003623 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003624 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003625
dane1df4e32013-03-05 11:27:04 +00003626 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003627 releasePage(pLastPg);
3628 if( rc!=SQLITE_OK ){
3629 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003630 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003631 }
3632 }
3633
dan51f0b6d2013-02-22 20:16:34 +00003634 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003635 do {
danielk19773460d192008-12-27 15:23:13 +00003636 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003637 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3638 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003639 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 }
3641 return SQLITE_OK;
3642}
3643
3644/*
dan51f0b6d2013-02-22 20:16:34 +00003645** The database opened by the first argument is an auto-vacuum database
3646** nOrig pages in size containing nFree free pages. Return the expected
3647** size of the database in pages following an auto-vacuum operation.
3648*/
3649static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3650 int nEntry; /* Number of entries on one ptrmap page */
3651 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3652 Pgno nFin; /* Return value */
3653
3654 nEntry = pBt->usableSize/5;
3655 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3656 nFin = nOrig - nFree - nPtrmap;
3657 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3658 nFin--;
3659 }
3660 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3661 nFin--;
3662 }
dan51f0b6d2013-02-22 20:16:34 +00003663
3664 return nFin;
3665}
3666
3667/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003668** A write-transaction must be opened before calling this function.
3669** It performs a single unit of work towards an incremental vacuum.
3670**
3671** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003672** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003673** SQLITE_OK is returned. Otherwise an SQLite error code.
3674*/
3675int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003676 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003677 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003678
3679 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003680 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3681 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003682 rc = SQLITE_DONE;
3683 }else{
dan51f0b6d2013-02-22 20:16:34 +00003684 Pgno nOrig = btreePagecount(pBt);
3685 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3686 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3687
dan91384712013-02-24 11:50:43 +00003688 if( nOrig<nFin ){
3689 rc = SQLITE_CORRUPT_BKPT;
3690 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003691 rc = saveAllCursors(pBt, 0, 0);
3692 if( rc==SQLITE_OK ){
3693 invalidateAllOverflowCache(pBt);
3694 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3695 }
dan51f0b6d2013-02-22 20:16:34 +00003696 if( rc==SQLITE_OK ){
3697 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3698 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3699 }
3700 }else{
3701 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003702 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003703 }
drhd677b3d2007-08-20 22:48:41 +00003704 sqlite3BtreeLeave(p);
3705 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003706}
3707
3708/*
danielk19773b8a05f2007-03-19 17:44:26 +00003709** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003710** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003711**
3712** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3713** the database file should be truncated to during the commit process.
3714** i.e. the database has been reorganized so that only the first *pnTrunc
3715** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003716*/
danielk19773460d192008-12-27 15:23:13 +00003717static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003718 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003719 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003720 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003721
drh1fee73e2007-08-29 04:00:57 +00003722 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003723 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003724 assert(pBt->autoVacuum);
3725 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003726 Pgno nFin; /* Number of pages in database after autovacuuming */
3727 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003728 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003729 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003730
drhb1299152010-03-30 22:58:33 +00003731 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003732 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3733 /* It is not possible to create a database for which the final page
3734 ** is either a pointer-map page or the pending-byte page. If one
3735 ** is encountered, this indicates corruption.
3736 */
danielk19773460d192008-12-27 15:23:13 +00003737 return SQLITE_CORRUPT_BKPT;
3738 }
danielk1977ef165ce2009-04-06 17:50:03 +00003739
danielk19773460d192008-12-27 15:23:13 +00003740 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003741 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003742 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003743 if( nFin<nOrig ){
3744 rc = saveAllCursors(pBt, 0, 0);
3745 }
danielk19773460d192008-12-27 15:23:13 +00003746 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003747 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003748 }
danielk19773460d192008-12-27 15:23:13 +00003749 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003750 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3751 put4byte(&pBt->pPage1->aData[32], 0);
3752 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003753 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003754 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003755 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003756 }
3757 if( rc!=SQLITE_OK ){
3758 sqlite3PagerRollback(pPager);
3759 }
danielk1977687566d2004-11-02 12:56:41 +00003760 }
3761
dan0aed84d2013-03-26 14:16:20 +00003762 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003763 return rc;
3764}
danielk1977dddbcdc2007-04-26 14:42:34 +00003765
danielk1977a50d9aa2009-06-08 14:49:45 +00003766#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3767# define setChildPtrmaps(x) SQLITE_OK
3768#endif
danielk1977687566d2004-11-02 12:56:41 +00003769
3770/*
drh80e35f42007-03-30 14:06:34 +00003771** This routine does the first phase of a two-phase commit. This routine
3772** causes a rollback journal to be created (if it does not already exist)
3773** and populated with enough information so that if a power loss occurs
3774** the database can be restored to its original state by playing back
3775** the journal. Then the contents of the journal are flushed out to
3776** the disk. After the journal is safely on oxide, the changes to the
3777** database are written into the database file and flushed to oxide.
3778** At the end of this call, the rollback journal still exists on the
3779** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003780** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003781** commit process.
3782**
3783** This call is a no-op if no write-transaction is currently active on pBt.
3784**
3785** Otherwise, sync the database file for the btree pBt. zMaster points to
3786** the name of a master journal file that should be written into the
3787** individual journal file, or is NULL, indicating no master journal file
3788** (single database transaction).
3789**
3790** When this is called, the master journal should already have been
3791** created, populated with this journal pointer and synced to disk.
3792**
3793** Once this is routine has returned, the only thing required to commit
3794** the write-transaction for this database file is to delete the journal.
3795*/
3796int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3797 int rc = SQLITE_OK;
3798 if( p->inTrans==TRANS_WRITE ){
3799 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003800 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003801#ifndef SQLITE_OMIT_AUTOVACUUM
3802 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003803 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003804 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003805 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003806 return rc;
3807 }
3808 }
danbc1a3c62013-02-23 16:40:46 +00003809 if( pBt->bDoTruncate ){
3810 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3811 }
drh80e35f42007-03-30 14:06:34 +00003812#endif
drh49b9d332009-01-02 18:10:42 +00003813 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003814 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003815 }
3816 return rc;
3817}
3818
3819/*
danielk197794b30732009-07-02 17:21:57 +00003820** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3821** at the conclusion of a transaction.
3822*/
3823static void btreeEndTransaction(Btree *p){
3824 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003825 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003826 assert( sqlite3BtreeHoldsMutex(p) );
3827
danbc1a3c62013-02-23 16:40:46 +00003828#ifndef SQLITE_OMIT_AUTOVACUUM
3829 pBt->bDoTruncate = 0;
3830#endif
danc0537fe2013-06-28 19:41:43 +00003831 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003832 /* If there are other active statements that belong to this database
3833 ** handle, downgrade to a read-only transaction. The other statements
3834 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003835 downgradeAllSharedCacheTableLocks(p);
3836 p->inTrans = TRANS_READ;
3837 }else{
3838 /* If the handle had any kind of transaction open, decrement the
3839 ** transaction count of the shared btree. If the transaction count
3840 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3841 ** call below will unlock the pager. */
3842 if( p->inTrans!=TRANS_NONE ){
3843 clearAllSharedCacheTableLocks(p);
3844 pBt->nTransaction--;
3845 if( 0==pBt->nTransaction ){
3846 pBt->inTransaction = TRANS_NONE;
3847 }
3848 }
3849
3850 /* Set the current transaction state to TRANS_NONE and unlock the
3851 ** pager if this call closed the only read or write transaction. */
3852 p->inTrans = TRANS_NONE;
3853 unlockBtreeIfUnused(pBt);
3854 }
3855
3856 btreeIntegrity(p);
3857}
3858
3859/*
drh2aa679f2001-06-25 02:11:07 +00003860** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003861**
drh6e345992007-03-30 11:12:08 +00003862** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003863** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3864** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3865** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003866** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003867** routine has to do is delete or truncate or zero the header in the
3868** the rollback journal (which causes the transaction to commit) and
3869** drop locks.
drh6e345992007-03-30 11:12:08 +00003870**
dan60939d02011-03-29 15:40:55 +00003871** Normally, if an error occurs while the pager layer is attempting to
3872** finalize the underlying journal file, this function returns an error and
3873** the upper layer will attempt a rollback. However, if the second argument
3874** is non-zero then this b-tree transaction is part of a multi-file
3875** transaction. In this case, the transaction has already been committed
3876** (by deleting a master journal file) and the caller will ignore this
3877** functions return code. So, even if an error occurs in the pager layer,
3878** reset the b-tree objects internal state to indicate that the write
3879** transaction has been closed. This is quite safe, as the pager will have
3880** transitioned to the error state.
3881**
drh5e00f6c2001-09-13 13:46:56 +00003882** This will release the write lock on the database file. If there
3883** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003884*/
dan60939d02011-03-29 15:40:55 +00003885int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003886
drh075ed302010-10-14 01:17:30 +00003887 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003888 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003889 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003890
3891 /* If the handle has a write-transaction open, commit the shared-btrees
3892 ** transaction and set the shared state to TRANS_READ.
3893 */
3894 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003895 int rc;
drh075ed302010-10-14 01:17:30 +00003896 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003897 assert( pBt->inTransaction==TRANS_WRITE );
3898 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003899 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003900 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003901 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003902 return rc;
3903 }
drh3da9c042014-12-22 18:41:21 +00003904 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003905 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003906 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003907 }
danielk1977aef0bf62005-12-30 16:28:01 +00003908
danielk197794b30732009-07-02 17:21:57 +00003909 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003910 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003911 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003912}
3913
drh80e35f42007-03-30 14:06:34 +00003914/*
3915** Do both phases of a commit.
3916*/
3917int sqlite3BtreeCommit(Btree *p){
3918 int rc;
drhd677b3d2007-08-20 22:48:41 +00003919 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003920 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3921 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003922 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003923 }
drhd677b3d2007-08-20 22:48:41 +00003924 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003925 return rc;
3926}
3927
drhc39e0002004-05-07 23:50:57 +00003928/*
drhfb982642007-08-30 01:19:59 +00003929** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003930** code to errCode for every cursor on any BtShared that pBtree
3931** references. Or if the writeOnly flag is set to 1, then only
3932** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003933**
drh47b7fc72014-11-11 01:33:57 +00003934** Every cursor is a candidate to be tripped, including cursors
3935** that belong to other database connections that happen to be
3936** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003937**
dan80231042014-11-12 14:56:02 +00003938** This routine gets called when a rollback occurs. If the writeOnly
3939** flag is true, then only write-cursors need be tripped - read-only
3940** cursors save their current positions so that they may continue
3941** following the rollback. Or, if writeOnly is false, all cursors are
3942** tripped. In general, writeOnly is false if the transaction being
3943** rolled back modified the database schema. In this case b-tree root
3944** pages may be moved or deleted from the database altogether, making
3945** it unsafe for read cursors to continue.
3946**
3947** If the writeOnly flag is true and an error is encountered while
3948** saving the current position of a read-only cursor, all cursors,
3949** including all read-cursors are tripped.
3950**
3951** SQLITE_OK is returned if successful, or if an error occurs while
3952** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003953*/
dan80231042014-11-12 14:56:02 +00003954int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003955 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003956 int rc = SQLITE_OK;
3957
drh47b7fc72014-11-11 01:33:57 +00003958 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003959 if( pBtree ){
3960 sqlite3BtreeEnter(pBtree);
3961 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3962 int i;
3963 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003964 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003965 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003966 if( rc!=SQLITE_OK ){
3967 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3968 break;
3969 }
3970 }
3971 }else{
3972 sqlite3BtreeClearCursor(p);
3973 p->eState = CURSOR_FAULT;
3974 p->skipNext = errCode;
3975 }
3976 for(i=0; i<=p->iPage; i++){
3977 releasePage(p->apPage[i]);
3978 p->apPage[i] = 0;
3979 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003980 }
dan80231042014-11-12 14:56:02 +00003981 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003982 }
dan80231042014-11-12 14:56:02 +00003983 return rc;
drhfb982642007-08-30 01:19:59 +00003984}
3985
3986/*
drh47b7fc72014-11-11 01:33:57 +00003987** Rollback the transaction in progress.
3988**
3989** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3990** Only write cursors are tripped if writeOnly is true but all cursors are
3991** tripped if writeOnly is false. Any attempt to use
3992** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003993**
3994** This will release the write lock on the database file. If there
3995** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003996*/
drh47b7fc72014-11-11 01:33:57 +00003997int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003998 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003999 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004000 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004001
drh47b7fc72014-11-11 01:33:57 +00004002 assert( writeOnly==1 || writeOnly==0 );
4003 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004004 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004005 if( tripCode==SQLITE_OK ){
4006 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004007 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004008 }else{
4009 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004010 }
drh0f198a72012-02-13 16:43:16 +00004011 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004012 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4013 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4014 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004015 }
danielk1977aef0bf62005-12-30 16:28:01 +00004016 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004017
4018 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004019 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004020
danielk19778d34dfd2006-01-24 16:37:57 +00004021 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004022 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004023 if( rc2!=SQLITE_OK ){
4024 rc = rc2;
4025 }
4026
drh24cd67e2004-05-10 16:18:47 +00004027 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004028 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004029 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004030 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004031 int nPage = get4byte(28+(u8*)pPage1->aData);
4032 testcase( nPage==0 );
4033 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4034 testcase( pBt->nPage!=nPage );
4035 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00004036 releasePage(pPage1);
4037 }
drh85ec3b62013-05-14 23:12:06 +00004038 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004039 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004040 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004041 }
danielk1977aef0bf62005-12-30 16:28:01 +00004042
danielk197794b30732009-07-02 17:21:57 +00004043 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004044 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004045 return rc;
4046}
4047
4048/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004049** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004050** back independently of the main transaction. You must start a transaction
4051** before starting a subtransaction. The subtransaction is ended automatically
4052** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004053**
4054** Statement subtransactions are used around individual SQL statements
4055** that are contained within a BEGIN...COMMIT block. If a constraint
4056** error occurs within the statement, the effect of that one statement
4057** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004058**
4059** A statement sub-transaction is implemented as an anonymous savepoint. The
4060** value passed as the second parameter is the total number of savepoints,
4061** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4062** are no active savepoints and no other statement-transactions open,
4063** iStatement is 1. This anonymous savepoint can be released or rolled back
4064** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004065*/
danielk1977bd434552009-03-18 10:33:00 +00004066int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004067 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004068 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004069 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004070 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004071 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004072 assert( iStatement>0 );
4073 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004074 assert( pBt->inTransaction==TRANS_WRITE );
4075 /* At the pager level, a statement transaction is a savepoint with
4076 ** an index greater than all savepoints created explicitly using
4077 ** SQL statements. It is illegal to open, release or rollback any
4078 ** such savepoints while the statement transaction savepoint is active.
4079 */
4080 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004081 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004082 return rc;
4083}
4084
4085/*
danielk1977fd7f0452008-12-17 17:30:26 +00004086** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4087** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004088** savepoint identified by parameter iSavepoint, depending on the value
4089** of op.
4090**
4091** Normally, iSavepoint is greater than or equal to zero. However, if op is
4092** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4093** contents of the entire transaction are rolled back. This is different
4094** from a normal transaction rollback, as no locks are released and the
4095** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004096*/
4097int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4098 int rc = SQLITE_OK;
4099 if( p && p->inTrans==TRANS_WRITE ){
4100 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004101 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4102 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4103 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004104 if( op==SAVEPOINT_ROLLBACK ){
4105 rc = saveAllCursors(pBt, 0, 0);
4106 }
4107 if( rc==SQLITE_OK ){
4108 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4109 }
drh9f0bbf92009-01-02 21:08:09 +00004110 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004111 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4112 pBt->nPage = 0;
4113 }
drh9f0bbf92009-01-02 21:08:09 +00004114 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004115 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004116
4117 /* The database size was written into the offset 28 of the header
4118 ** when the transaction started, so we know that the value at offset
4119 ** 28 is nonzero. */
4120 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004121 }
danielk1977fd7f0452008-12-17 17:30:26 +00004122 sqlite3BtreeLeave(p);
4123 }
4124 return rc;
4125}
4126
4127/*
drh8b2f49b2001-06-08 00:21:52 +00004128** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004129** iTable. If a read-only cursor is requested, it is assumed that
4130** the caller already has at least a read-only transaction open
4131** on the database already. If a write-cursor is requested, then
4132** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004133**
drhe807bdb2016-01-21 17:06:33 +00004134** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4135** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4136** can be used for reading or for writing if other conditions for writing
4137** are also met. These are the conditions that must be met in order
4138** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004139**
drhe807bdb2016-01-21 17:06:33 +00004140** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004141**
drhfe5d71d2007-03-19 11:54:10 +00004142** 2: Other database connections that share the same pager cache
4143** but which are not in the READ_UNCOMMITTED state may not have
4144** cursors open with wrFlag==0 on the same table. Otherwise
4145** the changes made by this write cursor would be visible to
4146** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004147**
4148** 3: The database must be writable (not on read-only media)
4149**
4150** 4: There must be an active transaction.
4151**
drhe807bdb2016-01-21 17:06:33 +00004152** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4153** is set. If FORDELETE is set, that is a hint to the implementation that
4154** this cursor will only be used to seek to and delete entries of an index
4155** as part of a larger DELETE statement. The FORDELETE hint is not used by
4156** this implementation. But in a hypothetical alternative storage engine
4157** in which index entries are automatically deleted when corresponding table
4158** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4159** operations on this cursor can be no-ops and all READ operations can
4160** return a null row (2-bytes: 0x01 0x00).
4161**
drh6446c4d2001-12-15 14:22:18 +00004162** No checking is done to make sure that page iTable really is the
4163** root page of a b-tree. If it is not, then the cursor acquired
4164** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004165**
drhf25a5072009-11-18 23:01:25 +00004166** It is assumed that the sqlite3BtreeCursorZero() has been called
4167** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004168*/
drhd677b3d2007-08-20 22:48:41 +00004169static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004170 Btree *p, /* The btree */
4171 int iTable, /* Root page of table to open */
4172 int wrFlag, /* 1 to write. 0 read-only */
4173 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4174 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004175){
danielk19773e8add92009-07-04 17:16:00 +00004176 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004177 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004178
drh1fee73e2007-08-29 04:00:57 +00004179 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004180 assert( wrFlag==0
4181 || wrFlag==BTREE_WRCSR
4182 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4183 );
danielk197796d48e92009-06-29 06:00:37 +00004184
danielk1977602b4662009-07-02 07:47:33 +00004185 /* The following assert statements verify that if this is a sharable
4186 ** b-tree database, the connection is holding the required table locks,
4187 ** and that no other connection has any open cursor that conflicts with
4188 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004189 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004190 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4191
danielk19773e8add92009-07-04 17:16:00 +00004192 /* Assert that the caller has opened the required transaction. */
4193 assert( p->inTrans>TRANS_NONE );
4194 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4195 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004196 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004197
drh3fbb0222014-09-24 19:47:27 +00004198 if( wrFlag ){
4199 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004200 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004201 }
drhb1299152010-03-30 22:58:33 +00004202 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004203 assert( wrFlag==0 );
4204 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004205 }
danielk1977aef0bf62005-12-30 16:28:01 +00004206
danielk1977aef0bf62005-12-30 16:28:01 +00004207 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004208 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004209 pCur->pgnoRoot = (Pgno)iTable;
4210 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004211 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004212 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004213 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004214 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004215 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004216 /* If there are two or more cursors on the same btree, then all such
4217 ** cursors *must* have the BTCF_Multiple flag set. */
4218 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4219 if( pX->pgnoRoot==(Pgno)iTable ){
4220 pX->curFlags |= BTCF_Multiple;
4221 pCur->curFlags |= BTCF_Multiple;
4222 }
drha059ad02001-04-17 20:09:11 +00004223 }
drh27fb7462015-06-30 02:47:36 +00004224 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004225 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004226 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004227 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004228}
drhd677b3d2007-08-20 22:48:41 +00004229int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004230 Btree *p, /* The btree */
4231 int iTable, /* Root page of table to open */
4232 int wrFlag, /* 1 to write. 0 read-only */
4233 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4234 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004235){
4236 int rc;
dan08f901b2015-05-25 19:24:36 +00004237 if( iTable<1 ){
4238 rc = SQLITE_CORRUPT_BKPT;
4239 }else{
4240 sqlite3BtreeEnter(p);
4241 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4242 sqlite3BtreeLeave(p);
4243 }
drhd677b3d2007-08-20 22:48:41 +00004244 return rc;
4245}
drh7f751222009-03-17 22:33:00 +00004246
4247/*
4248** Return the size of a BtCursor object in bytes.
4249**
4250** This interfaces is needed so that users of cursors can preallocate
4251** sufficient storage to hold a cursor. The BtCursor object is opaque
4252** to users so they cannot do the sizeof() themselves - they must call
4253** this routine.
4254*/
4255int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004256 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004257}
4258
drh7f751222009-03-17 22:33:00 +00004259/*
drhf25a5072009-11-18 23:01:25 +00004260** Initialize memory that will be converted into a BtCursor object.
4261**
4262** The simple approach here would be to memset() the entire object
4263** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4264** do not need to be zeroed and they are large, so we can save a lot
4265** of run-time by skipping the initialization of those elements.
4266*/
4267void sqlite3BtreeCursorZero(BtCursor *p){
4268 memset(p, 0, offsetof(BtCursor, iPage));
4269}
4270
4271/*
drh5e00f6c2001-09-13 13:46:56 +00004272** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004273** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004274*/
drh3aac2dd2004-04-26 14:10:20 +00004275int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004276 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004277 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004278 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004279 BtShared *pBt = pCur->pBt;
4280 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004281 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004282 assert( pBt->pCursor!=0 );
4283 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004284 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004285 }else{
4286 BtCursor *pPrev = pBt->pCursor;
4287 do{
4288 if( pPrev->pNext==pCur ){
4289 pPrev->pNext = pCur->pNext;
4290 break;
4291 }
4292 pPrev = pPrev->pNext;
4293 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004294 }
danielk197771d5d2c2008-09-29 11:49:47 +00004295 for(i=0; i<=pCur->iPage; i++){
4296 releasePage(pCur->apPage[i]);
4297 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004298 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004299 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004300 /* sqlite3_free(pCur); */
4301 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004302 }
drh8c42ca92001-06-22 19:15:00 +00004303 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004304}
4305
drh5e2f8b92001-05-28 00:41:15 +00004306/*
drh86057612007-06-26 01:04:48 +00004307** Make sure the BtCursor* given in the argument has a valid
4308** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004309** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004310**
4311** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004312** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004313*/
drh9188b382004-05-14 21:12:22 +00004314#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004315 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004316 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004317 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004318 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004319 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004320 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004321 }
danielk19771cc5ed82007-05-16 17:28:43 +00004322#else
4323 #define assertCellInfo(x)
4324#endif
drhc5b41ac2015-06-17 02:11:46 +00004325static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4326 if( pCur->info.nSize==0 ){
4327 int iPage = pCur->iPage;
4328 pCur->curFlags |= BTCF_ValidNKey;
4329 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4330 }else{
4331 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004332 }
drhc5b41ac2015-06-17 02:11:46 +00004333}
drh9188b382004-05-14 21:12:22 +00004334
drhea8ffdf2009-07-22 00:35:23 +00004335#ifndef NDEBUG /* The next routine used only within assert() statements */
4336/*
4337** Return true if the given BtCursor is valid. A valid cursor is one
4338** that is currently pointing to a row in a (non-empty) table.
4339** This is a verification routine is used only within assert() statements.
4340*/
4341int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4342 return pCur && pCur->eState==CURSOR_VALID;
4343}
4344#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004345int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4346 assert( pCur!=0 );
4347 return pCur->eState==CURSOR_VALID;
4348}
drhea8ffdf2009-07-22 00:35:23 +00004349
drh9188b382004-05-14 21:12:22 +00004350/*
drha7c90c42016-06-04 20:37:10 +00004351** Return the value of the integer key or "rowid" for a table btree.
4352** This routine is only valid for a cursor that is pointing into a
4353** ordinary table btree. If the cursor points to an index btree or
4354** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004355*/
drha7c90c42016-06-04 20:37:10 +00004356i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004357 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004358 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004359 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004360 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004361 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004362}
drh2af926b2001-05-15 00:39:25 +00004363
drh72f82862001-05-24 21:06:34 +00004364/*
drha7c90c42016-06-04 20:37:10 +00004365** Return the number of bytes of payload for the entry that pCur is
4366** currently pointing to. For table btrees, this will be the amount
4367** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004368**
4369** The caller must guarantee that the cursor is pointing to a non-NULL
4370** valid entry. In other words, the calling procedure must guarantee
4371** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004372*/
drha7c90c42016-06-04 20:37:10 +00004373u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4374 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004375 assert( pCur->eState==CURSOR_VALID );
4376 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004377 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004378}
4379
4380/*
danielk1977d04417962007-05-02 13:16:30 +00004381** Given the page number of an overflow page in the database (parameter
4382** ovfl), this function finds the page number of the next page in the
4383** linked list of overflow pages. If possible, it uses the auto-vacuum
4384** pointer-map data instead of reading the content of page ovfl to do so.
4385**
4386** If an error occurs an SQLite error code is returned. Otherwise:
4387**
danielk1977bea2a942009-01-20 17:06:27 +00004388** The page number of the next overflow page in the linked list is
4389** written to *pPgnoNext. If page ovfl is the last page in its linked
4390** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004391**
danielk1977bea2a942009-01-20 17:06:27 +00004392** If ppPage is not NULL, and a reference to the MemPage object corresponding
4393** to page number pOvfl was obtained, then *ppPage is set to point to that
4394** reference. It is the responsibility of the caller to call releasePage()
4395** on *ppPage to free the reference. In no reference was obtained (because
4396** the pointer-map was used to obtain the value for *pPgnoNext), then
4397** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004398*/
4399static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004400 BtShared *pBt, /* The database file */
4401 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004402 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004403 Pgno *pPgnoNext /* OUT: Next overflow page number */
4404){
4405 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004406 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004407 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004408
drh1fee73e2007-08-29 04:00:57 +00004409 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004410 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004411
4412#ifndef SQLITE_OMIT_AUTOVACUUM
4413 /* Try to find the next page in the overflow list using the
4414 ** autovacuum pointer-map pages. Guess that the next page in
4415 ** the overflow list is page number (ovfl+1). If that guess turns
4416 ** out to be wrong, fall back to loading the data of page
4417 ** number ovfl to determine the next page number.
4418 */
4419 if( pBt->autoVacuum ){
4420 Pgno pgno;
4421 Pgno iGuess = ovfl+1;
4422 u8 eType;
4423
4424 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4425 iGuess++;
4426 }
4427
drhb1299152010-03-30 22:58:33 +00004428 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004429 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004430 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004431 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004432 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004433 }
4434 }
4435 }
4436#endif
4437
danielk1977d8a3f3d2009-07-11 11:45:23 +00004438 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004439 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004440 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004441 assert( rc==SQLITE_OK || pPage==0 );
4442 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004443 next = get4byte(pPage->aData);
4444 }
danielk1977443c0592009-01-16 15:21:05 +00004445 }
danielk197745d68822009-01-16 16:23:38 +00004446
danielk1977bea2a942009-01-20 17:06:27 +00004447 *pPgnoNext = next;
4448 if( ppPage ){
4449 *ppPage = pPage;
4450 }else{
4451 releasePage(pPage);
4452 }
4453 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004454}
4455
danielk1977da107192007-05-04 08:32:13 +00004456/*
4457** Copy data from a buffer to a page, or from a page to a buffer.
4458**
4459** pPayload is a pointer to data stored on database page pDbPage.
4460** If argument eOp is false, then nByte bytes of data are copied
4461** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4462** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4463** of data are copied from the buffer pBuf to pPayload.
4464**
4465** SQLITE_OK is returned on success, otherwise an error code.
4466*/
4467static int copyPayload(
4468 void *pPayload, /* Pointer to page data */
4469 void *pBuf, /* Pointer to buffer */
4470 int nByte, /* Number of bytes to copy */
4471 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4472 DbPage *pDbPage /* Page containing pPayload */
4473){
4474 if( eOp ){
4475 /* Copy data from buffer to page (a write operation) */
4476 int rc = sqlite3PagerWrite(pDbPage);
4477 if( rc!=SQLITE_OK ){
4478 return rc;
4479 }
4480 memcpy(pPayload, pBuf, nByte);
4481 }else{
4482 /* Copy data from page to buffer (a read operation) */
4483 memcpy(pBuf, pPayload, nByte);
4484 }
4485 return SQLITE_OK;
4486}
danielk1977d04417962007-05-02 13:16:30 +00004487
4488/*
danielk19779f8d6402007-05-02 17:48:45 +00004489** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004490** for the entry that the pCur cursor is pointing to. The eOp
4491** argument is interpreted as follows:
4492**
4493** 0: The operation is a read. Populate the overflow cache.
4494** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004495**
4496** A total of "amt" bytes are read or written beginning at "offset".
4497** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004498**
drh3bcdfd22009-07-12 02:32:21 +00004499** The content being read or written might appear on the main page
4500** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004501**
drh42e28f12017-01-27 00:31:59 +00004502** If the current cursor entry uses one or more overflow pages
4503** this function may allocate space for and lazily populate
4504** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004505** Subsequent calls use this cache to make seeking to the supplied offset
4506** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004507**
drh42e28f12017-01-27 00:31:59 +00004508** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004509** invalidated if some other cursor writes to the same table, or if
4510** the cursor is moved to a different row. Additionally, in auto-vacuum
4511** mode, the following events may invalidate an overflow page-list cache.
4512**
4513** * An incremental vacuum,
4514** * A commit in auto_vacuum="full" mode,
4515** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004516*/
danielk19779f8d6402007-05-02 17:48:45 +00004517static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004518 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004519 u32 offset, /* Begin reading this far into payload */
4520 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004521 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004522 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004523){
4524 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004525 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004526 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004527 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004528 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004529#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004530 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004531#endif
drh3aac2dd2004-04-26 14:10:20 +00004532
danielk1977da107192007-05-04 08:32:13 +00004533 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004534 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004535 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004536 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004537 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004538
drh86057612007-06-26 01:04:48 +00004539 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004540 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004541 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004542
drh0b982072016-03-22 14:10:45 +00004543 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004544 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004545 /* Trying to read or write past the end of the data is an error. The
4546 ** conditional above is really:
4547 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4548 ** but is recast into its current form to avoid integer overflow problems
4549 */
danielk197767fd7a92008-09-10 17:53:35 +00004550 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004551 }
danielk1977da107192007-05-04 08:32:13 +00004552
4553 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004554 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004555 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004556 if( a+offset>pCur->info.nLocal ){
4557 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004558 }
drh42e28f12017-01-27 00:31:59 +00004559 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004560 offset = 0;
drha34b6762004-05-07 13:30:42 +00004561 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004562 amt -= a;
drhdd793422001-06-28 01:54:48 +00004563 }else{
drhfa1a98a2004-05-14 19:08:17 +00004564 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004565 }
danielk1977da107192007-05-04 08:32:13 +00004566
dan85753662014-12-11 16:38:18 +00004567
danielk1977da107192007-05-04 08:32:13 +00004568 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004569 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004570 Pgno nextPage;
4571
drhfa1a98a2004-05-14 19:08:17 +00004572 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004573
drha38c9512014-04-01 01:24:34 +00004574 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004575 **
4576 ** The aOverflow[] array is sized at one entry for each overflow page
4577 ** in the overflow chain. The page number of the first overflow page is
4578 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4579 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004580 */
drh42e28f12017-01-27 00:31:59 +00004581 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004582 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004583 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004584 Pgno *aNew = (Pgno*)sqlite3Realloc(
4585 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004586 );
4587 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004588 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004589 }else{
4590 pCur->nOvflAlloc = nOvfl*2;
4591 pCur->aOverflow = aNew;
4592 }
4593 }
drhcd645532017-01-20 20:43:14 +00004594 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4595 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004596 }else{
4597 /* If the overflow page-list cache has been allocated and the
4598 ** entry for the first required overflow page is valid, skip
4599 ** directly to it.
4600 */
4601 if( pCur->aOverflow[offset/ovflSize] ){
4602 iIdx = (offset/ovflSize);
4603 nextPage = pCur->aOverflow[iIdx];
4604 offset = (offset%ovflSize);
4605 }
danielk19772dec9702007-05-02 16:48:37 +00004606 }
danielk1977da107192007-05-04 08:32:13 +00004607
drhcd645532017-01-20 20:43:14 +00004608 assert( rc==SQLITE_OK && amt>0 );
4609 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004610 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004611 assert( pCur->aOverflow[iIdx]==0
4612 || pCur->aOverflow[iIdx]==nextPage
4613 || CORRUPT_DB );
4614 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004615
danielk1977d04417962007-05-02 13:16:30 +00004616 if( offset>=ovflSize ){
4617 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004618 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004619 ** data is not required. So first try to lookup the overflow
4620 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004621 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004622 */
drha38c9512014-04-01 01:24:34 +00004623 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004624 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004625 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004626 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004627 }else{
danielk1977da107192007-05-04 08:32:13 +00004628 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004629 }
danielk1977da107192007-05-04 08:32:13 +00004630 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004631 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004632 /* Need to read this page properly. It contains some of the
4633 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004634 */
danf4ba1092011-10-08 14:57:07 +00004635#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004636 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004637#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004638 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004639 if( a + offset > ovflSize ){
4640 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004641 }
danf4ba1092011-10-08 14:57:07 +00004642
4643#ifdef SQLITE_DIRECT_OVERFLOW_READ
4644 /* If all the following are true:
4645 **
4646 ** 1) this is a read operation, and
4647 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004648 ** 3) there is no open write-transaction, and
4649 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004650 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004651 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004652 **
4653 ** then data can be read directly from the database file into the
4654 ** output buffer, bypassing the page-cache altogether. This speeds
4655 ** up loading large records that span many overflow pages.
4656 */
drh42e28f12017-01-27 00:31:59 +00004657 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004658 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004659 && pBt->inTransaction==TRANS_READ /* (3) */
4660 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004661 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004662 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004663 ){
4664 u8 aSave[4];
4665 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004666 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004667 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004668 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004669 nextPage = get4byte(aWrite);
4670 memcpy(aWrite, aSave, 4);
4671 }else
4672#endif
4673
4674 {
4675 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004676 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004677 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004678 );
danf4ba1092011-10-08 14:57:07 +00004679 if( rc==SQLITE_OK ){
4680 aPayload = sqlite3PagerGetData(pDbPage);
4681 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004682 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004683 sqlite3PagerUnref(pDbPage);
4684 offset = 0;
4685 }
4686 }
4687 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004688 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004689 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004690 }
drhcd645532017-01-20 20:43:14 +00004691 if( rc ) break;
4692 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004693 }
drh2af926b2001-05-15 00:39:25 +00004694 }
danielk1977cfe9a692004-06-16 12:00:29 +00004695
danielk1977da107192007-05-04 08:32:13 +00004696 if( rc==SQLITE_OK && amt>0 ){
drh6ee610b2017-01-27 01:25:00 +00004697 return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */
drha7fcb052001-12-14 15:09:55 +00004698 }
danielk1977da107192007-05-04 08:32:13 +00004699 return rc;
drh2af926b2001-05-15 00:39:25 +00004700}
4701
drh72f82862001-05-24 21:06:34 +00004702/*
drhcb3cabd2016-11-25 19:18:28 +00004703** Read part of the payload for the row at which that cursor pCur is currently
4704** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004705** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004706**
drhcb3cabd2016-11-25 19:18:28 +00004707** pCur can be pointing to either a table or an index b-tree.
4708** If pointing to a table btree, then the content section is read. If
4709** pCur is pointing to an index b-tree then the key section is read.
4710**
4711** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4712** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4713** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004714**
drh3aac2dd2004-04-26 14:10:20 +00004715** Return SQLITE_OK on success or an error code if anything goes
4716** wrong. An error is returned if "offset+amt" is larger than
4717** the available payload.
drh72f82862001-05-24 21:06:34 +00004718*/
drhcb3cabd2016-11-25 19:18:28 +00004719int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004720 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004721 assert( pCur->eState==CURSOR_VALID );
4722 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4723 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4724 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004725}
drh83ec2762017-01-26 16:54:47 +00004726
4727/*
4728** This variant of sqlite3BtreePayload() works even if the cursor has not
4729** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4730** interface.
4731*/
danielk19773588ceb2008-06-10 17:30:26 +00004732#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004733static SQLITE_NOINLINE int accessPayloadChecked(
4734 BtCursor *pCur,
4735 u32 offset,
4736 u32 amt,
4737 void *pBuf
4738){
drhcb3cabd2016-11-25 19:18:28 +00004739 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004740 if ( pCur->eState==CURSOR_INVALID ){
4741 return SQLITE_ABORT;
4742 }
dan7a2347e2016-01-07 16:43:54 +00004743 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004744 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004745 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4746}
4747int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4748 if( pCur->eState==CURSOR_VALID ){
4749 assert( cursorOwnsBtShared(pCur) );
4750 return accessPayload(pCur, offset, amt, pBuf, 0);
4751 }else{
4752 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004753 }
drh2af926b2001-05-15 00:39:25 +00004754}
drhcb3cabd2016-11-25 19:18:28 +00004755#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004756
drh72f82862001-05-24 21:06:34 +00004757/*
drh0e1c19e2004-05-11 00:58:56 +00004758** Return a pointer to payload information from the entry that the
4759** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004760** the key if index btrees (pPage->intKey==0) and is the data for
4761** table btrees (pPage->intKey==1). The number of bytes of available
4762** key/data is written into *pAmt. If *pAmt==0, then the value
4763** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004764**
4765** This routine is an optimization. It is common for the entire key
4766** and data to fit on the local page and for there to be no overflow
4767** pages. When that is so, this routine can be used to access the
4768** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004769** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004770** the key/data and copy it into a preallocated buffer.
4771**
4772** The pointer returned by this routine looks directly into the cached
4773** page of the database. The data might change or move the next time
4774** any btree routine is called.
4775*/
drh2a8d2262013-12-09 20:43:22 +00004776static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004777 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004778 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004779){
drhf3392e32015-04-15 17:26:55 +00004780 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004781 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004782 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004783 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004784 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004785 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004786 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004787 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4788 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4789 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4790 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4791 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004792 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004793}
4794
4795
4796/*
drhe51c44f2004-05-30 20:46:09 +00004797** For the entry that cursor pCur is point to, return as
4798** many bytes of the key or data as are available on the local
4799** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004800**
4801** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004802** or be destroyed on the next call to any Btree routine,
4803** including calls from other threads against the same cache.
4804** Hence, a mutex on the BtShared should be held prior to calling
4805** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004806**
4807** These routines is used to get quick access to key and data
4808** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004809*/
drha7c90c42016-06-04 20:37:10 +00004810const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004811 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004812}
4813
4814
4815/*
drh8178a752003-01-05 21:41:40 +00004816** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004817** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004818**
4819** This function returns SQLITE_CORRUPT if the page-header flags field of
4820** the new child page does not match the flags field of the parent (i.e.
4821** if an intkey page appears to be the parent of a non-intkey page, or
4822** vice-versa).
drh72f82862001-05-24 21:06:34 +00004823*/
drh3aac2dd2004-04-26 14:10:20 +00004824static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004825 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004826
dan7a2347e2016-01-07 16:43:54 +00004827 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004828 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004829 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004830 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004831 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4832 return SQLITE_CORRUPT_BKPT;
4833 }
drh271efa52004-05-30 19:19:05 +00004834 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004835 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004836 pCur->iPage++;
4837 pCur->aiIdx[pCur->iPage] = 0;
4838 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4839 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004840}
4841
drhd879e3e2017-02-13 13:35:55 +00004842#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004843/*
4844** Page pParent is an internal (non-leaf) tree page. This function
4845** asserts that page number iChild is the left-child if the iIdx'th
4846** cell in page pParent. Or, if iIdx is equal to the total number of
4847** cells in pParent, that page number iChild is the right-child of
4848** the page.
4849*/
4850static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004851 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4852 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004853 assert( iIdx<=pParent->nCell );
4854 if( iIdx==pParent->nCell ){
4855 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4856 }else{
4857 assert( get4byte(findCell(pParent, iIdx))==iChild );
4858 }
4859}
4860#else
4861# define assertParentIndex(x,y,z)
4862#endif
4863
drh72f82862001-05-24 21:06:34 +00004864/*
drh5e2f8b92001-05-28 00:41:15 +00004865** Move the cursor up to the parent page.
4866**
4867** pCur->idx is set to the cell index that contains the pointer
4868** to the page we are coming from. If we are coming from the
4869** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004870** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004871*/
danielk197730548662009-07-09 05:07:37 +00004872static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004873 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004874 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004875 assert( pCur->iPage>0 );
4876 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004877 assertParentIndex(
4878 pCur->apPage[pCur->iPage-1],
4879 pCur->aiIdx[pCur->iPage-1],
4880 pCur->apPage[pCur->iPage]->pgno
4881 );
dan6c2688c2012-01-12 15:05:03 +00004882 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004883 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004884 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004885 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004886}
4887
4888/*
danielk19778f880a82009-07-13 09:41:45 +00004889** Move the cursor to point to the root page of its b-tree structure.
4890**
4891** If the table has a virtual root page, then the cursor is moved to point
4892** to the virtual root page instead of the actual root page. A table has a
4893** virtual root page when the actual root page contains no cells and a
4894** single child page. This can only happen with the table rooted at page 1.
4895**
4896** If the b-tree structure is empty, the cursor state is set to
4897** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4898** cell located on the root (or virtual root) page and the cursor state
4899** is set to CURSOR_VALID.
4900**
4901** If this function returns successfully, it may be assumed that the
4902** page-header flags indicate that the [virtual] root-page is the expected
4903** kind of b-tree page (i.e. if when opening the cursor the caller did not
4904** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4905** indicating a table b-tree, or if the caller did specify a KeyInfo
4906** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4907** b-tree).
drh72f82862001-05-24 21:06:34 +00004908*/
drh5e2f8b92001-05-28 00:41:15 +00004909static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004910 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004911 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004912
dan7a2347e2016-01-07 16:43:54 +00004913 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004914 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4915 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4916 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4917 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4918 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004919 assert( pCur->skipNext!=SQLITE_OK );
4920 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004921 }
danielk1977be51a652008-10-08 17:58:48 +00004922 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004923 }
danielk197771d5d2c2008-09-29 11:49:47 +00004924
4925 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004926 if( pCur->iPage ){
4927 do{
4928 assert( pCur->apPage[pCur->iPage]!=0 );
4929 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4930 }while( pCur->iPage);
4931 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004932 }
dana205a482011-08-27 18:48:57 +00004933 }else if( pCur->pgnoRoot==0 ){
4934 pCur->eState = CURSOR_INVALID;
4935 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004936 }else{
drh28f58dd2015-06-27 19:45:03 +00004937 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004938 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004939 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004940 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004941 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004942 return rc;
drh777e4c42006-01-13 04:31:58 +00004943 }
danielk1977172114a2009-07-07 15:47:12 +00004944 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004945 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004946 }
danielk197771d5d2c2008-09-29 11:49:47 +00004947 pRoot = pCur->apPage[0];
4948 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004949
4950 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4951 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4952 ** NULL, the caller expects a table b-tree. If this is not the case,
4953 ** return an SQLITE_CORRUPT error.
4954 **
4955 ** Earlier versions of SQLite assumed that this test could not fail
4956 ** if the root page was already loaded when this function was called (i.e.
4957 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4958 ** in such a way that page pRoot is linked into a second b-tree table
4959 ** (or the freelist). */
4960 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4961 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4962 return SQLITE_CORRUPT_BKPT;
4963 }
danielk19778f880a82009-07-13 09:41:45 +00004964
drh7ad3eb62016-10-24 01:01:09 +00004965skip_init:
danielk197771d5d2c2008-09-29 11:49:47 +00004966 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004967 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004968 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004969
drh7ad3eb62016-10-24 01:01:09 +00004970 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004971 if( pRoot->nCell>0 ){
4972 pCur->eState = CURSOR_VALID;
4973 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004974 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004975 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004976 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004977 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004978 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004979 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004980 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004981 }
4982 return rc;
drh72f82862001-05-24 21:06:34 +00004983}
drh2af926b2001-05-15 00:39:25 +00004984
drh5e2f8b92001-05-28 00:41:15 +00004985/*
4986** Move the cursor down to the left-most leaf entry beneath the
4987** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004988**
4989** The left-most leaf is the one with the smallest key - the first
4990** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004991*/
4992static int moveToLeftmost(BtCursor *pCur){
4993 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004994 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004995 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004996
dan7a2347e2016-01-07 16:43:54 +00004997 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004998 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004999 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
5000 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
5001 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00005002 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005003 }
drhd677b3d2007-08-20 22:48:41 +00005004 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005005}
5006
drh2dcc9aa2002-12-04 13:40:25 +00005007/*
5008** Move the cursor down to the right-most leaf entry beneath the
5009** page to which it is currently pointing. Notice the difference
5010** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5011** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5012** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005013**
5014** The right-most entry is the one with the largest key - the last
5015** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005016*/
5017static int moveToRightmost(BtCursor *pCur){
5018 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005019 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005020 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005021
dan7a2347e2016-01-07 16:43:54 +00005022 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005023 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005024 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00005025 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00005026 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005027 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005028 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005029 }
drhee6438d2014-09-01 13:29:32 +00005030 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
5031 assert( pCur->info.nSize==0 );
5032 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5033 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005034}
5035
drh5e00f6c2001-09-13 13:46:56 +00005036/* Move the cursor to the first entry in the table. Return SQLITE_OK
5037** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005038** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005039*/
drh3aac2dd2004-04-26 14:10:20 +00005040int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005041 int rc;
drhd677b3d2007-08-20 22:48:41 +00005042
dan7a2347e2016-01-07 16:43:54 +00005043 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005044 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005045 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005046 if( rc==SQLITE_OK ){
5047 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00005048 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005049 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00005050 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005051 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005052 *pRes = 0;
5053 rc = moveToLeftmost(pCur);
5054 }
drh5e00f6c2001-09-13 13:46:56 +00005055 }
drh5e00f6c2001-09-13 13:46:56 +00005056 return rc;
5057}
drh5e2f8b92001-05-28 00:41:15 +00005058
drh9562b552002-02-19 15:00:07 +00005059/* Move the cursor to the last entry in the table. Return SQLITE_OK
5060** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005061** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005062*/
drh3aac2dd2004-04-26 14:10:20 +00005063int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005064 int rc;
drhd677b3d2007-08-20 22:48:41 +00005065
dan7a2347e2016-01-07 16:43:54 +00005066 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005067 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005068
5069 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005070 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005071#ifdef SQLITE_DEBUG
5072 /* This block serves to assert() that the cursor really does point
5073 ** to the last entry in the b-tree. */
5074 int ii;
5075 for(ii=0; ii<pCur->iPage; ii++){
5076 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5077 }
5078 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5079 assert( pCur->apPage[pCur->iPage]->leaf );
5080#endif
5081 return SQLITE_OK;
5082 }
5083
drh9562b552002-02-19 15:00:07 +00005084 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005085 if( rc==SQLITE_OK ){
5086 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005087 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005088 *pRes = 1;
5089 }else{
5090 assert( pCur->eState==CURSOR_VALID );
5091 *pRes = 0;
5092 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005093 if( rc==SQLITE_OK ){
5094 pCur->curFlags |= BTCF_AtLast;
5095 }else{
5096 pCur->curFlags &= ~BTCF_AtLast;
5097 }
5098
drhd677b3d2007-08-20 22:48:41 +00005099 }
drh9562b552002-02-19 15:00:07 +00005100 }
drh9562b552002-02-19 15:00:07 +00005101 return rc;
5102}
5103
drhe14006d2008-03-25 17:23:32 +00005104/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005105** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005106**
drhe63d9992008-08-13 19:11:48 +00005107** For INTKEY tables, the intKey parameter is used. pIdxKey
5108** must be NULL. For index tables, pIdxKey is used and intKey
5109** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005110**
drh5e2f8b92001-05-28 00:41:15 +00005111** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005112** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005113** were present. The cursor might point to an entry that comes
5114** before or after the key.
5115**
drh64022502009-01-09 14:11:04 +00005116** An integer is written into *pRes which is the result of
5117** comparing the key with the entry to which the cursor is
5118** pointing. The meaning of the integer written into
5119** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005120**
5121** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005122** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005123** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005124**
5125** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005126** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005127**
5128** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005129** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005130**
drhb1d607d2015-11-05 22:30:54 +00005131** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5132** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005133*/
drhe63d9992008-08-13 19:11:48 +00005134int sqlite3BtreeMovetoUnpacked(
5135 BtCursor *pCur, /* The cursor to be moved */
5136 UnpackedRecord *pIdxKey, /* Unpacked index key */
5137 i64 intKey, /* The table key */
5138 int biasRight, /* If true, bias the search to the high end */
5139 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005140){
drh72f82862001-05-24 21:06:34 +00005141 int rc;
dan3b9330f2014-02-27 20:44:18 +00005142 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005143
dan7a2347e2016-01-07 16:43:54 +00005144 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005145 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005146 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005147 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005148 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005149
5150 /* If the cursor is already positioned at the point we are trying
5151 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005152 if( pIdxKey==0
5153 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005154 ){
drhe63d9992008-08-13 19:11:48 +00005155 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005156 *pRes = 0;
5157 return SQLITE_OK;
5158 }
drh451e76d2017-01-21 16:54:19 +00005159 if( pCur->info.nKey<intKey ){
5160 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5161 *pRes = -1;
5162 return SQLITE_OK;
5163 }
drh7f11afa2017-01-21 21:47:54 +00005164 /* If the requested key is one more than the previous key, then
5165 ** try to get there using sqlite3BtreeNext() rather than a full
5166 ** binary search. This is an optimization only. The correct answer
5167 ** is still obtained without this ase, only a little more slowely */
5168 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5169 *pRes = 0;
5170 rc = sqlite3BtreeNext(pCur, pRes);
5171 if( rc ) return rc;
5172 if( *pRes==0 ){
5173 getCellInfo(pCur);
5174 if( pCur->info.nKey==intKey ){
5175 return SQLITE_OK;
5176 }
drh451e76d2017-01-21 16:54:19 +00005177 }
5178 }
drha2c20e42008-03-29 16:01:04 +00005179 }
5180 }
5181
dan1fed5da2014-02-25 21:01:25 +00005182 if( pIdxKey ){
5183 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005184 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005185 assert( pIdxKey->default_rc==1
5186 || pIdxKey->default_rc==0
5187 || pIdxKey->default_rc==-1
5188 );
drh13a747e2014-03-03 21:46:55 +00005189 }else{
drhb6e8fd12014-03-06 01:56:33 +00005190 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005191 }
5192
drh5e2f8b92001-05-28 00:41:15 +00005193 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005194 if( rc ){
5195 return rc;
5196 }
dana205a482011-08-27 18:48:57 +00005197 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5198 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5199 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005200 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005201 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005202 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005203 return SQLITE_OK;
5204 }
drhc75d8862015-06-27 23:55:20 +00005205 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5206 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005207 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005208 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005209 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005210 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005211 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005212
5213 /* pPage->nCell must be greater than zero. If this is the root-page
5214 ** the cursor would have been INVALID above and this for(;;) loop
5215 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005216 ** would have already detected db corruption. Similarly, pPage must
5217 ** be the right kind (index or table) of b-tree page. Otherwise
5218 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005219 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005220 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005221 lwr = 0;
5222 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005223 assert( biasRight==0 || biasRight==1 );
5224 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005225 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005226 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005227 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005228 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005229 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005230 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005231 while( 0x80 <= *(pCell++) ){
5232 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5233 }
drhd172f862006-01-12 15:01:15 +00005234 }
drha2c20e42008-03-29 16:01:04 +00005235 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005236 if( nCellKey<intKey ){
5237 lwr = idx+1;
5238 if( lwr>upr ){ c = -1; break; }
5239 }else if( nCellKey>intKey ){
5240 upr = idx-1;
5241 if( lwr>upr ){ c = +1; break; }
5242 }else{
5243 assert( nCellKey==intKey );
drhd793f442013-11-25 14:10:15 +00005244 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005245 if( !pPage->leaf ){
5246 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005247 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005248 }else{
drhd95ef5c2016-11-11 18:19:05 +00005249 pCur->curFlags |= BTCF_ValidNKey;
5250 pCur->info.nKey = nCellKey;
5251 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005252 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005253 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005254 }
drhd793f442013-11-25 14:10:15 +00005255 }
drhebf10b12013-11-25 17:38:26 +00005256 assert( lwr+upr>=0 );
5257 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005258 }
5259 }else{
5260 for(;;){
drhc6827502015-05-28 15:14:32 +00005261 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005262 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005263
drhb2eced52010-08-12 02:41:12 +00005264 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005265 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005266 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005267 ** varint. This information is used to attempt to avoid parsing
5268 ** the entire cell by checking for the cases where the record is
5269 ** stored entirely within the b-tree page by inspecting the first
5270 ** 2 bytes of the cell.
5271 */
drhec3e6b12013-11-25 02:38:55 +00005272 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005273 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005274 /* This branch runs if the record-size field of the cell is a
5275 ** single byte varint and the record fits entirely on the main
5276 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005277 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005278 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005279 }else if( !(pCell[1] & 0x80)
5280 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5281 ){
5282 /* The record-size field is a 2 byte varint and the record
5283 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005284 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005285 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005286 }else{
danielk197711c327a2009-05-04 19:01:26 +00005287 /* The record flows over onto one or more overflow pages. In
5288 ** this case the whole cell needs to be parsed, a buffer allocated
5289 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005290 ** buffer before VdbeRecordCompare() can be called.
5291 **
5292 ** If the record is corrupt, the xRecordCompare routine may read
5293 ** up to two varints past the end of the buffer. An extra 18
5294 ** bytes of padding is allocated at the end of the buffer in
5295 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005296 void *pCellKey;
5297 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005298 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005299 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005300 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5301 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5302 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5303 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005304 if( nCell<2 ){
5305 rc = SQLITE_CORRUPT_BKPT;
5306 goto moveto_finish;
5307 }
5308 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005309 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005310 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005311 goto moveto_finish;
5312 }
drhd793f442013-11-25 14:10:15 +00005313 pCur->aiIdx[pCur->iPage] = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005314 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5315 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005316 if( rc ){
5317 sqlite3_free(pCellKey);
5318 goto moveto_finish;
5319 }
drh75179de2014-09-16 14:37:35 +00005320 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005321 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005322 }
dan38fdead2014-04-01 10:19:02 +00005323 assert(
5324 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005325 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005326 );
drhbb933ef2013-11-25 15:01:38 +00005327 if( c<0 ){
5328 lwr = idx+1;
5329 }else if( c>0 ){
5330 upr = idx-1;
5331 }else{
5332 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005333 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005334 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005335 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005336 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005337 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005338 }
drhebf10b12013-11-25 17:38:26 +00005339 if( lwr>upr ) break;
5340 assert( lwr+upr>=0 );
5341 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005342 }
drh72f82862001-05-24 21:06:34 +00005343 }
drhb07028f2011-10-14 21:49:18 +00005344 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005345 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005346 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005347 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005348 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005349 *pRes = c;
5350 rc = SQLITE_OK;
5351 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005352 }
5353moveto_next_layer:
5354 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005355 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005356 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005357 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005358 }
drhf49661a2008-12-10 16:45:50 +00005359 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005360 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005361 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005362 }
drh1e968a02008-03-25 00:22:21 +00005363moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005364 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005365 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005366 return rc;
5367}
5368
drhd677b3d2007-08-20 22:48:41 +00005369
drh72f82862001-05-24 21:06:34 +00005370/*
drhc39e0002004-05-07 23:50:57 +00005371** Return TRUE if the cursor is not pointing at an entry of the table.
5372**
5373** TRUE will be returned after a call to sqlite3BtreeNext() moves
5374** past the last entry in the table or sqlite3BtreePrev() moves past
5375** the first entry. TRUE is also returned if the table is empty.
5376*/
5377int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005378 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5379 ** have been deleted? This API will need to change to return an error code
5380 ** as well as the boolean result value.
5381 */
5382 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005383}
5384
5385/*
drh5e98e832017-02-17 19:24:06 +00005386** Return an estimate for the number of rows in the table that pCur is
5387** pointing to. Return a negative number if no estimate is currently
5388** available.
5389*/
5390i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5391 i64 n;
5392 u8 i;
5393
5394 assert( cursorOwnsBtShared(pCur) );
5395 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005396
5397 /* Currently this interface is only called by the OP_IfSmaller
5398 ** opcode, and it that case the cursor will always be valid and
5399 ** will always point to a leaf node. */
5400 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5401 if( NEVER(pCur->apPage[pCur->iPage]->leaf==0) ) return -1;
5402
drhdfe11ba2017-02-18 02:42:54 +00005403 for(n=1, i=0; i<=pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005404 n *= pCur->apPage[i]->nCell;
5405 }
5406 return n;
5407}
5408
5409/*
drhbd03cae2001-06-02 02:40:57 +00005410** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005411** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005412** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005413** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005414**
drhee6438d2014-09-01 13:29:32 +00005415** The main entry point is sqlite3BtreeNext(). That routine is optimized
5416** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5417** to the next cell on the current page. The (slower) btreeNext() helper
5418** routine is called when it is necessary to move to a different page or
5419** to restore the cursor.
5420**
drhe39a7322014-02-03 14:04:11 +00005421** The calling function will set *pRes to 0 or 1. The initial *pRes value
5422** will be 1 if the cursor being stepped corresponds to an SQL index and
5423** if this routine could have been skipped if that SQL index had been
5424** a unique index. Otherwise the caller will have set *pRes to zero.
5425** Zero is the common case. The btree implementation is free to use the
5426** initial *pRes value as a hint to improve performance, but the current
5427** SQLite btree implementation does not. (Note that the comdb2 btree
5428** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005429*/
drhee6438d2014-09-01 13:29:32 +00005430static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005431 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005432 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005433 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005434
dan7a2347e2016-01-07 16:43:54 +00005435 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005436 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005437 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005438 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005439 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005440 rc = restoreCursorPosition(pCur);
5441 if( rc!=SQLITE_OK ){
5442 return rc;
5443 }
5444 if( CURSOR_INVALID==pCur->eState ){
5445 *pRes = 1;
5446 return SQLITE_OK;
5447 }
drh9b47ee32013-08-20 03:13:51 +00005448 if( pCur->skipNext ){
5449 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5450 pCur->eState = CURSOR_VALID;
5451 if( pCur->skipNext>0 ){
5452 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005453 return SQLITE_OK;
5454 }
drhf66f26a2013-08-19 20:04:10 +00005455 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005456 }
danielk1977da184232006-01-05 11:34:32 +00005457 }
danielk1977da184232006-01-05 11:34:32 +00005458
danielk197771d5d2c2008-09-29 11:49:47 +00005459 pPage = pCur->apPage[pCur->iPage];
5460 idx = ++pCur->aiIdx[pCur->iPage];
5461 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005462
5463 /* If the database file is corrupt, it is possible for the value of idx
5464 ** to be invalid here. This can only occur if a second cursor modifies
5465 ** the page while cursor pCur is holding a reference to it. Which can
5466 ** only happen if the database is corrupt in such a way as to link the
5467 ** page into more than one b-tree structure. */
5468 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005469
danielk197771d5d2c2008-09-29 11:49:47 +00005470 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005471 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005472 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005473 if( rc ) return rc;
5474 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005475 }
drh5e2f8b92001-05-28 00:41:15 +00005476 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005477 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005478 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005479 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005480 return SQLITE_OK;
5481 }
danielk197730548662009-07-09 05:07:37 +00005482 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005483 pPage = pCur->apPage[pCur->iPage];
5484 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005485 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005486 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005487 }else{
drhee6438d2014-09-01 13:29:32 +00005488 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005489 }
drh8178a752003-01-05 21:41:40 +00005490 }
drh3aac2dd2004-04-26 14:10:20 +00005491 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005492 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005493 }else{
5494 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005495 }
drh72f82862001-05-24 21:06:34 +00005496}
drhee6438d2014-09-01 13:29:32 +00005497int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5498 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005499 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005500 assert( pRes!=0 );
5501 assert( *pRes==0 || *pRes==1 );
5502 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5503 pCur->info.nSize = 0;
5504 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5505 *pRes = 0;
5506 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5507 pPage = pCur->apPage[pCur->iPage];
5508 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5509 pCur->aiIdx[pCur->iPage]--;
5510 return btreeNext(pCur, pRes);
5511 }
5512 if( pPage->leaf ){
5513 return SQLITE_OK;
5514 }else{
5515 return moveToLeftmost(pCur);
5516 }
5517}
drh72f82862001-05-24 21:06:34 +00005518
drh3b7511c2001-05-26 13:15:44 +00005519/*
drh2dcc9aa2002-12-04 13:40:25 +00005520** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005521** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005522** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005523** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005524**
drhee6438d2014-09-01 13:29:32 +00005525** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5526** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005527** to the previous cell on the current page. The (slower) btreePrevious()
5528** helper routine is called when it is necessary to move to a different page
5529** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005530**
drhe39a7322014-02-03 14:04:11 +00005531** The calling function will set *pRes to 0 or 1. The initial *pRes value
5532** will be 1 if the cursor being stepped corresponds to an SQL index and
5533** if this routine could have been skipped if that SQL index had been
5534** a unique index. Otherwise the caller will have set *pRes to zero.
5535** Zero is the common case. The btree implementation is free to use the
5536** initial *pRes value as a hint to improve performance, but the current
5537** SQLite btree implementation does not. (Note that the comdb2 btree
5538** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005539*/
drhee6438d2014-09-01 13:29:32 +00005540static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005541 int rc;
drh8178a752003-01-05 21:41:40 +00005542 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005543
dan7a2347e2016-01-07 16:43:54 +00005544 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005545 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005546 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005547 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005548 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5549 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005550 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005551 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005552 if( rc!=SQLITE_OK ){
5553 return rc;
drhf66f26a2013-08-19 20:04:10 +00005554 }
5555 if( CURSOR_INVALID==pCur->eState ){
5556 *pRes = 1;
5557 return SQLITE_OK;
5558 }
drh9b47ee32013-08-20 03:13:51 +00005559 if( pCur->skipNext ){
5560 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5561 pCur->eState = CURSOR_VALID;
5562 if( pCur->skipNext<0 ){
5563 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005564 return SQLITE_OK;
5565 }
drhf66f26a2013-08-19 20:04:10 +00005566 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005567 }
danielk1977da184232006-01-05 11:34:32 +00005568 }
danielk1977da184232006-01-05 11:34:32 +00005569
danielk197771d5d2c2008-09-29 11:49:47 +00005570 pPage = pCur->apPage[pCur->iPage];
5571 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005572 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005573 int idx = pCur->aiIdx[pCur->iPage];
5574 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005575 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005576 rc = moveToRightmost(pCur);
5577 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005578 while( pCur->aiIdx[pCur->iPage]==0 ){
5579 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005580 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005581 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005582 return SQLITE_OK;
5583 }
danielk197730548662009-07-09 05:07:37 +00005584 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005585 }
drhee6438d2014-09-01 13:29:32 +00005586 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005587 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005588
5589 pCur->aiIdx[pCur->iPage]--;
5590 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005591 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005592 rc = sqlite3BtreePrevious(pCur, pRes);
5593 }else{
5594 rc = SQLITE_OK;
5595 }
drh2dcc9aa2002-12-04 13:40:25 +00005596 }
drh2dcc9aa2002-12-04 13:40:25 +00005597 return rc;
5598}
drhee6438d2014-09-01 13:29:32 +00005599int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005600 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005601 assert( pRes!=0 );
5602 assert( *pRes==0 || *pRes==1 );
5603 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5604 *pRes = 0;
5605 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5606 pCur->info.nSize = 0;
5607 if( pCur->eState!=CURSOR_VALID
5608 || pCur->aiIdx[pCur->iPage]==0
5609 || pCur->apPage[pCur->iPage]->leaf==0
5610 ){
5611 return btreePrevious(pCur, pRes);
5612 }
5613 pCur->aiIdx[pCur->iPage]--;
5614 return SQLITE_OK;
5615}
drh2dcc9aa2002-12-04 13:40:25 +00005616
5617/*
drh3b7511c2001-05-26 13:15:44 +00005618** Allocate a new page from the database file.
5619**
danielk19773b8a05f2007-03-19 17:44:26 +00005620** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005621** has already been called on the new page.) The new page has also
5622** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005623** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005624**
5625** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005626** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005627**
drh82e647d2013-03-02 03:25:55 +00005628** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005629** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005630** attempt to keep related pages close to each other in the database file,
5631** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632**
drh82e647d2013-03-02 03:25:55 +00005633** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5634** anywhere on the free-list, then it is guaranteed to be returned. If
5635** eMode is BTALLOC_LT then the page returned will be less than or equal
5636** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5637** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005638*/
drh4f0c5872007-03-26 22:05:01 +00005639static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005640 BtShared *pBt, /* The btree */
5641 MemPage **ppPage, /* Store pointer to the allocated page here */
5642 Pgno *pPgno, /* Store the page number here */
5643 Pgno nearby, /* Search for a page near this one */
5644 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005645){
drh3aac2dd2004-04-26 14:10:20 +00005646 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005647 int rc;
drh35cd6432009-06-05 14:17:21 +00005648 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005649 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005650 MemPage *pTrunk = 0;
5651 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005652 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005653
drh1fee73e2007-08-29 04:00:57 +00005654 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005655 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005656 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005657 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005658 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5659 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005660 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005661 testcase( n==mxPage-1 );
5662 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005663 return SQLITE_CORRUPT_BKPT;
5664 }
drh3aac2dd2004-04-26 14:10:20 +00005665 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005666 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005667 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005668 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005669 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005670
drh82e647d2013-03-02 03:25:55 +00005671 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005672 ** shows that the page 'nearby' is somewhere on the free-list, then
5673 ** the entire-list will be searched for that page.
5674 */
5675#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005676 if( eMode==BTALLOC_EXACT ){
5677 if( nearby<=mxPage ){
5678 u8 eType;
5679 assert( nearby>0 );
5680 assert( pBt->autoVacuum );
5681 rc = ptrmapGet(pBt, nearby, &eType, 0);
5682 if( rc ) return rc;
5683 if( eType==PTRMAP_FREEPAGE ){
5684 searchList = 1;
5685 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 }
dan51f0b6d2013-02-22 20:16:34 +00005687 }else if( eMode==BTALLOC_LE ){
5688 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005689 }
5690#endif
5691
5692 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5693 ** first free-list trunk page. iPrevTrunk is initially 1.
5694 */
danielk19773b8a05f2007-03-19 17:44:26 +00005695 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005696 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005697 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698
5699 /* The code within this loop is run only once if the 'searchList' variable
5700 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005701 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5702 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005703 */
5704 do {
5705 pPrevTrunk = pTrunk;
5706 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005707 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5708 ** is the page number of the next freelist trunk page in the list or
5709 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005710 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005711 }else{
drh113762a2014-11-19 16:36:25 +00005712 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5713 ** stores the page number of the first page of the freelist, or zero if
5714 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005715 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005716 }
drhdf35a082009-07-09 02:24:35 +00005717 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005718 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005719 rc = SQLITE_CORRUPT_BKPT;
5720 }else{
drh7e8c6f12015-05-28 03:28:27 +00005721 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005722 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005723 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005724 pTrunk = 0;
5725 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005726 }
drhb07028f2011-10-14 21:49:18 +00005727 assert( pTrunk!=0 );
5728 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005729 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5730 ** is the number of leaf page pointers to follow. */
5731 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005732 if( k==0 && !searchList ){
5733 /* The trunk has no leaves and the list is not being searched.
5734 ** So extract the trunk page itself and use it as the newly
5735 ** allocated page */
5736 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005737 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005738 if( rc ){
5739 goto end_allocate_page;
5740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 *pPgno = iTrunk;
5742 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5743 *ppPage = pTrunk;
5744 pTrunk = 0;
5745 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005746 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005747 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005748 rc = SQLITE_CORRUPT_BKPT;
5749 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005750#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005751 }else if( searchList
5752 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5753 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005754 /* The list is being searched and this trunk page is the page
5755 ** to allocate, regardless of whether it has leaves.
5756 */
dan51f0b6d2013-02-22 20:16:34 +00005757 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005758 *ppPage = pTrunk;
5759 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005760 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005761 if( rc ){
5762 goto end_allocate_page;
5763 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005764 if( k==0 ){
5765 if( !pPrevTrunk ){
5766 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5767 }else{
danf48c3552010-08-23 15:41:24 +00005768 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5769 if( rc!=SQLITE_OK ){
5770 goto end_allocate_page;
5771 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005772 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5773 }
5774 }else{
5775 /* The trunk page is required by the caller but it contains
5776 ** pointers to free-list leaves. The first leaf becomes a trunk
5777 ** page in this case.
5778 */
5779 MemPage *pNewTrunk;
5780 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005781 if( iNewTrunk>mxPage ){
5782 rc = SQLITE_CORRUPT_BKPT;
5783 goto end_allocate_page;
5784 }
drhdf35a082009-07-09 02:24:35 +00005785 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005786 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005787 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005788 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005789 }
danielk19773b8a05f2007-03-19 17:44:26 +00005790 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005791 if( rc!=SQLITE_OK ){
5792 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005793 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005794 }
5795 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5796 put4byte(&pNewTrunk->aData[4], k-1);
5797 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005798 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005799 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005800 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005801 put4byte(&pPage1->aData[32], iNewTrunk);
5802 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005803 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005804 if( rc ){
5805 goto end_allocate_page;
5806 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005807 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5808 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005809 }
5810 pTrunk = 0;
5811 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5812#endif
danielk1977e5765212009-06-17 11:13:28 +00005813 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005814 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005815 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005816 Pgno iPage;
5817 unsigned char *aData = pTrunk->aData;
5818 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005819 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005820 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005821 if( eMode==BTALLOC_LE ){
5822 for(i=0; i<k; i++){
5823 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005824 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005825 closest = i;
5826 break;
5827 }
5828 }
5829 }else{
5830 int dist;
5831 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5832 for(i=1; i<k; i++){
5833 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5834 if( d2<dist ){
5835 closest = i;
5836 dist = d2;
5837 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005838 }
5839 }
5840 }else{
5841 closest = 0;
5842 }
5843
5844 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005845 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005846 if( iPage>mxPage ){
5847 rc = SQLITE_CORRUPT_BKPT;
5848 goto end_allocate_page;
5849 }
drhdf35a082009-07-09 02:24:35 +00005850 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005851 if( !searchList
5852 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5853 ){
danielk1977bea2a942009-01-20 17:06:27 +00005854 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005855 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005856 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5857 ": %d more free pages\n",
5858 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005859 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5860 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005861 if( closest<k-1 ){
5862 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5863 }
5864 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005865 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005866 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005867 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005868 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005869 if( rc!=SQLITE_OK ){
5870 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005871 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005872 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005873 }
5874 searchList = 0;
5875 }
drhee696e22004-08-30 16:52:17 +00005876 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005877 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005878 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005879 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005880 }else{
danbc1a3c62013-02-23 16:40:46 +00005881 /* There are no pages on the freelist, so append a new page to the
5882 ** database image.
5883 **
5884 ** Normally, new pages allocated by this block can be requested from the
5885 ** pager layer with the 'no-content' flag set. This prevents the pager
5886 ** from trying to read the pages content from disk. However, if the
5887 ** current transaction has already run one or more incremental-vacuum
5888 ** steps, then the page we are about to allocate may contain content
5889 ** that is required in the event of a rollback. In this case, do
5890 ** not set the no-content flag. This causes the pager to load and journal
5891 ** the current page content before overwriting it.
5892 **
5893 ** Note that the pager will not actually attempt to load or journal
5894 ** content for any page that really does lie past the end of the database
5895 ** file on disk. So the effects of disabling the no-content optimization
5896 ** here are confined to those pages that lie between the end of the
5897 ** database image and the end of the database file.
5898 */
drh3f387402014-09-24 01:23:00 +00005899 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005900
drhdd3cd972010-03-27 17:12:36 +00005901 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5902 if( rc ) return rc;
5903 pBt->nPage++;
5904 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005905
danielk1977afcdd022004-10-31 16:25:42 +00005906#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005907 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005908 /* If *pPgno refers to a pointer-map page, allocate two new pages
5909 ** at the end of the file instead of one. The first allocated page
5910 ** becomes a new pointer-map page, the second is used by the caller.
5911 */
danielk1977ac861692009-03-28 10:54:22 +00005912 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005913 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5914 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005915 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005916 if( rc==SQLITE_OK ){
5917 rc = sqlite3PagerWrite(pPg->pDbPage);
5918 releasePage(pPg);
5919 }
5920 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005921 pBt->nPage++;
5922 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005923 }
5924#endif
drhdd3cd972010-03-27 17:12:36 +00005925 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5926 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005927
danielk1977599fcba2004-11-08 07:13:13 +00005928 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005929 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005930 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005931 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005932 if( rc!=SQLITE_OK ){
5933 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005934 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005935 }
drh3a4c1412004-05-09 20:40:11 +00005936 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005937 }
danielk1977599fcba2004-11-08 07:13:13 +00005938
5939 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005940
5941end_allocate_page:
5942 releasePage(pTrunk);
5943 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005944 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5945 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005946 return rc;
5947}
5948
5949/*
danielk1977bea2a942009-01-20 17:06:27 +00005950** This function is used to add page iPage to the database file free-list.
5951** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005952**
danielk1977bea2a942009-01-20 17:06:27 +00005953** The value passed as the second argument to this function is optional.
5954** If the caller happens to have a pointer to the MemPage object
5955** corresponding to page iPage handy, it may pass it as the second value.
5956** Otherwise, it may pass NULL.
5957**
5958** If a pointer to a MemPage object is passed as the second argument,
5959** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005960*/
danielk1977bea2a942009-01-20 17:06:27 +00005961static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5962 MemPage *pTrunk = 0; /* Free-list trunk page */
5963 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5964 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5965 MemPage *pPage; /* Page being freed. May be NULL. */
5966 int rc; /* Return Code */
5967 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005968
danielk1977bea2a942009-01-20 17:06:27 +00005969 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005970 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005971 assert( !pMemPage || pMemPage->pgno==iPage );
5972
danfb0246b2015-05-26 12:18:17 +00005973 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005974 if( pMemPage ){
5975 pPage = pMemPage;
5976 sqlite3PagerRef(pPage->pDbPage);
5977 }else{
5978 pPage = btreePageLookup(pBt, iPage);
5979 }
drh3aac2dd2004-04-26 14:10:20 +00005980
drha34b6762004-05-07 13:30:42 +00005981 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005982 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005983 if( rc ) goto freepage_out;
5984 nFree = get4byte(&pPage1->aData[36]);
5985 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005986
drhc9166342012-01-05 23:32:06 +00005987 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005988 /* If the secure_delete option is enabled, then
5989 ** always fully overwrite deleted information with zeros.
5990 */
drhb00fc3b2013-08-21 23:42:32 +00005991 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005992 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005993 ){
5994 goto freepage_out;
5995 }
5996 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005997 }
drhfcce93f2006-02-22 03:08:32 +00005998
danielk1977687566d2004-11-02 12:56:41 +00005999 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006000 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006001 */
danielk197785d90ca2008-07-19 14:25:15 +00006002 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006003 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006004 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006005 }
danielk1977687566d2004-11-02 12:56:41 +00006006
danielk1977bea2a942009-01-20 17:06:27 +00006007 /* Now manipulate the actual database free-list structure. There are two
6008 ** possibilities. If the free-list is currently empty, or if the first
6009 ** trunk page in the free-list is full, then this page will become a
6010 ** new free-list trunk page. Otherwise, it will become a leaf of the
6011 ** first trunk page in the current free-list. This block tests if it
6012 ** is possible to add the page as a new free-list leaf.
6013 */
6014 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006015 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006016
6017 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006018 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006019 if( rc!=SQLITE_OK ){
6020 goto freepage_out;
6021 }
6022
6023 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006024 assert( pBt->usableSize>32 );
6025 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006026 rc = SQLITE_CORRUPT_BKPT;
6027 goto freepage_out;
6028 }
drheeb844a2009-08-08 18:01:07 +00006029 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006030 /* In this case there is room on the trunk page to insert the page
6031 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006032 **
6033 ** Note that the trunk page is not really full until it contains
6034 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6035 ** coded. But due to a coding error in versions of SQLite prior to
6036 ** 3.6.0, databases with freelist trunk pages holding more than
6037 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6038 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006039 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006040 ** for now. At some point in the future (once everyone has upgraded
6041 ** to 3.6.0 or later) we should consider fixing the conditional above
6042 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006043 **
6044 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6045 ** avoid using the last six entries in the freelist trunk page array in
6046 ** order that database files created by newer versions of SQLite can be
6047 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006048 */
danielk19773b8a05f2007-03-19 17:44:26 +00006049 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006050 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006051 put4byte(&pTrunk->aData[4], nLeaf+1);
6052 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006053 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006054 sqlite3PagerDontWrite(pPage->pDbPage);
6055 }
danielk1977bea2a942009-01-20 17:06:27 +00006056 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006057 }
drh3a4c1412004-05-09 20:40:11 +00006058 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006059 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006060 }
drh3b7511c2001-05-26 13:15:44 +00006061 }
danielk1977bea2a942009-01-20 17:06:27 +00006062
6063 /* If control flows to this point, then it was not possible to add the
6064 ** the page being freed as a leaf page of the first trunk in the free-list.
6065 ** Possibly because the free-list is empty, or possibly because the
6066 ** first trunk in the free-list is full. Either way, the page being freed
6067 ** will become the new first trunk page in the free-list.
6068 */
drhb00fc3b2013-08-21 23:42:32 +00006069 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006070 goto freepage_out;
6071 }
6072 rc = sqlite3PagerWrite(pPage->pDbPage);
6073 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006074 goto freepage_out;
6075 }
6076 put4byte(pPage->aData, iTrunk);
6077 put4byte(&pPage->aData[4], 0);
6078 put4byte(&pPage1->aData[32], iPage);
6079 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6080
6081freepage_out:
6082 if( pPage ){
6083 pPage->isInit = 0;
6084 }
6085 releasePage(pPage);
6086 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006087 return rc;
6088}
drhc314dc72009-07-21 11:52:34 +00006089static void freePage(MemPage *pPage, int *pRC){
6090 if( (*pRC)==SQLITE_OK ){
6091 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6092 }
danielk1977bea2a942009-01-20 17:06:27 +00006093}
drh3b7511c2001-05-26 13:15:44 +00006094
6095/*
drh9bfdc252014-09-24 02:05:41 +00006096** Free any overflow pages associated with the given Cell. Write the
6097** local Cell size (the number of bytes on the original page, omitting
6098** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006099*/
drh9bfdc252014-09-24 02:05:41 +00006100static int clearCell(
6101 MemPage *pPage, /* The page that contains the Cell */
6102 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006103 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006104){
danielk1977aef0bf62005-12-30 16:28:01 +00006105 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006106 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006107 int rc;
drh94440812007-03-06 11:42:19 +00006108 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006109 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006110
drh1fee73e2007-08-29 04:00:57 +00006111 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006112 pPage->xParseCell(pPage, pCell, pInfo);
6113 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006114 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006115 }
drh80159da2016-12-09 17:32:51 +00006116 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006117 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006118 }
drh80159da2016-12-09 17:32:51 +00006119 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006120 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006121 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006122 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006123 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006124 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006125 );
drh72365832007-03-06 15:53:44 +00006126 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006127 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006128 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006129 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006130 /* 0 is not a legal page number and page 1 cannot be an
6131 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6132 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006133 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006134 }
danielk1977bea2a942009-01-20 17:06:27 +00006135 if( nOvfl ){
6136 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6137 if( rc ) return rc;
6138 }
dan887d4b22010-02-25 12:09:16 +00006139
shaneh1da207e2010-03-09 14:41:12 +00006140 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006141 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6142 ){
6143 /* There is no reason any cursor should have an outstanding reference
6144 ** to an overflow page belonging to a cell that is being deleted/updated.
6145 ** So if there exists more than one reference to this page, then it
6146 ** must not really be an overflow page and the database must be corrupt.
6147 ** It is helpful to detect this before calling freePage2(), as
6148 ** freePage2() may zero the page contents if secure-delete mode is
6149 ** enabled. If this 'overflow' page happens to be a page that the
6150 ** caller is iterating through or using in some other way, this
6151 ** can be problematic.
6152 */
6153 rc = SQLITE_CORRUPT_BKPT;
6154 }else{
6155 rc = freePage2(pBt, pOvfl, ovflPgno);
6156 }
6157
danielk1977bea2a942009-01-20 17:06:27 +00006158 if( pOvfl ){
6159 sqlite3PagerUnref(pOvfl->pDbPage);
6160 }
drh3b7511c2001-05-26 13:15:44 +00006161 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006162 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006163 }
drh5e2f8b92001-05-28 00:41:15 +00006164 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006165}
6166
6167/*
drh91025292004-05-03 19:49:32 +00006168** Create the byte sequence used to represent a cell on page pPage
6169** and write that byte sequence into pCell[]. Overflow pages are
6170** allocated and filled in as necessary. The calling procedure
6171** is responsible for making sure sufficient space has been allocated
6172** for pCell[].
6173**
6174** Note that pCell does not necessary need to point to the pPage->aData
6175** area. pCell might point to some temporary storage. The cell will
6176** be constructed in this temporary area then copied into pPage->aData
6177** later.
drh3b7511c2001-05-26 13:15:44 +00006178*/
6179static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006180 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006181 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006182 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006183 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006184){
drh3b7511c2001-05-26 13:15:44 +00006185 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006186 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006187 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006188 int spaceLeft;
6189 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006190 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006191 unsigned char *pPrior;
6192 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006193 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006194 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006195 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006196
drh1fee73e2007-08-29 04:00:57 +00006197 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006198
drhc5053fb2008-11-27 02:22:10 +00006199 /* pPage is not necessarily writeable since pCell might be auxiliary
6200 ** buffer space that is separate from the pPage buffer area */
6201 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6202 || sqlite3PagerIswriteable(pPage->pDbPage) );
6203
drh91025292004-05-03 19:49:32 +00006204 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006205 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006206 if( pPage->intKey ){
6207 nPayload = pX->nData + pX->nZero;
6208 pSrc = pX->pData;
6209 nSrc = pX->nData;
6210 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006211 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006212 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006213 }else{
drh8eeb4462016-05-21 20:03:42 +00006214 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6215 nSrc = nPayload = (int)pX->nKey;
6216 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006217 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006218 }
drhdfc2daa2016-05-21 23:25:29 +00006219
6220 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006221 if( nPayload<=pPage->maxLocal ){
6222 n = nHeader + nPayload;
6223 testcase( n==3 );
6224 testcase( n==4 );
6225 if( n<4 ) n = 4;
6226 *pnSize = n;
6227 spaceLeft = nPayload;
6228 pPrior = pCell;
6229 }else{
6230 int mn = pPage->minLocal;
6231 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6232 testcase( n==pPage->maxLocal );
6233 testcase( n==pPage->maxLocal+1 );
6234 if( n > pPage->maxLocal ) n = mn;
6235 spaceLeft = n;
6236 *pnSize = n + nHeader + 4;
6237 pPrior = &pCell[nHeader+n];
6238 }
drh3aac2dd2004-04-26 14:10:20 +00006239 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006240
drh6200c882014-09-23 22:36:25 +00006241 /* At this point variables should be set as follows:
6242 **
6243 ** nPayload Total payload size in bytes
6244 ** pPayload Begin writing payload here
6245 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6246 ** that means content must spill into overflow pages.
6247 ** *pnSize Size of the local cell (not counting overflow pages)
6248 ** pPrior Where to write the pgno of the first overflow page
6249 **
6250 ** Use a call to btreeParseCellPtr() to verify that the values above
6251 ** were computed correctly.
6252 */
drhd879e3e2017-02-13 13:35:55 +00006253#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006254 {
6255 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006256 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006257 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006258 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006259 assert( *pnSize == info.nSize );
6260 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006261 }
6262#endif
6263
6264 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006265 while( nPayload>0 ){
6266 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006267#ifndef SQLITE_OMIT_AUTOVACUUM
6268 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006269 if( pBt->autoVacuum ){
6270 do{
6271 pgnoOvfl++;
6272 } while(
6273 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6274 );
danielk1977b39f70b2007-05-17 18:28:11 +00006275 }
danielk1977afcdd022004-10-31 16:25:42 +00006276#endif
drhf49661a2008-12-10 16:45:50 +00006277 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006278#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006279 /* If the database supports auto-vacuum, and the second or subsequent
6280 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006281 ** for that page now.
6282 **
6283 ** If this is the first overflow page, then write a partial entry
6284 ** to the pointer-map. If we write nothing to this pointer-map slot,
6285 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006286 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006287 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006288 */
danielk19774ef24492007-05-23 09:52:41 +00006289 if( pBt->autoVacuum && rc==SQLITE_OK ){
6290 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006291 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006292 if( rc ){
6293 releasePage(pOvfl);
6294 }
danielk1977afcdd022004-10-31 16:25:42 +00006295 }
6296#endif
drh3b7511c2001-05-26 13:15:44 +00006297 if( rc ){
drh9b171272004-05-08 02:03:22 +00006298 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006299 return rc;
6300 }
drhc5053fb2008-11-27 02:22:10 +00006301
6302 /* If pToRelease is not zero than pPrior points into the data area
6303 ** of pToRelease. Make sure pToRelease is still writeable. */
6304 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6305
6306 /* If pPrior is part of the data area of pPage, then make sure pPage
6307 ** is still writeable */
6308 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6309 || sqlite3PagerIswriteable(pPage->pDbPage) );
6310
drh3aac2dd2004-04-26 14:10:20 +00006311 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006312 releasePage(pToRelease);
6313 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006314 pPrior = pOvfl->aData;
6315 put4byte(pPrior, 0);
6316 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006317 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006318 }
6319 n = nPayload;
6320 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006321
6322 /* If pToRelease is not zero than pPayload points into the data area
6323 ** of pToRelease. Make sure pToRelease is still writeable. */
6324 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6325
6326 /* If pPayload is part of the data area of pPage, then make sure pPage
6327 ** is still writeable */
6328 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6329 || sqlite3PagerIswriteable(pPage->pDbPage) );
6330
drhb026e052007-05-02 01:34:31 +00006331 if( nSrc>0 ){
6332 if( n>nSrc ) n = nSrc;
6333 assert( pSrc );
6334 memcpy(pPayload, pSrc, n);
6335 }else{
6336 memset(pPayload, 0, n);
6337 }
drh3b7511c2001-05-26 13:15:44 +00006338 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006339 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006340 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006341 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006342 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006343 }
drh9b171272004-05-08 02:03:22 +00006344 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006345 return SQLITE_OK;
6346}
6347
drh14acc042001-06-10 19:56:58 +00006348/*
6349** Remove the i-th cell from pPage. This routine effects pPage only.
6350** The cell content is not freed or deallocated. It is assumed that
6351** the cell content has been copied someplace else. This routine just
6352** removes the reference to the cell from pPage.
6353**
6354** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006355*/
drh98add2e2009-07-20 17:11:49 +00006356static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006357 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006358 u8 *data; /* pPage->aData */
6359 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006360 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006361 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006362
drh98add2e2009-07-20 17:11:49 +00006363 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006364 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006365 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006366 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006367 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006368 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006369 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006370 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006371 hdr = pPage->hdrOffset;
6372 testcase( pc==get2byte(&data[hdr+5]) );
6373 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006374 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006375 *pRC = SQLITE_CORRUPT_BKPT;
6376 return;
shane0af3f892008-11-12 04:55:34 +00006377 }
shanedcc50b72008-11-13 18:29:50 +00006378 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006379 if( rc ){
6380 *pRC = rc;
6381 return;
shanedcc50b72008-11-13 18:29:50 +00006382 }
drh14acc042001-06-10 19:56:58 +00006383 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006384 if( pPage->nCell==0 ){
6385 memset(&data[hdr+1], 0, 4);
6386 data[hdr+7] = 0;
6387 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6388 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6389 - pPage->childPtrSize - 8;
6390 }else{
6391 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6392 put2byte(&data[hdr+3], pPage->nCell);
6393 pPage->nFree += 2;
6394 }
drh14acc042001-06-10 19:56:58 +00006395}
6396
6397/*
6398** Insert a new cell on pPage at cell index "i". pCell points to the
6399** content of the cell.
6400**
6401** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006402** will not fit, then make a copy of the cell content into pTemp if
6403** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006404** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006405** in pTemp or the original pCell) and also record its index.
6406** Allocating a new entry in pPage->aCell[] implies that
6407** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006408**
6409** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006410*/
drh98add2e2009-07-20 17:11:49 +00006411static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006412 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006413 int i, /* New cell becomes the i-th cell of the page */
6414 u8 *pCell, /* Content of the new cell */
6415 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006416 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006417 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6418 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006419){
drh383d30f2010-02-26 13:07:37 +00006420 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006421 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006422 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006423 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006424
drhcb89f4a2016-05-21 11:23:26 +00006425 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006426 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006427 assert( MX_CELL(pPage->pBt)<=10921 );
6428 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006429 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6430 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006431 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006432 /* The cell should normally be sized correctly. However, when moving a
6433 ** malformed cell from a leaf page to an interior page, if the cell size
6434 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6435 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6436 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006437 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006438 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006439 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006440 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006441 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006442 }
danielk19774dbaa892009-06-16 16:50:22 +00006443 if( iChild ){
6444 put4byte(pCell, iChild);
6445 }
drh43605152004-05-29 21:46:49 +00006446 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006447 /* Comparison against ArraySize-1 since we hold back one extra slot
6448 ** as a contingency. In other words, never need more than 3 overflow
6449 ** slots but 4 are allocated, just to be safe. */
6450 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006451 pPage->apOvfl[j] = pCell;
6452 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006453
6454 /* When multiple overflows occur, they are always sequential and in
6455 ** sorted order. This invariants arise because multiple overflows can
6456 ** only occur when inserting divider cells into the parent page during
6457 ** balancing, and the dividers are adjacent and sorted.
6458 */
6459 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6460 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006461 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006462 int rc = sqlite3PagerWrite(pPage->pDbPage);
6463 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006464 *pRC = rc;
6465 return;
danielk19776e465eb2007-08-21 13:11:00 +00006466 }
6467 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006468 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006469 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006470 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006471 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006472 /* The allocateSpace() routine guarantees the following properties
6473 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006474 assert( idx >= 0 );
6475 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006476 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006477 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006478 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006479 if( iChild ){
6480 put4byte(&data[idx], iChild);
6481 }
drh2c8fb922015-06-25 19:53:48 +00006482 pIns = pPage->aCellIdx + i*2;
6483 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6484 put2byte(pIns, idx);
6485 pPage->nCell++;
6486 /* increment the cell count */
6487 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6488 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006489#ifndef SQLITE_OMIT_AUTOVACUUM
6490 if( pPage->pBt->autoVacuum ){
6491 /* The cell may contain a pointer to an overflow page. If so, write
6492 ** the entry for the overflow page into the pointer map.
6493 */
drh98add2e2009-07-20 17:11:49 +00006494 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006495 }
6496#endif
drh14acc042001-06-10 19:56:58 +00006497 }
6498}
6499
6500/*
drh1ffd2472015-06-23 02:37:30 +00006501** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006502** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006503*/
drh1ffd2472015-06-23 02:37:30 +00006504typedef struct CellArray CellArray;
6505struct CellArray {
6506 int nCell; /* Number of cells in apCell[] */
6507 MemPage *pRef; /* Reference page */
6508 u8 **apCell; /* All cells begin balanced */
6509 u16 *szCell; /* Local size of all cells in apCell[] */
6510};
drhfa1a98a2004-05-14 19:08:17 +00006511
drh1ffd2472015-06-23 02:37:30 +00006512/*
6513** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6514** computed.
6515*/
6516static void populateCellCache(CellArray *p, int idx, int N){
6517 assert( idx>=0 && idx+N<=p->nCell );
6518 while( N>0 ){
6519 assert( p->apCell[idx]!=0 );
6520 if( p->szCell[idx]==0 ){
6521 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6522 }else{
6523 assert( CORRUPT_DB ||
6524 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6525 }
6526 idx++;
6527 N--;
drhfa1a98a2004-05-14 19:08:17 +00006528 }
drh1ffd2472015-06-23 02:37:30 +00006529}
6530
6531/*
6532** Return the size of the Nth element of the cell array
6533*/
6534static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6535 assert( N>=0 && N<p->nCell );
6536 assert( p->szCell[N]==0 );
6537 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6538 return p->szCell[N];
6539}
6540static u16 cachedCellSize(CellArray *p, int N){
6541 assert( N>=0 && N<p->nCell );
6542 if( p->szCell[N] ) return p->szCell[N];
6543 return computeCellSize(p, N);
6544}
6545
6546/*
dan8e9ba0c2014-10-14 17:27:04 +00006547** Array apCell[] contains pointers to nCell b-tree page cells. The
6548** szCell[] array contains the size in bytes of each cell. This function
6549** replaces the current contents of page pPg with the contents of the cell
6550** array.
6551**
6552** Some of the cells in apCell[] may currently be stored in pPg. This
6553** function works around problems caused by this by making a copy of any
6554** such cells before overwriting the page data.
6555**
6556** The MemPage.nFree field is invalidated by this function. It is the
6557** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006558*/
drh658873b2015-06-22 20:02:04 +00006559static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006560 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006561 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006562 u8 **apCell, /* Array of cells */
6563 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006564){
6565 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6566 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6567 const int usableSize = pPg->pBt->usableSize;
6568 u8 * const pEnd = &aData[usableSize];
6569 int i;
6570 u8 *pCellptr = pPg->aCellIdx;
6571 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6572 u8 *pData;
6573
6574 i = get2byte(&aData[hdr+5]);
6575 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006576
dan8e9ba0c2014-10-14 17:27:04 +00006577 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006578 for(i=0; i<nCell; i++){
6579 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006580 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006581 pCell = &pTmp[pCell - aData];
6582 }
6583 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006584 put2byte(pCellptr, (pData - aData));
6585 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006586 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6587 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006588 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006589 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006590 }
6591
dand7b545b2014-10-13 18:03:27 +00006592 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006593 pPg->nCell = nCell;
6594 pPg->nOverflow = 0;
6595
6596 put2byte(&aData[hdr+1], 0);
6597 put2byte(&aData[hdr+3], pPg->nCell);
6598 put2byte(&aData[hdr+5], pData - aData);
6599 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006600 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006601}
6602
dan8e9ba0c2014-10-14 17:27:04 +00006603/*
6604** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6605** contains the size in bytes of each such cell. This function attempts to
6606** add the cells stored in the array to page pPg. If it cannot (because
6607** the page needs to be defragmented before the cells will fit), non-zero
6608** is returned. Otherwise, if the cells are added successfully, zero is
6609** returned.
6610**
6611** Argument pCellptr points to the first entry in the cell-pointer array
6612** (part of page pPg) to populate. After cell apCell[0] is written to the
6613** page body, a 16-bit offset is written to pCellptr. And so on, for each
6614** cell in the array. It is the responsibility of the caller to ensure
6615** that it is safe to overwrite this part of the cell-pointer array.
6616**
6617** When this function is called, *ppData points to the start of the
6618** content area on page pPg. If the size of the content area is extended,
6619** *ppData is updated to point to the new start of the content area
6620** before returning.
6621**
6622** Finally, argument pBegin points to the byte immediately following the
6623** end of the space required by this page for the cell-pointer area (for
6624** all cells - not just those inserted by the current call). If the content
6625** area must be extended to before this point in order to accomodate all
6626** cells in apCell[], then the cells do not fit and non-zero is returned.
6627*/
dand7b545b2014-10-13 18:03:27 +00006628static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006629 MemPage *pPg, /* Page to add cells to */
6630 u8 *pBegin, /* End of cell-pointer array */
6631 u8 **ppData, /* IN/OUT: Page content -area pointer */
6632 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006633 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006634 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006635 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006636){
6637 int i;
6638 u8 *aData = pPg->aData;
6639 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006640 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006641 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006642 for(i=iFirst; i<iEnd; i++){
6643 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006644 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006645 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006646 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006647 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006648 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006649 pSlot = pData;
6650 }
drh48310f82015-10-10 16:41:28 +00006651 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6652 ** database. But they might for a corrupt database. Hence use memmove()
6653 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6654 assert( (pSlot+sz)<=pCArray->apCell[i]
6655 || pSlot>=(pCArray->apCell[i]+sz)
6656 || CORRUPT_DB );
6657 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006658 put2byte(pCellptr, (pSlot - aData));
6659 pCellptr += 2;
6660 }
6661 *ppData = pData;
6662 return 0;
6663}
6664
dan8e9ba0c2014-10-14 17:27:04 +00006665/*
6666** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6667** contains the size in bytes of each such cell. This function adds the
6668** space associated with each cell in the array that is currently stored
6669** within the body of pPg to the pPg free-list. The cell-pointers and other
6670** fields of the page are not updated.
6671**
6672** This function returns the total number of cells added to the free-list.
6673*/
dand7b545b2014-10-13 18:03:27 +00006674static int pageFreeArray(
6675 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006676 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006677 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006678 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006679){
6680 u8 * const aData = pPg->aData;
6681 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006682 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006683 int nRet = 0;
6684 int i;
drhf7838932015-06-23 15:36:34 +00006685 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006686 u8 *pFree = 0;
6687 int szFree = 0;
6688
drhf7838932015-06-23 15:36:34 +00006689 for(i=iFirst; i<iEnd; i++){
6690 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006691 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006692 int sz;
6693 /* No need to use cachedCellSize() here. The sizes of all cells that
6694 ** are to be freed have already been computing while deciding which
6695 ** cells need freeing */
6696 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006697 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006698 if( pFree ){
6699 assert( pFree>aData && (pFree - aData)<65536 );
6700 freeSpace(pPg, (u16)(pFree - aData), szFree);
6701 }
dand7b545b2014-10-13 18:03:27 +00006702 pFree = pCell;
6703 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006704 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006705 }else{
6706 pFree = pCell;
6707 szFree += sz;
6708 }
6709 nRet++;
6710 }
6711 }
drhfefa0942014-11-05 21:21:08 +00006712 if( pFree ){
6713 assert( pFree>aData && (pFree - aData)<65536 );
6714 freeSpace(pPg, (u16)(pFree - aData), szFree);
6715 }
dand7b545b2014-10-13 18:03:27 +00006716 return nRet;
6717}
6718
dand7b545b2014-10-13 18:03:27 +00006719/*
drh5ab63772014-11-27 03:46:04 +00006720** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6721** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6722** with apCell[iOld]. After balancing, this page should hold nNew cells
6723** starting at apCell[iNew].
6724**
6725** This routine makes the necessary adjustments to pPg so that it contains
6726** the correct cells after being balanced.
6727**
dand7b545b2014-10-13 18:03:27 +00006728** The pPg->nFree field is invalid when this function returns. It is the
6729** responsibility of the caller to set it correctly.
6730*/
drh658873b2015-06-22 20:02:04 +00006731static int editPage(
dan09c68402014-10-11 20:00:24 +00006732 MemPage *pPg, /* Edit this page */
6733 int iOld, /* Index of first cell currently on page */
6734 int iNew, /* Index of new first cell on page */
6735 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006736 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006737){
dand7b545b2014-10-13 18:03:27 +00006738 u8 * const aData = pPg->aData;
6739 const int hdr = pPg->hdrOffset;
6740 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6741 int nCell = pPg->nCell; /* Cells stored on pPg */
6742 u8 *pData;
6743 u8 *pCellptr;
6744 int i;
6745 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6746 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006747
6748#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006749 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6750 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006751#endif
6752
dand7b545b2014-10-13 18:03:27 +00006753 /* Remove cells from the start and end of the page */
6754 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006755 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006756 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6757 nCell -= nShift;
6758 }
6759 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006760 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006761 }
dan09c68402014-10-11 20:00:24 +00006762
drh5ab63772014-11-27 03:46:04 +00006763 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006764 if( pData<pBegin ) goto editpage_fail;
6765
6766 /* Add cells to the start of the page */
6767 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006768 int nAdd = MIN(nNew,iOld-iNew);
6769 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006770 pCellptr = pPg->aCellIdx;
6771 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6772 if( pageInsertArray(
6773 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006774 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006775 ) ) goto editpage_fail;
6776 nCell += nAdd;
6777 }
6778
6779 /* Add any overflow cells */
6780 for(i=0; i<pPg->nOverflow; i++){
6781 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6782 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006783 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006784 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6785 nCell++;
6786 if( pageInsertArray(
6787 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006788 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006789 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006790 }
dand7b545b2014-10-13 18:03:27 +00006791 }
dan09c68402014-10-11 20:00:24 +00006792
dand7b545b2014-10-13 18:03:27 +00006793 /* Append cells to the end of the page */
6794 pCellptr = &pPg->aCellIdx[nCell*2];
6795 if( pageInsertArray(
6796 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006797 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006798 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006799
dand7b545b2014-10-13 18:03:27 +00006800 pPg->nCell = nNew;
6801 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006802
dand7b545b2014-10-13 18:03:27 +00006803 put2byte(&aData[hdr+3], pPg->nCell);
6804 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006805
6806#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006807 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006808 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006809 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006810 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006811 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006812 }
drh1ffd2472015-06-23 02:37:30 +00006813 assert( 0==memcmp(pCell, &aData[iOff],
6814 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006815 }
dan09c68402014-10-11 20:00:24 +00006816#endif
6817
drh658873b2015-06-22 20:02:04 +00006818 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006819 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006820 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006821 populateCellCache(pCArray, iNew, nNew);
6822 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006823}
6824
drh14acc042001-06-10 19:56:58 +00006825/*
drhc3b70572003-01-04 19:44:07 +00006826** The following parameters determine how many adjacent pages get involved
6827** in a balancing operation. NN is the number of neighbors on either side
6828** of the page that participate in the balancing operation. NB is the
6829** total number of pages that participate, including the target page and
6830** NN neighbors on either side.
6831**
6832** The minimum value of NN is 1 (of course). Increasing NN above 1
6833** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6834** in exchange for a larger degradation in INSERT and UPDATE performance.
6835** The value of NN appears to give the best results overall.
6836*/
6837#define NN 1 /* Number of neighbors on either side of pPage */
6838#define NB (NN*2+1) /* Total pages involved in the balance */
6839
danielk1977ac245ec2005-01-14 13:50:11 +00006840
drh615ae552005-01-16 23:21:00 +00006841#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006842/*
6843** This version of balance() handles the common special case where
6844** a new entry is being inserted on the extreme right-end of the
6845** tree, in other words, when the new entry will become the largest
6846** entry in the tree.
6847**
drhc314dc72009-07-21 11:52:34 +00006848** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006849** a new page to the right-hand side and put the one new entry in
6850** that page. This leaves the right side of the tree somewhat
6851** unbalanced. But odds are that we will be inserting new entries
6852** at the end soon afterwards so the nearly empty page will quickly
6853** fill up. On average.
6854**
6855** pPage is the leaf page which is the right-most page in the tree.
6856** pParent is its parent. pPage must have a single overflow entry
6857** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006858**
6859** The pSpace buffer is used to store a temporary copy of the divider
6860** cell that will be inserted into pParent. Such a cell consists of a 4
6861** byte page number followed by a variable length integer. In other
6862** words, at most 13 bytes. Hence the pSpace buffer must be at
6863** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006864*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006865static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6866 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006867 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006868 int rc; /* Return Code */
6869 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006870
drh1fee73e2007-08-29 04:00:57 +00006871 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006872 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006873 assert( pPage->nOverflow==1 );
6874
drh5d433ce2010-08-14 16:02:52 +00006875 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006876 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006877
danielk1977a50d9aa2009-06-08 14:49:45 +00006878 /* Allocate a new page. This page will become the right-sibling of
6879 ** pPage. Make the parent page writable, so that the new divider cell
6880 ** may be inserted. If both these operations are successful, proceed.
6881 */
drh4f0c5872007-03-26 22:05:01 +00006882 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006883
danielk1977eaa06f62008-09-18 17:34:44 +00006884 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006885
6886 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006887 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006888 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006889 u8 *pStop;
6890
drhc5053fb2008-11-27 02:22:10 +00006891 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006892 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6893 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006894 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006895 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006896 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006897
6898 /* If this is an auto-vacuum database, update the pointer map
6899 ** with entries for the new page, and any pointer from the
6900 ** cell on the page to an overflow page. If either of these
6901 ** operations fails, the return code is set, but the contents
6902 ** of the parent page are still manipulated by thh code below.
6903 ** That is Ok, at this point the parent page is guaranteed to
6904 ** be marked as dirty. Returning an error code will cause a
6905 ** rollback, undoing any changes made to the parent page.
6906 */
6907 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006908 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6909 if( szCell>pNew->minLocal ){
6910 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006911 }
6912 }
danielk1977eaa06f62008-09-18 17:34:44 +00006913
danielk19776f235cc2009-06-04 14:46:08 +00006914 /* Create a divider cell to insert into pParent. The divider cell
6915 ** consists of a 4-byte page number (the page number of pPage) and
6916 ** a variable length key value (which must be the same value as the
6917 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006918 **
danielk19776f235cc2009-06-04 14:46:08 +00006919 ** To find the largest key value on pPage, first find the right-most
6920 ** cell on pPage. The first two fields of this cell are the
6921 ** record-length (a variable length integer at most 32-bits in size)
6922 ** and the key value (a variable length integer, may have any value).
6923 ** The first of the while(...) loops below skips over the record-length
6924 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006925 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006926 */
danielk1977eaa06f62008-09-18 17:34:44 +00006927 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006928 pStop = &pCell[9];
6929 while( (*(pCell++)&0x80) && pCell<pStop );
6930 pStop = &pCell[9];
6931 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6932
danielk19774dbaa892009-06-16 16:50:22 +00006933 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006934 if( rc==SQLITE_OK ){
6935 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6936 0, pPage->pgno, &rc);
6937 }
danielk19776f235cc2009-06-04 14:46:08 +00006938
6939 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006940 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6941
danielk1977e08a3c42008-09-18 18:17:03 +00006942 /* Release the reference to the new page. */
6943 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006944 }
6945
danielk1977eaa06f62008-09-18 17:34:44 +00006946 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006947}
drh615ae552005-01-16 23:21:00 +00006948#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006949
danielk19774dbaa892009-06-16 16:50:22 +00006950#if 0
drhc3b70572003-01-04 19:44:07 +00006951/*
danielk19774dbaa892009-06-16 16:50:22 +00006952** This function does not contribute anything to the operation of SQLite.
6953** it is sometimes activated temporarily while debugging code responsible
6954** for setting pointer-map entries.
6955*/
6956static int ptrmapCheckPages(MemPage **apPage, int nPage){
6957 int i, j;
6958 for(i=0; i<nPage; i++){
6959 Pgno n;
6960 u8 e;
6961 MemPage *pPage = apPage[i];
6962 BtShared *pBt = pPage->pBt;
6963 assert( pPage->isInit );
6964
6965 for(j=0; j<pPage->nCell; j++){
6966 CellInfo info;
6967 u8 *z;
6968
6969 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006970 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006971 if( info.nLocal<info.nPayload ){
6972 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006973 ptrmapGet(pBt, ovfl, &e, &n);
6974 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6975 }
6976 if( !pPage->leaf ){
6977 Pgno child = get4byte(z);
6978 ptrmapGet(pBt, child, &e, &n);
6979 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6980 }
6981 }
6982 if( !pPage->leaf ){
6983 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6984 ptrmapGet(pBt, child, &e, &n);
6985 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6986 }
6987 }
6988 return 1;
6989}
6990#endif
6991
danielk1977cd581a72009-06-23 15:43:39 +00006992/*
6993** This function is used to copy the contents of the b-tree node stored
6994** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6995** the pointer-map entries for each child page are updated so that the
6996** parent page stored in the pointer map is page pTo. If pFrom contained
6997** any cells with overflow page pointers, then the corresponding pointer
6998** map entries are also updated so that the parent page is page pTo.
6999**
7000** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007001** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007002**
danielk197730548662009-07-09 05:07:37 +00007003** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007004**
7005** The performance of this function is not critical. It is only used by
7006** the balance_shallower() and balance_deeper() procedures, neither of
7007** which are called often under normal circumstances.
7008*/
drhc314dc72009-07-21 11:52:34 +00007009static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7010 if( (*pRC)==SQLITE_OK ){
7011 BtShared * const pBt = pFrom->pBt;
7012 u8 * const aFrom = pFrom->aData;
7013 u8 * const aTo = pTo->aData;
7014 int const iFromHdr = pFrom->hdrOffset;
7015 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007016 int rc;
drhc314dc72009-07-21 11:52:34 +00007017 int iData;
7018
7019
7020 assert( pFrom->isInit );
7021 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007022 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007023
7024 /* Copy the b-tree node content from page pFrom to page pTo. */
7025 iData = get2byte(&aFrom[iFromHdr+5]);
7026 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7027 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7028
7029 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007030 ** match the new data. The initialization of pTo can actually fail under
7031 ** fairly obscure circumstances, even though it is a copy of initialized
7032 ** page pFrom.
7033 */
drhc314dc72009-07-21 11:52:34 +00007034 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007035 rc = btreeInitPage(pTo);
7036 if( rc!=SQLITE_OK ){
7037 *pRC = rc;
7038 return;
7039 }
drhc314dc72009-07-21 11:52:34 +00007040
7041 /* If this is an auto-vacuum database, update the pointer-map entries
7042 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7043 */
7044 if( ISAUTOVACUUM ){
7045 *pRC = setChildPtrmaps(pTo);
7046 }
danielk1977cd581a72009-06-23 15:43:39 +00007047 }
danielk1977cd581a72009-06-23 15:43:39 +00007048}
7049
7050/*
danielk19774dbaa892009-06-16 16:50:22 +00007051** This routine redistributes cells on the iParentIdx'th child of pParent
7052** (hereafter "the page") and up to 2 siblings so that all pages have about the
7053** same amount of free space. Usually a single sibling on either side of the
7054** page are used in the balancing, though both siblings might come from one
7055** side if the page is the first or last child of its parent. If the page
7056** has fewer than 2 siblings (something which can only happen if the page
7057** is a root page or a child of a root page) then all available siblings
7058** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007059**
danielk19774dbaa892009-06-16 16:50:22 +00007060** The number of siblings of the page might be increased or decreased by
7061** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007062**
danielk19774dbaa892009-06-16 16:50:22 +00007063** Note that when this routine is called, some of the cells on the page
7064** might not actually be stored in MemPage.aData[]. This can happen
7065** if the page is overfull. This routine ensures that all cells allocated
7066** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007067**
danielk19774dbaa892009-06-16 16:50:22 +00007068** In the course of balancing the page and its siblings, cells may be
7069** inserted into or removed from the parent page (pParent). Doing so
7070** may cause the parent page to become overfull or underfull. If this
7071** happens, it is the responsibility of the caller to invoke the correct
7072** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007073**
drh5e00f6c2001-09-13 13:46:56 +00007074** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007075** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007076** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007077**
7078** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007079** buffer big enough to hold one page. If while inserting cells into the parent
7080** page (pParent) the parent page becomes overfull, this buffer is
7081** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007082** a maximum of four divider cells into the parent page, and the maximum
7083** size of a cell stored within an internal node is always less than 1/4
7084** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7085** enough for all overflow cells.
7086**
7087** If aOvflSpace is set to a null pointer, this function returns
7088** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007089*/
danielk19774dbaa892009-06-16 16:50:22 +00007090static int balance_nonroot(
7091 MemPage *pParent, /* Parent page of siblings being balanced */
7092 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007093 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007094 int isRoot, /* True if pParent is a root-page */
7095 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007096){
drh16a9b832007-05-05 18:39:25 +00007097 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007098 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007099 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007100 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007101 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007102 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007103 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007104 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007105 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007106 int usableSpace; /* Bytes in pPage beyond the header */
7107 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007108 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007109 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007110 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007111 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007112 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007113 u8 *pRight; /* Location in parent of right-sibling pointer */
7114 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007115 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7116 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007117 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007118 u8 *aSpace1; /* Space for copies of dividers cells */
7119 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007120 u8 abDone[NB+2]; /* True after i'th new page is populated */
7121 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007122 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007123 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007124 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007125
dan33ea4862014-10-09 19:35:37 +00007126 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007127 b.nCell = 0;
7128 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007129 pBt = pParent->pBt;
7130 assert( sqlite3_mutex_held(pBt->mutex) );
7131 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007132
danielk1977e5765212009-06-17 11:13:28 +00007133#if 0
drh43605152004-05-29 21:46:49 +00007134 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007135#endif
drh2e38c322004-09-03 18:38:44 +00007136
danielk19774dbaa892009-06-16 16:50:22 +00007137 /* At this point pParent may have at most one overflow cell. And if
7138 ** this overflow cell is present, it must be the cell with
7139 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007140 ** is called (indirectly) from sqlite3BtreeDelete().
7141 */
danielk19774dbaa892009-06-16 16:50:22 +00007142 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007143 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007144
danielk197711a8a862009-06-17 11:49:52 +00007145 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007146 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007147 }
7148
danielk1977a50d9aa2009-06-08 14:49:45 +00007149 /* Find the sibling pages to balance. Also locate the cells in pParent
7150 ** that divide the siblings. An attempt is made to find NN siblings on
7151 ** either side of pPage. More siblings are taken from one side, however,
7152 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007153 ** has NB or fewer children then all children of pParent are taken.
7154 **
7155 ** This loop also drops the divider cells from the parent page. This
7156 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007157 ** overflow cells in the parent page, since if any existed they will
7158 ** have already been removed.
7159 */
danielk19774dbaa892009-06-16 16:50:22 +00007160 i = pParent->nOverflow + pParent->nCell;
7161 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007162 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007163 }else{
dan7d6885a2012-08-08 14:04:56 +00007164 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007165 if( iParentIdx==0 ){
7166 nxDiv = 0;
7167 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007168 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007169 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007170 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007171 }
dan7d6885a2012-08-08 14:04:56 +00007172 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007173 }
dan7d6885a2012-08-08 14:04:56 +00007174 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007175 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7176 pRight = &pParent->aData[pParent->hdrOffset+8];
7177 }else{
7178 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7179 }
7180 pgno = get4byte(pRight);
7181 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007182 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007183 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007184 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007185 goto balance_cleanup;
7186 }
danielk1977634f2982005-03-28 08:44:07 +00007187 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007188 if( (i--)==0 ) break;
7189
drh9cc5b4e2016-12-26 01:41:33 +00007190 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007191 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007192 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007193 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007194 pParent->nOverflow = 0;
7195 }else{
7196 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7197 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007198 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007199
7200 /* Drop the cell from the parent page. apDiv[i] still points to
7201 ** the cell within the parent, even though it has been dropped.
7202 ** This is safe because dropping a cell only overwrites the first
7203 ** four bytes of it, and this function does not need the first
7204 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007205 ** later on.
7206 **
drh8a575d92011-10-12 17:00:28 +00007207 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007208 ** the dropCell() routine will overwrite the entire cell with zeroes.
7209 ** In this case, temporarily copy the cell into the aOvflSpace[]
7210 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7211 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007212 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007213 int iOff;
7214
7215 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007216 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007217 rc = SQLITE_CORRUPT_BKPT;
7218 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7219 goto balance_cleanup;
7220 }else{
7221 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7222 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7223 }
drh5b47efa2010-02-12 18:18:39 +00007224 }
drh98add2e2009-07-20 17:11:49 +00007225 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007226 }
drh8b2f49b2001-06-08 00:21:52 +00007227 }
7228
drha9121e42008-02-19 14:59:35 +00007229 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007230 ** alignment */
drha9121e42008-02-19 14:59:35 +00007231 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007232
drh8b2f49b2001-06-08 00:21:52 +00007233 /*
danielk1977634f2982005-03-28 08:44:07 +00007234 ** Allocate space for memory structures
7235 */
drhfacf0302008-06-17 15:12:00 +00007236 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007237 nMaxCells*sizeof(u8*) /* b.apCell */
7238 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007239 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007240
drhcbd55b02014-11-04 14:22:27 +00007241 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7242 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007243 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007244 b.apCell = sqlite3ScratchMalloc( szScratch );
7245 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007246 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007247 goto balance_cleanup;
7248 }
drh1ffd2472015-06-23 02:37:30 +00007249 b.szCell = (u16*)&b.apCell[nMaxCells];
7250 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007251 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007252
7253 /*
7254 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007255 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007256 ** into space obtained from aSpace1[]. The divider cells have already
7257 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007258 **
7259 ** If the siblings are on leaf pages, then the child pointers of the
7260 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007261 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007262 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007263 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007264 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007265 **
7266 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7267 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007268 */
drh1ffd2472015-06-23 02:37:30 +00007269 b.pRef = apOld[0];
7270 leafCorrection = b.pRef->leaf*4;
7271 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007272 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007273 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007274 int limit = pOld->nCell;
7275 u8 *aData = pOld->aData;
7276 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007277 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007278 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007279
drh73d340a2015-05-28 11:23:11 +00007280 /* Verify that all sibling pages are of the same "type" (table-leaf,
7281 ** table-interior, index-leaf, or index-interior).
7282 */
7283 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7284 rc = SQLITE_CORRUPT_BKPT;
7285 goto balance_cleanup;
7286 }
7287
drhfe647dc2015-06-23 18:24:25 +00007288 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7289 ** constains overflow cells, include them in the b.apCell[] array
7290 ** in the correct spot.
7291 **
7292 ** Note that when there are multiple overflow cells, it is always the
7293 ** case that they are sequential and adjacent. This invariant arises
7294 ** because multiple overflows can only occurs when inserting divider
7295 ** cells into a parent on a prior balance, and divider cells are always
7296 ** adjacent and are inserted in order. There is an assert() tagged
7297 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7298 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007299 **
7300 ** This must be done in advance. Once the balance starts, the cell
7301 ** offset section of the btree page will be overwritten and we will no
7302 ** long be able to find the cells if a pointer to each cell is not saved
7303 ** first.
7304 */
drh36b78ee2016-01-20 01:32:00 +00007305 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007306 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007307 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007308 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007309 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007310 piCell += 2;
7311 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007312 }
drhfe647dc2015-06-23 18:24:25 +00007313 for(k=0; k<pOld->nOverflow; k++){
7314 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007315 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007316 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007317 }
drh1ffd2472015-06-23 02:37:30 +00007318 }
drhfe647dc2015-06-23 18:24:25 +00007319 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7320 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007321 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007322 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007323 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007324 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007325 }
7326
drh1ffd2472015-06-23 02:37:30 +00007327 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007328 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007329 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007330 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007331 assert( b.nCell<nMaxCells );
7332 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007333 pTemp = &aSpace1[iSpace1];
7334 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007335 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007336 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007337 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007338 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007339 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007340 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007341 if( !pOld->leaf ){
7342 assert( leafCorrection==0 );
7343 assert( pOld->hdrOffset==0 );
7344 /* The right pointer of the child page pOld becomes the left
7345 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007346 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007347 }else{
7348 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007349 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007350 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7351 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007352 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7353 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007354 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007355 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007356 }
7357 }
drh1ffd2472015-06-23 02:37:30 +00007358 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007359 }
drh8b2f49b2001-06-08 00:21:52 +00007360 }
7361
7362 /*
drh1ffd2472015-06-23 02:37:30 +00007363 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007364 ** Store this number in "k". Also compute szNew[] which is the total
7365 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007366 ** in b.apCell[] of the cell that divides page i from page i+1.
7367 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007368 **
drh96f5b762004-05-16 16:24:36 +00007369 ** Values computed by this block:
7370 **
7371 ** k: The total number of sibling pages
7372 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007373 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007374 ** the right of the i-th sibling page.
7375 ** usableSpace: Number of bytes of space available on each sibling.
7376 **
drh8b2f49b2001-06-08 00:21:52 +00007377 */
drh43605152004-05-29 21:46:49 +00007378 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007379 for(i=0; i<nOld; i++){
7380 MemPage *p = apOld[i];
7381 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007382 for(j=0; j<p->nOverflow; j++){
7383 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7384 }
7385 cntNew[i] = cntOld[i];
7386 }
7387 k = nOld;
7388 for(i=0; i<k; i++){
7389 int sz;
7390 while( szNew[i]>usableSpace ){
7391 if( i+1>=k ){
7392 k = i+2;
7393 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7394 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007395 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007396 }
drh1ffd2472015-06-23 02:37:30 +00007397 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007398 szNew[i] -= sz;
7399 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007400 if( cntNew[i]<b.nCell ){
7401 sz = 2 + cachedCellSize(&b, cntNew[i]);
7402 }else{
7403 sz = 0;
7404 }
drh658873b2015-06-22 20:02:04 +00007405 }
7406 szNew[i+1] += sz;
7407 cntNew[i]--;
7408 }
drh1ffd2472015-06-23 02:37:30 +00007409 while( cntNew[i]<b.nCell ){
7410 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007411 if( szNew[i]+sz>usableSpace ) break;
7412 szNew[i] += sz;
7413 cntNew[i]++;
7414 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007415 if( cntNew[i]<b.nCell ){
7416 sz = 2 + cachedCellSize(&b, cntNew[i]);
7417 }else{
7418 sz = 0;
7419 }
drh658873b2015-06-22 20:02:04 +00007420 }
7421 szNew[i+1] -= sz;
7422 }
drh1ffd2472015-06-23 02:37:30 +00007423 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007424 k = i+1;
drh672073a2015-06-24 12:07:40 +00007425 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007426 rc = SQLITE_CORRUPT_BKPT;
7427 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007428 }
7429 }
drh96f5b762004-05-16 16:24:36 +00007430
7431 /*
7432 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007433 ** on the left side (siblings with smaller keys). The left siblings are
7434 ** always nearly full, while the right-most sibling might be nearly empty.
7435 ** The next block of code attempts to adjust the packing of siblings to
7436 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007437 **
7438 ** This adjustment is more than an optimization. The packing above might
7439 ** be so out of balance as to be illegal. For example, the right-most
7440 ** sibling might be completely empty. This adjustment is not optional.
7441 */
drh6019e162001-07-02 17:51:45 +00007442 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007443 int szRight = szNew[i]; /* Size of sibling on the right */
7444 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7445 int r; /* Index of right-most cell in left sibling */
7446 int d; /* Index of first cell to the left of right sibling */
7447
7448 r = cntNew[i-1] - 1;
7449 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007450 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007451 do{
drh1ffd2472015-06-23 02:37:30 +00007452 assert( d<nMaxCells );
7453 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007454 (void)cachedCellSize(&b, r);
7455 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007456 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007457 break;
7458 }
7459 szRight += b.szCell[d] + 2;
7460 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007461 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007462 r--;
7463 d--;
drh672073a2015-06-24 12:07:40 +00007464 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007465 szNew[i] = szRight;
7466 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007467 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7468 rc = SQLITE_CORRUPT_BKPT;
7469 goto balance_cleanup;
7470 }
drh6019e162001-07-02 17:51:45 +00007471 }
drh09d0deb2005-08-02 17:13:09 +00007472
drh2a0df922014-10-30 23:14:56 +00007473 /* Sanity check: For a non-corrupt database file one of the follwing
7474 ** must be true:
7475 ** (1) We found one or more cells (cntNew[0])>0), or
7476 ** (2) pPage is a virtual root page. A virtual root page is when
7477 ** the real root page is page 1 and we are the only child of
7478 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007479 */
drh2a0df922014-10-30 23:14:56 +00007480 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007481 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7482 apOld[0]->pgno, apOld[0]->nCell,
7483 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7484 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007485 ));
7486
drh8b2f49b2001-06-08 00:21:52 +00007487 /*
drh6b308672002-07-08 02:16:37 +00007488 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007489 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007490 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007491 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007492 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007493 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007494 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007495 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007496 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007497 nNew++;
danielk197728129562005-01-11 10:25:06 +00007498 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007499 }else{
drh7aa8f852006-03-28 00:24:44 +00007500 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007501 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007502 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007503 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007504 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007505 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007506 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007507
7508 /* Set the pointer-map entry for the new sibling page. */
7509 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007510 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007511 if( rc!=SQLITE_OK ){
7512 goto balance_cleanup;
7513 }
7514 }
drh6b308672002-07-08 02:16:37 +00007515 }
drh8b2f49b2001-06-08 00:21:52 +00007516 }
7517
7518 /*
dan33ea4862014-10-09 19:35:37 +00007519 ** Reassign page numbers so that the new pages are in ascending order.
7520 ** This helps to keep entries in the disk file in order so that a scan
7521 ** of the table is closer to a linear scan through the file. That in turn
7522 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007523 **
dan33ea4862014-10-09 19:35:37 +00007524 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7525 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007526 **
dan33ea4862014-10-09 19:35:37 +00007527 ** When NB==3, this one optimization makes the database about 25% faster
7528 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007529 */
dan33ea4862014-10-09 19:35:37 +00007530 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007531 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007532 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007533 for(j=0; j<i; j++){
7534 if( aPgno[j]==aPgno[i] ){
7535 /* This branch is taken if the set of sibling pages somehow contains
7536 ** duplicate entries. This can happen if the database is corrupt.
7537 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007538 ** we do the detection here in order to avoid populating the pager
7539 ** cache with two separate objects associated with the same
7540 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007541 assert( CORRUPT_DB );
7542 rc = SQLITE_CORRUPT_BKPT;
7543 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007544 }
7545 }
dan33ea4862014-10-09 19:35:37 +00007546 }
7547 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007548 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007549 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007550 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007551 }
drh00fe08a2014-10-31 00:05:23 +00007552 pgno = aPgOrder[iBest];
7553 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007554 if( iBest!=i ){
7555 if( iBest>i ){
7556 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7557 }
7558 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7559 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007560 }
7561 }
dan33ea4862014-10-09 19:35:37 +00007562
7563 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7564 "%d(%d nc=%d) %d(%d nc=%d)\n",
7565 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007566 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007567 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007568 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007569 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007570 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007571 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7572 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7573 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7574 ));
danielk19774dbaa892009-06-16 16:50:22 +00007575
7576 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7577 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007578
dan33ea4862014-10-09 19:35:37 +00007579 /* If the sibling pages are not leaves, ensure that the right-child pointer
7580 ** of the right-most new sibling page is set to the value that was
7581 ** originally in the same field of the right-most old sibling page. */
7582 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7583 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7584 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7585 }
danielk1977ac11ee62005-01-15 12:45:51 +00007586
dan33ea4862014-10-09 19:35:37 +00007587 /* Make any required updates to pointer map entries associated with
7588 ** cells stored on sibling pages following the balance operation. Pointer
7589 ** map entries associated with divider cells are set by the insertCell()
7590 ** routine. The associated pointer map entries are:
7591 **
7592 ** a) if the cell contains a reference to an overflow chain, the
7593 ** entry associated with the first page in the overflow chain, and
7594 **
7595 ** b) if the sibling pages are not leaves, the child page associated
7596 ** with the cell.
7597 **
7598 ** If the sibling pages are not leaves, then the pointer map entry
7599 ** associated with the right-child of each sibling may also need to be
7600 ** updated. This happens below, after the sibling pages have been
7601 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007602 */
dan33ea4862014-10-09 19:35:37 +00007603 if( ISAUTOVACUUM ){
7604 MemPage *pNew = apNew[0];
7605 u8 *aOld = pNew->aData;
7606 int cntOldNext = pNew->nCell + pNew->nOverflow;
7607 int usableSize = pBt->usableSize;
7608 int iNew = 0;
7609 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007610
drh1ffd2472015-06-23 02:37:30 +00007611 for(i=0; i<b.nCell; i++){
7612 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007613 if( i==cntOldNext ){
7614 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7615 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7616 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007617 }
dan33ea4862014-10-09 19:35:37 +00007618 if( i==cntNew[iNew] ){
7619 pNew = apNew[++iNew];
7620 if( !leafData ) continue;
7621 }
danielk197785d90ca2008-07-19 14:25:15 +00007622
dan33ea4862014-10-09 19:35:37 +00007623 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007624 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007625 ** or else the divider cell to the left of sibling page iOld. So,
7626 ** if sibling page iOld had the same page number as pNew, and if
7627 ** pCell really was a part of sibling page iOld (not a divider or
7628 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007629 if( iOld>=nNew
7630 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007631 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007632 ){
dan33ea4862014-10-09 19:35:37 +00007633 if( !leafCorrection ){
7634 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7635 }
drh1ffd2472015-06-23 02:37:30 +00007636 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007637 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007638 }
drhea82b372015-06-23 21:35:28 +00007639 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007640 }
drh14acc042001-06-10 19:56:58 +00007641 }
7642 }
dan33ea4862014-10-09 19:35:37 +00007643
7644 /* Insert new divider cells into pParent. */
7645 for(i=0; i<nNew-1; i++){
7646 u8 *pCell;
7647 u8 *pTemp;
7648 int sz;
7649 MemPage *pNew = apNew[i];
7650 j = cntNew[i];
7651
7652 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007653 assert( b.apCell[j]!=0 );
7654 pCell = b.apCell[j];
7655 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007656 pTemp = &aOvflSpace[iOvflSpace];
7657 if( !pNew->leaf ){
7658 memcpy(&pNew->aData[8], pCell, 4);
7659 }else if( leafData ){
7660 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007661 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007662 ** cell consists of the integer key for the right-most cell of
7663 ** the sibling-page assembled above only.
7664 */
7665 CellInfo info;
7666 j--;
drh1ffd2472015-06-23 02:37:30 +00007667 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007668 pCell = pTemp;
7669 sz = 4 + putVarint(&pCell[4], info.nKey);
7670 pTemp = 0;
7671 }else{
7672 pCell -= 4;
7673 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7674 ** previously stored on a leaf node, and its reported size was 4
7675 ** bytes, then it may actually be smaller than this
7676 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7677 ** any cell). But it is important to pass the correct size to
7678 ** insertCell(), so reparse the cell now.
7679 **
drhc1fb2b82016-03-09 03:29:27 +00007680 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7681 ** and WITHOUT ROWID tables with exactly one column which is the
7682 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007683 */
drh1ffd2472015-06-23 02:37:30 +00007684 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007685 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007686 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007687 }
7688 }
7689 iOvflSpace += sz;
7690 assert( sz<=pBt->maxLocal+23 );
7691 assert( iOvflSpace <= (int)pBt->pageSize );
7692 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7693 if( rc!=SQLITE_OK ) goto balance_cleanup;
7694 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7695 }
7696
7697 /* Now update the actual sibling pages. The order in which they are updated
7698 ** is important, as this code needs to avoid disrupting any page from which
7699 ** cells may still to be read. In practice, this means:
7700 **
drhd836d422014-10-31 14:26:36 +00007701 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7702 ** then it is not safe to update page apNew[iPg] until after
7703 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007704 **
drhd836d422014-10-31 14:26:36 +00007705 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7706 ** then it is not safe to update page apNew[iPg] until after
7707 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007708 **
7709 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007710 **
7711 ** The iPg value in the following loop starts at nNew-1 goes down
7712 ** to 0, then back up to nNew-1 again, thus making two passes over
7713 ** the pages. On the initial downward pass, only condition (1) above
7714 ** needs to be tested because (2) will always be true from the previous
7715 ** step. On the upward pass, both conditions are always true, so the
7716 ** upwards pass simply processes pages that were missed on the downward
7717 ** pass.
dan33ea4862014-10-09 19:35:37 +00007718 */
drhbec021b2014-10-31 12:22:00 +00007719 for(i=1-nNew; i<nNew; i++){
7720 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007721 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007722 if( abDone[iPg] ) continue; /* Skip pages already processed */
7723 if( i>=0 /* On the upwards pass, or... */
7724 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007725 ){
dan09c68402014-10-11 20:00:24 +00007726 int iNew;
7727 int iOld;
7728 int nNewCell;
7729
drhd836d422014-10-31 14:26:36 +00007730 /* Verify condition (1): If cells are moving left, update iPg
7731 ** only after iPg-1 has already been updated. */
7732 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7733
7734 /* Verify condition (2): If cells are moving right, update iPg
7735 ** only after iPg+1 has already been updated. */
7736 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7737
dan09c68402014-10-11 20:00:24 +00007738 if( iPg==0 ){
7739 iNew = iOld = 0;
7740 nNewCell = cntNew[0];
7741 }else{
drh1ffd2472015-06-23 02:37:30 +00007742 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007743 iNew = cntNew[iPg-1] + !leafData;
7744 nNewCell = cntNew[iPg] - iNew;
7745 }
7746
drh1ffd2472015-06-23 02:37:30 +00007747 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007748 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007749 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007750 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007751 assert( apNew[iPg]->nOverflow==0 );
7752 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007753 }
7754 }
drhd836d422014-10-31 14:26:36 +00007755
7756 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007757 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7758
drh7aa8f852006-03-28 00:24:44 +00007759 assert( nOld>0 );
7760 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007761
danielk197713bd99f2009-06-24 05:40:34 +00007762 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7763 /* The root page of the b-tree now contains no cells. The only sibling
7764 ** page is the right-child of the parent. Copy the contents of the
7765 ** child page into the parent, decreasing the overall height of the
7766 ** b-tree structure by one. This is described as the "balance-shallower"
7767 ** sub-algorithm in some documentation.
7768 **
7769 ** If this is an auto-vacuum database, the call to copyNodeContent()
7770 ** sets all pointer-map entries corresponding to database image pages
7771 ** for which the pointer is stored within the content being copied.
7772 **
drh768f2902014-10-31 02:51:41 +00007773 ** It is critical that the child page be defragmented before being
7774 ** copied into the parent, because if the parent is page 1 then it will
7775 ** by smaller than the child due to the database header, and so all the
7776 ** free space needs to be up front.
7777 */
drh9b5351d2015-09-30 14:19:08 +00007778 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007779 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007780 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007781 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007782 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7783 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007784 );
drhc314dc72009-07-21 11:52:34 +00007785 copyNodeContent(apNew[0], pParent, &rc);
7786 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007787 }else if( ISAUTOVACUUM && !leafCorrection ){
7788 /* Fix the pointer map entries associated with the right-child of each
7789 ** sibling page. All other pointer map entries have already been taken
7790 ** care of. */
7791 for(i=0; i<nNew; i++){
7792 u32 key = get4byte(&apNew[i]->aData[8]);
7793 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007794 }
dan33ea4862014-10-09 19:35:37 +00007795 }
danielk19774dbaa892009-06-16 16:50:22 +00007796
dan33ea4862014-10-09 19:35:37 +00007797 assert( pParent->isInit );
7798 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007799 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007800
dan33ea4862014-10-09 19:35:37 +00007801 /* Free any old pages that were not reused as new pages.
7802 */
7803 for(i=nNew; i<nOld; i++){
7804 freePage(apOld[i], &rc);
7805 }
danielk19774dbaa892009-06-16 16:50:22 +00007806
7807#if 0
dan33ea4862014-10-09 19:35:37 +00007808 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007809 /* The ptrmapCheckPages() contains assert() statements that verify that
7810 ** all pointer map pages are set correctly. This is helpful while
7811 ** debugging. This is usually disabled because a corrupt database may
7812 ** cause an assert() statement to fail. */
7813 ptrmapCheckPages(apNew, nNew);
7814 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007815 }
dan33ea4862014-10-09 19:35:37 +00007816#endif
danielk1977cd581a72009-06-23 15:43:39 +00007817
drh8b2f49b2001-06-08 00:21:52 +00007818 /*
drh14acc042001-06-10 19:56:58 +00007819 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007820 */
drh14acc042001-06-10 19:56:58 +00007821balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007822 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007823 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007824 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007825 }
drh14acc042001-06-10 19:56:58 +00007826 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007827 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007828 }
danielk1977eaa06f62008-09-18 17:34:44 +00007829
drh8b2f49b2001-06-08 00:21:52 +00007830 return rc;
7831}
7832
drh43605152004-05-29 21:46:49 +00007833
7834/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007835** This function is called when the root page of a b-tree structure is
7836** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007837**
danielk1977a50d9aa2009-06-08 14:49:45 +00007838** A new child page is allocated and the contents of the current root
7839** page, including overflow cells, are copied into the child. The root
7840** page is then overwritten to make it an empty page with the right-child
7841** pointer pointing to the new page.
7842**
7843** Before returning, all pointer-map entries corresponding to pages
7844** that the new child-page now contains pointers to are updated. The
7845** entry corresponding to the new right-child pointer of the root
7846** page is also updated.
7847**
7848** If successful, *ppChild is set to contain a reference to the child
7849** page and SQLITE_OK is returned. In this case the caller is required
7850** to call releasePage() on *ppChild exactly once. If an error occurs,
7851** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007852*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007853static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7854 int rc; /* Return value from subprocedures */
7855 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007856 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007857 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007858
danielk1977a50d9aa2009-06-08 14:49:45 +00007859 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007860 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007861
danielk1977a50d9aa2009-06-08 14:49:45 +00007862 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7863 ** page that will become the new right-child of pPage. Copy the contents
7864 ** of the node stored on pRoot into the new child page.
7865 */
drh98add2e2009-07-20 17:11:49 +00007866 rc = sqlite3PagerWrite(pRoot->pDbPage);
7867 if( rc==SQLITE_OK ){
7868 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007869 copyNodeContent(pRoot, pChild, &rc);
7870 if( ISAUTOVACUUM ){
7871 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007872 }
7873 }
7874 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007875 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007876 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007877 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007878 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007879 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7880 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7881 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007882
danielk1977a50d9aa2009-06-08 14:49:45 +00007883 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7884
7885 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007886 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7887 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7888 memcpy(pChild->apOvfl, pRoot->apOvfl,
7889 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007890 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007891
7892 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7893 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7894 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7895
7896 *ppChild = pChild;
7897 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007898}
7899
7900/*
danielk197771d5d2c2008-09-29 11:49:47 +00007901** The page that pCur currently points to has just been modified in
7902** some way. This function figures out if this modification means the
7903** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007904** routine. Balancing routines are:
7905**
7906** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007907** balance_deeper()
7908** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007909*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007910static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007911 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007912 const int nMin = pCur->pBt->usableSize * 2 / 3;
7913 u8 aBalanceQuickSpace[13];
7914 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007915
drhcc5f8a42016-02-06 22:32:06 +00007916 VVA_ONLY( int balance_quick_called = 0 );
7917 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007918
7919 do {
7920 int iPage = pCur->iPage;
7921 MemPage *pPage = pCur->apPage[iPage];
7922
7923 if( iPage==0 ){
7924 if( pPage->nOverflow ){
7925 /* The root page of the b-tree is overfull. In this case call the
7926 ** balance_deeper() function to create a new child for the root-page
7927 ** and copy the current contents of the root-page to it. The
7928 ** next iteration of the do-loop will balance the child page.
7929 */
drhcc5f8a42016-02-06 22:32:06 +00007930 assert( balance_deeper_called==0 );
7931 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007932 rc = balance_deeper(pPage, &pCur->apPage[1]);
7933 if( rc==SQLITE_OK ){
7934 pCur->iPage = 1;
7935 pCur->aiIdx[0] = 0;
7936 pCur->aiIdx[1] = 0;
7937 assert( pCur->apPage[1]->nOverflow );
7938 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007939 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007940 break;
7941 }
7942 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7943 break;
7944 }else{
7945 MemPage * const pParent = pCur->apPage[iPage-1];
7946 int const iIdx = pCur->aiIdx[iPage-1];
7947
7948 rc = sqlite3PagerWrite(pParent->pDbPage);
7949 if( rc==SQLITE_OK ){
7950#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007951 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007952 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007953 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007954 && pParent->pgno!=1
7955 && pParent->nCell==iIdx
7956 ){
7957 /* Call balance_quick() to create a new sibling of pPage on which
7958 ** to store the overflow cell. balance_quick() inserts a new cell
7959 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007960 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007961 ** use either balance_nonroot() or balance_deeper(). Until this
7962 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7963 ** buffer.
7964 **
7965 ** The purpose of the following assert() is to check that only a
7966 ** single call to balance_quick() is made for each call to this
7967 ** function. If this were not verified, a subtle bug involving reuse
7968 ** of the aBalanceQuickSpace[] might sneak in.
7969 */
drhcc5f8a42016-02-06 22:32:06 +00007970 assert( balance_quick_called==0 );
7971 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007972 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7973 }else
7974#endif
7975 {
7976 /* In this case, call balance_nonroot() to redistribute cells
7977 ** between pPage and up to 2 of its sibling pages. This involves
7978 ** modifying the contents of pParent, which may cause pParent to
7979 ** become overfull or underfull. The next iteration of the do-loop
7980 ** will balance the parent page to correct this.
7981 **
7982 ** If the parent page becomes overfull, the overflow cell or cells
7983 ** are stored in the pSpace buffer allocated immediately below.
7984 ** A subsequent iteration of the do-loop will deal with this by
7985 ** calling balance_nonroot() (balance_deeper() may be called first,
7986 ** but it doesn't deal with overflow cells - just moves them to a
7987 ** different page). Once this subsequent call to balance_nonroot()
7988 ** has completed, it is safe to release the pSpace buffer used by
7989 ** the previous call, as the overflow cell data will have been
7990 ** copied either into the body of a database page or into the new
7991 ** pSpace buffer passed to the latter call to balance_nonroot().
7992 */
7993 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007994 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7995 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007996 if( pFree ){
7997 /* If pFree is not NULL, it points to the pSpace buffer used
7998 ** by a previous call to balance_nonroot(). Its contents are
7999 ** now stored either on real database pages or within the
8000 ** new pSpace buffer, so it may be safely freed here. */
8001 sqlite3PageFree(pFree);
8002 }
8003
danielk19774dbaa892009-06-16 16:50:22 +00008004 /* The pSpace buffer will be freed after the next call to
8005 ** balance_nonroot(), or just before this function returns, whichever
8006 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008007 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008008 }
8009 }
8010
8011 pPage->nOverflow = 0;
8012
8013 /* The next iteration of the do-loop balances the parent page. */
8014 releasePage(pPage);
8015 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008016 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00008017 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008018 }while( rc==SQLITE_OK );
8019
8020 if( pFree ){
8021 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008022 }
8023 return rc;
8024}
8025
drhf74b8d92002-09-01 23:20:45 +00008026
8027/*
drh8eeb4462016-05-21 20:03:42 +00008028** Insert a new record into the BTree. The content of the new record
8029** is described by the pX object. The pCur cursor is used only to
8030** define what table the record should be inserted into, and is left
8031** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008032**
drh8eeb4462016-05-21 20:03:42 +00008033** For a table btree (used for rowid tables), only the pX.nKey value of
8034** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8035** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8036** hold the content of the row.
8037**
8038** For an index btree (used for indexes and WITHOUT ROWID tables), the
8039** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8040** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008041**
8042** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008043** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8044** been performed. In other words, if seekResult!=0 then the cursor
8045** is currently pointing to a cell that will be adjacent to the cell
8046** to be inserted. If seekResult<0 then pCur points to a cell that is
8047** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8048** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008049**
drheaf6ae22016-11-09 20:14:34 +00008050** If seekResult==0, that means pCur is pointing at some unknown location.
8051** In that case, this routine must seek the cursor to the correct insertion
8052** point for (pKey,nKey) before doing the insertion. For index btrees,
8053** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8054** key values and pX->aMem can be used instead of pX->pKey to avoid having
8055** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008056*/
drh3aac2dd2004-04-26 14:10:20 +00008057int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008058 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008059 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008060 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008061 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008062){
drh3b7511c2001-05-26 13:15:44 +00008063 int rc;
drh3e9ca092009-09-08 01:14:48 +00008064 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008065 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008066 int idx;
drh3b7511c2001-05-26 13:15:44 +00008067 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008068 Btree *p = pCur->pBtree;
8069 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008070 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008071 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008072
danf91c1312017-01-10 20:04:38 +00008073 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8074
drh98add2e2009-07-20 17:11:49 +00008075 if( pCur->eState==CURSOR_FAULT ){
8076 assert( pCur->skipNext!=SQLITE_OK );
8077 return pCur->skipNext;
8078 }
8079
dan7a2347e2016-01-07 16:43:54 +00008080 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008081 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8082 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008083 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008084 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8085
danielk197731d31b82009-07-13 13:18:07 +00008086 /* Assert that the caller has been consistent. If this cursor was opened
8087 ** expecting an index b-tree, then the caller should be inserting blob
8088 ** keys with no associated data. If the cursor was opened expecting an
8089 ** intkey table, the caller should be inserting integer keys with a
8090 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008091 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008092
danielk19779c3acf32009-05-02 07:36:49 +00008093 /* Save the positions of any other cursors open on this table.
8094 **
danielk19773509a652009-07-06 18:56:13 +00008095 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008096 ** example, when inserting data into a table with auto-generated integer
8097 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8098 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008099 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008100 ** that the cursor is already where it needs to be and returns without
8101 ** doing any work. To avoid thwarting these optimizations, it is important
8102 ** not to clear the cursor here.
8103 */
drh27fb7462015-06-30 02:47:36 +00008104 if( pCur->curFlags & BTCF_Multiple ){
8105 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8106 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008107 }
8108
danielk197771d5d2c2008-09-29 11:49:47 +00008109 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008110 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008111 /* If this is an insert into a table b-tree, invalidate any incrblob
8112 ** cursors open on the row being replaced */
drh8eeb4462016-05-21 20:03:42 +00008113 invalidateIncrblobCursors(p, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008114
danf91c1312017-01-10 20:04:38 +00008115 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8116 ** to a row with the same key as the new entry being inserted. */
8117 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8118 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8119
drhe0670b62014-02-12 21:31:12 +00008120 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008121 ** new row onto the end, set the "loc" to avoid an unnecessary
8122 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008123 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8124 loc = 0;
8125 }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8126 && pCur->info.nKey==pX->nKey-1 ){
8127 loc = -1;
drh207c8172015-06-29 23:01:32 +00008128 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008129 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008130 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008131 }
danf91c1312017-01-10 20:04:38 +00008132 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008133 if( pX->nMem ){
8134 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008135 r.pKeyInfo = pCur->pKeyInfo;
8136 r.aMem = pX->aMem;
8137 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008138 r.default_rc = 0;
8139 r.errCode = 0;
8140 r.r1 = 0;
8141 r.r2 = 0;
8142 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008143 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008144 }else{
danf91c1312017-01-10 20:04:38 +00008145 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008146 }
drh4c301aa2009-07-15 17:25:45 +00008147 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008148 }
danielk1977b980d2212009-06-22 18:03:51 +00008149 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008150
drh14acc042001-06-10 19:56:58 +00008151 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008152 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008153 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008154
drh3a4c1412004-05-09 20:40:11 +00008155 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008156 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008157 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008158 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008159 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008160 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008161 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008162 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008163 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008164 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008165 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008166 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008167 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008168 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008169 rc = sqlite3PagerWrite(pPage->pDbPage);
8170 if( rc ){
8171 goto end_insert;
8172 }
danielk197771d5d2c2008-09-29 11:49:47 +00008173 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008174 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008175 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008176 }
drh80159da2016-12-09 17:32:51 +00008177 rc = clearCell(pPage, oldCell, &info);
8178 if( info.nSize==szNew && info.nLocal==info.nPayload ){
drhf9238252016-12-09 18:09:42 +00008179 /* Overwrite the old cell with the new if they are the same size.
8180 ** We could also try to do this if the old cell is smaller, then add
8181 ** the leftover space to the free list. But experiments show that
8182 ** doing that is no faster then skipping this optimization and just
8183 ** calling dropCell() and insertCell(). */
8184 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008185 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008186 memcpy(oldCell, newCell, szNew);
8187 return SQLITE_OK;
8188 }
8189 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008190 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008191 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008192 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008193 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008194 }else{
drh4b70f112004-05-02 21:12:19 +00008195 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008196 }
drh98add2e2009-07-20 17:11:49 +00008197 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008198 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008199 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008200
mistachkin48864df2013-03-21 21:20:32 +00008201 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008202 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008203 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008204 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008205 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008206 ** Previous versions of SQLite called moveToRoot() to move the cursor
8207 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008208 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8209 ** set the cursor state to "invalid". This makes common insert operations
8210 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008211 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008212 ** There is a subtle but important optimization here too. When inserting
8213 ** multiple records into an intkey b-tree using a single cursor (as can
8214 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8215 ** is advantageous to leave the cursor pointing to the last entry in
8216 ** the b-tree if possible. If the cursor is left pointing to the last
8217 ** entry in the table, and the next row inserted has an integer key
8218 ** larger than the largest existing key, it is possible to insert the
8219 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008220 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008221 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008222 if( pPage->nOverflow ){
8223 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008224 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008225 rc = balance(pCur);
8226
8227 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008228 ** fails. Internal data structure corruption will result otherwise.
8229 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8230 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008231 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008232 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008233 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8234 rc = moveToRoot(pCur);
drh7b20a152017-01-12 19:10:55 +00008235 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008236 assert( pCur->pKey==0 );
8237 pCur->pKey = sqlite3Malloc( pX->nKey );
8238 if( pCur->pKey==0 ){
8239 rc = SQLITE_NOMEM;
8240 }else{
8241 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8242 }
8243 }
8244 pCur->eState = CURSOR_REQUIRESEEK;
8245 pCur->nKey = pX->nKey;
8246 }
danielk19773f632d52009-05-02 10:03:09 +00008247 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008248 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008249
drh2e38c322004-09-03 18:38:44 +00008250end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008251 return rc;
8252}
8253
8254/*
danf0ee1d32015-09-12 19:26:11 +00008255** Delete the entry that the cursor is pointing to.
8256**
drhe807bdb2016-01-21 17:06:33 +00008257** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8258** the cursor is left pointing at an arbitrary location after the delete.
8259** But if that bit is set, then the cursor is left in a state such that
8260** the next call to BtreeNext() or BtreePrev() moves it to the same row
8261** as it would have been on if the call to BtreeDelete() had been omitted.
8262**
drhdef19e32016-01-27 16:26:25 +00008263** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8264** associated with a single table entry and its indexes. Only one of those
8265** deletes is considered the "primary" delete. The primary delete occurs
8266** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8267** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8268** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008269** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008270*/
drhe807bdb2016-01-21 17:06:33 +00008271int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008272 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008273 BtShared *pBt = p->pBt;
8274 int rc; /* Return code */
8275 MemPage *pPage; /* Page to delete cell from */
8276 unsigned char *pCell; /* Pointer to cell to delete */
8277 int iCellIdx; /* Index of cell to delete */
8278 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008279 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008280 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008281 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008282
dan7a2347e2016-01-07 16:43:54 +00008283 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008284 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008285 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008286 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008287 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8288 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008289 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8290 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008291 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008292
danielk19774dbaa892009-06-16 16:50:22 +00008293 iCellDepth = pCur->iPage;
8294 iCellIdx = pCur->aiIdx[iCellDepth];
8295 pPage = pCur->apPage[iCellDepth];
8296 pCell = findCell(pPage, iCellIdx);
8297
drhbfc7a8b2016-04-09 17:04:05 +00008298 /* If the bPreserve flag is set to true, then the cursor position must
8299 ** be preserved following this delete operation. If the current delete
8300 ** will cause a b-tree rebalance, then this is done by saving the cursor
8301 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8302 ** returning.
8303 **
8304 ** Or, if the current delete will not cause a rebalance, then the cursor
8305 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8306 ** before or after the deleted entry. In this case set bSkipnext to true. */
8307 if( bPreserve ){
8308 if( !pPage->leaf
8309 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8310 ){
8311 /* A b-tree rebalance will be required after deleting this entry.
8312 ** Save the cursor key. */
8313 rc = saveCursorKey(pCur);
8314 if( rc ) return rc;
8315 }else{
8316 bSkipnext = 1;
8317 }
8318 }
8319
danielk19774dbaa892009-06-16 16:50:22 +00008320 /* If the page containing the entry to delete is not a leaf page, move
8321 ** the cursor to the largest entry in the tree that is smaller than
8322 ** the entry being deleted. This cell will replace the cell being deleted
8323 ** from the internal node. The 'previous' entry is used for this instead
8324 ** of the 'next' entry, as the previous entry is always a part of the
8325 ** sub-tree headed by the child page of the cell being deleted. This makes
8326 ** balancing the tree following the delete operation easier. */
8327 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008328 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008329 rc = sqlite3BtreePrevious(pCur, &notUsed);
8330 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008331 }
8332
8333 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008334 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008335 if( pCur->curFlags & BTCF_Multiple ){
8336 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8337 if( rc ) return rc;
8338 }
drhd60f4f42012-03-23 14:23:52 +00008339
8340 /* If this is a delete operation to remove a row from a table b-tree,
8341 ** invalidate any incrblob cursors open on the row being deleted. */
8342 if( pCur->pKeyInfo==0 ){
8343 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8344 }
8345
danf0ee1d32015-09-12 19:26:11 +00008346 /* Make the page containing the entry to be deleted writable. Then free any
8347 ** overflow pages associated with the entry and finally remove the cell
8348 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008349 rc = sqlite3PagerWrite(pPage->pDbPage);
8350 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008351 rc = clearCell(pPage, pCell, &info);
8352 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008353 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008354
danielk19774dbaa892009-06-16 16:50:22 +00008355 /* If the cell deleted was not located on a leaf page, then the cursor
8356 ** is currently pointing to the largest entry in the sub-tree headed
8357 ** by the child-page of the cell that was just deleted from an internal
8358 ** node. The cell from the leaf node needs to be moved to the internal
8359 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008360 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008361 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8362 int nCell;
8363 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8364 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008365
danielk19774dbaa892009-06-16 16:50:22 +00008366 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008367 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008368 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008369 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008370 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008371 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008372 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008373 if( rc==SQLITE_OK ){
8374 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8375 }
drh98add2e2009-07-20 17:11:49 +00008376 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008377 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008378 }
danielk19774dbaa892009-06-16 16:50:22 +00008379
8380 /* Balance the tree. If the entry deleted was located on a leaf page,
8381 ** then the cursor still points to that page. In this case the first
8382 ** call to balance() repairs the tree, and the if(...) condition is
8383 ** never true.
8384 **
8385 ** Otherwise, if the entry deleted was on an internal node page, then
8386 ** pCur is pointing to the leaf page from which a cell was removed to
8387 ** replace the cell deleted from the internal node. This is slightly
8388 ** tricky as the leaf node may be underfull, and the internal node may
8389 ** be either under or overfull. In this case run the balancing algorithm
8390 ** on the leaf node first. If the balance proceeds far enough up the
8391 ** tree that we can be sure that any problem in the internal node has
8392 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8393 ** walk the cursor up the tree to the internal node and balance it as
8394 ** well. */
8395 rc = balance(pCur);
8396 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8397 while( pCur->iPage>iCellDepth ){
8398 releasePage(pCur->apPage[pCur->iPage--]);
8399 }
8400 rc = balance(pCur);
8401 }
8402
danielk19776b456a22005-03-21 04:04:02 +00008403 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008404 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008405 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008406 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008407 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008408 pCur->eState = CURSOR_SKIPNEXT;
8409 if( iCellIdx>=pPage->nCell ){
8410 pCur->skipNext = -1;
8411 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8412 }else{
8413 pCur->skipNext = 1;
8414 }
8415 }else{
8416 rc = moveToRoot(pCur);
8417 if( bPreserve ){
8418 pCur->eState = CURSOR_REQUIRESEEK;
8419 }
8420 }
danielk19776b456a22005-03-21 04:04:02 +00008421 }
drh5e2f8b92001-05-28 00:41:15 +00008422 return rc;
drh3b7511c2001-05-26 13:15:44 +00008423}
drh8b2f49b2001-06-08 00:21:52 +00008424
8425/*
drhc6b52df2002-01-04 03:09:29 +00008426** Create a new BTree table. Write into *piTable the page
8427** number for the root page of the new table.
8428**
drhab01f612004-05-22 02:55:23 +00008429** The type of type is determined by the flags parameter. Only the
8430** following values of flags are currently in use. Other values for
8431** flags might not work:
8432**
8433** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8434** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008435*/
drhd4187c72010-08-30 22:15:45 +00008436static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008437 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008438 MemPage *pRoot;
8439 Pgno pgnoRoot;
8440 int rc;
drhd4187c72010-08-30 22:15:45 +00008441 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008442
drh1fee73e2007-08-29 04:00:57 +00008443 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008444 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008445 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008446
danielk1977003ba062004-11-04 02:57:33 +00008447#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008448 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008449 if( rc ){
8450 return rc;
8451 }
danielk1977003ba062004-11-04 02:57:33 +00008452#else
danielk1977687566d2004-11-02 12:56:41 +00008453 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008454 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8455 MemPage *pPageMove; /* The page to move to. */
8456
danielk197720713f32007-05-03 11:43:33 +00008457 /* Creating a new table may probably require moving an existing database
8458 ** to make room for the new tables root page. In case this page turns
8459 ** out to be an overflow page, delete all overflow page-map caches
8460 ** held by open cursors.
8461 */
danielk197792d4d7a2007-05-04 12:05:56 +00008462 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008463
danielk1977003ba062004-11-04 02:57:33 +00008464 /* Read the value of meta[3] from the database to determine where the
8465 ** root page of the new table should go. meta[3] is the largest root-page
8466 ** created so far, so the new root-page is (meta[3]+1).
8467 */
danielk1977602b4662009-07-02 07:47:33 +00008468 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008469 pgnoRoot++;
8470
danielk1977599fcba2004-11-08 07:13:13 +00008471 /* The new root-page may not be allocated on a pointer-map page, or the
8472 ** PENDING_BYTE page.
8473 */
drh72190432008-01-31 14:54:43 +00008474 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008475 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008476 pgnoRoot++;
8477 }
drh499e15b2015-05-22 12:37:37 +00008478 assert( pgnoRoot>=3 || CORRUPT_DB );
8479 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008480
8481 /* Allocate a page. The page that currently resides at pgnoRoot will
8482 ** be moved to the allocated page (unless the allocated page happens
8483 ** to reside at pgnoRoot).
8484 */
dan51f0b6d2013-02-22 20:16:34 +00008485 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008486 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008487 return rc;
8488 }
danielk1977003ba062004-11-04 02:57:33 +00008489
8490 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008491 /* pgnoRoot is the page that will be used for the root-page of
8492 ** the new table (assuming an error did not occur). But we were
8493 ** allocated pgnoMove. If required (i.e. if it was not allocated
8494 ** by extending the file), the current page at position pgnoMove
8495 ** is already journaled.
8496 */
drheeb844a2009-08-08 18:01:07 +00008497 u8 eType = 0;
8498 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008499
danf7679ad2013-04-03 11:38:36 +00008500 /* Save the positions of any open cursors. This is required in
8501 ** case they are holding a reference to an xFetch reference
8502 ** corresponding to page pgnoRoot. */
8503 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008504 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008505 if( rc!=SQLITE_OK ){
8506 return rc;
8507 }
danielk1977f35843b2007-04-07 15:03:17 +00008508
8509 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008510 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008511 if( rc!=SQLITE_OK ){
8512 return rc;
8513 }
8514 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008515 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8516 rc = SQLITE_CORRUPT_BKPT;
8517 }
8518 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008519 releasePage(pRoot);
8520 return rc;
8521 }
drhccae6022005-02-26 17:31:26 +00008522 assert( eType!=PTRMAP_ROOTPAGE );
8523 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008524 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008525 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008526
8527 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008528 if( rc!=SQLITE_OK ){
8529 return rc;
8530 }
drhb00fc3b2013-08-21 23:42:32 +00008531 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008532 if( rc!=SQLITE_OK ){
8533 return rc;
8534 }
danielk19773b8a05f2007-03-19 17:44:26 +00008535 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008536 if( rc!=SQLITE_OK ){
8537 releasePage(pRoot);
8538 return rc;
8539 }
8540 }else{
8541 pRoot = pPageMove;
8542 }
8543
danielk197742741be2005-01-08 12:42:39 +00008544 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008545 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008546 if( rc ){
8547 releasePage(pRoot);
8548 return rc;
8549 }
drhbf592832010-03-30 15:51:12 +00008550
8551 /* When the new root page was allocated, page 1 was made writable in
8552 ** order either to increase the database filesize, or to decrement the
8553 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8554 */
8555 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008556 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008557 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008558 releasePage(pRoot);
8559 return rc;
8560 }
danielk197742741be2005-01-08 12:42:39 +00008561
danielk1977003ba062004-11-04 02:57:33 +00008562 }else{
drh4f0c5872007-03-26 22:05:01 +00008563 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008564 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008565 }
8566#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008567 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008568 if( createTabFlags & BTREE_INTKEY ){
8569 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8570 }else{
8571 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8572 }
8573 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008574 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008575 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008576 *piTable = (int)pgnoRoot;
8577 return SQLITE_OK;
8578}
drhd677b3d2007-08-20 22:48:41 +00008579int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8580 int rc;
8581 sqlite3BtreeEnter(p);
8582 rc = btreeCreateTable(p, piTable, flags);
8583 sqlite3BtreeLeave(p);
8584 return rc;
8585}
drh8b2f49b2001-06-08 00:21:52 +00008586
8587/*
8588** Erase the given database page and all its children. Return
8589** the page to the freelist.
8590*/
drh4b70f112004-05-02 21:12:19 +00008591static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008592 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008593 Pgno pgno, /* Page number to clear */
8594 int freePageFlag, /* Deallocate page if true */
8595 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008596){
danielk1977146ba992009-07-22 14:08:13 +00008597 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008598 int rc;
drh4b70f112004-05-02 21:12:19 +00008599 unsigned char *pCell;
8600 int i;
dan8ce71842014-01-14 20:14:09 +00008601 int hdr;
drh80159da2016-12-09 17:32:51 +00008602 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008603
drh1fee73e2007-08-29 04:00:57 +00008604 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008605 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008606 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008607 }
drh28f58dd2015-06-27 19:45:03 +00008608 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008609 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008610 if( pPage->bBusy ){
8611 rc = SQLITE_CORRUPT_BKPT;
8612 goto cleardatabasepage_out;
8613 }
8614 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008615 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008616 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008617 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008618 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008619 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008620 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008621 }
drh80159da2016-12-09 17:32:51 +00008622 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008623 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008624 }
drha34b6762004-05-07 13:30:42 +00008625 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008626 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008627 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008628 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008629 assert( pPage->intKey || CORRUPT_DB );
8630 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008631 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008632 }
8633 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008634 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008635 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008636 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008637 }
danielk19776b456a22005-03-21 04:04:02 +00008638
8639cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008640 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008641 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008642 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008643}
8644
8645/*
drhab01f612004-05-22 02:55:23 +00008646** Delete all information from a single table in the database. iTable is
8647** the page number of the root of the table. After this routine returns,
8648** the root page is empty, but still exists.
8649**
8650** This routine will fail with SQLITE_LOCKED if there are any open
8651** read cursors on the table. Open write cursors are moved to the
8652** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008653**
8654** If pnChange is not NULL, then table iTable must be an intkey table. The
8655** integer value pointed to by pnChange is incremented by the number of
8656** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008657*/
danielk1977c7af4842008-10-27 13:59:33 +00008658int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008659 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008660 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008661 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008662 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008663
drhc046e3e2009-07-15 11:26:44 +00008664 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008665
drhc046e3e2009-07-15 11:26:44 +00008666 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008667 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8668 ** is the root of a table b-tree - if it is not, the following call is
8669 ** a no-op). */
8670 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008671 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008672 }
drhd677b3d2007-08-20 22:48:41 +00008673 sqlite3BtreeLeave(p);
8674 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008675}
8676
8677/*
drh079a3072014-03-19 14:10:55 +00008678** Delete all information from the single table that pCur is open on.
8679**
8680** This routine only work for pCur on an ephemeral table.
8681*/
8682int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8683 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8684}
8685
8686/*
drh8b2f49b2001-06-08 00:21:52 +00008687** Erase all information in a table and add the root of the table to
8688** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008689** page 1) is never added to the freelist.
8690**
8691** This routine will fail with SQLITE_LOCKED if there are any open
8692** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008693**
8694** If AUTOVACUUM is enabled and the page at iTable is not the last
8695** root page in the database file, then the last root page
8696** in the database file is moved into the slot formerly occupied by
8697** iTable and that last slot formerly occupied by the last root page
8698** is added to the freelist instead of iTable. In this say, all
8699** root pages are kept at the beginning of the database file, which
8700** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8701** page number that used to be the last root page in the file before
8702** the move. If no page gets moved, *piMoved is set to 0.
8703** The last root page is recorded in meta[3] and the value of
8704** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008705*/
danielk197789d40042008-11-17 14:20:56 +00008706static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008707 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008708 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008709 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008710
drh1fee73e2007-08-29 04:00:57 +00008711 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008712 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008713 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008714
drhb00fc3b2013-08-21 23:42:32 +00008715 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008716 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008717 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008718 if( rc ){
8719 releasePage(pPage);
8720 return rc;
8721 }
danielk1977a0bf2652004-11-04 14:30:04 +00008722
drh205f48e2004-11-05 00:43:11 +00008723 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008724
danielk1977a0bf2652004-11-04 14:30:04 +00008725#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008726 freePage(pPage, &rc);
8727 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008728#else
drh055f2982016-01-15 15:06:41 +00008729 if( pBt->autoVacuum ){
8730 Pgno maxRootPgno;
8731 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008732
drh055f2982016-01-15 15:06:41 +00008733 if( iTable==maxRootPgno ){
8734 /* If the table being dropped is the table with the largest root-page
8735 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008736 */
drhc314dc72009-07-21 11:52:34 +00008737 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008738 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008739 if( rc!=SQLITE_OK ){
8740 return rc;
8741 }
8742 }else{
8743 /* The table being dropped does not have the largest root-page
8744 ** number in the database. So move the page that does into the
8745 ** gap left by the deleted root-page.
8746 */
8747 MemPage *pMove;
8748 releasePage(pPage);
8749 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8750 if( rc!=SQLITE_OK ){
8751 return rc;
8752 }
8753 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8754 releasePage(pMove);
8755 if( rc!=SQLITE_OK ){
8756 return rc;
8757 }
8758 pMove = 0;
8759 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8760 freePage(pMove, &rc);
8761 releasePage(pMove);
8762 if( rc!=SQLITE_OK ){
8763 return rc;
8764 }
8765 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008766 }
drh055f2982016-01-15 15:06:41 +00008767
8768 /* Set the new 'max-root-page' value in the database header. This
8769 ** is the old value less one, less one more if that happens to
8770 ** be a root-page number, less one again if that is the
8771 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008772 */
drh055f2982016-01-15 15:06:41 +00008773 maxRootPgno--;
8774 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8775 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8776 maxRootPgno--;
8777 }
8778 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8779
8780 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8781 }else{
8782 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008783 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008784 }
drh055f2982016-01-15 15:06:41 +00008785#endif
drh8b2f49b2001-06-08 00:21:52 +00008786 return rc;
8787}
drhd677b3d2007-08-20 22:48:41 +00008788int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8789 int rc;
8790 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008791 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008792 sqlite3BtreeLeave(p);
8793 return rc;
8794}
drh8b2f49b2001-06-08 00:21:52 +00008795
drh001bbcb2003-03-19 03:14:00 +00008796
drh8b2f49b2001-06-08 00:21:52 +00008797/*
danielk1977602b4662009-07-02 07:47:33 +00008798** This function may only be called if the b-tree connection already
8799** has a read or write transaction open on the database.
8800**
drh23e11ca2004-05-04 17:27:28 +00008801** Read the meta-information out of a database file. Meta[0]
8802** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008803** through meta[15] are available for use by higher layers. Meta[0]
8804** is read-only, the others are read/write.
8805**
8806** The schema layer numbers meta values differently. At the schema
8807** layer (and the SetCookie and ReadCookie opcodes) the number of
8808** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008809**
8810** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8811** of reading the value out of the header, it instead loads the "DataVersion"
8812** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8813** database file. It is a number computed by the pager. But its access
8814** pattern is the same as header meta values, and so it is convenient to
8815** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008816*/
danielk1977602b4662009-07-02 07:47:33 +00008817void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008818 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008819
drhd677b3d2007-08-20 22:48:41 +00008820 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008821 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008822 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008823 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008824 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008825
drh91618562014-12-19 19:28:02 +00008826 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008827 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008828 }else{
8829 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8830 }
drhae157872004-08-14 19:20:09 +00008831
danielk1977602b4662009-07-02 07:47:33 +00008832 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8833 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008834#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008835 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8836 pBt->btsFlags |= BTS_READ_ONLY;
8837 }
danielk1977003ba062004-11-04 02:57:33 +00008838#endif
drhae157872004-08-14 19:20:09 +00008839
drhd677b3d2007-08-20 22:48:41 +00008840 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008841}
8842
8843/*
drh23e11ca2004-05-04 17:27:28 +00008844** Write meta-information back into the database. Meta[0] is
8845** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008846*/
danielk1977aef0bf62005-12-30 16:28:01 +00008847int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8848 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008849 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008850 int rc;
drh23e11ca2004-05-04 17:27:28 +00008851 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008852 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008853 assert( p->inTrans==TRANS_WRITE );
8854 assert( pBt->pPage1!=0 );
8855 pP1 = pBt->pPage1->aData;
8856 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8857 if( rc==SQLITE_OK ){
8858 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008859#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008860 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008861 assert( pBt->autoVacuum || iMeta==0 );
8862 assert( iMeta==0 || iMeta==1 );
8863 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008864 }
drh64022502009-01-09 14:11:04 +00008865#endif
drh5df72a52002-06-06 23:16:05 +00008866 }
drhd677b3d2007-08-20 22:48:41 +00008867 sqlite3BtreeLeave(p);
8868 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008869}
drh8c42ca92001-06-22 19:15:00 +00008870
danielk1977a5533162009-02-24 10:01:51 +00008871#ifndef SQLITE_OMIT_BTREECOUNT
8872/*
8873** The first argument, pCur, is a cursor opened on some b-tree. Count the
8874** number of entries in the b-tree and write the result to *pnEntry.
8875**
8876** SQLITE_OK is returned if the operation is successfully executed.
8877** Otherwise, if an error is encountered (i.e. an IO error or database
8878** corruption) an SQLite error code is returned.
8879*/
8880int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8881 i64 nEntry = 0; /* Value to return in *pnEntry */
8882 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008883
8884 if( pCur->pgnoRoot==0 ){
8885 *pnEntry = 0;
8886 return SQLITE_OK;
8887 }
danielk1977a5533162009-02-24 10:01:51 +00008888 rc = moveToRoot(pCur);
8889
8890 /* Unless an error occurs, the following loop runs one iteration for each
8891 ** page in the B-Tree structure (not including overflow pages).
8892 */
8893 while( rc==SQLITE_OK ){
8894 int iIdx; /* Index of child node in parent */
8895 MemPage *pPage; /* Current page of the b-tree */
8896
8897 /* If this is a leaf page or the tree is not an int-key tree, then
8898 ** this page contains countable entries. Increment the entry counter
8899 ** accordingly.
8900 */
8901 pPage = pCur->apPage[pCur->iPage];
8902 if( pPage->leaf || !pPage->intKey ){
8903 nEntry += pPage->nCell;
8904 }
8905
8906 /* pPage is a leaf node. This loop navigates the cursor so that it
8907 ** points to the first interior cell that it points to the parent of
8908 ** the next page in the tree that has not yet been visited. The
8909 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8910 ** of the page, or to the number of cells in the page if the next page
8911 ** to visit is the right-child of its parent.
8912 **
8913 ** If all pages in the tree have been visited, return SQLITE_OK to the
8914 ** caller.
8915 */
8916 if( pPage->leaf ){
8917 do {
8918 if( pCur->iPage==0 ){
8919 /* All pages of the b-tree have been visited. Return successfully. */
8920 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008921 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008922 }
danielk197730548662009-07-09 05:07:37 +00008923 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008924 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8925
8926 pCur->aiIdx[pCur->iPage]++;
8927 pPage = pCur->apPage[pCur->iPage];
8928 }
8929
8930 /* Descend to the child node of the cell that the cursor currently
8931 ** points at. This is the right-child if (iIdx==pPage->nCell).
8932 */
8933 iIdx = pCur->aiIdx[pCur->iPage];
8934 if( iIdx==pPage->nCell ){
8935 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8936 }else{
8937 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8938 }
8939 }
8940
shanebe217792009-03-05 04:20:31 +00008941 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008942 return rc;
8943}
8944#endif
drhdd793422001-06-28 01:54:48 +00008945
drhdd793422001-06-28 01:54:48 +00008946/*
drh5eddca62001-06-30 21:53:53 +00008947** Return the pager associated with a BTree. This routine is used for
8948** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008949*/
danielk1977aef0bf62005-12-30 16:28:01 +00008950Pager *sqlite3BtreePager(Btree *p){
8951 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008952}
drh5eddca62001-06-30 21:53:53 +00008953
drhb7f91642004-10-31 02:22:47 +00008954#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008955/*
8956** Append a message to the error message string.
8957*/
drh2e38c322004-09-03 18:38:44 +00008958static void checkAppendMsg(
8959 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008960 const char *zFormat,
8961 ...
8962){
8963 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008964 if( !pCheck->mxErr ) return;
8965 pCheck->mxErr--;
8966 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008967 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008968 if( pCheck->errMsg.nChar ){
8969 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008970 }
drh867db832014-09-26 02:41:05 +00008971 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008972 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008973 }
drh5f4a6862016-01-30 12:50:25 +00008974 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008975 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008976 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008977 pCheck->mallocFailed = 1;
8978 }
drh5eddca62001-06-30 21:53:53 +00008979}
drhb7f91642004-10-31 02:22:47 +00008980#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008981
drhb7f91642004-10-31 02:22:47 +00008982#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008983
8984/*
8985** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8986** corresponds to page iPg is already set.
8987*/
8988static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8989 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8990 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8991}
8992
8993/*
8994** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8995*/
8996static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8997 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8998 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8999}
9000
9001
drh5eddca62001-06-30 21:53:53 +00009002/*
9003** Add 1 to the reference count for page iPage. If this is the second
9004** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009005** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009006** if this is the first reference to the page.
9007**
9008** Also check that the page number is in bounds.
9009*/
drh867db832014-09-26 02:41:05 +00009010static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009011 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009012 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009013 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009014 return 1;
9015 }
dan1235bb12012-04-03 17:43:28 +00009016 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009017 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009018 return 1;
9019 }
dan1235bb12012-04-03 17:43:28 +00009020 setPageReferenced(pCheck, iPage);
9021 return 0;
drh5eddca62001-06-30 21:53:53 +00009022}
9023
danielk1977afcdd022004-10-31 16:25:42 +00009024#ifndef SQLITE_OMIT_AUTOVACUUM
9025/*
9026** Check that the entry in the pointer-map for page iChild maps to
9027** page iParent, pointer type ptrType. If not, append an error message
9028** to pCheck.
9029*/
9030static void checkPtrmap(
9031 IntegrityCk *pCheck, /* Integrity check context */
9032 Pgno iChild, /* Child page number */
9033 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009034 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009035){
9036 int rc;
9037 u8 ePtrmapType;
9038 Pgno iPtrmapParent;
9039
9040 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9041 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009042 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009043 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009044 return;
9045 }
9046
9047 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009048 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009049 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9050 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9051 }
9052}
9053#endif
9054
drh5eddca62001-06-30 21:53:53 +00009055/*
9056** Check the integrity of the freelist or of an overflow page list.
9057** Verify that the number of pages on the list is N.
9058*/
drh30e58752002-03-02 20:41:57 +00009059static void checkList(
9060 IntegrityCk *pCheck, /* Integrity checking context */
9061 int isFreeList, /* True for a freelist. False for overflow page list */
9062 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009063 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009064){
9065 int i;
drh3a4c1412004-05-09 20:40:11 +00009066 int expected = N;
9067 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009068 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009069 DbPage *pOvflPage;
9070 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009071 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009072 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009073 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009074 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009075 break;
9076 }
drh867db832014-09-26 02:41:05 +00009077 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009078 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009079 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009080 break;
9081 }
danielk19773b8a05f2007-03-19 17:44:26 +00009082 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009083 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009084 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009085#ifndef SQLITE_OMIT_AUTOVACUUM
9086 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009087 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009088 }
9089#endif
drh43b18e12010-08-17 19:40:08 +00009090 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009091 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009092 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009093 N--;
9094 }else{
9095 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009096 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009097#ifndef SQLITE_OMIT_AUTOVACUUM
9098 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009099 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009100 }
9101#endif
drh867db832014-09-26 02:41:05 +00009102 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009103 }
9104 N -= n;
drh30e58752002-03-02 20:41:57 +00009105 }
drh30e58752002-03-02 20:41:57 +00009106 }
danielk1977afcdd022004-10-31 16:25:42 +00009107#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009108 else{
9109 /* If this database supports auto-vacuum and iPage is not the last
9110 ** page in this overflow list, check that the pointer-map entry for
9111 ** the following page matches iPage.
9112 */
9113 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009114 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009115 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009116 }
danielk1977afcdd022004-10-31 16:25:42 +00009117 }
9118#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009119 iPage = get4byte(pOvflData);
9120 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009121
9122 if( isFreeList && N<(iPage!=0) ){
9123 checkAppendMsg(pCheck, "free-page count in header is too small");
9124 }
drh5eddca62001-06-30 21:53:53 +00009125 }
9126}
drhb7f91642004-10-31 02:22:47 +00009127#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009128
drh67731a92015-04-16 11:56:03 +00009129/*
9130** An implementation of a min-heap.
9131**
9132** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009133** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009134** and aHeap[N*2+1].
9135**
9136** The heap property is this: Every node is less than or equal to both
9137** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009138** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009139**
9140** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9141** the heap, preserving the heap property. The btreeHeapPull() routine
9142** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009143** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009144** property.
9145**
9146** This heap is used for cell overlap and coverage testing. Each u32
9147** entry represents the span of a cell or freeblock on a btree page.
9148** The upper 16 bits are the index of the first byte of a range and the
9149** lower 16 bits are the index of the last byte of that range.
9150*/
9151static void btreeHeapInsert(u32 *aHeap, u32 x){
9152 u32 j, i = ++aHeap[0];
9153 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009154 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009155 x = aHeap[j];
9156 aHeap[j] = aHeap[i];
9157 aHeap[i] = x;
9158 i = j;
9159 }
9160}
9161static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9162 u32 j, i, x;
9163 if( (x = aHeap[0])==0 ) return 0;
9164 *pOut = aHeap[1];
9165 aHeap[1] = aHeap[x];
9166 aHeap[x] = 0xffffffff;
9167 aHeap[0]--;
9168 i = 1;
9169 while( (j = i*2)<=aHeap[0] ){
9170 if( aHeap[j]>aHeap[j+1] ) j++;
9171 if( aHeap[i]<aHeap[j] ) break;
9172 x = aHeap[i];
9173 aHeap[i] = aHeap[j];
9174 aHeap[j] = x;
9175 i = j;
9176 }
9177 return 1;
9178}
9179
drhb7f91642004-10-31 02:22:47 +00009180#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009181/*
9182** Do various sanity checks on a single page of a tree. Return
9183** the tree depth. Root pages return 0. Parents of root pages
9184** return 1, and so forth.
9185**
9186** These checks are done:
9187**
9188** 1. Make sure that cells and freeblocks do not overlap
9189** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009190** 2. Make sure integer cell keys are in order.
9191** 3. Check the integrity of overflow pages.
9192** 4. Recursively call checkTreePage on all children.
9193** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009194*/
9195static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009196 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009197 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009198 i64 *piMinKey, /* Write minimum integer primary key here */
9199 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009200){
drhcbc6b712015-07-02 16:17:30 +00009201 MemPage *pPage = 0; /* The page being analyzed */
9202 int i; /* Loop counter */
9203 int rc; /* Result code from subroutine call */
9204 int depth = -1, d2; /* Depth of a subtree */
9205 int pgno; /* Page number */
9206 int nFrag; /* Number of fragmented bytes on the page */
9207 int hdr; /* Offset to the page header */
9208 int cellStart; /* Offset to the start of the cell pointer array */
9209 int nCell; /* Number of cells */
9210 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9211 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9212 ** False if IPK must be strictly less than maxKey */
9213 u8 *data; /* Page content */
9214 u8 *pCell; /* Cell content */
9215 u8 *pCellIdx; /* Next element of the cell pointer array */
9216 BtShared *pBt; /* The BtShared object that owns pPage */
9217 u32 pc; /* Address of a cell */
9218 u32 usableSize; /* Usable size of the page */
9219 u32 contentOffset; /* Offset to the start of the cell content area */
9220 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009221 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009222 const char *saved_zPfx = pCheck->zPfx;
9223 int saved_v1 = pCheck->v1;
9224 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009225 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009226
drh5eddca62001-06-30 21:53:53 +00009227 /* Check that the page exists
9228 */
drhd9cb6ac2005-10-20 07:28:17 +00009229 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009230 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009231 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009232 if( checkRef(pCheck, iPage) ) return 0;
9233 pCheck->zPfx = "Page %d: ";
9234 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009235 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009236 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009237 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009238 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009239 }
danielk197793caf5a2009-07-11 06:55:33 +00009240
9241 /* Clear MemPage.isInit to make sure the corruption detection code in
9242 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009243 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009244 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009245 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009246 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009247 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009248 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009249 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009250 }
drhcbc6b712015-07-02 16:17:30 +00009251 data = pPage->aData;
9252 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009253
drhcbc6b712015-07-02 16:17:30 +00009254 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009255 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009256 contentOffset = get2byteNotZero(&data[hdr+5]);
9257 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9258
9259 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9260 ** number of cells on the page. */
9261 nCell = get2byte(&data[hdr+3]);
9262 assert( pPage->nCell==nCell );
9263
9264 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9265 ** immediately follows the b-tree page header. */
9266 cellStart = hdr + 12 - 4*pPage->leaf;
9267 assert( pPage->aCellIdx==&data[cellStart] );
9268 pCellIdx = &data[cellStart + 2*(nCell-1)];
9269
9270 if( !pPage->leaf ){
9271 /* Analyze the right-child page of internal pages */
9272 pgno = get4byte(&data[hdr+8]);
9273#ifndef SQLITE_OMIT_AUTOVACUUM
9274 if( pBt->autoVacuum ){
9275 pCheck->zPfx = "On page %d at right child: ";
9276 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9277 }
9278#endif
9279 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9280 keyCanBeEqual = 0;
9281 }else{
9282 /* For leaf pages, the coverage check will occur in the same loop
9283 ** as the other cell checks, so initialize the heap. */
9284 heap = pCheck->heap;
9285 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009286 }
9287
drhcbc6b712015-07-02 16:17:30 +00009288 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9289 ** integer offsets to the cell contents. */
9290 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009291 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009292
drhcbc6b712015-07-02 16:17:30 +00009293 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009294 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009295 assert( pCellIdx==&data[cellStart + i*2] );
9296 pc = get2byteAligned(pCellIdx);
9297 pCellIdx -= 2;
9298 if( pc<contentOffset || pc>usableSize-4 ){
9299 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9300 pc, contentOffset, usableSize-4);
9301 doCoverageCheck = 0;
9302 continue;
shaneh195475d2010-02-19 04:28:08 +00009303 }
drhcbc6b712015-07-02 16:17:30 +00009304 pCell = &data[pc];
9305 pPage->xParseCell(pPage, pCell, &info);
9306 if( pc+info.nSize>usableSize ){
9307 checkAppendMsg(pCheck, "Extends off end of page");
9308 doCoverageCheck = 0;
9309 continue;
drh5eddca62001-06-30 21:53:53 +00009310 }
9311
drhcbc6b712015-07-02 16:17:30 +00009312 /* Check for integer primary key out of range */
9313 if( pPage->intKey ){
9314 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9315 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9316 }
9317 maxKey = info.nKey;
9318 }
9319
9320 /* Check the content overflow list */
9321 if( info.nPayload>info.nLocal ){
9322 int nPage; /* Number of pages on the overflow chain */
9323 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009324 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009325 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009326 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009327#ifndef SQLITE_OMIT_AUTOVACUUM
9328 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009329 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009330 }
9331#endif
drh867db832014-09-26 02:41:05 +00009332 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009333 }
9334
drh5eddca62001-06-30 21:53:53 +00009335 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009336 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009337 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009338#ifndef SQLITE_OMIT_AUTOVACUUM
9339 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009340 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009341 }
9342#endif
drhcbc6b712015-07-02 16:17:30 +00009343 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9344 keyCanBeEqual = 0;
9345 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009346 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009347 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009348 }
drhcbc6b712015-07-02 16:17:30 +00009349 }else{
9350 /* Populate the coverage-checking heap for leaf pages */
9351 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009352 }
9353 }
drhcbc6b712015-07-02 16:17:30 +00009354 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009355
drh5eddca62001-06-30 21:53:53 +00009356 /* Check for complete coverage of the page
9357 */
drh867db832014-09-26 02:41:05 +00009358 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009359 if( doCoverageCheck && pCheck->mxErr>0 ){
9360 /* For leaf pages, the min-heap has already been initialized and the
9361 ** cells have already been inserted. But for internal pages, that has
9362 ** not yet been done, so do it now */
9363 if( !pPage->leaf ){
9364 heap = pCheck->heap;
9365 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009366 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009367 u32 size;
9368 pc = get2byteAligned(&data[cellStart+i*2]);
9369 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009370 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009371 }
drh2e38c322004-09-03 18:38:44 +00009372 }
drhcbc6b712015-07-02 16:17:30 +00009373 /* Add the freeblocks to the min-heap
9374 **
9375 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009376 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009377 ** freeblocks on the page.
9378 */
drh8c2bbb62009-07-10 02:52:20 +00009379 i = get2byte(&data[hdr+1]);
9380 while( i>0 ){
9381 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009382 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009383 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009384 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009385 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009386 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9387 ** big-endian integer which is the offset in the b-tree page of the next
9388 ** freeblock in the chain, or zero if the freeblock is the last on the
9389 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009390 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009391 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9392 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009393 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009394 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009395 i = j;
drh2e38c322004-09-03 18:38:44 +00009396 }
drhcbc6b712015-07-02 16:17:30 +00009397 /* Analyze the min-heap looking for overlap between cells and/or
9398 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009399 **
9400 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9401 ** There is an implied first entry the covers the page header, the cell
9402 ** pointer index, and the gap between the cell pointer index and the start
9403 ** of cell content.
9404 **
9405 ** The loop below pulls entries from the min-heap in order and compares
9406 ** the start_address against the previous end_address. If there is an
9407 ** overlap, that means bytes are used multiple times. If there is a gap,
9408 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009409 */
9410 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009411 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009412 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009413 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009414 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009415 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009416 break;
drh67731a92015-04-16 11:56:03 +00009417 }else{
drhcbc6b712015-07-02 16:17:30 +00009418 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009419 prev = x;
drh2e38c322004-09-03 18:38:44 +00009420 }
9421 }
drhcbc6b712015-07-02 16:17:30 +00009422 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009423 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9424 ** is stored in the fifth field of the b-tree page header.
9425 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9426 ** number of fragmented free bytes within the cell content area.
9427 */
drhcbc6b712015-07-02 16:17:30 +00009428 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009429 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009430 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009431 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009432 }
9433 }
drh867db832014-09-26 02:41:05 +00009434
9435end_of_check:
drh72e191e2015-07-04 11:14:20 +00009436 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009437 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009438 pCheck->zPfx = saved_zPfx;
9439 pCheck->v1 = saved_v1;
9440 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009441 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009442}
drhb7f91642004-10-31 02:22:47 +00009443#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009444
drhb7f91642004-10-31 02:22:47 +00009445#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009446/*
9447** This routine does a complete check of the given BTree file. aRoot[] is
9448** an array of pages numbers were each page number is the root page of
9449** a table. nRoot is the number of entries in aRoot.
9450**
danielk19773509a652009-07-06 18:56:13 +00009451** A read-only or read-write transaction must be opened before calling
9452** this function.
9453**
drhc890fec2008-08-01 20:10:08 +00009454** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009455** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009456** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009457** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009458*/
drh1dcdbc02007-01-27 02:24:54 +00009459char *sqlite3BtreeIntegrityCheck(
9460 Btree *p, /* The btree to be checked */
9461 int *aRoot, /* An array of root pages numbers for individual trees */
9462 int nRoot, /* Number of entries in aRoot[] */
9463 int mxErr, /* Stop reporting errors after this many */
9464 int *pnErr /* Write number of errors seen to this variable */
9465){
danielk197789d40042008-11-17 14:20:56 +00009466 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009467 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009468 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009469 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009470 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009471 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009472
drhd677b3d2007-08-20 22:48:41 +00009473 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009474 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009475 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9476 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009477 sCheck.pBt = pBt;
9478 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009479 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009480 sCheck.mxErr = mxErr;
9481 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009482 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009483 sCheck.zPfx = 0;
9484 sCheck.v1 = 0;
9485 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009486 sCheck.aPgRef = 0;
9487 sCheck.heap = 0;
9488 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009489 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009490 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009491 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009492 }
dan1235bb12012-04-03 17:43:28 +00009493
9494 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9495 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009496 sCheck.mallocFailed = 1;
9497 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009498 }
drhe05b3f82015-07-01 17:53:49 +00009499 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9500 if( sCheck.heap==0 ){
9501 sCheck.mallocFailed = 1;
9502 goto integrity_ck_cleanup;
9503 }
9504
drh42cac6d2004-11-20 20:31:11 +00009505 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009506 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009507
9508 /* Check the integrity of the freelist
9509 */
drh867db832014-09-26 02:41:05 +00009510 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009511 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009512 get4byte(&pBt->pPage1->aData[36]));
9513 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009514
9515 /* Check all the tables.
9516 */
drhcbc6b712015-07-02 16:17:30 +00009517 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9518 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009519 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009520 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009521 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009522#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009523 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009524 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009525 }
9526#endif
drhcbc6b712015-07-02 16:17:30 +00009527 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009528 }
drhcbc6b712015-07-02 16:17:30 +00009529 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009530
9531 /* Make sure every page in the file is referenced
9532 */
drh1dcdbc02007-01-27 02:24:54 +00009533 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009534#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009535 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009536 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009537 }
danielk1977afcdd022004-10-31 16:25:42 +00009538#else
9539 /* If the database supports auto-vacuum, make sure no tables contain
9540 ** references to pointer-map pages.
9541 */
dan1235bb12012-04-03 17:43:28 +00009542 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009543 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009544 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009545 }
dan1235bb12012-04-03 17:43:28 +00009546 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009547 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009548 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009549 }
9550#endif
drh5eddca62001-06-30 21:53:53 +00009551 }
9552
drh5eddca62001-06-30 21:53:53 +00009553 /* Clean up and report errors.
9554 */
drhe05b3f82015-07-01 17:53:49 +00009555integrity_ck_cleanup:
9556 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009557 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009558 if( sCheck.mallocFailed ){
9559 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009560 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009561 }
drh1dcdbc02007-01-27 02:24:54 +00009562 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009563 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009564 /* Make sure this analysis did not leave any unref() pages. */
9565 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9566 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009567 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009568}
drhb7f91642004-10-31 02:22:47 +00009569#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009570
drh73509ee2003-04-06 20:44:45 +00009571/*
drhd4e0bb02012-05-27 01:19:04 +00009572** Return the full pathname of the underlying database file. Return
9573** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009574**
9575** The pager filename is invariant as long as the pager is
9576** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009577*/
danielk1977aef0bf62005-12-30 16:28:01 +00009578const char *sqlite3BtreeGetFilename(Btree *p){
9579 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009580 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009581}
9582
9583/*
danielk19775865e3d2004-06-14 06:03:57 +00009584** Return the pathname of the journal file for this database. The return
9585** value of this routine is the same regardless of whether the journal file
9586** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009587**
9588** The pager journal filename is invariant as long as the pager is
9589** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009590*/
danielk1977aef0bf62005-12-30 16:28:01 +00009591const char *sqlite3BtreeGetJournalname(Btree *p){
9592 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009593 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009594}
9595
danielk19771d850a72004-05-31 08:26:49 +00009596/*
9597** Return non-zero if a transaction is active.
9598*/
danielk1977aef0bf62005-12-30 16:28:01 +00009599int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009600 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009601 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009602}
9603
dana550f2d2010-08-02 10:47:05 +00009604#ifndef SQLITE_OMIT_WAL
9605/*
9606** Run a checkpoint on the Btree passed as the first argument.
9607**
9608** Return SQLITE_LOCKED if this or any other connection has an open
9609** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009610**
dancdc1f042010-11-18 12:11:05 +00009611** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009612*/
dancdc1f042010-11-18 12:11:05 +00009613int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009614 int rc = SQLITE_OK;
9615 if( p ){
9616 BtShared *pBt = p->pBt;
9617 sqlite3BtreeEnter(p);
9618 if( pBt->inTransaction!=TRANS_NONE ){
9619 rc = SQLITE_LOCKED;
9620 }else{
dan7fb89902016-08-12 16:21:15 +00009621 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009622 }
9623 sqlite3BtreeLeave(p);
9624 }
9625 return rc;
9626}
9627#endif
9628
danielk19771d850a72004-05-31 08:26:49 +00009629/*
danielk19772372c2b2006-06-27 16:34:56 +00009630** Return non-zero if a read (or write) transaction is active.
9631*/
9632int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009633 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009634 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009635 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009636}
9637
danielk197704103022009-02-03 16:51:24 +00009638int sqlite3BtreeIsInBackup(Btree *p){
9639 assert( p );
9640 assert( sqlite3_mutex_held(p->db->mutex) );
9641 return p->nBackup!=0;
9642}
9643
danielk19772372c2b2006-06-27 16:34:56 +00009644/*
danielk1977da184232006-01-05 11:34:32 +00009645** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009646** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009647** purposes (for example, to store a high-level schema associated with
9648** the shared-btree). The btree layer manages reference counting issues.
9649**
9650** The first time this is called on a shared-btree, nBytes bytes of memory
9651** are allocated, zeroed, and returned to the caller. For each subsequent
9652** call the nBytes parameter is ignored and a pointer to the same blob
9653** of memory returned.
9654**
danielk1977171bfed2008-06-23 09:50:50 +00009655** If the nBytes parameter is 0 and the blob of memory has not yet been
9656** allocated, a null pointer is returned. If the blob has already been
9657** allocated, it is returned as normal.
9658**
danielk1977da184232006-01-05 11:34:32 +00009659** Just before the shared-btree is closed, the function passed as the
9660** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009661** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009662** on the memory, the btree layer does that.
9663*/
9664void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9665 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009666 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009667 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009668 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009669 pBt->xFreeSchema = xFree;
9670 }
drh27641702007-08-22 02:56:42 +00009671 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009672 return pBt->pSchema;
9673}
9674
danielk1977c87d34d2006-01-06 13:00:28 +00009675/*
danielk1977404ca072009-03-16 13:19:36 +00009676** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9677** btree as the argument handle holds an exclusive lock on the
9678** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009679*/
9680int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009681 int rc;
drhe5fe6902007-12-07 18:55:28 +00009682 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009683 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009684 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9685 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009686 sqlite3BtreeLeave(p);
9687 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009688}
9689
drha154dcd2006-03-22 22:10:07 +00009690
9691#ifndef SQLITE_OMIT_SHARED_CACHE
9692/*
9693** Obtain a lock on the table whose root page is iTab. The
9694** lock is a write lock if isWritelock is true or a read lock
9695** if it is false.
9696*/
danielk1977c00da102006-01-07 13:21:04 +00009697int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009698 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009699 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009700 if( p->sharable ){
9701 u8 lockType = READ_LOCK + isWriteLock;
9702 assert( READ_LOCK+1==WRITE_LOCK );
9703 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009704
drh6a9ad3d2008-04-02 16:29:30 +00009705 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009706 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009707 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009708 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009709 }
9710 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009711 }
9712 return rc;
9713}
drha154dcd2006-03-22 22:10:07 +00009714#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009715
danielk1977b4e9af92007-05-01 17:49:49 +00009716#ifndef SQLITE_OMIT_INCRBLOB
9717/*
9718** Argument pCsr must be a cursor opened for writing on an
9719** INTKEY table currently pointing at a valid table entry.
9720** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009721**
9722** Only the data content may only be modified, it is not possible to
9723** change the length of the data stored. If this function is called with
9724** parameters that attempt to write past the end of the existing data,
9725** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009726*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009727int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009728 int rc;
dan7a2347e2016-01-07 16:43:54 +00009729 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009730 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009731 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009732
danielk1977c9000e62009-07-08 13:55:28 +00009733 rc = restoreCursorPosition(pCsr);
9734 if( rc!=SQLITE_OK ){
9735 return rc;
9736 }
danielk19773588ceb2008-06-10 17:30:26 +00009737 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9738 if( pCsr->eState!=CURSOR_VALID ){
9739 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009740 }
9741
dan227a1c42013-04-03 11:17:39 +00009742 /* Save the positions of all other cursors open on this table. This is
9743 ** required in case any of them are holding references to an xFetch
9744 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009745 **
drh3f387402014-09-24 01:23:00 +00009746 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009747 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9748 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009749 */
drh370c9f42013-04-03 20:04:04 +00009750 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9751 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009752
danielk1977c9000e62009-07-08 13:55:28 +00009753 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009754 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009755 ** (b) there is a read/write transaction open,
9756 ** (c) the connection holds a write-lock on the table (if required),
9757 ** (d) there are no conflicting read-locks, and
9758 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009759 */
drh036dbec2014-03-11 23:40:44 +00009760 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009761 return SQLITE_READONLY;
9762 }
drhc9166342012-01-05 23:32:06 +00009763 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9764 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009765 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9766 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009767 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009768
drhfb192682009-07-11 18:26:28 +00009769 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009770}
danielk19772dec9702007-05-02 16:48:37 +00009771
9772/*
dan5a500af2014-03-11 20:33:04 +00009773** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009774*/
dan5a500af2014-03-11 20:33:04 +00009775void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009776 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009777 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009778}
danielk1977b4e9af92007-05-01 17:49:49 +00009779#endif
dane04dc882010-04-20 18:53:15 +00009780
9781/*
9782** Set both the "read version" (single byte at byte offset 18) and
9783** "write version" (single byte at byte offset 19) fields in the database
9784** header to iVersion.
9785*/
9786int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9787 BtShared *pBt = pBtree->pBt;
9788 int rc; /* Return code */
9789
dane04dc882010-04-20 18:53:15 +00009790 assert( iVersion==1 || iVersion==2 );
9791
danb9780022010-04-21 18:37:57 +00009792 /* If setting the version fields to 1, do not automatically open the
9793 ** WAL connection, even if the version fields are currently set to 2.
9794 */
drhc9166342012-01-05 23:32:06 +00009795 pBt->btsFlags &= ~BTS_NO_WAL;
9796 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009797
9798 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009799 if( rc==SQLITE_OK ){
9800 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009801 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009802 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009803 if( rc==SQLITE_OK ){
9804 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9805 if( rc==SQLITE_OK ){
9806 aData[18] = (u8)iVersion;
9807 aData[19] = (u8)iVersion;
9808 }
9809 }
9810 }
dane04dc882010-04-20 18:53:15 +00009811 }
9812
drhc9166342012-01-05 23:32:06 +00009813 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009814 return rc;
9815}
dan428c2182012-08-06 18:50:11 +00009816
drhe0997b32015-03-20 14:57:50 +00009817/*
9818** Return true if the cursor has a hint specified. This routine is
9819** only used from within assert() statements
9820*/
9821int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9822 return (pCsr->hints & mask)!=0;
9823}
drhe0997b32015-03-20 14:57:50 +00009824
drh781597f2014-05-21 08:21:07 +00009825/*
9826** Return true if the given Btree is read-only.
9827*/
9828int sqlite3BtreeIsReadonly(Btree *p){
9829 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9830}
drhdef68892014-11-04 12:11:23 +00009831
9832/*
9833** Return the size of the header added to each page by this module.
9834*/
drh37c057b2014-12-30 00:57:29 +00009835int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009836
drh5a1fb182016-01-08 19:34:39 +00009837#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009838/*
9839** Return true if the Btree passed as the only argument is sharable.
9840*/
9841int sqlite3BtreeSharable(Btree *p){
9842 return p->sharable;
9843}
dan272989b2016-07-06 10:12:02 +00009844
9845/*
9846** Return the number of connections to the BtShared object accessed by
9847** the Btree handle passed as the only argument. For private caches
9848** this is always 1. For shared caches it may be 1 or greater.
9849*/
9850int sqlite3BtreeConnectionCount(Btree *p){
9851 testcase( p->sharable );
9852 return p->pBt->nRef;
9853}
drh5a1fb182016-01-08 19:34:39 +00009854#endif