blob: 4d31661f1089d5c9f1e782af668772328114e1d4 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000502 i64 iRow, /* The rowid that might be changing */
503 int isClearTable /* True if all rows are being deleted */
504){
505 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000506 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000507 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000508 pBtree->hasIncrblobCur = 0;
509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510 if( (p->curFlags & BTCF_Incrblob)!=0 ){
511 pBtree->hasIncrblobCur = 1;
512 if( isClearTable || p->info.nKey==iRow ){
513 p->eState = CURSOR_INVALID;
514 }
danielk197796d48e92009-06-29 06:00:37 +0000515 }
516 }
517}
518
danielk197792d4d7a2007-05-04 12:05:56 +0000519#else
dan5a500af2014-03-11 20:33:04 +0000520 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000521 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000522#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000523
drh980b1a72006-08-16 16:42:48 +0000524/*
danielk1977bea2a942009-01-20 17:06:27 +0000525** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526** when a page that previously contained data becomes a free-list leaf
527** page.
528**
529** The BtShared.pHasContent bitvec exists to work around an obscure
530** bug caused by the interaction of two useful IO optimizations surrounding
531** free-list leaf pages:
532**
533** 1) When all data is deleted from a page and the page becomes
534** a free-list leaf page, the page is not written to the database
535** (as free-list leaf pages contain no meaningful data). Sometimes
536** such a page is not even journalled (as it will not be modified,
537** why bother journalling it?).
538**
539** 2) When a free-list leaf page is reused, its content is not read
540** from the database or written to the journal file (why should it
541** be, if it is not at all meaningful?).
542**
543** By themselves, these optimizations work fine and provide a handy
544** performance boost to bulk delete or insert operations. However, if
545** a page is moved to the free-list and then reused within the same
546** transaction, a problem comes up. If the page is not journalled when
547** it is moved to the free-list and it is also not journalled when it
548** is extracted from the free-list and reused, then the original data
549** may be lost. In the event of a rollback, it may not be possible
550** to restore the database to its original configuration.
551**
552** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553** moved to become a free-list leaf page, the corresponding bit is
554** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000555** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000556** set in BtShared.pHasContent. The contents of the bitvec are cleared
557** at the end of every transaction.
558*/
559static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560 int rc = SQLITE_OK;
561 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000562 assert( pgno<=pBt->nPage );
563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000564 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000565 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000566 }
567 }
568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570 }
571 return rc;
572}
573
574/*
575** Query the BtShared.pHasContent vector.
576**
577** This function is called when a free-list leaf page is removed from the
578** free-list for reuse. It returns false if it is safe to retrieve the
579** page from the pager layer with the 'no-content' flag set. True otherwise.
580*/
581static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582 Bitvec *p = pBt->pHasContent;
583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584}
585
586/*
587** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588** invoked at the conclusion of each write-transaction.
589*/
590static void btreeClearHasContent(BtShared *pBt){
591 sqlite3BitvecDestroy(pBt->pHasContent);
592 pBt->pHasContent = 0;
593}
594
595/*
drh138eeeb2013-03-27 03:15:23 +0000596** Release all of the apPage[] pages for a cursor.
597*/
598static void btreeReleaseAllCursorPages(BtCursor *pCur){
599 int i;
600 for(i=0; i<=pCur->iPage; i++){
601 releasePage(pCur->apPage[i]);
602 pCur->apPage[i] = 0;
603 }
604 pCur->iPage = -1;
605}
606
danf0ee1d32015-09-12 19:26:11 +0000607/*
608** The cursor passed as the only argument must point to a valid entry
609** when this function is called (i.e. have eState==CURSOR_VALID). This
610** function saves the current cursor key in variables pCur->nKey and
611** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612** code otherwise.
613**
614** If the cursor is open on an intkey table, then the integer key
615** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617** set to point to a malloced buffer pCur->nKey bytes in size containing
618** the key.
619*/
620static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000621 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000622 assert( CURSOR_VALID==pCur->eState );
623 assert( 0==pCur->pKey );
624 assert( cursorHoldsMutex(pCur) );
625
drha7c90c42016-06-04 20:37:10 +0000626 if( pCur->curIntKey ){
627 /* Only the rowid is required for a table btree */
628 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629 }else{
630 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000631 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000632 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000633 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000634 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000635 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000636 if( rc==SQLITE_OK ){
637 pCur->pKey = pKey;
638 }else{
639 sqlite3_free(pKey);
640 }
641 }else{
mistachkinfad30392016-02-13 23:43:46 +0000642 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000643 }
644 }
645 assert( !pCur->curIntKey || !pCur->pKey );
646 return rc;
647}
drh138eeeb2013-03-27 03:15:23 +0000648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Save the current cursor position in the variables BtCursor.nKey
651** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000652**
653** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000655*/
656static int saveCursorPosition(BtCursor *pCur){
657 int rc;
658
drhd2f83132015-03-25 17:35:01 +0000659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000660 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000662
drhd2f83132015-03-25 17:35:01 +0000663 if( pCur->eState==CURSOR_SKIPNEXT ){
664 pCur->eState = CURSOR_VALID;
665 }else{
666 pCur->skipNext = 0;
667 }
drh980b1a72006-08-16 16:42:48 +0000668
danf0ee1d32015-09-12 19:26:11 +0000669 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000670 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000671 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000672 pCur->eState = CURSOR_REQUIRESEEK;
673 }
674
dane755e102015-09-30 12:59:12 +0000675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000676 return rc;
677}
678
drh637f3d82014-08-22 22:26:07 +0000679/* Forward reference */
680static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681
drh980b1a72006-08-16 16:42:48 +0000682/*
drh0ee3dbe2009-10-16 15:05:18 +0000683** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000684** the table with root-page iRoot. "Saving the cursor position" means that
685** the location in the btree is remembered in such a way that it can be
686** moved back to the same spot after the btree has been modified. This
687** routine is called just before cursor pExcept is used to modify the
688** table, for example in BtreeDelete() or BtreeInsert().
689**
drh27fb7462015-06-30 02:47:36 +0000690** If there are two or more cursors on the same btree, then all such
691** cursors should have their BTCF_Multiple flag set. The btreeCursor()
692** routine enforces that rule. This routine only needs to be called in
693** the uncommon case when pExpect has the BTCF_Multiple flag set.
694**
695** If pExpect!=NULL and if no other cursors are found on the same root-page,
696** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697** pointless call to this routine.
698**
drh637f3d82014-08-22 22:26:07 +0000699** Implementation note: This routine merely checks to see if any cursors
700** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
701** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000702*/
703static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000705 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000706 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000707 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709 }
drh27fb7462015-06-30 02:47:36 +0000710 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000713}
714
715/* This helper routine to saveAllCursors does the actual work of saving
716** the cursors if and when a cursor is found that actually requires saving.
717** The common case is that no cursors need to be saved, so this routine is
718** broken out from its caller to avoid unnecessary stack pointer movement.
719*/
720static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000721 BtCursor *p, /* The first cursor that needs saving */
722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
723 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000724){
725 do{
drh138eeeb2013-03-27 03:15:23 +0000726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000728 int rc = saveCursorPosition(p);
729 if( SQLITE_OK!=rc ){
730 return rc;
731 }
732 }else{
733 testcase( p->iPage>0 );
734 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000735 }
736 }
drh637f3d82014-08-22 22:26:07 +0000737 p = p->pNext;
738 }while( p );
drh980b1a72006-08-16 16:42:48 +0000739 return SQLITE_OK;
740}
741
742/*
drhbf700f32007-03-31 02:36:44 +0000743** Clear the current cursor position.
744*/
danielk1977be51a652008-10-08 17:58:48 +0000745void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000746 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000747 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000748 pCur->pKey = 0;
749 pCur->eState = CURSOR_INVALID;
750}
751
752/*
danielk19773509a652009-07-06 18:56:13 +0000753** In this version of BtreeMoveto, pKey is a packed index record
754** such as is generated by the OP_MakeRecord opcode. Unpack the
755** record and then call BtreeMovetoUnpacked() to do the work.
756*/
757static int btreeMoveto(
758 BtCursor *pCur, /* Cursor open on the btree to be searched */
759 const void *pKey, /* Packed key if the btree is an index */
760 i64 nKey, /* Integer key for tables. Size of pKey for indices */
761 int bias, /* Bias search to the high end */
762 int *pRes /* Write search results here */
763){
764 int rc; /* Status code */
765 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000766
767 if( pKey ){
768 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000769 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000770 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000771 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000772 if( pIdxKey->nField==0 ){
drha582b012016-12-21 19:45:54 +0000773 rc = SQLITE_CORRUPT_BKPT;
774 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000775 }
danielk19773509a652009-07-06 18:56:13 +0000776 }else{
777 pIdxKey = 0;
778 }
779 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000780moveto_done:
781 if( pIdxKey ){
782 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000783 }
784 return rc;
785}
786
787/*
drh980b1a72006-08-16 16:42:48 +0000788** Restore the cursor to the position it was in (or as close to as possible)
789** when saveCursorPosition() was called. Note that this call deletes the
790** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000791** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000792** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000793*/
danielk197730548662009-07-09 05:07:37 +0000794static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000795 int rc;
drhd2f83132015-03-25 17:35:01 +0000796 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000797 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000798 assert( pCur->eState>=CURSOR_REQUIRESEEK );
799 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000800 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000801 }
drh980b1a72006-08-16 16:42:48 +0000802 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000803 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000804 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000805 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000806 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000807 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000808 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000809 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
810 pCur->eState = CURSOR_SKIPNEXT;
811 }
drh980b1a72006-08-16 16:42:48 +0000812 }
813 return rc;
814}
815
drha3460582008-07-11 21:02:53 +0000816#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000817 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000818 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000819 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000820
drha3460582008-07-11 21:02:53 +0000821/*
drh6848dad2014-08-22 23:33:03 +0000822** Determine whether or not a cursor has moved from the position where
823** it was last placed, or has been invalidated for any other reason.
824** Cursors can move when the row they are pointing at is deleted out
825** from under them, for example. Cursor might also move if a btree
826** is rebalanced.
drha3460582008-07-11 21:02:53 +0000827**
drh6848dad2014-08-22 23:33:03 +0000828** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000829**
drh6848dad2014-08-22 23:33:03 +0000830** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
831** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000832*/
drh6848dad2014-08-22 23:33:03 +0000833int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000834 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000835}
836
837/*
838** This routine restores a cursor back to its original position after it
839** has been moved by some outside activity (such as a btree rebalance or
840** a row having been deleted out from under the cursor).
841**
842** On success, the *pDifferentRow parameter is false if the cursor is left
843** pointing at exactly the same row. *pDifferntRow is the row the cursor
844** was pointing to has been deleted, forcing the cursor to point to some
845** nearby row.
846**
847** This routine should only be called for a cursor that just returned
848** TRUE from sqlite3BtreeCursorHasMoved().
849*/
850int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000851 int rc;
852
drh6848dad2014-08-22 23:33:03 +0000853 assert( pCur!=0 );
854 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000855 rc = restoreCursorPosition(pCur);
856 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000857 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000858 return rc;
859 }
drh606a3572015-03-25 18:29:10 +0000860 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000861 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000862 }else{
drh606a3572015-03-25 18:29:10 +0000863 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000864 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000865 }
866 return SQLITE_OK;
867}
868
drhf7854c72015-10-27 13:24:37 +0000869#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000870/*
drh0df57012015-08-14 15:05:55 +0000871** Provide hints to the cursor. The particular hint given (and the type
872** and number of the varargs parameters) is determined by the eHintType
873** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000874*/
drh0df57012015-08-14 15:05:55 +0000875void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000876 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000877}
drhf7854c72015-10-27 13:24:37 +0000878#endif
879
880/*
881** Provide flag hints to the cursor.
882*/
883void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
884 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
885 pCur->hints = x;
886}
887
drh28935362013-12-07 20:39:19 +0000888
danielk1977599fcba2004-11-08 07:13:13 +0000889#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000890/*
drha3152892007-05-05 11:48:52 +0000891** Given a page number of a regular database page, return the page
892** number for the pointer-map page that contains the entry for the
893** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000894**
895** Return 0 (not a valid page) for pgno==1 since there is
896** no pointer map associated with page 1. The integrity_check logic
897** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000898*/
danielk1977266664d2006-02-10 08:24:21 +0000899static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000900 int nPagesPerMapPage;
901 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000902 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000903 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000904 nPagesPerMapPage = (pBt->usableSize/5)+1;
905 iPtrMap = (pgno-2)/nPagesPerMapPage;
906 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000907 if( ret==PENDING_BYTE_PAGE(pBt) ){
908 ret++;
909 }
910 return ret;
911}
danielk1977a19df672004-11-03 11:37:07 +0000912
danielk1977afcdd022004-10-31 16:25:42 +0000913/*
danielk1977afcdd022004-10-31 16:25:42 +0000914** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000915**
916** This routine updates the pointer map entry for page number 'key'
917** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000918**
919** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
920** a no-op. If an error occurs, the appropriate error code is written
921** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000922*/
drh98add2e2009-07-20 17:11:49 +0000923static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000924 DbPage *pDbPage; /* The pointer map page */
925 u8 *pPtrmap; /* The pointer map data */
926 Pgno iPtrmap; /* The pointer map page number */
927 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000928 int rc; /* Return code from subfunctions */
929
930 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000931
drh1fee73e2007-08-29 04:00:57 +0000932 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000933 /* The master-journal page number must never be used as a pointer map page */
934 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
935
danielk1977ac11ee62005-01-15 12:45:51 +0000936 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000937 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000938 *pRC = SQLITE_CORRUPT_BKPT;
939 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000940 }
danielk1977266664d2006-02-10 08:24:21 +0000941 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000942 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000943 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000944 *pRC = rc;
945 return;
danielk1977afcdd022004-10-31 16:25:42 +0000946 }
danielk19778c666b12008-07-18 09:34:57 +0000947 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000948 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000949 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000950 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000951 }
drhfc243732011-05-17 15:21:56 +0000952 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000953 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000954
drh615ae552005-01-16 23:21:00 +0000955 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
956 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000957 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000958 if( rc==SQLITE_OK ){
959 pPtrmap[offset] = eType;
960 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000961 }
danielk1977afcdd022004-10-31 16:25:42 +0000962 }
963
drh4925a552009-07-07 11:39:58 +0000964ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000965 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000966}
967
968/*
969** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000970**
971** This routine retrieves the pointer map entry for page 'key', writing
972** the type and parent page number to *pEType and *pPgno respectively.
973** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000974*/
danielk1977aef0bf62005-12-30 16:28:01 +0000975static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000976 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000977 int iPtrmap; /* Pointer map page index */
978 u8 *pPtrmap; /* Pointer map page data */
979 int offset; /* Offset of entry in pointer map */
980 int rc;
981
drh1fee73e2007-08-29 04:00:57 +0000982 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000983
danielk1977266664d2006-02-10 08:24:21 +0000984 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000985 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000986 if( rc!=0 ){
987 return rc;
988 }
danielk19773b8a05f2007-03-19 17:44:26 +0000989 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000990
danielk19778c666b12008-07-18 09:34:57 +0000991 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000992 if( offset<0 ){
993 sqlite3PagerUnref(pDbPage);
994 return SQLITE_CORRUPT_BKPT;
995 }
996 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000997 assert( pEType!=0 );
998 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000999 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001000
danielk19773b8a05f2007-03-19 17:44:26 +00001001 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001002 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001003 return SQLITE_OK;
1004}
1005
danielk197785d90ca2008-07-19 14:25:15 +00001006#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001007 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001008 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001009 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001010#endif
danielk1977afcdd022004-10-31 16:25:42 +00001011
drh0d316a42002-08-11 20:10:47 +00001012/*
drh271efa52004-05-30 19:19:05 +00001013** Given a btree page and a cell index (0 means the first cell on
1014** the page, 1 means the second cell, and so forth) return a pointer
1015** to the cell content.
1016**
drhf44890a2015-06-27 03:58:15 +00001017** findCellPastPtr() does the same except it skips past the initial
1018** 4-byte child pointer found on interior pages, if there is one.
1019**
drh271efa52004-05-30 19:19:05 +00001020** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001021*/
drh1688c862008-07-18 02:44:17 +00001022#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001023 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001024#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001025 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001026
drh43605152004-05-29 21:46:49 +00001027
1028/*
drh5fa60512015-06-19 17:19:34 +00001029** This is common tail processing for btreeParseCellPtr() and
1030** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1031** on a single B-tree page. Make necessary adjustments to the CellInfo
1032** structure.
drh43605152004-05-29 21:46:49 +00001033*/
drh5fa60512015-06-19 17:19:34 +00001034static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1035 MemPage *pPage, /* Page containing the cell */
1036 u8 *pCell, /* Pointer to the cell text. */
1037 CellInfo *pInfo /* Fill in this structure */
1038){
1039 /* If the payload will not fit completely on the local page, we have
1040 ** to decide how much to store locally and how much to spill onto
1041 ** overflow pages. The strategy is to minimize the amount of unused
1042 ** space on overflow pages while keeping the amount of local storage
1043 ** in between minLocal and maxLocal.
1044 **
1045 ** Warning: changing the way overflow payload is distributed in any
1046 ** way will result in an incompatible file format.
1047 */
1048 int minLocal; /* Minimum amount of payload held locally */
1049 int maxLocal; /* Maximum amount of payload held locally */
1050 int surplus; /* Overflow payload available for local storage */
1051
1052 minLocal = pPage->minLocal;
1053 maxLocal = pPage->maxLocal;
1054 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1055 testcase( surplus==maxLocal );
1056 testcase( surplus==maxLocal+1 );
1057 if( surplus <= maxLocal ){
1058 pInfo->nLocal = (u16)surplus;
1059 }else{
1060 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001061 }
drh45ac1c72015-12-18 03:59:16 +00001062 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001063}
1064
1065/*
drh5fa60512015-06-19 17:19:34 +00001066** The following routines are implementations of the MemPage.xParseCell()
1067** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001068**
drh5fa60512015-06-19 17:19:34 +00001069** Parse a cell content block and fill in the CellInfo structure.
1070**
1071** btreeParseCellPtr() => table btree leaf nodes
1072** btreeParseCellNoPayload() => table btree internal nodes
1073** btreeParseCellPtrIndex() => index btree nodes
1074**
1075** There is also a wrapper function btreeParseCell() that works for
1076** all MemPage types and that references the cell by index rather than
1077** by pointer.
drh43605152004-05-29 21:46:49 +00001078*/
drh5fa60512015-06-19 17:19:34 +00001079static void btreeParseCellPtrNoPayload(
1080 MemPage *pPage, /* Page containing the cell */
1081 u8 *pCell, /* Pointer to the cell text. */
1082 CellInfo *pInfo /* Fill in this structure */
1083){
1084 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1085 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001086 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001087#ifndef SQLITE_DEBUG
1088 UNUSED_PARAMETER(pPage);
1089#endif
drh5fa60512015-06-19 17:19:34 +00001090 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1091 pInfo->nPayload = 0;
1092 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001093 pInfo->pPayload = 0;
1094 return;
1095}
danielk197730548662009-07-09 05:07:37 +00001096static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001097 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001098 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001099 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001100){
drh3e28ff52014-09-24 00:59:08 +00001101 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001102 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001103 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001104
drh1fee73e2007-08-29 04:00:57 +00001105 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001106 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001107 assert( pPage->intKeyLeaf );
1108 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001109 pIter = pCell;
1110
1111 /* The next block of code is equivalent to:
1112 **
1113 ** pIter += getVarint32(pIter, nPayload);
1114 **
1115 ** The code is inlined to avoid a function call.
1116 */
1117 nPayload = *pIter;
1118 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001119 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001120 nPayload &= 0x7f;
1121 do{
1122 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1123 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001124 }
drh56cb04e2015-06-19 18:24:37 +00001125 pIter++;
1126
1127 /* The next block of code is equivalent to:
1128 **
1129 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1130 **
1131 ** The code is inlined to avoid a function call.
1132 */
1133 iKey = *pIter;
1134 if( iKey>=0x80 ){
1135 u8 *pEnd = &pIter[7];
1136 iKey &= 0x7f;
1137 while(1){
1138 iKey = (iKey<<7) | (*++pIter & 0x7f);
1139 if( (*pIter)<0x80 ) break;
1140 if( pIter>=pEnd ){
1141 iKey = (iKey<<8) | *++pIter;
1142 break;
1143 }
1144 }
1145 }
1146 pIter++;
1147
1148 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001149 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001150 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001151 testcase( nPayload==pPage->maxLocal );
1152 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001153 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001154 /* This is the (easy) common case where the entire payload fits
1155 ** on the local page. No overflow is required.
1156 */
drhab1cc582014-09-23 21:25:19 +00001157 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1158 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001159 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001160 }else{
drh5fa60512015-06-19 17:19:34 +00001161 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001162 }
drh3aac2dd2004-04-26 14:10:20 +00001163}
drh5fa60512015-06-19 17:19:34 +00001164static void btreeParseCellPtrIndex(
1165 MemPage *pPage, /* Page containing the cell */
1166 u8 *pCell, /* Pointer to the cell text. */
1167 CellInfo *pInfo /* Fill in this structure */
1168){
1169 u8 *pIter; /* For scanning through pCell */
1170 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001171
drh5fa60512015-06-19 17:19:34 +00001172 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1173 assert( pPage->leaf==0 || pPage->leaf==1 );
1174 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001175 pIter = pCell + pPage->childPtrSize;
1176 nPayload = *pIter;
1177 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001178 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001179 nPayload &= 0x7f;
1180 do{
1181 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1182 }while( *(pIter)>=0x80 && pIter<pEnd );
1183 }
1184 pIter++;
1185 pInfo->nKey = nPayload;
1186 pInfo->nPayload = nPayload;
1187 pInfo->pPayload = pIter;
1188 testcase( nPayload==pPage->maxLocal );
1189 testcase( nPayload==pPage->maxLocal+1 );
1190 if( nPayload<=pPage->maxLocal ){
1191 /* This is the (easy) common case where the entire payload fits
1192 ** on the local page. No overflow is required.
1193 */
1194 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1195 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1196 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001197 }else{
1198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001199 }
1200}
danielk197730548662009-07-09 05:07:37 +00001201static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001202 MemPage *pPage, /* Page containing the cell */
1203 int iCell, /* The cell index. First cell is 0 */
1204 CellInfo *pInfo /* Fill in this structure */
1205){
drh5fa60512015-06-19 17:19:34 +00001206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001207}
drh3aac2dd2004-04-26 14:10:20 +00001208
1209/*
drh5fa60512015-06-19 17:19:34 +00001210** The following routines are implementations of the MemPage.xCellSize
1211** method.
1212**
drh43605152004-05-29 21:46:49 +00001213** Compute the total number of bytes that a Cell needs in the cell
1214** data area of the btree-page. The return number includes the cell
1215** data header and the local payload, but not any overflow page or
1216** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001217**
drh5fa60512015-06-19 17:19:34 +00001218** cellSizePtrNoPayload() => table internal nodes
1219** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001220*/
danielk1977ae5558b2009-04-29 11:31:47 +00001221static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1223 u8 *pEnd; /* End mark for a varint */
1224 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001225
1226#ifdef SQLITE_DEBUG
1227 /* The value returned by this function should always be the same as
1228 ** the (CellInfo.nSize) value found by doing a full parse of the
1229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1230 ** this function verifies that this invariant is not violated. */
1231 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001232 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001233#endif
1234
drh3e28ff52014-09-24 00:59:08 +00001235 nSize = *pIter;
1236 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001237 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001238 nSize &= 0x7f;
1239 do{
1240 nSize = (nSize<<7) | (*++pIter & 0x7f);
1241 }while( *(pIter)>=0x80 && pIter<pEnd );
1242 }
1243 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001244 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001245 /* pIter now points at the 64-bit integer key value, a variable length
1246 ** integer. The following block moves pIter to point at the first byte
1247 ** past the end of the key value. */
1248 pEnd = &pIter[9];
1249 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001250 }
drh0a45c272009-07-08 01:49:11 +00001251 testcase( nSize==pPage->maxLocal );
1252 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001253 if( nSize<=pPage->maxLocal ){
1254 nSize += (u32)(pIter - pCell);
1255 if( nSize<4 ) nSize = 4;
1256 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001257 int minLocal = pPage->minLocal;
1258 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001259 testcase( nSize==pPage->maxLocal );
1260 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001261 if( nSize>pPage->maxLocal ){
1262 nSize = minLocal;
1263 }
drh3e28ff52014-09-24 00:59:08 +00001264 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001265 }
drhdc41d602014-09-22 19:51:35 +00001266 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001267 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001268}
drh25ada072015-06-19 15:07:14 +00001269static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1270 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1271 u8 *pEnd; /* End mark for a varint */
1272
1273#ifdef SQLITE_DEBUG
1274 /* The value returned by this function should always be the same as
1275 ** the (CellInfo.nSize) value found by doing a full parse of the
1276 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1277 ** this function verifies that this invariant is not violated. */
1278 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001279 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001280#else
1281 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001282#endif
1283
1284 assert( pPage->childPtrSize==4 );
1285 pEnd = pIter + 9;
1286 while( (*pIter++)&0x80 && pIter<pEnd );
1287 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1288 return (u16)(pIter - pCell);
1289}
1290
drh0ee3dbe2009-10-16 15:05:18 +00001291
1292#ifdef SQLITE_DEBUG
1293/* This variation on cellSizePtr() is used inside of assert() statements
1294** only. */
drha9121e42008-02-19 14:59:35 +00001295static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001296 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001297}
danielk1977bc6ada42004-06-30 08:20:16 +00001298#endif
drh3b7511c2001-05-26 13:15:44 +00001299
danielk197779a40da2005-01-16 08:00:01 +00001300#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001301/*
danielk197726836652005-01-17 01:33:13 +00001302** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001303** to an overflow page, insert an entry into the pointer-map
1304** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001305*/
drh98add2e2009-07-20 17:11:49 +00001306static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001307 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001308 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001309 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001310 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001311 if( info.nLocal<info.nPayload ){
1312 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001313 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001314 }
danielk1977ac11ee62005-01-15 12:45:51 +00001315}
danielk197779a40da2005-01-16 08:00:01 +00001316#endif
1317
danielk1977ac11ee62005-01-15 12:45:51 +00001318
drhda200cc2004-05-09 11:51:38 +00001319/*
drh72f82862001-05-24 21:06:34 +00001320** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001321** end of the page and all free space is collected into one
1322** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001323** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001324**
1325** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1326** b-tree page so that there are no freeblocks or fragment bytes, all
1327** unused bytes are contained in the unallocated space region, and all
1328** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001329*/
shane0af3f892008-11-12 04:55:34 +00001330static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001331 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001332 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001333 int hdr; /* Offset to the page header */
1334 int size; /* Size of a cell */
1335 int usableSize; /* Number of usable bytes on a page */
1336 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001337 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001338 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001339 unsigned char *data; /* The page data */
1340 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001341 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001342 int iCellFirst; /* First allowable cell index */
1343 int iCellLast; /* Last possible cell index */
1344
drh2af926b2001-05-15 00:39:25 +00001345
danielk19773b8a05f2007-03-19 17:44:26 +00001346 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001347 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001348 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001349 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001350 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001351 temp = 0;
1352 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001353 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001354 cellOffset = pPage->cellOffset;
1355 nCell = pPage->nCell;
1356 assert( nCell==get2byte(&data[hdr+3]) );
1357 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001358 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001359 iCellFirst = cellOffset + 2*nCell;
1360 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001361 for(i=0; i<nCell; i++){
1362 u8 *pAddr; /* The i-th cell pointer */
1363 pAddr = &data[cellOffset + i*2];
1364 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001365 testcase( pc==iCellFirst );
1366 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001367 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001368 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001369 */
1370 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001371 return SQLITE_CORRUPT_BKPT;
1372 }
drh17146622009-07-07 17:38:38 +00001373 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001374 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001375 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001376 if( cbrk<iCellFirst || pc+size>usableSize ){
1377 return SQLITE_CORRUPT_BKPT;
1378 }
drh7157e1d2009-07-09 13:25:32 +00001379 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001380 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001381 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001382 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001383 if( temp==0 ){
1384 int x;
1385 if( cbrk==pc ) continue;
1386 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1387 x = get2byte(&data[hdr+5]);
1388 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1389 src = temp;
1390 }
1391 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001392 }
drh17146622009-07-07 17:38:38 +00001393 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001394 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001395 data[hdr+1] = 0;
1396 data[hdr+2] = 0;
1397 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001398 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001399 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001400 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001401 return SQLITE_CORRUPT_BKPT;
1402 }
shane0af3f892008-11-12 04:55:34 +00001403 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001404}
1405
drha059ad02001-04-17 20:09:11 +00001406/*
dan8e9ba0c2014-10-14 17:27:04 +00001407** Search the free-list on page pPg for space to store a cell nByte bytes in
1408** size. If one can be found, return a pointer to the space and remove it
1409** from the free-list.
1410**
1411** If no suitable space can be found on the free-list, return NULL.
1412**
drhba0f9992014-10-30 20:48:44 +00001413** This function may detect corruption within pPg. If corruption is
1414** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001415**
drhb7580e82015-06-25 18:36:13 +00001416** Slots on the free list that are between 1 and 3 bytes larger than nByte
1417** will be ignored if adding the extra space to the fragmentation count
1418** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001419*/
drhb7580e82015-06-25 18:36:13 +00001420static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001421 const int hdr = pPg->hdrOffset;
1422 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001423 int iAddr = hdr + 1;
1424 int pc = get2byte(&aData[iAddr]);
1425 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001426 int usableSize = pPg->pBt->usableSize;
1427
drhb7580e82015-06-25 18:36:13 +00001428 assert( pc>0 );
1429 do{
dan8e9ba0c2014-10-14 17:27:04 +00001430 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001431 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1432 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001433 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001434 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001435 return 0;
1436 }
drh113762a2014-11-19 16:36:25 +00001437 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1438 ** freeblock form a big-endian integer which is the size of the freeblock
1439 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001440 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001441 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001442 testcase( x==4 );
1443 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001444 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1445 *pRc = SQLITE_CORRUPT_BKPT;
1446 return 0;
1447 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001448 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1449 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001450 if( aData[hdr+7]>57 ) return 0;
1451
dan8e9ba0c2014-10-14 17:27:04 +00001452 /* Remove the slot from the free-list. Update the number of
1453 ** fragmented bytes within the page. */
1454 memcpy(&aData[iAddr], &aData[pc], 2);
1455 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001456 }else{
1457 /* The slot remains on the free-list. Reduce its size to account
1458 ** for the portion used by the new allocation. */
1459 put2byte(&aData[pc+2], x);
1460 }
1461 return &aData[pc + x];
1462 }
drhb7580e82015-06-25 18:36:13 +00001463 iAddr = pc;
1464 pc = get2byte(&aData[pc]);
1465 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001466
1467 return 0;
1468}
1469
1470/*
danielk19776011a752009-04-01 16:25:32 +00001471** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001472** as the first argument. Write into *pIdx the index into pPage->aData[]
1473** of the first byte of allocated space. Return either SQLITE_OK or
1474** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001475**
drh0a45c272009-07-08 01:49:11 +00001476** The caller guarantees that there is sufficient space to make the
1477** allocation. This routine might need to defragment in order to bring
1478** all the space together, however. This routine will avoid using
1479** the first two bytes past the cell pointer area since presumably this
1480** allocation is being made in order to insert a new cell, so we will
1481** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001482*/
drh0a45c272009-07-08 01:49:11 +00001483static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001484 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1485 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001486 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001487 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001488 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001489
danielk19773b8a05f2007-03-19 17:44:26 +00001490 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001491 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001492 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001493 assert( nByte>=0 ); /* Minimum cell size is 4 */
1494 assert( pPage->nFree>=nByte );
1495 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001496 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001497
drh0a45c272009-07-08 01:49:11 +00001498 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1499 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001500 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001501 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1502 ** and the reserved space is zero (the usual value for reserved space)
1503 ** then the cell content offset of an empty page wants to be 65536.
1504 ** However, that integer is too large to be stored in a 2-byte unsigned
1505 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001506 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001507 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001508 if( gap>top ){
1509 if( top==0 && pPage->pBt->usableSize==65536 ){
1510 top = 65536;
1511 }else{
1512 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001513 }
1514 }
drh43605152004-05-29 21:46:49 +00001515
drh4c04f3c2014-08-20 11:56:14 +00001516 /* If there is enough space between gap and top for one more cell pointer
1517 ** array entry offset, and if the freelist is not empty, then search the
1518 ** freelist looking for a free slot big enough to satisfy the request.
1519 */
drh5e2f8b92001-05-28 00:41:15 +00001520 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001521 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001522 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001523 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001524 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001525 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001526 assert( pSpace>=data && (pSpace - data)<65536 );
1527 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001528 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001529 }else if( rc ){
1530 return rc;
drh9e572e62004-04-23 23:43:10 +00001531 }
1532 }
drh43605152004-05-29 21:46:49 +00001533
drh4c04f3c2014-08-20 11:56:14 +00001534 /* The request could not be fulfilled using a freelist slot. Check
1535 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001536 */
1537 testcase( gap+2+nByte==top );
1538 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001539 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001540 rc = defragmentPage(pPage);
1541 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001542 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001543 assert( gap+nByte<=top );
1544 }
1545
1546
drh43605152004-05-29 21:46:49 +00001547 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001548 ** and the cell content area. The btreeInitPage() call has already
1549 ** validated the freelist. Given that the freelist is valid, there
1550 ** is no way that the allocation can extend off the end of the page.
1551 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001552 */
drh0a45c272009-07-08 01:49:11 +00001553 top -= nByte;
drh43605152004-05-29 21:46:49 +00001554 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001555 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001556 *pIdx = top;
1557 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001558}
1559
1560/*
drh9e572e62004-04-23 23:43:10 +00001561** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001562** The first byte of the new free block is pPage->aData[iStart]
1563** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001564**
drh5f5c7532014-08-20 17:56:27 +00001565** Adjacent freeblocks are coalesced.
1566**
1567** Note that even though the freeblock list was checked by btreeInitPage(),
1568** that routine will not detect overlap between cells or freeblocks. Nor
1569** does it detect cells or freeblocks that encrouch into the reserved bytes
1570** at the end of the page. So do additional corruption checks inside this
1571** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001572*/
drh5f5c7532014-08-20 17:56:27 +00001573static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001574 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001575 u16 iFreeBlk; /* Address of the next freeblock */
1576 u8 hdr; /* Page header size. 0 or 100 */
1577 u8 nFrag = 0; /* Reduction in fragmentation */
1578 u16 iOrigSize = iSize; /* Original value of iSize */
1579 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1580 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001581 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001582
drh9e572e62004-04-23 23:43:10 +00001583 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001585 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001586 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001587 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001588 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001589 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001590
drh5f5c7532014-08-20 17:56:27 +00001591 /* Overwrite deleted information with zeros when the secure_delete
1592 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001593 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001594 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001595 }
drhfcce93f2006-02-22 03:08:32 +00001596
drh5f5c7532014-08-20 17:56:27 +00001597 /* The list of freeblocks must be in ascending order. Find the
1598 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001599 */
drh43605152004-05-29 21:46:49 +00001600 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001601 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001602 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1603 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1604 }else{
drh85f071b2016-09-17 19:34:32 +00001605 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1606 if( iFreeBlk<iPtr+4 ){
1607 if( iFreeBlk==0 ) break;
1608 return SQLITE_CORRUPT_BKPT;
1609 }
drh7bc4c452014-08-20 18:43:44 +00001610 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001611 }
drh7bc4c452014-08-20 18:43:44 +00001612 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1613 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1614
1615 /* At this point:
1616 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001617 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001618 **
1619 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1620 */
1621 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1622 nFrag = iFreeBlk - iEnd;
1623 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1624 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001625 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001626 iSize = iEnd - iStart;
1627 iFreeBlk = get2byte(&data[iFreeBlk]);
1628 }
1629
drh3f387402014-09-24 01:23:00 +00001630 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1631 ** pointer in the page header) then check to see if iStart should be
1632 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001633 */
1634 if( iPtr>hdr+1 ){
1635 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1636 if( iPtrEnd+3>=iStart ){
1637 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1638 nFrag += iStart - iPtrEnd;
1639 iSize = iEnd - iPtr;
1640 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001641 }
drh9e572e62004-04-23 23:43:10 +00001642 }
drh7bc4c452014-08-20 18:43:44 +00001643 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1644 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001645 }
drh7bc4c452014-08-20 18:43:44 +00001646 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001647 /* The new freeblock is at the beginning of the cell content area,
1648 ** so just extend the cell content area rather than create another
1649 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001650 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001651 put2byte(&data[hdr+1], iFreeBlk);
1652 put2byte(&data[hdr+5], iEnd);
1653 }else{
1654 /* Insert the new freeblock into the freelist */
1655 put2byte(&data[iPtr], iStart);
1656 put2byte(&data[iStart], iFreeBlk);
1657 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001658 }
drh5f5c7532014-08-20 17:56:27 +00001659 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001660 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001661}
1662
1663/*
drh271efa52004-05-30 19:19:05 +00001664** Decode the flags byte (the first byte of the header) for a page
1665** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001666**
1667** Only the following combinations are supported. Anything different
1668** indicates a corrupt database files:
1669**
1670** PTF_ZERODATA
1671** PTF_ZERODATA | PTF_LEAF
1672** PTF_LEAFDATA | PTF_INTKEY
1673** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001674*/
drh44845222008-07-17 18:39:57 +00001675static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001676 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001677
1678 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001680 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001681 flagByte &= ~PTF_LEAF;
1682 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001683 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001684 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001685 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001686 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1687 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001688 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001689 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1690 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001691 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001692 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001693 if( pPage->leaf ){
1694 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001695 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001696 }else{
1697 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001698 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001699 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001700 }
drh271efa52004-05-30 19:19:05 +00001701 pPage->maxLocal = pBt->maxLeaf;
1702 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001703 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001704 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1705 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001706 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001707 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1708 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001709 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001710 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001711 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001712 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001713 pPage->maxLocal = pBt->maxLocal;
1714 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001715 }else{
drhfdab0262014-11-20 15:30:50 +00001716 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1717 ** an error. */
drh44845222008-07-17 18:39:57 +00001718 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001719 }
drhc9166342012-01-05 23:32:06 +00001720 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001721 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001722}
1723
1724/*
drh7e3b0a02001-04-28 16:52:40 +00001725** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001726**
1727** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001728** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001729** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1730** guarantee that the page is well-formed. It only shows that
1731** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001732*/
danielk197730548662009-07-09 05:07:37 +00001733static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001734
danielk197771d5d2c2008-09-29 11:49:47 +00001735 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001736 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001737 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001738 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001739 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1740 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001741
1742 if( !pPage->isInit ){
drh380c08e2016-12-13 20:30:29 +00001743 int pc; /* Address of a freeblock within pPage->aData[] */
drhf49661a2008-12-10 16:45:50 +00001744 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001745 u8 *data; /* Equal to pPage->aData */
1746 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001747 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001748 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001749 int nFree; /* Number of unused bytes on the page */
1750 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001751 int iCellFirst; /* First allowable cell or freeblock offset */
1752 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001753
1754 pBt = pPage->pBt;
1755
danielk1977eaa06f62008-09-18 17:34:44 +00001756 hdr = pPage->hdrOffset;
1757 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001758 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1759 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001760 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001761 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1762 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001763 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001764 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001765 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001766 pPage->aDataEnd = &data[usableSize];
1767 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001768 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001769 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1770 ** the start of the cell content area. A zero value for this integer is
1771 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001772 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001773 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1774 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001775 pPage->nCell = get2byte(&data[hdr+3]);
1776 if( pPage->nCell>MX_CELL(pBt) ){
1777 /* To many cells for a single page. The page must be corrupt */
1778 return SQLITE_CORRUPT_BKPT;
1779 }
drhb908d762009-07-08 16:54:40 +00001780 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001781 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1782 ** possible for a root page of a table that contains no rows) then the
1783 ** offset to the cell content area will equal the page size minus the
1784 ** bytes of reserved space. */
1785 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001786
shane5eff7cf2009-08-10 03:57:58 +00001787 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001788 ** of page when parsing a cell.
1789 **
1790 ** The following block of code checks early to see if a cell extends
1791 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1792 ** returned if it does.
1793 */
drh0a45c272009-07-08 01:49:11 +00001794 iCellFirst = cellOffset + 2*pPage->nCell;
1795 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001796 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001797 int i; /* Index into the cell pointer array */
1798 int sz; /* Size of a cell */
1799
drh69e931e2009-06-03 21:04:35 +00001800 if( !pPage->leaf ) iCellLast--;
1801 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001802 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001803 testcase( pc==iCellFirst );
1804 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001805 if( pc<iCellFirst || pc>iCellLast ){
1806 return SQLITE_CORRUPT_BKPT;
1807 }
drh25ada072015-06-19 15:07:14 +00001808 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001809 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001810 if( pc+sz>usableSize ){
1811 return SQLITE_CORRUPT_BKPT;
1812 }
1813 }
drh0a45c272009-07-08 01:49:11 +00001814 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001815 }
drh69e931e2009-06-03 21:04:35 +00001816
drhfdab0262014-11-20 15:30:50 +00001817 /* Compute the total free space on the page
1818 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1819 ** start of the first freeblock on the page, or is zero if there are no
1820 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001821 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001822 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
drh77dc0ed2016-12-12 01:30:01 +00001823 if( pc>0 ){
1824 u32 next, size;
1825 if( pc<iCellFirst ){
drhfdab0262014-11-20 15:30:50 +00001826 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1827 ** always be at least one cell before the first freeblock.
drhfdab0262014-11-20 15:30:50 +00001828 */
danielk1977eaa06f62008-09-18 17:34:44 +00001829 return SQLITE_CORRUPT_BKPT;
1830 }
drh77dc0ed2016-12-12 01:30:01 +00001831 while( 1 ){
1832 if( pc>iCellLast ){
1833 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */
1834 }
1835 next = get2byte(&data[pc]);
1836 size = get2byte(&data[pc+2]);
1837 nFree = nFree + size;
1838 if( next<=pc+size+3 ) break;
1839 pc = next;
danielk1977eaa06f62008-09-18 17:34:44 +00001840 }
drh77dc0ed2016-12-12 01:30:01 +00001841 if( next>0 ){
1842 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */
1843 }
drh380c08e2016-12-13 20:30:29 +00001844 if( pc+size>(unsigned int)usableSize ){
drh77dc0ed2016-12-12 01:30:01 +00001845 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */
1846 }
danielk1977eaa06f62008-09-18 17:34:44 +00001847 }
danielk197793c829c2009-06-03 17:26:17 +00001848
1849 /* At this point, nFree contains the sum of the offset to the start
1850 ** of the cell-content area plus the number of free bytes within
1851 ** the cell-content area. If this is greater than the usable-size
1852 ** of the page, then the page must be corrupted. This check also
1853 ** serves to verify that the offset to the start of the cell-content
1854 ** area, according to the page header, lies within the page.
1855 */
1856 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001857 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001858 }
shane5eff7cf2009-08-10 03:57:58 +00001859 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001860 pPage->isInit = 1;
1861 }
drh9e572e62004-04-23 23:43:10 +00001862 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001863}
1864
1865/*
drh8b2f49b2001-06-08 00:21:52 +00001866** Set up a raw page so that it looks like a database page holding
1867** no entries.
drhbd03cae2001-06-02 02:40:57 +00001868*/
drh9e572e62004-04-23 23:43:10 +00001869static void zeroPage(MemPage *pPage, int flags){
1870 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001871 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001872 u8 hdr = pPage->hdrOffset;
1873 u16 first;
drh9e572e62004-04-23 23:43:10 +00001874
danielk19773b8a05f2007-03-19 17:44:26 +00001875 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001876 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1877 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001878 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001879 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001880 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001881 memset(&data[hdr], 0, pBt->usableSize - hdr);
1882 }
drh1bd10f82008-12-10 21:19:56 +00001883 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001884 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001885 memset(&data[hdr+1], 0, 4);
1886 data[hdr+7] = 0;
1887 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001888 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001889 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001890 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001891 pPage->aDataEnd = &data[pBt->usableSize];
1892 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001893 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001894 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001895 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1896 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001897 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001898 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001899}
1900
drh897a8202008-09-18 01:08:15 +00001901
1902/*
1903** Convert a DbPage obtained from the pager into a MemPage used by
1904** the btree layer.
1905*/
1906static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1907 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001908 if( pgno!=pPage->pgno ){
1909 pPage->aData = sqlite3PagerGetData(pDbPage);
1910 pPage->pDbPage = pDbPage;
1911 pPage->pBt = pBt;
1912 pPage->pgno = pgno;
1913 pPage->hdrOffset = pgno==1 ? 100 : 0;
1914 }
1915 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001916 return pPage;
1917}
1918
drhbd03cae2001-06-02 02:40:57 +00001919/*
drh3aac2dd2004-04-26 14:10:20 +00001920** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001921** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001922**
drh7e8c6f12015-05-28 03:28:27 +00001923** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1924** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001925** to fetch the content. Just fill in the content with zeros for now.
1926** If in the future we call sqlite3PagerWrite() on this page, that
1927** means we have started to be concerned about content and the disk
1928** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001929*/
danielk197730548662009-07-09 05:07:37 +00001930static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001931 BtShared *pBt, /* The btree */
1932 Pgno pgno, /* Number of the page to fetch */
1933 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001934 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001935){
drh3aac2dd2004-04-26 14:10:20 +00001936 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001937 DbPage *pDbPage;
1938
drhb00fc3b2013-08-21 23:42:32 +00001939 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001940 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001941 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001942 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001943 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001944 return SQLITE_OK;
1945}
1946
1947/*
danielk1977bea2a942009-01-20 17:06:27 +00001948** Retrieve a page from the pager cache. If the requested page is not
1949** already in the pager cache return NULL. Initialize the MemPage.pBt and
1950** MemPage.aData elements if needed.
1951*/
1952static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1953 DbPage *pDbPage;
1954 assert( sqlite3_mutex_held(pBt->mutex) );
1955 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1956 if( pDbPage ){
1957 return btreePageFromDbPage(pDbPage, pgno, pBt);
1958 }
1959 return 0;
1960}
1961
1962/*
danielk197789d40042008-11-17 14:20:56 +00001963** Return the size of the database file in pages. If there is any kind of
1964** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001965*/
drhb1299152010-03-30 22:58:33 +00001966static Pgno btreePagecount(BtShared *pBt){
1967 return pBt->nPage;
1968}
1969u32 sqlite3BtreeLastPage(Btree *p){
1970 assert( sqlite3BtreeHoldsMutex(p) );
1971 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001972 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001973}
1974
1975/*
drh28f58dd2015-06-27 19:45:03 +00001976** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001977**
drh15a00212015-06-27 20:55:00 +00001978** If pCur!=0 then the page is being fetched as part of a moveToChild()
1979** call. Do additional sanity checking on the page in this case.
1980** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001981**
1982** The page is fetched as read-write unless pCur is not NULL and is
1983** a read-only cursor.
1984**
1985** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001986** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001987*/
1988static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001989 BtShared *pBt, /* The database file */
1990 Pgno pgno, /* Number of the page to get */
1991 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001992 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1993 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001994){
1995 int rc;
drh28f58dd2015-06-27 19:45:03 +00001996 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001997 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001998 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1999 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002000 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002001
danba3cbf32010-06-30 04:29:03 +00002002 if( pgno>btreePagecount(pBt) ){
2003 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002004 goto getAndInitPage_error;
2005 }
drh9584f582015-11-04 20:22:37 +00002006 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002007 if( rc ){
2008 goto getAndInitPage_error;
2009 }
drh8dd1c252015-11-04 22:31:02 +00002010 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002011 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002012 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002013 rc = btreeInitPage(*ppPage);
2014 if( rc!=SQLITE_OK ){
2015 releasePage(*ppPage);
2016 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002017 }
drhee696e22004-08-30 16:52:17 +00002018 }
drh8dd1c252015-11-04 22:31:02 +00002019 assert( (*ppPage)->pgno==pgno );
2020 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002021
drh15a00212015-06-27 20:55:00 +00002022 /* If obtaining a child page for a cursor, we must verify that the page is
2023 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002024 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002025 rc = SQLITE_CORRUPT_BKPT;
2026 releasePage(*ppPage);
2027 goto getAndInitPage_error;
2028 }
drh28f58dd2015-06-27 19:45:03 +00002029 return SQLITE_OK;
2030
2031getAndInitPage_error:
2032 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002033 testcase( pgno==0 );
2034 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002035 return rc;
2036}
2037
2038/*
drh3aac2dd2004-04-26 14:10:20 +00002039** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002040** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002041*/
drhbbf0f862015-06-27 14:59:26 +00002042static void releasePageNotNull(MemPage *pPage){
2043 assert( pPage->aData );
2044 assert( pPage->pBt );
2045 assert( pPage->pDbPage!=0 );
2046 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2047 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2048 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2049 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002050}
drh3aac2dd2004-04-26 14:10:20 +00002051static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002052 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002053}
2054
2055/*
drh7e8c6f12015-05-28 03:28:27 +00002056** Get an unused page.
2057**
2058** This works just like btreeGetPage() with the addition:
2059**
2060** * If the page is already in use for some other purpose, immediately
2061** release it and return an SQLITE_CURRUPT error.
2062** * Make sure the isInit flag is clear
2063*/
2064static int btreeGetUnusedPage(
2065 BtShared *pBt, /* The btree */
2066 Pgno pgno, /* Number of the page to fetch */
2067 MemPage **ppPage, /* Return the page in this parameter */
2068 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2069){
2070 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2071 if( rc==SQLITE_OK ){
2072 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2073 releasePage(*ppPage);
2074 *ppPage = 0;
2075 return SQLITE_CORRUPT_BKPT;
2076 }
2077 (*ppPage)->isInit = 0;
2078 }else{
2079 *ppPage = 0;
2080 }
2081 return rc;
2082}
2083
drha059ad02001-04-17 20:09:11 +00002084
2085/*
drha6abd042004-06-09 17:37:22 +00002086** During a rollback, when the pager reloads information into the cache
2087** so that the cache is restored to its original state at the start of
2088** the transaction, for each page restored this routine is called.
2089**
2090** This routine needs to reset the extra data section at the end of the
2091** page to agree with the restored data.
2092*/
danielk1977eaa06f62008-09-18 17:34:44 +00002093static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002094 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002095 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002096 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002097 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002098 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002099 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002100 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002101 /* pPage might not be a btree page; it might be an overflow page
2102 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002103 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002104 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002105 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002106 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002107 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002108 }
drha6abd042004-06-09 17:37:22 +00002109 }
2110}
2111
2112/*
drhe5fe6902007-12-07 18:55:28 +00002113** Invoke the busy handler for a btree.
2114*/
danielk19771ceedd32008-11-19 10:22:33 +00002115static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002116 BtShared *pBt = (BtShared*)pArg;
2117 assert( pBt->db );
2118 assert( sqlite3_mutex_held(pBt->db->mutex) );
2119 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2120}
2121
2122/*
drhad3e0102004-09-03 23:32:18 +00002123** Open a database file.
2124**
drh382c0242001-10-06 16:33:02 +00002125** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002126** then an ephemeral database is created. The ephemeral database might
2127** be exclusively in memory, or it might use a disk-based memory cache.
2128** Either way, the ephemeral database will be automatically deleted
2129** when sqlite3BtreeClose() is called.
2130**
drhe53831d2007-08-17 01:14:38 +00002131** If zFilename is ":memory:" then an in-memory database is created
2132** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002133**
drh33f111d2012-01-17 15:29:14 +00002134** The "flags" parameter is a bitmask that might contain bits like
2135** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002136**
drhc47fd8e2009-04-30 13:30:32 +00002137** If the database is already opened in the same database connection
2138** and we are in shared cache mode, then the open will fail with an
2139** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2140** objects in the same database connection since doing so will lead
2141** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002142*/
drh23e11ca2004-05-04 17:27:28 +00002143int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002144 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002145 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002146 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002147 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002148 int flags, /* Options */
2149 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002150){
drh7555d8e2009-03-20 13:15:30 +00002151 BtShared *pBt = 0; /* Shared part of btree structure */
2152 Btree *p; /* Handle to return */
2153 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2154 int rc = SQLITE_OK; /* Result code from this function */
2155 u8 nReserve; /* Byte of unused space on each page */
2156 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002157
drh75c014c2010-08-30 15:02:28 +00002158 /* True if opening an ephemeral, temporary database */
2159 const int isTempDb = zFilename==0 || zFilename[0]==0;
2160
danielk1977aef0bf62005-12-30 16:28:01 +00002161 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002162 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002163 */
drhb0a7c9c2010-12-06 21:09:59 +00002164#ifdef SQLITE_OMIT_MEMORYDB
2165 const int isMemdb = 0;
2166#else
2167 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002168 || (isTempDb && sqlite3TempInMemory(db))
2169 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002170#endif
2171
drhe5fe6902007-12-07 18:55:28 +00002172 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002173 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002174 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002175 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2176
2177 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2178 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2179
2180 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2181 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002182
drh75c014c2010-08-30 15:02:28 +00002183 if( isMemdb ){
2184 flags |= BTREE_MEMORY;
2185 }
2186 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2187 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2188 }
drh17435752007-08-16 04:30:38 +00002189 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002190 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002191 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002192 }
2193 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002194 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002195#ifndef SQLITE_OMIT_SHARED_CACHE
2196 p->lock.pBtree = p;
2197 p->lock.iTable = 1;
2198#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002199
drh198bf392006-01-06 21:52:49 +00002200#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002201 /*
2202 ** If this Btree is a candidate for shared cache, try to find an
2203 ** existing BtShared object that we can share with
2204 */
drh4ab9d252012-05-26 20:08:49 +00002205 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002206 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002207 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002208 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002209 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002210 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002211
drhff0587c2007-08-29 17:43:19 +00002212 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002213 if( !zFullPathname ){
2214 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002215 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002216 }
drhafc8b7f2012-05-26 18:06:38 +00002217 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002218 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002219 }else{
2220 rc = sqlite3OsFullPathname(pVfs, zFilename,
2221 nFullPathname, zFullPathname);
2222 if( rc ){
2223 sqlite3_free(zFullPathname);
2224 sqlite3_free(p);
2225 return rc;
2226 }
drh070ad6b2011-11-17 11:43:19 +00002227 }
drh30ddce62011-10-15 00:16:30 +00002228#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002229 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2230 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002231 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002232 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002233#endif
drh78f82d12008-09-02 00:52:52 +00002234 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002235 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002236 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002237 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002238 int iDb;
2239 for(iDb=db->nDb-1; iDb>=0; iDb--){
2240 Btree *pExisting = db->aDb[iDb].pBt;
2241 if( pExisting && pExisting->pBt==pBt ){
2242 sqlite3_mutex_leave(mutexShared);
2243 sqlite3_mutex_leave(mutexOpen);
2244 sqlite3_free(zFullPathname);
2245 sqlite3_free(p);
2246 return SQLITE_CONSTRAINT;
2247 }
2248 }
drhff0587c2007-08-29 17:43:19 +00002249 p->pBt = pBt;
2250 pBt->nRef++;
2251 break;
2252 }
2253 }
2254 sqlite3_mutex_leave(mutexShared);
2255 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002256 }
drhff0587c2007-08-29 17:43:19 +00002257#ifdef SQLITE_DEBUG
2258 else{
2259 /* In debug mode, we mark all persistent databases as sharable
2260 ** even when they are not. This exercises the locking code and
2261 ** gives more opportunity for asserts(sqlite3_mutex_held())
2262 ** statements to find locking problems.
2263 */
2264 p->sharable = 1;
2265 }
2266#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002267 }
2268#endif
drha059ad02001-04-17 20:09:11 +00002269 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002270 /*
2271 ** The following asserts make sure that structures used by the btree are
2272 ** the right size. This is to guard against size changes that result
2273 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002274 */
drh062cf272015-03-23 19:03:51 +00002275 assert( sizeof(i64)==8 );
2276 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002277 assert( sizeof(u32)==4 );
2278 assert( sizeof(u16)==2 );
2279 assert( sizeof(Pgno)==4 );
2280
2281 pBt = sqlite3MallocZero( sizeof(*pBt) );
2282 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002283 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002284 goto btree_open_out;
2285 }
danielk197771d5d2c2008-09-29 11:49:47 +00002286 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002287 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002288 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002289 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002290 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2291 }
2292 if( rc!=SQLITE_OK ){
2293 goto btree_open_out;
2294 }
shanehbd2aaf92010-09-01 02:38:21 +00002295 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002296 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002297 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002298 p->pBt = pBt;
2299
drhe53831d2007-08-17 01:14:38 +00002300 pBt->pCursor = 0;
2301 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002302 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002303#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002304 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002305#endif
drh113762a2014-11-19 16:36:25 +00002306 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2307 ** determined by the 2-byte integer located at an offset of 16 bytes from
2308 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002309 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002310 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2311 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002312 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002313#ifndef SQLITE_OMIT_AUTOVACUUM
2314 /* If the magic name ":memory:" will create an in-memory database, then
2315 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2316 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2317 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2318 ** regular file-name. In this case the auto-vacuum applies as per normal.
2319 */
2320 if( zFilename && !isMemdb ){
2321 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2322 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2323 }
2324#endif
2325 nReserve = 0;
2326 }else{
drh113762a2014-11-19 16:36:25 +00002327 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2328 ** determined by the one-byte unsigned integer found at an offset of 20
2329 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002330 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002331 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002332#ifndef SQLITE_OMIT_AUTOVACUUM
2333 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2334 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2335#endif
2336 }
drhfa9601a2009-06-18 17:22:39 +00002337 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002338 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002339 pBt->usableSize = pBt->pageSize - nReserve;
2340 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002341
2342#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2343 /* Add the new BtShared object to the linked list sharable BtShareds.
2344 */
dan272989b2016-07-06 10:12:02 +00002345 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002346 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002347 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002348 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002349 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002350 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002351 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002352 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002353 goto btree_open_out;
2354 }
drhff0587c2007-08-29 17:43:19 +00002355 }
drhe53831d2007-08-17 01:14:38 +00002356 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002357 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2358 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002359 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002360 }
drheee46cf2004-11-06 00:02:48 +00002361#endif
drh90f5ecb2004-07-22 01:19:35 +00002362 }
danielk1977aef0bf62005-12-30 16:28:01 +00002363
drhcfed7bc2006-03-13 14:28:05 +00002364#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002365 /* If the new Btree uses a sharable pBtShared, then link the new
2366 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002367 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002368 */
drhe53831d2007-08-17 01:14:38 +00002369 if( p->sharable ){
2370 int i;
2371 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002372 for(i=0; i<db->nDb; i++){
2373 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002374 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002375 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002376 p->pNext = pSib;
2377 p->pPrev = 0;
2378 pSib->pPrev = p;
2379 }else{
drh3bfa7e82016-03-22 14:37:59 +00002380 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002381 pSib = pSib->pNext;
2382 }
2383 p->pNext = pSib->pNext;
2384 p->pPrev = pSib;
2385 if( p->pNext ){
2386 p->pNext->pPrev = p;
2387 }
2388 pSib->pNext = p;
2389 }
2390 break;
2391 }
2392 }
danielk1977aef0bf62005-12-30 16:28:01 +00002393 }
danielk1977aef0bf62005-12-30 16:28:01 +00002394#endif
2395 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002396
2397btree_open_out:
2398 if( rc!=SQLITE_OK ){
2399 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002400 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 }
drh17435752007-08-16 04:30:38 +00002402 sqlite3_free(pBt);
2403 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002404 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002405 }else{
dan0f5a1862016-08-13 14:30:23 +00002406 sqlite3_file *pFile;
2407
drh75c014c2010-08-30 15:02:28 +00002408 /* If the B-Tree was successfully opened, set the pager-cache size to the
2409 ** default value. Except, when opening on an existing shared pager-cache,
2410 ** do not change the pager-cache size.
2411 */
2412 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2413 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2414 }
dan0f5a1862016-08-13 14:30:23 +00002415
2416 pFile = sqlite3PagerFile(pBt->pPager);
2417 if( pFile->pMethods ){
2418 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2419 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002420 }
drh7555d8e2009-03-20 13:15:30 +00002421 if( mutexOpen ){
2422 assert( sqlite3_mutex_held(mutexOpen) );
2423 sqlite3_mutex_leave(mutexOpen);
2424 }
dan272989b2016-07-06 10:12:02 +00002425 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002426 return rc;
drha059ad02001-04-17 20:09:11 +00002427}
2428
2429/*
drhe53831d2007-08-17 01:14:38 +00002430** Decrement the BtShared.nRef counter. When it reaches zero,
2431** remove the BtShared structure from the sharing list. Return
2432** true if the BtShared.nRef counter reaches zero and return
2433** false if it is still positive.
2434*/
2435static int removeFromSharingList(BtShared *pBt){
2436#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002437 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002438 BtShared *pList;
2439 int removed = 0;
2440
drhd677b3d2007-08-20 22:48:41 +00002441 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002442 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002443 sqlite3_mutex_enter(pMaster);
2444 pBt->nRef--;
2445 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002446 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2447 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002448 }else{
drh78f82d12008-09-02 00:52:52 +00002449 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002450 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002451 pList=pList->pNext;
2452 }
drh34004ce2008-07-11 16:15:17 +00002453 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002454 pList->pNext = pBt->pNext;
2455 }
2456 }
drh3285db22007-09-03 22:00:39 +00002457 if( SQLITE_THREADSAFE ){
2458 sqlite3_mutex_free(pBt->mutex);
2459 }
drhe53831d2007-08-17 01:14:38 +00002460 removed = 1;
2461 }
2462 sqlite3_mutex_leave(pMaster);
2463 return removed;
2464#else
2465 return 1;
2466#endif
2467}
2468
2469/*
drhf7141992008-06-19 00:16:08 +00002470** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002471** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2472** pointer.
drhf7141992008-06-19 00:16:08 +00002473*/
2474static void allocateTempSpace(BtShared *pBt){
2475 if( !pBt->pTmpSpace ){
2476 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002477
2478 /* One of the uses of pBt->pTmpSpace is to format cells before
2479 ** inserting them into a leaf page (function fillInCell()). If
2480 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2481 ** by the various routines that manipulate binary cells. Which
2482 ** can mean that fillInCell() only initializes the first 2 or 3
2483 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2484 ** it into a database page. This is not actually a problem, but it
2485 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2486 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002487 ** zero the first 4 bytes of temp space here.
2488 **
2489 ** Also: Provide four bytes of initialized space before the
2490 ** beginning of pTmpSpace as an area available to prepend the
2491 ** left-child pointer to the beginning of a cell.
2492 */
2493 if( pBt->pTmpSpace ){
2494 memset(pBt->pTmpSpace, 0, 8);
2495 pBt->pTmpSpace += 4;
2496 }
drhf7141992008-06-19 00:16:08 +00002497 }
2498}
2499
2500/*
2501** Free the pBt->pTmpSpace allocation
2502*/
2503static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002504 if( pBt->pTmpSpace ){
2505 pBt->pTmpSpace -= 4;
2506 sqlite3PageFree(pBt->pTmpSpace);
2507 pBt->pTmpSpace = 0;
2508 }
drhf7141992008-06-19 00:16:08 +00002509}
2510
2511/*
drha059ad02001-04-17 20:09:11 +00002512** Close an open database and invalidate all cursors.
2513*/
danielk1977aef0bf62005-12-30 16:28:01 +00002514int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002515 BtShared *pBt = p->pBt;
2516 BtCursor *pCur;
2517
danielk1977aef0bf62005-12-30 16:28:01 +00002518 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002519 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002520 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002521 pCur = pBt->pCursor;
2522 while( pCur ){
2523 BtCursor *pTmp = pCur;
2524 pCur = pCur->pNext;
2525 if( pTmp->pBtree==p ){
2526 sqlite3BtreeCloseCursor(pTmp);
2527 }
drha059ad02001-04-17 20:09:11 +00002528 }
danielk1977aef0bf62005-12-30 16:28:01 +00002529
danielk19778d34dfd2006-01-24 16:37:57 +00002530 /* Rollback any active transaction and free the handle structure.
2531 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2532 ** this handle.
2533 */
drh47b7fc72014-11-11 01:33:57 +00002534 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002535 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002536
danielk1977aef0bf62005-12-30 16:28:01 +00002537 /* If there are still other outstanding references to the shared-btree
2538 ** structure, return now. The remainder of this procedure cleans
2539 ** up the shared-btree.
2540 */
drhe53831d2007-08-17 01:14:38 +00002541 assert( p->wantToLock==0 && p->locked==0 );
2542 if( !p->sharable || removeFromSharingList(pBt) ){
2543 /* The pBt is no longer on the sharing list, so we can access
2544 ** it without having to hold the mutex.
2545 **
2546 ** Clean out and delete the BtShared object.
2547 */
2548 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002549 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002550 if( pBt->xFreeSchema && pBt->pSchema ){
2551 pBt->xFreeSchema(pBt->pSchema);
2552 }
drhb9755982010-07-24 16:34:37 +00002553 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002554 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002555 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002556 }
2557
drhe53831d2007-08-17 01:14:38 +00002558#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002559 assert( p->wantToLock==0 );
2560 assert( p->locked==0 );
2561 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2562 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002563#endif
2564
drhe53831d2007-08-17 01:14:38 +00002565 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002566 return SQLITE_OK;
2567}
2568
2569/*
drh9b0cf342015-11-12 14:57:19 +00002570** Change the "soft" limit on the number of pages in the cache.
2571** Unused and unmodified pages will be recycled when the number of
2572** pages in the cache exceeds this soft limit. But the size of the
2573** cache is allowed to grow larger than this limit if it contains
2574** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002575*/
danielk1977aef0bf62005-12-30 16:28:01 +00002576int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2577 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002578 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002579 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002580 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002581 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002582 return SQLITE_OK;
2583}
2584
drh9b0cf342015-11-12 14:57:19 +00002585/*
2586** Change the "spill" limit on the number of pages in the cache.
2587** If the number of pages exceeds this limit during a write transaction,
2588** the pager might attempt to "spill" pages to the journal early in
2589** order to free up memory.
2590**
2591** The value returned is the current spill size. If zero is passed
2592** as an argument, no changes are made to the spill size setting, so
2593** using mxPage of 0 is a way to query the current spill size.
2594*/
2595int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2596 BtShared *pBt = p->pBt;
2597 int res;
2598 assert( sqlite3_mutex_held(p->db->mutex) );
2599 sqlite3BtreeEnter(p);
2600 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2601 sqlite3BtreeLeave(p);
2602 return res;
2603}
2604
drh18c7e402014-03-14 11:46:10 +00002605#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002606/*
dan5d8a1372013-03-19 19:28:06 +00002607** Change the limit on the amount of the database file that may be
2608** memory mapped.
2609*/
drh9b4c59f2013-04-15 17:03:42 +00002610int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002611 BtShared *pBt = p->pBt;
2612 assert( sqlite3_mutex_held(p->db->mutex) );
2613 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002614 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002615 sqlite3BtreeLeave(p);
2616 return SQLITE_OK;
2617}
drh18c7e402014-03-14 11:46:10 +00002618#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002619
2620/*
drh973b6e32003-02-12 14:09:42 +00002621** Change the way data is synced to disk in order to increase or decrease
2622** how well the database resists damage due to OS crashes and power
2623** failures. Level 1 is the same as asynchronous (no syncs() occur and
2624** there is a high probability of damage) Level 2 is the default. There
2625** is a very low but non-zero probability of damage. Level 3 reduces the
2626** probability of damage to near zero but with a write performance reduction.
2627*/
danielk197793758c82005-01-21 08:13:14 +00002628#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002629int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002630 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002631 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002632){
danielk1977aef0bf62005-12-30 16:28:01 +00002633 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002634 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002635 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002636 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002637 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002638 return SQLITE_OK;
2639}
danielk197793758c82005-01-21 08:13:14 +00002640#endif
drh973b6e32003-02-12 14:09:42 +00002641
drh2c8997b2005-08-27 16:36:48 +00002642/*
drh90f5ecb2004-07-22 01:19:35 +00002643** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002644** Or, if the page size has already been fixed, return SQLITE_READONLY
2645** without changing anything.
drh06f50212004-11-02 14:24:33 +00002646**
2647** The page size must be a power of 2 between 512 and 65536. If the page
2648** size supplied does not meet this constraint then the page size is not
2649** changed.
2650**
2651** Page sizes are constrained to be a power of two so that the region
2652** of the database file used for locking (beginning at PENDING_BYTE,
2653** the first byte past the 1GB boundary, 0x40000000) needs to occur
2654** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002655**
2656** If parameter nReserve is less than zero, then the number of reserved
2657** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002658**
drhc9166342012-01-05 23:32:06 +00002659** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002660** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002661*/
drhce4869f2009-04-02 20:16:58 +00002662int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002663 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002664 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002665 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002666 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002667#if SQLITE_HAS_CODEC
2668 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2669#endif
drhc9166342012-01-05 23:32:06 +00002670 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002671 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002672 return SQLITE_READONLY;
2673 }
2674 if( nReserve<0 ){
2675 nReserve = pBt->pageSize - pBt->usableSize;
2676 }
drhf49661a2008-12-10 16:45:50 +00002677 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002678 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2679 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002680 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002681 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002682 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002683 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002684 }
drhfa9601a2009-06-18 17:22:39 +00002685 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002686 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002687 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002688 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002689 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002690}
2691
2692/*
2693** Return the currently defined page size
2694*/
danielk1977aef0bf62005-12-30 16:28:01 +00002695int sqlite3BtreeGetPageSize(Btree *p){
2696 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002697}
drh7f751222009-03-17 22:33:00 +00002698
dan0094f372012-09-28 20:23:42 +00002699/*
2700** This function is similar to sqlite3BtreeGetReserve(), except that it
2701** may only be called if it is guaranteed that the b-tree mutex is already
2702** held.
2703**
2704** This is useful in one special case in the backup API code where it is
2705** known that the shared b-tree mutex is held, but the mutex on the
2706** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2707** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002708** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002709*/
2710int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002711 int n;
dan0094f372012-09-28 20:23:42 +00002712 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002713 n = p->pBt->pageSize - p->pBt->usableSize;
2714 return n;
dan0094f372012-09-28 20:23:42 +00002715}
2716
drh7f751222009-03-17 22:33:00 +00002717/*
2718** Return the number of bytes of space at the end of every page that
2719** are intentually left unused. This is the "reserved" space that is
2720** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002721**
2722** If SQLITE_HAS_MUTEX is defined then the number returned is the
2723** greater of the current reserved space and the maximum requested
2724** reserve space.
drh7f751222009-03-17 22:33:00 +00002725*/
drhad0961b2015-02-21 00:19:25 +00002726int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002727 int n;
2728 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002729 n = sqlite3BtreeGetReserveNoMutex(p);
2730#ifdef SQLITE_HAS_CODEC
2731 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2732#endif
drhd677b3d2007-08-20 22:48:41 +00002733 sqlite3BtreeLeave(p);
2734 return n;
drh2011d5f2004-07-22 02:40:37 +00002735}
drhf8e632b2007-05-08 14:51:36 +00002736
drhad0961b2015-02-21 00:19:25 +00002737
drhf8e632b2007-05-08 14:51:36 +00002738/*
2739** Set the maximum page count for a database if mxPage is positive.
2740** No changes are made if mxPage is 0 or negative.
2741** Regardless of the value of mxPage, return the maximum page count.
2742*/
2743int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002744 int n;
2745 sqlite3BtreeEnter(p);
2746 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2747 sqlite3BtreeLeave(p);
2748 return n;
drhf8e632b2007-05-08 14:51:36 +00002749}
drh5b47efa2010-02-12 18:18:39 +00002750
2751/*
drhc9166342012-01-05 23:32:06 +00002752** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2753** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002754** setting after the change.
2755*/
2756int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2757 int b;
drhaf034ed2010-02-12 19:46:26 +00002758 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002759 sqlite3BtreeEnter(p);
2760 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002761 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2762 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002763 }
drhc9166342012-01-05 23:32:06 +00002764 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002765 sqlite3BtreeLeave(p);
2766 return b;
2767}
drh90f5ecb2004-07-22 01:19:35 +00002768
2769/*
danielk1977951af802004-11-05 15:45:09 +00002770** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2771** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2772** is disabled. The default value for the auto-vacuum property is
2773** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2774*/
danielk1977aef0bf62005-12-30 16:28:01 +00002775int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002776#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002777 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002778#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002779 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002780 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002781 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002782
2783 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002784 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002785 rc = SQLITE_READONLY;
2786 }else{
drh076d4662009-02-18 20:31:18 +00002787 pBt->autoVacuum = av ?1:0;
2788 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002789 }
drhd677b3d2007-08-20 22:48:41 +00002790 sqlite3BtreeLeave(p);
2791 return rc;
danielk1977951af802004-11-05 15:45:09 +00002792#endif
2793}
2794
2795/*
2796** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2797** enabled 1 is returned. Otherwise 0.
2798*/
danielk1977aef0bf62005-12-30 16:28:01 +00002799int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002800#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002801 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002802#else
drhd677b3d2007-08-20 22:48:41 +00002803 int rc;
2804 sqlite3BtreeEnter(p);
2805 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002806 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2807 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2808 BTREE_AUTOVACUUM_INCR
2809 );
drhd677b3d2007-08-20 22:48:41 +00002810 sqlite3BtreeLeave(p);
2811 return rc;
danielk1977951af802004-11-05 15:45:09 +00002812#endif
2813}
2814
2815
2816/*
drha34b6762004-05-07 13:30:42 +00002817** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002818** also acquire a readlock on that file.
2819**
2820** SQLITE_OK is returned on success. If the file is not a
2821** well-formed database file, then SQLITE_CORRUPT is returned.
2822** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002823** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002824*/
danielk1977aef0bf62005-12-30 16:28:01 +00002825static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002826 int rc; /* Result code from subfunctions */
2827 MemPage *pPage1; /* Page 1 of the database file */
2828 int nPage; /* Number of pages in the database */
2829 int nPageFile = 0; /* Number of pages in the database file */
2830 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002831
drh1fee73e2007-08-29 04:00:57 +00002832 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002833 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002834 rc = sqlite3PagerSharedLock(pBt->pPager);
2835 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002836 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002837 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002838
2839 /* Do some checking to help insure the file we opened really is
2840 ** a valid database file.
2841 */
drhc2a4bab2010-04-02 12:46:45 +00002842 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002843 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002844 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002845 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002846 }
2847 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002848 u32 pageSize;
2849 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002850 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002851 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002852 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2853 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2854 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002855 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002856 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002857 }
dan5cf53532010-05-01 16:40:20 +00002858
2859#ifdef SQLITE_OMIT_WAL
2860 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002861 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002862 }
2863 if( page1[19]>1 ){
2864 goto page1_init_failed;
2865 }
2866#else
dane04dc882010-04-20 18:53:15 +00002867 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002868 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002869 }
dane04dc882010-04-20 18:53:15 +00002870 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002871 goto page1_init_failed;
2872 }
drhe5ae5732008-06-15 02:51:47 +00002873
dana470aeb2010-04-21 11:43:38 +00002874 /* If the write version is set to 2, this database should be accessed
2875 ** in WAL mode. If the log is not already open, open it now. Then
2876 ** return SQLITE_OK and return without populating BtShared.pPage1.
2877 ** The caller detects this and calls this function again. This is
2878 ** required as the version of page 1 currently in the page1 buffer
2879 ** may not be the latest version - there may be a newer one in the log
2880 ** file.
2881 */
drhc9166342012-01-05 23:32:06 +00002882 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002883 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002884 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002885 if( rc!=SQLITE_OK ){
2886 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002887 }else{
2888#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2889 sqlite3 *db;
2890 Db *pDb;
2891 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2892 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2893 if( pDb->bSyncSet==0
drhc2ae2072016-03-08 15:30:01 +00002894 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
drhe243de52016-03-08 15:14:26 +00002895 ){
drhc2ae2072016-03-08 15:30:01 +00002896 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
drhe243de52016-03-08 15:14:26 +00002897 sqlite3PagerSetFlags(pBt->pPager,
2898 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2899 }
2900 }
2901#endif
2902 if( isOpen==0 ){
2903 releasePage(pPage1);
2904 return SQLITE_OK;
2905 }
dane04dc882010-04-20 18:53:15 +00002906 }
dan8b5444b2010-04-27 14:37:47 +00002907 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002908 }
dan5cf53532010-05-01 16:40:20 +00002909#endif
dane04dc882010-04-20 18:53:15 +00002910
drh113762a2014-11-19 16:36:25 +00002911 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2912 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2913 **
drhe5ae5732008-06-15 02:51:47 +00002914 ** The original design allowed these amounts to vary, but as of
2915 ** version 3.6.0, we require them to be fixed.
2916 */
2917 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2918 goto page1_init_failed;
2919 }
drh113762a2014-11-19 16:36:25 +00002920 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2921 ** determined by the 2-byte integer located at an offset of 16 bytes from
2922 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002923 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002924 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2925 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002926 if( ((pageSize-1)&pageSize)!=0
2927 || pageSize>SQLITE_MAX_PAGE_SIZE
2928 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002929 ){
drh07d183d2005-05-01 22:52:42 +00002930 goto page1_init_failed;
2931 }
2932 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002933 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2934 ** integer at offset 20 is the number of bytes of space at the end of
2935 ** each page to reserve for extensions.
2936 **
2937 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2938 ** determined by the one-byte unsigned integer found at an offset of 20
2939 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002940 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002941 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002942 /* After reading the first page of the database assuming a page size
2943 ** of BtShared.pageSize, we have discovered that the page-size is
2944 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2945 ** zero and return SQLITE_OK. The caller will call this function
2946 ** again with the correct page-size.
2947 */
2948 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002949 pBt->usableSize = usableSize;
2950 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002951 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002952 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2953 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002954 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002955 }
danecac6702011-02-09 18:19:20 +00002956 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002957 rc = SQLITE_CORRUPT_BKPT;
2958 goto page1_init_failed;
2959 }
drh113762a2014-11-19 16:36:25 +00002960 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2961 ** be less than 480. In other words, if the page size is 512, then the
2962 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002963 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002964 goto page1_init_failed;
2965 }
drh43b18e12010-08-17 19:40:08 +00002966 pBt->pageSize = pageSize;
2967 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002968#ifndef SQLITE_OMIT_AUTOVACUUM
2969 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002970 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002971#endif
drh306dc212001-05-21 13:45:10 +00002972 }
drhb6f41482004-05-14 01:58:11 +00002973
2974 /* maxLocal is the maximum amount of payload to store locally for
2975 ** a cell. Make sure it is small enough so that at least minFanout
2976 ** cells can will fit on one page. We assume a 10-byte page header.
2977 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002978 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002979 ** 4-byte child pointer
2980 ** 9-byte nKey value
2981 ** 4-byte nData value
2982 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002983 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002984 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2985 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002986 */
shaneh1df2db72010-08-18 02:28:48 +00002987 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2988 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2989 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2990 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002991 if( pBt->maxLocal>127 ){
2992 pBt->max1bytePayload = 127;
2993 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002994 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002995 }
drh2e38c322004-09-03 18:38:44 +00002996 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002997 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002998 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002999 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003000
drh72f82862001-05-24 21:06:34 +00003001page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003002 releasePage(pPage1);
3003 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003004 return rc;
drh306dc212001-05-21 13:45:10 +00003005}
3006
drh85ec3b62013-05-14 23:12:06 +00003007#ifndef NDEBUG
3008/*
3009** Return the number of cursors open on pBt. This is for use
3010** in assert() expressions, so it is only compiled if NDEBUG is not
3011** defined.
3012**
3013** Only write cursors are counted if wrOnly is true. If wrOnly is
3014** false then all cursors are counted.
3015**
3016** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003017** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003018** have been tripped into the CURSOR_FAULT state are not counted.
3019*/
3020static int countValidCursors(BtShared *pBt, int wrOnly){
3021 BtCursor *pCur;
3022 int r = 0;
3023 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003024 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3025 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003026 }
3027 return r;
3028}
3029#endif
3030
drh306dc212001-05-21 13:45:10 +00003031/*
drhb8ca3072001-12-05 00:21:20 +00003032** If there are no outstanding cursors and we are not in the middle
3033** of a transaction but there is a read lock on the database, then
3034** this routine unrefs the first page of the database file which
3035** has the effect of releasing the read lock.
3036**
drhb8ca3072001-12-05 00:21:20 +00003037** If there is a transaction in progress, this routine is a no-op.
3038*/
danielk1977aef0bf62005-12-30 16:28:01 +00003039static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003040 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003041 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003042 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003043 MemPage *pPage1 = pBt->pPage1;
3044 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003045 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003046 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003047 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003048 }
3049}
3050
3051/*
drhe39f2f92009-07-23 01:43:59 +00003052** If pBt points to an empty file then convert that empty file
3053** into a new empty database by initializing the first page of
3054** the database.
drh8b2f49b2001-06-08 00:21:52 +00003055*/
danielk1977aef0bf62005-12-30 16:28:01 +00003056static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003057 MemPage *pP1;
3058 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003059 int rc;
drhd677b3d2007-08-20 22:48:41 +00003060
drh1fee73e2007-08-29 04:00:57 +00003061 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003062 if( pBt->nPage>0 ){
3063 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003064 }
drh3aac2dd2004-04-26 14:10:20 +00003065 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003066 assert( pP1!=0 );
3067 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003068 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003069 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003070 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3071 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003072 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3073 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003074 data[18] = 1;
3075 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003076 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3077 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003078 data[21] = 64;
3079 data[22] = 32;
3080 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003081 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003082 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003083 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003084#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003085 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003086 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003087 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003088 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003089#endif
drhdd3cd972010-03-27 17:12:36 +00003090 pBt->nPage = 1;
3091 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003092 return SQLITE_OK;
3093}
3094
3095/*
danb483eba2012-10-13 19:58:11 +00003096** Initialize the first page of the database file (creating a database
3097** consisting of a single page and no schema objects). Return SQLITE_OK
3098** if successful, or an SQLite error code otherwise.
3099*/
3100int sqlite3BtreeNewDb(Btree *p){
3101 int rc;
3102 sqlite3BtreeEnter(p);
3103 p->pBt->nPage = 0;
3104 rc = newDatabase(p->pBt);
3105 sqlite3BtreeLeave(p);
3106 return rc;
3107}
3108
3109/*
danielk1977ee5741e2004-05-31 10:01:34 +00003110** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003111** is started if the second argument is nonzero, otherwise a read-
3112** transaction. If the second argument is 2 or more and exclusive
3113** transaction is started, meaning that no other process is allowed
3114** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003115** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003116** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003117**
danielk1977ee5741e2004-05-31 10:01:34 +00003118** A write-transaction must be started before attempting any
3119** changes to the database. None of the following routines
3120** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003121**
drh23e11ca2004-05-04 17:27:28 +00003122** sqlite3BtreeCreateTable()
3123** sqlite3BtreeCreateIndex()
3124** sqlite3BtreeClearTable()
3125** sqlite3BtreeDropTable()
3126** sqlite3BtreeInsert()
3127** sqlite3BtreeDelete()
3128** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003129**
drhb8ef32c2005-03-14 02:01:49 +00003130** If an initial attempt to acquire the lock fails because of lock contention
3131** and the database was previously unlocked, then invoke the busy handler
3132** if there is one. But if there was previously a read-lock, do not
3133** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3134** returned when there is already a read-lock in order to avoid a deadlock.
3135**
3136** Suppose there are two processes A and B. A has a read lock and B has
3137** a reserved lock. B tries to promote to exclusive but is blocked because
3138** of A's read lock. A tries to promote to reserved but is blocked by B.
3139** One or the other of the two processes must give way or there can be
3140** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3141** when A already has a read lock, we encourage A to give up and let B
3142** proceed.
drha059ad02001-04-17 20:09:11 +00003143*/
danielk1977aef0bf62005-12-30 16:28:01 +00003144int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3145 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003146 int rc = SQLITE_OK;
3147
drhd677b3d2007-08-20 22:48:41 +00003148 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003149 btreeIntegrity(p);
3150
danielk1977ee5741e2004-05-31 10:01:34 +00003151 /* If the btree is already in a write-transaction, or it
3152 ** is already in a read-transaction and a read-transaction
3153 ** is requested, this is a no-op.
3154 */
danielk1977aef0bf62005-12-30 16:28:01 +00003155 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003156 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003157 }
dan56c517a2013-09-26 11:04:33 +00003158 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003159
3160 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003161 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003162 rc = SQLITE_READONLY;
3163 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003164 }
3165
danielk1977404ca072009-03-16 13:19:36 +00003166#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003167 {
3168 sqlite3 *pBlock = 0;
3169 /* If another database handle has already opened a write transaction
3170 ** on this shared-btree structure and a second write transaction is
3171 ** requested, return SQLITE_LOCKED.
3172 */
3173 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3174 || (pBt->btsFlags & BTS_PENDING)!=0
3175 ){
3176 pBlock = pBt->pWriter->db;
3177 }else if( wrflag>1 ){
3178 BtLock *pIter;
3179 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3180 if( pIter->pBtree!=p ){
3181 pBlock = pIter->pBtree->db;
3182 break;
3183 }
danielk1977641b0f42007-12-21 04:47:25 +00003184 }
3185 }
drh5a1fb182016-01-08 19:34:39 +00003186 if( pBlock ){
3187 sqlite3ConnectionBlocked(p->db, pBlock);
3188 rc = SQLITE_LOCKED_SHAREDCACHE;
3189 goto trans_begun;
3190 }
danielk1977404ca072009-03-16 13:19:36 +00003191 }
danielk1977641b0f42007-12-21 04:47:25 +00003192#endif
3193
danielk1977602b4662009-07-02 07:47:33 +00003194 /* Any read-only or read-write transaction implies a read-lock on
3195 ** page 1. So if some other shared-cache client already has a write-lock
3196 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003197 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3198 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003199
drhc9166342012-01-05 23:32:06 +00003200 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3201 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003202 do {
danielk1977295dc102009-04-01 19:07:03 +00003203 /* Call lockBtree() until either pBt->pPage1 is populated or
3204 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3205 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3206 ** reading page 1 it discovers that the page-size of the database
3207 ** file is not pBt->pageSize. In this case lockBtree() will update
3208 ** pBt->pageSize to the page-size of the file on disk.
3209 */
3210 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003211
drhb8ef32c2005-03-14 02:01:49 +00003212 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003213 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003214 rc = SQLITE_READONLY;
3215 }else{
danielk1977d8293352009-04-30 09:10:37 +00003216 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003217 if( rc==SQLITE_OK ){
3218 rc = newDatabase(pBt);
3219 }
drhb8ef32c2005-03-14 02:01:49 +00003220 }
3221 }
3222
danielk1977bd434552009-03-18 10:33:00 +00003223 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003224 unlockBtreeIfUnused(pBt);
3225 }
danf9b76712010-06-01 14:12:45 +00003226 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003227 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003228
3229 if( rc==SQLITE_OK ){
3230 if( p->inTrans==TRANS_NONE ){
3231 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003232#ifndef SQLITE_OMIT_SHARED_CACHE
3233 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003234 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003235 p->lock.eLock = READ_LOCK;
3236 p->lock.pNext = pBt->pLock;
3237 pBt->pLock = &p->lock;
3238 }
3239#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003240 }
3241 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3242 if( p->inTrans>pBt->inTransaction ){
3243 pBt->inTransaction = p->inTrans;
3244 }
danielk1977404ca072009-03-16 13:19:36 +00003245 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003246 MemPage *pPage1 = pBt->pPage1;
3247#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003248 assert( !pBt->pWriter );
3249 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003250 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3251 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003252#endif
dan59257dc2010-08-04 11:34:31 +00003253
3254 /* If the db-size header field is incorrect (as it may be if an old
3255 ** client has been writing the database file), update it now. Doing
3256 ** this sooner rather than later means the database size can safely
3257 ** re-read the database size from page 1 if a savepoint or transaction
3258 ** rollback occurs within the transaction.
3259 */
3260 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3261 rc = sqlite3PagerWrite(pPage1->pDbPage);
3262 if( rc==SQLITE_OK ){
3263 put4byte(&pPage1->aData[28], pBt->nPage);
3264 }
3265 }
3266 }
danielk1977aef0bf62005-12-30 16:28:01 +00003267 }
3268
drhd677b3d2007-08-20 22:48:41 +00003269
3270trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003271 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003272 /* This call makes sure that the pager has the correct number of
3273 ** open savepoints. If the second parameter is greater than 0 and
3274 ** the sub-journal is not already open, then it will be opened here.
3275 */
danielk1977fd7f0452008-12-17 17:30:26 +00003276 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3277 }
danielk197712dd5492008-12-18 15:45:07 +00003278
danielk1977aef0bf62005-12-30 16:28:01 +00003279 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003280 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003281 return rc;
drha059ad02001-04-17 20:09:11 +00003282}
3283
danielk1977687566d2004-11-02 12:56:41 +00003284#ifndef SQLITE_OMIT_AUTOVACUUM
3285
3286/*
3287** Set the pointer-map entries for all children of page pPage. Also, if
3288** pPage contains cells that point to overflow pages, set the pointer
3289** map entries for the overflow pages as well.
3290*/
3291static int setChildPtrmaps(MemPage *pPage){
3292 int i; /* Counter variable */
3293 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003294 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003295 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003296 Pgno pgno = pPage->pgno;
3297
drh1fee73e2007-08-29 04:00:57 +00003298 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003299 rc = btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003300 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003301 nCell = pPage->nCell;
3302
3303 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003304 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003305
drh98add2e2009-07-20 17:11:49 +00003306 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003307
danielk1977687566d2004-11-02 12:56:41 +00003308 if( !pPage->leaf ){
3309 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003310 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003311 }
3312 }
3313
3314 if( !pPage->leaf ){
3315 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003316 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003317 }
3318
danielk1977687566d2004-11-02 12:56:41 +00003319 return rc;
3320}
3321
3322/*
drhf3aed592009-07-08 18:12:49 +00003323** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3324** that it points to iTo. Parameter eType describes the type of pointer to
3325** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003326**
3327** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3328** page of pPage.
3329**
3330** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3331** page pointed to by one of the cells on pPage.
3332**
3333** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3334** overflow page in the list.
3335*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003336static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003337 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003338 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003339 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003340 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003341 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003342 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003343 }
danielk1977f78fc082004-11-02 14:40:32 +00003344 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003345 }else{
danielk1977687566d2004-11-02 12:56:41 +00003346 int i;
3347 int nCell;
drha1f75d92015-05-24 10:18:12 +00003348 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003349
drha1f75d92015-05-24 10:18:12 +00003350 rc = btreeInitPage(pPage);
3351 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003352 nCell = pPage->nCell;
3353
danielk1977687566d2004-11-02 12:56:41 +00003354 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003355 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003356 if( eType==PTRMAP_OVERFLOW1 ){
3357 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003358 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003359 if( info.nLocal<info.nPayload ){
3360 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3361 return SQLITE_CORRUPT_BKPT;
3362 }
3363 if( iFrom==get4byte(pCell+info.nSize-4) ){
3364 put4byte(pCell+info.nSize-4, iTo);
3365 break;
3366 }
danielk1977687566d2004-11-02 12:56:41 +00003367 }
3368 }else{
3369 if( get4byte(pCell)==iFrom ){
3370 put4byte(pCell, iTo);
3371 break;
3372 }
3373 }
3374 }
3375
3376 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003377 if( eType!=PTRMAP_BTREE ||
3378 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003379 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003380 }
danielk1977687566d2004-11-02 12:56:41 +00003381 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3382 }
danielk1977687566d2004-11-02 12:56:41 +00003383 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003384 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003385}
3386
danielk1977003ba062004-11-04 02:57:33 +00003387
danielk19777701e812005-01-10 12:59:51 +00003388/*
3389** Move the open database page pDbPage to location iFreePage in the
3390** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003391**
3392** The isCommit flag indicates that there is no need to remember that
3393** the journal needs to be sync()ed before database page pDbPage->pgno
3394** can be written to. The caller has already promised not to write to that
3395** page.
danielk19777701e812005-01-10 12:59:51 +00003396*/
danielk1977003ba062004-11-04 02:57:33 +00003397static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003398 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003399 MemPage *pDbPage, /* Open page to move */
3400 u8 eType, /* Pointer map 'type' entry for pDbPage */
3401 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003402 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003403 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003404){
3405 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3406 Pgno iDbPage = pDbPage->pgno;
3407 Pager *pPager = pBt->pPager;
3408 int rc;
3409
danielk1977a0bf2652004-11-04 14:30:04 +00003410 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3411 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003412 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003413 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003414
drh85b623f2007-12-13 21:54:09 +00003415 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003416 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3417 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003418 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003419 if( rc!=SQLITE_OK ){
3420 return rc;
3421 }
3422 pDbPage->pgno = iFreePage;
3423
3424 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3425 ** that point to overflow pages. The pointer map entries for all these
3426 ** pages need to be changed.
3427 **
3428 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3429 ** pointer to a subsequent overflow page. If this is the case, then
3430 ** the pointer map needs to be updated for the subsequent overflow page.
3431 */
danielk1977a0bf2652004-11-04 14:30:04 +00003432 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003433 rc = setChildPtrmaps(pDbPage);
3434 if( rc!=SQLITE_OK ){
3435 return rc;
3436 }
3437 }else{
3438 Pgno nextOvfl = get4byte(pDbPage->aData);
3439 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003440 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003441 if( rc!=SQLITE_OK ){
3442 return rc;
3443 }
3444 }
3445 }
3446
3447 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3448 ** that it points at iFreePage. Also fix the pointer map entry for
3449 ** iPtrPage.
3450 */
danielk1977a0bf2652004-11-04 14:30:04 +00003451 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003452 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003453 if( rc!=SQLITE_OK ){
3454 return rc;
3455 }
danielk19773b8a05f2007-03-19 17:44:26 +00003456 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003457 if( rc!=SQLITE_OK ){
3458 releasePage(pPtrPage);
3459 return rc;
3460 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003461 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003462 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003463 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003464 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003465 }
danielk1977003ba062004-11-04 02:57:33 +00003466 }
danielk1977003ba062004-11-04 02:57:33 +00003467 return rc;
3468}
3469
danielk1977dddbcdc2007-04-26 14:42:34 +00003470/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003471static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003472
3473/*
dan51f0b6d2013-02-22 20:16:34 +00003474** Perform a single step of an incremental-vacuum. If successful, return
3475** SQLITE_OK. If there is no work to do (and therefore no point in
3476** calling this function again), return SQLITE_DONE. Or, if an error
3477** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003478**
peter.d.reid60ec9142014-09-06 16:39:46 +00003479** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003480** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003481**
dan51f0b6d2013-02-22 20:16:34 +00003482** Parameter nFin is the number of pages that this database would contain
3483** were this function called until it returns SQLITE_DONE.
3484**
3485** If the bCommit parameter is non-zero, this function assumes that the
3486** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003487** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003488** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003489*/
dan51f0b6d2013-02-22 20:16:34 +00003490static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003491 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003492 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003493
drh1fee73e2007-08-29 04:00:57 +00003494 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003495 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003496
3497 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003498 u8 eType;
3499 Pgno iPtrPage;
3500
3501 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003502 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003503 return SQLITE_DONE;
3504 }
3505
3506 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3507 if( rc!=SQLITE_OK ){
3508 return rc;
3509 }
3510 if( eType==PTRMAP_ROOTPAGE ){
3511 return SQLITE_CORRUPT_BKPT;
3512 }
3513
3514 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003515 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003516 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003517 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003518 ** truncated to zero after this function returns, so it doesn't
3519 ** matter if it still contains some garbage entries.
3520 */
3521 Pgno iFreePg;
3522 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003523 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003524 if( rc!=SQLITE_OK ){
3525 return rc;
3526 }
3527 assert( iFreePg==iLastPg );
3528 releasePage(pFreePg);
3529 }
3530 } else {
3531 Pgno iFreePg; /* Index of free page to move pLastPg to */
3532 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003533 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3534 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003535
drhb00fc3b2013-08-21 23:42:32 +00003536 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003537 if( rc!=SQLITE_OK ){
3538 return rc;
3539 }
3540
dan51f0b6d2013-02-22 20:16:34 +00003541 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003542 ** is swapped with the first free page pulled off the free list.
3543 **
dan51f0b6d2013-02-22 20:16:34 +00003544 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003545 ** looping until a free-page located within the first nFin pages
3546 ** of the file is found.
3547 */
dan51f0b6d2013-02-22 20:16:34 +00003548 if( bCommit==0 ){
3549 eMode = BTALLOC_LE;
3550 iNear = nFin;
3551 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003552 do {
3553 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003554 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003555 if( rc!=SQLITE_OK ){
3556 releasePage(pLastPg);
3557 return rc;
3558 }
3559 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003560 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003561 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003562
dane1df4e32013-03-05 11:27:04 +00003563 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003564 releasePage(pLastPg);
3565 if( rc!=SQLITE_OK ){
3566 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003567 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003568 }
3569 }
3570
dan51f0b6d2013-02-22 20:16:34 +00003571 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003572 do {
danielk19773460d192008-12-27 15:23:13 +00003573 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003574 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3575 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003576 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003577 }
3578 return SQLITE_OK;
3579}
3580
3581/*
dan51f0b6d2013-02-22 20:16:34 +00003582** The database opened by the first argument is an auto-vacuum database
3583** nOrig pages in size containing nFree free pages. Return the expected
3584** size of the database in pages following an auto-vacuum operation.
3585*/
3586static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3587 int nEntry; /* Number of entries on one ptrmap page */
3588 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3589 Pgno nFin; /* Return value */
3590
3591 nEntry = pBt->usableSize/5;
3592 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3593 nFin = nOrig - nFree - nPtrmap;
3594 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3595 nFin--;
3596 }
3597 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3598 nFin--;
3599 }
dan51f0b6d2013-02-22 20:16:34 +00003600
3601 return nFin;
3602}
3603
3604/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003605** A write-transaction must be opened before calling this function.
3606** It performs a single unit of work towards an incremental vacuum.
3607**
3608** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003609** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003610** SQLITE_OK is returned. Otherwise an SQLite error code.
3611*/
3612int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003613 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003614 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003615
3616 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003617 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3618 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003619 rc = SQLITE_DONE;
3620 }else{
dan51f0b6d2013-02-22 20:16:34 +00003621 Pgno nOrig = btreePagecount(pBt);
3622 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3623 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3624
dan91384712013-02-24 11:50:43 +00003625 if( nOrig<nFin ){
3626 rc = SQLITE_CORRUPT_BKPT;
3627 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003628 rc = saveAllCursors(pBt, 0, 0);
3629 if( rc==SQLITE_OK ){
3630 invalidateAllOverflowCache(pBt);
3631 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3632 }
dan51f0b6d2013-02-22 20:16:34 +00003633 if( rc==SQLITE_OK ){
3634 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3635 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3636 }
3637 }else{
3638 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003639 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 }
drhd677b3d2007-08-20 22:48:41 +00003641 sqlite3BtreeLeave(p);
3642 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003643}
3644
3645/*
danielk19773b8a05f2007-03-19 17:44:26 +00003646** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003647** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003648**
3649** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3650** the database file should be truncated to during the commit process.
3651** i.e. the database has been reorganized so that only the first *pnTrunc
3652** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003653*/
danielk19773460d192008-12-27 15:23:13 +00003654static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003655 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003656 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003657 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003658
drh1fee73e2007-08-29 04:00:57 +00003659 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003660 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003661 assert(pBt->autoVacuum);
3662 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003663 Pgno nFin; /* Number of pages in database after autovacuuming */
3664 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003665 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003666 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003667
drhb1299152010-03-30 22:58:33 +00003668 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003669 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3670 /* It is not possible to create a database for which the final page
3671 ** is either a pointer-map page or the pending-byte page. If one
3672 ** is encountered, this indicates corruption.
3673 */
danielk19773460d192008-12-27 15:23:13 +00003674 return SQLITE_CORRUPT_BKPT;
3675 }
danielk1977ef165ce2009-04-06 17:50:03 +00003676
danielk19773460d192008-12-27 15:23:13 +00003677 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003678 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003679 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003680 if( nFin<nOrig ){
3681 rc = saveAllCursors(pBt, 0, 0);
3682 }
danielk19773460d192008-12-27 15:23:13 +00003683 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003684 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003685 }
danielk19773460d192008-12-27 15:23:13 +00003686 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003687 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3688 put4byte(&pBt->pPage1->aData[32], 0);
3689 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003690 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003691 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003692 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003693 }
3694 if( rc!=SQLITE_OK ){
3695 sqlite3PagerRollback(pPager);
3696 }
danielk1977687566d2004-11-02 12:56:41 +00003697 }
3698
dan0aed84d2013-03-26 14:16:20 +00003699 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003700 return rc;
3701}
danielk1977dddbcdc2007-04-26 14:42:34 +00003702
danielk1977a50d9aa2009-06-08 14:49:45 +00003703#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3704# define setChildPtrmaps(x) SQLITE_OK
3705#endif
danielk1977687566d2004-11-02 12:56:41 +00003706
3707/*
drh80e35f42007-03-30 14:06:34 +00003708** This routine does the first phase of a two-phase commit. This routine
3709** causes a rollback journal to be created (if it does not already exist)
3710** and populated with enough information so that if a power loss occurs
3711** the database can be restored to its original state by playing back
3712** the journal. Then the contents of the journal are flushed out to
3713** the disk. After the journal is safely on oxide, the changes to the
3714** database are written into the database file and flushed to oxide.
3715** At the end of this call, the rollback journal still exists on the
3716** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003717** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003718** commit process.
3719**
3720** This call is a no-op if no write-transaction is currently active on pBt.
3721**
3722** Otherwise, sync the database file for the btree pBt. zMaster points to
3723** the name of a master journal file that should be written into the
3724** individual journal file, or is NULL, indicating no master journal file
3725** (single database transaction).
3726**
3727** When this is called, the master journal should already have been
3728** created, populated with this journal pointer and synced to disk.
3729**
3730** Once this is routine has returned, the only thing required to commit
3731** the write-transaction for this database file is to delete the journal.
3732*/
3733int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3734 int rc = SQLITE_OK;
3735 if( p->inTrans==TRANS_WRITE ){
3736 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003737 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003738#ifndef SQLITE_OMIT_AUTOVACUUM
3739 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003740 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003741 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003742 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003743 return rc;
3744 }
3745 }
danbc1a3c62013-02-23 16:40:46 +00003746 if( pBt->bDoTruncate ){
3747 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3748 }
drh80e35f42007-03-30 14:06:34 +00003749#endif
drh49b9d332009-01-02 18:10:42 +00003750 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003751 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003752 }
3753 return rc;
3754}
3755
3756/*
danielk197794b30732009-07-02 17:21:57 +00003757** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3758** at the conclusion of a transaction.
3759*/
3760static void btreeEndTransaction(Btree *p){
3761 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003762 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003763 assert( sqlite3BtreeHoldsMutex(p) );
3764
danbc1a3c62013-02-23 16:40:46 +00003765#ifndef SQLITE_OMIT_AUTOVACUUM
3766 pBt->bDoTruncate = 0;
3767#endif
danc0537fe2013-06-28 19:41:43 +00003768 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003769 /* If there are other active statements that belong to this database
3770 ** handle, downgrade to a read-only transaction. The other statements
3771 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003772 downgradeAllSharedCacheTableLocks(p);
3773 p->inTrans = TRANS_READ;
3774 }else{
3775 /* If the handle had any kind of transaction open, decrement the
3776 ** transaction count of the shared btree. If the transaction count
3777 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3778 ** call below will unlock the pager. */
3779 if( p->inTrans!=TRANS_NONE ){
3780 clearAllSharedCacheTableLocks(p);
3781 pBt->nTransaction--;
3782 if( 0==pBt->nTransaction ){
3783 pBt->inTransaction = TRANS_NONE;
3784 }
3785 }
3786
3787 /* Set the current transaction state to TRANS_NONE and unlock the
3788 ** pager if this call closed the only read or write transaction. */
3789 p->inTrans = TRANS_NONE;
3790 unlockBtreeIfUnused(pBt);
3791 }
3792
3793 btreeIntegrity(p);
3794}
3795
3796/*
drh2aa679f2001-06-25 02:11:07 +00003797** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003798**
drh6e345992007-03-30 11:12:08 +00003799** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003800** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3801** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3802** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003803** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003804** routine has to do is delete or truncate or zero the header in the
3805** the rollback journal (which causes the transaction to commit) and
3806** drop locks.
drh6e345992007-03-30 11:12:08 +00003807**
dan60939d02011-03-29 15:40:55 +00003808** Normally, if an error occurs while the pager layer is attempting to
3809** finalize the underlying journal file, this function returns an error and
3810** the upper layer will attempt a rollback. However, if the second argument
3811** is non-zero then this b-tree transaction is part of a multi-file
3812** transaction. In this case, the transaction has already been committed
3813** (by deleting a master journal file) and the caller will ignore this
3814** functions return code. So, even if an error occurs in the pager layer,
3815** reset the b-tree objects internal state to indicate that the write
3816** transaction has been closed. This is quite safe, as the pager will have
3817** transitioned to the error state.
3818**
drh5e00f6c2001-09-13 13:46:56 +00003819** This will release the write lock on the database file. If there
3820** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003821*/
dan60939d02011-03-29 15:40:55 +00003822int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003823
drh075ed302010-10-14 01:17:30 +00003824 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003825 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003826 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003827
3828 /* If the handle has a write-transaction open, commit the shared-btrees
3829 ** transaction and set the shared state to TRANS_READ.
3830 */
3831 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003832 int rc;
drh075ed302010-10-14 01:17:30 +00003833 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003834 assert( pBt->inTransaction==TRANS_WRITE );
3835 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003836 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003837 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003838 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003839 return rc;
3840 }
drh3da9c042014-12-22 18:41:21 +00003841 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003842 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003843 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003844 }
danielk1977aef0bf62005-12-30 16:28:01 +00003845
danielk197794b30732009-07-02 17:21:57 +00003846 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003847 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003848 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003849}
3850
drh80e35f42007-03-30 14:06:34 +00003851/*
3852** Do both phases of a commit.
3853*/
3854int sqlite3BtreeCommit(Btree *p){
3855 int rc;
drhd677b3d2007-08-20 22:48:41 +00003856 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003857 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3858 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003859 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003860 }
drhd677b3d2007-08-20 22:48:41 +00003861 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003862 return rc;
3863}
3864
drhc39e0002004-05-07 23:50:57 +00003865/*
drhfb982642007-08-30 01:19:59 +00003866** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003867** code to errCode for every cursor on any BtShared that pBtree
3868** references. Or if the writeOnly flag is set to 1, then only
3869** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003870**
drh47b7fc72014-11-11 01:33:57 +00003871** Every cursor is a candidate to be tripped, including cursors
3872** that belong to other database connections that happen to be
3873** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003874**
dan80231042014-11-12 14:56:02 +00003875** This routine gets called when a rollback occurs. If the writeOnly
3876** flag is true, then only write-cursors need be tripped - read-only
3877** cursors save their current positions so that they may continue
3878** following the rollback. Or, if writeOnly is false, all cursors are
3879** tripped. In general, writeOnly is false if the transaction being
3880** rolled back modified the database schema. In this case b-tree root
3881** pages may be moved or deleted from the database altogether, making
3882** it unsafe for read cursors to continue.
3883**
3884** If the writeOnly flag is true and an error is encountered while
3885** saving the current position of a read-only cursor, all cursors,
3886** including all read-cursors are tripped.
3887**
3888** SQLITE_OK is returned if successful, or if an error occurs while
3889** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003890*/
dan80231042014-11-12 14:56:02 +00003891int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003892 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003893 int rc = SQLITE_OK;
3894
drh47b7fc72014-11-11 01:33:57 +00003895 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003896 if( pBtree ){
3897 sqlite3BtreeEnter(pBtree);
3898 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3899 int i;
3900 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003901 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003902 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003903 if( rc!=SQLITE_OK ){
3904 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3905 break;
3906 }
3907 }
3908 }else{
3909 sqlite3BtreeClearCursor(p);
3910 p->eState = CURSOR_FAULT;
3911 p->skipNext = errCode;
3912 }
3913 for(i=0; i<=p->iPage; i++){
3914 releasePage(p->apPage[i]);
3915 p->apPage[i] = 0;
3916 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003917 }
dan80231042014-11-12 14:56:02 +00003918 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003919 }
dan80231042014-11-12 14:56:02 +00003920 return rc;
drhfb982642007-08-30 01:19:59 +00003921}
3922
3923/*
drh47b7fc72014-11-11 01:33:57 +00003924** Rollback the transaction in progress.
3925**
3926** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3927** Only write cursors are tripped if writeOnly is true but all cursors are
3928** tripped if writeOnly is false. Any attempt to use
3929** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003930**
3931** This will release the write lock on the database file. If there
3932** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003933*/
drh47b7fc72014-11-11 01:33:57 +00003934int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003935 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003936 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003937 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003938
drh47b7fc72014-11-11 01:33:57 +00003939 assert( writeOnly==1 || writeOnly==0 );
3940 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003941 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003942 if( tripCode==SQLITE_OK ){
3943 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003944 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003945 }else{
3946 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003947 }
drh0f198a72012-02-13 16:43:16 +00003948 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003949 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3950 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3951 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003952 }
danielk1977aef0bf62005-12-30 16:28:01 +00003953 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003954
3955 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003956 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003957
danielk19778d34dfd2006-01-24 16:37:57 +00003958 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003959 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003960 if( rc2!=SQLITE_OK ){
3961 rc = rc2;
3962 }
3963
drh24cd67e2004-05-10 16:18:47 +00003964 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003965 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003966 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003967 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003968 int nPage = get4byte(28+(u8*)pPage1->aData);
3969 testcase( nPage==0 );
3970 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3971 testcase( pBt->nPage!=nPage );
3972 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003973 releasePage(pPage1);
3974 }
drh85ec3b62013-05-14 23:12:06 +00003975 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003976 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003977 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003978 }
danielk1977aef0bf62005-12-30 16:28:01 +00003979
danielk197794b30732009-07-02 17:21:57 +00003980 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003981 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003982 return rc;
3983}
3984
3985/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003986** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003987** back independently of the main transaction. You must start a transaction
3988** before starting a subtransaction. The subtransaction is ended automatically
3989** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003990**
3991** Statement subtransactions are used around individual SQL statements
3992** that are contained within a BEGIN...COMMIT block. If a constraint
3993** error occurs within the statement, the effect of that one statement
3994** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003995**
3996** A statement sub-transaction is implemented as an anonymous savepoint. The
3997** value passed as the second parameter is the total number of savepoints,
3998** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3999** are no active savepoints and no other statement-transactions open,
4000** iStatement is 1. This anonymous savepoint can be released or rolled back
4001** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004002*/
danielk1977bd434552009-03-18 10:33:00 +00004003int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004004 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004005 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004006 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004007 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004008 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004009 assert( iStatement>0 );
4010 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004011 assert( pBt->inTransaction==TRANS_WRITE );
4012 /* At the pager level, a statement transaction is a savepoint with
4013 ** an index greater than all savepoints created explicitly using
4014 ** SQL statements. It is illegal to open, release or rollback any
4015 ** such savepoints while the statement transaction savepoint is active.
4016 */
4017 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004018 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004019 return rc;
4020}
4021
4022/*
danielk1977fd7f0452008-12-17 17:30:26 +00004023** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4024** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004025** savepoint identified by parameter iSavepoint, depending on the value
4026** of op.
4027**
4028** Normally, iSavepoint is greater than or equal to zero. However, if op is
4029** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4030** contents of the entire transaction are rolled back. This is different
4031** from a normal transaction rollback, as no locks are released and the
4032** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004033*/
4034int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4035 int rc = SQLITE_OK;
4036 if( p && p->inTrans==TRANS_WRITE ){
4037 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004038 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4039 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4040 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004041 if( op==SAVEPOINT_ROLLBACK ){
4042 rc = saveAllCursors(pBt, 0, 0);
4043 }
4044 if( rc==SQLITE_OK ){
4045 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4046 }
drh9f0bbf92009-01-02 21:08:09 +00004047 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004048 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4049 pBt->nPage = 0;
4050 }
drh9f0bbf92009-01-02 21:08:09 +00004051 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004052 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004053
4054 /* The database size was written into the offset 28 of the header
4055 ** when the transaction started, so we know that the value at offset
4056 ** 28 is nonzero. */
4057 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004058 }
danielk1977fd7f0452008-12-17 17:30:26 +00004059 sqlite3BtreeLeave(p);
4060 }
4061 return rc;
4062}
4063
4064/*
drh8b2f49b2001-06-08 00:21:52 +00004065** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004066** iTable. If a read-only cursor is requested, it is assumed that
4067** the caller already has at least a read-only transaction open
4068** on the database already. If a write-cursor is requested, then
4069** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004070**
drhe807bdb2016-01-21 17:06:33 +00004071** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4072** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4073** can be used for reading or for writing if other conditions for writing
4074** are also met. These are the conditions that must be met in order
4075** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004076**
drhe807bdb2016-01-21 17:06:33 +00004077** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004078**
drhfe5d71d2007-03-19 11:54:10 +00004079** 2: Other database connections that share the same pager cache
4080** but which are not in the READ_UNCOMMITTED state may not have
4081** cursors open with wrFlag==0 on the same table. Otherwise
4082** the changes made by this write cursor would be visible to
4083** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004084**
4085** 3: The database must be writable (not on read-only media)
4086**
4087** 4: There must be an active transaction.
4088**
drhe807bdb2016-01-21 17:06:33 +00004089** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4090** is set. If FORDELETE is set, that is a hint to the implementation that
4091** this cursor will only be used to seek to and delete entries of an index
4092** as part of a larger DELETE statement. The FORDELETE hint is not used by
4093** this implementation. But in a hypothetical alternative storage engine
4094** in which index entries are automatically deleted when corresponding table
4095** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4096** operations on this cursor can be no-ops and all READ operations can
4097** return a null row (2-bytes: 0x01 0x00).
4098**
drh6446c4d2001-12-15 14:22:18 +00004099** No checking is done to make sure that page iTable really is the
4100** root page of a b-tree. If it is not, then the cursor acquired
4101** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004102**
drhf25a5072009-11-18 23:01:25 +00004103** It is assumed that the sqlite3BtreeCursorZero() has been called
4104** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004105*/
drhd677b3d2007-08-20 22:48:41 +00004106static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004107 Btree *p, /* The btree */
4108 int iTable, /* Root page of table to open */
4109 int wrFlag, /* 1 to write. 0 read-only */
4110 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4111 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004112){
danielk19773e8add92009-07-04 17:16:00 +00004113 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004114 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004115
drh1fee73e2007-08-29 04:00:57 +00004116 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004117 assert( wrFlag==0
4118 || wrFlag==BTREE_WRCSR
4119 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4120 );
danielk197796d48e92009-06-29 06:00:37 +00004121
danielk1977602b4662009-07-02 07:47:33 +00004122 /* The following assert statements verify that if this is a sharable
4123 ** b-tree database, the connection is holding the required table locks,
4124 ** and that no other connection has any open cursor that conflicts with
4125 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004126 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004127 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4128
danielk19773e8add92009-07-04 17:16:00 +00004129 /* Assert that the caller has opened the required transaction. */
4130 assert( p->inTrans>TRANS_NONE );
4131 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4132 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004133 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004134
drh3fbb0222014-09-24 19:47:27 +00004135 if( wrFlag ){
4136 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004137 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004138 }
drhb1299152010-03-30 22:58:33 +00004139 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004140 assert( wrFlag==0 );
4141 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004142 }
danielk1977aef0bf62005-12-30 16:28:01 +00004143
danielk1977aef0bf62005-12-30 16:28:01 +00004144 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004145 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004146 pCur->pgnoRoot = (Pgno)iTable;
4147 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004148 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004149 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004150 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004151 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004152 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004153 /* If there are two or more cursors on the same btree, then all such
4154 ** cursors *must* have the BTCF_Multiple flag set. */
4155 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4156 if( pX->pgnoRoot==(Pgno)iTable ){
4157 pX->curFlags |= BTCF_Multiple;
4158 pCur->curFlags |= BTCF_Multiple;
4159 }
drha059ad02001-04-17 20:09:11 +00004160 }
drh27fb7462015-06-30 02:47:36 +00004161 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004162 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004163 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004164 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004165}
drhd677b3d2007-08-20 22:48:41 +00004166int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004167 Btree *p, /* The btree */
4168 int iTable, /* Root page of table to open */
4169 int wrFlag, /* 1 to write. 0 read-only */
4170 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4171 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004172){
4173 int rc;
dan08f901b2015-05-25 19:24:36 +00004174 if( iTable<1 ){
4175 rc = SQLITE_CORRUPT_BKPT;
4176 }else{
4177 sqlite3BtreeEnter(p);
4178 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4179 sqlite3BtreeLeave(p);
4180 }
drhd677b3d2007-08-20 22:48:41 +00004181 return rc;
4182}
drh7f751222009-03-17 22:33:00 +00004183
4184/*
4185** Return the size of a BtCursor object in bytes.
4186**
4187** This interfaces is needed so that users of cursors can preallocate
4188** sufficient storage to hold a cursor. The BtCursor object is opaque
4189** to users so they cannot do the sizeof() themselves - they must call
4190** this routine.
4191*/
4192int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004193 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004194}
4195
drh7f751222009-03-17 22:33:00 +00004196/*
drhf25a5072009-11-18 23:01:25 +00004197** Initialize memory that will be converted into a BtCursor object.
4198**
4199** The simple approach here would be to memset() the entire object
4200** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4201** do not need to be zeroed and they are large, so we can save a lot
4202** of run-time by skipping the initialization of those elements.
4203*/
4204void sqlite3BtreeCursorZero(BtCursor *p){
4205 memset(p, 0, offsetof(BtCursor, iPage));
4206}
4207
4208/*
drh5e00f6c2001-09-13 13:46:56 +00004209** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004210** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004211*/
drh3aac2dd2004-04-26 14:10:20 +00004212int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004213 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004214 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004215 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004216 BtShared *pBt = pCur->pBt;
4217 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004218 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004219 assert( pBt->pCursor!=0 );
4220 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004221 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004222 }else{
4223 BtCursor *pPrev = pBt->pCursor;
4224 do{
4225 if( pPrev->pNext==pCur ){
4226 pPrev->pNext = pCur->pNext;
4227 break;
4228 }
4229 pPrev = pPrev->pNext;
4230 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004231 }
danielk197771d5d2c2008-09-29 11:49:47 +00004232 for(i=0; i<=pCur->iPage; i++){
4233 releasePage(pCur->apPage[i]);
4234 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004235 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004236 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004237 /* sqlite3_free(pCur); */
4238 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004239 }
drh8c42ca92001-06-22 19:15:00 +00004240 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004241}
4242
drh5e2f8b92001-05-28 00:41:15 +00004243/*
drh86057612007-06-26 01:04:48 +00004244** Make sure the BtCursor* given in the argument has a valid
4245** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004246** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004247**
4248** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004249** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004250*/
drh9188b382004-05-14 21:12:22 +00004251#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004252 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004253 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004254 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004255 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004256 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004257 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004258 }
danielk19771cc5ed82007-05-16 17:28:43 +00004259#else
4260 #define assertCellInfo(x)
4261#endif
drhc5b41ac2015-06-17 02:11:46 +00004262static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4263 if( pCur->info.nSize==0 ){
4264 int iPage = pCur->iPage;
4265 pCur->curFlags |= BTCF_ValidNKey;
4266 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4267 }else{
4268 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004269 }
drhc5b41ac2015-06-17 02:11:46 +00004270}
drh9188b382004-05-14 21:12:22 +00004271
drhea8ffdf2009-07-22 00:35:23 +00004272#ifndef NDEBUG /* The next routine used only within assert() statements */
4273/*
4274** Return true if the given BtCursor is valid. A valid cursor is one
4275** that is currently pointing to a row in a (non-empty) table.
4276** This is a verification routine is used only within assert() statements.
4277*/
4278int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4279 return pCur && pCur->eState==CURSOR_VALID;
4280}
4281#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004282int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4283 assert( pCur!=0 );
4284 return pCur->eState==CURSOR_VALID;
4285}
drhea8ffdf2009-07-22 00:35:23 +00004286
drh9188b382004-05-14 21:12:22 +00004287/*
drha7c90c42016-06-04 20:37:10 +00004288** Return the value of the integer key or "rowid" for a table btree.
4289** This routine is only valid for a cursor that is pointing into a
4290** ordinary table btree. If the cursor points to an index btree or
4291** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004292*/
drha7c90c42016-06-04 20:37:10 +00004293i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004294 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004295 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004296 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004297 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004298 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004299}
drh2af926b2001-05-15 00:39:25 +00004300
drh72f82862001-05-24 21:06:34 +00004301/*
drha7c90c42016-06-04 20:37:10 +00004302** Return the number of bytes of payload for the entry that pCur is
4303** currently pointing to. For table btrees, this will be the amount
4304** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004305**
4306** The caller must guarantee that the cursor is pointing to a non-NULL
4307** valid entry. In other words, the calling procedure must guarantee
4308** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004309*/
drha7c90c42016-06-04 20:37:10 +00004310u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4311 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004312 assert( pCur->eState==CURSOR_VALID );
4313 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004314 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004315}
4316
4317/*
danielk1977d04417962007-05-02 13:16:30 +00004318** Given the page number of an overflow page in the database (parameter
4319** ovfl), this function finds the page number of the next page in the
4320** linked list of overflow pages. If possible, it uses the auto-vacuum
4321** pointer-map data instead of reading the content of page ovfl to do so.
4322**
4323** If an error occurs an SQLite error code is returned. Otherwise:
4324**
danielk1977bea2a942009-01-20 17:06:27 +00004325** The page number of the next overflow page in the linked list is
4326** written to *pPgnoNext. If page ovfl is the last page in its linked
4327** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004328**
danielk1977bea2a942009-01-20 17:06:27 +00004329** If ppPage is not NULL, and a reference to the MemPage object corresponding
4330** to page number pOvfl was obtained, then *ppPage is set to point to that
4331** reference. It is the responsibility of the caller to call releasePage()
4332** on *ppPage to free the reference. In no reference was obtained (because
4333** the pointer-map was used to obtain the value for *pPgnoNext), then
4334** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004335*/
4336static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004337 BtShared *pBt, /* The database file */
4338 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004339 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004340 Pgno *pPgnoNext /* OUT: Next overflow page number */
4341){
4342 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004343 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004344 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004345
drh1fee73e2007-08-29 04:00:57 +00004346 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004347 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004348
4349#ifndef SQLITE_OMIT_AUTOVACUUM
4350 /* Try to find the next page in the overflow list using the
4351 ** autovacuum pointer-map pages. Guess that the next page in
4352 ** the overflow list is page number (ovfl+1). If that guess turns
4353 ** out to be wrong, fall back to loading the data of page
4354 ** number ovfl to determine the next page number.
4355 */
4356 if( pBt->autoVacuum ){
4357 Pgno pgno;
4358 Pgno iGuess = ovfl+1;
4359 u8 eType;
4360
4361 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4362 iGuess++;
4363 }
4364
drhb1299152010-03-30 22:58:33 +00004365 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004366 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004367 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004368 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004369 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004370 }
4371 }
4372 }
4373#endif
4374
danielk1977d8a3f3d2009-07-11 11:45:23 +00004375 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004376 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004377 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004378 assert( rc==SQLITE_OK || pPage==0 );
4379 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004380 next = get4byte(pPage->aData);
4381 }
danielk1977443c0592009-01-16 15:21:05 +00004382 }
danielk197745d68822009-01-16 16:23:38 +00004383
danielk1977bea2a942009-01-20 17:06:27 +00004384 *pPgnoNext = next;
4385 if( ppPage ){
4386 *ppPage = pPage;
4387 }else{
4388 releasePage(pPage);
4389 }
4390 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004391}
4392
danielk1977da107192007-05-04 08:32:13 +00004393/*
4394** Copy data from a buffer to a page, or from a page to a buffer.
4395**
4396** pPayload is a pointer to data stored on database page pDbPage.
4397** If argument eOp is false, then nByte bytes of data are copied
4398** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4399** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4400** of data are copied from the buffer pBuf to pPayload.
4401**
4402** SQLITE_OK is returned on success, otherwise an error code.
4403*/
4404static int copyPayload(
4405 void *pPayload, /* Pointer to page data */
4406 void *pBuf, /* Pointer to buffer */
4407 int nByte, /* Number of bytes to copy */
4408 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4409 DbPage *pDbPage /* Page containing pPayload */
4410){
4411 if( eOp ){
4412 /* Copy data from buffer to page (a write operation) */
4413 int rc = sqlite3PagerWrite(pDbPage);
4414 if( rc!=SQLITE_OK ){
4415 return rc;
4416 }
4417 memcpy(pPayload, pBuf, nByte);
4418 }else{
4419 /* Copy data from page to buffer (a read operation) */
4420 memcpy(pBuf, pPayload, nByte);
4421 }
4422 return SQLITE_OK;
4423}
danielk1977d04417962007-05-02 13:16:30 +00004424
4425/*
danielk19779f8d6402007-05-02 17:48:45 +00004426** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004427** for the entry that the pCur cursor is pointing to. The eOp
4428** argument is interpreted as follows:
4429**
4430** 0: The operation is a read. Populate the overflow cache.
4431** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004432**
4433** A total of "amt" bytes are read or written beginning at "offset".
4434** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004435**
drh3bcdfd22009-07-12 02:32:21 +00004436** The content being read or written might appear on the main page
4437** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004438**
drh42e28f12017-01-27 00:31:59 +00004439** If the current cursor entry uses one or more overflow pages
4440** this function may allocate space for and lazily populate
4441** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004442** Subsequent calls use this cache to make seeking to the supplied offset
4443** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004444**
drh42e28f12017-01-27 00:31:59 +00004445** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004446** invalidated if some other cursor writes to the same table, or if
4447** the cursor is moved to a different row. Additionally, in auto-vacuum
4448** mode, the following events may invalidate an overflow page-list cache.
4449**
4450** * An incremental vacuum,
4451** * A commit in auto_vacuum="full" mode,
4452** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004453*/
danielk19779f8d6402007-05-02 17:48:45 +00004454static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004455 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004456 u32 offset, /* Begin reading this far into payload */
4457 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004458 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004459 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004460){
4461 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004462 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004463 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004464 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004465 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004466#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004467 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004468#endif
drh3aac2dd2004-04-26 14:10:20 +00004469
danielk1977da107192007-05-04 08:32:13 +00004470 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004471 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004472 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004473 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004474 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004475
drh86057612007-06-26 01:04:48 +00004476 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004477 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004478 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004479
drh0b982072016-03-22 14:10:45 +00004480 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004481 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004482 /* Trying to read or write past the end of the data is an error. The
4483 ** conditional above is really:
4484 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4485 ** but is recast into its current form to avoid integer overflow problems
4486 */
danielk197767fd7a92008-09-10 17:53:35 +00004487 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004488 }
danielk1977da107192007-05-04 08:32:13 +00004489
4490 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004491 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004492 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004493 if( a+offset>pCur->info.nLocal ){
4494 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004495 }
drh42e28f12017-01-27 00:31:59 +00004496 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004497 offset = 0;
drha34b6762004-05-07 13:30:42 +00004498 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004499 amt -= a;
drhdd793422001-06-28 01:54:48 +00004500 }else{
drhfa1a98a2004-05-14 19:08:17 +00004501 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004502 }
danielk1977da107192007-05-04 08:32:13 +00004503
dan85753662014-12-11 16:38:18 +00004504
danielk1977da107192007-05-04 08:32:13 +00004505 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004506 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004507 Pgno nextPage;
4508
drhfa1a98a2004-05-14 19:08:17 +00004509 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004510
drha38c9512014-04-01 01:24:34 +00004511 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004512 **
4513 ** The aOverflow[] array is sized at one entry for each overflow page
4514 ** in the overflow chain. The page number of the first overflow page is
4515 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4516 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004517 */
drh42e28f12017-01-27 00:31:59 +00004518 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004519 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004520 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004521 Pgno *aNew = (Pgno*)sqlite3Realloc(
4522 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004523 );
4524 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004525 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004526 }else{
4527 pCur->nOvflAlloc = nOvfl*2;
4528 pCur->aOverflow = aNew;
4529 }
4530 }
drhcd645532017-01-20 20:43:14 +00004531 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4532 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004533 }else{
4534 /* If the overflow page-list cache has been allocated and the
4535 ** entry for the first required overflow page is valid, skip
4536 ** directly to it.
4537 */
4538 if( pCur->aOverflow[offset/ovflSize] ){
4539 iIdx = (offset/ovflSize);
4540 nextPage = pCur->aOverflow[iIdx];
4541 offset = (offset%ovflSize);
4542 }
danielk19772dec9702007-05-02 16:48:37 +00004543 }
danielk1977da107192007-05-04 08:32:13 +00004544
drhcd645532017-01-20 20:43:14 +00004545 assert( rc==SQLITE_OK && amt>0 );
4546 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004547 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004548 assert( pCur->aOverflow[iIdx]==0
4549 || pCur->aOverflow[iIdx]==nextPage
4550 || CORRUPT_DB );
4551 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004552
danielk1977d04417962007-05-02 13:16:30 +00004553 if( offset>=ovflSize ){
4554 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004555 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004556 ** data is not required. So first try to lookup the overflow
4557 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004558 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004559 */
drha38c9512014-04-01 01:24:34 +00004560 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004561 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004562 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004563 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004564 }else{
danielk1977da107192007-05-04 08:32:13 +00004565 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004566 }
danielk1977da107192007-05-04 08:32:13 +00004567 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004568 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004569 /* Need to read this page properly. It contains some of the
4570 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004571 */
danf4ba1092011-10-08 14:57:07 +00004572#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004573 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004574#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004575 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004576 if( a + offset > ovflSize ){
4577 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004578 }
danf4ba1092011-10-08 14:57:07 +00004579
4580#ifdef SQLITE_DIRECT_OVERFLOW_READ
4581 /* If all the following are true:
4582 **
4583 ** 1) this is a read operation, and
4584 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004585 ** 3) there is no open write-transaction, and
4586 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004587 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004588 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004589 **
4590 ** then data can be read directly from the database file into the
4591 ** output buffer, bypassing the page-cache altogether. This speeds
4592 ** up loading large records that span many overflow pages.
4593 */
drh42e28f12017-01-27 00:31:59 +00004594 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004595 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004596 && pBt->inTransaction==TRANS_READ /* (3) */
4597 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004598 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004599 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004600 ){
4601 u8 aSave[4];
4602 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004603 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004604 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004605 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004606 nextPage = get4byte(aWrite);
4607 memcpy(aWrite, aSave, 4);
4608 }else
4609#endif
4610
4611 {
4612 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004613 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004614 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004615 );
danf4ba1092011-10-08 14:57:07 +00004616 if( rc==SQLITE_OK ){
4617 aPayload = sqlite3PagerGetData(pDbPage);
4618 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004619 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004620 sqlite3PagerUnref(pDbPage);
4621 offset = 0;
4622 }
4623 }
4624 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004625 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004626 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004627 }
drhcd645532017-01-20 20:43:14 +00004628 if( rc ) break;
4629 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004630 }
drh2af926b2001-05-15 00:39:25 +00004631 }
danielk1977cfe9a692004-06-16 12:00:29 +00004632
danielk1977da107192007-05-04 08:32:13 +00004633 if( rc==SQLITE_OK && amt>0 ){
drh6ee610b2017-01-27 01:25:00 +00004634 return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */
drha7fcb052001-12-14 15:09:55 +00004635 }
danielk1977da107192007-05-04 08:32:13 +00004636 return rc;
drh2af926b2001-05-15 00:39:25 +00004637}
4638
drh72f82862001-05-24 21:06:34 +00004639/*
drhcb3cabd2016-11-25 19:18:28 +00004640** Read part of the payload for the row at which that cursor pCur is currently
4641** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004642** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004643**
drhcb3cabd2016-11-25 19:18:28 +00004644** pCur can be pointing to either a table or an index b-tree.
4645** If pointing to a table btree, then the content section is read. If
4646** pCur is pointing to an index b-tree then the key section is read.
4647**
4648** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4649** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4650** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004651**
drh3aac2dd2004-04-26 14:10:20 +00004652** Return SQLITE_OK on success or an error code if anything goes
4653** wrong. An error is returned if "offset+amt" is larger than
4654** the available payload.
drh72f82862001-05-24 21:06:34 +00004655*/
drhcb3cabd2016-11-25 19:18:28 +00004656int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004657 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004658 assert( pCur->eState==CURSOR_VALID );
4659 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4660 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4661 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004662}
drh83ec2762017-01-26 16:54:47 +00004663
4664/*
4665** This variant of sqlite3BtreePayload() works even if the cursor has not
4666** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4667** interface.
4668*/
danielk19773588ceb2008-06-10 17:30:26 +00004669#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004670static SQLITE_NOINLINE int accessPayloadChecked(
4671 BtCursor *pCur,
4672 u32 offset,
4673 u32 amt,
4674 void *pBuf
4675){
drhcb3cabd2016-11-25 19:18:28 +00004676 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004677 if ( pCur->eState==CURSOR_INVALID ){
4678 return SQLITE_ABORT;
4679 }
dan7a2347e2016-01-07 16:43:54 +00004680 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004681 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004682 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4683}
4684int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4685 if( pCur->eState==CURSOR_VALID ){
4686 assert( cursorOwnsBtShared(pCur) );
4687 return accessPayload(pCur, offset, amt, pBuf, 0);
4688 }else{
4689 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004690 }
drh2af926b2001-05-15 00:39:25 +00004691}
drhcb3cabd2016-11-25 19:18:28 +00004692#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004693
drh72f82862001-05-24 21:06:34 +00004694/*
drh0e1c19e2004-05-11 00:58:56 +00004695** Return a pointer to payload information from the entry that the
4696** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004697** the key if index btrees (pPage->intKey==0) and is the data for
4698** table btrees (pPage->intKey==1). The number of bytes of available
4699** key/data is written into *pAmt. If *pAmt==0, then the value
4700** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004701**
4702** This routine is an optimization. It is common for the entire key
4703** and data to fit on the local page and for there to be no overflow
4704** pages. When that is so, this routine can be used to access the
4705** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004706** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004707** the key/data and copy it into a preallocated buffer.
4708**
4709** The pointer returned by this routine looks directly into the cached
4710** page of the database. The data might change or move the next time
4711** any btree routine is called.
4712*/
drh2a8d2262013-12-09 20:43:22 +00004713static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004714 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004715 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004716){
drhf3392e32015-04-15 17:26:55 +00004717 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004718 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004719 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004720 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004721 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004722 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004723 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004724 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4725 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4726 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4727 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4728 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004729 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004730}
4731
4732
4733/*
drhe51c44f2004-05-30 20:46:09 +00004734** For the entry that cursor pCur is point to, return as
4735** many bytes of the key or data as are available on the local
4736** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004737**
4738** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004739** or be destroyed on the next call to any Btree routine,
4740** including calls from other threads against the same cache.
4741** Hence, a mutex on the BtShared should be held prior to calling
4742** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004743**
4744** These routines is used to get quick access to key and data
4745** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004746*/
drha7c90c42016-06-04 20:37:10 +00004747const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004748 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004749}
4750
4751
4752/*
drh8178a752003-01-05 21:41:40 +00004753** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004754** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004755**
4756** This function returns SQLITE_CORRUPT if the page-header flags field of
4757** the new child page does not match the flags field of the parent (i.e.
4758** if an intkey page appears to be the parent of a non-intkey page, or
4759** vice-versa).
drh72f82862001-05-24 21:06:34 +00004760*/
drh3aac2dd2004-04-26 14:10:20 +00004761static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004762 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004763
dan7a2347e2016-01-07 16:43:54 +00004764 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004765 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004766 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004767 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004768 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4769 return SQLITE_CORRUPT_BKPT;
4770 }
drh271efa52004-05-30 19:19:05 +00004771 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004772 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004773 pCur->iPage++;
4774 pCur->aiIdx[pCur->iPage] = 0;
4775 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4776 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004777}
4778
drhd879e3e2017-02-13 13:35:55 +00004779#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004780/*
4781** Page pParent is an internal (non-leaf) tree page. This function
4782** asserts that page number iChild is the left-child if the iIdx'th
4783** cell in page pParent. Or, if iIdx is equal to the total number of
4784** cells in pParent, that page number iChild is the right-child of
4785** the page.
4786*/
4787static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004788 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4789 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004790 assert( iIdx<=pParent->nCell );
4791 if( iIdx==pParent->nCell ){
4792 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4793 }else{
4794 assert( get4byte(findCell(pParent, iIdx))==iChild );
4795 }
4796}
4797#else
4798# define assertParentIndex(x,y,z)
4799#endif
4800
drh72f82862001-05-24 21:06:34 +00004801/*
drh5e2f8b92001-05-28 00:41:15 +00004802** Move the cursor up to the parent page.
4803**
4804** pCur->idx is set to the cell index that contains the pointer
4805** to the page we are coming from. If we are coming from the
4806** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004807** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004808*/
danielk197730548662009-07-09 05:07:37 +00004809static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004810 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004811 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004812 assert( pCur->iPage>0 );
4813 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004814 assertParentIndex(
4815 pCur->apPage[pCur->iPage-1],
4816 pCur->aiIdx[pCur->iPage-1],
4817 pCur->apPage[pCur->iPage]->pgno
4818 );
dan6c2688c2012-01-12 15:05:03 +00004819 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004820 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004821 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004822 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004823}
4824
4825/*
danielk19778f880a82009-07-13 09:41:45 +00004826** Move the cursor to point to the root page of its b-tree structure.
4827**
4828** If the table has a virtual root page, then the cursor is moved to point
4829** to the virtual root page instead of the actual root page. A table has a
4830** virtual root page when the actual root page contains no cells and a
4831** single child page. This can only happen with the table rooted at page 1.
4832**
4833** If the b-tree structure is empty, the cursor state is set to
4834** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4835** cell located on the root (or virtual root) page and the cursor state
4836** is set to CURSOR_VALID.
4837**
4838** If this function returns successfully, it may be assumed that the
4839** page-header flags indicate that the [virtual] root-page is the expected
4840** kind of b-tree page (i.e. if when opening the cursor the caller did not
4841** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4842** indicating a table b-tree, or if the caller did specify a KeyInfo
4843** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4844** b-tree).
drh72f82862001-05-24 21:06:34 +00004845*/
drh5e2f8b92001-05-28 00:41:15 +00004846static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004847 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004848 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004849
dan7a2347e2016-01-07 16:43:54 +00004850 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004851 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4852 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4853 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4854 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4855 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004856 assert( pCur->skipNext!=SQLITE_OK );
4857 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004858 }
danielk1977be51a652008-10-08 17:58:48 +00004859 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004860 }
danielk197771d5d2c2008-09-29 11:49:47 +00004861
4862 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004863 if( pCur->iPage ){
4864 do{
4865 assert( pCur->apPage[pCur->iPage]!=0 );
4866 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4867 }while( pCur->iPage);
4868 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004869 }
dana205a482011-08-27 18:48:57 +00004870 }else if( pCur->pgnoRoot==0 ){
4871 pCur->eState = CURSOR_INVALID;
4872 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004873 }else{
drh28f58dd2015-06-27 19:45:03 +00004874 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004875 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004876 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004877 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004878 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004879 return rc;
drh777e4c42006-01-13 04:31:58 +00004880 }
danielk1977172114a2009-07-07 15:47:12 +00004881 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004882 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004883 }
danielk197771d5d2c2008-09-29 11:49:47 +00004884 pRoot = pCur->apPage[0];
4885 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004886
4887 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4888 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4889 ** NULL, the caller expects a table b-tree. If this is not the case,
4890 ** return an SQLITE_CORRUPT error.
4891 **
4892 ** Earlier versions of SQLite assumed that this test could not fail
4893 ** if the root page was already loaded when this function was called (i.e.
4894 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4895 ** in such a way that page pRoot is linked into a second b-tree table
4896 ** (or the freelist). */
4897 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4898 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4899 return SQLITE_CORRUPT_BKPT;
4900 }
danielk19778f880a82009-07-13 09:41:45 +00004901
drh7ad3eb62016-10-24 01:01:09 +00004902skip_init:
danielk197771d5d2c2008-09-29 11:49:47 +00004903 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004904 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004905 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004906
drh7ad3eb62016-10-24 01:01:09 +00004907 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004908 if( pRoot->nCell>0 ){
4909 pCur->eState = CURSOR_VALID;
4910 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004911 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004912 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004913 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004914 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004915 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004916 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004917 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004918 }
4919 return rc;
drh72f82862001-05-24 21:06:34 +00004920}
drh2af926b2001-05-15 00:39:25 +00004921
drh5e2f8b92001-05-28 00:41:15 +00004922/*
4923** Move the cursor down to the left-most leaf entry beneath the
4924** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004925**
4926** The left-most leaf is the one with the smallest key - the first
4927** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004928*/
4929static int moveToLeftmost(BtCursor *pCur){
4930 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004931 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004932 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004933
dan7a2347e2016-01-07 16:43:54 +00004934 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004935 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004936 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4937 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4938 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004939 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004940 }
drhd677b3d2007-08-20 22:48:41 +00004941 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004942}
4943
drh2dcc9aa2002-12-04 13:40:25 +00004944/*
4945** Move the cursor down to the right-most leaf entry beneath the
4946** page to which it is currently pointing. Notice the difference
4947** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4948** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4949** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004950**
4951** The right-most entry is the one with the largest key - the last
4952** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004953*/
4954static int moveToRightmost(BtCursor *pCur){
4955 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004956 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004957 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004958
dan7a2347e2016-01-07 16:43:54 +00004959 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004960 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004961 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004962 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004963 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004964 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004965 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004966 }
drhee6438d2014-09-01 13:29:32 +00004967 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4968 assert( pCur->info.nSize==0 );
4969 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4970 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004971}
4972
drh5e00f6c2001-09-13 13:46:56 +00004973/* Move the cursor to the first entry in the table. Return SQLITE_OK
4974** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004975** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004976*/
drh3aac2dd2004-04-26 14:10:20 +00004977int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004978 int rc;
drhd677b3d2007-08-20 22:48:41 +00004979
dan7a2347e2016-01-07 16:43:54 +00004980 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004981 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004982 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004983 if( rc==SQLITE_OK ){
4984 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004985 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004986 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004987 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004988 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004989 *pRes = 0;
4990 rc = moveToLeftmost(pCur);
4991 }
drh5e00f6c2001-09-13 13:46:56 +00004992 }
drh5e00f6c2001-09-13 13:46:56 +00004993 return rc;
4994}
drh5e2f8b92001-05-28 00:41:15 +00004995
drh9562b552002-02-19 15:00:07 +00004996/* Move the cursor to the last entry in the table. Return SQLITE_OK
4997** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004998** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004999*/
drh3aac2dd2004-04-26 14:10:20 +00005000int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005001 int rc;
drhd677b3d2007-08-20 22:48:41 +00005002
dan7a2347e2016-01-07 16:43:54 +00005003 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005004 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005005
5006 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005007 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005008#ifdef SQLITE_DEBUG
5009 /* This block serves to assert() that the cursor really does point
5010 ** to the last entry in the b-tree. */
5011 int ii;
5012 for(ii=0; ii<pCur->iPage; ii++){
5013 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5014 }
5015 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5016 assert( pCur->apPage[pCur->iPage]->leaf );
5017#endif
5018 return SQLITE_OK;
5019 }
5020
drh9562b552002-02-19 15:00:07 +00005021 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005022 if( rc==SQLITE_OK ){
5023 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005024 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005025 *pRes = 1;
5026 }else{
5027 assert( pCur->eState==CURSOR_VALID );
5028 *pRes = 0;
5029 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005030 if( rc==SQLITE_OK ){
5031 pCur->curFlags |= BTCF_AtLast;
5032 }else{
5033 pCur->curFlags &= ~BTCF_AtLast;
5034 }
5035
drhd677b3d2007-08-20 22:48:41 +00005036 }
drh9562b552002-02-19 15:00:07 +00005037 }
drh9562b552002-02-19 15:00:07 +00005038 return rc;
5039}
5040
drhe14006d2008-03-25 17:23:32 +00005041/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005042** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005043**
drhe63d9992008-08-13 19:11:48 +00005044** For INTKEY tables, the intKey parameter is used. pIdxKey
5045** must be NULL. For index tables, pIdxKey is used and intKey
5046** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005047**
drh5e2f8b92001-05-28 00:41:15 +00005048** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005049** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005050** were present. The cursor might point to an entry that comes
5051** before or after the key.
5052**
drh64022502009-01-09 14:11:04 +00005053** An integer is written into *pRes which is the result of
5054** comparing the key with the entry to which the cursor is
5055** pointing. The meaning of the integer written into
5056** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005057**
5058** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005059** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005060** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005061**
5062** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005063** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005064**
5065** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005066** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005067**
drhb1d607d2015-11-05 22:30:54 +00005068** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5069** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005070*/
drhe63d9992008-08-13 19:11:48 +00005071int sqlite3BtreeMovetoUnpacked(
5072 BtCursor *pCur, /* The cursor to be moved */
5073 UnpackedRecord *pIdxKey, /* Unpacked index key */
5074 i64 intKey, /* The table key */
5075 int biasRight, /* If true, bias the search to the high end */
5076 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005077){
drh72f82862001-05-24 21:06:34 +00005078 int rc;
dan3b9330f2014-02-27 20:44:18 +00005079 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005080
dan7a2347e2016-01-07 16:43:54 +00005081 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005082 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005083 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005084 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005085 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005086
5087 /* If the cursor is already positioned at the point we are trying
5088 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005089 if( pIdxKey==0
5090 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005091 ){
drhe63d9992008-08-13 19:11:48 +00005092 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005093 *pRes = 0;
5094 return SQLITE_OK;
5095 }
drh451e76d2017-01-21 16:54:19 +00005096 if( pCur->info.nKey<intKey ){
5097 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5098 *pRes = -1;
5099 return SQLITE_OK;
5100 }
drh7f11afa2017-01-21 21:47:54 +00005101 /* If the requested key is one more than the previous key, then
5102 ** try to get there using sqlite3BtreeNext() rather than a full
5103 ** binary search. This is an optimization only. The correct answer
5104 ** is still obtained without this ase, only a little more slowely */
5105 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5106 *pRes = 0;
5107 rc = sqlite3BtreeNext(pCur, pRes);
5108 if( rc ) return rc;
5109 if( *pRes==0 ){
5110 getCellInfo(pCur);
5111 if( pCur->info.nKey==intKey ){
5112 return SQLITE_OK;
5113 }
drh451e76d2017-01-21 16:54:19 +00005114 }
5115 }
drha2c20e42008-03-29 16:01:04 +00005116 }
5117 }
5118
dan1fed5da2014-02-25 21:01:25 +00005119 if( pIdxKey ){
5120 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005121 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005122 assert( pIdxKey->default_rc==1
5123 || pIdxKey->default_rc==0
5124 || pIdxKey->default_rc==-1
5125 );
drh13a747e2014-03-03 21:46:55 +00005126 }else{
drhb6e8fd12014-03-06 01:56:33 +00005127 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005128 }
5129
drh5e2f8b92001-05-28 00:41:15 +00005130 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005131 if( rc ){
5132 return rc;
5133 }
dana205a482011-08-27 18:48:57 +00005134 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5135 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5136 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005137 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005138 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005139 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005140 return SQLITE_OK;
5141 }
drhc75d8862015-06-27 23:55:20 +00005142 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5143 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005144 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005145 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005146 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005147 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005148 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005149
5150 /* pPage->nCell must be greater than zero. If this is the root-page
5151 ** the cursor would have been INVALID above and this for(;;) loop
5152 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005153 ** would have already detected db corruption. Similarly, pPage must
5154 ** be the right kind (index or table) of b-tree page. Otherwise
5155 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005156 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005157 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005158 lwr = 0;
5159 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005160 assert( biasRight==0 || biasRight==1 );
5161 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005162 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005163 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005164 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005165 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005166 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005167 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005168 while( 0x80 <= *(pCell++) ){
5169 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5170 }
drhd172f862006-01-12 15:01:15 +00005171 }
drha2c20e42008-03-29 16:01:04 +00005172 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005173 if( nCellKey<intKey ){
5174 lwr = idx+1;
5175 if( lwr>upr ){ c = -1; break; }
5176 }else if( nCellKey>intKey ){
5177 upr = idx-1;
5178 if( lwr>upr ){ c = +1; break; }
5179 }else{
5180 assert( nCellKey==intKey );
drhd793f442013-11-25 14:10:15 +00005181 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005182 if( !pPage->leaf ){
5183 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005184 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005185 }else{
drhd95ef5c2016-11-11 18:19:05 +00005186 pCur->curFlags |= BTCF_ValidNKey;
5187 pCur->info.nKey = nCellKey;
5188 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005189 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005190 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005191 }
drhd793f442013-11-25 14:10:15 +00005192 }
drhebf10b12013-11-25 17:38:26 +00005193 assert( lwr+upr>=0 );
5194 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005195 }
5196 }else{
5197 for(;;){
drhc6827502015-05-28 15:14:32 +00005198 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005199 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005200
drhb2eced52010-08-12 02:41:12 +00005201 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005202 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005203 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005204 ** varint. This information is used to attempt to avoid parsing
5205 ** the entire cell by checking for the cases where the record is
5206 ** stored entirely within the b-tree page by inspecting the first
5207 ** 2 bytes of the cell.
5208 */
drhec3e6b12013-11-25 02:38:55 +00005209 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005210 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005211 /* This branch runs if the record-size field of the cell is a
5212 ** single byte varint and the record fits entirely on the main
5213 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005214 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005215 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005216 }else if( !(pCell[1] & 0x80)
5217 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5218 ){
5219 /* The record-size field is a 2 byte varint and the record
5220 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005221 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005222 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005223 }else{
danielk197711c327a2009-05-04 19:01:26 +00005224 /* The record flows over onto one or more overflow pages. In
5225 ** this case the whole cell needs to be parsed, a buffer allocated
5226 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005227 ** buffer before VdbeRecordCompare() can be called.
5228 **
5229 ** If the record is corrupt, the xRecordCompare routine may read
5230 ** up to two varints past the end of the buffer. An extra 18
5231 ** bytes of padding is allocated at the end of the buffer in
5232 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005233 void *pCellKey;
5234 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005235 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005236 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005237 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5238 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5239 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5240 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005241 if( nCell<2 ){
5242 rc = SQLITE_CORRUPT_BKPT;
5243 goto moveto_finish;
5244 }
5245 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005246 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005247 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005248 goto moveto_finish;
5249 }
drhd793f442013-11-25 14:10:15 +00005250 pCur->aiIdx[pCur->iPage] = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005251 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5252 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005253 if( rc ){
5254 sqlite3_free(pCellKey);
5255 goto moveto_finish;
5256 }
drh75179de2014-09-16 14:37:35 +00005257 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005258 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005259 }
dan38fdead2014-04-01 10:19:02 +00005260 assert(
5261 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005262 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005263 );
drhbb933ef2013-11-25 15:01:38 +00005264 if( c<0 ){
5265 lwr = idx+1;
5266 }else if( c>0 ){
5267 upr = idx-1;
5268 }else{
5269 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005270 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005271 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005272 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005273 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005274 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005275 }
drhebf10b12013-11-25 17:38:26 +00005276 if( lwr>upr ) break;
5277 assert( lwr+upr>=0 );
5278 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005279 }
drh72f82862001-05-24 21:06:34 +00005280 }
drhb07028f2011-10-14 21:49:18 +00005281 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005282 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005283 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005285 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005286 *pRes = c;
5287 rc = SQLITE_OK;
5288 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005289 }
5290moveto_next_layer:
5291 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005292 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005293 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005294 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005295 }
drhf49661a2008-12-10 16:45:50 +00005296 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005297 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005298 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005299 }
drh1e968a02008-03-25 00:22:21 +00005300moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005301 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005302 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005303 return rc;
5304}
5305
drhd677b3d2007-08-20 22:48:41 +00005306
drh72f82862001-05-24 21:06:34 +00005307/*
drhc39e0002004-05-07 23:50:57 +00005308** Return TRUE if the cursor is not pointing at an entry of the table.
5309**
5310** TRUE will be returned after a call to sqlite3BtreeNext() moves
5311** past the last entry in the table or sqlite3BtreePrev() moves past
5312** the first entry. TRUE is also returned if the table is empty.
5313*/
5314int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005315 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5316 ** have been deleted? This API will need to change to return an error code
5317 ** as well as the boolean result value.
5318 */
5319 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005320}
5321
5322/*
drh5e98e832017-02-17 19:24:06 +00005323** Return an estimate for the number of rows in the table that pCur is
5324** pointing to. Return a negative number if no estimate is currently
5325** available.
5326*/
5327i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5328 i64 n;
5329 u8 i;
5330
5331 assert( cursorOwnsBtShared(pCur) );
5332 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5333 if( pCur->eState!=CURSOR_VALID ) return -1;
drhdfe11ba2017-02-18 02:42:54 +00005334 if( pCur->apPage[pCur->iPage]->leaf==0 ) return -1;
5335 for(n=1, i=0; i<=pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005336 n *= pCur->apPage[i]->nCell;
5337 }
5338 return n;
5339}
5340
5341/*
drhbd03cae2001-06-02 02:40:57 +00005342** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005343** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005344** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005345** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005346**
drhee6438d2014-09-01 13:29:32 +00005347** The main entry point is sqlite3BtreeNext(). That routine is optimized
5348** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5349** to the next cell on the current page. The (slower) btreeNext() helper
5350** routine is called when it is necessary to move to a different page or
5351** to restore the cursor.
5352**
drhe39a7322014-02-03 14:04:11 +00005353** The calling function will set *pRes to 0 or 1. The initial *pRes value
5354** will be 1 if the cursor being stepped corresponds to an SQL index and
5355** if this routine could have been skipped if that SQL index had been
5356** a unique index. Otherwise the caller will have set *pRes to zero.
5357** Zero is the common case. The btree implementation is free to use the
5358** initial *pRes value as a hint to improve performance, but the current
5359** SQLite btree implementation does not. (Note that the comdb2 btree
5360** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005361*/
drhee6438d2014-09-01 13:29:32 +00005362static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005363 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005364 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005365 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005366
dan7a2347e2016-01-07 16:43:54 +00005367 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005368 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005369 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005370 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005371 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005372 rc = restoreCursorPosition(pCur);
5373 if( rc!=SQLITE_OK ){
5374 return rc;
5375 }
5376 if( CURSOR_INVALID==pCur->eState ){
5377 *pRes = 1;
5378 return SQLITE_OK;
5379 }
drh9b47ee32013-08-20 03:13:51 +00005380 if( pCur->skipNext ){
5381 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5382 pCur->eState = CURSOR_VALID;
5383 if( pCur->skipNext>0 ){
5384 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005385 return SQLITE_OK;
5386 }
drhf66f26a2013-08-19 20:04:10 +00005387 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005388 }
danielk1977da184232006-01-05 11:34:32 +00005389 }
danielk1977da184232006-01-05 11:34:32 +00005390
danielk197771d5d2c2008-09-29 11:49:47 +00005391 pPage = pCur->apPage[pCur->iPage];
5392 idx = ++pCur->aiIdx[pCur->iPage];
5393 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005394
5395 /* If the database file is corrupt, it is possible for the value of idx
5396 ** to be invalid here. This can only occur if a second cursor modifies
5397 ** the page while cursor pCur is holding a reference to it. Which can
5398 ** only happen if the database is corrupt in such a way as to link the
5399 ** page into more than one b-tree structure. */
5400 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005401
danielk197771d5d2c2008-09-29 11:49:47 +00005402 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005403 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005404 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005405 if( rc ) return rc;
5406 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005407 }
drh5e2f8b92001-05-28 00:41:15 +00005408 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005409 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005410 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005411 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005412 return SQLITE_OK;
5413 }
danielk197730548662009-07-09 05:07:37 +00005414 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005415 pPage = pCur->apPage[pCur->iPage];
5416 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005417 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005418 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005419 }else{
drhee6438d2014-09-01 13:29:32 +00005420 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005421 }
drh8178a752003-01-05 21:41:40 +00005422 }
drh3aac2dd2004-04-26 14:10:20 +00005423 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005424 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005425 }else{
5426 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005427 }
drh72f82862001-05-24 21:06:34 +00005428}
drhee6438d2014-09-01 13:29:32 +00005429int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5430 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005431 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005432 assert( pRes!=0 );
5433 assert( *pRes==0 || *pRes==1 );
5434 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5435 pCur->info.nSize = 0;
5436 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5437 *pRes = 0;
5438 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5439 pPage = pCur->apPage[pCur->iPage];
5440 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5441 pCur->aiIdx[pCur->iPage]--;
5442 return btreeNext(pCur, pRes);
5443 }
5444 if( pPage->leaf ){
5445 return SQLITE_OK;
5446 }else{
5447 return moveToLeftmost(pCur);
5448 }
5449}
drh72f82862001-05-24 21:06:34 +00005450
drh3b7511c2001-05-26 13:15:44 +00005451/*
drh2dcc9aa2002-12-04 13:40:25 +00005452** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005453** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005454** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005455** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005456**
drhee6438d2014-09-01 13:29:32 +00005457** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5458** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005459** to the previous cell on the current page. The (slower) btreePrevious()
5460** helper routine is called when it is necessary to move to a different page
5461** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005462**
drhe39a7322014-02-03 14:04:11 +00005463** The calling function will set *pRes to 0 or 1. The initial *pRes value
5464** will be 1 if the cursor being stepped corresponds to an SQL index and
5465** if this routine could have been skipped if that SQL index had been
5466** a unique index. Otherwise the caller will have set *pRes to zero.
5467** Zero is the common case. The btree implementation is free to use the
5468** initial *pRes value as a hint to improve performance, but the current
5469** SQLite btree implementation does not. (Note that the comdb2 btree
5470** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005471*/
drhee6438d2014-09-01 13:29:32 +00005472static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005473 int rc;
drh8178a752003-01-05 21:41:40 +00005474 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005475
dan7a2347e2016-01-07 16:43:54 +00005476 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005477 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005478 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005479 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005480 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5481 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005482 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005483 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005484 if( rc!=SQLITE_OK ){
5485 return rc;
drhf66f26a2013-08-19 20:04:10 +00005486 }
5487 if( CURSOR_INVALID==pCur->eState ){
5488 *pRes = 1;
5489 return SQLITE_OK;
5490 }
drh9b47ee32013-08-20 03:13:51 +00005491 if( pCur->skipNext ){
5492 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5493 pCur->eState = CURSOR_VALID;
5494 if( pCur->skipNext<0 ){
5495 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005496 return SQLITE_OK;
5497 }
drhf66f26a2013-08-19 20:04:10 +00005498 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005499 }
danielk1977da184232006-01-05 11:34:32 +00005500 }
danielk1977da184232006-01-05 11:34:32 +00005501
danielk197771d5d2c2008-09-29 11:49:47 +00005502 pPage = pCur->apPage[pCur->iPage];
5503 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005504 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005505 int idx = pCur->aiIdx[pCur->iPage];
5506 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005507 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005508 rc = moveToRightmost(pCur);
5509 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005510 while( pCur->aiIdx[pCur->iPage]==0 ){
5511 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005512 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005513 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005514 return SQLITE_OK;
5515 }
danielk197730548662009-07-09 05:07:37 +00005516 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005517 }
drhee6438d2014-09-01 13:29:32 +00005518 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005519 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005520
5521 pCur->aiIdx[pCur->iPage]--;
5522 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005523 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005524 rc = sqlite3BtreePrevious(pCur, pRes);
5525 }else{
5526 rc = SQLITE_OK;
5527 }
drh2dcc9aa2002-12-04 13:40:25 +00005528 }
drh2dcc9aa2002-12-04 13:40:25 +00005529 return rc;
5530}
drhee6438d2014-09-01 13:29:32 +00005531int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005532 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005533 assert( pRes!=0 );
5534 assert( *pRes==0 || *pRes==1 );
5535 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5536 *pRes = 0;
5537 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5538 pCur->info.nSize = 0;
5539 if( pCur->eState!=CURSOR_VALID
5540 || pCur->aiIdx[pCur->iPage]==0
5541 || pCur->apPage[pCur->iPage]->leaf==0
5542 ){
5543 return btreePrevious(pCur, pRes);
5544 }
5545 pCur->aiIdx[pCur->iPage]--;
5546 return SQLITE_OK;
5547}
drh2dcc9aa2002-12-04 13:40:25 +00005548
5549/*
drh3b7511c2001-05-26 13:15:44 +00005550** Allocate a new page from the database file.
5551**
danielk19773b8a05f2007-03-19 17:44:26 +00005552** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005553** has already been called on the new page.) The new page has also
5554** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005555** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005556**
5557** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005558** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005559**
drh82e647d2013-03-02 03:25:55 +00005560** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005561** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005562** attempt to keep related pages close to each other in the database file,
5563** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005564**
drh82e647d2013-03-02 03:25:55 +00005565** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5566** anywhere on the free-list, then it is guaranteed to be returned. If
5567** eMode is BTALLOC_LT then the page returned will be less than or equal
5568** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5569** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005570*/
drh4f0c5872007-03-26 22:05:01 +00005571static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005572 BtShared *pBt, /* The btree */
5573 MemPage **ppPage, /* Store pointer to the allocated page here */
5574 Pgno *pPgno, /* Store the page number here */
5575 Pgno nearby, /* Search for a page near this one */
5576 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005577){
drh3aac2dd2004-04-26 14:10:20 +00005578 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005579 int rc;
drh35cd6432009-06-05 14:17:21 +00005580 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005581 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005582 MemPage *pTrunk = 0;
5583 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005584 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005585
drh1fee73e2007-08-29 04:00:57 +00005586 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005587 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005588 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005589 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005590 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5591 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005592 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005593 testcase( n==mxPage-1 );
5594 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005595 return SQLITE_CORRUPT_BKPT;
5596 }
drh3aac2dd2004-04-26 14:10:20 +00005597 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005598 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005599 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005600 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005601 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005602
drh82e647d2013-03-02 03:25:55 +00005603 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005604 ** shows that the page 'nearby' is somewhere on the free-list, then
5605 ** the entire-list will be searched for that page.
5606 */
5607#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005608 if( eMode==BTALLOC_EXACT ){
5609 if( nearby<=mxPage ){
5610 u8 eType;
5611 assert( nearby>0 );
5612 assert( pBt->autoVacuum );
5613 rc = ptrmapGet(pBt, nearby, &eType, 0);
5614 if( rc ) return rc;
5615 if( eType==PTRMAP_FREEPAGE ){
5616 searchList = 1;
5617 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005618 }
dan51f0b6d2013-02-22 20:16:34 +00005619 }else if( eMode==BTALLOC_LE ){
5620 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005621 }
5622#endif
5623
5624 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5625 ** first free-list trunk page. iPrevTrunk is initially 1.
5626 */
danielk19773b8a05f2007-03-19 17:44:26 +00005627 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005628 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005629 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005630
5631 /* The code within this loop is run only once if the 'searchList' variable
5632 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005633 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5634 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005635 */
5636 do {
5637 pPrevTrunk = pTrunk;
5638 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005639 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5640 ** is the page number of the next freelist trunk page in the list or
5641 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005642 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005643 }else{
drh113762a2014-11-19 16:36:25 +00005644 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5645 ** stores the page number of the first page of the freelist, or zero if
5646 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005647 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005648 }
drhdf35a082009-07-09 02:24:35 +00005649 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005650 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005651 rc = SQLITE_CORRUPT_BKPT;
5652 }else{
drh7e8c6f12015-05-28 03:28:27 +00005653 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005654 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005655 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005656 pTrunk = 0;
5657 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005658 }
drhb07028f2011-10-14 21:49:18 +00005659 assert( pTrunk!=0 );
5660 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005661 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5662 ** is the number of leaf page pointers to follow. */
5663 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005664 if( k==0 && !searchList ){
5665 /* The trunk has no leaves and the list is not being searched.
5666 ** So extract the trunk page itself and use it as the newly
5667 ** allocated page */
5668 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005669 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005670 if( rc ){
5671 goto end_allocate_page;
5672 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005673 *pPgno = iTrunk;
5674 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5675 *ppPage = pTrunk;
5676 pTrunk = 0;
5677 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005678 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005679 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005680 rc = SQLITE_CORRUPT_BKPT;
5681 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005682#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005683 }else if( searchList
5684 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5685 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 /* The list is being searched and this trunk page is the page
5687 ** to allocate, regardless of whether it has leaves.
5688 */
dan51f0b6d2013-02-22 20:16:34 +00005689 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005690 *ppPage = pTrunk;
5691 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005692 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005693 if( rc ){
5694 goto end_allocate_page;
5695 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005696 if( k==0 ){
5697 if( !pPrevTrunk ){
5698 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5699 }else{
danf48c3552010-08-23 15:41:24 +00005700 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5701 if( rc!=SQLITE_OK ){
5702 goto end_allocate_page;
5703 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005704 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5705 }
5706 }else{
5707 /* The trunk page is required by the caller but it contains
5708 ** pointers to free-list leaves. The first leaf becomes a trunk
5709 ** page in this case.
5710 */
5711 MemPage *pNewTrunk;
5712 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005713 if( iNewTrunk>mxPage ){
5714 rc = SQLITE_CORRUPT_BKPT;
5715 goto end_allocate_page;
5716 }
drhdf35a082009-07-09 02:24:35 +00005717 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005718 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005719 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005720 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005721 }
danielk19773b8a05f2007-03-19 17:44:26 +00005722 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005723 if( rc!=SQLITE_OK ){
5724 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005725 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005726 }
5727 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5728 put4byte(&pNewTrunk->aData[4], k-1);
5729 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005730 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005731 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005732 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005733 put4byte(&pPage1->aData[32], iNewTrunk);
5734 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005735 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005736 if( rc ){
5737 goto end_allocate_page;
5738 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005739 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 }
5742 pTrunk = 0;
5743 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5744#endif
danielk1977e5765212009-06-17 11:13:28 +00005745 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005746 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005747 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005748 Pgno iPage;
5749 unsigned char *aData = pTrunk->aData;
5750 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005751 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005752 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005753 if( eMode==BTALLOC_LE ){
5754 for(i=0; i<k; i++){
5755 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005756 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005757 closest = i;
5758 break;
5759 }
5760 }
5761 }else{
5762 int dist;
5763 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5764 for(i=1; i<k; i++){
5765 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5766 if( d2<dist ){
5767 closest = i;
5768 dist = d2;
5769 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005770 }
5771 }
5772 }else{
5773 closest = 0;
5774 }
5775
5776 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005777 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005778 if( iPage>mxPage ){
5779 rc = SQLITE_CORRUPT_BKPT;
5780 goto end_allocate_page;
5781 }
drhdf35a082009-07-09 02:24:35 +00005782 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005783 if( !searchList
5784 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5785 ){
danielk1977bea2a942009-01-20 17:06:27 +00005786 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005787 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005788 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5789 ": %d more free pages\n",
5790 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005791 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5792 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005793 if( closest<k-1 ){
5794 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5795 }
5796 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005797 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005798 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005799 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005800 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005801 if( rc!=SQLITE_OK ){
5802 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005803 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005804 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005805 }
5806 searchList = 0;
5807 }
drhee696e22004-08-30 16:52:17 +00005808 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005809 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005810 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005811 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005812 }else{
danbc1a3c62013-02-23 16:40:46 +00005813 /* There are no pages on the freelist, so append a new page to the
5814 ** database image.
5815 **
5816 ** Normally, new pages allocated by this block can be requested from the
5817 ** pager layer with the 'no-content' flag set. This prevents the pager
5818 ** from trying to read the pages content from disk. However, if the
5819 ** current transaction has already run one or more incremental-vacuum
5820 ** steps, then the page we are about to allocate may contain content
5821 ** that is required in the event of a rollback. In this case, do
5822 ** not set the no-content flag. This causes the pager to load and journal
5823 ** the current page content before overwriting it.
5824 **
5825 ** Note that the pager will not actually attempt to load or journal
5826 ** content for any page that really does lie past the end of the database
5827 ** file on disk. So the effects of disabling the no-content optimization
5828 ** here are confined to those pages that lie between the end of the
5829 ** database image and the end of the database file.
5830 */
drh3f387402014-09-24 01:23:00 +00005831 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005832
drhdd3cd972010-03-27 17:12:36 +00005833 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5834 if( rc ) return rc;
5835 pBt->nPage++;
5836 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005837
danielk1977afcdd022004-10-31 16:25:42 +00005838#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005839 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005840 /* If *pPgno refers to a pointer-map page, allocate two new pages
5841 ** at the end of the file instead of one. The first allocated page
5842 ** becomes a new pointer-map page, the second is used by the caller.
5843 */
danielk1977ac861692009-03-28 10:54:22 +00005844 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005845 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5846 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005847 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005848 if( rc==SQLITE_OK ){
5849 rc = sqlite3PagerWrite(pPg->pDbPage);
5850 releasePage(pPg);
5851 }
5852 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005853 pBt->nPage++;
5854 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005855 }
5856#endif
drhdd3cd972010-03-27 17:12:36 +00005857 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5858 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005859
danielk1977599fcba2004-11-08 07:13:13 +00005860 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005861 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005862 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005863 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005864 if( rc!=SQLITE_OK ){
5865 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005866 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005867 }
drh3a4c1412004-05-09 20:40:11 +00005868 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005869 }
danielk1977599fcba2004-11-08 07:13:13 +00005870
5871 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005872
5873end_allocate_page:
5874 releasePage(pTrunk);
5875 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005876 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5877 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005878 return rc;
5879}
5880
5881/*
danielk1977bea2a942009-01-20 17:06:27 +00005882** This function is used to add page iPage to the database file free-list.
5883** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005884**
danielk1977bea2a942009-01-20 17:06:27 +00005885** The value passed as the second argument to this function is optional.
5886** If the caller happens to have a pointer to the MemPage object
5887** corresponding to page iPage handy, it may pass it as the second value.
5888** Otherwise, it may pass NULL.
5889**
5890** If a pointer to a MemPage object is passed as the second argument,
5891** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005892*/
danielk1977bea2a942009-01-20 17:06:27 +00005893static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5894 MemPage *pTrunk = 0; /* Free-list trunk page */
5895 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5896 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5897 MemPage *pPage; /* Page being freed. May be NULL. */
5898 int rc; /* Return Code */
5899 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005900
danielk1977bea2a942009-01-20 17:06:27 +00005901 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005902 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005903 assert( !pMemPage || pMemPage->pgno==iPage );
5904
danfb0246b2015-05-26 12:18:17 +00005905 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005906 if( pMemPage ){
5907 pPage = pMemPage;
5908 sqlite3PagerRef(pPage->pDbPage);
5909 }else{
5910 pPage = btreePageLookup(pBt, iPage);
5911 }
drh3aac2dd2004-04-26 14:10:20 +00005912
drha34b6762004-05-07 13:30:42 +00005913 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005914 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005915 if( rc ) goto freepage_out;
5916 nFree = get4byte(&pPage1->aData[36]);
5917 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005918
drhc9166342012-01-05 23:32:06 +00005919 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005920 /* If the secure_delete option is enabled, then
5921 ** always fully overwrite deleted information with zeros.
5922 */
drhb00fc3b2013-08-21 23:42:32 +00005923 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005924 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005925 ){
5926 goto freepage_out;
5927 }
5928 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005929 }
drhfcce93f2006-02-22 03:08:32 +00005930
danielk1977687566d2004-11-02 12:56:41 +00005931 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005932 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005933 */
danielk197785d90ca2008-07-19 14:25:15 +00005934 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005935 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005936 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005937 }
danielk1977687566d2004-11-02 12:56:41 +00005938
danielk1977bea2a942009-01-20 17:06:27 +00005939 /* Now manipulate the actual database free-list structure. There are two
5940 ** possibilities. If the free-list is currently empty, or if the first
5941 ** trunk page in the free-list is full, then this page will become a
5942 ** new free-list trunk page. Otherwise, it will become a leaf of the
5943 ** first trunk page in the current free-list. This block tests if it
5944 ** is possible to add the page as a new free-list leaf.
5945 */
5946 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005947 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005948
5949 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005950 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005951 if( rc!=SQLITE_OK ){
5952 goto freepage_out;
5953 }
5954
5955 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005956 assert( pBt->usableSize>32 );
5957 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005958 rc = SQLITE_CORRUPT_BKPT;
5959 goto freepage_out;
5960 }
drheeb844a2009-08-08 18:01:07 +00005961 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005962 /* In this case there is room on the trunk page to insert the page
5963 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005964 **
5965 ** Note that the trunk page is not really full until it contains
5966 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5967 ** coded. But due to a coding error in versions of SQLite prior to
5968 ** 3.6.0, databases with freelist trunk pages holding more than
5969 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5970 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005971 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005972 ** for now. At some point in the future (once everyone has upgraded
5973 ** to 3.6.0 or later) we should consider fixing the conditional above
5974 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005975 **
5976 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5977 ** avoid using the last six entries in the freelist trunk page array in
5978 ** order that database files created by newer versions of SQLite can be
5979 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005980 */
danielk19773b8a05f2007-03-19 17:44:26 +00005981 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005982 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005983 put4byte(&pTrunk->aData[4], nLeaf+1);
5984 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005985 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005986 sqlite3PagerDontWrite(pPage->pDbPage);
5987 }
danielk1977bea2a942009-01-20 17:06:27 +00005988 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005989 }
drh3a4c1412004-05-09 20:40:11 +00005990 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005991 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005992 }
drh3b7511c2001-05-26 13:15:44 +00005993 }
danielk1977bea2a942009-01-20 17:06:27 +00005994
5995 /* If control flows to this point, then it was not possible to add the
5996 ** the page being freed as a leaf page of the first trunk in the free-list.
5997 ** Possibly because the free-list is empty, or possibly because the
5998 ** first trunk in the free-list is full. Either way, the page being freed
5999 ** will become the new first trunk page in the free-list.
6000 */
drhb00fc3b2013-08-21 23:42:32 +00006001 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006002 goto freepage_out;
6003 }
6004 rc = sqlite3PagerWrite(pPage->pDbPage);
6005 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006006 goto freepage_out;
6007 }
6008 put4byte(pPage->aData, iTrunk);
6009 put4byte(&pPage->aData[4], 0);
6010 put4byte(&pPage1->aData[32], iPage);
6011 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6012
6013freepage_out:
6014 if( pPage ){
6015 pPage->isInit = 0;
6016 }
6017 releasePage(pPage);
6018 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006019 return rc;
6020}
drhc314dc72009-07-21 11:52:34 +00006021static void freePage(MemPage *pPage, int *pRC){
6022 if( (*pRC)==SQLITE_OK ){
6023 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6024 }
danielk1977bea2a942009-01-20 17:06:27 +00006025}
drh3b7511c2001-05-26 13:15:44 +00006026
6027/*
drh9bfdc252014-09-24 02:05:41 +00006028** Free any overflow pages associated with the given Cell. Write the
6029** local Cell size (the number of bytes on the original page, omitting
6030** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006031*/
drh9bfdc252014-09-24 02:05:41 +00006032static int clearCell(
6033 MemPage *pPage, /* The page that contains the Cell */
6034 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006035 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006036){
danielk1977aef0bf62005-12-30 16:28:01 +00006037 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006038 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006039 int rc;
drh94440812007-03-06 11:42:19 +00006040 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006041 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006042
drh1fee73e2007-08-29 04:00:57 +00006043 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006044 pPage->xParseCell(pPage, pCell, pInfo);
6045 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006046 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006047 }
drh80159da2016-12-09 17:32:51 +00006048 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006049 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006050 }
drh80159da2016-12-09 17:32:51 +00006051 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006052 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006053 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006054 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006055 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006056 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006057 );
drh72365832007-03-06 15:53:44 +00006058 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006059 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006060 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006061 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006062 /* 0 is not a legal page number and page 1 cannot be an
6063 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6064 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006065 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006066 }
danielk1977bea2a942009-01-20 17:06:27 +00006067 if( nOvfl ){
6068 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6069 if( rc ) return rc;
6070 }
dan887d4b22010-02-25 12:09:16 +00006071
shaneh1da207e2010-03-09 14:41:12 +00006072 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006073 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6074 ){
6075 /* There is no reason any cursor should have an outstanding reference
6076 ** to an overflow page belonging to a cell that is being deleted/updated.
6077 ** So if there exists more than one reference to this page, then it
6078 ** must not really be an overflow page and the database must be corrupt.
6079 ** It is helpful to detect this before calling freePage2(), as
6080 ** freePage2() may zero the page contents if secure-delete mode is
6081 ** enabled. If this 'overflow' page happens to be a page that the
6082 ** caller is iterating through or using in some other way, this
6083 ** can be problematic.
6084 */
6085 rc = SQLITE_CORRUPT_BKPT;
6086 }else{
6087 rc = freePage2(pBt, pOvfl, ovflPgno);
6088 }
6089
danielk1977bea2a942009-01-20 17:06:27 +00006090 if( pOvfl ){
6091 sqlite3PagerUnref(pOvfl->pDbPage);
6092 }
drh3b7511c2001-05-26 13:15:44 +00006093 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006094 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006095 }
drh5e2f8b92001-05-28 00:41:15 +00006096 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006097}
6098
6099/*
drh91025292004-05-03 19:49:32 +00006100** Create the byte sequence used to represent a cell on page pPage
6101** and write that byte sequence into pCell[]. Overflow pages are
6102** allocated and filled in as necessary. The calling procedure
6103** is responsible for making sure sufficient space has been allocated
6104** for pCell[].
6105**
6106** Note that pCell does not necessary need to point to the pPage->aData
6107** area. pCell might point to some temporary storage. The cell will
6108** be constructed in this temporary area then copied into pPage->aData
6109** later.
drh3b7511c2001-05-26 13:15:44 +00006110*/
6111static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006112 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006113 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006114 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006115 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006116){
drh3b7511c2001-05-26 13:15:44 +00006117 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006118 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006119 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006120 int spaceLeft;
6121 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006122 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006123 unsigned char *pPrior;
6124 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006125 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006126 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006127 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006128
drh1fee73e2007-08-29 04:00:57 +00006129 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006130
drhc5053fb2008-11-27 02:22:10 +00006131 /* pPage is not necessarily writeable since pCell might be auxiliary
6132 ** buffer space that is separate from the pPage buffer area */
6133 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6134 || sqlite3PagerIswriteable(pPage->pDbPage) );
6135
drh91025292004-05-03 19:49:32 +00006136 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006137 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006138 if( pPage->intKey ){
6139 nPayload = pX->nData + pX->nZero;
6140 pSrc = pX->pData;
6141 nSrc = pX->nData;
6142 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006143 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006144 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006145 }else{
drh8eeb4462016-05-21 20:03:42 +00006146 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6147 nSrc = nPayload = (int)pX->nKey;
6148 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006149 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006150 }
drhdfc2daa2016-05-21 23:25:29 +00006151
6152 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006153 if( nPayload<=pPage->maxLocal ){
6154 n = nHeader + nPayload;
6155 testcase( n==3 );
6156 testcase( n==4 );
6157 if( n<4 ) n = 4;
6158 *pnSize = n;
6159 spaceLeft = nPayload;
6160 pPrior = pCell;
6161 }else{
6162 int mn = pPage->minLocal;
6163 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6164 testcase( n==pPage->maxLocal );
6165 testcase( n==pPage->maxLocal+1 );
6166 if( n > pPage->maxLocal ) n = mn;
6167 spaceLeft = n;
6168 *pnSize = n + nHeader + 4;
6169 pPrior = &pCell[nHeader+n];
6170 }
drh3aac2dd2004-04-26 14:10:20 +00006171 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006172
drh6200c882014-09-23 22:36:25 +00006173 /* At this point variables should be set as follows:
6174 **
6175 ** nPayload Total payload size in bytes
6176 ** pPayload Begin writing payload here
6177 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6178 ** that means content must spill into overflow pages.
6179 ** *pnSize Size of the local cell (not counting overflow pages)
6180 ** pPrior Where to write the pgno of the first overflow page
6181 **
6182 ** Use a call to btreeParseCellPtr() to verify that the values above
6183 ** were computed correctly.
6184 */
drhd879e3e2017-02-13 13:35:55 +00006185#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006186 {
6187 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006188 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006189 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006190 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006191 assert( *pnSize == info.nSize );
6192 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006193 }
6194#endif
6195
6196 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006197 while( nPayload>0 ){
6198 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006199#ifndef SQLITE_OMIT_AUTOVACUUM
6200 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006201 if( pBt->autoVacuum ){
6202 do{
6203 pgnoOvfl++;
6204 } while(
6205 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6206 );
danielk1977b39f70b2007-05-17 18:28:11 +00006207 }
danielk1977afcdd022004-10-31 16:25:42 +00006208#endif
drhf49661a2008-12-10 16:45:50 +00006209 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006210#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006211 /* If the database supports auto-vacuum, and the second or subsequent
6212 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006213 ** for that page now.
6214 **
6215 ** If this is the first overflow page, then write a partial entry
6216 ** to the pointer-map. If we write nothing to this pointer-map slot,
6217 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006218 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006219 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006220 */
danielk19774ef24492007-05-23 09:52:41 +00006221 if( pBt->autoVacuum && rc==SQLITE_OK ){
6222 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006223 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006224 if( rc ){
6225 releasePage(pOvfl);
6226 }
danielk1977afcdd022004-10-31 16:25:42 +00006227 }
6228#endif
drh3b7511c2001-05-26 13:15:44 +00006229 if( rc ){
drh9b171272004-05-08 02:03:22 +00006230 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006231 return rc;
6232 }
drhc5053fb2008-11-27 02:22:10 +00006233
6234 /* If pToRelease is not zero than pPrior points into the data area
6235 ** of pToRelease. Make sure pToRelease is still writeable. */
6236 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6237
6238 /* If pPrior is part of the data area of pPage, then make sure pPage
6239 ** is still writeable */
6240 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6241 || sqlite3PagerIswriteable(pPage->pDbPage) );
6242
drh3aac2dd2004-04-26 14:10:20 +00006243 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006244 releasePage(pToRelease);
6245 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006246 pPrior = pOvfl->aData;
6247 put4byte(pPrior, 0);
6248 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006249 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006250 }
6251 n = nPayload;
6252 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006253
6254 /* If pToRelease is not zero than pPayload points into the data area
6255 ** of pToRelease. Make sure pToRelease is still writeable. */
6256 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6257
6258 /* If pPayload is part of the data area of pPage, then make sure pPage
6259 ** is still writeable */
6260 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6261 || sqlite3PagerIswriteable(pPage->pDbPage) );
6262
drhb026e052007-05-02 01:34:31 +00006263 if( nSrc>0 ){
6264 if( n>nSrc ) n = nSrc;
6265 assert( pSrc );
6266 memcpy(pPayload, pSrc, n);
6267 }else{
6268 memset(pPayload, 0, n);
6269 }
drh3b7511c2001-05-26 13:15:44 +00006270 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006271 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006272 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006273 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006274 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006275 }
drh9b171272004-05-08 02:03:22 +00006276 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006277 return SQLITE_OK;
6278}
6279
drh14acc042001-06-10 19:56:58 +00006280/*
6281** Remove the i-th cell from pPage. This routine effects pPage only.
6282** The cell content is not freed or deallocated. It is assumed that
6283** the cell content has been copied someplace else. This routine just
6284** removes the reference to the cell from pPage.
6285**
6286** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006287*/
drh98add2e2009-07-20 17:11:49 +00006288static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006289 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006290 u8 *data; /* pPage->aData */
6291 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006292 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006293 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006294
drh98add2e2009-07-20 17:11:49 +00006295 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006296 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006297 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006298 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006299 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006300 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006301 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006302 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006303 hdr = pPage->hdrOffset;
6304 testcase( pc==get2byte(&data[hdr+5]) );
6305 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006306 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006307 *pRC = SQLITE_CORRUPT_BKPT;
6308 return;
shane0af3f892008-11-12 04:55:34 +00006309 }
shanedcc50b72008-11-13 18:29:50 +00006310 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006311 if( rc ){
6312 *pRC = rc;
6313 return;
shanedcc50b72008-11-13 18:29:50 +00006314 }
drh14acc042001-06-10 19:56:58 +00006315 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006316 if( pPage->nCell==0 ){
6317 memset(&data[hdr+1], 0, 4);
6318 data[hdr+7] = 0;
6319 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6320 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6321 - pPage->childPtrSize - 8;
6322 }else{
6323 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6324 put2byte(&data[hdr+3], pPage->nCell);
6325 pPage->nFree += 2;
6326 }
drh14acc042001-06-10 19:56:58 +00006327}
6328
6329/*
6330** Insert a new cell on pPage at cell index "i". pCell points to the
6331** content of the cell.
6332**
6333** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006334** will not fit, then make a copy of the cell content into pTemp if
6335** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006336** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006337** in pTemp or the original pCell) and also record its index.
6338** Allocating a new entry in pPage->aCell[] implies that
6339** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006340**
6341** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006342*/
drh98add2e2009-07-20 17:11:49 +00006343static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006344 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006345 int i, /* New cell becomes the i-th cell of the page */
6346 u8 *pCell, /* Content of the new cell */
6347 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006348 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006349 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6350 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006351){
drh383d30f2010-02-26 13:07:37 +00006352 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006353 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006354 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006355 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006356
drhcb89f4a2016-05-21 11:23:26 +00006357 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006358 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006359 assert( MX_CELL(pPage->pBt)<=10921 );
6360 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006361 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6362 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006363 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006364 /* The cell should normally be sized correctly. However, when moving a
6365 ** malformed cell from a leaf page to an interior page, if the cell size
6366 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6367 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6368 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006369 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006370 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006371 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006372 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006373 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006374 }
danielk19774dbaa892009-06-16 16:50:22 +00006375 if( iChild ){
6376 put4byte(pCell, iChild);
6377 }
drh43605152004-05-29 21:46:49 +00006378 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006379 /* Comparison against ArraySize-1 since we hold back one extra slot
6380 ** as a contingency. In other words, never need more than 3 overflow
6381 ** slots but 4 are allocated, just to be safe. */
6382 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006383 pPage->apOvfl[j] = pCell;
6384 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006385
6386 /* When multiple overflows occur, they are always sequential and in
6387 ** sorted order. This invariants arise because multiple overflows can
6388 ** only occur when inserting divider cells into the parent page during
6389 ** balancing, and the dividers are adjacent and sorted.
6390 */
6391 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6392 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006393 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006394 int rc = sqlite3PagerWrite(pPage->pDbPage);
6395 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006396 *pRC = rc;
6397 return;
danielk19776e465eb2007-08-21 13:11:00 +00006398 }
6399 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006400 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006401 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006402 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006403 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006404 /* The allocateSpace() routine guarantees the following properties
6405 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006406 assert( idx >= 0 );
6407 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006408 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006409 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006410 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006411 if( iChild ){
6412 put4byte(&data[idx], iChild);
6413 }
drh2c8fb922015-06-25 19:53:48 +00006414 pIns = pPage->aCellIdx + i*2;
6415 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6416 put2byte(pIns, idx);
6417 pPage->nCell++;
6418 /* increment the cell count */
6419 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6420 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006421#ifndef SQLITE_OMIT_AUTOVACUUM
6422 if( pPage->pBt->autoVacuum ){
6423 /* The cell may contain a pointer to an overflow page. If so, write
6424 ** the entry for the overflow page into the pointer map.
6425 */
drh98add2e2009-07-20 17:11:49 +00006426 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006427 }
6428#endif
drh14acc042001-06-10 19:56:58 +00006429 }
6430}
6431
6432/*
drh1ffd2472015-06-23 02:37:30 +00006433** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006434** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006435*/
drh1ffd2472015-06-23 02:37:30 +00006436typedef struct CellArray CellArray;
6437struct CellArray {
6438 int nCell; /* Number of cells in apCell[] */
6439 MemPage *pRef; /* Reference page */
6440 u8 **apCell; /* All cells begin balanced */
6441 u16 *szCell; /* Local size of all cells in apCell[] */
6442};
drhfa1a98a2004-05-14 19:08:17 +00006443
drh1ffd2472015-06-23 02:37:30 +00006444/*
6445** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6446** computed.
6447*/
6448static void populateCellCache(CellArray *p, int idx, int N){
6449 assert( idx>=0 && idx+N<=p->nCell );
6450 while( N>0 ){
6451 assert( p->apCell[idx]!=0 );
6452 if( p->szCell[idx]==0 ){
6453 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6454 }else{
6455 assert( CORRUPT_DB ||
6456 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6457 }
6458 idx++;
6459 N--;
drhfa1a98a2004-05-14 19:08:17 +00006460 }
drh1ffd2472015-06-23 02:37:30 +00006461}
6462
6463/*
6464** Return the size of the Nth element of the cell array
6465*/
6466static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6467 assert( N>=0 && N<p->nCell );
6468 assert( p->szCell[N]==0 );
6469 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6470 return p->szCell[N];
6471}
6472static u16 cachedCellSize(CellArray *p, int N){
6473 assert( N>=0 && N<p->nCell );
6474 if( p->szCell[N] ) return p->szCell[N];
6475 return computeCellSize(p, N);
6476}
6477
6478/*
dan8e9ba0c2014-10-14 17:27:04 +00006479** Array apCell[] contains pointers to nCell b-tree page cells. The
6480** szCell[] array contains the size in bytes of each cell. This function
6481** replaces the current contents of page pPg with the contents of the cell
6482** array.
6483**
6484** Some of the cells in apCell[] may currently be stored in pPg. This
6485** function works around problems caused by this by making a copy of any
6486** such cells before overwriting the page data.
6487**
6488** The MemPage.nFree field is invalidated by this function. It is the
6489** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006490*/
drh658873b2015-06-22 20:02:04 +00006491static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006492 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006493 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006494 u8 **apCell, /* Array of cells */
6495 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006496){
6497 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6498 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6499 const int usableSize = pPg->pBt->usableSize;
6500 u8 * const pEnd = &aData[usableSize];
6501 int i;
6502 u8 *pCellptr = pPg->aCellIdx;
6503 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6504 u8 *pData;
6505
6506 i = get2byte(&aData[hdr+5]);
6507 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006508
dan8e9ba0c2014-10-14 17:27:04 +00006509 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006510 for(i=0; i<nCell; i++){
6511 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006512 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006513 pCell = &pTmp[pCell - aData];
6514 }
6515 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006516 put2byte(pCellptr, (pData - aData));
6517 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006518 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6519 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006520 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006521 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006522 }
6523
dand7b545b2014-10-13 18:03:27 +00006524 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006525 pPg->nCell = nCell;
6526 pPg->nOverflow = 0;
6527
6528 put2byte(&aData[hdr+1], 0);
6529 put2byte(&aData[hdr+3], pPg->nCell);
6530 put2byte(&aData[hdr+5], pData - aData);
6531 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006532 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006533}
6534
dan8e9ba0c2014-10-14 17:27:04 +00006535/*
6536** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6537** contains the size in bytes of each such cell. This function attempts to
6538** add the cells stored in the array to page pPg. If it cannot (because
6539** the page needs to be defragmented before the cells will fit), non-zero
6540** is returned. Otherwise, if the cells are added successfully, zero is
6541** returned.
6542**
6543** Argument pCellptr points to the first entry in the cell-pointer array
6544** (part of page pPg) to populate. After cell apCell[0] is written to the
6545** page body, a 16-bit offset is written to pCellptr. And so on, for each
6546** cell in the array. It is the responsibility of the caller to ensure
6547** that it is safe to overwrite this part of the cell-pointer array.
6548**
6549** When this function is called, *ppData points to the start of the
6550** content area on page pPg. If the size of the content area is extended,
6551** *ppData is updated to point to the new start of the content area
6552** before returning.
6553**
6554** Finally, argument pBegin points to the byte immediately following the
6555** end of the space required by this page for the cell-pointer area (for
6556** all cells - not just those inserted by the current call). If the content
6557** area must be extended to before this point in order to accomodate all
6558** cells in apCell[], then the cells do not fit and non-zero is returned.
6559*/
dand7b545b2014-10-13 18:03:27 +00006560static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006561 MemPage *pPg, /* Page to add cells to */
6562 u8 *pBegin, /* End of cell-pointer array */
6563 u8 **ppData, /* IN/OUT: Page content -area pointer */
6564 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006565 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006566 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006567 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006568){
6569 int i;
6570 u8 *aData = pPg->aData;
6571 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006572 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006573 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006574 for(i=iFirst; i<iEnd; i++){
6575 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006576 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006577 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006578 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006579 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006580 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006581 pSlot = pData;
6582 }
drh48310f82015-10-10 16:41:28 +00006583 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6584 ** database. But they might for a corrupt database. Hence use memmove()
6585 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6586 assert( (pSlot+sz)<=pCArray->apCell[i]
6587 || pSlot>=(pCArray->apCell[i]+sz)
6588 || CORRUPT_DB );
6589 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006590 put2byte(pCellptr, (pSlot - aData));
6591 pCellptr += 2;
6592 }
6593 *ppData = pData;
6594 return 0;
6595}
6596
dan8e9ba0c2014-10-14 17:27:04 +00006597/*
6598** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6599** contains the size in bytes of each such cell. This function adds the
6600** space associated with each cell in the array that is currently stored
6601** within the body of pPg to the pPg free-list. The cell-pointers and other
6602** fields of the page are not updated.
6603**
6604** This function returns the total number of cells added to the free-list.
6605*/
dand7b545b2014-10-13 18:03:27 +00006606static int pageFreeArray(
6607 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006608 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006609 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006610 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006611){
6612 u8 * const aData = pPg->aData;
6613 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006614 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006615 int nRet = 0;
6616 int i;
drhf7838932015-06-23 15:36:34 +00006617 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006618 u8 *pFree = 0;
6619 int szFree = 0;
6620
drhf7838932015-06-23 15:36:34 +00006621 for(i=iFirst; i<iEnd; i++){
6622 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006623 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006624 int sz;
6625 /* No need to use cachedCellSize() here. The sizes of all cells that
6626 ** are to be freed have already been computing while deciding which
6627 ** cells need freeing */
6628 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006629 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006630 if( pFree ){
6631 assert( pFree>aData && (pFree - aData)<65536 );
6632 freeSpace(pPg, (u16)(pFree - aData), szFree);
6633 }
dand7b545b2014-10-13 18:03:27 +00006634 pFree = pCell;
6635 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006636 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006637 }else{
6638 pFree = pCell;
6639 szFree += sz;
6640 }
6641 nRet++;
6642 }
6643 }
drhfefa0942014-11-05 21:21:08 +00006644 if( pFree ){
6645 assert( pFree>aData && (pFree - aData)<65536 );
6646 freeSpace(pPg, (u16)(pFree - aData), szFree);
6647 }
dand7b545b2014-10-13 18:03:27 +00006648 return nRet;
6649}
6650
dand7b545b2014-10-13 18:03:27 +00006651/*
drh5ab63772014-11-27 03:46:04 +00006652** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6653** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6654** with apCell[iOld]. After balancing, this page should hold nNew cells
6655** starting at apCell[iNew].
6656**
6657** This routine makes the necessary adjustments to pPg so that it contains
6658** the correct cells after being balanced.
6659**
dand7b545b2014-10-13 18:03:27 +00006660** The pPg->nFree field is invalid when this function returns. It is the
6661** responsibility of the caller to set it correctly.
6662*/
drh658873b2015-06-22 20:02:04 +00006663static int editPage(
dan09c68402014-10-11 20:00:24 +00006664 MemPage *pPg, /* Edit this page */
6665 int iOld, /* Index of first cell currently on page */
6666 int iNew, /* Index of new first cell on page */
6667 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006668 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006669){
dand7b545b2014-10-13 18:03:27 +00006670 u8 * const aData = pPg->aData;
6671 const int hdr = pPg->hdrOffset;
6672 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6673 int nCell = pPg->nCell; /* Cells stored on pPg */
6674 u8 *pData;
6675 u8 *pCellptr;
6676 int i;
6677 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6678 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006679
6680#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006681 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6682 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006683#endif
6684
dand7b545b2014-10-13 18:03:27 +00006685 /* Remove cells from the start and end of the page */
6686 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006687 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006688 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6689 nCell -= nShift;
6690 }
6691 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006692 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006693 }
dan09c68402014-10-11 20:00:24 +00006694
drh5ab63772014-11-27 03:46:04 +00006695 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006696 if( pData<pBegin ) goto editpage_fail;
6697
6698 /* Add cells to the start of the page */
6699 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006700 int nAdd = MIN(nNew,iOld-iNew);
6701 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006702 pCellptr = pPg->aCellIdx;
6703 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6704 if( pageInsertArray(
6705 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006706 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006707 ) ) goto editpage_fail;
6708 nCell += nAdd;
6709 }
6710
6711 /* Add any overflow cells */
6712 for(i=0; i<pPg->nOverflow; i++){
6713 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6714 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006715 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006716 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6717 nCell++;
6718 if( pageInsertArray(
6719 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006720 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006721 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006722 }
dand7b545b2014-10-13 18:03:27 +00006723 }
dan09c68402014-10-11 20:00:24 +00006724
dand7b545b2014-10-13 18:03:27 +00006725 /* Append cells to the end of the page */
6726 pCellptr = &pPg->aCellIdx[nCell*2];
6727 if( pageInsertArray(
6728 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006729 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006730 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006731
dand7b545b2014-10-13 18:03:27 +00006732 pPg->nCell = nNew;
6733 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006734
dand7b545b2014-10-13 18:03:27 +00006735 put2byte(&aData[hdr+3], pPg->nCell);
6736 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006737
6738#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006739 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006740 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006741 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006742 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006743 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006744 }
drh1ffd2472015-06-23 02:37:30 +00006745 assert( 0==memcmp(pCell, &aData[iOff],
6746 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006747 }
dan09c68402014-10-11 20:00:24 +00006748#endif
6749
drh658873b2015-06-22 20:02:04 +00006750 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006751 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006752 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006753 populateCellCache(pCArray, iNew, nNew);
6754 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006755}
6756
drh14acc042001-06-10 19:56:58 +00006757/*
drhc3b70572003-01-04 19:44:07 +00006758** The following parameters determine how many adjacent pages get involved
6759** in a balancing operation. NN is the number of neighbors on either side
6760** of the page that participate in the balancing operation. NB is the
6761** total number of pages that participate, including the target page and
6762** NN neighbors on either side.
6763**
6764** The minimum value of NN is 1 (of course). Increasing NN above 1
6765** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6766** in exchange for a larger degradation in INSERT and UPDATE performance.
6767** The value of NN appears to give the best results overall.
6768*/
6769#define NN 1 /* Number of neighbors on either side of pPage */
6770#define NB (NN*2+1) /* Total pages involved in the balance */
6771
danielk1977ac245ec2005-01-14 13:50:11 +00006772
drh615ae552005-01-16 23:21:00 +00006773#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006774/*
6775** This version of balance() handles the common special case where
6776** a new entry is being inserted on the extreme right-end of the
6777** tree, in other words, when the new entry will become the largest
6778** entry in the tree.
6779**
drhc314dc72009-07-21 11:52:34 +00006780** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006781** a new page to the right-hand side and put the one new entry in
6782** that page. This leaves the right side of the tree somewhat
6783** unbalanced. But odds are that we will be inserting new entries
6784** at the end soon afterwards so the nearly empty page will quickly
6785** fill up. On average.
6786**
6787** pPage is the leaf page which is the right-most page in the tree.
6788** pParent is its parent. pPage must have a single overflow entry
6789** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006790**
6791** The pSpace buffer is used to store a temporary copy of the divider
6792** cell that will be inserted into pParent. Such a cell consists of a 4
6793** byte page number followed by a variable length integer. In other
6794** words, at most 13 bytes. Hence the pSpace buffer must be at
6795** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006796*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006797static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6798 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006799 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006800 int rc; /* Return Code */
6801 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006802
drh1fee73e2007-08-29 04:00:57 +00006803 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006804 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006805 assert( pPage->nOverflow==1 );
6806
drh5d433ce2010-08-14 16:02:52 +00006807 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006808 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006809
danielk1977a50d9aa2009-06-08 14:49:45 +00006810 /* Allocate a new page. This page will become the right-sibling of
6811 ** pPage. Make the parent page writable, so that the new divider cell
6812 ** may be inserted. If both these operations are successful, proceed.
6813 */
drh4f0c5872007-03-26 22:05:01 +00006814 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006815
danielk1977eaa06f62008-09-18 17:34:44 +00006816 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006817
6818 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006819 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006820 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006821 u8 *pStop;
6822
drhc5053fb2008-11-27 02:22:10 +00006823 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006824 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6825 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006826 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006827 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006828 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006829
6830 /* If this is an auto-vacuum database, update the pointer map
6831 ** with entries for the new page, and any pointer from the
6832 ** cell on the page to an overflow page. If either of these
6833 ** operations fails, the return code is set, but the contents
6834 ** of the parent page are still manipulated by thh code below.
6835 ** That is Ok, at this point the parent page is guaranteed to
6836 ** be marked as dirty. Returning an error code will cause a
6837 ** rollback, undoing any changes made to the parent page.
6838 */
6839 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006840 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6841 if( szCell>pNew->minLocal ){
6842 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006843 }
6844 }
danielk1977eaa06f62008-09-18 17:34:44 +00006845
danielk19776f235cc2009-06-04 14:46:08 +00006846 /* Create a divider cell to insert into pParent. The divider cell
6847 ** consists of a 4-byte page number (the page number of pPage) and
6848 ** a variable length key value (which must be the same value as the
6849 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006850 **
danielk19776f235cc2009-06-04 14:46:08 +00006851 ** To find the largest key value on pPage, first find the right-most
6852 ** cell on pPage. The first two fields of this cell are the
6853 ** record-length (a variable length integer at most 32-bits in size)
6854 ** and the key value (a variable length integer, may have any value).
6855 ** The first of the while(...) loops below skips over the record-length
6856 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006857 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006858 */
danielk1977eaa06f62008-09-18 17:34:44 +00006859 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006860 pStop = &pCell[9];
6861 while( (*(pCell++)&0x80) && pCell<pStop );
6862 pStop = &pCell[9];
6863 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6864
danielk19774dbaa892009-06-16 16:50:22 +00006865 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006866 if( rc==SQLITE_OK ){
6867 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6868 0, pPage->pgno, &rc);
6869 }
danielk19776f235cc2009-06-04 14:46:08 +00006870
6871 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006872 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6873
danielk1977e08a3c42008-09-18 18:17:03 +00006874 /* Release the reference to the new page. */
6875 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006876 }
6877
danielk1977eaa06f62008-09-18 17:34:44 +00006878 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006879}
drh615ae552005-01-16 23:21:00 +00006880#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006881
danielk19774dbaa892009-06-16 16:50:22 +00006882#if 0
drhc3b70572003-01-04 19:44:07 +00006883/*
danielk19774dbaa892009-06-16 16:50:22 +00006884** This function does not contribute anything to the operation of SQLite.
6885** it is sometimes activated temporarily while debugging code responsible
6886** for setting pointer-map entries.
6887*/
6888static int ptrmapCheckPages(MemPage **apPage, int nPage){
6889 int i, j;
6890 for(i=0; i<nPage; i++){
6891 Pgno n;
6892 u8 e;
6893 MemPage *pPage = apPage[i];
6894 BtShared *pBt = pPage->pBt;
6895 assert( pPage->isInit );
6896
6897 for(j=0; j<pPage->nCell; j++){
6898 CellInfo info;
6899 u8 *z;
6900
6901 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006902 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006903 if( info.nLocal<info.nPayload ){
6904 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006905 ptrmapGet(pBt, ovfl, &e, &n);
6906 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6907 }
6908 if( !pPage->leaf ){
6909 Pgno child = get4byte(z);
6910 ptrmapGet(pBt, child, &e, &n);
6911 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6912 }
6913 }
6914 if( !pPage->leaf ){
6915 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6916 ptrmapGet(pBt, child, &e, &n);
6917 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6918 }
6919 }
6920 return 1;
6921}
6922#endif
6923
danielk1977cd581a72009-06-23 15:43:39 +00006924/*
6925** This function is used to copy the contents of the b-tree node stored
6926** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6927** the pointer-map entries for each child page are updated so that the
6928** parent page stored in the pointer map is page pTo. If pFrom contained
6929** any cells with overflow page pointers, then the corresponding pointer
6930** map entries are also updated so that the parent page is page pTo.
6931**
6932** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006933** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006934**
danielk197730548662009-07-09 05:07:37 +00006935** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006936**
6937** The performance of this function is not critical. It is only used by
6938** the balance_shallower() and balance_deeper() procedures, neither of
6939** which are called often under normal circumstances.
6940*/
drhc314dc72009-07-21 11:52:34 +00006941static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6942 if( (*pRC)==SQLITE_OK ){
6943 BtShared * const pBt = pFrom->pBt;
6944 u8 * const aFrom = pFrom->aData;
6945 u8 * const aTo = pTo->aData;
6946 int const iFromHdr = pFrom->hdrOffset;
6947 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006948 int rc;
drhc314dc72009-07-21 11:52:34 +00006949 int iData;
6950
6951
6952 assert( pFrom->isInit );
6953 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006954 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006955
6956 /* Copy the b-tree node content from page pFrom to page pTo. */
6957 iData = get2byte(&aFrom[iFromHdr+5]);
6958 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6959 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6960
6961 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006962 ** match the new data. The initialization of pTo can actually fail under
6963 ** fairly obscure circumstances, even though it is a copy of initialized
6964 ** page pFrom.
6965 */
drhc314dc72009-07-21 11:52:34 +00006966 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006967 rc = btreeInitPage(pTo);
6968 if( rc!=SQLITE_OK ){
6969 *pRC = rc;
6970 return;
6971 }
drhc314dc72009-07-21 11:52:34 +00006972
6973 /* If this is an auto-vacuum database, update the pointer-map entries
6974 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6975 */
6976 if( ISAUTOVACUUM ){
6977 *pRC = setChildPtrmaps(pTo);
6978 }
danielk1977cd581a72009-06-23 15:43:39 +00006979 }
danielk1977cd581a72009-06-23 15:43:39 +00006980}
6981
6982/*
danielk19774dbaa892009-06-16 16:50:22 +00006983** This routine redistributes cells on the iParentIdx'th child of pParent
6984** (hereafter "the page") and up to 2 siblings so that all pages have about the
6985** same amount of free space. Usually a single sibling on either side of the
6986** page are used in the balancing, though both siblings might come from one
6987** side if the page is the first or last child of its parent. If the page
6988** has fewer than 2 siblings (something which can only happen if the page
6989** is a root page or a child of a root page) then all available siblings
6990** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006991**
danielk19774dbaa892009-06-16 16:50:22 +00006992** The number of siblings of the page might be increased or decreased by
6993** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006994**
danielk19774dbaa892009-06-16 16:50:22 +00006995** Note that when this routine is called, some of the cells on the page
6996** might not actually be stored in MemPage.aData[]. This can happen
6997** if the page is overfull. This routine ensures that all cells allocated
6998** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006999**
danielk19774dbaa892009-06-16 16:50:22 +00007000** In the course of balancing the page and its siblings, cells may be
7001** inserted into or removed from the parent page (pParent). Doing so
7002** may cause the parent page to become overfull or underfull. If this
7003** happens, it is the responsibility of the caller to invoke the correct
7004** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007005**
drh5e00f6c2001-09-13 13:46:56 +00007006** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007007** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007008** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007009**
7010** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007011** buffer big enough to hold one page. If while inserting cells into the parent
7012** page (pParent) the parent page becomes overfull, this buffer is
7013** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007014** a maximum of four divider cells into the parent page, and the maximum
7015** size of a cell stored within an internal node is always less than 1/4
7016** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7017** enough for all overflow cells.
7018**
7019** If aOvflSpace is set to a null pointer, this function returns
7020** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007021*/
danielk19774dbaa892009-06-16 16:50:22 +00007022static int balance_nonroot(
7023 MemPage *pParent, /* Parent page of siblings being balanced */
7024 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007025 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007026 int isRoot, /* True if pParent is a root-page */
7027 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007028){
drh16a9b832007-05-05 18:39:25 +00007029 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007030 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007031 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007032 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007033 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007034 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007035 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007036 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007037 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007038 int usableSpace; /* Bytes in pPage beyond the header */
7039 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007040 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007041 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007042 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007043 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007044 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007045 u8 *pRight; /* Location in parent of right-sibling pointer */
7046 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007047 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7048 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007049 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007050 u8 *aSpace1; /* Space for copies of dividers cells */
7051 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007052 u8 abDone[NB+2]; /* True after i'th new page is populated */
7053 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007054 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007055 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007056 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007057
dan33ea4862014-10-09 19:35:37 +00007058 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007059 b.nCell = 0;
7060 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007061 pBt = pParent->pBt;
7062 assert( sqlite3_mutex_held(pBt->mutex) );
7063 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007064
danielk1977e5765212009-06-17 11:13:28 +00007065#if 0
drh43605152004-05-29 21:46:49 +00007066 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007067#endif
drh2e38c322004-09-03 18:38:44 +00007068
danielk19774dbaa892009-06-16 16:50:22 +00007069 /* At this point pParent may have at most one overflow cell. And if
7070 ** this overflow cell is present, it must be the cell with
7071 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007072 ** is called (indirectly) from sqlite3BtreeDelete().
7073 */
danielk19774dbaa892009-06-16 16:50:22 +00007074 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007075 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007076
danielk197711a8a862009-06-17 11:49:52 +00007077 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007078 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007079 }
7080
danielk1977a50d9aa2009-06-08 14:49:45 +00007081 /* Find the sibling pages to balance. Also locate the cells in pParent
7082 ** that divide the siblings. An attempt is made to find NN siblings on
7083 ** either side of pPage. More siblings are taken from one side, however,
7084 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007085 ** has NB or fewer children then all children of pParent are taken.
7086 **
7087 ** This loop also drops the divider cells from the parent page. This
7088 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007089 ** overflow cells in the parent page, since if any existed they will
7090 ** have already been removed.
7091 */
danielk19774dbaa892009-06-16 16:50:22 +00007092 i = pParent->nOverflow + pParent->nCell;
7093 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007094 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007095 }else{
dan7d6885a2012-08-08 14:04:56 +00007096 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007097 if( iParentIdx==0 ){
7098 nxDiv = 0;
7099 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007100 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007101 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007102 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007103 }
dan7d6885a2012-08-08 14:04:56 +00007104 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007105 }
dan7d6885a2012-08-08 14:04:56 +00007106 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007107 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7108 pRight = &pParent->aData[pParent->hdrOffset+8];
7109 }else{
7110 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7111 }
7112 pgno = get4byte(pRight);
7113 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007114 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007115 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007116 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007117 goto balance_cleanup;
7118 }
danielk1977634f2982005-03-28 08:44:07 +00007119 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007120 if( (i--)==0 ) break;
7121
drh9cc5b4e2016-12-26 01:41:33 +00007122 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007123 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007124 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007125 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007126 pParent->nOverflow = 0;
7127 }else{
7128 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7129 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007130 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007131
7132 /* Drop the cell from the parent page. apDiv[i] still points to
7133 ** the cell within the parent, even though it has been dropped.
7134 ** This is safe because dropping a cell only overwrites the first
7135 ** four bytes of it, and this function does not need the first
7136 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007137 ** later on.
7138 **
drh8a575d92011-10-12 17:00:28 +00007139 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007140 ** the dropCell() routine will overwrite the entire cell with zeroes.
7141 ** In this case, temporarily copy the cell into the aOvflSpace[]
7142 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7143 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007144 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007145 int iOff;
7146
7147 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007148 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007149 rc = SQLITE_CORRUPT_BKPT;
7150 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7151 goto balance_cleanup;
7152 }else{
7153 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7154 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7155 }
drh5b47efa2010-02-12 18:18:39 +00007156 }
drh98add2e2009-07-20 17:11:49 +00007157 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007158 }
drh8b2f49b2001-06-08 00:21:52 +00007159 }
7160
drha9121e42008-02-19 14:59:35 +00007161 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007162 ** alignment */
drha9121e42008-02-19 14:59:35 +00007163 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007164
drh8b2f49b2001-06-08 00:21:52 +00007165 /*
danielk1977634f2982005-03-28 08:44:07 +00007166 ** Allocate space for memory structures
7167 */
drhfacf0302008-06-17 15:12:00 +00007168 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007169 nMaxCells*sizeof(u8*) /* b.apCell */
7170 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007171 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007172
drhcbd55b02014-11-04 14:22:27 +00007173 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7174 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007175 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007176 b.apCell = sqlite3ScratchMalloc( szScratch );
7177 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007178 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007179 goto balance_cleanup;
7180 }
drh1ffd2472015-06-23 02:37:30 +00007181 b.szCell = (u16*)&b.apCell[nMaxCells];
7182 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007183 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007184
7185 /*
7186 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007187 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007188 ** into space obtained from aSpace1[]. The divider cells have already
7189 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007190 **
7191 ** If the siblings are on leaf pages, then the child pointers of the
7192 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007193 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007194 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007195 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007196 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007197 **
7198 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7199 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007200 */
drh1ffd2472015-06-23 02:37:30 +00007201 b.pRef = apOld[0];
7202 leafCorrection = b.pRef->leaf*4;
7203 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007204 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007205 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007206 int limit = pOld->nCell;
7207 u8 *aData = pOld->aData;
7208 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007209 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007210 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007211
drh73d340a2015-05-28 11:23:11 +00007212 /* Verify that all sibling pages are of the same "type" (table-leaf,
7213 ** table-interior, index-leaf, or index-interior).
7214 */
7215 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7216 rc = SQLITE_CORRUPT_BKPT;
7217 goto balance_cleanup;
7218 }
7219
drhfe647dc2015-06-23 18:24:25 +00007220 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7221 ** constains overflow cells, include them in the b.apCell[] array
7222 ** in the correct spot.
7223 **
7224 ** Note that when there are multiple overflow cells, it is always the
7225 ** case that they are sequential and adjacent. This invariant arises
7226 ** because multiple overflows can only occurs when inserting divider
7227 ** cells into a parent on a prior balance, and divider cells are always
7228 ** adjacent and are inserted in order. There is an assert() tagged
7229 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7230 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007231 **
7232 ** This must be done in advance. Once the balance starts, the cell
7233 ** offset section of the btree page will be overwritten and we will no
7234 ** long be able to find the cells if a pointer to each cell is not saved
7235 ** first.
7236 */
drh36b78ee2016-01-20 01:32:00 +00007237 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007238 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007239 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007240 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007241 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007242 piCell += 2;
7243 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007244 }
drhfe647dc2015-06-23 18:24:25 +00007245 for(k=0; k<pOld->nOverflow; k++){
7246 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007247 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007248 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007249 }
drh1ffd2472015-06-23 02:37:30 +00007250 }
drhfe647dc2015-06-23 18:24:25 +00007251 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7252 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007253 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007254 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007255 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007256 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007257 }
7258
drh1ffd2472015-06-23 02:37:30 +00007259 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007260 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007261 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007262 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007263 assert( b.nCell<nMaxCells );
7264 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007265 pTemp = &aSpace1[iSpace1];
7266 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007267 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007268 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007269 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007270 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007271 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007272 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007273 if( !pOld->leaf ){
7274 assert( leafCorrection==0 );
7275 assert( pOld->hdrOffset==0 );
7276 /* The right pointer of the child page pOld becomes the left
7277 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007278 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007279 }else{
7280 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007281 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007282 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7283 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007284 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7285 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007286 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007287 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007288 }
7289 }
drh1ffd2472015-06-23 02:37:30 +00007290 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007291 }
drh8b2f49b2001-06-08 00:21:52 +00007292 }
7293
7294 /*
drh1ffd2472015-06-23 02:37:30 +00007295 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007296 ** Store this number in "k". Also compute szNew[] which is the total
7297 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007298 ** in b.apCell[] of the cell that divides page i from page i+1.
7299 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007300 **
drh96f5b762004-05-16 16:24:36 +00007301 ** Values computed by this block:
7302 **
7303 ** k: The total number of sibling pages
7304 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007305 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007306 ** the right of the i-th sibling page.
7307 ** usableSpace: Number of bytes of space available on each sibling.
7308 **
drh8b2f49b2001-06-08 00:21:52 +00007309 */
drh43605152004-05-29 21:46:49 +00007310 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007311 for(i=0; i<nOld; i++){
7312 MemPage *p = apOld[i];
7313 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007314 for(j=0; j<p->nOverflow; j++){
7315 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7316 }
7317 cntNew[i] = cntOld[i];
7318 }
7319 k = nOld;
7320 for(i=0; i<k; i++){
7321 int sz;
7322 while( szNew[i]>usableSpace ){
7323 if( i+1>=k ){
7324 k = i+2;
7325 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7326 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007327 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007328 }
drh1ffd2472015-06-23 02:37:30 +00007329 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007330 szNew[i] -= sz;
7331 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007332 if( cntNew[i]<b.nCell ){
7333 sz = 2 + cachedCellSize(&b, cntNew[i]);
7334 }else{
7335 sz = 0;
7336 }
drh658873b2015-06-22 20:02:04 +00007337 }
7338 szNew[i+1] += sz;
7339 cntNew[i]--;
7340 }
drh1ffd2472015-06-23 02:37:30 +00007341 while( cntNew[i]<b.nCell ){
7342 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007343 if( szNew[i]+sz>usableSpace ) break;
7344 szNew[i] += sz;
7345 cntNew[i]++;
7346 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007347 if( cntNew[i]<b.nCell ){
7348 sz = 2 + cachedCellSize(&b, cntNew[i]);
7349 }else{
7350 sz = 0;
7351 }
drh658873b2015-06-22 20:02:04 +00007352 }
7353 szNew[i+1] -= sz;
7354 }
drh1ffd2472015-06-23 02:37:30 +00007355 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007356 k = i+1;
drh672073a2015-06-24 12:07:40 +00007357 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007358 rc = SQLITE_CORRUPT_BKPT;
7359 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007360 }
7361 }
drh96f5b762004-05-16 16:24:36 +00007362
7363 /*
7364 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007365 ** on the left side (siblings with smaller keys). The left siblings are
7366 ** always nearly full, while the right-most sibling might be nearly empty.
7367 ** The next block of code attempts to adjust the packing of siblings to
7368 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007369 **
7370 ** This adjustment is more than an optimization. The packing above might
7371 ** be so out of balance as to be illegal. For example, the right-most
7372 ** sibling might be completely empty. This adjustment is not optional.
7373 */
drh6019e162001-07-02 17:51:45 +00007374 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007375 int szRight = szNew[i]; /* Size of sibling on the right */
7376 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7377 int r; /* Index of right-most cell in left sibling */
7378 int d; /* Index of first cell to the left of right sibling */
7379
7380 r = cntNew[i-1] - 1;
7381 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007382 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007383 do{
drh1ffd2472015-06-23 02:37:30 +00007384 assert( d<nMaxCells );
7385 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007386 (void)cachedCellSize(&b, r);
7387 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007388 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007389 break;
7390 }
7391 szRight += b.szCell[d] + 2;
7392 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007393 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007394 r--;
7395 d--;
drh672073a2015-06-24 12:07:40 +00007396 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007397 szNew[i] = szRight;
7398 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007399 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7400 rc = SQLITE_CORRUPT_BKPT;
7401 goto balance_cleanup;
7402 }
drh6019e162001-07-02 17:51:45 +00007403 }
drh09d0deb2005-08-02 17:13:09 +00007404
drh2a0df922014-10-30 23:14:56 +00007405 /* Sanity check: For a non-corrupt database file one of the follwing
7406 ** must be true:
7407 ** (1) We found one or more cells (cntNew[0])>0), or
7408 ** (2) pPage is a virtual root page. A virtual root page is when
7409 ** the real root page is page 1 and we are the only child of
7410 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007411 */
drh2a0df922014-10-30 23:14:56 +00007412 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007413 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7414 apOld[0]->pgno, apOld[0]->nCell,
7415 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7416 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007417 ));
7418
drh8b2f49b2001-06-08 00:21:52 +00007419 /*
drh6b308672002-07-08 02:16:37 +00007420 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007421 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007422 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007423 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007424 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007425 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007426 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007427 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007428 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007429 nNew++;
danielk197728129562005-01-11 10:25:06 +00007430 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007431 }else{
drh7aa8f852006-03-28 00:24:44 +00007432 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007433 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007434 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007435 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007436 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007437 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007438 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007439
7440 /* Set the pointer-map entry for the new sibling page. */
7441 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007442 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007443 if( rc!=SQLITE_OK ){
7444 goto balance_cleanup;
7445 }
7446 }
drh6b308672002-07-08 02:16:37 +00007447 }
drh8b2f49b2001-06-08 00:21:52 +00007448 }
7449
7450 /*
dan33ea4862014-10-09 19:35:37 +00007451 ** Reassign page numbers so that the new pages are in ascending order.
7452 ** This helps to keep entries in the disk file in order so that a scan
7453 ** of the table is closer to a linear scan through the file. That in turn
7454 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007455 **
dan33ea4862014-10-09 19:35:37 +00007456 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7457 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007458 **
dan33ea4862014-10-09 19:35:37 +00007459 ** When NB==3, this one optimization makes the database about 25% faster
7460 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007461 */
dan33ea4862014-10-09 19:35:37 +00007462 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007463 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007464 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007465 for(j=0; j<i; j++){
7466 if( aPgno[j]==aPgno[i] ){
7467 /* This branch is taken if the set of sibling pages somehow contains
7468 ** duplicate entries. This can happen if the database is corrupt.
7469 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007470 ** we do the detection here in order to avoid populating the pager
7471 ** cache with two separate objects associated with the same
7472 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007473 assert( CORRUPT_DB );
7474 rc = SQLITE_CORRUPT_BKPT;
7475 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007476 }
7477 }
dan33ea4862014-10-09 19:35:37 +00007478 }
7479 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007480 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007481 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007482 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007483 }
drh00fe08a2014-10-31 00:05:23 +00007484 pgno = aPgOrder[iBest];
7485 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007486 if( iBest!=i ){
7487 if( iBest>i ){
7488 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7489 }
7490 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7491 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007492 }
7493 }
dan33ea4862014-10-09 19:35:37 +00007494
7495 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7496 "%d(%d nc=%d) %d(%d nc=%d)\n",
7497 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007498 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007499 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007500 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007501 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007502 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007503 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7504 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7505 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7506 ));
danielk19774dbaa892009-06-16 16:50:22 +00007507
7508 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7509 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007510
dan33ea4862014-10-09 19:35:37 +00007511 /* If the sibling pages are not leaves, ensure that the right-child pointer
7512 ** of the right-most new sibling page is set to the value that was
7513 ** originally in the same field of the right-most old sibling page. */
7514 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7515 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7516 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7517 }
danielk1977ac11ee62005-01-15 12:45:51 +00007518
dan33ea4862014-10-09 19:35:37 +00007519 /* Make any required updates to pointer map entries associated with
7520 ** cells stored on sibling pages following the balance operation. Pointer
7521 ** map entries associated with divider cells are set by the insertCell()
7522 ** routine. The associated pointer map entries are:
7523 **
7524 ** a) if the cell contains a reference to an overflow chain, the
7525 ** entry associated with the first page in the overflow chain, and
7526 **
7527 ** b) if the sibling pages are not leaves, the child page associated
7528 ** with the cell.
7529 **
7530 ** If the sibling pages are not leaves, then the pointer map entry
7531 ** associated with the right-child of each sibling may also need to be
7532 ** updated. This happens below, after the sibling pages have been
7533 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007534 */
dan33ea4862014-10-09 19:35:37 +00007535 if( ISAUTOVACUUM ){
7536 MemPage *pNew = apNew[0];
7537 u8 *aOld = pNew->aData;
7538 int cntOldNext = pNew->nCell + pNew->nOverflow;
7539 int usableSize = pBt->usableSize;
7540 int iNew = 0;
7541 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007542
drh1ffd2472015-06-23 02:37:30 +00007543 for(i=0; i<b.nCell; i++){
7544 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007545 if( i==cntOldNext ){
7546 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7547 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7548 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007549 }
dan33ea4862014-10-09 19:35:37 +00007550 if( i==cntNew[iNew] ){
7551 pNew = apNew[++iNew];
7552 if( !leafData ) continue;
7553 }
danielk197785d90ca2008-07-19 14:25:15 +00007554
dan33ea4862014-10-09 19:35:37 +00007555 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007556 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007557 ** or else the divider cell to the left of sibling page iOld. So,
7558 ** if sibling page iOld had the same page number as pNew, and if
7559 ** pCell really was a part of sibling page iOld (not a divider or
7560 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007561 if( iOld>=nNew
7562 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007563 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007564 ){
dan33ea4862014-10-09 19:35:37 +00007565 if( !leafCorrection ){
7566 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7567 }
drh1ffd2472015-06-23 02:37:30 +00007568 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007569 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007570 }
drhea82b372015-06-23 21:35:28 +00007571 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007572 }
drh14acc042001-06-10 19:56:58 +00007573 }
7574 }
dan33ea4862014-10-09 19:35:37 +00007575
7576 /* Insert new divider cells into pParent. */
7577 for(i=0; i<nNew-1; i++){
7578 u8 *pCell;
7579 u8 *pTemp;
7580 int sz;
7581 MemPage *pNew = apNew[i];
7582 j = cntNew[i];
7583
7584 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007585 assert( b.apCell[j]!=0 );
7586 pCell = b.apCell[j];
7587 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007588 pTemp = &aOvflSpace[iOvflSpace];
7589 if( !pNew->leaf ){
7590 memcpy(&pNew->aData[8], pCell, 4);
7591 }else if( leafData ){
7592 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007593 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007594 ** cell consists of the integer key for the right-most cell of
7595 ** the sibling-page assembled above only.
7596 */
7597 CellInfo info;
7598 j--;
drh1ffd2472015-06-23 02:37:30 +00007599 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007600 pCell = pTemp;
7601 sz = 4 + putVarint(&pCell[4], info.nKey);
7602 pTemp = 0;
7603 }else{
7604 pCell -= 4;
7605 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7606 ** previously stored on a leaf node, and its reported size was 4
7607 ** bytes, then it may actually be smaller than this
7608 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7609 ** any cell). But it is important to pass the correct size to
7610 ** insertCell(), so reparse the cell now.
7611 **
drhc1fb2b82016-03-09 03:29:27 +00007612 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7613 ** and WITHOUT ROWID tables with exactly one column which is the
7614 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007615 */
drh1ffd2472015-06-23 02:37:30 +00007616 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007617 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007618 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007619 }
7620 }
7621 iOvflSpace += sz;
7622 assert( sz<=pBt->maxLocal+23 );
7623 assert( iOvflSpace <= (int)pBt->pageSize );
7624 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7625 if( rc!=SQLITE_OK ) goto balance_cleanup;
7626 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7627 }
7628
7629 /* Now update the actual sibling pages. The order in which they are updated
7630 ** is important, as this code needs to avoid disrupting any page from which
7631 ** cells may still to be read. In practice, this means:
7632 **
drhd836d422014-10-31 14:26:36 +00007633 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7634 ** then it is not safe to update page apNew[iPg] until after
7635 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007636 **
drhd836d422014-10-31 14:26:36 +00007637 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7638 ** then it is not safe to update page apNew[iPg] until after
7639 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007640 **
7641 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007642 **
7643 ** The iPg value in the following loop starts at nNew-1 goes down
7644 ** to 0, then back up to nNew-1 again, thus making two passes over
7645 ** the pages. On the initial downward pass, only condition (1) above
7646 ** needs to be tested because (2) will always be true from the previous
7647 ** step. On the upward pass, both conditions are always true, so the
7648 ** upwards pass simply processes pages that were missed on the downward
7649 ** pass.
dan33ea4862014-10-09 19:35:37 +00007650 */
drhbec021b2014-10-31 12:22:00 +00007651 for(i=1-nNew; i<nNew; i++){
7652 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007653 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007654 if( abDone[iPg] ) continue; /* Skip pages already processed */
7655 if( i>=0 /* On the upwards pass, or... */
7656 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007657 ){
dan09c68402014-10-11 20:00:24 +00007658 int iNew;
7659 int iOld;
7660 int nNewCell;
7661
drhd836d422014-10-31 14:26:36 +00007662 /* Verify condition (1): If cells are moving left, update iPg
7663 ** only after iPg-1 has already been updated. */
7664 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7665
7666 /* Verify condition (2): If cells are moving right, update iPg
7667 ** only after iPg+1 has already been updated. */
7668 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7669
dan09c68402014-10-11 20:00:24 +00007670 if( iPg==0 ){
7671 iNew = iOld = 0;
7672 nNewCell = cntNew[0];
7673 }else{
drh1ffd2472015-06-23 02:37:30 +00007674 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007675 iNew = cntNew[iPg-1] + !leafData;
7676 nNewCell = cntNew[iPg] - iNew;
7677 }
7678
drh1ffd2472015-06-23 02:37:30 +00007679 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007680 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007681 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007682 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007683 assert( apNew[iPg]->nOverflow==0 );
7684 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007685 }
7686 }
drhd836d422014-10-31 14:26:36 +00007687
7688 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007689 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7690
drh7aa8f852006-03-28 00:24:44 +00007691 assert( nOld>0 );
7692 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007693
danielk197713bd99f2009-06-24 05:40:34 +00007694 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7695 /* The root page of the b-tree now contains no cells. The only sibling
7696 ** page is the right-child of the parent. Copy the contents of the
7697 ** child page into the parent, decreasing the overall height of the
7698 ** b-tree structure by one. This is described as the "balance-shallower"
7699 ** sub-algorithm in some documentation.
7700 **
7701 ** If this is an auto-vacuum database, the call to copyNodeContent()
7702 ** sets all pointer-map entries corresponding to database image pages
7703 ** for which the pointer is stored within the content being copied.
7704 **
drh768f2902014-10-31 02:51:41 +00007705 ** It is critical that the child page be defragmented before being
7706 ** copied into the parent, because if the parent is page 1 then it will
7707 ** by smaller than the child due to the database header, and so all the
7708 ** free space needs to be up front.
7709 */
drh9b5351d2015-09-30 14:19:08 +00007710 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007711 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007712 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007713 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007714 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7715 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007716 );
drhc314dc72009-07-21 11:52:34 +00007717 copyNodeContent(apNew[0], pParent, &rc);
7718 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007719 }else if( ISAUTOVACUUM && !leafCorrection ){
7720 /* Fix the pointer map entries associated with the right-child of each
7721 ** sibling page. All other pointer map entries have already been taken
7722 ** care of. */
7723 for(i=0; i<nNew; i++){
7724 u32 key = get4byte(&apNew[i]->aData[8]);
7725 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007726 }
dan33ea4862014-10-09 19:35:37 +00007727 }
danielk19774dbaa892009-06-16 16:50:22 +00007728
dan33ea4862014-10-09 19:35:37 +00007729 assert( pParent->isInit );
7730 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007731 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007732
dan33ea4862014-10-09 19:35:37 +00007733 /* Free any old pages that were not reused as new pages.
7734 */
7735 for(i=nNew; i<nOld; i++){
7736 freePage(apOld[i], &rc);
7737 }
danielk19774dbaa892009-06-16 16:50:22 +00007738
7739#if 0
dan33ea4862014-10-09 19:35:37 +00007740 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007741 /* The ptrmapCheckPages() contains assert() statements that verify that
7742 ** all pointer map pages are set correctly. This is helpful while
7743 ** debugging. This is usually disabled because a corrupt database may
7744 ** cause an assert() statement to fail. */
7745 ptrmapCheckPages(apNew, nNew);
7746 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007747 }
dan33ea4862014-10-09 19:35:37 +00007748#endif
danielk1977cd581a72009-06-23 15:43:39 +00007749
drh8b2f49b2001-06-08 00:21:52 +00007750 /*
drh14acc042001-06-10 19:56:58 +00007751 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007752 */
drh14acc042001-06-10 19:56:58 +00007753balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007754 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007755 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007756 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007757 }
drh14acc042001-06-10 19:56:58 +00007758 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007759 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007760 }
danielk1977eaa06f62008-09-18 17:34:44 +00007761
drh8b2f49b2001-06-08 00:21:52 +00007762 return rc;
7763}
7764
drh43605152004-05-29 21:46:49 +00007765
7766/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007767** This function is called when the root page of a b-tree structure is
7768** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007769**
danielk1977a50d9aa2009-06-08 14:49:45 +00007770** A new child page is allocated and the contents of the current root
7771** page, including overflow cells, are copied into the child. The root
7772** page is then overwritten to make it an empty page with the right-child
7773** pointer pointing to the new page.
7774**
7775** Before returning, all pointer-map entries corresponding to pages
7776** that the new child-page now contains pointers to are updated. The
7777** entry corresponding to the new right-child pointer of the root
7778** page is also updated.
7779**
7780** If successful, *ppChild is set to contain a reference to the child
7781** page and SQLITE_OK is returned. In this case the caller is required
7782** to call releasePage() on *ppChild exactly once. If an error occurs,
7783** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007784*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007785static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7786 int rc; /* Return value from subprocedures */
7787 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007788 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007789 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007790
danielk1977a50d9aa2009-06-08 14:49:45 +00007791 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007792 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007793
danielk1977a50d9aa2009-06-08 14:49:45 +00007794 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7795 ** page that will become the new right-child of pPage. Copy the contents
7796 ** of the node stored on pRoot into the new child page.
7797 */
drh98add2e2009-07-20 17:11:49 +00007798 rc = sqlite3PagerWrite(pRoot->pDbPage);
7799 if( rc==SQLITE_OK ){
7800 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007801 copyNodeContent(pRoot, pChild, &rc);
7802 if( ISAUTOVACUUM ){
7803 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007804 }
7805 }
7806 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007807 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007808 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007809 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007810 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007811 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7812 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7813 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007814
danielk1977a50d9aa2009-06-08 14:49:45 +00007815 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7816
7817 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007818 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7819 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7820 memcpy(pChild->apOvfl, pRoot->apOvfl,
7821 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007822 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007823
7824 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7825 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7826 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7827
7828 *ppChild = pChild;
7829 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007830}
7831
7832/*
danielk197771d5d2c2008-09-29 11:49:47 +00007833** The page that pCur currently points to has just been modified in
7834** some way. This function figures out if this modification means the
7835** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007836** routine. Balancing routines are:
7837**
7838** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007839** balance_deeper()
7840** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007841*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007842static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007843 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007844 const int nMin = pCur->pBt->usableSize * 2 / 3;
7845 u8 aBalanceQuickSpace[13];
7846 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007847
drhcc5f8a42016-02-06 22:32:06 +00007848 VVA_ONLY( int balance_quick_called = 0 );
7849 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007850
7851 do {
7852 int iPage = pCur->iPage;
7853 MemPage *pPage = pCur->apPage[iPage];
7854
7855 if( iPage==0 ){
7856 if( pPage->nOverflow ){
7857 /* The root page of the b-tree is overfull. In this case call the
7858 ** balance_deeper() function to create a new child for the root-page
7859 ** and copy the current contents of the root-page to it. The
7860 ** next iteration of the do-loop will balance the child page.
7861 */
drhcc5f8a42016-02-06 22:32:06 +00007862 assert( balance_deeper_called==0 );
7863 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007864 rc = balance_deeper(pPage, &pCur->apPage[1]);
7865 if( rc==SQLITE_OK ){
7866 pCur->iPage = 1;
7867 pCur->aiIdx[0] = 0;
7868 pCur->aiIdx[1] = 0;
7869 assert( pCur->apPage[1]->nOverflow );
7870 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007871 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007872 break;
7873 }
7874 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7875 break;
7876 }else{
7877 MemPage * const pParent = pCur->apPage[iPage-1];
7878 int const iIdx = pCur->aiIdx[iPage-1];
7879
7880 rc = sqlite3PagerWrite(pParent->pDbPage);
7881 if( rc==SQLITE_OK ){
7882#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007883 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007884 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007885 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007886 && pParent->pgno!=1
7887 && pParent->nCell==iIdx
7888 ){
7889 /* Call balance_quick() to create a new sibling of pPage on which
7890 ** to store the overflow cell. balance_quick() inserts a new cell
7891 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007892 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007893 ** use either balance_nonroot() or balance_deeper(). Until this
7894 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7895 ** buffer.
7896 **
7897 ** The purpose of the following assert() is to check that only a
7898 ** single call to balance_quick() is made for each call to this
7899 ** function. If this were not verified, a subtle bug involving reuse
7900 ** of the aBalanceQuickSpace[] might sneak in.
7901 */
drhcc5f8a42016-02-06 22:32:06 +00007902 assert( balance_quick_called==0 );
7903 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007904 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7905 }else
7906#endif
7907 {
7908 /* In this case, call balance_nonroot() to redistribute cells
7909 ** between pPage and up to 2 of its sibling pages. This involves
7910 ** modifying the contents of pParent, which may cause pParent to
7911 ** become overfull or underfull. The next iteration of the do-loop
7912 ** will balance the parent page to correct this.
7913 **
7914 ** If the parent page becomes overfull, the overflow cell or cells
7915 ** are stored in the pSpace buffer allocated immediately below.
7916 ** A subsequent iteration of the do-loop will deal with this by
7917 ** calling balance_nonroot() (balance_deeper() may be called first,
7918 ** but it doesn't deal with overflow cells - just moves them to a
7919 ** different page). Once this subsequent call to balance_nonroot()
7920 ** has completed, it is safe to release the pSpace buffer used by
7921 ** the previous call, as the overflow cell data will have been
7922 ** copied either into the body of a database page or into the new
7923 ** pSpace buffer passed to the latter call to balance_nonroot().
7924 */
7925 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007926 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7927 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007928 if( pFree ){
7929 /* If pFree is not NULL, it points to the pSpace buffer used
7930 ** by a previous call to balance_nonroot(). Its contents are
7931 ** now stored either on real database pages or within the
7932 ** new pSpace buffer, so it may be safely freed here. */
7933 sqlite3PageFree(pFree);
7934 }
7935
danielk19774dbaa892009-06-16 16:50:22 +00007936 /* The pSpace buffer will be freed after the next call to
7937 ** balance_nonroot(), or just before this function returns, whichever
7938 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007939 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007940 }
7941 }
7942
7943 pPage->nOverflow = 0;
7944
7945 /* The next iteration of the do-loop balances the parent page. */
7946 releasePage(pPage);
7947 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007948 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007949 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007950 }while( rc==SQLITE_OK );
7951
7952 if( pFree ){
7953 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007954 }
7955 return rc;
7956}
7957
drhf74b8d92002-09-01 23:20:45 +00007958
7959/*
drh8eeb4462016-05-21 20:03:42 +00007960** Insert a new record into the BTree. The content of the new record
7961** is described by the pX object. The pCur cursor is used only to
7962** define what table the record should be inserted into, and is left
7963** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00007964**
drh8eeb4462016-05-21 20:03:42 +00007965** For a table btree (used for rowid tables), only the pX.nKey value of
7966** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
7967** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
7968** hold the content of the row.
7969**
7970** For an index btree (used for indexes and WITHOUT ROWID tables), the
7971** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
7972** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00007973**
7974** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00007975** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
7976** been performed. In other words, if seekResult!=0 then the cursor
7977** is currently pointing to a cell that will be adjacent to the cell
7978** to be inserted. If seekResult<0 then pCur points to a cell that is
7979** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
7980** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00007981**
drheaf6ae22016-11-09 20:14:34 +00007982** If seekResult==0, that means pCur is pointing at some unknown location.
7983** In that case, this routine must seek the cursor to the correct insertion
7984** point for (pKey,nKey) before doing the insertion. For index btrees,
7985** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
7986** key values and pX->aMem can be used instead of pX->pKey to avoid having
7987** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00007988*/
drh3aac2dd2004-04-26 14:10:20 +00007989int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007990 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00007991 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00007992 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007993 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007994){
drh3b7511c2001-05-26 13:15:44 +00007995 int rc;
drh3e9ca092009-09-08 01:14:48 +00007996 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007997 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007998 int idx;
drh3b7511c2001-05-26 13:15:44 +00007999 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008000 Btree *p = pCur->pBtree;
8001 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008002 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008003 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008004
danf91c1312017-01-10 20:04:38 +00008005 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8006
drh98add2e2009-07-20 17:11:49 +00008007 if( pCur->eState==CURSOR_FAULT ){
8008 assert( pCur->skipNext!=SQLITE_OK );
8009 return pCur->skipNext;
8010 }
8011
dan7a2347e2016-01-07 16:43:54 +00008012 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008013 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8014 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008015 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008016 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8017
danielk197731d31b82009-07-13 13:18:07 +00008018 /* Assert that the caller has been consistent. If this cursor was opened
8019 ** expecting an index b-tree, then the caller should be inserting blob
8020 ** keys with no associated data. If the cursor was opened expecting an
8021 ** intkey table, the caller should be inserting integer keys with a
8022 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008023 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008024
danielk19779c3acf32009-05-02 07:36:49 +00008025 /* Save the positions of any other cursors open on this table.
8026 **
danielk19773509a652009-07-06 18:56:13 +00008027 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008028 ** example, when inserting data into a table with auto-generated integer
8029 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8030 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008031 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008032 ** that the cursor is already where it needs to be and returns without
8033 ** doing any work. To avoid thwarting these optimizations, it is important
8034 ** not to clear the cursor here.
8035 */
drh27fb7462015-06-30 02:47:36 +00008036 if( pCur->curFlags & BTCF_Multiple ){
8037 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8038 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008039 }
8040
danielk197771d5d2c2008-09-29 11:49:47 +00008041 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008042 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008043 /* If this is an insert into a table b-tree, invalidate any incrblob
8044 ** cursors open on the row being replaced */
drh8eeb4462016-05-21 20:03:42 +00008045 invalidateIncrblobCursors(p, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008046
danf91c1312017-01-10 20:04:38 +00008047 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8048 ** to a row with the same key as the new entry being inserted. */
8049 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8050 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8051
drhe0670b62014-02-12 21:31:12 +00008052 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008053 ** new row onto the end, set the "loc" to avoid an unnecessary
8054 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008055 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8056 loc = 0;
8057 }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8058 && pCur->info.nKey==pX->nKey-1 ){
8059 loc = -1;
drh207c8172015-06-29 23:01:32 +00008060 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008061 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008062 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008063 }
danf91c1312017-01-10 20:04:38 +00008064 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008065 if( pX->nMem ){
8066 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008067 r.pKeyInfo = pCur->pKeyInfo;
8068 r.aMem = pX->aMem;
8069 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008070 r.default_rc = 0;
8071 r.errCode = 0;
8072 r.r1 = 0;
8073 r.r2 = 0;
8074 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008075 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008076 }else{
danf91c1312017-01-10 20:04:38 +00008077 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008078 }
drh4c301aa2009-07-15 17:25:45 +00008079 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008080 }
danielk1977b980d2212009-06-22 18:03:51 +00008081 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008082
drh14acc042001-06-10 19:56:58 +00008083 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008084 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008085 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008086
drh3a4c1412004-05-09 20:40:11 +00008087 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008088 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008089 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008090 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008091 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008092 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008093 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008094 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008095 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008096 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008097 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008098 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008099 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008100 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008101 rc = sqlite3PagerWrite(pPage->pDbPage);
8102 if( rc ){
8103 goto end_insert;
8104 }
danielk197771d5d2c2008-09-29 11:49:47 +00008105 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008106 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008107 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008108 }
drh80159da2016-12-09 17:32:51 +00008109 rc = clearCell(pPage, oldCell, &info);
8110 if( info.nSize==szNew && info.nLocal==info.nPayload ){
drhf9238252016-12-09 18:09:42 +00008111 /* Overwrite the old cell with the new if they are the same size.
8112 ** We could also try to do this if the old cell is smaller, then add
8113 ** the leftover space to the free list. But experiments show that
8114 ** doing that is no faster then skipping this optimization and just
8115 ** calling dropCell() and insertCell(). */
8116 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008117 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008118 memcpy(oldCell, newCell, szNew);
8119 return SQLITE_OK;
8120 }
8121 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008122 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008123 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008124 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008125 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008126 }else{
drh4b70f112004-05-02 21:12:19 +00008127 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008128 }
drh98add2e2009-07-20 17:11:49 +00008129 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008130 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008131 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008132
mistachkin48864df2013-03-21 21:20:32 +00008133 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008134 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008135 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008136 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008137 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008138 ** Previous versions of SQLite called moveToRoot() to move the cursor
8139 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008140 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8141 ** set the cursor state to "invalid". This makes common insert operations
8142 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008143 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008144 ** There is a subtle but important optimization here too. When inserting
8145 ** multiple records into an intkey b-tree using a single cursor (as can
8146 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8147 ** is advantageous to leave the cursor pointing to the last entry in
8148 ** the b-tree if possible. If the cursor is left pointing to the last
8149 ** entry in the table, and the next row inserted has an integer key
8150 ** larger than the largest existing key, it is possible to insert the
8151 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008152 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008153 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008154 if( pPage->nOverflow ){
8155 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008156 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008157 rc = balance(pCur);
8158
8159 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008160 ** fails. Internal data structure corruption will result otherwise.
8161 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8162 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008163 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008164 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008165 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8166 rc = moveToRoot(pCur);
drh7b20a152017-01-12 19:10:55 +00008167 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008168 assert( pCur->pKey==0 );
8169 pCur->pKey = sqlite3Malloc( pX->nKey );
8170 if( pCur->pKey==0 ){
8171 rc = SQLITE_NOMEM;
8172 }else{
8173 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8174 }
8175 }
8176 pCur->eState = CURSOR_REQUIRESEEK;
8177 pCur->nKey = pX->nKey;
8178 }
danielk19773f632d52009-05-02 10:03:09 +00008179 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008180 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008181
drh2e38c322004-09-03 18:38:44 +00008182end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008183 return rc;
8184}
8185
8186/*
danf0ee1d32015-09-12 19:26:11 +00008187** Delete the entry that the cursor is pointing to.
8188**
drhe807bdb2016-01-21 17:06:33 +00008189** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8190** the cursor is left pointing at an arbitrary location after the delete.
8191** But if that bit is set, then the cursor is left in a state such that
8192** the next call to BtreeNext() or BtreePrev() moves it to the same row
8193** as it would have been on if the call to BtreeDelete() had been omitted.
8194**
drhdef19e32016-01-27 16:26:25 +00008195** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8196** associated with a single table entry and its indexes. Only one of those
8197** deletes is considered the "primary" delete. The primary delete occurs
8198** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8199** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8200** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008201** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008202*/
drhe807bdb2016-01-21 17:06:33 +00008203int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008204 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008205 BtShared *pBt = p->pBt;
8206 int rc; /* Return code */
8207 MemPage *pPage; /* Page to delete cell from */
8208 unsigned char *pCell; /* Pointer to cell to delete */
8209 int iCellIdx; /* Index of cell to delete */
8210 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008211 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008212 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008213 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008214
dan7a2347e2016-01-07 16:43:54 +00008215 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008216 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008217 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008218 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008219 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8220 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008221 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8222 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008223 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008224
danielk19774dbaa892009-06-16 16:50:22 +00008225 iCellDepth = pCur->iPage;
8226 iCellIdx = pCur->aiIdx[iCellDepth];
8227 pPage = pCur->apPage[iCellDepth];
8228 pCell = findCell(pPage, iCellIdx);
8229
drhbfc7a8b2016-04-09 17:04:05 +00008230 /* If the bPreserve flag is set to true, then the cursor position must
8231 ** be preserved following this delete operation. If the current delete
8232 ** will cause a b-tree rebalance, then this is done by saving the cursor
8233 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8234 ** returning.
8235 **
8236 ** Or, if the current delete will not cause a rebalance, then the cursor
8237 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8238 ** before or after the deleted entry. In this case set bSkipnext to true. */
8239 if( bPreserve ){
8240 if( !pPage->leaf
8241 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8242 ){
8243 /* A b-tree rebalance will be required after deleting this entry.
8244 ** Save the cursor key. */
8245 rc = saveCursorKey(pCur);
8246 if( rc ) return rc;
8247 }else{
8248 bSkipnext = 1;
8249 }
8250 }
8251
danielk19774dbaa892009-06-16 16:50:22 +00008252 /* If the page containing the entry to delete is not a leaf page, move
8253 ** the cursor to the largest entry in the tree that is smaller than
8254 ** the entry being deleted. This cell will replace the cell being deleted
8255 ** from the internal node. The 'previous' entry is used for this instead
8256 ** of the 'next' entry, as the previous entry is always a part of the
8257 ** sub-tree headed by the child page of the cell being deleted. This makes
8258 ** balancing the tree following the delete operation easier. */
8259 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008260 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008261 rc = sqlite3BtreePrevious(pCur, &notUsed);
8262 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008263 }
8264
8265 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008266 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008267 if( pCur->curFlags & BTCF_Multiple ){
8268 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8269 if( rc ) return rc;
8270 }
drhd60f4f42012-03-23 14:23:52 +00008271
8272 /* If this is a delete operation to remove a row from a table b-tree,
8273 ** invalidate any incrblob cursors open on the row being deleted. */
8274 if( pCur->pKeyInfo==0 ){
8275 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8276 }
8277
danf0ee1d32015-09-12 19:26:11 +00008278 /* Make the page containing the entry to be deleted writable. Then free any
8279 ** overflow pages associated with the entry and finally remove the cell
8280 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008281 rc = sqlite3PagerWrite(pPage->pDbPage);
8282 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008283 rc = clearCell(pPage, pCell, &info);
8284 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008285 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008286
danielk19774dbaa892009-06-16 16:50:22 +00008287 /* If the cell deleted was not located on a leaf page, then the cursor
8288 ** is currently pointing to the largest entry in the sub-tree headed
8289 ** by the child-page of the cell that was just deleted from an internal
8290 ** node. The cell from the leaf node needs to be moved to the internal
8291 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008292 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008293 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8294 int nCell;
8295 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8296 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008297
danielk19774dbaa892009-06-16 16:50:22 +00008298 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008299 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008300 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008301 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008302 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008303 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008304 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008305 if( rc==SQLITE_OK ){
8306 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8307 }
drh98add2e2009-07-20 17:11:49 +00008308 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008309 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008310 }
danielk19774dbaa892009-06-16 16:50:22 +00008311
8312 /* Balance the tree. If the entry deleted was located on a leaf page,
8313 ** then the cursor still points to that page. In this case the first
8314 ** call to balance() repairs the tree, and the if(...) condition is
8315 ** never true.
8316 **
8317 ** Otherwise, if the entry deleted was on an internal node page, then
8318 ** pCur is pointing to the leaf page from which a cell was removed to
8319 ** replace the cell deleted from the internal node. This is slightly
8320 ** tricky as the leaf node may be underfull, and the internal node may
8321 ** be either under or overfull. In this case run the balancing algorithm
8322 ** on the leaf node first. If the balance proceeds far enough up the
8323 ** tree that we can be sure that any problem in the internal node has
8324 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8325 ** walk the cursor up the tree to the internal node and balance it as
8326 ** well. */
8327 rc = balance(pCur);
8328 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8329 while( pCur->iPage>iCellDepth ){
8330 releasePage(pCur->apPage[pCur->iPage--]);
8331 }
8332 rc = balance(pCur);
8333 }
8334
danielk19776b456a22005-03-21 04:04:02 +00008335 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008336 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008337 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008338 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008339 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008340 pCur->eState = CURSOR_SKIPNEXT;
8341 if( iCellIdx>=pPage->nCell ){
8342 pCur->skipNext = -1;
8343 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8344 }else{
8345 pCur->skipNext = 1;
8346 }
8347 }else{
8348 rc = moveToRoot(pCur);
8349 if( bPreserve ){
8350 pCur->eState = CURSOR_REQUIRESEEK;
8351 }
8352 }
danielk19776b456a22005-03-21 04:04:02 +00008353 }
drh5e2f8b92001-05-28 00:41:15 +00008354 return rc;
drh3b7511c2001-05-26 13:15:44 +00008355}
drh8b2f49b2001-06-08 00:21:52 +00008356
8357/*
drhc6b52df2002-01-04 03:09:29 +00008358** Create a new BTree table. Write into *piTable the page
8359** number for the root page of the new table.
8360**
drhab01f612004-05-22 02:55:23 +00008361** The type of type is determined by the flags parameter. Only the
8362** following values of flags are currently in use. Other values for
8363** flags might not work:
8364**
8365** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8366** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008367*/
drhd4187c72010-08-30 22:15:45 +00008368static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008369 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008370 MemPage *pRoot;
8371 Pgno pgnoRoot;
8372 int rc;
drhd4187c72010-08-30 22:15:45 +00008373 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008374
drh1fee73e2007-08-29 04:00:57 +00008375 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008376 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008377 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008378
danielk1977003ba062004-11-04 02:57:33 +00008379#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008380 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008381 if( rc ){
8382 return rc;
8383 }
danielk1977003ba062004-11-04 02:57:33 +00008384#else
danielk1977687566d2004-11-02 12:56:41 +00008385 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008386 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8387 MemPage *pPageMove; /* The page to move to. */
8388
danielk197720713f32007-05-03 11:43:33 +00008389 /* Creating a new table may probably require moving an existing database
8390 ** to make room for the new tables root page. In case this page turns
8391 ** out to be an overflow page, delete all overflow page-map caches
8392 ** held by open cursors.
8393 */
danielk197792d4d7a2007-05-04 12:05:56 +00008394 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008395
danielk1977003ba062004-11-04 02:57:33 +00008396 /* Read the value of meta[3] from the database to determine where the
8397 ** root page of the new table should go. meta[3] is the largest root-page
8398 ** created so far, so the new root-page is (meta[3]+1).
8399 */
danielk1977602b4662009-07-02 07:47:33 +00008400 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008401 pgnoRoot++;
8402
danielk1977599fcba2004-11-08 07:13:13 +00008403 /* The new root-page may not be allocated on a pointer-map page, or the
8404 ** PENDING_BYTE page.
8405 */
drh72190432008-01-31 14:54:43 +00008406 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008407 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008408 pgnoRoot++;
8409 }
drh499e15b2015-05-22 12:37:37 +00008410 assert( pgnoRoot>=3 || CORRUPT_DB );
8411 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008412
8413 /* Allocate a page. The page that currently resides at pgnoRoot will
8414 ** be moved to the allocated page (unless the allocated page happens
8415 ** to reside at pgnoRoot).
8416 */
dan51f0b6d2013-02-22 20:16:34 +00008417 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008418 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008419 return rc;
8420 }
danielk1977003ba062004-11-04 02:57:33 +00008421
8422 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008423 /* pgnoRoot is the page that will be used for the root-page of
8424 ** the new table (assuming an error did not occur). But we were
8425 ** allocated pgnoMove. If required (i.e. if it was not allocated
8426 ** by extending the file), the current page at position pgnoMove
8427 ** is already journaled.
8428 */
drheeb844a2009-08-08 18:01:07 +00008429 u8 eType = 0;
8430 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008431
danf7679ad2013-04-03 11:38:36 +00008432 /* Save the positions of any open cursors. This is required in
8433 ** case they are holding a reference to an xFetch reference
8434 ** corresponding to page pgnoRoot. */
8435 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008436 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008437 if( rc!=SQLITE_OK ){
8438 return rc;
8439 }
danielk1977f35843b2007-04-07 15:03:17 +00008440
8441 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008442 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008443 if( rc!=SQLITE_OK ){
8444 return rc;
8445 }
8446 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008447 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8448 rc = SQLITE_CORRUPT_BKPT;
8449 }
8450 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008451 releasePage(pRoot);
8452 return rc;
8453 }
drhccae6022005-02-26 17:31:26 +00008454 assert( eType!=PTRMAP_ROOTPAGE );
8455 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008456 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008457 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008458
8459 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008460 if( rc!=SQLITE_OK ){
8461 return rc;
8462 }
drhb00fc3b2013-08-21 23:42:32 +00008463 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008464 if( rc!=SQLITE_OK ){
8465 return rc;
8466 }
danielk19773b8a05f2007-03-19 17:44:26 +00008467 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008468 if( rc!=SQLITE_OK ){
8469 releasePage(pRoot);
8470 return rc;
8471 }
8472 }else{
8473 pRoot = pPageMove;
8474 }
8475
danielk197742741be2005-01-08 12:42:39 +00008476 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008477 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008478 if( rc ){
8479 releasePage(pRoot);
8480 return rc;
8481 }
drhbf592832010-03-30 15:51:12 +00008482
8483 /* When the new root page was allocated, page 1 was made writable in
8484 ** order either to increase the database filesize, or to decrement the
8485 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8486 */
8487 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008488 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008489 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008490 releasePage(pRoot);
8491 return rc;
8492 }
danielk197742741be2005-01-08 12:42:39 +00008493
danielk1977003ba062004-11-04 02:57:33 +00008494 }else{
drh4f0c5872007-03-26 22:05:01 +00008495 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008496 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008497 }
8498#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008499 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008500 if( createTabFlags & BTREE_INTKEY ){
8501 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8502 }else{
8503 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8504 }
8505 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008506 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008507 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008508 *piTable = (int)pgnoRoot;
8509 return SQLITE_OK;
8510}
drhd677b3d2007-08-20 22:48:41 +00008511int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8512 int rc;
8513 sqlite3BtreeEnter(p);
8514 rc = btreeCreateTable(p, piTable, flags);
8515 sqlite3BtreeLeave(p);
8516 return rc;
8517}
drh8b2f49b2001-06-08 00:21:52 +00008518
8519/*
8520** Erase the given database page and all its children. Return
8521** the page to the freelist.
8522*/
drh4b70f112004-05-02 21:12:19 +00008523static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008524 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008525 Pgno pgno, /* Page number to clear */
8526 int freePageFlag, /* Deallocate page if true */
8527 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008528){
danielk1977146ba992009-07-22 14:08:13 +00008529 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008530 int rc;
drh4b70f112004-05-02 21:12:19 +00008531 unsigned char *pCell;
8532 int i;
dan8ce71842014-01-14 20:14:09 +00008533 int hdr;
drh80159da2016-12-09 17:32:51 +00008534 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008535
drh1fee73e2007-08-29 04:00:57 +00008536 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008537 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008538 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008539 }
drh28f58dd2015-06-27 19:45:03 +00008540 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008541 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008542 if( pPage->bBusy ){
8543 rc = SQLITE_CORRUPT_BKPT;
8544 goto cleardatabasepage_out;
8545 }
8546 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008547 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008548 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008549 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008550 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008551 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008552 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008553 }
drh80159da2016-12-09 17:32:51 +00008554 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008555 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008556 }
drha34b6762004-05-07 13:30:42 +00008557 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008558 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008559 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008560 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008561 assert( pPage->intKey || CORRUPT_DB );
8562 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008563 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008564 }
8565 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008566 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008567 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008568 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008569 }
danielk19776b456a22005-03-21 04:04:02 +00008570
8571cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008572 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008573 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008574 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008575}
8576
8577/*
drhab01f612004-05-22 02:55:23 +00008578** Delete all information from a single table in the database. iTable is
8579** the page number of the root of the table. After this routine returns,
8580** the root page is empty, but still exists.
8581**
8582** This routine will fail with SQLITE_LOCKED if there are any open
8583** read cursors on the table. Open write cursors are moved to the
8584** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008585**
8586** If pnChange is not NULL, then table iTable must be an intkey table. The
8587** integer value pointed to by pnChange is incremented by the number of
8588** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008589*/
danielk1977c7af4842008-10-27 13:59:33 +00008590int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008591 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008592 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008593 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008594 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008595
drhc046e3e2009-07-15 11:26:44 +00008596 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008597
drhc046e3e2009-07-15 11:26:44 +00008598 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008599 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8600 ** is the root of a table b-tree - if it is not, the following call is
8601 ** a no-op). */
8602 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008603 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008604 }
drhd677b3d2007-08-20 22:48:41 +00008605 sqlite3BtreeLeave(p);
8606 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008607}
8608
8609/*
drh079a3072014-03-19 14:10:55 +00008610** Delete all information from the single table that pCur is open on.
8611**
8612** This routine only work for pCur on an ephemeral table.
8613*/
8614int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8615 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8616}
8617
8618/*
drh8b2f49b2001-06-08 00:21:52 +00008619** Erase all information in a table and add the root of the table to
8620** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008621** page 1) is never added to the freelist.
8622**
8623** This routine will fail with SQLITE_LOCKED if there are any open
8624** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008625**
8626** If AUTOVACUUM is enabled and the page at iTable is not the last
8627** root page in the database file, then the last root page
8628** in the database file is moved into the slot formerly occupied by
8629** iTable and that last slot formerly occupied by the last root page
8630** is added to the freelist instead of iTable. In this say, all
8631** root pages are kept at the beginning of the database file, which
8632** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8633** page number that used to be the last root page in the file before
8634** the move. If no page gets moved, *piMoved is set to 0.
8635** The last root page is recorded in meta[3] and the value of
8636** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008637*/
danielk197789d40042008-11-17 14:20:56 +00008638static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008639 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008640 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008641 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008642
drh1fee73e2007-08-29 04:00:57 +00008643 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008644 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008645 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008646
drhb00fc3b2013-08-21 23:42:32 +00008647 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008648 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008649 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008650 if( rc ){
8651 releasePage(pPage);
8652 return rc;
8653 }
danielk1977a0bf2652004-11-04 14:30:04 +00008654
drh205f48e2004-11-05 00:43:11 +00008655 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008656
danielk1977a0bf2652004-11-04 14:30:04 +00008657#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008658 freePage(pPage, &rc);
8659 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008660#else
drh055f2982016-01-15 15:06:41 +00008661 if( pBt->autoVacuum ){
8662 Pgno maxRootPgno;
8663 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008664
drh055f2982016-01-15 15:06:41 +00008665 if( iTable==maxRootPgno ){
8666 /* If the table being dropped is the table with the largest root-page
8667 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008668 */
drhc314dc72009-07-21 11:52:34 +00008669 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008670 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008671 if( rc!=SQLITE_OK ){
8672 return rc;
8673 }
8674 }else{
8675 /* The table being dropped does not have the largest root-page
8676 ** number in the database. So move the page that does into the
8677 ** gap left by the deleted root-page.
8678 */
8679 MemPage *pMove;
8680 releasePage(pPage);
8681 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8682 if( rc!=SQLITE_OK ){
8683 return rc;
8684 }
8685 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8686 releasePage(pMove);
8687 if( rc!=SQLITE_OK ){
8688 return rc;
8689 }
8690 pMove = 0;
8691 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8692 freePage(pMove, &rc);
8693 releasePage(pMove);
8694 if( rc!=SQLITE_OK ){
8695 return rc;
8696 }
8697 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008698 }
drh055f2982016-01-15 15:06:41 +00008699
8700 /* Set the new 'max-root-page' value in the database header. This
8701 ** is the old value less one, less one more if that happens to
8702 ** be a root-page number, less one again if that is the
8703 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008704 */
drh055f2982016-01-15 15:06:41 +00008705 maxRootPgno--;
8706 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8707 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8708 maxRootPgno--;
8709 }
8710 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8711
8712 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8713 }else{
8714 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008715 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008716 }
drh055f2982016-01-15 15:06:41 +00008717#endif
drh8b2f49b2001-06-08 00:21:52 +00008718 return rc;
8719}
drhd677b3d2007-08-20 22:48:41 +00008720int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8721 int rc;
8722 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008723 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008724 sqlite3BtreeLeave(p);
8725 return rc;
8726}
drh8b2f49b2001-06-08 00:21:52 +00008727
drh001bbcb2003-03-19 03:14:00 +00008728
drh8b2f49b2001-06-08 00:21:52 +00008729/*
danielk1977602b4662009-07-02 07:47:33 +00008730** This function may only be called if the b-tree connection already
8731** has a read or write transaction open on the database.
8732**
drh23e11ca2004-05-04 17:27:28 +00008733** Read the meta-information out of a database file. Meta[0]
8734** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008735** through meta[15] are available for use by higher layers. Meta[0]
8736** is read-only, the others are read/write.
8737**
8738** The schema layer numbers meta values differently. At the schema
8739** layer (and the SetCookie and ReadCookie opcodes) the number of
8740** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008741**
8742** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8743** of reading the value out of the header, it instead loads the "DataVersion"
8744** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8745** database file. It is a number computed by the pager. But its access
8746** pattern is the same as header meta values, and so it is convenient to
8747** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008748*/
danielk1977602b4662009-07-02 07:47:33 +00008749void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008750 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008751
drhd677b3d2007-08-20 22:48:41 +00008752 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008753 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008754 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008755 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008756 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008757
drh91618562014-12-19 19:28:02 +00008758 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008759 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008760 }else{
8761 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8762 }
drhae157872004-08-14 19:20:09 +00008763
danielk1977602b4662009-07-02 07:47:33 +00008764 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8765 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008766#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008767 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8768 pBt->btsFlags |= BTS_READ_ONLY;
8769 }
danielk1977003ba062004-11-04 02:57:33 +00008770#endif
drhae157872004-08-14 19:20:09 +00008771
drhd677b3d2007-08-20 22:48:41 +00008772 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008773}
8774
8775/*
drh23e11ca2004-05-04 17:27:28 +00008776** Write meta-information back into the database. Meta[0] is
8777** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008778*/
danielk1977aef0bf62005-12-30 16:28:01 +00008779int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8780 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008781 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008782 int rc;
drh23e11ca2004-05-04 17:27:28 +00008783 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008784 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008785 assert( p->inTrans==TRANS_WRITE );
8786 assert( pBt->pPage1!=0 );
8787 pP1 = pBt->pPage1->aData;
8788 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8789 if( rc==SQLITE_OK ){
8790 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008791#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008792 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008793 assert( pBt->autoVacuum || iMeta==0 );
8794 assert( iMeta==0 || iMeta==1 );
8795 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008796 }
drh64022502009-01-09 14:11:04 +00008797#endif
drh5df72a52002-06-06 23:16:05 +00008798 }
drhd677b3d2007-08-20 22:48:41 +00008799 sqlite3BtreeLeave(p);
8800 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008801}
drh8c42ca92001-06-22 19:15:00 +00008802
danielk1977a5533162009-02-24 10:01:51 +00008803#ifndef SQLITE_OMIT_BTREECOUNT
8804/*
8805** The first argument, pCur, is a cursor opened on some b-tree. Count the
8806** number of entries in the b-tree and write the result to *pnEntry.
8807**
8808** SQLITE_OK is returned if the operation is successfully executed.
8809** Otherwise, if an error is encountered (i.e. an IO error or database
8810** corruption) an SQLite error code is returned.
8811*/
8812int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8813 i64 nEntry = 0; /* Value to return in *pnEntry */
8814 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008815
8816 if( pCur->pgnoRoot==0 ){
8817 *pnEntry = 0;
8818 return SQLITE_OK;
8819 }
danielk1977a5533162009-02-24 10:01:51 +00008820 rc = moveToRoot(pCur);
8821
8822 /* Unless an error occurs, the following loop runs one iteration for each
8823 ** page in the B-Tree structure (not including overflow pages).
8824 */
8825 while( rc==SQLITE_OK ){
8826 int iIdx; /* Index of child node in parent */
8827 MemPage *pPage; /* Current page of the b-tree */
8828
8829 /* If this is a leaf page or the tree is not an int-key tree, then
8830 ** this page contains countable entries. Increment the entry counter
8831 ** accordingly.
8832 */
8833 pPage = pCur->apPage[pCur->iPage];
8834 if( pPage->leaf || !pPage->intKey ){
8835 nEntry += pPage->nCell;
8836 }
8837
8838 /* pPage is a leaf node. This loop navigates the cursor so that it
8839 ** points to the first interior cell that it points to the parent of
8840 ** the next page in the tree that has not yet been visited. The
8841 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8842 ** of the page, or to the number of cells in the page if the next page
8843 ** to visit is the right-child of its parent.
8844 **
8845 ** If all pages in the tree have been visited, return SQLITE_OK to the
8846 ** caller.
8847 */
8848 if( pPage->leaf ){
8849 do {
8850 if( pCur->iPage==0 ){
8851 /* All pages of the b-tree have been visited. Return successfully. */
8852 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008853 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008854 }
danielk197730548662009-07-09 05:07:37 +00008855 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008856 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8857
8858 pCur->aiIdx[pCur->iPage]++;
8859 pPage = pCur->apPage[pCur->iPage];
8860 }
8861
8862 /* Descend to the child node of the cell that the cursor currently
8863 ** points at. This is the right-child if (iIdx==pPage->nCell).
8864 */
8865 iIdx = pCur->aiIdx[pCur->iPage];
8866 if( iIdx==pPage->nCell ){
8867 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8868 }else{
8869 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8870 }
8871 }
8872
shanebe217792009-03-05 04:20:31 +00008873 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008874 return rc;
8875}
8876#endif
drhdd793422001-06-28 01:54:48 +00008877
drhdd793422001-06-28 01:54:48 +00008878/*
drh5eddca62001-06-30 21:53:53 +00008879** Return the pager associated with a BTree. This routine is used for
8880** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008881*/
danielk1977aef0bf62005-12-30 16:28:01 +00008882Pager *sqlite3BtreePager(Btree *p){
8883 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008884}
drh5eddca62001-06-30 21:53:53 +00008885
drhb7f91642004-10-31 02:22:47 +00008886#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008887/*
8888** Append a message to the error message string.
8889*/
drh2e38c322004-09-03 18:38:44 +00008890static void checkAppendMsg(
8891 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008892 const char *zFormat,
8893 ...
8894){
8895 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008896 if( !pCheck->mxErr ) return;
8897 pCheck->mxErr--;
8898 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008899 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008900 if( pCheck->errMsg.nChar ){
8901 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008902 }
drh867db832014-09-26 02:41:05 +00008903 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008904 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008905 }
drh5f4a6862016-01-30 12:50:25 +00008906 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008907 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008908 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008909 pCheck->mallocFailed = 1;
8910 }
drh5eddca62001-06-30 21:53:53 +00008911}
drhb7f91642004-10-31 02:22:47 +00008912#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008913
drhb7f91642004-10-31 02:22:47 +00008914#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008915
8916/*
8917** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8918** corresponds to page iPg is already set.
8919*/
8920static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8921 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8922 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8923}
8924
8925/*
8926** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8927*/
8928static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8929 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8930 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8931}
8932
8933
drh5eddca62001-06-30 21:53:53 +00008934/*
8935** Add 1 to the reference count for page iPage. If this is the second
8936** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008937** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008938** if this is the first reference to the page.
8939**
8940** Also check that the page number is in bounds.
8941*/
drh867db832014-09-26 02:41:05 +00008942static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008943 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008944 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008945 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008946 return 1;
8947 }
dan1235bb12012-04-03 17:43:28 +00008948 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008949 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008950 return 1;
8951 }
dan1235bb12012-04-03 17:43:28 +00008952 setPageReferenced(pCheck, iPage);
8953 return 0;
drh5eddca62001-06-30 21:53:53 +00008954}
8955
danielk1977afcdd022004-10-31 16:25:42 +00008956#ifndef SQLITE_OMIT_AUTOVACUUM
8957/*
8958** Check that the entry in the pointer-map for page iChild maps to
8959** page iParent, pointer type ptrType. If not, append an error message
8960** to pCheck.
8961*/
8962static void checkPtrmap(
8963 IntegrityCk *pCheck, /* Integrity check context */
8964 Pgno iChild, /* Child page number */
8965 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008966 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008967){
8968 int rc;
8969 u8 ePtrmapType;
8970 Pgno iPtrmapParent;
8971
8972 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8973 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008974 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008975 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008976 return;
8977 }
8978
8979 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008980 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008981 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8982 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8983 }
8984}
8985#endif
8986
drh5eddca62001-06-30 21:53:53 +00008987/*
8988** Check the integrity of the freelist or of an overflow page list.
8989** Verify that the number of pages on the list is N.
8990*/
drh30e58752002-03-02 20:41:57 +00008991static void checkList(
8992 IntegrityCk *pCheck, /* Integrity checking context */
8993 int isFreeList, /* True for a freelist. False for overflow page list */
8994 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008995 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008996){
8997 int i;
drh3a4c1412004-05-09 20:40:11 +00008998 int expected = N;
8999 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009000 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009001 DbPage *pOvflPage;
9002 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009003 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009004 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009005 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009006 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009007 break;
9008 }
drh867db832014-09-26 02:41:05 +00009009 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009010 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009011 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009012 break;
9013 }
danielk19773b8a05f2007-03-19 17:44:26 +00009014 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009015 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009016 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009017#ifndef SQLITE_OMIT_AUTOVACUUM
9018 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009019 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009020 }
9021#endif
drh43b18e12010-08-17 19:40:08 +00009022 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009023 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009024 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009025 N--;
9026 }else{
9027 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009028 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009029#ifndef SQLITE_OMIT_AUTOVACUUM
9030 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009031 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009032 }
9033#endif
drh867db832014-09-26 02:41:05 +00009034 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009035 }
9036 N -= n;
drh30e58752002-03-02 20:41:57 +00009037 }
drh30e58752002-03-02 20:41:57 +00009038 }
danielk1977afcdd022004-10-31 16:25:42 +00009039#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009040 else{
9041 /* If this database supports auto-vacuum and iPage is not the last
9042 ** page in this overflow list, check that the pointer-map entry for
9043 ** the following page matches iPage.
9044 */
9045 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009046 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009047 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009048 }
danielk1977afcdd022004-10-31 16:25:42 +00009049 }
9050#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009051 iPage = get4byte(pOvflData);
9052 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009053
9054 if( isFreeList && N<(iPage!=0) ){
9055 checkAppendMsg(pCheck, "free-page count in header is too small");
9056 }
drh5eddca62001-06-30 21:53:53 +00009057 }
9058}
drhb7f91642004-10-31 02:22:47 +00009059#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009060
drh67731a92015-04-16 11:56:03 +00009061/*
9062** An implementation of a min-heap.
9063**
9064** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009065** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009066** and aHeap[N*2+1].
9067**
9068** The heap property is this: Every node is less than or equal to both
9069** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009070** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009071**
9072** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9073** the heap, preserving the heap property. The btreeHeapPull() routine
9074** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009075** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009076** property.
9077**
9078** This heap is used for cell overlap and coverage testing. Each u32
9079** entry represents the span of a cell or freeblock on a btree page.
9080** The upper 16 bits are the index of the first byte of a range and the
9081** lower 16 bits are the index of the last byte of that range.
9082*/
9083static void btreeHeapInsert(u32 *aHeap, u32 x){
9084 u32 j, i = ++aHeap[0];
9085 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009086 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009087 x = aHeap[j];
9088 aHeap[j] = aHeap[i];
9089 aHeap[i] = x;
9090 i = j;
9091 }
9092}
9093static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9094 u32 j, i, x;
9095 if( (x = aHeap[0])==0 ) return 0;
9096 *pOut = aHeap[1];
9097 aHeap[1] = aHeap[x];
9098 aHeap[x] = 0xffffffff;
9099 aHeap[0]--;
9100 i = 1;
9101 while( (j = i*2)<=aHeap[0] ){
9102 if( aHeap[j]>aHeap[j+1] ) j++;
9103 if( aHeap[i]<aHeap[j] ) break;
9104 x = aHeap[i];
9105 aHeap[i] = aHeap[j];
9106 aHeap[j] = x;
9107 i = j;
9108 }
9109 return 1;
9110}
9111
drhb7f91642004-10-31 02:22:47 +00009112#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009113/*
9114** Do various sanity checks on a single page of a tree. Return
9115** the tree depth. Root pages return 0. Parents of root pages
9116** return 1, and so forth.
9117**
9118** These checks are done:
9119**
9120** 1. Make sure that cells and freeblocks do not overlap
9121** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009122** 2. Make sure integer cell keys are in order.
9123** 3. Check the integrity of overflow pages.
9124** 4. Recursively call checkTreePage on all children.
9125** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009126*/
9127static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009128 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009129 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009130 i64 *piMinKey, /* Write minimum integer primary key here */
9131 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009132){
drhcbc6b712015-07-02 16:17:30 +00009133 MemPage *pPage = 0; /* The page being analyzed */
9134 int i; /* Loop counter */
9135 int rc; /* Result code from subroutine call */
9136 int depth = -1, d2; /* Depth of a subtree */
9137 int pgno; /* Page number */
9138 int nFrag; /* Number of fragmented bytes on the page */
9139 int hdr; /* Offset to the page header */
9140 int cellStart; /* Offset to the start of the cell pointer array */
9141 int nCell; /* Number of cells */
9142 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9143 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9144 ** False if IPK must be strictly less than maxKey */
9145 u8 *data; /* Page content */
9146 u8 *pCell; /* Cell content */
9147 u8 *pCellIdx; /* Next element of the cell pointer array */
9148 BtShared *pBt; /* The BtShared object that owns pPage */
9149 u32 pc; /* Address of a cell */
9150 u32 usableSize; /* Usable size of the page */
9151 u32 contentOffset; /* Offset to the start of the cell content area */
9152 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009153 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009154 const char *saved_zPfx = pCheck->zPfx;
9155 int saved_v1 = pCheck->v1;
9156 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009157 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009158
drh5eddca62001-06-30 21:53:53 +00009159 /* Check that the page exists
9160 */
drhd9cb6ac2005-10-20 07:28:17 +00009161 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009162 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009163 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009164 if( checkRef(pCheck, iPage) ) return 0;
9165 pCheck->zPfx = "Page %d: ";
9166 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009167 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009168 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009169 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009170 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009171 }
danielk197793caf5a2009-07-11 06:55:33 +00009172
9173 /* Clear MemPage.isInit to make sure the corruption detection code in
9174 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009175 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009176 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009177 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009178 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009179 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009180 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009181 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009182 }
drhcbc6b712015-07-02 16:17:30 +00009183 data = pPage->aData;
9184 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009185
drhcbc6b712015-07-02 16:17:30 +00009186 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009187 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009188 contentOffset = get2byteNotZero(&data[hdr+5]);
9189 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9190
9191 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9192 ** number of cells on the page. */
9193 nCell = get2byte(&data[hdr+3]);
9194 assert( pPage->nCell==nCell );
9195
9196 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9197 ** immediately follows the b-tree page header. */
9198 cellStart = hdr + 12 - 4*pPage->leaf;
9199 assert( pPage->aCellIdx==&data[cellStart] );
9200 pCellIdx = &data[cellStart + 2*(nCell-1)];
9201
9202 if( !pPage->leaf ){
9203 /* Analyze the right-child page of internal pages */
9204 pgno = get4byte(&data[hdr+8]);
9205#ifndef SQLITE_OMIT_AUTOVACUUM
9206 if( pBt->autoVacuum ){
9207 pCheck->zPfx = "On page %d at right child: ";
9208 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9209 }
9210#endif
9211 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9212 keyCanBeEqual = 0;
9213 }else{
9214 /* For leaf pages, the coverage check will occur in the same loop
9215 ** as the other cell checks, so initialize the heap. */
9216 heap = pCheck->heap;
9217 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009218 }
9219
drhcbc6b712015-07-02 16:17:30 +00009220 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9221 ** integer offsets to the cell contents. */
9222 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009223 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009224
drhcbc6b712015-07-02 16:17:30 +00009225 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009226 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009227 assert( pCellIdx==&data[cellStart + i*2] );
9228 pc = get2byteAligned(pCellIdx);
9229 pCellIdx -= 2;
9230 if( pc<contentOffset || pc>usableSize-4 ){
9231 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9232 pc, contentOffset, usableSize-4);
9233 doCoverageCheck = 0;
9234 continue;
shaneh195475d2010-02-19 04:28:08 +00009235 }
drhcbc6b712015-07-02 16:17:30 +00009236 pCell = &data[pc];
9237 pPage->xParseCell(pPage, pCell, &info);
9238 if( pc+info.nSize>usableSize ){
9239 checkAppendMsg(pCheck, "Extends off end of page");
9240 doCoverageCheck = 0;
9241 continue;
drh5eddca62001-06-30 21:53:53 +00009242 }
9243
drhcbc6b712015-07-02 16:17:30 +00009244 /* Check for integer primary key out of range */
9245 if( pPage->intKey ){
9246 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9247 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9248 }
9249 maxKey = info.nKey;
9250 }
9251
9252 /* Check the content overflow list */
9253 if( info.nPayload>info.nLocal ){
9254 int nPage; /* Number of pages on the overflow chain */
9255 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009256 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009257 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009258 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009259#ifndef SQLITE_OMIT_AUTOVACUUM
9260 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009261 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009262 }
9263#endif
drh867db832014-09-26 02:41:05 +00009264 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009265 }
9266
drh5eddca62001-06-30 21:53:53 +00009267 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009268 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009269 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009270#ifndef SQLITE_OMIT_AUTOVACUUM
9271 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009272 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009273 }
9274#endif
drhcbc6b712015-07-02 16:17:30 +00009275 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9276 keyCanBeEqual = 0;
9277 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009278 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009279 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009280 }
drhcbc6b712015-07-02 16:17:30 +00009281 }else{
9282 /* Populate the coverage-checking heap for leaf pages */
9283 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009284 }
9285 }
drhcbc6b712015-07-02 16:17:30 +00009286 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009287
drh5eddca62001-06-30 21:53:53 +00009288 /* Check for complete coverage of the page
9289 */
drh867db832014-09-26 02:41:05 +00009290 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009291 if( doCoverageCheck && pCheck->mxErr>0 ){
9292 /* For leaf pages, the min-heap has already been initialized and the
9293 ** cells have already been inserted. But for internal pages, that has
9294 ** not yet been done, so do it now */
9295 if( !pPage->leaf ){
9296 heap = pCheck->heap;
9297 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009298 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009299 u32 size;
9300 pc = get2byteAligned(&data[cellStart+i*2]);
9301 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009302 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009303 }
drh2e38c322004-09-03 18:38:44 +00009304 }
drhcbc6b712015-07-02 16:17:30 +00009305 /* Add the freeblocks to the min-heap
9306 **
9307 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009308 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009309 ** freeblocks on the page.
9310 */
drh8c2bbb62009-07-10 02:52:20 +00009311 i = get2byte(&data[hdr+1]);
9312 while( i>0 ){
9313 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009314 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009315 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009316 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009317 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009318 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9319 ** big-endian integer which is the offset in the b-tree page of the next
9320 ** freeblock in the chain, or zero if the freeblock is the last on the
9321 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009322 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009323 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9324 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009325 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009326 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009327 i = j;
drh2e38c322004-09-03 18:38:44 +00009328 }
drhcbc6b712015-07-02 16:17:30 +00009329 /* Analyze the min-heap looking for overlap between cells and/or
9330 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009331 **
9332 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9333 ** There is an implied first entry the covers the page header, the cell
9334 ** pointer index, and the gap between the cell pointer index and the start
9335 ** of cell content.
9336 **
9337 ** The loop below pulls entries from the min-heap in order and compares
9338 ** the start_address against the previous end_address. If there is an
9339 ** overlap, that means bytes are used multiple times. If there is a gap,
9340 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009341 */
9342 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009343 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009344 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009345 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009346 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009347 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009348 break;
drh67731a92015-04-16 11:56:03 +00009349 }else{
drhcbc6b712015-07-02 16:17:30 +00009350 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009351 prev = x;
drh2e38c322004-09-03 18:38:44 +00009352 }
9353 }
drhcbc6b712015-07-02 16:17:30 +00009354 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009355 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9356 ** is stored in the fifth field of the b-tree page header.
9357 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9358 ** number of fragmented free bytes within the cell content area.
9359 */
drhcbc6b712015-07-02 16:17:30 +00009360 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009361 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009362 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009363 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009364 }
9365 }
drh867db832014-09-26 02:41:05 +00009366
9367end_of_check:
drh72e191e2015-07-04 11:14:20 +00009368 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009369 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009370 pCheck->zPfx = saved_zPfx;
9371 pCheck->v1 = saved_v1;
9372 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009373 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009374}
drhb7f91642004-10-31 02:22:47 +00009375#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009376
drhb7f91642004-10-31 02:22:47 +00009377#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009378/*
9379** This routine does a complete check of the given BTree file. aRoot[] is
9380** an array of pages numbers were each page number is the root page of
9381** a table. nRoot is the number of entries in aRoot.
9382**
danielk19773509a652009-07-06 18:56:13 +00009383** A read-only or read-write transaction must be opened before calling
9384** this function.
9385**
drhc890fec2008-08-01 20:10:08 +00009386** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009387** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009388** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009389** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009390*/
drh1dcdbc02007-01-27 02:24:54 +00009391char *sqlite3BtreeIntegrityCheck(
9392 Btree *p, /* The btree to be checked */
9393 int *aRoot, /* An array of root pages numbers for individual trees */
9394 int nRoot, /* Number of entries in aRoot[] */
9395 int mxErr, /* Stop reporting errors after this many */
9396 int *pnErr /* Write number of errors seen to this variable */
9397){
danielk197789d40042008-11-17 14:20:56 +00009398 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009399 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009400 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009401 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009402 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009403 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009404
drhd677b3d2007-08-20 22:48:41 +00009405 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009406 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009407 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9408 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009409 sCheck.pBt = pBt;
9410 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009411 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009412 sCheck.mxErr = mxErr;
9413 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009414 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009415 sCheck.zPfx = 0;
9416 sCheck.v1 = 0;
9417 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009418 sCheck.aPgRef = 0;
9419 sCheck.heap = 0;
9420 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009421 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009422 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009423 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009424 }
dan1235bb12012-04-03 17:43:28 +00009425
9426 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9427 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009428 sCheck.mallocFailed = 1;
9429 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009430 }
drhe05b3f82015-07-01 17:53:49 +00009431 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9432 if( sCheck.heap==0 ){
9433 sCheck.mallocFailed = 1;
9434 goto integrity_ck_cleanup;
9435 }
9436
drh42cac6d2004-11-20 20:31:11 +00009437 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009438 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009439
9440 /* Check the integrity of the freelist
9441 */
drh867db832014-09-26 02:41:05 +00009442 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009443 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009444 get4byte(&pBt->pPage1->aData[36]));
9445 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009446
9447 /* Check all the tables.
9448 */
drhcbc6b712015-07-02 16:17:30 +00009449 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9450 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009451 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009452 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009453 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009454#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009455 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009456 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009457 }
9458#endif
drhcbc6b712015-07-02 16:17:30 +00009459 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009460 }
drhcbc6b712015-07-02 16:17:30 +00009461 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009462
9463 /* Make sure every page in the file is referenced
9464 */
drh1dcdbc02007-01-27 02:24:54 +00009465 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009466#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009467 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009468 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009469 }
danielk1977afcdd022004-10-31 16:25:42 +00009470#else
9471 /* If the database supports auto-vacuum, make sure no tables contain
9472 ** references to pointer-map pages.
9473 */
dan1235bb12012-04-03 17:43:28 +00009474 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009475 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009476 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009477 }
dan1235bb12012-04-03 17:43:28 +00009478 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009479 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009480 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009481 }
9482#endif
drh5eddca62001-06-30 21:53:53 +00009483 }
9484
drh5eddca62001-06-30 21:53:53 +00009485 /* Clean up and report errors.
9486 */
drhe05b3f82015-07-01 17:53:49 +00009487integrity_ck_cleanup:
9488 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009489 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009490 if( sCheck.mallocFailed ){
9491 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009492 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009493 }
drh1dcdbc02007-01-27 02:24:54 +00009494 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009495 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009496 /* Make sure this analysis did not leave any unref() pages. */
9497 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9498 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009499 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009500}
drhb7f91642004-10-31 02:22:47 +00009501#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009502
drh73509ee2003-04-06 20:44:45 +00009503/*
drhd4e0bb02012-05-27 01:19:04 +00009504** Return the full pathname of the underlying database file. Return
9505** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009506**
9507** The pager filename is invariant as long as the pager is
9508** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009509*/
danielk1977aef0bf62005-12-30 16:28:01 +00009510const char *sqlite3BtreeGetFilename(Btree *p){
9511 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009512 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009513}
9514
9515/*
danielk19775865e3d2004-06-14 06:03:57 +00009516** Return the pathname of the journal file for this database. The return
9517** value of this routine is the same regardless of whether the journal file
9518** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009519**
9520** The pager journal filename is invariant as long as the pager is
9521** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009522*/
danielk1977aef0bf62005-12-30 16:28:01 +00009523const char *sqlite3BtreeGetJournalname(Btree *p){
9524 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009525 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009526}
9527
danielk19771d850a72004-05-31 08:26:49 +00009528/*
9529** Return non-zero if a transaction is active.
9530*/
danielk1977aef0bf62005-12-30 16:28:01 +00009531int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009532 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009533 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009534}
9535
dana550f2d2010-08-02 10:47:05 +00009536#ifndef SQLITE_OMIT_WAL
9537/*
9538** Run a checkpoint on the Btree passed as the first argument.
9539**
9540** Return SQLITE_LOCKED if this or any other connection has an open
9541** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009542**
dancdc1f042010-11-18 12:11:05 +00009543** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009544*/
dancdc1f042010-11-18 12:11:05 +00009545int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009546 int rc = SQLITE_OK;
9547 if( p ){
9548 BtShared *pBt = p->pBt;
9549 sqlite3BtreeEnter(p);
9550 if( pBt->inTransaction!=TRANS_NONE ){
9551 rc = SQLITE_LOCKED;
9552 }else{
dan7fb89902016-08-12 16:21:15 +00009553 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009554 }
9555 sqlite3BtreeLeave(p);
9556 }
9557 return rc;
9558}
9559#endif
9560
danielk19771d850a72004-05-31 08:26:49 +00009561/*
danielk19772372c2b2006-06-27 16:34:56 +00009562** Return non-zero if a read (or write) transaction is active.
9563*/
9564int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009565 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009566 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009567 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009568}
9569
danielk197704103022009-02-03 16:51:24 +00009570int sqlite3BtreeIsInBackup(Btree *p){
9571 assert( p );
9572 assert( sqlite3_mutex_held(p->db->mutex) );
9573 return p->nBackup!=0;
9574}
9575
danielk19772372c2b2006-06-27 16:34:56 +00009576/*
danielk1977da184232006-01-05 11:34:32 +00009577** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009578** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009579** purposes (for example, to store a high-level schema associated with
9580** the shared-btree). The btree layer manages reference counting issues.
9581**
9582** The first time this is called on a shared-btree, nBytes bytes of memory
9583** are allocated, zeroed, and returned to the caller. For each subsequent
9584** call the nBytes parameter is ignored and a pointer to the same blob
9585** of memory returned.
9586**
danielk1977171bfed2008-06-23 09:50:50 +00009587** If the nBytes parameter is 0 and the blob of memory has not yet been
9588** allocated, a null pointer is returned. If the blob has already been
9589** allocated, it is returned as normal.
9590**
danielk1977da184232006-01-05 11:34:32 +00009591** Just before the shared-btree is closed, the function passed as the
9592** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009593** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009594** on the memory, the btree layer does that.
9595*/
9596void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9597 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009598 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009599 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009600 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009601 pBt->xFreeSchema = xFree;
9602 }
drh27641702007-08-22 02:56:42 +00009603 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009604 return pBt->pSchema;
9605}
9606
danielk1977c87d34d2006-01-06 13:00:28 +00009607/*
danielk1977404ca072009-03-16 13:19:36 +00009608** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9609** btree as the argument handle holds an exclusive lock on the
9610** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009611*/
9612int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009613 int rc;
drhe5fe6902007-12-07 18:55:28 +00009614 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009615 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009616 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9617 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009618 sqlite3BtreeLeave(p);
9619 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009620}
9621
drha154dcd2006-03-22 22:10:07 +00009622
9623#ifndef SQLITE_OMIT_SHARED_CACHE
9624/*
9625** Obtain a lock on the table whose root page is iTab. The
9626** lock is a write lock if isWritelock is true or a read lock
9627** if it is false.
9628*/
danielk1977c00da102006-01-07 13:21:04 +00009629int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009630 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009631 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009632 if( p->sharable ){
9633 u8 lockType = READ_LOCK + isWriteLock;
9634 assert( READ_LOCK+1==WRITE_LOCK );
9635 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009636
drh6a9ad3d2008-04-02 16:29:30 +00009637 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009638 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009639 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009640 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009641 }
9642 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009643 }
9644 return rc;
9645}
drha154dcd2006-03-22 22:10:07 +00009646#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009647
danielk1977b4e9af92007-05-01 17:49:49 +00009648#ifndef SQLITE_OMIT_INCRBLOB
9649/*
9650** Argument pCsr must be a cursor opened for writing on an
9651** INTKEY table currently pointing at a valid table entry.
9652** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009653**
9654** Only the data content may only be modified, it is not possible to
9655** change the length of the data stored. If this function is called with
9656** parameters that attempt to write past the end of the existing data,
9657** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009658*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009659int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009660 int rc;
dan7a2347e2016-01-07 16:43:54 +00009661 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009662 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009663 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009664
danielk1977c9000e62009-07-08 13:55:28 +00009665 rc = restoreCursorPosition(pCsr);
9666 if( rc!=SQLITE_OK ){
9667 return rc;
9668 }
danielk19773588ceb2008-06-10 17:30:26 +00009669 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9670 if( pCsr->eState!=CURSOR_VALID ){
9671 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009672 }
9673
dan227a1c42013-04-03 11:17:39 +00009674 /* Save the positions of all other cursors open on this table. This is
9675 ** required in case any of them are holding references to an xFetch
9676 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009677 **
drh3f387402014-09-24 01:23:00 +00009678 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009679 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9680 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009681 */
drh370c9f42013-04-03 20:04:04 +00009682 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9683 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009684
danielk1977c9000e62009-07-08 13:55:28 +00009685 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009686 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009687 ** (b) there is a read/write transaction open,
9688 ** (c) the connection holds a write-lock on the table (if required),
9689 ** (d) there are no conflicting read-locks, and
9690 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009691 */
drh036dbec2014-03-11 23:40:44 +00009692 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009693 return SQLITE_READONLY;
9694 }
drhc9166342012-01-05 23:32:06 +00009695 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9696 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009697 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9698 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009699 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009700
drhfb192682009-07-11 18:26:28 +00009701 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009702}
danielk19772dec9702007-05-02 16:48:37 +00009703
9704/*
dan5a500af2014-03-11 20:33:04 +00009705** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009706*/
dan5a500af2014-03-11 20:33:04 +00009707void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009708 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009709 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009710}
danielk1977b4e9af92007-05-01 17:49:49 +00009711#endif
dane04dc882010-04-20 18:53:15 +00009712
9713/*
9714** Set both the "read version" (single byte at byte offset 18) and
9715** "write version" (single byte at byte offset 19) fields in the database
9716** header to iVersion.
9717*/
9718int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9719 BtShared *pBt = pBtree->pBt;
9720 int rc; /* Return code */
9721
dane04dc882010-04-20 18:53:15 +00009722 assert( iVersion==1 || iVersion==2 );
9723
danb9780022010-04-21 18:37:57 +00009724 /* If setting the version fields to 1, do not automatically open the
9725 ** WAL connection, even if the version fields are currently set to 2.
9726 */
drhc9166342012-01-05 23:32:06 +00009727 pBt->btsFlags &= ~BTS_NO_WAL;
9728 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009729
9730 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009731 if( rc==SQLITE_OK ){
9732 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009733 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009734 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009735 if( rc==SQLITE_OK ){
9736 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9737 if( rc==SQLITE_OK ){
9738 aData[18] = (u8)iVersion;
9739 aData[19] = (u8)iVersion;
9740 }
9741 }
9742 }
dane04dc882010-04-20 18:53:15 +00009743 }
9744
drhc9166342012-01-05 23:32:06 +00009745 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009746 return rc;
9747}
dan428c2182012-08-06 18:50:11 +00009748
drhe0997b32015-03-20 14:57:50 +00009749/*
9750** Return true if the cursor has a hint specified. This routine is
9751** only used from within assert() statements
9752*/
9753int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9754 return (pCsr->hints & mask)!=0;
9755}
drhe0997b32015-03-20 14:57:50 +00009756
drh781597f2014-05-21 08:21:07 +00009757/*
9758** Return true if the given Btree is read-only.
9759*/
9760int sqlite3BtreeIsReadonly(Btree *p){
9761 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9762}
drhdef68892014-11-04 12:11:23 +00009763
9764/*
9765** Return the size of the header added to each page by this module.
9766*/
drh37c057b2014-12-30 00:57:29 +00009767int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009768
drh5a1fb182016-01-08 19:34:39 +00009769#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009770/*
9771** Return true if the Btree passed as the only argument is sharable.
9772*/
9773int sqlite3BtreeSharable(Btree *p){
9774 return p->sharable;
9775}
dan272989b2016-07-06 10:12:02 +00009776
9777/*
9778** Return the number of connections to the BtShared object accessed by
9779** the Btree handle passed as the only argument. For private caches
9780** this is always 1. For shared caches it may be 1 or greater.
9781*/
9782int sqlite3BtreeConnectionCount(Btree *p){
9783 testcase( p->sharable );
9784 return p->pBt->nRef;
9785}
drh5a1fb182016-01-08 19:34:39 +00009786#endif