blob: 19869feffdf4007341672deda219f85d050b0de4 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
adam2e4491d2011-06-24 20:47:06 +000090#if defined(__APPLE__) && !defined(SQLITE_TEST) && !defined(TH3_COMPATIBILITY)
91 /* Enable global shared cache function for debugging and unit tests,
92 ** but not for release */
93 return SQLITE_MISUSE;
94#else
danielk1977502b4e02008-09-02 14:07:24 +000095 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000096 return SQLITE_OK;
adam2e4491d2011-06-24 20:47:06 +000097#endif
drhe53831d2007-08-17 01:14:38 +000098}
99#endif
100
drhd677b3d2007-08-20 22:48:41 +0000101
danielk1977aef0bf62005-12-30 16:28:01 +0000102
103#ifdef SQLITE_OMIT_SHARED_CACHE
104 /*
drhc25eabe2009-02-24 18:57:31 +0000105 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
106 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000107 ** manipulate entries in the BtShared.pLock linked list used to store
108 ** shared-cache table level locks. If the library is compiled with the
109 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000110 ** of each BtShared structure and so this locking is not necessary.
111 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000112 */
drhc25eabe2009-02-24 18:57:31 +0000113 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
114 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
115 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000116 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000117 #define hasSharedCacheTableLock(a,b,c,d) 1
118 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000119#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000120
drhe53831d2007-08-17 01:14:38 +0000121#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000122
123#ifdef SQLITE_DEBUG
124/*
drh0ee3dbe2009-10-16 15:05:18 +0000125**** This function is only used as part of an assert() statement. ***
126**
127** Check to see if pBtree holds the required locks to read or write to the
128** table with root page iRoot. Return 1 if it does and 0 if not.
129**
130** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000131** Btree connection pBtree:
132**
133** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
134**
drh0ee3dbe2009-10-16 15:05:18 +0000135** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000136** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000137** the corresponding table. This makes things a bit more complicated,
138** as this module treats each table as a separate structure. To determine
139** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000140** function has to search through the database schema.
141**
drh0ee3dbe2009-10-16 15:05:18 +0000142** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000143** hold a write-lock on the schema table (root page 1). This is also
144** acceptable.
145*/
146static int hasSharedCacheTableLock(
147 Btree *pBtree, /* Handle that must hold lock */
148 Pgno iRoot, /* Root page of b-tree */
149 int isIndex, /* True if iRoot is the root of an index b-tree */
150 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
151){
152 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
153 Pgno iTab = 0;
154 BtLock *pLock;
155
drh0ee3dbe2009-10-16 15:05:18 +0000156 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000157 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000158 ** Return true immediately.
159 */
danielk197796d48e92009-06-29 06:00:37 +0000160 if( (pBtree->sharable==0)
161 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000162 ){
163 return 1;
164 }
165
drh0ee3dbe2009-10-16 15:05:18 +0000166 /* If the client is reading or writing an index and the schema is
167 ** not loaded, then it is too difficult to actually check to see if
168 ** the correct locks are held. So do not bother - just return true.
169 ** This case does not come up very often anyhow.
170 */
drh2c5e35f2014-08-05 11:04:21 +0000171 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000172 return 1;
173 }
174
danielk197796d48e92009-06-29 06:00:37 +0000175 /* Figure out the root-page that the lock should be held on. For table
176 ** b-trees, this is just the root page of the b-tree being read or
177 ** written. For index b-trees, it is the root page of the associated
178 ** table. */
179 if( isIndex ){
180 HashElem *p;
181 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
182 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000183 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000184 if( iTab ){
185 /* Two or more indexes share the same root page. There must
186 ** be imposter tables. So just return true. The assert is not
187 ** useful in that case. */
188 return 1;
189 }
shane5eff7cf2009-08-10 03:57:58 +0000190 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000191 }
192 }
193 }else{
194 iTab = iRoot;
195 }
196
197 /* Search for the required lock. Either a write-lock on root-page iTab, a
198 ** write-lock on the schema table, or (if the client is reading) a
199 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
200 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
201 if( pLock->pBtree==pBtree
202 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
203 && pLock->eLock>=eLockType
204 ){
205 return 1;
206 }
207 }
208
209 /* Failed to find the required lock. */
210 return 0;
211}
drh0ee3dbe2009-10-16 15:05:18 +0000212#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000213
drh0ee3dbe2009-10-16 15:05:18 +0000214#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000215/*
drh0ee3dbe2009-10-16 15:05:18 +0000216**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000217**
drh0ee3dbe2009-10-16 15:05:18 +0000218** Return true if it would be illegal for pBtree to write into the
219** table or index rooted at iRoot because other shared connections are
220** simultaneously reading that same table or index.
221**
222** It is illegal for pBtree to write if some other Btree object that
223** shares the same BtShared object is currently reading or writing
224** the iRoot table. Except, if the other Btree object has the
225** read-uncommitted flag set, then it is OK for the other object to
226** have a read cursor.
227**
228** For example, before writing to any part of the table or index
229** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000230**
231** assert( !hasReadConflicts(pBtree, iRoot) );
232*/
233static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
234 BtCursor *p;
235 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
236 if( p->pgnoRoot==iRoot
237 && p->pBtree!=pBtree
238 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
239 ){
240 return 1;
241 }
242 }
243 return 0;
244}
245#endif /* #ifdef SQLITE_DEBUG */
246
danielk1977da184232006-01-05 11:34:32 +0000247/*
drh0ee3dbe2009-10-16 15:05:18 +0000248** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000249** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000250** SQLITE_OK if the lock may be obtained (by calling
251** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000252*/
drhc25eabe2009-02-24 18:57:31 +0000253static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000254 BtShared *pBt = p->pBt;
255 BtLock *pIter;
256
drh1fee73e2007-08-29 04:00:57 +0000257 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000258 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
259 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000261
danielk19775b413d72009-04-01 09:41:54 +0000262 /* If requesting a write-lock, then the Btree must have an open write
263 ** transaction on this file. And, obviously, for this to be so there
264 ** must be an open write transaction on the file itself.
265 */
266 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
267 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
268
drh0ee3dbe2009-10-16 15:05:18 +0000269 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000270 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000271 return SQLITE_OK;
272 }
273
danielk1977641b0f42007-12-21 04:47:25 +0000274 /* If some other connection is holding an exclusive lock, the
275 ** requested lock may not be obtained.
276 */
drhc9166342012-01-05 23:32:06 +0000277 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000278 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
279 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000280 }
281
danielk1977e0d9e6f2009-07-03 16:25:06 +0000282 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
283 /* The condition (pIter->eLock!=eLock) in the following if(...)
284 ** statement is a simplification of:
285 **
286 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
287 **
288 ** since we know that if eLock==WRITE_LOCK, then no other connection
289 ** may hold a WRITE_LOCK on any table in this file (since there can
290 ** only be a single writer).
291 */
292 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
293 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
294 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
295 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
296 if( eLock==WRITE_LOCK ){
297 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000298 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000299 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000300 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000301 }
302 }
303 return SQLITE_OK;
304}
drhe53831d2007-08-17 01:14:38 +0000305#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000306
drhe53831d2007-08-17 01:14:38 +0000307#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000308/*
309** Add a lock on the table with root-page iTable to the shared-btree used
310** by Btree handle p. Parameter eLock must be either READ_LOCK or
311** WRITE_LOCK.
312**
danielk19779d104862009-07-09 08:27:14 +0000313** This function assumes the following:
314**
drh0ee3dbe2009-10-16 15:05:18 +0000315** (a) The specified Btree object p is connected to a sharable
316** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000317**
drh0ee3dbe2009-10-16 15:05:18 +0000318** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000319** with the requested lock (i.e. querySharedCacheTableLock() has
320** already been called and returned SQLITE_OK).
321**
322** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
323** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000324*/
drhc25eabe2009-02-24 18:57:31 +0000325static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000326 BtShared *pBt = p->pBt;
327 BtLock *pLock = 0;
328 BtLock *pIter;
329
drh1fee73e2007-08-29 04:00:57 +0000330 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000331 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
332 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000333
danielk1977e0d9e6f2009-07-03 16:25:06 +0000334 /* A connection with the read-uncommitted flag set will never try to
335 ** obtain a read-lock using this function. The only read-lock obtained
336 ** by a connection in read-uncommitted mode is on the sqlite_master
337 ** table, and that lock is obtained in BtreeBeginTrans(). */
338 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
339
danielk19779d104862009-07-09 08:27:14 +0000340 /* This function should only be called on a sharable b-tree after it
341 ** has been determined that no other b-tree holds a conflicting lock. */
342 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000343 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 /* First search the list for an existing lock on this table. */
346 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
347 if( pIter->iTable==iTable && pIter->pBtree==p ){
348 pLock = pIter;
349 break;
350 }
351 }
352
353 /* If the above search did not find a BtLock struct associating Btree p
354 ** with table iTable, allocate one and link it into the list.
355 */
356 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000357 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000358 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000359 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000360 }
361 pLock->iTable = iTable;
362 pLock->pBtree = p;
363 pLock->pNext = pBt->pLock;
364 pBt->pLock = pLock;
365 }
366
367 /* Set the BtLock.eLock variable to the maximum of the current lock
368 ** and the requested lock. This means if a write-lock was already held
369 ** and a read-lock requested, we don't incorrectly downgrade the lock.
370 */
371 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000372 if( eLock>pLock->eLock ){
373 pLock->eLock = eLock;
374 }
danielk1977aef0bf62005-12-30 16:28:01 +0000375
376 return SQLITE_OK;
377}
drhe53831d2007-08-17 01:14:38 +0000378#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000379
drhe53831d2007-08-17 01:14:38 +0000380#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000381/*
drhc25eabe2009-02-24 18:57:31 +0000382** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000383** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000384**
drh0ee3dbe2009-10-16 15:05:18 +0000385** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000386** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000387** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000388*/
drhc25eabe2009-02-24 18:57:31 +0000389static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000390 BtShared *pBt = p->pBt;
391 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000392
drh1fee73e2007-08-29 04:00:57 +0000393 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000394 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000395 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000396
danielk1977aef0bf62005-12-30 16:28:01 +0000397 while( *ppIter ){
398 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000399 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000400 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000401 if( pLock->pBtree==p ){
402 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000403 assert( pLock->iTable!=1 || pLock==&p->lock );
404 if( pLock->iTable!=1 ){
405 sqlite3_free(pLock);
406 }
danielk1977aef0bf62005-12-30 16:28:01 +0000407 }else{
408 ppIter = &pLock->pNext;
409 }
410 }
danielk1977641b0f42007-12-21 04:47:25 +0000411
drhc9166342012-01-05 23:32:06 +0000412 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000413 if( pBt->pWriter==p ){
414 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000415 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000416 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000417 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000418 ** transaction. If there currently exists a writer, and p is not
419 ** that writer, then the number of locks held by connections other
420 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000421 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000422 **
drhc9166342012-01-05 23:32:06 +0000423 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000424 ** be zero already. So this next line is harmless in that case.
425 */
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000427 }
danielk1977aef0bf62005-12-30 16:28:01 +0000428}
danielk197794b30732009-07-02 17:21:57 +0000429
danielk1977e0d9e6f2009-07-03 16:25:06 +0000430/*
drh0ee3dbe2009-10-16 15:05:18 +0000431** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000432*/
danielk197794b30732009-07-02 17:21:57 +0000433static void downgradeAllSharedCacheTableLocks(Btree *p){
434 BtShared *pBt = p->pBt;
435 if( pBt->pWriter==p ){
436 BtLock *pLock;
437 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000438 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000439 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
440 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
441 pLock->eLock = READ_LOCK;
442 }
443 }
444}
445
danielk1977aef0bf62005-12-30 16:28:01 +0000446#endif /* SQLITE_OMIT_SHARED_CACHE */
447
drh980b1a72006-08-16 16:42:48 +0000448static void releasePage(MemPage *pPage); /* Forward reference */
449
drh1fee73e2007-08-29 04:00:57 +0000450/*
drh0ee3dbe2009-10-16 15:05:18 +0000451***** This routine is used inside of assert() only ****
452**
453** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000454*/
drh0ee3dbe2009-10-16 15:05:18 +0000455#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000456static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000457 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000458}
drh5e08d0f2016-06-04 21:05:54 +0000459
460/* Verify that the cursor and the BtShared agree about what is the current
461** database connetion. This is important in shared-cache mode. If the database
462** connection pointers get out-of-sync, it is possible for routines like
463** btreeInitPage() to reference an stale connection pointer that references a
464** a connection that has already closed. This routine is used inside assert()
465** statements only and for the purpose of double-checking that the btree code
466** does keep the database connection pointers up-to-date.
467*/
dan7a2347e2016-01-07 16:43:54 +0000468static int cursorOwnsBtShared(BtCursor *p){
469 assert( cursorHoldsMutex(p) );
470 return (p->pBtree->db==p->pBt->db);
471}
drh1fee73e2007-08-29 04:00:57 +0000472#endif
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474/*
dan5a500af2014-03-11 20:33:04 +0000475** Invalidate the overflow cache of the cursor passed as the first argument.
476** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000477*/
drh036dbec2014-03-11 23:40:44 +0000478#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000479
480/*
481** Invalidate the overflow page-list cache for all cursors opened
482** on the shared btree structure pBt.
483*/
484static void invalidateAllOverflowCache(BtShared *pBt){
485 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000486 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000487 for(p=pBt->pCursor; p; p=p->pNext){
488 invalidateOverflowCache(p);
489 }
490}
danielk197796d48e92009-06-29 06:00:37 +0000491
dan5a500af2014-03-11 20:33:04 +0000492#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000493/*
494** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000495** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000496** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000497**
498** If argument isClearTable is true, then the entire contents of the
499** table is about to be deleted. In this case invalidate all incrblob
500** cursors open on any row within the table with root-page pgnoRoot.
501**
502** Otherwise, if argument isClearTable is false, then the row with
503** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000504** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000505*/
506static void invalidateIncrblobCursors(
507 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000508 i64 iRow, /* The rowid that might be changing */
509 int isClearTable /* True if all rows are being deleted */
510){
511 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000512 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000513 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000514 pBtree->hasIncrblobCur = 0;
515 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
516 if( (p->curFlags & BTCF_Incrblob)!=0 ){
517 pBtree->hasIncrblobCur = 1;
518 if( isClearTable || p->info.nKey==iRow ){
519 p->eState = CURSOR_INVALID;
520 }
danielk197796d48e92009-06-29 06:00:37 +0000521 }
522 }
523}
524
danielk197792d4d7a2007-05-04 12:05:56 +0000525#else
dan5a500af2014-03-11 20:33:04 +0000526 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000527 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000528#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000529
drh980b1a72006-08-16 16:42:48 +0000530/*
danielk1977bea2a942009-01-20 17:06:27 +0000531** Set bit pgno of the BtShared.pHasContent bitvec. This is called
532** when a page that previously contained data becomes a free-list leaf
533** page.
534**
535** The BtShared.pHasContent bitvec exists to work around an obscure
536** bug caused by the interaction of two useful IO optimizations surrounding
537** free-list leaf pages:
538**
539** 1) When all data is deleted from a page and the page becomes
540** a free-list leaf page, the page is not written to the database
541** (as free-list leaf pages contain no meaningful data). Sometimes
542** such a page is not even journalled (as it will not be modified,
543** why bother journalling it?).
544**
545** 2) When a free-list leaf page is reused, its content is not read
546** from the database or written to the journal file (why should it
547** be, if it is not at all meaningful?).
548**
549** By themselves, these optimizations work fine and provide a handy
550** performance boost to bulk delete or insert operations. However, if
551** a page is moved to the free-list and then reused within the same
552** transaction, a problem comes up. If the page is not journalled when
553** it is moved to the free-list and it is also not journalled when it
554** is extracted from the free-list and reused, then the original data
555** may be lost. In the event of a rollback, it may not be possible
556** to restore the database to its original configuration.
557**
558** The solution is the BtShared.pHasContent bitvec. Whenever a page is
559** moved to become a free-list leaf page, the corresponding bit is
560** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000561** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000562** set in BtShared.pHasContent. The contents of the bitvec are cleared
563** at the end of every transaction.
564*/
565static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
566 int rc = SQLITE_OK;
567 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000568 assert( pgno<=pBt->nPage );
569 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000570 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000571 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000572 }
573 }
574 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
575 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
576 }
577 return rc;
578}
579
580/*
581** Query the BtShared.pHasContent vector.
582**
583** This function is called when a free-list leaf page is removed from the
584** free-list for reuse. It returns false if it is safe to retrieve the
585** page from the pager layer with the 'no-content' flag set. True otherwise.
586*/
587static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
588 Bitvec *p = pBt->pHasContent;
589 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
590}
591
592/*
593** Clear (destroy) the BtShared.pHasContent bitvec. This should be
594** invoked at the conclusion of each write-transaction.
595*/
596static void btreeClearHasContent(BtShared *pBt){
597 sqlite3BitvecDestroy(pBt->pHasContent);
598 pBt->pHasContent = 0;
599}
600
601/*
drh138eeeb2013-03-27 03:15:23 +0000602** Release all of the apPage[] pages for a cursor.
603*/
604static void btreeReleaseAllCursorPages(BtCursor *pCur){
605 int i;
606 for(i=0; i<=pCur->iPage; i++){
607 releasePage(pCur->apPage[i]);
608 pCur->apPage[i] = 0;
609 }
610 pCur->iPage = -1;
611}
612
danf0ee1d32015-09-12 19:26:11 +0000613/*
614** The cursor passed as the only argument must point to a valid entry
615** when this function is called (i.e. have eState==CURSOR_VALID). This
616** function saves the current cursor key in variables pCur->nKey and
617** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
618** code otherwise.
619**
620** If the cursor is open on an intkey table, then the integer key
621** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
622** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
623** set to point to a malloced buffer pCur->nKey bytes in size containing
624** the key.
625*/
626static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000627 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000628 assert( CURSOR_VALID==pCur->eState );
629 assert( 0==pCur->pKey );
630 assert( cursorHoldsMutex(pCur) );
631
drha7c90c42016-06-04 20:37:10 +0000632 if( pCur->curIntKey ){
633 /* Only the rowid is required for a table btree */
634 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
635 }else{
636 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000637 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000638 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000639 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000640 if( pKey ){
641 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
642 if( rc==SQLITE_OK ){
643 pCur->pKey = pKey;
644 }else{
645 sqlite3_free(pKey);
646 }
647 }else{
mistachkinfad30392016-02-13 23:43:46 +0000648 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000649 }
650 }
651 assert( !pCur->curIntKey || !pCur->pKey );
652 return rc;
653}
drh138eeeb2013-03-27 03:15:23 +0000654
655/*
drh980b1a72006-08-16 16:42:48 +0000656** Save the current cursor position in the variables BtCursor.nKey
657** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000658**
659** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
660** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000661*/
662static int saveCursorPosition(BtCursor *pCur){
663 int rc;
664
drhd2f83132015-03-25 17:35:01 +0000665 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000666 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000668
drhd2f83132015-03-25 17:35:01 +0000669 if( pCur->eState==CURSOR_SKIPNEXT ){
670 pCur->eState = CURSOR_VALID;
671 }else{
672 pCur->skipNext = 0;
673 }
drh980b1a72006-08-16 16:42:48 +0000674
danf0ee1d32015-09-12 19:26:11 +0000675 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000676 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000677 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000678 pCur->eState = CURSOR_REQUIRESEEK;
679 }
680
dane755e102015-09-30 12:59:12 +0000681 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000682 return rc;
683}
684
drh637f3d82014-08-22 22:26:07 +0000685/* Forward reference */
686static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
687
drh980b1a72006-08-16 16:42:48 +0000688/*
drh0ee3dbe2009-10-16 15:05:18 +0000689** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000690** the table with root-page iRoot. "Saving the cursor position" means that
691** the location in the btree is remembered in such a way that it can be
692** moved back to the same spot after the btree has been modified. This
693** routine is called just before cursor pExcept is used to modify the
694** table, for example in BtreeDelete() or BtreeInsert().
695**
drh27fb7462015-06-30 02:47:36 +0000696** If there are two or more cursors on the same btree, then all such
697** cursors should have their BTCF_Multiple flag set. The btreeCursor()
698** routine enforces that rule. This routine only needs to be called in
699** the uncommon case when pExpect has the BTCF_Multiple flag set.
700**
701** If pExpect!=NULL and if no other cursors are found on the same root-page,
702** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
703** pointless call to this routine.
704**
drh637f3d82014-08-22 22:26:07 +0000705** Implementation note: This routine merely checks to see if any cursors
706** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
707** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000708*/
709static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
710 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000711 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000712 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000713 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000714 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
715 }
drh27fb7462015-06-30 02:47:36 +0000716 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
717 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
718 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000719}
720
721/* This helper routine to saveAllCursors does the actual work of saving
722** the cursors if and when a cursor is found that actually requires saving.
723** The common case is that no cursors need to be saved, so this routine is
724** broken out from its caller to avoid unnecessary stack pointer movement.
725*/
726static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000727 BtCursor *p, /* The first cursor that needs saving */
728 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
729 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000730){
731 do{
drh138eeeb2013-03-27 03:15:23 +0000732 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000733 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000734 int rc = saveCursorPosition(p);
735 if( SQLITE_OK!=rc ){
736 return rc;
737 }
738 }else{
739 testcase( p->iPage>0 );
740 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000741 }
742 }
drh637f3d82014-08-22 22:26:07 +0000743 p = p->pNext;
744 }while( p );
drh980b1a72006-08-16 16:42:48 +0000745 return SQLITE_OK;
746}
747
748/*
drhbf700f32007-03-31 02:36:44 +0000749** Clear the current cursor position.
750*/
danielk1977be51a652008-10-08 17:58:48 +0000751void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000752 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000753 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000754 pCur->pKey = 0;
755 pCur->eState = CURSOR_INVALID;
756}
757
758/*
danielk19773509a652009-07-06 18:56:13 +0000759** In this version of BtreeMoveto, pKey is a packed index record
760** such as is generated by the OP_MakeRecord opcode. Unpack the
761** record and then call BtreeMovetoUnpacked() to do the work.
762*/
763static int btreeMoveto(
764 BtCursor *pCur, /* Cursor open on the btree to be searched */
765 const void *pKey, /* Packed key if the btree is an index */
766 i64 nKey, /* Integer key for tables. Size of pKey for indices */
767 int bias, /* Bias search to the high end */
768 int *pRes /* Write search results here */
769){
770 int rc; /* Status code */
771 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000772 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000773 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000774
775 if( pKey ){
776 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000777 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
778 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
779 );
mistachkinfad30392016-02-13 23:43:46 +0000780 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000781 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000782 if( pIdxKey->nField==0 ){
783 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
784 return SQLITE_CORRUPT_BKPT;
785 }
danielk19773509a652009-07-06 18:56:13 +0000786 }else{
787 pIdxKey = 0;
788 }
789 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000790 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000791 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000792 }
793 return rc;
794}
795
796/*
drh980b1a72006-08-16 16:42:48 +0000797** Restore the cursor to the position it was in (or as close to as possible)
798** when saveCursorPosition() was called. Note that this call deletes the
799** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000800** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000801** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000802*/
danielk197730548662009-07-09 05:07:37 +0000803static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000804 int rc;
drhd2f83132015-03-25 17:35:01 +0000805 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000806 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000807 assert( pCur->eState>=CURSOR_REQUIRESEEK );
808 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000809 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000810 }
drh980b1a72006-08-16 16:42:48 +0000811 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000812 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000813 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000814 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000815 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000816 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000817 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000818 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
819 pCur->eState = CURSOR_SKIPNEXT;
820 }
drh980b1a72006-08-16 16:42:48 +0000821 }
822 return rc;
823}
824
drha3460582008-07-11 21:02:53 +0000825#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000826 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000827 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000828 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000829
drha3460582008-07-11 21:02:53 +0000830/*
drh6848dad2014-08-22 23:33:03 +0000831** Determine whether or not a cursor has moved from the position where
832** it was last placed, or has been invalidated for any other reason.
833** Cursors can move when the row they are pointing at is deleted out
834** from under them, for example. Cursor might also move if a btree
835** is rebalanced.
drha3460582008-07-11 21:02:53 +0000836**
drh6848dad2014-08-22 23:33:03 +0000837** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000838**
drh6848dad2014-08-22 23:33:03 +0000839** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
840** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000841*/
drh6848dad2014-08-22 23:33:03 +0000842int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000843 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000844}
845
846/*
847** This routine restores a cursor back to its original position after it
848** has been moved by some outside activity (such as a btree rebalance or
849** a row having been deleted out from under the cursor).
850**
851** On success, the *pDifferentRow parameter is false if the cursor is left
852** pointing at exactly the same row. *pDifferntRow is the row the cursor
853** was pointing to has been deleted, forcing the cursor to point to some
854** nearby row.
855**
856** This routine should only be called for a cursor that just returned
857** TRUE from sqlite3BtreeCursorHasMoved().
858*/
859int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000860 int rc;
861
drh6848dad2014-08-22 23:33:03 +0000862 assert( pCur!=0 );
863 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000864 rc = restoreCursorPosition(pCur);
865 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000866 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000867 return rc;
868 }
drh606a3572015-03-25 18:29:10 +0000869 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000870 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000871 }else{
drh606a3572015-03-25 18:29:10 +0000872 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000873 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000874 }
875 return SQLITE_OK;
876}
877
drhf7854c72015-10-27 13:24:37 +0000878#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000879/*
drh0df57012015-08-14 15:05:55 +0000880** Provide hints to the cursor. The particular hint given (and the type
881** and number of the varargs parameters) is determined by the eHintType
882** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000883*/
drh0df57012015-08-14 15:05:55 +0000884void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000885 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000886}
drhf7854c72015-10-27 13:24:37 +0000887#endif
888
889/*
890** Provide flag hints to the cursor.
891*/
892void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
893 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
894 pCur->hints = x;
895}
896
drh28935362013-12-07 20:39:19 +0000897
danielk1977599fcba2004-11-08 07:13:13 +0000898#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000899/*
drha3152892007-05-05 11:48:52 +0000900** Given a page number of a regular database page, return the page
901** number for the pointer-map page that contains the entry for the
902** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000903**
904** Return 0 (not a valid page) for pgno==1 since there is
905** no pointer map associated with page 1. The integrity_check logic
906** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000907*/
danielk1977266664d2006-02-10 08:24:21 +0000908static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000909 int nPagesPerMapPage;
910 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000911 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000912 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000913 nPagesPerMapPage = (pBt->usableSize/5)+1;
914 iPtrMap = (pgno-2)/nPagesPerMapPage;
915 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000916 if( ret==PENDING_BYTE_PAGE(pBt) ){
917 ret++;
918 }
919 return ret;
920}
danielk1977a19df672004-11-03 11:37:07 +0000921
danielk1977afcdd022004-10-31 16:25:42 +0000922/*
danielk1977afcdd022004-10-31 16:25:42 +0000923** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000924**
925** This routine updates the pointer map entry for page number 'key'
926** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000927**
928** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
929** a no-op. If an error occurs, the appropriate error code is written
930** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000931*/
drh98add2e2009-07-20 17:11:49 +0000932static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000933 DbPage *pDbPage; /* The pointer map page */
934 u8 *pPtrmap; /* The pointer map data */
935 Pgno iPtrmap; /* The pointer map page number */
936 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000937 int rc; /* Return code from subfunctions */
938
939 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000940
drh1fee73e2007-08-29 04:00:57 +0000941 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000942 /* The master-journal page number must never be used as a pointer map page */
943 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
944
danielk1977ac11ee62005-01-15 12:45:51 +0000945 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000946 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000947 *pRC = SQLITE_CORRUPT_BKPT;
948 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000949 }
danielk1977266664d2006-02-10 08:24:21 +0000950 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000951 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000952 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000953 *pRC = rc;
954 return;
danielk1977afcdd022004-10-31 16:25:42 +0000955 }
danielk19778c666b12008-07-18 09:34:57 +0000956 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000957 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000958 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000959 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000960 }
drhfc243732011-05-17 15:21:56 +0000961 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000962 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000963
drh615ae552005-01-16 23:21:00 +0000964 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
965 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000966 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000967 if( rc==SQLITE_OK ){
968 pPtrmap[offset] = eType;
969 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000970 }
danielk1977afcdd022004-10-31 16:25:42 +0000971 }
972
drh4925a552009-07-07 11:39:58 +0000973ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000974 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000975}
976
977/*
978** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000979**
980** This routine retrieves the pointer map entry for page 'key', writing
981** the type and parent page number to *pEType and *pPgno respectively.
982** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000983*/
danielk1977aef0bf62005-12-30 16:28:01 +0000984static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000985 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000986 int iPtrmap; /* Pointer map page index */
987 u8 *pPtrmap; /* Pointer map page data */
988 int offset; /* Offset of entry in pointer map */
989 int rc;
990
drh1fee73e2007-08-29 04:00:57 +0000991 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000992
danielk1977266664d2006-02-10 08:24:21 +0000993 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000994 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000995 if( rc!=0 ){
996 return rc;
997 }
danielk19773b8a05f2007-03-19 17:44:26 +0000998 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000999
danielk19778c666b12008-07-18 09:34:57 +00001000 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001001 if( offset<0 ){
1002 sqlite3PagerUnref(pDbPage);
1003 return SQLITE_CORRUPT_BKPT;
1004 }
1005 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001006 assert( pEType!=0 );
1007 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001008 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001009
danielk19773b8a05f2007-03-19 17:44:26 +00001010 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001011 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001012 return SQLITE_OK;
1013}
1014
danielk197785d90ca2008-07-19 14:25:15 +00001015#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001016 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001017 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001018 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001019#endif
danielk1977afcdd022004-10-31 16:25:42 +00001020
drh0d316a42002-08-11 20:10:47 +00001021/*
drh271efa52004-05-30 19:19:05 +00001022** Given a btree page and a cell index (0 means the first cell on
1023** the page, 1 means the second cell, and so forth) return a pointer
1024** to the cell content.
1025**
drhf44890a2015-06-27 03:58:15 +00001026** findCellPastPtr() does the same except it skips past the initial
1027** 4-byte child pointer found on interior pages, if there is one.
1028**
drh271efa52004-05-30 19:19:05 +00001029** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001030*/
drh1688c862008-07-18 02:44:17 +00001031#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001032 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001033#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001034 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001035
drh43605152004-05-29 21:46:49 +00001036
1037/*
drh5fa60512015-06-19 17:19:34 +00001038** This is common tail processing for btreeParseCellPtr() and
1039** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1040** on a single B-tree page. Make necessary adjustments to the CellInfo
1041** structure.
drh43605152004-05-29 21:46:49 +00001042*/
drh5fa60512015-06-19 17:19:34 +00001043static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1044 MemPage *pPage, /* Page containing the cell */
1045 u8 *pCell, /* Pointer to the cell text. */
1046 CellInfo *pInfo /* Fill in this structure */
1047){
1048 /* If the payload will not fit completely on the local page, we have
1049 ** to decide how much to store locally and how much to spill onto
1050 ** overflow pages. The strategy is to minimize the amount of unused
1051 ** space on overflow pages while keeping the amount of local storage
1052 ** in between minLocal and maxLocal.
1053 **
1054 ** Warning: changing the way overflow payload is distributed in any
1055 ** way will result in an incompatible file format.
1056 */
1057 int minLocal; /* Minimum amount of payload held locally */
1058 int maxLocal; /* Maximum amount of payload held locally */
1059 int surplus; /* Overflow payload available for local storage */
1060
1061 minLocal = pPage->minLocal;
1062 maxLocal = pPage->maxLocal;
1063 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1064 testcase( surplus==maxLocal );
1065 testcase( surplus==maxLocal+1 );
1066 if( surplus <= maxLocal ){
1067 pInfo->nLocal = (u16)surplus;
1068 }else{
1069 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001070 }
drh45ac1c72015-12-18 03:59:16 +00001071 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001072}
1073
1074/*
drh5fa60512015-06-19 17:19:34 +00001075** The following routines are implementations of the MemPage.xParseCell()
1076** method.
1077**
1078** Parse a cell content block and fill in the CellInfo structure.
1079**
1080** btreeParseCellPtr() => table btree leaf nodes
1081** btreeParseCellNoPayload() => table btree internal nodes
1082** btreeParseCellPtrIndex() => index btree nodes
1083**
1084** There is also a wrapper function btreeParseCell() that works for
1085** all MemPage types and that references the cell by index rather than
1086** by pointer.
drh43605152004-05-29 21:46:49 +00001087*/
drh5fa60512015-06-19 17:19:34 +00001088static void btreeParseCellPtrNoPayload(
1089 MemPage *pPage, /* Page containing the cell */
1090 u8 *pCell, /* Pointer to the cell text. */
1091 CellInfo *pInfo /* Fill in this structure */
1092){
1093 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1094 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001095 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001096#ifndef SQLITE_DEBUG
1097 UNUSED_PARAMETER(pPage);
1098#endif
drh5fa60512015-06-19 17:19:34 +00001099 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1100 pInfo->nPayload = 0;
1101 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001102 pInfo->pPayload = 0;
1103 return;
1104}
danielk197730548662009-07-09 05:07:37 +00001105static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001106 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001107 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001108 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001109){
drh3e28ff52014-09-24 00:59:08 +00001110 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001111 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001112 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001113
drh1fee73e2007-08-29 04:00:57 +00001114 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001115 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001116 assert( pPage->intKeyLeaf );
1117 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001118 pIter = pCell;
1119
1120 /* The next block of code is equivalent to:
1121 **
1122 ** pIter += getVarint32(pIter, nPayload);
1123 **
1124 ** The code is inlined to avoid a function call.
1125 */
1126 nPayload = *pIter;
1127 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001128 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001129 nPayload &= 0x7f;
1130 do{
1131 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1132 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001133 }
drh56cb04e2015-06-19 18:24:37 +00001134 pIter++;
1135
1136 /* The next block of code is equivalent to:
1137 **
1138 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1139 **
1140 ** The code is inlined to avoid a function call.
1141 */
1142 iKey = *pIter;
1143 if( iKey>=0x80 ){
1144 u8 *pEnd = &pIter[7];
1145 iKey &= 0x7f;
1146 while(1){
1147 iKey = (iKey<<7) | (*++pIter & 0x7f);
1148 if( (*pIter)<0x80 ) break;
1149 if( pIter>=pEnd ){
1150 iKey = (iKey<<8) | *++pIter;
1151 break;
1152 }
1153 }
1154 }
1155 pIter++;
1156
1157 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001158 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001159 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001160 testcase( nPayload==pPage->maxLocal );
1161 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001162 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001163 /* This is the (easy) common case where the entire payload fits
1164 ** on the local page. No overflow is required.
1165 */
drhab1cc582014-09-23 21:25:19 +00001166 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1167 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001168 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001169 }else{
drh5fa60512015-06-19 17:19:34 +00001170 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1171 }
1172}
1173static void btreeParseCellPtrIndex(
1174 MemPage *pPage, /* Page containing the cell */
1175 u8 *pCell, /* Pointer to the cell text. */
1176 CellInfo *pInfo /* Fill in this structure */
1177){
1178 u8 *pIter; /* For scanning through pCell */
1179 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001180
drh5fa60512015-06-19 17:19:34 +00001181 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1182 assert( pPage->leaf==0 || pPage->leaf==1 );
1183 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001184 pIter = pCell + pPage->childPtrSize;
1185 nPayload = *pIter;
1186 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001187 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001188 nPayload &= 0x7f;
1189 do{
1190 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1191 }while( *(pIter)>=0x80 && pIter<pEnd );
1192 }
1193 pIter++;
1194 pInfo->nKey = nPayload;
1195 pInfo->nPayload = nPayload;
1196 pInfo->pPayload = pIter;
1197 testcase( nPayload==pPage->maxLocal );
1198 testcase( nPayload==pPage->maxLocal+1 );
1199 if( nPayload<=pPage->maxLocal ){
1200 /* This is the (easy) common case where the entire payload fits
1201 ** on the local page. No overflow is required.
1202 */
1203 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1204 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1205 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001206 }else{
1207 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001208 }
drh3aac2dd2004-04-26 14:10:20 +00001209}
danielk197730548662009-07-09 05:07:37 +00001210static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001211 MemPage *pPage, /* Page containing the cell */
1212 int iCell, /* The cell index. First cell is 0 */
1213 CellInfo *pInfo /* Fill in this structure */
1214){
drh5fa60512015-06-19 17:19:34 +00001215 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001216}
drh3aac2dd2004-04-26 14:10:20 +00001217
1218/*
drh5fa60512015-06-19 17:19:34 +00001219** The following routines are implementations of the MemPage.xCellSize
1220** method.
1221**
drh43605152004-05-29 21:46:49 +00001222** Compute the total number of bytes that a Cell needs in the cell
1223** data area of the btree-page. The return number includes the cell
1224** data header and the local payload, but not any overflow page or
1225** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001226**
drh5fa60512015-06-19 17:19:34 +00001227** cellSizePtrNoPayload() => table internal nodes
1228** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001229*/
danielk1977ae5558b2009-04-29 11:31:47 +00001230static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001231 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1232 u8 *pEnd; /* End mark for a varint */
1233 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001234
1235#ifdef SQLITE_DEBUG
1236 /* The value returned by this function should always be the same as
1237 ** the (CellInfo.nSize) value found by doing a full parse of the
1238 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1239 ** this function verifies that this invariant is not violated. */
1240 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001241 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001242#endif
1243
drh3e28ff52014-09-24 00:59:08 +00001244 nSize = *pIter;
1245 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001246 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001247 nSize &= 0x7f;
1248 do{
1249 nSize = (nSize<<7) | (*++pIter & 0x7f);
1250 }while( *(pIter)>=0x80 && pIter<pEnd );
1251 }
1252 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001253 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001254 /* pIter now points at the 64-bit integer key value, a variable length
1255 ** integer. The following block moves pIter to point at the first byte
1256 ** past the end of the key value. */
1257 pEnd = &pIter[9];
1258 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001259 }
drh0a45c272009-07-08 01:49:11 +00001260 testcase( nSize==pPage->maxLocal );
1261 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001262 if( nSize<=pPage->maxLocal ){
1263 nSize += (u32)(pIter - pCell);
1264 if( nSize<4 ) nSize = 4;
1265 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001266 int minLocal = pPage->minLocal;
1267 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001268 testcase( nSize==pPage->maxLocal );
1269 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001270 if( nSize>pPage->maxLocal ){
1271 nSize = minLocal;
1272 }
drh3e28ff52014-09-24 00:59:08 +00001273 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001274 }
drhdc41d602014-09-22 19:51:35 +00001275 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001276 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001277}
drh25ada072015-06-19 15:07:14 +00001278static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1279 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1280 u8 *pEnd; /* End mark for a varint */
1281
1282#ifdef SQLITE_DEBUG
1283 /* The value returned by this function should always be the same as
1284 ** the (CellInfo.nSize) value found by doing a full parse of the
1285 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1286 ** this function verifies that this invariant is not violated. */
1287 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001288 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001289#else
1290 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001291#endif
1292
1293 assert( pPage->childPtrSize==4 );
1294 pEnd = pIter + 9;
1295 while( (*pIter++)&0x80 && pIter<pEnd );
1296 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1297 return (u16)(pIter - pCell);
1298}
1299
drh0ee3dbe2009-10-16 15:05:18 +00001300
1301#ifdef SQLITE_DEBUG
1302/* This variation on cellSizePtr() is used inside of assert() statements
1303** only. */
drha9121e42008-02-19 14:59:35 +00001304static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001305 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001306}
danielk1977bc6ada42004-06-30 08:20:16 +00001307#endif
drh3b7511c2001-05-26 13:15:44 +00001308
danielk197779a40da2005-01-16 08:00:01 +00001309#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001310/*
danielk197726836652005-01-17 01:33:13 +00001311** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001312** to an overflow page, insert an entry into the pointer-map
1313** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001314*/
drh98add2e2009-07-20 17:11:49 +00001315static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001316 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001317 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001318 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001319 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001320 if( info.nLocal<info.nPayload ){
1321 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001322 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001323 }
danielk1977ac11ee62005-01-15 12:45:51 +00001324}
danielk197779a40da2005-01-16 08:00:01 +00001325#endif
1326
danielk1977ac11ee62005-01-15 12:45:51 +00001327
drhda200cc2004-05-09 11:51:38 +00001328/*
drh72f82862001-05-24 21:06:34 +00001329** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001330** end of the page and all free space is collected into one
1331** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001332** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001333**
1334** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1335** b-tree page so that there are no freeblocks or fragment bytes, all
1336** unused bytes are contained in the unallocated space region, and all
1337** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001338*/
shane0af3f892008-11-12 04:55:34 +00001339static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001340 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001341 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001342 int hdr; /* Offset to the page header */
1343 int size; /* Size of a cell */
1344 int usableSize; /* Number of usable bytes on a page */
1345 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001346 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001347 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001348 unsigned char *data; /* The page data */
1349 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001350 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001351 int iCellFirst; /* First allowable cell index */
1352 int iCellLast; /* Last possible cell index */
1353
drh2af926b2001-05-15 00:39:25 +00001354
danielk19773b8a05f2007-03-19 17:44:26 +00001355 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001356 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001357 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001358 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001359 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001360 temp = 0;
1361 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001362 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001363 cellOffset = pPage->cellOffset;
1364 nCell = pPage->nCell;
1365 assert( nCell==get2byte(&data[hdr+3]) );
1366 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001367 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001368 iCellFirst = cellOffset + 2*nCell;
1369 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001370 for(i=0; i<nCell; i++){
1371 u8 *pAddr; /* The i-th cell pointer */
1372 pAddr = &data[cellOffset + i*2];
1373 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001374 testcase( pc==iCellFirst );
1375 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001376 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001377 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001378 */
1379 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001380 return SQLITE_CORRUPT_BKPT;
1381 }
drh17146622009-07-07 17:38:38 +00001382 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001383 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001384 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001385 if( cbrk<iCellFirst || pc+size>usableSize ){
1386 return SQLITE_CORRUPT_BKPT;
1387 }
drh7157e1d2009-07-09 13:25:32 +00001388 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001389 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001390 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001391 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001392 if( temp==0 ){
1393 int x;
1394 if( cbrk==pc ) continue;
1395 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1396 x = get2byte(&data[hdr+5]);
1397 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1398 src = temp;
1399 }
1400 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001401 }
drh17146622009-07-07 17:38:38 +00001402 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001403 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001404 data[hdr+1] = 0;
1405 data[hdr+2] = 0;
1406 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001407 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001408 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001409 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001410 return SQLITE_CORRUPT_BKPT;
1411 }
shane0af3f892008-11-12 04:55:34 +00001412 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001413}
1414
drha059ad02001-04-17 20:09:11 +00001415/*
dan8e9ba0c2014-10-14 17:27:04 +00001416** Search the free-list on page pPg for space to store a cell nByte bytes in
1417** size. If one can be found, return a pointer to the space and remove it
1418** from the free-list.
1419**
1420** If no suitable space can be found on the free-list, return NULL.
1421**
drhba0f9992014-10-30 20:48:44 +00001422** This function may detect corruption within pPg. If corruption is
1423** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001424**
drhb7580e82015-06-25 18:36:13 +00001425** Slots on the free list that are between 1 and 3 bytes larger than nByte
1426** will be ignored if adding the extra space to the fragmentation count
1427** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001428*/
drhb7580e82015-06-25 18:36:13 +00001429static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001430 const int hdr = pPg->hdrOffset;
1431 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001432 int iAddr = hdr + 1;
1433 int pc = get2byte(&aData[iAddr]);
1434 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001435 int usableSize = pPg->pBt->usableSize;
1436
drhb7580e82015-06-25 18:36:13 +00001437 assert( pc>0 );
1438 do{
dan8e9ba0c2014-10-14 17:27:04 +00001439 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001440 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1441 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001442 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001443 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001444 return 0;
1445 }
drh113762a2014-11-19 16:36:25 +00001446 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1447 ** freeblock form a big-endian integer which is the size of the freeblock
1448 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001449 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001450 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001451 testcase( x==4 );
1452 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001453 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1454 *pRc = SQLITE_CORRUPT_BKPT;
1455 return 0;
1456 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001457 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1458 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001459 if( aData[hdr+7]>57 ) return 0;
1460
dan8e9ba0c2014-10-14 17:27:04 +00001461 /* Remove the slot from the free-list. Update the number of
1462 ** fragmented bytes within the page. */
1463 memcpy(&aData[iAddr], &aData[pc], 2);
1464 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001465 }else{
1466 /* The slot remains on the free-list. Reduce its size to account
1467 ** for the portion used by the new allocation. */
1468 put2byte(&aData[pc+2], x);
1469 }
1470 return &aData[pc + x];
1471 }
drhb7580e82015-06-25 18:36:13 +00001472 iAddr = pc;
1473 pc = get2byte(&aData[pc]);
1474 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001475
1476 return 0;
1477}
1478
1479/*
danielk19776011a752009-04-01 16:25:32 +00001480** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001481** as the first argument. Write into *pIdx the index into pPage->aData[]
1482** of the first byte of allocated space. Return either SQLITE_OK or
1483** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001484**
drh0a45c272009-07-08 01:49:11 +00001485** The caller guarantees that there is sufficient space to make the
1486** allocation. This routine might need to defragment in order to bring
1487** all the space together, however. This routine will avoid using
1488** the first two bytes past the cell pointer area since presumably this
1489** allocation is being made in order to insert a new cell, so we will
1490** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001491*/
drh0a45c272009-07-08 01:49:11 +00001492static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001493 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1494 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001495 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001496 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001497 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001498
danielk19773b8a05f2007-03-19 17:44:26 +00001499 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001500 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001501 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001502 assert( nByte>=0 ); /* Minimum cell size is 4 */
1503 assert( pPage->nFree>=nByte );
1504 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001505 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001506
drh0a45c272009-07-08 01:49:11 +00001507 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1508 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001509 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001510 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1511 ** and the reserved space is zero (the usual value for reserved space)
1512 ** then the cell content offset of an empty page wants to be 65536.
1513 ** However, that integer is too large to be stored in a 2-byte unsigned
1514 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001515 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001516 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001517 if( gap>top ){
1518 if( top==0 && pPage->pBt->usableSize==65536 ){
1519 top = 65536;
1520 }else{
1521 return SQLITE_CORRUPT_BKPT;
1522 }
drhe7266222015-05-29 17:51:16 +00001523 }
drh4c04f3c2014-08-20 11:56:14 +00001524
1525 /* If there is enough space between gap and top for one more cell pointer
1526 ** array entry offset, and if the freelist is not empty, then search the
1527 ** freelist looking for a free slot big enough to satisfy the request.
1528 */
drh0a45c272009-07-08 01:49:11 +00001529 testcase( gap+2==top );
1530 testcase( gap+1==top );
1531 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001532 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001533 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001534 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001535 assert( pSpace>=data && (pSpace - data)<65536 );
1536 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001537 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001538 }else if( rc ){
1539 return rc;
drh9e572e62004-04-23 23:43:10 +00001540 }
1541 }
drh43605152004-05-29 21:46:49 +00001542
drh4c04f3c2014-08-20 11:56:14 +00001543 /* The request could not be fulfilled using a freelist slot. Check
1544 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001545 */
1546 testcase( gap+2+nByte==top );
1547 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001548 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001549 rc = defragmentPage(pPage);
1550 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001551 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001552 assert( gap+nByte<=top );
1553 }
1554
1555
drh43605152004-05-29 21:46:49 +00001556 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001557 ** and the cell content area. The btreeInitPage() call has already
1558 ** validated the freelist. Given that the freelist is valid, there
1559 ** is no way that the allocation can extend off the end of the page.
1560 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001561 */
drh0a45c272009-07-08 01:49:11 +00001562 top -= nByte;
drh43605152004-05-29 21:46:49 +00001563 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001564 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001565 *pIdx = top;
1566 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001567}
1568
1569/*
drh9e572e62004-04-23 23:43:10 +00001570** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001571** The first byte of the new free block is pPage->aData[iStart]
1572** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001573**
drh5f5c7532014-08-20 17:56:27 +00001574** Adjacent freeblocks are coalesced.
1575**
1576** Note that even though the freeblock list was checked by btreeInitPage(),
1577** that routine will not detect overlap between cells or freeblocks. Nor
1578** does it detect cells or freeblocks that encrouch into the reserved bytes
1579** at the end of the page. So do additional corruption checks inside this
1580** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001581*/
drh5f5c7532014-08-20 17:56:27 +00001582static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001583 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001584 u16 iFreeBlk; /* Address of the next freeblock */
1585 u8 hdr; /* Page header size. 0 or 100 */
1586 u8 nFrag = 0; /* Reduction in fragmentation */
1587 u16 iOrigSize = iSize; /* Original value of iSize */
1588 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1589 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001590 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001591
drh9e572e62004-04-23 23:43:10 +00001592 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001593 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001594 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001595 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001596 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001597 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001598 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001599
drh5f5c7532014-08-20 17:56:27 +00001600 /* Overwrite deleted information with zeros when the secure_delete
1601 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001602 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001603 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001604 }
drhfcce93f2006-02-22 03:08:32 +00001605
drh5f5c7532014-08-20 17:56:27 +00001606 /* The list of freeblocks must be in ascending order. Find the
1607 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001608 */
drh43605152004-05-29 21:46:49 +00001609 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001610 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001611 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1612 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1613 }else{
1614 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1615 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1616 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001617 }
drh7bc4c452014-08-20 18:43:44 +00001618 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1619 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1620
1621 /* At this point:
1622 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001623 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001624 **
1625 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1626 */
1627 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1628 nFrag = iFreeBlk - iEnd;
1629 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1630 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001631 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001632 iSize = iEnd - iStart;
1633 iFreeBlk = get2byte(&data[iFreeBlk]);
1634 }
1635
drh3f387402014-09-24 01:23:00 +00001636 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1637 ** pointer in the page header) then check to see if iStart should be
1638 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001639 */
1640 if( iPtr>hdr+1 ){
1641 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1642 if( iPtrEnd+3>=iStart ){
1643 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1644 nFrag += iStart - iPtrEnd;
1645 iSize = iEnd - iPtr;
1646 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001647 }
drh9e572e62004-04-23 23:43:10 +00001648 }
drh7bc4c452014-08-20 18:43:44 +00001649 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1650 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001651 }
drh7bc4c452014-08-20 18:43:44 +00001652 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001653 /* The new freeblock is at the beginning of the cell content area,
1654 ** so just extend the cell content area rather than create another
1655 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001656 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001657 put2byte(&data[hdr+1], iFreeBlk);
1658 put2byte(&data[hdr+5], iEnd);
1659 }else{
1660 /* Insert the new freeblock into the freelist */
1661 put2byte(&data[iPtr], iStart);
1662 put2byte(&data[iStart], iFreeBlk);
1663 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001664 }
drh5f5c7532014-08-20 17:56:27 +00001665 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001666 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001667}
1668
1669/*
drh271efa52004-05-30 19:19:05 +00001670** Decode the flags byte (the first byte of the header) for a page
1671** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001672**
1673** Only the following combinations are supported. Anything different
1674** indicates a corrupt database files:
1675**
1676** PTF_ZERODATA
1677** PTF_ZERODATA | PTF_LEAF
1678** PTF_LEAFDATA | PTF_INTKEY
1679** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001680*/
drh44845222008-07-17 18:39:57 +00001681static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001682 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001683
1684 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001685 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001686 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001687 flagByte &= ~PTF_LEAF;
1688 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001689 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001690 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001691 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001692 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1693 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001694 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001695 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1696 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001697 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001698 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001699 if( pPage->leaf ){
1700 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001701 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001702 }else{
1703 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001704 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001705 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001706 }
drh271efa52004-05-30 19:19:05 +00001707 pPage->maxLocal = pBt->maxLeaf;
1708 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001709 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001710 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1711 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001712 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001713 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1714 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001715 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001716 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001717 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001718 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001719 pPage->maxLocal = pBt->maxLocal;
1720 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001721 }else{
drhfdab0262014-11-20 15:30:50 +00001722 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1723 ** an error. */
drh44845222008-07-17 18:39:57 +00001724 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001725 }
drhc9166342012-01-05 23:32:06 +00001726 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001727 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001728}
1729
1730/*
drh7e3b0a02001-04-28 16:52:40 +00001731** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001732**
1733** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001734** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001735** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1736** guarantee that the page is well-formed. It only shows that
1737** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001738*/
danielk197730548662009-07-09 05:07:37 +00001739static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001740
danielk197771d5d2c2008-09-29 11:49:47 +00001741 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001742 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001743 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001744 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001745 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1746 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001747
1748 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001749 u16 pc; /* Address of a freeblock within pPage->aData[] */
1750 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001751 u8 *data; /* Equal to pPage->aData */
1752 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001753 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001754 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001755 int nFree; /* Number of unused bytes on the page */
1756 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001757 int iCellFirst; /* First allowable cell or freeblock offset */
1758 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001759
1760 pBt = pPage->pBt;
1761
danielk1977eaa06f62008-09-18 17:34:44 +00001762 hdr = pPage->hdrOffset;
1763 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001764 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1765 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001766 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001767 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1768 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001769 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001770 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001771 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001772 pPage->aDataEnd = &data[usableSize];
1773 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001774 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001775 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1776 ** the start of the cell content area. A zero value for this integer is
1777 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001778 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001779 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1780 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001781 pPage->nCell = get2byte(&data[hdr+3]);
1782 if( pPage->nCell>MX_CELL(pBt) ){
1783 /* To many cells for a single page. The page must be corrupt */
1784 return SQLITE_CORRUPT_BKPT;
1785 }
drhb908d762009-07-08 16:54:40 +00001786 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001787 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1788 ** possible for a root page of a table that contains no rows) then the
1789 ** offset to the cell content area will equal the page size minus the
1790 ** bytes of reserved space. */
1791 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001792
shane5eff7cf2009-08-10 03:57:58 +00001793 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001794 ** of page when parsing a cell.
1795 **
1796 ** The following block of code checks early to see if a cell extends
1797 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1798 ** returned if it does.
1799 */
drh0a45c272009-07-08 01:49:11 +00001800 iCellFirst = cellOffset + 2*pPage->nCell;
1801 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001802 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001803 int i; /* Index into the cell pointer array */
1804 int sz; /* Size of a cell */
1805
drh69e931e2009-06-03 21:04:35 +00001806 if( !pPage->leaf ) iCellLast--;
1807 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001808 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001809 testcase( pc==iCellFirst );
1810 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001811 if( pc<iCellFirst || pc>iCellLast ){
1812 return SQLITE_CORRUPT_BKPT;
1813 }
drh25ada072015-06-19 15:07:14 +00001814 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001815 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001816 if( pc+sz>usableSize ){
1817 return SQLITE_CORRUPT_BKPT;
1818 }
1819 }
drh0a45c272009-07-08 01:49:11 +00001820 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001821 }
drh69e931e2009-06-03 21:04:35 +00001822
drhfdab0262014-11-20 15:30:50 +00001823 /* Compute the total free space on the page
1824 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1825 ** start of the first freeblock on the page, or is zero if there are no
1826 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001827 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001828 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001829 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001830 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001831 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001832 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1833 ** always be at least one cell before the first freeblock.
1834 **
1835 ** Or, the freeblock is off the end of the page
1836 */
danielk1977eaa06f62008-09-18 17:34:44 +00001837 return SQLITE_CORRUPT_BKPT;
1838 }
1839 next = get2byte(&data[pc]);
1840 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001841 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1842 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001843 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001844 return SQLITE_CORRUPT_BKPT;
1845 }
shane85095702009-06-15 16:27:08 +00001846 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001847 pc = next;
1848 }
danielk197793c829c2009-06-03 17:26:17 +00001849
1850 /* At this point, nFree contains the sum of the offset to the start
1851 ** of the cell-content area plus the number of free bytes within
1852 ** the cell-content area. If this is greater than the usable-size
1853 ** of the page, then the page must be corrupted. This check also
1854 ** serves to verify that the offset to the start of the cell-content
1855 ** area, according to the page header, lies within the page.
1856 */
1857 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001858 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001859 }
shane5eff7cf2009-08-10 03:57:58 +00001860 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001861 pPage->isInit = 1;
1862 }
drh9e572e62004-04-23 23:43:10 +00001863 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001864}
1865
1866/*
drh8b2f49b2001-06-08 00:21:52 +00001867** Set up a raw page so that it looks like a database page holding
1868** no entries.
drhbd03cae2001-06-02 02:40:57 +00001869*/
drh9e572e62004-04-23 23:43:10 +00001870static void zeroPage(MemPage *pPage, int flags){
1871 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001872 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001873 u8 hdr = pPage->hdrOffset;
1874 u16 first;
drh9e572e62004-04-23 23:43:10 +00001875
danielk19773b8a05f2007-03-19 17:44:26 +00001876 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001877 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1878 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001879 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001880 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001881 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001882 memset(&data[hdr], 0, pBt->usableSize - hdr);
1883 }
drh1bd10f82008-12-10 21:19:56 +00001884 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001885 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001886 memset(&data[hdr+1], 0, 4);
1887 data[hdr+7] = 0;
1888 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001889 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001890 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001891 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001892 pPage->aDataEnd = &data[pBt->usableSize];
1893 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001894 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001895 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001896 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1897 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001898 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001899 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001900}
1901
drh897a8202008-09-18 01:08:15 +00001902
1903/*
1904** Convert a DbPage obtained from the pager into a MemPage used by
1905** the btree layer.
1906*/
1907static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1908 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001909 if( pgno!=pPage->pgno ){
1910 pPage->aData = sqlite3PagerGetData(pDbPage);
1911 pPage->pDbPage = pDbPage;
1912 pPage->pBt = pBt;
1913 pPage->pgno = pgno;
1914 pPage->hdrOffset = pgno==1 ? 100 : 0;
1915 }
1916 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001917 return pPage;
1918}
1919
drhbd03cae2001-06-02 02:40:57 +00001920/*
drh3aac2dd2004-04-26 14:10:20 +00001921** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001922** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001923**
drh7e8c6f12015-05-28 03:28:27 +00001924** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1925** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001926** to fetch the content. Just fill in the content with zeros for now.
1927** If in the future we call sqlite3PagerWrite() on this page, that
1928** means we have started to be concerned about content and the disk
1929** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001930*/
danielk197730548662009-07-09 05:07:37 +00001931static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001932 BtShared *pBt, /* The btree */
1933 Pgno pgno, /* Number of the page to fetch */
1934 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001935 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001936){
drh3aac2dd2004-04-26 14:10:20 +00001937 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001938 DbPage *pDbPage;
1939
drhb00fc3b2013-08-21 23:42:32 +00001940 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001941 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001942 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001943 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001944 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001945 return SQLITE_OK;
1946}
1947
1948/*
danielk1977bea2a942009-01-20 17:06:27 +00001949** Retrieve a page from the pager cache. If the requested page is not
1950** already in the pager cache return NULL. Initialize the MemPage.pBt and
1951** MemPage.aData elements if needed.
1952*/
1953static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1954 DbPage *pDbPage;
1955 assert( sqlite3_mutex_held(pBt->mutex) );
1956 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1957 if( pDbPage ){
1958 return btreePageFromDbPage(pDbPage, pgno, pBt);
1959 }
1960 return 0;
1961}
1962
1963/*
danielk197789d40042008-11-17 14:20:56 +00001964** Return the size of the database file in pages. If there is any kind of
1965** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001966*/
drhb1299152010-03-30 22:58:33 +00001967static Pgno btreePagecount(BtShared *pBt){
1968 return pBt->nPage;
1969}
1970u32 sqlite3BtreeLastPage(Btree *p){
1971 assert( sqlite3BtreeHoldsMutex(p) );
1972 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001973 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001974}
1975
1976/*
drh28f58dd2015-06-27 19:45:03 +00001977** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001978**
drh15a00212015-06-27 20:55:00 +00001979** If pCur!=0 then the page is being fetched as part of a moveToChild()
1980** call. Do additional sanity checking on the page in this case.
1981** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001982**
1983** The page is fetched as read-write unless pCur is not NULL and is
1984** a read-only cursor.
1985**
1986** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001987** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001988*/
1989static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001990 BtShared *pBt, /* The database file */
1991 Pgno pgno, /* Number of the page to get */
1992 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001993 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1994 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001995){
1996 int rc;
drh28f58dd2015-06-27 19:45:03 +00001997 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001998 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001999 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2000 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002001 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002002
danba3cbf32010-06-30 04:29:03 +00002003 if( pgno>btreePagecount(pBt) ){
2004 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002005 goto getAndInitPage_error;
2006 }
drh9584f582015-11-04 20:22:37 +00002007 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002008 if( rc ){
2009 goto getAndInitPage_error;
2010 }
drh8dd1c252015-11-04 22:31:02 +00002011 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002012 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002013 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002014 rc = btreeInitPage(*ppPage);
2015 if( rc!=SQLITE_OK ){
2016 releasePage(*ppPage);
2017 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002018 }
drhee696e22004-08-30 16:52:17 +00002019 }
drh8dd1c252015-11-04 22:31:02 +00002020 assert( (*ppPage)->pgno==pgno );
2021 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002022
drh15a00212015-06-27 20:55:00 +00002023 /* If obtaining a child page for a cursor, we must verify that the page is
2024 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002025 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002026 rc = SQLITE_CORRUPT_BKPT;
2027 releasePage(*ppPage);
2028 goto getAndInitPage_error;
2029 }
drh28f58dd2015-06-27 19:45:03 +00002030 return SQLITE_OK;
2031
2032getAndInitPage_error:
2033 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002034 testcase( pgno==0 );
2035 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002036 return rc;
2037}
2038
2039/*
drh3aac2dd2004-04-26 14:10:20 +00002040** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002041** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002042*/
drhbbf0f862015-06-27 14:59:26 +00002043static void releasePageNotNull(MemPage *pPage){
2044 assert( pPage->aData );
2045 assert( pPage->pBt );
2046 assert( pPage->pDbPage!=0 );
2047 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2048 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2049 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2050 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002051}
drh3aac2dd2004-04-26 14:10:20 +00002052static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002053 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002054}
2055
2056/*
drh7e8c6f12015-05-28 03:28:27 +00002057** Get an unused page.
2058**
2059** This works just like btreeGetPage() with the addition:
2060**
2061** * If the page is already in use for some other purpose, immediately
2062** release it and return an SQLITE_CURRUPT error.
2063** * Make sure the isInit flag is clear
2064*/
2065static int btreeGetUnusedPage(
2066 BtShared *pBt, /* The btree */
2067 Pgno pgno, /* Number of the page to fetch */
2068 MemPage **ppPage, /* Return the page in this parameter */
2069 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2070){
2071 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2072 if( rc==SQLITE_OK ){
2073 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2074 releasePage(*ppPage);
2075 *ppPage = 0;
2076 return SQLITE_CORRUPT_BKPT;
2077 }
2078 (*ppPage)->isInit = 0;
2079 }else{
2080 *ppPage = 0;
2081 }
2082 return rc;
2083}
2084
drha059ad02001-04-17 20:09:11 +00002085
2086/*
drha6abd042004-06-09 17:37:22 +00002087** During a rollback, when the pager reloads information into the cache
2088** so that the cache is restored to its original state at the start of
2089** the transaction, for each page restored this routine is called.
2090**
2091** This routine needs to reset the extra data section at the end of the
2092** page to agree with the restored data.
2093*/
danielk1977eaa06f62008-09-18 17:34:44 +00002094static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002095 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002096 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002097 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002098 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002099 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002100 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002101 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002102 /* pPage might not be a btree page; it might be an overflow page
2103 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002104 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002105 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002106 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002107 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002108 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002109 }
drha6abd042004-06-09 17:37:22 +00002110 }
2111}
2112
2113/*
drhe5fe6902007-12-07 18:55:28 +00002114** Invoke the busy handler for a btree.
2115*/
danielk19771ceedd32008-11-19 10:22:33 +00002116static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002117 BtShared *pBt = (BtShared*)pArg;
2118 assert( pBt->db );
2119 assert( sqlite3_mutex_held(pBt->db->mutex) );
2120 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2121}
2122
2123/*
drhad3e0102004-09-03 23:32:18 +00002124** Open a database file.
2125**
drh382c0242001-10-06 16:33:02 +00002126** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002127** then an ephemeral database is created. The ephemeral database might
2128** be exclusively in memory, or it might use a disk-based memory cache.
2129** Either way, the ephemeral database will be automatically deleted
2130** when sqlite3BtreeClose() is called.
2131**
drhe53831d2007-08-17 01:14:38 +00002132** If zFilename is ":memory:" then an in-memory database is created
2133** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002134**
drh33f111d2012-01-17 15:29:14 +00002135** The "flags" parameter is a bitmask that might contain bits like
2136** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002137**
drhc47fd8e2009-04-30 13:30:32 +00002138** If the database is already opened in the same database connection
2139** and we are in shared cache mode, then the open will fail with an
2140** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2141** objects in the same database connection since doing so will lead
2142** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002143*/
drh23e11ca2004-05-04 17:27:28 +00002144int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002145 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002146 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002147 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002148 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002149 int flags, /* Options */
2150 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002151){
drh7555d8e2009-03-20 13:15:30 +00002152 BtShared *pBt = 0; /* Shared part of btree structure */
2153 Btree *p; /* Handle to return */
2154 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2155 int rc = SQLITE_OK; /* Result code from this function */
2156 u8 nReserve; /* Byte of unused space on each page */
2157 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002158
drh75c014c2010-08-30 15:02:28 +00002159 /* True if opening an ephemeral, temporary database */
2160 const int isTempDb = zFilename==0 || zFilename[0]==0;
2161
danielk1977aef0bf62005-12-30 16:28:01 +00002162 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002163 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002164 */
drhb0a7c9c2010-12-06 21:09:59 +00002165#ifdef SQLITE_OMIT_MEMORYDB
2166 const int isMemdb = 0;
2167#else
2168 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002169 || (isTempDb && sqlite3TempInMemory(db))
2170 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002171#endif
2172
drhe5fe6902007-12-07 18:55:28 +00002173 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002174 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002175 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002176 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2177
2178 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2179 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2180
2181 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2182 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002183
drh75c014c2010-08-30 15:02:28 +00002184 if( isMemdb ){
2185 flags |= BTREE_MEMORY;
2186 }
2187 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2188 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2189 }
drh17435752007-08-16 04:30:38 +00002190 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002191 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002192 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002193 }
2194 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002195 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002196#ifndef SQLITE_OMIT_SHARED_CACHE
2197 p->lock.pBtree = p;
2198 p->lock.iTable = 1;
2199#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002200
drh198bf392006-01-06 21:52:49 +00002201#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002202 /*
2203 ** If this Btree is a candidate for shared cache, try to find an
2204 ** existing BtShared object that we can share with
2205 */
drh4ab9d252012-05-26 20:08:49 +00002206 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002207 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002208 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002209 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002210 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002211 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002212
drhff0587c2007-08-29 17:43:19 +00002213 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002214 if( !zFullPathname ){
2215 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002216 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002217 }
drhafc8b7f2012-05-26 18:06:38 +00002218 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002219 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002220 }else{
2221 rc = sqlite3OsFullPathname(pVfs, zFilename,
2222 nFullPathname, zFullPathname);
2223 if( rc ){
2224 sqlite3_free(zFullPathname);
2225 sqlite3_free(p);
2226 return rc;
2227 }
drh070ad6b2011-11-17 11:43:19 +00002228 }
drh30ddce62011-10-15 00:16:30 +00002229#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002230 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2231 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002232 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002233 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002234#endif
drh78f82d12008-09-02 00:52:52 +00002235 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002236 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002237 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002238 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002239 int iDb;
2240 for(iDb=db->nDb-1; iDb>=0; iDb--){
2241 Btree *pExisting = db->aDb[iDb].pBt;
2242 if( pExisting && pExisting->pBt==pBt ){
2243 sqlite3_mutex_leave(mutexShared);
2244 sqlite3_mutex_leave(mutexOpen);
2245 sqlite3_free(zFullPathname);
2246 sqlite3_free(p);
2247 return SQLITE_CONSTRAINT;
2248 }
2249 }
drhff0587c2007-08-29 17:43:19 +00002250 p->pBt = pBt;
2251 pBt->nRef++;
2252 break;
2253 }
2254 }
2255 sqlite3_mutex_leave(mutexShared);
2256 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002257 }
drhff0587c2007-08-29 17:43:19 +00002258#ifdef SQLITE_DEBUG
2259 else{
2260 /* In debug mode, we mark all persistent databases as sharable
2261 ** even when they are not. This exercises the locking code and
2262 ** gives more opportunity for asserts(sqlite3_mutex_held())
2263 ** statements to find locking problems.
2264 */
2265 p->sharable = 1;
2266 }
2267#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002268 }
2269#endif
drha059ad02001-04-17 20:09:11 +00002270 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002271 /*
2272 ** The following asserts make sure that structures used by the btree are
2273 ** the right size. This is to guard against size changes that result
2274 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002275 */
drh062cf272015-03-23 19:03:51 +00002276 assert( sizeof(i64)==8 );
2277 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002278 assert( sizeof(u32)==4 );
2279 assert( sizeof(u16)==2 );
2280 assert( sizeof(Pgno)==4 );
2281
2282 pBt = sqlite3MallocZero( sizeof(*pBt) );
2283 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002284 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002285 goto btree_open_out;
2286 }
danielk197771d5d2c2008-09-29 11:49:47 +00002287 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002288 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002289 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002290 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002291 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2292 }
2293 if( rc!=SQLITE_OK ){
2294 goto btree_open_out;
2295 }
shanehbd2aaf92010-09-01 02:38:21 +00002296 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002297 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002298 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002299 p->pBt = pBt;
2300
drhe53831d2007-08-17 01:14:38 +00002301 pBt->pCursor = 0;
2302 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002303 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002304#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002305 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002306#endif
drh113762a2014-11-19 16:36:25 +00002307 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2308 ** determined by the 2-byte integer located at an offset of 16 bytes from
2309 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002310 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002311 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2312 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002313 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002314#ifndef SQLITE_OMIT_AUTOVACUUM
2315 /* If the magic name ":memory:" will create an in-memory database, then
2316 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2317 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2318 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2319 ** regular file-name. In this case the auto-vacuum applies as per normal.
2320 */
2321 if( zFilename && !isMemdb ){
2322 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2323 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2324 }
2325#endif
2326 nReserve = 0;
2327 }else{
drh113762a2014-11-19 16:36:25 +00002328 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2329 ** determined by the one-byte unsigned integer found at an offset of 20
2330 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002331 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002332 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002333#ifndef SQLITE_OMIT_AUTOVACUUM
2334 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2335 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2336#endif
2337 }
drhfa9601a2009-06-18 17:22:39 +00002338 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002339 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002340 pBt->usableSize = pBt->pageSize - nReserve;
2341 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002342
2343#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2344 /* Add the new BtShared object to the linked list sharable BtShareds.
2345 */
dan272989b2016-07-06 10:12:02 +00002346 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002347 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002348 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002349 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002350 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002351 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002352 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002353 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002354 goto btree_open_out;
2355 }
drhff0587c2007-08-29 17:43:19 +00002356 }
drhe53831d2007-08-17 01:14:38 +00002357 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002358 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2359 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002360 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002361 }
drheee46cf2004-11-06 00:02:48 +00002362#endif
drh90f5ecb2004-07-22 01:19:35 +00002363 }
danielk1977aef0bf62005-12-30 16:28:01 +00002364
drhcfed7bc2006-03-13 14:28:05 +00002365#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002366 /* If the new Btree uses a sharable pBtShared, then link the new
2367 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002368 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002369 */
drhe53831d2007-08-17 01:14:38 +00002370 if( p->sharable ){
2371 int i;
2372 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002373 for(i=0; i<db->nDb; i++){
2374 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002375 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002376 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002377 p->pNext = pSib;
2378 p->pPrev = 0;
2379 pSib->pPrev = p;
2380 }else{
drh3bfa7e82016-03-22 14:37:59 +00002381 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002382 pSib = pSib->pNext;
2383 }
2384 p->pNext = pSib->pNext;
2385 p->pPrev = pSib;
2386 if( p->pNext ){
2387 p->pNext->pPrev = p;
2388 }
2389 pSib->pNext = p;
2390 }
2391 break;
2392 }
2393 }
danielk1977aef0bf62005-12-30 16:28:01 +00002394 }
danielk1977aef0bf62005-12-30 16:28:01 +00002395#endif
2396 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002397
2398btree_open_out:
2399 if( rc!=SQLITE_OK ){
2400 if( pBt && pBt->pPager ){
2401 sqlite3PagerClose(pBt->pPager);
2402 }
drh17435752007-08-16 04:30:38 +00002403 sqlite3_free(pBt);
2404 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002405 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002406 }else{
2407 /* If the B-Tree was successfully opened, set the pager-cache size to the
2408 ** default value. Except, when opening on an existing shared pager-cache,
2409 ** do not change the pager-cache size.
2410 */
2411 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2412 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2413 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002414 }
drh7555d8e2009-03-20 13:15:30 +00002415 if( mutexOpen ){
2416 assert( sqlite3_mutex_held(mutexOpen) );
2417 sqlite3_mutex_leave(mutexOpen);
2418 }
dan272989b2016-07-06 10:12:02 +00002419 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002420 return rc;
drha059ad02001-04-17 20:09:11 +00002421}
2422
2423/*
drhe53831d2007-08-17 01:14:38 +00002424** Decrement the BtShared.nRef counter. When it reaches zero,
2425** remove the BtShared structure from the sharing list. Return
2426** true if the BtShared.nRef counter reaches zero and return
2427** false if it is still positive.
2428*/
2429static int removeFromSharingList(BtShared *pBt){
2430#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002431 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002432 BtShared *pList;
2433 int removed = 0;
2434
drhd677b3d2007-08-20 22:48:41 +00002435 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002436 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002437 sqlite3_mutex_enter(pMaster);
2438 pBt->nRef--;
2439 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002440 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2441 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002442 }else{
drh78f82d12008-09-02 00:52:52 +00002443 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002444 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002445 pList=pList->pNext;
2446 }
drh34004ce2008-07-11 16:15:17 +00002447 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002448 pList->pNext = pBt->pNext;
2449 }
2450 }
drh3285db22007-09-03 22:00:39 +00002451 if( SQLITE_THREADSAFE ){
2452 sqlite3_mutex_free(pBt->mutex);
2453 }
drhe53831d2007-08-17 01:14:38 +00002454 removed = 1;
2455 }
2456 sqlite3_mutex_leave(pMaster);
2457 return removed;
2458#else
2459 return 1;
2460#endif
2461}
2462
2463/*
drhf7141992008-06-19 00:16:08 +00002464** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002465** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2466** pointer.
drhf7141992008-06-19 00:16:08 +00002467*/
2468static void allocateTempSpace(BtShared *pBt){
2469 if( !pBt->pTmpSpace ){
2470 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002471
2472 /* One of the uses of pBt->pTmpSpace is to format cells before
2473 ** inserting them into a leaf page (function fillInCell()). If
2474 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2475 ** by the various routines that manipulate binary cells. Which
2476 ** can mean that fillInCell() only initializes the first 2 or 3
2477 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2478 ** it into a database page. This is not actually a problem, but it
2479 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2480 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002481 ** zero the first 4 bytes of temp space here.
2482 **
2483 ** Also: Provide four bytes of initialized space before the
2484 ** beginning of pTmpSpace as an area available to prepend the
2485 ** left-child pointer to the beginning of a cell.
2486 */
2487 if( pBt->pTmpSpace ){
2488 memset(pBt->pTmpSpace, 0, 8);
2489 pBt->pTmpSpace += 4;
2490 }
drhf7141992008-06-19 00:16:08 +00002491 }
2492}
2493
2494/*
2495** Free the pBt->pTmpSpace allocation
2496*/
2497static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002498 if( pBt->pTmpSpace ){
2499 pBt->pTmpSpace -= 4;
2500 sqlite3PageFree(pBt->pTmpSpace);
2501 pBt->pTmpSpace = 0;
2502 }
drhf7141992008-06-19 00:16:08 +00002503}
2504
2505/*
drha059ad02001-04-17 20:09:11 +00002506** Close an open database and invalidate all cursors.
2507*/
danielk1977aef0bf62005-12-30 16:28:01 +00002508int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002509 BtShared *pBt = p->pBt;
2510 BtCursor *pCur;
2511
danielk1977aef0bf62005-12-30 16:28:01 +00002512 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002513 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002514 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002515 pCur = pBt->pCursor;
2516 while( pCur ){
2517 BtCursor *pTmp = pCur;
2518 pCur = pCur->pNext;
2519 if( pTmp->pBtree==p ){
2520 sqlite3BtreeCloseCursor(pTmp);
2521 }
drha059ad02001-04-17 20:09:11 +00002522 }
danielk1977aef0bf62005-12-30 16:28:01 +00002523
danielk19778d34dfd2006-01-24 16:37:57 +00002524 /* Rollback any active transaction and free the handle structure.
2525 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2526 ** this handle.
2527 */
drh47b7fc72014-11-11 01:33:57 +00002528 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002529 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002530
danielk1977aef0bf62005-12-30 16:28:01 +00002531 /* If there are still other outstanding references to the shared-btree
2532 ** structure, return now. The remainder of this procedure cleans
2533 ** up the shared-btree.
2534 */
drhe53831d2007-08-17 01:14:38 +00002535 assert( p->wantToLock==0 && p->locked==0 );
2536 if( !p->sharable || removeFromSharingList(pBt) ){
2537 /* The pBt is no longer on the sharing list, so we can access
2538 ** it without having to hold the mutex.
2539 **
2540 ** Clean out and delete the BtShared object.
2541 */
2542 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002543 sqlite3PagerClose(pBt->pPager);
2544 if( pBt->xFreeSchema && pBt->pSchema ){
2545 pBt->xFreeSchema(pBt->pSchema);
2546 }
drhb9755982010-07-24 16:34:37 +00002547 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002548 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002549 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002550 }
2551
drhe53831d2007-08-17 01:14:38 +00002552#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002553 assert( p->wantToLock==0 );
2554 assert( p->locked==0 );
2555 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2556 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002557#endif
2558
drhe53831d2007-08-17 01:14:38 +00002559 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002560 return SQLITE_OK;
2561}
2562
2563/*
drh9b0cf342015-11-12 14:57:19 +00002564** Change the "soft" limit on the number of pages in the cache.
2565** Unused and unmodified pages will be recycled when the number of
2566** pages in the cache exceeds this soft limit. But the size of the
2567** cache is allowed to grow larger than this limit if it contains
2568** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002569*/
danielk1977aef0bf62005-12-30 16:28:01 +00002570int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2571 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002572 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002573 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002574 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002575 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002576 return SQLITE_OK;
2577}
2578
drh9b0cf342015-11-12 14:57:19 +00002579/*
2580** Change the "spill" limit on the number of pages in the cache.
2581** If the number of pages exceeds this limit during a write transaction,
2582** the pager might attempt to "spill" pages to the journal early in
2583** order to free up memory.
2584**
2585** The value returned is the current spill size. If zero is passed
2586** as an argument, no changes are made to the spill size setting, so
2587** using mxPage of 0 is a way to query the current spill size.
2588*/
2589int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2590 BtShared *pBt = p->pBt;
2591 int res;
2592 assert( sqlite3_mutex_held(p->db->mutex) );
2593 sqlite3BtreeEnter(p);
2594 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2595 sqlite3BtreeLeave(p);
2596 return res;
2597}
2598
drh18c7e402014-03-14 11:46:10 +00002599#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002600/*
dan5d8a1372013-03-19 19:28:06 +00002601** Change the limit on the amount of the database file that may be
2602** memory mapped.
2603*/
drh9b4c59f2013-04-15 17:03:42 +00002604int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002605 BtShared *pBt = p->pBt;
2606 assert( sqlite3_mutex_held(p->db->mutex) );
2607 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002608 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002609 sqlite3BtreeLeave(p);
2610 return SQLITE_OK;
2611}
drh18c7e402014-03-14 11:46:10 +00002612#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002613
drh306dc212001-05-21 13:45:10 +00002614/*
drh973b6e32003-02-12 14:09:42 +00002615** Change the way data is synced to disk in order to increase or decrease
2616** how well the database resists damage due to OS crashes and power
2617** failures. Level 1 is the same as asynchronous (no syncs() occur and
2618** there is a high probability of damage) Level 2 is the default. There
2619** is a very low but non-zero probability of damage. Level 3 reduces the
2620** probability of damage to near zero but with a write performance reduction.
2621*/
danielk197793758c82005-01-21 08:13:14 +00002622#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002623int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002624 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002625 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002626){
danielk1977aef0bf62005-12-30 16:28:01 +00002627 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002628 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002629 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002630 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002631 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002632 return SQLITE_OK;
2633}
danielk197793758c82005-01-21 08:13:14 +00002634#endif
drh973b6e32003-02-12 14:09:42 +00002635
drh2c8997b2005-08-27 16:36:48 +00002636/*
drh90f5ecb2004-07-22 01:19:35 +00002637** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002638** Or, if the page size has already been fixed, return SQLITE_READONLY
2639** without changing anything.
drh06f50212004-11-02 14:24:33 +00002640**
2641** The page size must be a power of 2 between 512 and 65536. If the page
2642** size supplied does not meet this constraint then the page size is not
2643** changed.
2644**
2645** Page sizes are constrained to be a power of two so that the region
2646** of the database file used for locking (beginning at PENDING_BYTE,
2647** the first byte past the 1GB boundary, 0x40000000) needs to occur
2648** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002649**
2650** If parameter nReserve is less than zero, then the number of reserved
2651** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002652**
drhc9166342012-01-05 23:32:06 +00002653** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002654** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002655*/
drhce4869f2009-04-02 20:16:58 +00002656int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002657 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002658 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002659 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002660 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002661#if SQLITE_HAS_CODEC
2662 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2663#endif
drhc9166342012-01-05 23:32:06 +00002664 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002665 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002666 return SQLITE_READONLY;
2667 }
2668 if( nReserve<0 ){
2669 nReserve = pBt->pageSize - pBt->usableSize;
2670 }
drhf49661a2008-12-10 16:45:50 +00002671 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002672 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2673 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002674 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002675 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002676 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002677 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002678 }
drhfa9601a2009-06-18 17:22:39 +00002679 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002680 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002681 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002682 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002683 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002684}
2685
2686/*
2687** Return the currently defined page size
2688*/
danielk1977aef0bf62005-12-30 16:28:01 +00002689int sqlite3BtreeGetPageSize(Btree *p){
2690 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002691}
drh7f751222009-03-17 22:33:00 +00002692
dan0094f372012-09-28 20:23:42 +00002693/*
2694** This function is similar to sqlite3BtreeGetReserve(), except that it
2695** may only be called if it is guaranteed that the b-tree mutex is already
2696** held.
2697**
2698** This is useful in one special case in the backup API code where it is
2699** known that the shared b-tree mutex is held, but the mutex on the
2700** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2701** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002702** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002703*/
2704int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002705 int n;
dan0094f372012-09-28 20:23:42 +00002706 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002707 n = p->pBt->pageSize - p->pBt->usableSize;
2708 return n;
dan0094f372012-09-28 20:23:42 +00002709}
2710
drh7f751222009-03-17 22:33:00 +00002711/*
2712** Return the number of bytes of space at the end of every page that
2713** are intentually left unused. This is the "reserved" space that is
2714** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002715**
2716** If SQLITE_HAS_MUTEX is defined then the number returned is the
2717** greater of the current reserved space and the maximum requested
2718** reserve space.
drh7f751222009-03-17 22:33:00 +00002719*/
drhad0961b2015-02-21 00:19:25 +00002720int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002721 int n;
2722 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002723 n = sqlite3BtreeGetReserveNoMutex(p);
2724#ifdef SQLITE_HAS_CODEC
2725 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2726#endif
drhd677b3d2007-08-20 22:48:41 +00002727 sqlite3BtreeLeave(p);
2728 return n;
drh2011d5f2004-07-22 02:40:37 +00002729}
drhf8e632b2007-05-08 14:51:36 +00002730
drhad0961b2015-02-21 00:19:25 +00002731
drhf8e632b2007-05-08 14:51:36 +00002732/*
2733** Set the maximum page count for a database if mxPage is positive.
2734** No changes are made if mxPage is 0 or negative.
2735** Regardless of the value of mxPage, return the maximum page count.
2736*/
2737int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002738 int n;
2739 sqlite3BtreeEnter(p);
2740 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2741 sqlite3BtreeLeave(p);
2742 return n;
drhf8e632b2007-05-08 14:51:36 +00002743}
drh5b47efa2010-02-12 18:18:39 +00002744
2745/*
drhc9166342012-01-05 23:32:06 +00002746** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2747** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002748** setting after the change.
2749*/
2750int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2751 int b;
drhaf034ed2010-02-12 19:46:26 +00002752 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002753 sqlite3BtreeEnter(p);
2754 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002755 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2756 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002757 }
drhc9166342012-01-05 23:32:06 +00002758 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002759 sqlite3BtreeLeave(p);
2760 return b;
2761}
drh90f5ecb2004-07-22 01:19:35 +00002762
2763/*
danielk1977951af802004-11-05 15:45:09 +00002764** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2765** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2766** is disabled. The default value for the auto-vacuum property is
2767** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2768*/
danielk1977aef0bf62005-12-30 16:28:01 +00002769int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002770#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002771 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002772#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002773 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002774 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002775 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002776
2777 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002778 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002779 rc = SQLITE_READONLY;
2780 }else{
drh076d4662009-02-18 20:31:18 +00002781 pBt->autoVacuum = av ?1:0;
2782 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002783 }
drhd677b3d2007-08-20 22:48:41 +00002784 sqlite3BtreeLeave(p);
2785 return rc;
danielk1977951af802004-11-05 15:45:09 +00002786#endif
2787}
2788
2789/*
2790** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2791** enabled 1 is returned. Otherwise 0.
2792*/
danielk1977aef0bf62005-12-30 16:28:01 +00002793int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002794#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002795 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002796#else
drhd677b3d2007-08-20 22:48:41 +00002797 int rc;
2798 sqlite3BtreeEnter(p);
2799 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002800 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2801 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2802 BTREE_AUTOVACUUM_INCR
2803 );
drhd677b3d2007-08-20 22:48:41 +00002804 sqlite3BtreeLeave(p);
2805 return rc;
danielk1977951af802004-11-05 15:45:09 +00002806#endif
2807}
2808
2809
2810/*
drha34b6762004-05-07 13:30:42 +00002811** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002812** also acquire a readlock on that file.
2813**
2814** SQLITE_OK is returned on success. If the file is not a
2815** well-formed database file, then SQLITE_CORRUPT is returned.
2816** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002817** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002818*/
danielk1977aef0bf62005-12-30 16:28:01 +00002819static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002820 int rc; /* Result code from subfunctions */
2821 MemPage *pPage1; /* Page 1 of the database file */
2822 int nPage; /* Number of pages in the database */
2823 int nPageFile = 0; /* Number of pages in the database file */
2824 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002825
drh1fee73e2007-08-29 04:00:57 +00002826 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002827 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002828 rc = sqlite3PagerSharedLock(pBt->pPager);
2829 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002830 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002831 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002832
2833 /* Do some checking to help insure the file we opened really is
2834 ** a valid database file.
2835 */
drhc2a4bab2010-04-02 12:46:45 +00002836 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002837 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002838 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002839 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002840 }
2841 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002842 u32 pageSize;
2843 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002844 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002845 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002846 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2847 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2848 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002849 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002850 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002851 }
dan5cf53532010-05-01 16:40:20 +00002852
2853#ifdef SQLITE_OMIT_WAL
2854 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002855 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002856 }
2857 if( page1[19]>1 ){
2858 goto page1_init_failed;
2859 }
2860#else
dane04dc882010-04-20 18:53:15 +00002861 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002862 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002863 }
dane04dc882010-04-20 18:53:15 +00002864 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002865 goto page1_init_failed;
2866 }
drhe5ae5732008-06-15 02:51:47 +00002867
dana470aeb2010-04-21 11:43:38 +00002868 /* If the write version is set to 2, this database should be accessed
2869 ** in WAL mode. If the log is not already open, open it now. Then
2870 ** return SQLITE_OK and return without populating BtShared.pPage1.
2871 ** The caller detects this and calls this function again. This is
2872 ** required as the version of page 1 currently in the page1 buffer
2873 ** may not be the latest version - there may be a newer one in the log
2874 ** file.
2875 */
drhc9166342012-01-05 23:32:06 +00002876 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002877 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002878 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002879 if( rc!=SQLITE_OK ){
2880 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002881 }else{
2882#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2883 sqlite3 *db;
2884 Db *pDb;
2885 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2886 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2887 if( pDb->bSyncSet==0
drhc2ae2072016-03-08 15:30:01 +00002888 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
drhe243de52016-03-08 15:14:26 +00002889 ){
drhc2ae2072016-03-08 15:30:01 +00002890 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
drhe243de52016-03-08 15:14:26 +00002891 sqlite3PagerSetFlags(pBt->pPager,
2892 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
adam2e4491d2011-06-24 20:47:06 +00002893 }
2894 }
2895#endif
drhe243de52016-03-08 15:14:26 +00002896 if( isOpen==0 ){
2897 releasePage(pPage1);
2898 return SQLITE_OK;
2899 }
dane04dc882010-04-20 18:53:15 +00002900 }
dan8b5444b2010-04-27 14:37:47 +00002901 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002902 }
dan5cf53532010-05-01 16:40:20 +00002903#endif
dane04dc882010-04-20 18:53:15 +00002904
drh113762a2014-11-19 16:36:25 +00002905 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2906 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2907 **
drhe5ae5732008-06-15 02:51:47 +00002908 ** The original design allowed these amounts to vary, but as of
2909 ** version 3.6.0, we require them to be fixed.
2910 */
2911 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2912 goto page1_init_failed;
2913 }
drh113762a2014-11-19 16:36:25 +00002914 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2915 ** determined by the 2-byte integer located at an offset of 16 bytes from
2916 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002917 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002918 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2919 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002920 if( ((pageSize-1)&pageSize)!=0
2921 || pageSize>SQLITE_MAX_PAGE_SIZE
2922 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002923 ){
drh07d183d2005-05-01 22:52:42 +00002924 goto page1_init_failed;
2925 }
2926 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002927 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2928 ** integer at offset 20 is the number of bytes of space at the end of
2929 ** each page to reserve for extensions.
2930 **
2931 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2932 ** determined by the one-byte unsigned integer found at an offset of 20
2933 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002934 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002935 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002936 /* After reading the first page of the database assuming a page size
2937 ** of BtShared.pageSize, we have discovered that the page-size is
2938 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2939 ** zero and return SQLITE_OK. The caller will call this function
2940 ** again with the correct page-size.
2941 */
2942 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002943 pBt->usableSize = usableSize;
2944 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002945 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002946 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2947 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002948 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002949 }
danecac6702011-02-09 18:19:20 +00002950 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002951 rc = SQLITE_CORRUPT_BKPT;
2952 goto page1_init_failed;
2953 }
drh113762a2014-11-19 16:36:25 +00002954 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2955 ** be less than 480. In other words, if the page size is 512, then the
2956 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002957 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002958 goto page1_init_failed;
2959 }
drh43b18e12010-08-17 19:40:08 +00002960 pBt->pageSize = pageSize;
2961 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002962#ifndef SQLITE_OMIT_AUTOVACUUM
2963 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002964 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002965#endif
drh306dc212001-05-21 13:45:10 +00002966 }
drhb6f41482004-05-14 01:58:11 +00002967
2968 /* maxLocal is the maximum amount of payload to store locally for
2969 ** a cell. Make sure it is small enough so that at least minFanout
2970 ** cells can will fit on one page. We assume a 10-byte page header.
2971 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002972 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002973 ** 4-byte child pointer
2974 ** 9-byte nKey value
2975 ** 4-byte nData value
2976 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002977 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002978 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2979 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002980 */
shaneh1df2db72010-08-18 02:28:48 +00002981 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2982 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2983 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2984 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002985 if( pBt->maxLocal>127 ){
2986 pBt->max1bytePayload = 127;
2987 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002988 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002989 }
drh2e38c322004-09-03 18:38:44 +00002990 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002991 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002992 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002993 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002994
drh72f82862001-05-24 21:06:34 +00002995page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002996 releasePage(pPage1);
2997 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002998 return rc;
drh306dc212001-05-21 13:45:10 +00002999}
3000
drh85ec3b62013-05-14 23:12:06 +00003001#ifndef NDEBUG
3002/*
3003** Return the number of cursors open on pBt. This is for use
3004** in assert() expressions, so it is only compiled if NDEBUG is not
3005** defined.
3006**
3007** Only write cursors are counted if wrOnly is true. If wrOnly is
3008** false then all cursors are counted.
3009**
3010** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003011** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003012** have been tripped into the CURSOR_FAULT state are not counted.
3013*/
3014static int countValidCursors(BtShared *pBt, int wrOnly){
3015 BtCursor *pCur;
3016 int r = 0;
3017 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003018 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3019 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003020 }
3021 return r;
3022}
3023#endif
3024
drh306dc212001-05-21 13:45:10 +00003025/*
drhb8ca3072001-12-05 00:21:20 +00003026** If there are no outstanding cursors and we are not in the middle
3027** of a transaction but there is a read lock on the database, then
3028** this routine unrefs the first page of the database file which
3029** has the effect of releasing the read lock.
3030**
drhb8ca3072001-12-05 00:21:20 +00003031** If there is a transaction in progress, this routine is a no-op.
3032*/
danielk1977aef0bf62005-12-30 16:28:01 +00003033static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003034 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003035 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003036 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003037 MemPage *pPage1 = pBt->pPage1;
3038 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003039 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003040 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003041 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003042 }
3043}
3044
3045/*
drhe39f2f92009-07-23 01:43:59 +00003046** If pBt points to an empty file then convert that empty file
3047** into a new empty database by initializing the first page of
3048** the database.
drh8b2f49b2001-06-08 00:21:52 +00003049*/
danielk1977aef0bf62005-12-30 16:28:01 +00003050static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003051 MemPage *pP1;
3052 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003053 int rc;
drhd677b3d2007-08-20 22:48:41 +00003054
drh1fee73e2007-08-29 04:00:57 +00003055 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003056 if( pBt->nPage>0 ){
3057 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003058 }
drh3aac2dd2004-04-26 14:10:20 +00003059 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003060 assert( pP1!=0 );
3061 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003062 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003063 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003064 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3065 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003066 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3067 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003068 data[18] = 1;
3069 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003070 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3071 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003072 data[21] = 64;
3073 data[22] = 32;
3074 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003075 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003076 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003077 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003078#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003079 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003080 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003081 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003082 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003083#endif
drhdd3cd972010-03-27 17:12:36 +00003084 pBt->nPage = 1;
3085 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003086 return SQLITE_OK;
3087}
3088
3089/*
danb483eba2012-10-13 19:58:11 +00003090** Initialize the first page of the database file (creating a database
3091** consisting of a single page and no schema objects). Return SQLITE_OK
3092** if successful, or an SQLite error code otherwise.
3093*/
3094int sqlite3BtreeNewDb(Btree *p){
3095 int rc;
3096 sqlite3BtreeEnter(p);
3097 p->pBt->nPage = 0;
3098 rc = newDatabase(p->pBt);
3099 sqlite3BtreeLeave(p);
3100 return rc;
3101}
3102
3103/*
danielk1977ee5741e2004-05-31 10:01:34 +00003104** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003105** is started if the second argument is nonzero, otherwise a read-
3106** transaction. If the second argument is 2 or more and exclusive
3107** transaction is started, meaning that no other process is allowed
3108** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003109** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003110** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003111**
danielk1977ee5741e2004-05-31 10:01:34 +00003112** A write-transaction must be started before attempting any
3113** changes to the database. None of the following routines
3114** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003115**
drh23e11ca2004-05-04 17:27:28 +00003116** sqlite3BtreeCreateTable()
3117** sqlite3BtreeCreateIndex()
3118** sqlite3BtreeClearTable()
3119** sqlite3BtreeDropTable()
3120** sqlite3BtreeInsert()
3121** sqlite3BtreeDelete()
3122** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003123**
drhb8ef32c2005-03-14 02:01:49 +00003124** If an initial attempt to acquire the lock fails because of lock contention
3125** and the database was previously unlocked, then invoke the busy handler
3126** if there is one. But if there was previously a read-lock, do not
3127** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3128** returned when there is already a read-lock in order to avoid a deadlock.
3129**
3130** Suppose there are two processes A and B. A has a read lock and B has
3131** a reserved lock. B tries to promote to exclusive but is blocked because
3132** of A's read lock. A tries to promote to reserved but is blocked by B.
3133** One or the other of the two processes must give way or there can be
3134** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3135** when A already has a read lock, we encourage A to give up and let B
3136** proceed.
drha059ad02001-04-17 20:09:11 +00003137*/
danielk1977aef0bf62005-12-30 16:28:01 +00003138int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3139 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003140 int rc = SQLITE_OK;
3141
drhd677b3d2007-08-20 22:48:41 +00003142 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003143 btreeIntegrity(p);
3144
danielk1977ee5741e2004-05-31 10:01:34 +00003145 /* If the btree is already in a write-transaction, or it
3146 ** is already in a read-transaction and a read-transaction
3147 ** is requested, this is a no-op.
3148 */
danielk1977aef0bf62005-12-30 16:28:01 +00003149 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003150 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003151 }
dan56c517a2013-09-26 11:04:33 +00003152 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003153
3154 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003155 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003156 rc = SQLITE_READONLY;
3157 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003158 }
3159
danielk1977404ca072009-03-16 13:19:36 +00003160#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003161 {
3162 sqlite3 *pBlock = 0;
3163 /* If another database handle has already opened a write transaction
3164 ** on this shared-btree structure and a second write transaction is
3165 ** requested, return SQLITE_LOCKED.
3166 */
3167 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3168 || (pBt->btsFlags & BTS_PENDING)!=0
3169 ){
3170 pBlock = pBt->pWriter->db;
3171 }else if( wrflag>1 ){
3172 BtLock *pIter;
3173 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3174 if( pIter->pBtree!=p ){
3175 pBlock = pIter->pBtree->db;
3176 break;
3177 }
danielk1977641b0f42007-12-21 04:47:25 +00003178 }
3179 }
drh5a1fb182016-01-08 19:34:39 +00003180 if( pBlock ){
3181 sqlite3ConnectionBlocked(p->db, pBlock);
3182 rc = SQLITE_LOCKED_SHAREDCACHE;
3183 goto trans_begun;
3184 }
danielk1977404ca072009-03-16 13:19:36 +00003185 }
danielk1977641b0f42007-12-21 04:47:25 +00003186#endif
3187
danielk1977602b4662009-07-02 07:47:33 +00003188 /* Any read-only or read-write transaction implies a read-lock on
3189 ** page 1. So if some other shared-cache client already has a write-lock
3190 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003191 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3192 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003193
drhc9166342012-01-05 23:32:06 +00003194 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3195 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003196 do {
danielk1977295dc102009-04-01 19:07:03 +00003197 /* Call lockBtree() until either pBt->pPage1 is populated or
3198 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3199 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3200 ** reading page 1 it discovers that the page-size of the database
3201 ** file is not pBt->pageSize. In this case lockBtree() will update
3202 ** pBt->pageSize to the page-size of the file on disk.
3203 */
3204 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003205
drhb8ef32c2005-03-14 02:01:49 +00003206 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003207 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003208 rc = SQLITE_READONLY;
3209 }else{
danielk1977d8293352009-04-30 09:10:37 +00003210 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003211 if( rc==SQLITE_OK ){
3212 rc = newDatabase(pBt);
3213 }
drhb8ef32c2005-03-14 02:01:49 +00003214 }
3215 }
3216
danielk1977bd434552009-03-18 10:33:00 +00003217 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003218 unlockBtreeIfUnused(pBt);
3219 }
danf9b76712010-06-01 14:12:45 +00003220 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003221 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003222
3223 if( rc==SQLITE_OK ){
3224 if( p->inTrans==TRANS_NONE ){
3225 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003226#ifndef SQLITE_OMIT_SHARED_CACHE
3227 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003228 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003229 p->lock.eLock = READ_LOCK;
3230 p->lock.pNext = pBt->pLock;
3231 pBt->pLock = &p->lock;
3232 }
3233#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003234 }
3235 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3236 if( p->inTrans>pBt->inTransaction ){
3237 pBt->inTransaction = p->inTrans;
3238 }
danielk1977404ca072009-03-16 13:19:36 +00003239 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003240 MemPage *pPage1 = pBt->pPage1;
3241#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003242 assert( !pBt->pWriter );
3243 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003244 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3245 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003246#endif
dan59257dc2010-08-04 11:34:31 +00003247
3248 /* If the db-size header field is incorrect (as it may be if an old
3249 ** client has been writing the database file), update it now. Doing
3250 ** this sooner rather than later means the database size can safely
3251 ** re-read the database size from page 1 if a savepoint or transaction
3252 ** rollback occurs within the transaction.
3253 */
3254 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3255 rc = sqlite3PagerWrite(pPage1->pDbPage);
3256 if( rc==SQLITE_OK ){
3257 put4byte(&pPage1->aData[28], pBt->nPage);
3258 }
3259 }
3260 }
danielk1977aef0bf62005-12-30 16:28:01 +00003261 }
3262
drhd677b3d2007-08-20 22:48:41 +00003263
3264trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003265 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003266 /* This call makes sure that the pager has the correct number of
3267 ** open savepoints. If the second parameter is greater than 0 and
3268 ** the sub-journal is not already open, then it will be opened here.
3269 */
danielk1977fd7f0452008-12-17 17:30:26 +00003270 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3271 }
danielk197712dd5492008-12-18 15:45:07 +00003272
danielk1977aef0bf62005-12-30 16:28:01 +00003273 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003274 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003275 return rc;
drha059ad02001-04-17 20:09:11 +00003276}
3277
danielk1977687566d2004-11-02 12:56:41 +00003278#ifndef SQLITE_OMIT_AUTOVACUUM
3279
3280/*
3281** Set the pointer-map entries for all children of page pPage. Also, if
3282** pPage contains cells that point to overflow pages, set the pointer
3283** map entries for the overflow pages as well.
3284*/
3285static int setChildPtrmaps(MemPage *pPage){
3286 int i; /* Counter variable */
3287 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003288 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003289 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003290 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003291 Pgno pgno = pPage->pgno;
3292
drh1fee73e2007-08-29 04:00:57 +00003293 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003294 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003295 if( rc!=SQLITE_OK ){
3296 goto set_child_ptrmaps_out;
3297 }
danielk1977687566d2004-11-02 12:56:41 +00003298 nCell = pPage->nCell;
3299
3300 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003301 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003302
drh98add2e2009-07-20 17:11:49 +00003303 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003304
danielk1977687566d2004-11-02 12:56:41 +00003305 if( !pPage->leaf ){
3306 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003307 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003308 }
3309 }
3310
3311 if( !pPage->leaf ){
3312 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003313 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003314 }
3315
3316set_child_ptrmaps_out:
3317 pPage->isInit = isInitOrig;
3318 return rc;
3319}
3320
3321/*
drhf3aed592009-07-08 18:12:49 +00003322** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3323** that it points to iTo. Parameter eType describes the type of pointer to
3324** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003325**
3326** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3327** page of pPage.
3328**
3329** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3330** page pointed to by one of the cells on pPage.
3331**
3332** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3333** overflow page in the list.
3334*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003335static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003336 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003337 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003338 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003339 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003340 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003341 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003342 }
danielk1977f78fc082004-11-02 14:40:32 +00003343 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003344 }else{
drhf49661a2008-12-10 16:45:50 +00003345 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003346 int i;
3347 int nCell;
drha1f75d92015-05-24 10:18:12 +00003348 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003349
drha1f75d92015-05-24 10:18:12 +00003350 rc = btreeInitPage(pPage);
3351 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003352 nCell = pPage->nCell;
3353
danielk1977687566d2004-11-02 12:56:41 +00003354 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003355 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003356 if( eType==PTRMAP_OVERFLOW1 ){
3357 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003358 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003359 if( info.nLocal<info.nPayload
3360 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3361 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003362 ){
drh45ac1c72015-12-18 03:59:16 +00003363 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003364 break;
danielk1977687566d2004-11-02 12:56:41 +00003365 }
3366 }else{
3367 if( get4byte(pCell)==iFrom ){
3368 put4byte(pCell, iTo);
3369 break;
3370 }
3371 }
3372 }
3373
3374 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003375 if( eType!=PTRMAP_BTREE ||
3376 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003377 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003378 }
danielk1977687566d2004-11-02 12:56:41 +00003379 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3380 }
3381
3382 pPage->isInit = isInitOrig;
3383 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003384 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003385}
3386
danielk1977003ba062004-11-04 02:57:33 +00003387
danielk19777701e812005-01-10 12:59:51 +00003388/*
3389** Move the open database page pDbPage to location iFreePage in the
3390** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003391**
3392** The isCommit flag indicates that there is no need to remember that
3393** the journal needs to be sync()ed before database page pDbPage->pgno
3394** can be written to. The caller has already promised not to write to that
3395** page.
danielk19777701e812005-01-10 12:59:51 +00003396*/
danielk1977003ba062004-11-04 02:57:33 +00003397static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003398 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003399 MemPage *pDbPage, /* Open page to move */
3400 u8 eType, /* Pointer map 'type' entry for pDbPage */
3401 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003402 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003403 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003404){
3405 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3406 Pgno iDbPage = pDbPage->pgno;
3407 Pager *pPager = pBt->pPager;
3408 int rc;
3409
danielk1977a0bf2652004-11-04 14:30:04 +00003410 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3411 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003412 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003413 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003414
drh85b623f2007-12-13 21:54:09 +00003415 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003416 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3417 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003418 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003419 if( rc!=SQLITE_OK ){
3420 return rc;
3421 }
3422 pDbPage->pgno = iFreePage;
3423
3424 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3425 ** that point to overflow pages. The pointer map entries for all these
3426 ** pages need to be changed.
3427 **
3428 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3429 ** pointer to a subsequent overflow page. If this is the case, then
3430 ** the pointer map needs to be updated for the subsequent overflow page.
3431 */
danielk1977a0bf2652004-11-04 14:30:04 +00003432 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003433 rc = setChildPtrmaps(pDbPage);
3434 if( rc!=SQLITE_OK ){
3435 return rc;
3436 }
3437 }else{
3438 Pgno nextOvfl = get4byte(pDbPage->aData);
3439 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003440 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003441 if( rc!=SQLITE_OK ){
3442 return rc;
3443 }
3444 }
3445 }
3446
3447 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3448 ** that it points at iFreePage. Also fix the pointer map entry for
3449 ** iPtrPage.
3450 */
danielk1977a0bf2652004-11-04 14:30:04 +00003451 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00003452 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003453 if( rc!=SQLITE_OK ){
3454 return rc;
3455 }
danielk19773b8a05f2007-03-19 17:44:26 +00003456 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003457 if( rc!=SQLITE_OK ){
3458 releasePage(pPtrPage);
3459 return rc;
3460 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003461 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003462 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003463 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003464 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003465 }
danielk1977003ba062004-11-04 02:57:33 +00003466 }
danielk1977003ba062004-11-04 02:57:33 +00003467 return rc;
3468}
3469
danielk1977dddbcdc2007-04-26 14:42:34 +00003470/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003471static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003472
3473/*
dan51f0b6d2013-02-22 20:16:34 +00003474** Perform a single step of an incremental-vacuum. If successful, return
3475** SQLITE_OK. If there is no work to do (and therefore no point in
3476** calling this function again), return SQLITE_DONE. Or, if an error
3477** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003478**
peter.d.reid60ec9142014-09-06 16:39:46 +00003479** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003480** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003481**
dan51f0b6d2013-02-22 20:16:34 +00003482** Parameter nFin is the number of pages that this database would contain
3483** were this function called until it returns SQLITE_DONE.
3484**
3485** If the bCommit parameter is non-zero, this function assumes that the
3486** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003487** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003488** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003489*/
dan51f0b6d2013-02-22 20:16:34 +00003490static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003491 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003492 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003493
drh1fee73e2007-08-29 04:00:57 +00003494 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003495 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003496
3497 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003498 u8 eType;
3499 Pgno iPtrPage;
3500
3501 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003502 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003503 return SQLITE_DONE;
3504 }
3505
3506 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3507 if( rc!=SQLITE_OK ){
3508 return rc;
3509 }
3510 if( eType==PTRMAP_ROOTPAGE ){
3511 return SQLITE_CORRUPT_BKPT;
3512 }
3513
3514 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003515 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003516 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003517 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003518 ** truncated to zero after this function returns, so it doesn't
3519 ** matter if it still contains some garbage entries.
3520 */
3521 Pgno iFreePg;
3522 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003523 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003524 if( rc!=SQLITE_OK ){
3525 return rc;
3526 }
3527 assert( iFreePg==iLastPg );
3528 releasePage(pFreePg);
3529 }
3530 } else {
3531 Pgno iFreePg; /* Index of free page to move pLastPg to */
3532 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003533 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3534 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003535
danielk197730548662009-07-09 05:07:37 +00003536 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003537 if( rc!=SQLITE_OK ){
3538 return rc;
3539 }
3540
dan51f0b6d2013-02-22 20:16:34 +00003541 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003542 ** is swapped with the first free page pulled off the free list.
3543 **
dan51f0b6d2013-02-22 20:16:34 +00003544 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003545 ** looping until a free-page located within the first nFin pages
3546 ** of the file is found.
3547 */
dan51f0b6d2013-02-22 20:16:34 +00003548 if( bCommit==0 ){
3549 eMode = BTALLOC_LE;
3550 iNear = nFin;
3551 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003552 do {
3553 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003554 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003555 if( rc!=SQLITE_OK ){
3556 releasePage(pLastPg);
3557 return rc;
3558 }
3559 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003560 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003561 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003562
dane1df4e32013-03-05 11:27:04 +00003563 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003564 releasePage(pLastPg);
3565 if( rc!=SQLITE_OK ){
3566 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003567 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003568 }
3569 }
3570
dan51f0b6d2013-02-22 20:16:34 +00003571 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003572 do {
danielk19773460d192008-12-27 15:23:13 +00003573 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003574 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3575 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003576 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003577 }
3578 return SQLITE_OK;
3579}
3580
3581/*
dan51f0b6d2013-02-22 20:16:34 +00003582** The database opened by the first argument is an auto-vacuum database
3583** nOrig pages in size containing nFree free pages. Return the expected
3584** size of the database in pages following an auto-vacuum operation.
3585*/
3586static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3587 int nEntry; /* Number of entries on one ptrmap page */
3588 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3589 Pgno nFin; /* Return value */
3590
3591 nEntry = pBt->usableSize/5;
3592 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3593 nFin = nOrig - nFree - nPtrmap;
3594 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3595 nFin--;
3596 }
3597 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3598 nFin--;
3599 }
dan51f0b6d2013-02-22 20:16:34 +00003600
3601 return nFin;
3602}
3603
3604/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003605** A write-transaction must be opened before calling this function.
3606** It performs a single unit of work towards an incremental vacuum.
3607**
3608** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003609** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003610** SQLITE_OK is returned. Otherwise an SQLite error code.
3611*/
3612int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003613 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003614 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003615
3616 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003617 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3618 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003619 rc = SQLITE_DONE;
3620 }else{
dan51f0b6d2013-02-22 20:16:34 +00003621 Pgno nOrig = btreePagecount(pBt);
3622 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3623 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3624
dan91384712013-02-24 11:50:43 +00003625 if( nOrig<nFin ){
3626 rc = SQLITE_CORRUPT_BKPT;
3627 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003628 rc = saveAllCursors(pBt, 0, 0);
3629 if( rc==SQLITE_OK ){
3630 invalidateAllOverflowCache(pBt);
3631 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3632 }
dan51f0b6d2013-02-22 20:16:34 +00003633 if( rc==SQLITE_OK ){
3634 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3635 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3636 }
3637 }else{
3638 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003639 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 }
drhd677b3d2007-08-20 22:48:41 +00003641 sqlite3BtreeLeave(p);
3642 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003643}
3644
3645/*
danielk19773b8a05f2007-03-19 17:44:26 +00003646** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003647** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003648**
3649** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3650** the database file should be truncated to during the commit process.
3651** i.e. the database has been reorganized so that only the first *pnTrunc
3652** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003653*/
danielk19773460d192008-12-27 15:23:13 +00003654static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003655 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003656 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003657 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003658
drh1fee73e2007-08-29 04:00:57 +00003659 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003660 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003661 assert(pBt->autoVacuum);
3662 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003663 Pgno nFin; /* Number of pages in database after autovacuuming */
3664 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003665 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003666 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003667
drhb1299152010-03-30 22:58:33 +00003668 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003669 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3670 /* It is not possible to create a database for which the final page
3671 ** is either a pointer-map page or the pending-byte page. If one
3672 ** is encountered, this indicates corruption.
3673 */
danielk19773460d192008-12-27 15:23:13 +00003674 return SQLITE_CORRUPT_BKPT;
3675 }
danielk1977ef165ce2009-04-06 17:50:03 +00003676
danielk19773460d192008-12-27 15:23:13 +00003677 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003678 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003679 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003680 if( nFin<nOrig ){
3681 rc = saveAllCursors(pBt, 0, 0);
3682 }
danielk19773460d192008-12-27 15:23:13 +00003683 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003684 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003685 }
danielk19773460d192008-12-27 15:23:13 +00003686 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003687 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3688 put4byte(&pBt->pPage1->aData[32], 0);
3689 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003690 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003691 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003692 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003693 }
3694 if( rc!=SQLITE_OK ){
3695 sqlite3PagerRollback(pPager);
3696 }
danielk1977687566d2004-11-02 12:56:41 +00003697 }
3698
dan0aed84d2013-03-26 14:16:20 +00003699 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003700 return rc;
3701}
danielk1977dddbcdc2007-04-26 14:42:34 +00003702
danielk1977a50d9aa2009-06-08 14:49:45 +00003703#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3704# define setChildPtrmaps(x) SQLITE_OK
3705#endif
danielk1977687566d2004-11-02 12:56:41 +00003706
3707/*
drh80e35f42007-03-30 14:06:34 +00003708** This routine does the first phase of a two-phase commit. This routine
3709** causes a rollback journal to be created (if it does not already exist)
3710** and populated with enough information so that if a power loss occurs
3711** the database can be restored to its original state by playing back
3712** the journal. Then the contents of the journal are flushed out to
3713** the disk. After the journal is safely on oxide, the changes to the
3714** database are written into the database file and flushed to oxide.
3715** At the end of this call, the rollback journal still exists on the
3716** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003717** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003718** commit process.
3719**
3720** This call is a no-op if no write-transaction is currently active on pBt.
3721**
3722** Otherwise, sync the database file for the btree pBt. zMaster points to
3723** the name of a master journal file that should be written into the
3724** individual journal file, or is NULL, indicating no master journal file
3725** (single database transaction).
3726**
3727** When this is called, the master journal should already have been
3728** created, populated with this journal pointer and synced to disk.
3729**
3730** Once this is routine has returned, the only thing required to commit
3731** the write-transaction for this database file is to delete the journal.
3732*/
3733int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3734 int rc = SQLITE_OK;
3735 if( p->inTrans==TRANS_WRITE ){
3736 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003737 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003738#ifndef SQLITE_OMIT_AUTOVACUUM
3739 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003740 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003741 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003742 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003743 return rc;
3744 }
3745 }
danbc1a3c62013-02-23 16:40:46 +00003746 if( pBt->bDoTruncate ){
3747 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3748 }
drh80e35f42007-03-30 14:06:34 +00003749#endif
drh49b9d332009-01-02 18:10:42 +00003750 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003751 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003752 }
3753 return rc;
3754}
3755
3756/*
danielk197794b30732009-07-02 17:21:57 +00003757** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3758** at the conclusion of a transaction.
3759*/
3760static void btreeEndTransaction(Btree *p){
3761 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003762 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003763 assert( sqlite3BtreeHoldsMutex(p) );
3764
danbc1a3c62013-02-23 16:40:46 +00003765#ifndef SQLITE_OMIT_AUTOVACUUM
3766 pBt->bDoTruncate = 0;
3767#endif
danc0537fe2013-06-28 19:41:43 +00003768 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003769 /* If there are other active statements that belong to this database
3770 ** handle, downgrade to a read-only transaction. The other statements
3771 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003772 downgradeAllSharedCacheTableLocks(p);
3773 p->inTrans = TRANS_READ;
3774 }else{
3775 /* If the handle had any kind of transaction open, decrement the
3776 ** transaction count of the shared btree. If the transaction count
3777 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3778 ** call below will unlock the pager. */
3779 if( p->inTrans!=TRANS_NONE ){
3780 clearAllSharedCacheTableLocks(p);
3781 pBt->nTransaction--;
3782 if( 0==pBt->nTransaction ){
3783 pBt->inTransaction = TRANS_NONE;
3784 }
3785 }
3786
3787 /* Set the current transaction state to TRANS_NONE and unlock the
3788 ** pager if this call closed the only read or write transaction. */
3789 p->inTrans = TRANS_NONE;
3790 unlockBtreeIfUnused(pBt);
3791 }
3792
3793 btreeIntegrity(p);
3794}
3795
3796/*
drh2aa679f2001-06-25 02:11:07 +00003797** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003798**
drh6e345992007-03-30 11:12:08 +00003799** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003800** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3801** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3802** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003803** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003804** routine has to do is delete or truncate or zero the header in the
3805** the rollback journal (which causes the transaction to commit) and
3806** drop locks.
drh6e345992007-03-30 11:12:08 +00003807**
dan60939d02011-03-29 15:40:55 +00003808** Normally, if an error occurs while the pager layer is attempting to
3809** finalize the underlying journal file, this function returns an error and
3810** the upper layer will attempt a rollback. However, if the second argument
3811** is non-zero then this b-tree transaction is part of a multi-file
3812** transaction. In this case, the transaction has already been committed
3813** (by deleting a master journal file) and the caller will ignore this
3814** functions return code. So, even if an error occurs in the pager layer,
3815** reset the b-tree objects internal state to indicate that the write
3816** transaction has been closed. This is quite safe, as the pager will have
3817** transitioned to the error state.
3818**
drh5e00f6c2001-09-13 13:46:56 +00003819** This will release the write lock on the database file. If there
3820** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003821*/
dan60939d02011-03-29 15:40:55 +00003822int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003823
drh075ed302010-10-14 01:17:30 +00003824 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003825 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003826 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003827
3828 /* If the handle has a write-transaction open, commit the shared-btrees
3829 ** transaction and set the shared state to TRANS_READ.
3830 */
3831 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003832 int rc;
drh075ed302010-10-14 01:17:30 +00003833 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003834 assert( pBt->inTransaction==TRANS_WRITE );
3835 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003836 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003837 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003838 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003839 return rc;
3840 }
drh3da9c042014-12-22 18:41:21 +00003841 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003842 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003843 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003844 }
danielk1977aef0bf62005-12-30 16:28:01 +00003845
danielk197794b30732009-07-02 17:21:57 +00003846 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003847 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003848 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003849}
3850
drh80e35f42007-03-30 14:06:34 +00003851/*
3852** Do both phases of a commit.
3853*/
3854int sqlite3BtreeCommit(Btree *p){
3855 int rc;
drhd677b3d2007-08-20 22:48:41 +00003856 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003857 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3858 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003859 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003860 }
drhd677b3d2007-08-20 22:48:41 +00003861 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003862 return rc;
3863}
3864
drhc39e0002004-05-07 23:50:57 +00003865/*
drhfb982642007-08-30 01:19:59 +00003866** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003867** code to errCode for every cursor on any BtShared that pBtree
3868** references. Or if the writeOnly flag is set to 1, then only
3869** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003870**
drh47b7fc72014-11-11 01:33:57 +00003871** Every cursor is a candidate to be tripped, including cursors
3872** that belong to other database connections that happen to be
3873** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003874**
dan80231042014-11-12 14:56:02 +00003875** This routine gets called when a rollback occurs. If the writeOnly
3876** flag is true, then only write-cursors need be tripped - read-only
3877** cursors save their current positions so that they may continue
3878** following the rollback. Or, if writeOnly is false, all cursors are
3879** tripped. In general, writeOnly is false if the transaction being
3880** rolled back modified the database schema. In this case b-tree root
3881** pages may be moved or deleted from the database altogether, making
3882** it unsafe for read cursors to continue.
3883**
3884** If the writeOnly flag is true and an error is encountered while
3885** saving the current position of a read-only cursor, all cursors,
3886** including all read-cursors are tripped.
3887**
3888** SQLITE_OK is returned if successful, or if an error occurs while
3889** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003890*/
dan80231042014-11-12 14:56:02 +00003891int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003892 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003893 int rc = SQLITE_OK;
3894
drh47b7fc72014-11-11 01:33:57 +00003895 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003896 if( pBtree ){
3897 sqlite3BtreeEnter(pBtree);
3898 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3899 int i;
3900 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003901 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003902 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003903 if( rc!=SQLITE_OK ){
3904 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3905 break;
3906 }
3907 }
3908 }else{
3909 sqlite3BtreeClearCursor(p);
3910 p->eState = CURSOR_FAULT;
3911 p->skipNext = errCode;
3912 }
3913 for(i=0; i<=p->iPage; i++){
3914 releasePage(p->apPage[i]);
3915 p->apPage[i] = 0;
3916 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003917 }
dan80231042014-11-12 14:56:02 +00003918 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003919 }
dan80231042014-11-12 14:56:02 +00003920 return rc;
drhfb982642007-08-30 01:19:59 +00003921}
3922
3923/*
drh47b7fc72014-11-11 01:33:57 +00003924** Rollback the transaction in progress.
3925**
3926** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3927** Only write cursors are tripped if writeOnly is true but all cursors are
3928** tripped if writeOnly is false. Any attempt to use
3929** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003930**
3931** This will release the write lock on the database file. If there
3932** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003933*/
drh47b7fc72014-11-11 01:33:57 +00003934int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003935 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003936 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003937 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003938
drh47b7fc72014-11-11 01:33:57 +00003939 assert( writeOnly==1 || writeOnly==0 );
3940 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003941 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003942 if( tripCode==SQLITE_OK ){
3943 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003944 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003945 }else{
3946 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003947 }
drh0f198a72012-02-13 16:43:16 +00003948 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003949 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3950 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3951 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003952 }
danielk1977aef0bf62005-12-30 16:28:01 +00003953 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003954
3955 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003956 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003957
danielk19778d34dfd2006-01-24 16:37:57 +00003958 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003959 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003960 if( rc2!=SQLITE_OK ){
3961 rc = rc2;
3962 }
3963
drh24cd67e2004-05-10 16:18:47 +00003964 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003965 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003966 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003967 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003968 int nPage = get4byte(28+(u8*)pPage1->aData);
3969 testcase( nPage==0 );
3970 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3971 testcase( pBt->nPage!=nPage );
3972 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003973 releasePage(pPage1);
3974 }
drh85ec3b62013-05-14 23:12:06 +00003975 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003976 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003977 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003978 }
danielk1977aef0bf62005-12-30 16:28:01 +00003979
danielk197794b30732009-07-02 17:21:57 +00003980 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003981 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003982 return rc;
3983}
3984
3985/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003986** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003987** back independently of the main transaction. You must start a transaction
3988** before starting a subtransaction. The subtransaction is ended automatically
3989** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003990**
3991** Statement subtransactions are used around individual SQL statements
3992** that are contained within a BEGIN...COMMIT block. If a constraint
3993** error occurs within the statement, the effect of that one statement
3994** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003995**
3996** A statement sub-transaction is implemented as an anonymous savepoint. The
3997** value passed as the second parameter is the total number of savepoints,
3998** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3999** are no active savepoints and no other statement-transactions open,
4000** iStatement is 1. This anonymous savepoint can be released or rolled back
4001** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004002*/
danielk1977bd434552009-03-18 10:33:00 +00004003int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004004 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004005 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004006 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004007 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004008 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004009 assert( iStatement>0 );
4010 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004011 assert( pBt->inTransaction==TRANS_WRITE );
4012 /* At the pager level, a statement transaction is a savepoint with
4013 ** an index greater than all savepoints created explicitly using
4014 ** SQL statements. It is illegal to open, release or rollback any
4015 ** such savepoints while the statement transaction savepoint is active.
4016 */
4017 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004018 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004019 return rc;
4020}
4021
4022/*
danielk1977fd7f0452008-12-17 17:30:26 +00004023** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4024** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004025** savepoint identified by parameter iSavepoint, depending on the value
4026** of op.
4027**
4028** Normally, iSavepoint is greater than or equal to zero. However, if op is
4029** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4030** contents of the entire transaction are rolled back. This is different
4031** from a normal transaction rollback, as no locks are released and the
4032** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004033*/
4034int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4035 int rc = SQLITE_OK;
4036 if( p && p->inTrans==TRANS_WRITE ){
4037 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004038 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4039 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4040 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004041 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004042 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004043 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4044 pBt->nPage = 0;
4045 }
drh9f0bbf92009-01-02 21:08:09 +00004046 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004047 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004048
4049 /* The database size was written into the offset 28 of the header
4050 ** when the transaction started, so we know that the value at offset
4051 ** 28 is nonzero. */
4052 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004053 }
danielk1977fd7f0452008-12-17 17:30:26 +00004054 sqlite3BtreeLeave(p);
4055 }
4056 return rc;
4057}
4058
4059/*
drh8b2f49b2001-06-08 00:21:52 +00004060** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004061** iTable. If a read-only cursor is requested, it is assumed that
4062** the caller already has at least a read-only transaction open
4063** on the database already. If a write-cursor is requested, then
4064** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004065**
drhe807bdb2016-01-21 17:06:33 +00004066** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4067** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4068** can be used for reading or for writing if other conditions for writing
4069** are also met. These are the conditions that must be met in order
4070** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004071**
drhe807bdb2016-01-21 17:06:33 +00004072** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004073**
drhfe5d71d2007-03-19 11:54:10 +00004074** 2: Other database connections that share the same pager cache
4075** but which are not in the READ_UNCOMMITTED state may not have
4076** cursors open with wrFlag==0 on the same table. Otherwise
4077** the changes made by this write cursor would be visible to
4078** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004079**
4080** 3: The database must be writable (not on read-only media)
4081**
4082** 4: There must be an active transaction.
4083**
drhe807bdb2016-01-21 17:06:33 +00004084** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4085** is set. If FORDELETE is set, that is a hint to the implementation that
4086** this cursor will only be used to seek to and delete entries of an index
4087** as part of a larger DELETE statement. The FORDELETE hint is not used by
4088** this implementation. But in a hypothetical alternative storage engine
4089** in which index entries are automatically deleted when corresponding table
4090** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4091** operations on this cursor can be no-ops and all READ operations can
4092** return a null row (2-bytes: 0x01 0x00).
4093**
drh6446c4d2001-12-15 14:22:18 +00004094** No checking is done to make sure that page iTable really is the
4095** root page of a b-tree. If it is not, then the cursor acquired
4096** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004097**
drhf25a5072009-11-18 23:01:25 +00004098** It is assumed that the sqlite3BtreeCursorZero() has been called
4099** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004100*/
drhd677b3d2007-08-20 22:48:41 +00004101static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004102 Btree *p, /* The btree */
4103 int iTable, /* Root page of table to open */
4104 int wrFlag, /* 1 to write. 0 read-only */
4105 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4106 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004107){
danielk19773e8add92009-07-04 17:16:00 +00004108 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004109 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004110
drh1fee73e2007-08-29 04:00:57 +00004111 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004112 assert( wrFlag==0
4113 || wrFlag==BTREE_WRCSR
4114 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4115 );
danielk197796d48e92009-06-29 06:00:37 +00004116
danielk1977602b4662009-07-02 07:47:33 +00004117 /* The following assert statements verify that if this is a sharable
4118 ** b-tree database, the connection is holding the required table locks,
4119 ** and that no other connection has any open cursor that conflicts with
4120 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004121 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004122 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4123
danielk19773e8add92009-07-04 17:16:00 +00004124 /* Assert that the caller has opened the required transaction. */
4125 assert( p->inTrans>TRANS_NONE );
4126 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4127 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004128 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004129
drh3fbb0222014-09-24 19:47:27 +00004130 if( wrFlag ){
4131 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004132 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drh3fbb0222014-09-24 19:47:27 +00004133 }
drhb1299152010-03-30 22:58:33 +00004134 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004135 assert( wrFlag==0 );
4136 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004137 }
danielk1977aef0bf62005-12-30 16:28:01 +00004138
danielk1977aef0bf62005-12-30 16:28:01 +00004139 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004140 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004141 pCur->pgnoRoot = (Pgno)iTable;
4142 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004143 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004144 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004145 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004146 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004147 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004148 /* If there are two or more cursors on the same btree, then all such
4149 ** cursors *must* have the BTCF_Multiple flag set. */
4150 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4151 if( pX->pgnoRoot==(Pgno)iTable ){
4152 pX->curFlags |= BTCF_Multiple;
4153 pCur->curFlags |= BTCF_Multiple;
4154 }
drha059ad02001-04-17 20:09:11 +00004155 }
drh27fb7462015-06-30 02:47:36 +00004156 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004157 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004158 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004159 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004160}
drhd677b3d2007-08-20 22:48:41 +00004161int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004162 Btree *p, /* The btree */
4163 int iTable, /* Root page of table to open */
4164 int wrFlag, /* 1 to write. 0 read-only */
4165 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4166 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004167){
4168 int rc;
dan08f901b2015-05-25 19:24:36 +00004169 if( iTable<1 ){
4170 rc = SQLITE_CORRUPT_BKPT;
4171 }else{
4172 sqlite3BtreeEnter(p);
4173 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4174 sqlite3BtreeLeave(p);
4175 }
drhd677b3d2007-08-20 22:48:41 +00004176 return rc;
4177}
drh7f751222009-03-17 22:33:00 +00004178
4179/*
4180** Return the size of a BtCursor object in bytes.
4181**
4182** This interfaces is needed so that users of cursors can preallocate
4183** sufficient storage to hold a cursor. The BtCursor object is opaque
4184** to users so they cannot do the sizeof() themselves - they must call
4185** this routine.
4186*/
4187int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004188 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004189}
4190
drh7f751222009-03-17 22:33:00 +00004191/*
drhf25a5072009-11-18 23:01:25 +00004192** Initialize memory that will be converted into a BtCursor object.
4193**
4194** The simple approach here would be to memset() the entire object
4195** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4196** do not need to be zeroed and they are large, so we can save a lot
4197** of run-time by skipping the initialization of those elements.
4198*/
4199void sqlite3BtreeCursorZero(BtCursor *p){
4200 memset(p, 0, offsetof(BtCursor, iPage));
4201}
4202
4203/*
drh5e00f6c2001-09-13 13:46:56 +00004204** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004205** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004206*/
drh3aac2dd2004-04-26 14:10:20 +00004207int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004208 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004209 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004210 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004211 BtShared *pBt = pCur->pBt;
4212 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004213 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004214 assert( pBt->pCursor!=0 );
4215 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004216 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004217 }else{
4218 BtCursor *pPrev = pBt->pCursor;
4219 do{
4220 if( pPrev->pNext==pCur ){
4221 pPrev->pNext = pCur->pNext;
4222 break;
4223 }
4224 pPrev = pPrev->pNext;
4225 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004226 }
danielk197771d5d2c2008-09-29 11:49:47 +00004227 for(i=0; i<=pCur->iPage; i++){
4228 releasePage(pCur->apPage[i]);
4229 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004230 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004231 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004232 /* sqlite3_free(pCur); */
4233 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004234 }
drh8c42ca92001-06-22 19:15:00 +00004235 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004236}
4237
drh5e2f8b92001-05-28 00:41:15 +00004238/*
drh86057612007-06-26 01:04:48 +00004239** Make sure the BtCursor* given in the argument has a valid
4240** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004241** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004242**
4243** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004244** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004245*/
drh9188b382004-05-14 21:12:22 +00004246#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004247 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004248 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004249 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004250 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004251 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004252 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004253 }
danielk19771cc5ed82007-05-16 17:28:43 +00004254#else
4255 #define assertCellInfo(x)
4256#endif
drhc5b41ac2015-06-17 02:11:46 +00004257static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4258 if( pCur->info.nSize==0 ){
4259 int iPage = pCur->iPage;
4260 pCur->curFlags |= BTCF_ValidNKey;
4261 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4262 }else{
4263 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004264 }
drhc5b41ac2015-06-17 02:11:46 +00004265}
drh9188b382004-05-14 21:12:22 +00004266
drhea8ffdf2009-07-22 00:35:23 +00004267#ifndef NDEBUG /* The next routine used only within assert() statements */
4268/*
4269** Return true if the given BtCursor is valid. A valid cursor is one
4270** that is currently pointing to a row in a (non-empty) table.
4271** This is a verification routine is used only within assert() statements.
4272*/
4273int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4274 return pCur && pCur->eState==CURSOR_VALID;
4275}
4276#endif /* NDEBUG */
4277
drh9188b382004-05-14 21:12:22 +00004278/*
drha7c90c42016-06-04 20:37:10 +00004279** Return the value of the integer key or "rowid" for a table btree.
4280** This routine is only valid for a cursor that is pointing into a
4281** ordinary table btree. If the cursor points to an index btree or
4282** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004283*/
drha7c90c42016-06-04 20:37:10 +00004284i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004285 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004286 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004287 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004288 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004289 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004290}
drh2af926b2001-05-15 00:39:25 +00004291
drh72f82862001-05-24 21:06:34 +00004292/*
drha7c90c42016-06-04 20:37:10 +00004293** Return the number of bytes of payload for the entry that pCur is
4294** currently pointing to. For table btrees, this will be the amount
4295** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004296**
4297** The caller must guarantee that the cursor is pointing to a non-NULL
4298** valid entry. In other words, the calling procedure must guarantee
4299** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004300*/
drha7c90c42016-06-04 20:37:10 +00004301u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4302 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004303 assert( pCur->eState==CURSOR_VALID );
4304 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004305 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004306}
4307
4308/*
danielk1977d04417962007-05-02 13:16:30 +00004309** Given the page number of an overflow page in the database (parameter
4310** ovfl), this function finds the page number of the next page in the
4311** linked list of overflow pages. If possible, it uses the auto-vacuum
4312** pointer-map data instead of reading the content of page ovfl to do so.
4313**
4314** If an error occurs an SQLite error code is returned. Otherwise:
4315**
danielk1977bea2a942009-01-20 17:06:27 +00004316** The page number of the next overflow page in the linked list is
4317** written to *pPgnoNext. If page ovfl is the last page in its linked
4318** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004319**
danielk1977bea2a942009-01-20 17:06:27 +00004320** If ppPage is not NULL, and a reference to the MemPage object corresponding
4321** to page number pOvfl was obtained, then *ppPage is set to point to that
4322** reference. It is the responsibility of the caller to call releasePage()
4323** on *ppPage to free the reference. In no reference was obtained (because
4324** the pointer-map was used to obtain the value for *pPgnoNext), then
4325** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004326*/
4327static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004328 BtShared *pBt, /* The database file */
4329 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004330 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004331 Pgno *pPgnoNext /* OUT: Next overflow page number */
4332){
4333 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004334 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004335 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004336
drh1fee73e2007-08-29 04:00:57 +00004337 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004338 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004339
4340#ifndef SQLITE_OMIT_AUTOVACUUM
4341 /* Try to find the next page in the overflow list using the
4342 ** autovacuum pointer-map pages. Guess that the next page in
4343 ** the overflow list is page number (ovfl+1). If that guess turns
4344 ** out to be wrong, fall back to loading the data of page
4345 ** number ovfl to determine the next page number.
4346 */
4347 if( pBt->autoVacuum ){
4348 Pgno pgno;
4349 Pgno iGuess = ovfl+1;
4350 u8 eType;
4351
4352 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4353 iGuess++;
4354 }
4355
drhb1299152010-03-30 22:58:33 +00004356 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004357 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004358 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004359 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004360 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004361 }
4362 }
4363 }
4364#endif
4365
danielk1977d8a3f3d2009-07-11 11:45:23 +00004366 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004367 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004368 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004369 assert( rc==SQLITE_OK || pPage==0 );
4370 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004371 next = get4byte(pPage->aData);
4372 }
danielk1977443c0592009-01-16 15:21:05 +00004373 }
danielk197745d68822009-01-16 16:23:38 +00004374
danielk1977bea2a942009-01-20 17:06:27 +00004375 *pPgnoNext = next;
4376 if( ppPage ){
4377 *ppPage = pPage;
4378 }else{
4379 releasePage(pPage);
4380 }
4381 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004382}
4383
danielk1977da107192007-05-04 08:32:13 +00004384/*
4385** Copy data from a buffer to a page, or from a page to a buffer.
4386**
4387** pPayload is a pointer to data stored on database page pDbPage.
4388** If argument eOp is false, then nByte bytes of data are copied
4389** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4390** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4391** of data are copied from the buffer pBuf to pPayload.
4392**
4393** SQLITE_OK is returned on success, otherwise an error code.
4394*/
4395static int copyPayload(
4396 void *pPayload, /* Pointer to page data */
4397 void *pBuf, /* Pointer to buffer */
4398 int nByte, /* Number of bytes to copy */
4399 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4400 DbPage *pDbPage /* Page containing pPayload */
4401){
4402 if( eOp ){
4403 /* Copy data from buffer to page (a write operation) */
4404 int rc = sqlite3PagerWrite(pDbPage);
4405 if( rc!=SQLITE_OK ){
4406 return rc;
4407 }
4408 memcpy(pPayload, pBuf, nByte);
4409 }else{
4410 /* Copy data from page to buffer (a read operation) */
4411 memcpy(pBuf, pPayload, nByte);
4412 }
4413 return SQLITE_OK;
4414}
danielk1977d04417962007-05-02 13:16:30 +00004415
4416/*
danielk19779f8d6402007-05-02 17:48:45 +00004417** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004418** for the entry that the pCur cursor is pointing to. The eOp
4419** argument is interpreted as follows:
4420**
4421** 0: The operation is a read. Populate the overflow cache.
4422** 1: The operation is a write. Populate the overflow cache.
4423** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004424**
4425** A total of "amt" bytes are read or written beginning at "offset".
4426** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004427**
drh3bcdfd22009-07-12 02:32:21 +00004428** The content being read or written might appear on the main page
4429** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004430**
dan5a500af2014-03-11 20:33:04 +00004431** If the current cursor entry uses one or more overflow pages and the
4432** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004433** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004434** Subsequent calls use this cache to make seeking to the supplied offset
4435** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004436**
4437** Once an overflow page-list cache has been allocated, it may be
4438** invalidated if some other cursor writes to the same table, or if
4439** the cursor is moved to a different row. Additionally, in auto-vacuum
4440** mode, the following events may invalidate an overflow page-list cache.
4441**
4442** * An incremental vacuum,
4443** * A commit in auto_vacuum="full" mode,
4444** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004445*/
danielk19779f8d6402007-05-02 17:48:45 +00004446static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004447 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004448 u32 offset, /* Begin reading this far into payload */
4449 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004450 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004451 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004452){
4453 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004454 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004455 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004456 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004457 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004458#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004459 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004460 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004461#endif
drh3aac2dd2004-04-26 14:10:20 +00004462
danielk1977da107192007-05-04 08:32:13 +00004463 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004464 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004465 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004466 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004467 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004468
drh86057612007-06-26 01:04:48 +00004469 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004470 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004471#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004472 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004473#endif
drhab1cc582014-09-23 21:25:19 +00004474 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004475
drh0b982072016-03-22 14:10:45 +00004476 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004477 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004478 /* Trying to read or write past the end of the data is an error. The
4479 ** conditional above is really:
4480 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4481 ** but is recast into its current form to avoid integer overflow problems
4482 */
danielk197767fd7a92008-09-10 17:53:35 +00004483 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004484 }
danielk1977da107192007-05-04 08:32:13 +00004485
4486 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004487 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004488 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004489 if( a+offset>pCur->info.nLocal ){
4490 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004491 }
dan5a500af2014-03-11 20:33:04 +00004492 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004493 offset = 0;
drha34b6762004-05-07 13:30:42 +00004494 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004495 amt -= a;
drhdd793422001-06-28 01:54:48 +00004496 }else{
drhfa1a98a2004-05-14 19:08:17 +00004497 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004498 }
danielk1977da107192007-05-04 08:32:13 +00004499
dan85753662014-12-11 16:38:18 +00004500
danielk1977da107192007-05-04 08:32:13 +00004501 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004502 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004503 Pgno nextPage;
4504
drhfa1a98a2004-05-14 19:08:17 +00004505 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004506
drha38c9512014-04-01 01:24:34 +00004507 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4508 ** Except, do not allocate aOverflow[] for eOp==2.
4509 **
4510 ** The aOverflow[] array is sized at one entry for each overflow page
4511 ** in the overflow chain. The page number of the first overflow page is
4512 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4513 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004514 */
drh036dbec2014-03-11 23:40:44 +00004515 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004516 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004517 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004518 Pgno *aNew = (Pgno*)sqlite3Realloc(
4519 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004520 );
4521 if( aNew==0 ){
mistachkinfad30392016-02-13 23:43:46 +00004522 rc = SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004523 }else{
4524 pCur->nOvflAlloc = nOvfl*2;
4525 pCur->aOverflow = aNew;
4526 }
4527 }
4528 if( rc==SQLITE_OK ){
4529 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004530 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004531 }
4532 }
danielk1977da107192007-05-04 08:32:13 +00004533
4534 /* If the overflow page-list cache has been allocated and the
4535 ** entry for the first required overflow page is valid, skip
4536 ** directly to it.
4537 */
drh3f387402014-09-24 01:23:00 +00004538 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4539 && pCur->aOverflow[offset/ovflSize]
4540 ){
danielk19772dec9702007-05-02 16:48:37 +00004541 iIdx = (offset/ovflSize);
4542 nextPage = pCur->aOverflow[iIdx];
4543 offset = (offset%ovflSize);
4544 }
danielk1977da107192007-05-04 08:32:13 +00004545
4546 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4547
danielk1977da107192007-05-04 08:32:13 +00004548 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004549 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004550 assert( pCur->aOverflow[iIdx]==0
4551 || pCur->aOverflow[iIdx]==nextPage
4552 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004553 pCur->aOverflow[iIdx] = nextPage;
4554 }
danielk1977da107192007-05-04 08:32:13 +00004555
danielk1977d04417962007-05-02 13:16:30 +00004556 if( offset>=ovflSize ){
4557 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004558 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004559 ** data is not required. So first try to lookup the overflow
4560 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004561 ** function.
drha38c9512014-04-01 01:24:34 +00004562 **
4563 ** Note that the aOverflow[] array must be allocated because eOp!=2
4564 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004565 */
drha38c9512014-04-01 01:24:34 +00004566 assert( eOp!=2 );
4567 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004568 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004569 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004570 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004571 }else{
danielk1977da107192007-05-04 08:32:13 +00004572 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004573 }
danielk1977da107192007-05-04 08:32:13 +00004574 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004575 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004576 /* Need to read this page properly. It contains some of the
4577 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004578 */
danf4ba1092011-10-08 14:57:07 +00004579#ifdef SQLITE_DIRECT_OVERFLOW_READ
4580 sqlite3_file *fd;
4581#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004582 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004583 if( a + offset > ovflSize ){
4584 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004585 }
danf4ba1092011-10-08 14:57:07 +00004586
4587#ifdef SQLITE_DIRECT_OVERFLOW_READ
4588 /* If all the following are true:
4589 **
4590 ** 1) this is a read operation, and
4591 ** 2) data is required from the start of this overflow page, and
4592 ** 3) the database is file-backed, and
4593 ** 4) there is no open write-transaction, and
4594 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004595 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004596 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004597 **
4598 ** then data can be read directly from the database file into the
4599 ** output buffer, bypassing the page-cache altogether. This speeds
4600 ** up loading large records that span many overflow pages.
4601 */
dan5a500af2014-03-11 20:33:04 +00004602 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004603 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004604 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004605 && pBt->inTransaction==TRANS_READ /* (4) */
4606 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4607 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004608 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004609 ){
4610 u8 aSave[4];
4611 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004612 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004613 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004614 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004615 nextPage = get4byte(aWrite);
4616 memcpy(aWrite, aSave, 4);
4617 }else
4618#endif
4619
4620 {
4621 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004622 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004623 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004624 );
danf4ba1092011-10-08 14:57:07 +00004625 if( rc==SQLITE_OK ){
4626 aPayload = sqlite3PagerGetData(pDbPage);
4627 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004628 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004629 sqlite3PagerUnref(pDbPage);
4630 offset = 0;
4631 }
4632 }
4633 amt -= a;
4634 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004635 }
drh2af926b2001-05-15 00:39:25 +00004636 }
drh2af926b2001-05-15 00:39:25 +00004637 }
danielk1977cfe9a692004-06-16 12:00:29 +00004638
danielk1977da107192007-05-04 08:32:13 +00004639 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004640 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004641 }
danielk1977da107192007-05-04 08:32:13 +00004642 return rc;
drh2af926b2001-05-15 00:39:25 +00004643}
4644
drh72f82862001-05-24 21:06:34 +00004645/*
drh3aac2dd2004-04-26 14:10:20 +00004646** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004647** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004648** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004649**
drh5d1a8722009-07-22 18:07:40 +00004650** The caller must ensure that pCur is pointing to a valid row
4651** in the table.
4652**
drh3aac2dd2004-04-26 14:10:20 +00004653** Return SQLITE_OK on success or an error code if anything goes
4654** wrong. An error is returned if "offset+amt" is larger than
4655** the available payload.
drh72f82862001-05-24 21:06:34 +00004656*/
drha34b6762004-05-07 13:30:42 +00004657int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004658 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004659 assert( pCur->eState==CURSOR_VALID );
4660 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4661 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4662 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004663}
4664
4665/*
drh3aac2dd2004-04-26 14:10:20 +00004666** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004667** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004668** begins at "offset".
4669**
4670** Return SQLITE_OK on success or an error code if anything goes
4671** wrong. An error is returned if "offset+amt" is larger than
4672** the available payload.
drh72f82862001-05-24 21:06:34 +00004673*/
drh3aac2dd2004-04-26 14:10:20 +00004674int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004675 int rc;
4676
danielk19773588ceb2008-06-10 17:30:26 +00004677#ifndef SQLITE_OMIT_INCRBLOB
4678 if ( pCur->eState==CURSOR_INVALID ){
4679 return SQLITE_ABORT;
4680 }
4681#endif
4682
dan7a2347e2016-01-07 16:43:54 +00004683 assert( cursorOwnsBtShared(pCur) );
drha3460582008-07-11 21:02:53 +00004684 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004685 if( rc==SQLITE_OK ){
4686 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004687 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4688 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004689 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004690 }
4691 return rc;
drh2af926b2001-05-15 00:39:25 +00004692}
4693
drh72f82862001-05-24 21:06:34 +00004694/*
drh0e1c19e2004-05-11 00:58:56 +00004695** Return a pointer to payload information from the entry that the
4696** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004697** the key if index btrees (pPage->intKey==0) and is the data for
4698** table btrees (pPage->intKey==1). The number of bytes of available
4699** key/data is written into *pAmt. If *pAmt==0, then the value
4700** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004701**
4702** This routine is an optimization. It is common for the entire key
4703** and data to fit on the local page and for there to be no overflow
4704** pages. When that is so, this routine can be used to access the
4705** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004706** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004707** the key/data and copy it into a preallocated buffer.
4708**
4709** The pointer returned by this routine looks directly into the cached
4710** page of the database. The data might change or move the next time
4711** any btree routine is called.
4712*/
drh2a8d2262013-12-09 20:43:22 +00004713static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004714 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004715 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004716){
drhf3392e32015-04-15 17:26:55 +00004717 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004718 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004719 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004720 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004721 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004722 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004723 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004724 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4725 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4726 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4727 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4728 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004729 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004730}
4731
4732
4733/*
drhe51c44f2004-05-30 20:46:09 +00004734** For the entry that cursor pCur is point to, return as
4735** many bytes of the key or data as are available on the local
4736** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004737**
4738** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004739** or be destroyed on the next call to any Btree routine,
4740** including calls from other threads against the same cache.
4741** Hence, a mutex on the BtShared should be held prior to calling
4742** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004743**
4744** These routines is used to get quick access to key and data
4745** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004746*/
drha7c90c42016-06-04 20:37:10 +00004747const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004748 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004749}
4750
4751
4752/*
drh8178a752003-01-05 21:41:40 +00004753** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004754** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004755**
4756** This function returns SQLITE_CORRUPT if the page-header flags field of
4757** the new child page does not match the flags field of the parent (i.e.
4758** if an intkey page appears to be the parent of a non-intkey page, or
4759** vice-versa).
drh72f82862001-05-24 21:06:34 +00004760*/
drh3aac2dd2004-04-26 14:10:20 +00004761static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004762 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004763
dan7a2347e2016-01-07 16:43:54 +00004764 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004765 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004766 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004767 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004768 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4769 return SQLITE_CORRUPT_BKPT;
4770 }
drh271efa52004-05-30 19:19:05 +00004771 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004772 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004773 pCur->iPage++;
4774 pCur->aiIdx[pCur->iPage] = 0;
4775 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4776 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004777}
4778
drhcbd33492015-03-25 13:06:54 +00004779#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004780/*
4781** Page pParent is an internal (non-leaf) tree page. This function
4782** asserts that page number iChild is the left-child if the iIdx'th
4783** cell in page pParent. Or, if iIdx is equal to the total number of
4784** cells in pParent, that page number iChild is the right-child of
4785** the page.
4786*/
4787static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004788 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4789 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004790 assert( iIdx<=pParent->nCell );
4791 if( iIdx==pParent->nCell ){
4792 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4793 }else{
4794 assert( get4byte(findCell(pParent, iIdx))==iChild );
4795 }
4796}
4797#else
4798# define assertParentIndex(x,y,z)
4799#endif
4800
drh72f82862001-05-24 21:06:34 +00004801/*
drh5e2f8b92001-05-28 00:41:15 +00004802** Move the cursor up to the parent page.
4803**
4804** pCur->idx is set to the cell index that contains the pointer
4805** to the page we are coming from. If we are coming from the
4806** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004807** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004808*/
danielk197730548662009-07-09 05:07:37 +00004809static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004810 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004811 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004812 assert( pCur->iPage>0 );
4813 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004814 assertParentIndex(
4815 pCur->apPage[pCur->iPage-1],
4816 pCur->aiIdx[pCur->iPage-1],
4817 pCur->apPage[pCur->iPage]->pgno
4818 );
dan6c2688c2012-01-12 15:05:03 +00004819 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004820 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004821 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004822 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004823}
4824
4825/*
danielk19778f880a82009-07-13 09:41:45 +00004826** Move the cursor to point to the root page of its b-tree structure.
4827**
4828** If the table has a virtual root page, then the cursor is moved to point
4829** to the virtual root page instead of the actual root page. A table has a
4830** virtual root page when the actual root page contains no cells and a
4831** single child page. This can only happen with the table rooted at page 1.
4832**
4833** If the b-tree structure is empty, the cursor state is set to
4834** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4835** cell located on the root (or virtual root) page and the cursor state
4836** is set to CURSOR_VALID.
4837**
4838** If this function returns successfully, it may be assumed that the
4839** page-header flags indicate that the [virtual] root-page is the expected
4840** kind of b-tree page (i.e. if when opening the cursor the caller did not
4841** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4842** indicating a table b-tree, or if the caller did specify a KeyInfo
4843** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4844** b-tree).
drh72f82862001-05-24 21:06:34 +00004845*/
drh5e2f8b92001-05-28 00:41:15 +00004846static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004847 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004848 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004849
dan7a2347e2016-01-07 16:43:54 +00004850 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004851 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4852 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4853 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4854 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4855 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004856 assert( pCur->skipNext!=SQLITE_OK );
4857 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004858 }
danielk1977be51a652008-10-08 17:58:48 +00004859 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004860 }
danielk197771d5d2c2008-09-29 11:49:47 +00004861
4862 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004863 while( pCur->iPage ){
4864 assert( pCur->apPage[pCur->iPage]!=0 );
4865 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4866 }
dana205a482011-08-27 18:48:57 +00004867 }else if( pCur->pgnoRoot==0 ){
4868 pCur->eState = CURSOR_INVALID;
4869 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004870 }else{
drh28f58dd2015-06-27 19:45:03 +00004871 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004872 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004873 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004874 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004875 pCur->eState = CURSOR_INVALID;
4876 return rc;
4877 }
danielk1977172114a2009-07-07 15:47:12 +00004878 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004879 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004880 }
danielk197771d5d2c2008-09-29 11:49:47 +00004881 pRoot = pCur->apPage[0];
4882 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004883
4884 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4885 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4886 ** NULL, the caller expects a table b-tree. If this is not the case,
4887 ** return an SQLITE_CORRUPT error.
4888 **
4889 ** Earlier versions of SQLite assumed that this test could not fail
4890 ** if the root page was already loaded when this function was called (i.e.
4891 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4892 ** in such a way that page pRoot is linked into a second b-tree table
4893 ** (or the freelist). */
4894 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4895 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4896 return SQLITE_CORRUPT_BKPT;
4897 }
danielk19778f880a82009-07-13 09:41:45 +00004898
danielk197771d5d2c2008-09-29 11:49:47 +00004899 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004900 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004901 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004902
drh4e8fe3f2013-12-06 23:25:27 +00004903 if( pRoot->nCell>0 ){
4904 pCur->eState = CURSOR_VALID;
4905 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004906 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004907 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004908 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004909 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004910 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004911 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004912 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004913 }
4914 return rc;
drh72f82862001-05-24 21:06:34 +00004915}
drh2af926b2001-05-15 00:39:25 +00004916
drh5e2f8b92001-05-28 00:41:15 +00004917/*
4918** Move the cursor down to the left-most leaf entry beneath the
4919** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004920**
4921** The left-most leaf is the one with the smallest key - the first
4922** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004923*/
4924static int moveToLeftmost(BtCursor *pCur){
4925 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004926 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004927 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004928
dan7a2347e2016-01-07 16:43:54 +00004929 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004930 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004931 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4932 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4933 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004934 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004935 }
drhd677b3d2007-08-20 22:48:41 +00004936 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004937}
4938
drh2dcc9aa2002-12-04 13:40:25 +00004939/*
4940** Move the cursor down to the right-most leaf entry beneath the
4941** page to which it is currently pointing. Notice the difference
4942** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4943** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4944** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004945**
4946** The right-most entry is the one with the largest key - the last
4947** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004948*/
4949static int moveToRightmost(BtCursor *pCur){
4950 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004951 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004952 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004953
dan7a2347e2016-01-07 16:43:54 +00004954 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004955 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004956 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004957 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004958 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004959 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004960 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004961 }
drhee6438d2014-09-01 13:29:32 +00004962 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4963 assert( pCur->info.nSize==0 );
4964 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4965 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004966}
4967
drh5e00f6c2001-09-13 13:46:56 +00004968/* Move the cursor to the first entry in the table. Return SQLITE_OK
4969** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004970** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004971*/
drh3aac2dd2004-04-26 14:10:20 +00004972int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004973 int rc;
drhd677b3d2007-08-20 22:48:41 +00004974
dan7a2347e2016-01-07 16:43:54 +00004975 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004976 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004977 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004978 if( rc==SQLITE_OK ){
4979 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004980 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004981 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004982 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004983 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004984 *pRes = 0;
4985 rc = moveToLeftmost(pCur);
4986 }
drh5e00f6c2001-09-13 13:46:56 +00004987 }
drh5e00f6c2001-09-13 13:46:56 +00004988 return rc;
4989}
drh5e2f8b92001-05-28 00:41:15 +00004990
drh9562b552002-02-19 15:00:07 +00004991/* Move the cursor to the last entry in the table. Return SQLITE_OK
4992** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004993** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004994*/
drh3aac2dd2004-04-26 14:10:20 +00004995int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004996 int rc;
drhd677b3d2007-08-20 22:48:41 +00004997
dan7a2347e2016-01-07 16:43:54 +00004998 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004999 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005000
5001 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005002 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005003#ifdef SQLITE_DEBUG
5004 /* This block serves to assert() that the cursor really does point
5005 ** to the last entry in the b-tree. */
5006 int ii;
5007 for(ii=0; ii<pCur->iPage; ii++){
5008 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5009 }
5010 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5011 assert( pCur->apPage[pCur->iPage]->leaf );
5012#endif
5013 return SQLITE_OK;
5014 }
5015
drh9562b552002-02-19 15:00:07 +00005016 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005017 if( rc==SQLITE_OK ){
5018 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005019 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005020 *pRes = 1;
5021 }else{
5022 assert( pCur->eState==CURSOR_VALID );
5023 *pRes = 0;
5024 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005025 if( rc==SQLITE_OK ){
5026 pCur->curFlags |= BTCF_AtLast;
5027 }else{
5028 pCur->curFlags &= ~BTCF_AtLast;
5029 }
5030
drhd677b3d2007-08-20 22:48:41 +00005031 }
drh9562b552002-02-19 15:00:07 +00005032 }
drh9562b552002-02-19 15:00:07 +00005033 return rc;
5034}
5035
drhe14006d2008-03-25 17:23:32 +00005036/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005037** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005038**
drhe63d9992008-08-13 19:11:48 +00005039** For INTKEY tables, the intKey parameter is used. pIdxKey
5040** must be NULL. For index tables, pIdxKey is used and intKey
5041** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005042**
drh5e2f8b92001-05-28 00:41:15 +00005043** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005044** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005045** were present. The cursor might point to an entry that comes
5046** before or after the key.
5047**
drh64022502009-01-09 14:11:04 +00005048** An integer is written into *pRes which is the result of
5049** comparing the key with the entry to which the cursor is
5050** pointing. The meaning of the integer written into
5051** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005052**
5053** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005054** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005055** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005056**
5057** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005058** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005059**
5060** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005061** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005062**
drhb1d607d2015-11-05 22:30:54 +00005063** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5064** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005065*/
drhe63d9992008-08-13 19:11:48 +00005066int sqlite3BtreeMovetoUnpacked(
5067 BtCursor *pCur, /* The cursor to be moved */
5068 UnpackedRecord *pIdxKey, /* Unpacked index key */
5069 i64 intKey, /* The table key */
5070 int biasRight, /* If true, bias the search to the high end */
5071 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005072){
drh72f82862001-05-24 21:06:34 +00005073 int rc;
dan3b9330f2014-02-27 20:44:18 +00005074 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005075
dan7a2347e2016-01-07 16:43:54 +00005076 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005077 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005078 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005079 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005080 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005081
5082 /* If the cursor is already positioned at the point we are trying
5083 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005084 if( pIdxKey==0
5085 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005086 ){
drhe63d9992008-08-13 19:11:48 +00005087 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005088 *pRes = 0;
5089 return SQLITE_OK;
5090 }
drh036dbec2014-03-11 23:40:44 +00005091 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005092 *pRes = -1;
5093 return SQLITE_OK;
5094 }
5095 }
5096
dan1fed5da2014-02-25 21:01:25 +00005097 if( pIdxKey ){
5098 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005099 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005100 assert( pIdxKey->default_rc==1
5101 || pIdxKey->default_rc==0
5102 || pIdxKey->default_rc==-1
5103 );
drh13a747e2014-03-03 21:46:55 +00005104 }else{
drhb6e8fd12014-03-06 01:56:33 +00005105 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005106 }
5107
drh5e2f8b92001-05-28 00:41:15 +00005108 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005109 if( rc ){
5110 return rc;
5111 }
dana205a482011-08-27 18:48:57 +00005112 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5113 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5114 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005115 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005116 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005117 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005118 return SQLITE_OK;
5119 }
drhc75d8862015-06-27 23:55:20 +00005120 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5121 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005122 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005123 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005124 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005125 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005126 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005127
5128 /* pPage->nCell must be greater than zero. If this is the root-page
5129 ** the cursor would have been INVALID above and this for(;;) loop
5130 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005131 ** would have already detected db corruption. Similarly, pPage must
5132 ** be the right kind (index or table) of b-tree page. Otherwise
5133 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005134 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005135 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005136 lwr = 0;
5137 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005138 assert( biasRight==0 || biasRight==1 );
5139 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005140 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005141 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005142 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005143 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005144 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005145 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005146 while( 0x80 <= *(pCell++) ){
5147 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5148 }
drhd172f862006-01-12 15:01:15 +00005149 }
drha2c20e42008-03-29 16:01:04 +00005150 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005151 if( nCellKey<intKey ){
5152 lwr = idx+1;
5153 if( lwr>upr ){ c = -1; break; }
5154 }else if( nCellKey>intKey ){
5155 upr = idx-1;
5156 if( lwr>upr ){ c = +1; break; }
drh41eb9e92008-04-02 18:33:07 +00005157 }else{
drhbb933ef2013-11-25 15:01:38 +00005158 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005159 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005160 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005161 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005162 if( !pPage->leaf ){
5163 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005164 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005165 }else{
5166 *pRes = 0;
5167 rc = SQLITE_OK;
5168 goto moveto_finish;
5169 }
drh3aac2dd2004-04-26 14:10:20 +00005170 }
drhebf10b12013-11-25 17:38:26 +00005171 assert( lwr+upr>=0 );
5172 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005173 }
5174 }else{
5175 for(;;){
drhc6827502015-05-28 15:14:32 +00005176 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005177 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005178
drhb2eced52010-08-12 02:41:12 +00005179 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005180 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005181 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005182 ** varint. This information is used to attempt to avoid parsing
5183 ** the entire cell by checking for the cases where the record is
5184 ** stored entirely within the b-tree page by inspecting the first
5185 ** 2 bytes of the cell.
5186 */
drhec3e6b12013-11-25 02:38:55 +00005187 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005188 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005189 /* This branch runs if the record-size field of the cell is a
5190 ** single byte varint and the record fits entirely on the main
5191 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005192 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005193 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005194 }else if( !(pCell[1] & 0x80)
5195 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5196 ){
5197 /* The record-size field is a 2 byte varint and the record
5198 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005199 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005200 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005201 }else{
danielk197711c327a2009-05-04 19:01:26 +00005202 /* The record flows over onto one or more overflow pages. In
5203 ** this case the whole cell needs to be parsed, a buffer allocated
5204 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005205 ** buffer before VdbeRecordCompare() can be called.
5206 **
5207 ** If the record is corrupt, the xRecordCompare routine may read
5208 ** up to two varints past the end of the buffer. An extra 18
5209 ** bytes of padding is allocated at the end of the buffer in
5210 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005211 void *pCellKey;
5212 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005213 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005214 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005215 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5216 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5217 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5218 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005219 if( nCell<2 ){
5220 rc = SQLITE_CORRUPT_BKPT;
5221 goto moveto_finish;
5222 }
5223 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005224 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005225 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005226 goto moveto_finish;
5227 }
drhd793f442013-11-25 14:10:15 +00005228 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005229 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005230 if( rc ){
5231 sqlite3_free(pCellKey);
5232 goto moveto_finish;
5233 }
drh75179de2014-09-16 14:37:35 +00005234 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005235 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005236 }
dan38fdead2014-04-01 10:19:02 +00005237 assert(
5238 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005239 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005240 );
drhbb933ef2013-11-25 15:01:38 +00005241 if( c<0 ){
5242 lwr = idx+1;
5243 }else if( c>0 ){
5244 upr = idx-1;
drh8b18dd42004-05-12 19:18:15 +00005245 }else{
drhbb933ef2013-11-25 15:01:38 +00005246 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005247 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005248 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005249 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005250 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005251 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005252 }
drhebf10b12013-11-25 17:38:26 +00005253 if( lwr>upr ) break;
5254 assert( lwr+upr>=0 );
5255 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005256 }
drh72f82862001-05-24 21:06:34 +00005257 }
drhb07028f2011-10-14 21:49:18 +00005258 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005259 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005260 if( pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005261 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005262 pCur->aiIdx[pCur->iPage] = (u16)idx;
danielk19775cb09632009-07-09 11:36:01 +00005263 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00005264 rc = SQLITE_OK;
5265 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00005266 }
drhebf10b12013-11-25 17:38:26 +00005267moveto_next_layer:
5268 if( lwr>=pPage->nCell ){
drh72f82862001-05-24 21:06:34 +00005269 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5270 }else{
5271 chldPg = get4byte(findCell(pPage, lwr));
5272 }
drhf49661a2008-12-10 16:45:50 +00005273 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005274 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005275 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005276 }
drh1e968a02008-03-25 00:22:21 +00005277moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005278 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005279 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005280 return rc;
5281}
5282
drhd677b3d2007-08-20 22:48:41 +00005283
drh72f82862001-05-24 21:06:34 +00005284/*
drhc39e0002004-05-07 23:50:57 +00005285** Return TRUE if the cursor is not pointing at an entry of the table.
5286**
5287** TRUE will be returned after a call to sqlite3BtreeNext() moves
5288** past the last entry in the table or sqlite3BtreePrev() moves past
5289** the first entry. TRUE is also returned if the table is empty.
5290*/
5291int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005292 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5293 ** have been deleted? This API will need to change to return an error code
5294 ** as well as the boolean result value.
5295 */
5296 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005297}
5298
5299/*
drhbd03cae2001-06-02 02:40:57 +00005300** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005301** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005302** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005303** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005304**
drhee6438d2014-09-01 13:29:32 +00005305** The main entry point is sqlite3BtreeNext(). That routine is optimized
5306** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5307** to the next cell on the current page. The (slower) btreeNext() helper
5308** routine is called when it is necessary to move to a different page or
5309** to restore the cursor.
5310**
drhe39a7322014-02-03 14:04:11 +00005311** The calling function will set *pRes to 0 or 1. The initial *pRes value
5312** will be 1 if the cursor being stepped corresponds to an SQL index and
5313** if this routine could have been skipped if that SQL index had been
5314** a unique index. Otherwise the caller will have set *pRes to zero.
5315** Zero is the common case. The btree implementation is free to use the
5316** initial *pRes value as a hint to improve performance, but the current
5317** SQLite btree implementation does not. (Note that the comdb2 btree
5318** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005319*/
drhee6438d2014-09-01 13:29:32 +00005320static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005321 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005322 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005323 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005324
dan7a2347e2016-01-07 16:43:54 +00005325 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005326 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005327 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005328 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005329 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005330 rc = restoreCursorPosition(pCur);
5331 if( rc!=SQLITE_OK ){
5332 return rc;
5333 }
5334 if( CURSOR_INVALID==pCur->eState ){
5335 *pRes = 1;
5336 return SQLITE_OK;
5337 }
drh9b47ee32013-08-20 03:13:51 +00005338 if( pCur->skipNext ){
5339 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5340 pCur->eState = CURSOR_VALID;
5341 if( pCur->skipNext>0 ){
5342 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005343 return SQLITE_OK;
5344 }
drhf66f26a2013-08-19 20:04:10 +00005345 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005346 }
drh8c4d3a62007-04-06 01:03:32 +00005347 }
danielk1977da184232006-01-05 11:34:32 +00005348
danielk197771d5d2c2008-09-29 11:49:47 +00005349 pPage = pCur->apPage[pCur->iPage];
5350 idx = ++pCur->aiIdx[pCur->iPage];
5351 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005352
5353 /* If the database file is corrupt, it is possible for the value of idx
5354 ** to be invalid here. This can only occur if a second cursor modifies
5355 ** the page while cursor pCur is holding a reference to it. Which can
5356 ** only happen if the database is corrupt in such a way as to link the
5357 ** page into more than one b-tree structure. */
5358 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005359
danielk197771d5d2c2008-09-29 11:49:47 +00005360 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005361 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005362 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005363 if( rc ) return rc;
5364 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005365 }
drh5e2f8b92001-05-28 00:41:15 +00005366 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005367 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005368 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005369 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005370 return SQLITE_OK;
5371 }
danielk197730548662009-07-09 05:07:37 +00005372 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005373 pPage = pCur->apPage[pCur->iPage];
5374 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005375 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005376 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005377 }else{
drhee6438d2014-09-01 13:29:32 +00005378 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005379 }
drh8178a752003-01-05 21:41:40 +00005380 }
drh3aac2dd2004-04-26 14:10:20 +00005381 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005382 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005383 }else{
5384 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005385 }
drh72f82862001-05-24 21:06:34 +00005386}
drhee6438d2014-09-01 13:29:32 +00005387int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5388 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005389 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005390 assert( pRes!=0 );
5391 assert( *pRes==0 || *pRes==1 );
5392 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5393 pCur->info.nSize = 0;
5394 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5395 *pRes = 0;
5396 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5397 pPage = pCur->apPage[pCur->iPage];
5398 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5399 pCur->aiIdx[pCur->iPage]--;
5400 return btreeNext(pCur, pRes);
5401 }
5402 if( pPage->leaf ){
5403 return SQLITE_OK;
5404 }else{
5405 return moveToLeftmost(pCur);
5406 }
5407}
drh72f82862001-05-24 21:06:34 +00005408
drh3b7511c2001-05-26 13:15:44 +00005409/*
drh2dcc9aa2002-12-04 13:40:25 +00005410** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005411** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005412** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005413** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005414**
drhee6438d2014-09-01 13:29:32 +00005415** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5416** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005417** to the previous cell on the current page. The (slower) btreePrevious()
5418** helper routine is called when it is necessary to move to a different page
5419** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005420**
drhe39a7322014-02-03 14:04:11 +00005421** The calling function will set *pRes to 0 or 1. The initial *pRes value
5422** will be 1 if the cursor being stepped corresponds to an SQL index and
5423** if this routine could have been skipped if that SQL index had been
5424** a unique index. Otherwise the caller will have set *pRes to zero.
5425** Zero is the common case. The btree implementation is free to use the
5426** initial *pRes value as a hint to improve performance, but the current
5427** SQLite btree implementation does not. (Note that the comdb2 btree
5428** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005429*/
drhee6438d2014-09-01 13:29:32 +00005430static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005431 int rc;
drh8178a752003-01-05 21:41:40 +00005432 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005433
dan7a2347e2016-01-07 16:43:54 +00005434 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005435 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005436 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005437 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005438 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5439 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005440 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005441 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005442 if( rc!=SQLITE_OK ){
5443 return rc;
drhf66f26a2013-08-19 20:04:10 +00005444 }
5445 if( CURSOR_INVALID==pCur->eState ){
5446 *pRes = 1;
5447 return SQLITE_OK;
5448 }
drh9b47ee32013-08-20 03:13:51 +00005449 if( pCur->skipNext ){
5450 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5451 pCur->eState = CURSOR_VALID;
5452 if( pCur->skipNext<0 ){
5453 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005454 return SQLITE_OK;
5455 }
drhf66f26a2013-08-19 20:04:10 +00005456 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005457 }
danielk1977da184232006-01-05 11:34:32 +00005458 }
danielk1977da184232006-01-05 11:34:32 +00005459
danielk197771d5d2c2008-09-29 11:49:47 +00005460 pPage = pCur->apPage[pCur->iPage];
5461 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005462 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005463 int idx = pCur->aiIdx[pCur->iPage];
5464 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005465 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005466 rc = moveToRightmost(pCur);
5467 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005468 while( pCur->aiIdx[pCur->iPage]==0 ){
5469 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005470 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005471 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005472 return SQLITE_OK;
5473 }
danielk197730548662009-07-09 05:07:37 +00005474 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005475 }
drhee6438d2014-09-01 13:29:32 +00005476 assert( pCur->info.nSize==0 );
5477 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005478
5479 pCur->aiIdx[pCur->iPage]--;
5480 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005481 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005482 rc = sqlite3BtreePrevious(pCur, pRes);
5483 }else{
5484 rc = SQLITE_OK;
5485 }
drh2dcc9aa2002-12-04 13:40:25 +00005486 }
drh2dcc9aa2002-12-04 13:40:25 +00005487 return rc;
5488}
drhee6438d2014-09-01 13:29:32 +00005489int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005490 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005491 assert( pRes!=0 );
5492 assert( *pRes==0 || *pRes==1 );
5493 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5494 *pRes = 0;
5495 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5496 pCur->info.nSize = 0;
5497 if( pCur->eState!=CURSOR_VALID
5498 || pCur->aiIdx[pCur->iPage]==0
5499 || pCur->apPage[pCur->iPage]->leaf==0
5500 ){
5501 return btreePrevious(pCur, pRes);
5502 }
5503 pCur->aiIdx[pCur->iPage]--;
5504 return SQLITE_OK;
5505}
drh2dcc9aa2002-12-04 13:40:25 +00005506
5507/*
drh3b7511c2001-05-26 13:15:44 +00005508** Allocate a new page from the database file.
5509**
danielk19773b8a05f2007-03-19 17:44:26 +00005510** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005511** has already been called on the new page.) The new page has also
5512** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005513** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005514**
5515** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005516** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005517**
drh82e647d2013-03-02 03:25:55 +00005518** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005519** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005520** attempt to keep related pages close to each other in the database file,
5521** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005522**
drh82e647d2013-03-02 03:25:55 +00005523** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5524** anywhere on the free-list, then it is guaranteed to be returned. If
5525** eMode is BTALLOC_LT then the page returned will be less than or equal
5526** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5527** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005528*/
drh4f0c5872007-03-26 22:05:01 +00005529static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005530 BtShared *pBt, /* The btree */
5531 MemPage **ppPage, /* Store pointer to the allocated page here */
5532 Pgno *pPgno, /* Store the page number here */
5533 Pgno nearby, /* Search for a page near this one */
5534 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005535){
drh3aac2dd2004-04-26 14:10:20 +00005536 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005537 int rc;
drh35cd6432009-06-05 14:17:21 +00005538 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005539 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005540 MemPage *pTrunk = 0;
5541 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005542 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005543
drh1fee73e2007-08-29 04:00:57 +00005544 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005545 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005546 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005547 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005548 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5549 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005550 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005551 testcase( n==mxPage-1 );
5552 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005553 return SQLITE_CORRUPT_BKPT;
5554 }
drh3aac2dd2004-04-26 14:10:20 +00005555 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005556 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005557 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005558 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005559 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005560
drh82e647d2013-03-02 03:25:55 +00005561 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005562 ** shows that the page 'nearby' is somewhere on the free-list, then
5563 ** the entire-list will be searched for that page.
5564 */
5565#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005566 if( eMode==BTALLOC_EXACT ){
5567 if( nearby<=mxPage ){
5568 u8 eType;
5569 assert( nearby>0 );
5570 assert( pBt->autoVacuum );
5571 rc = ptrmapGet(pBt, nearby, &eType, 0);
5572 if( rc ) return rc;
5573 if( eType==PTRMAP_FREEPAGE ){
5574 searchList = 1;
5575 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005576 }
dan51f0b6d2013-02-22 20:16:34 +00005577 }else if( eMode==BTALLOC_LE ){
5578 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005579 }
5580#endif
5581
5582 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5583 ** first free-list trunk page. iPrevTrunk is initially 1.
5584 */
danielk19773b8a05f2007-03-19 17:44:26 +00005585 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005586 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005587 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005588
5589 /* The code within this loop is run only once if the 'searchList' variable
5590 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005591 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5592 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005593 */
5594 do {
5595 pPrevTrunk = pTrunk;
5596 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005597 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5598 ** is the page number of the next freelist trunk page in the list or
5599 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005600 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005601 }else{
drh113762a2014-11-19 16:36:25 +00005602 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5603 ** stores the page number of the first page of the freelist, or zero if
5604 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005605 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005606 }
drhdf35a082009-07-09 02:24:35 +00005607 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005608 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005609 rc = SQLITE_CORRUPT_BKPT;
5610 }else{
drh7e8c6f12015-05-28 03:28:27 +00005611 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005612 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005613 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005614 pTrunk = 0;
5615 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005616 }
drhb07028f2011-10-14 21:49:18 +00005617 assert( pTrunk!=0 );
5618 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005619 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5620 ** is the number of leaf page pointers to follow. */
5621 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005622 if( k==0 && !searchList ){
5623 /* The trunk has no leaves and the list is not being searched.
5624 ** So extract the trunk page itself and use it as the newly
5625 ** allocated page */
5626 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005627 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005628 if( rc ){
5629 goto end_allocate_page;
5630 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005631 *pPgno = iTrunk;
5632 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5633 *ppPage = pTrunk;
5634 pTrunk = 0;
5635 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005636 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005637 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005638 rc = SQLITE_CORRUPT_BKPT;
5639 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005641 }else if( searchList
5642 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5643 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005644 /* The list is being searched and this trunk page is the page
5645 ** to allocate, regardless of whether it has leaves.
5646 */
dan51f0b6d2013-02-22 20:16:34 +00005647 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005648 *ppPage = pTrunk;
5649 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005650 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005651 if( rc ){
5652 goto end_allocate_page;
5653 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005654 if( k==0 ){
5655 if( !pPrevTrunk ){
5656 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5657 }else{
danf48c3552010-08-23 15:41:24 +00005658 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5659 if( rc!=SQLITE_OK ){
5660 goto end_allocate_page;
5661 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005662 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5663 }
5664 }else{
5665 /* The trunk page is required by the caller but it contains
5666 ** pointers to free-list leaves. The first leaf becomes a trunk
5667 ** page in this case.
5668 */
5669 MemPage *pNewTrunk;
5670 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005671 if( iNewTrunk>mxPage ){
5672 rc = SQLITE_CORRUPT_BKPT;
5673 goto end_allocate_page;
5674 }
drhdf35a082009-07-09 02:24:35 +00005675 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005676 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005677 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005678 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005679 }
danielk19773b8a05f2007-03-19 17:44:26 +00005680 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005681 if( rc!=SQLITE_OK ){
5682 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005683 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005684 }
5685 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5686 put4byte(&pNewTrunk->aData[4], k-1);
5687 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005688 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005689 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005690 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005691 put4byte(&pPage1->aData[32], iNewTrunk);
5692 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005693 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005694 if( rc ){
5695 goto end_allocate_page;
5696 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005697 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5698 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005699 }
5700 pTrunk = 0;
5701 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5702#endif
danielk1977e5765212009-06-17 11:13:28 +00005703 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005704 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005705 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005706 Pgno iPage;
5707 unsigned char *aData = pTrunk->aData;
5708 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005709 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005710 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005711 if( eMode==BTALLOC_LE ){
5712 for(i=0; i<k; i++){
5713 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005714 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005715 closest = i;
5716 break;
5717 }
5718 }
5719 }else{
5720 int dist;
5721 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5722 for(i=1; i<k; i++){
5723 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5724 if( d2<dist ){
5725 closest = i;
5726 dist = d2;
5727 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005728 }
5729 }
5730 }else{
5731 closest = 0;
5732 }
5733
5734 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005735 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005736 if( iPage>mxPage ){
5737 rc = SQLITE_CORRUPT_BKPT;
5738 goto end_allocate_page;
5739 }
drhdf35a082009-07-09 02:24:35 +00005740 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005741 if( !searchList
5742 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5743 ){
danielk1977bea2a942009-01-20 17:06:27 +00005744 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005745 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005746 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5747 ": %d more free pages\n",
5748 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005749 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5750 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005751 if( closest<k-1 ){
5752 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5753 }
5754 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005755 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005756 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005757 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005758 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005759 if( rc!=SQLITE_OK ){
5760 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005761 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005762 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005763 }
5764 searchList = 0;
5765 }
drhee696e22004-08-30 16:52:17 +00005766 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005767 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005768 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005769 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005770 }else{
danbc1a3c62013-02-23 16:40:46 +00005771 /* There are no pages on the freelist, so append a new page to the
5772 ** database image.
5773 **
5774 ** Normally, new pages allocated by this block can be requested from the
5775 ** pager layer with the 'no-content' flag set. This prevents the pager
5776 ** from trying to read the pages content from disk. However, if the
5777 ** current transaction has already run one or more incremental-vacuum
5778 ** steps, then the page we are about to allocate may contain content
5779 ** that is required in the event of a rollback. In this case, do
5780 ** not set the no-content flag. This causes the pager to load and journal
5781 ** the current page content before overwriting it.
5782 **
5783 ** Note that the pager will not actually attempt to load or journal
5784 ** content for any page that really does lie past the end of the database
5785 ** file on disk. So the effects of disabling the no-content optimization
5786 ** here are confined to those pages that lie between the end of the
5787 ** database image and the end of the database file.
5788 */
drh3f387402014-09-24 01:23:00 +00005789 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005790
drhdd3cd972010-03-27 17:12:36 +00005791 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5792 if( rc ) return rc;
5793 pBt->nPage++;
5794 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005795
danielk1977afcdd022004-10-31 16:25:42 +00005796#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005797 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005798 /* If *pPgno refers to a pointer-map page, allocate two new pages
5799 ** at the end of the file instead of one. The first allocated page
5800 ** becomes a new pointer-map page, the second is used by the caller.
5801 */
danielk1977ac861692009-03-28 10:54:22 +00005802 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005803 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5804 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005805 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005806 if( rc==SQLITE_OK ){
5807 rc = sqlite3PagerWrite(pPg->pDbPage);
5808 releasePage(pPg);
5809 }
5810 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005811 pBt->nPage++;
5812 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005813 }
5814#endif
drhdd3cd972010-03-27 17:12:36 +00005815 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5816 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005817
danielk1977599fcba2004-11-08 07:13:13 +00005818 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005819 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005820 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005821 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005822 if( rc!=SQLITE_OK ){
5823 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005824 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005825 }
drh3a4c1412004-05-09 20:40:11 +00005826 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005827 }
danielk1977599fcba2004-11-08 07:13:13 +00005828
5829 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005830
5831end_allocate_page:
5832 releasePage(pTrunk);
5833 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005834 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5835 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005836 return rc;
5837}
5838
5839/*
danielk1977bea2a942009-01-20 17:06:27 +00005840** This function is used to add page iPage to the database file free-list.
5841** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005842**
danielk1977bea2a942009-01-20 17:06:27 +00005843** The value passed as the second argument to this function is optional.
5844** If the caller happens to have a pointer to the MemPage object
5845** corresponding to page iPage handy, it may pass it as the second value.
5846** Otherwise, it may pass NULL.
5847**
5848** If a pointer to a MemPage object is passed as the second argument,
5849** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005850*/
danielk1977bea2a942009-01-20 17:06:27 +00005851static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5852 MemPage *pTrunk = 0; /* Free-list trunk page */
5853 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5854 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5855 MemPage *pPage; /* Page being freed. May be NULL. */
5856 int rc; /* Return Code */
5857 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005858
danielk1977bea2a942009-01-20 17:06:27 +00005859 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005860 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005861 assert( !pMemPage || pMemPage->pgno==iPage );
5862
danfb0246b2015-05-26 12:18:17 +00005863 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005864 if( pMemPage ){
5865 pPage = pMemPage;
5866 sqlite3PagerRef(pPage->pDbPage);
5867 }else{
5868 pPage = btreePageLookup(pBt, iPage);
5869 }
drh3aac2dd2004-04-26 14:10:20 +00005870
drha34b6762004-05-07 13:30:42 +00005871 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005872 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005873 if( rc ) goto freepage_out;
5874 nFree = get4byte(&pPage1->aData[36]);
5875 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005876
drhc9166342012-01-05 23:32:06 +00005877 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005878 /* If the secure_delete option is enabled, then
5879 ** always fully overwrite deleted information with zeros.
5880 */
shaneh84f4b2f2010-02-26 01:46:54 +00005881 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5882 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005883 ){
5884 goto freepage_out;
5885 }
5886 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005887 }
drhfcce93f2006-02-22 03:08:32 +00005888
danielk1977687566d2004-11-02 12:56:41 +00005889 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005890 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005891 */
danielk197785d90ca2008-07-19 14:25:15 +00005892 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005893 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005894 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005895 }
danielk1977687566d2004-11-02 12:56:41 +00005896
danielk1977bea2a942009-01-20 17:06:27 +00005897 /* Now manipulate the actual database free-list structure. There are two
5898 ** possibilities. If the free-list is currently empty, or if the first
5899 ** trunk page in the free-list is full, then this page will become a
5900 ** new free-list trunk page. Otherwise, it will become a leaf of the
5901 ** first trunk page in the current free-list. This block tests if it
5902 ** is possible to add the page as a new free-list leaf.
5903 */
5904 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005905 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005906
5907 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005908 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005909 if( rc!=SQLITE_OK ){
5910 goto freepage_out;
5911 }
5912
5913 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005914 assert( pBt->usableSize>32 );
5915 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005916 rc = SQLITE_CORRUPT_BKPT;
5917 goto freepage_out;
5918 }
drheeb844a2009-08-08 18:01:07 +00005919 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005920 /* In this case there is room on the trunk page to insert the page
5921 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005922 **
5923 ** Note that the trunk page is not really full until it contains
5924 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5925 ** coded. But due to a coding error in versions of SQLite prior to
5926 ** 3.6.0, databases with freelist trunk pages holding more than
5927 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5928 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005929 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005930 ** for now. At some point in the future (once everyone has upgraded
5931 ** to 3.6.0 or later) we should consider fixing the conditional above
5932 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005933 **
5934 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5935 ** avoid using the last six entries in the freelist trunk page array in
5936 ** order that database files created by newer versions of SQLite can be
5937 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005938 */
danielk19773b8a05f2007-03-19 17:44:26 +00005939 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005940 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005941 put4byte(&pTrunk->aData[4], nLeaf+1);
5942 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005943 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005944 sqlite3PagerDontWrite(pPage->pDbPage);
5945 }
danielk1977bea2a942009-01-20 17:06:27 +00005946 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005947 }
drh3a4c1412004-05-09 20:40:11 +00005948 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005949 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005950 }
drh3b7511c2001-05-26 13:15:44 +00005951 }
danielk1977bea2a942009-01-20 17:06:27 +00005952
5953 /* If control flows to this point, then it was not possible to add the
5954 ** the page being freed as a leaf page of the first trunk in the free-list.
5955 ** Possibly because the free-list is empty, or possibly because the
5956 ** first trunk in the free-list is full. Either way, the page being freed
5957 ** will become the new first trunk page in the free-list.
5958 */
drhc046e3e2009-07-15 11:26:44 +00005959 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5960 goto freepage_out;
5961 }
5962 rc = sqlite3PagerWrite(pPage->pDbPage);
5963 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005964 goto freepage_out;
5965 }
5966 put4byte(pPage->aData, iTrunk);
5967 put4byte(&pPage->aData[4], 0);
5968 put4byte(&pPage1->aData[32], iPage);
5969 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5970
5971freepage_out:
5972 if( pPage ){
5973 pPage->isInit = 0;
5974 }
5975 releasePage(pPage);
5976 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005977 return rc;
5978}
drhc314dc72009-07-21 11:52:34 +00005979static void freePage(MemPage *pPage, int *pRC){
5980 if( (*pRC)==SQLITE_OK ){
5981 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5982 }
danielk1977bea2a942009-01-20 17:06:27 +00005983}
drh3b7511c2001-05-26 13:15:44 +00005984
5985/*
drh9bfdc252014-09-24 02:05:41 +00005986** Free any overflow pages associated with the given Cell. Write the
5987** local Cell size (the number of bytes on the original page, omitting
5988** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005989*/
drh9bfdc252014-09-24 02:05:41 +00005990static int clearCell(
5991 MemPage *pPage, /* The page that contains the Cell */
5992 unsigned char *pCell, /* First byte of the Cell */
5993 u16 *pnSize /* Write the size of the Cell here */
5994){
danielk1977aef0bf62005-12-30 16:28:01 +00005995 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005996 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005997 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005998 int rc;
drh94440812007-03-06 11:42:19 +00005999 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006000 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006001
drh1fee73e2007-08-29 04:00:57 +00006002 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00006003 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00006004 *pnSize = info.nSize;
drh45ac1c72015-12-18 03:59:16 +00006005 if( info.nLocal==info.nPayload ){
drha34b6762004-05-07 13:30:42 +00006006 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006007 }
drh45ac1c72015-12-18 03:59:16 +00006008 if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006009 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006010 }
drh45ac1c72015-12-18 03:59:16 +00006011 ovflPgno = get4byte(pCell + info.nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006012 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006013 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006014 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006015 assert( nOvfl>0 ||
6016 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6017 );
drh72365832007-03-06 15:53:44 +00006018 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006019 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006020 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006021 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006022 /* 0 is not a legal page number and page 1 cannot be an
6023 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6024 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006025 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006026 }
danielk1977bea2a942009-01-20 17:06:27 +00006027 if( nOvfl ){
6028 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6029 if( rc ) return rc;
6030 }
dan887d4b22010-02-25 12:09:16 +00006031
shaneh1da207e2010-03-09 14:41:12 +00006032 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006033 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6034 ){
6035 /* There is no reason any cursor should have an outstanding reference
6036 ** to an overflow page belonging to a cell that is being deleted/updated.
6037 ** So if there exists more than one reference to this page, then it
6038 ** must not really be an overflow page and the database must be corrupt.
6039 ** It is helpful to detect this before calling freePage2(), as
6040 ** freePage2() may zero the page contents if secure-delete mode is
6041 ** enabled. If this 'overflow' page happens to be a page that the
6042 ** caller is iterating through or using in some other way, this
6043 ** can be problematic.
6044 */
6045 rc = SQLITE_CORRUPT_BKPT;
6046 }else{
6047 rc = freePage2(pBt, pOvfl, ovflPgno);
6048 }
6049
danielk1977bea2a942009-01-20 17:06:27 +00006050 if( pOvfl ){
6051 sqlite3PagerUnref(pOvfl->pDbPage);
6052 }
drh3b7511c2001-05-26 13:15:44 +00006053 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006054 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006055 }
drh5e2f8b92001-05-28 00:41:15 +00006056 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006057}
6058
6059/*
drh91025292004-05-03 19:49:32 +00006060** Create the byte sequence used to represent a cell on page pPage
6061** and write that byte sequence into pCell[]. Overflow pages are
6062** allocated and filled in as necessary. The calling procedure
6063** is responsible for making sure sufficient space has been allocated
6064** for pCell[].
6065**
6066** Note that pCell does not necessary need to point to the pPage->aData
6067** area. pCell might point to some temporary storage. The cell will
6068** be constructed in this temporary area then copied into pPage->aData
6069** later.
drh3b7511c2001-05-26 13:15:44 +00006070*/
6071static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006072 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006073 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006074 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006075 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006076){
drh3b7511c2001-05-26 13:15:44 +00006077 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006078 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006079 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006080 int spaceLeft;
6081 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006082 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006083 unsigned char *pPrior;
6084 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006085 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006086 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006087 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006088
drh1fee73e2007-08-29 04:00:57 +00006089 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006090
drhc5053fb2008-11-27 02:22:10 +00006091 /* pPage is not necessarily writeable since pCell might be auxiliary
6092 ** buffer space that is separate from the pPage buffer area */
6093 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6094 || sqlite3PagerIswriteable(pPage->pDbPage) );
6095
drh91025292004-05-03 19:49:32 +00006096 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006097 nHeader = pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00006098 if( pPage->intKey ){
drhdfc2daa2016-05-21 23:25:29 +00006099 nPayload = pX->nData + pX->nZero;
6100 pSrc = pX->pData;
6101 nSrc = pX->nData;
6102 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006103 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006104 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh3b7511c2001-05-26 13:15:44 +00006105 }else{
drh8eeb4462016-05-21 20:03:42 +00006106 assert( pX->nData==0 );
6107 assert( pX->nZero==0 );
drh8eeb4462016-05-21 20:03:42 +00006108 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6109 nSrc = nPayload = (int)pX->nKey;
6110 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006111 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006112 }
drhdfc2daa2016-05-21 23:25:29 +00006113
6114 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006115 if( nPayload<=pPage->maxLocal ){
6116 n = nHeader + nPayload;
6117 testcase( n==3 );
6118 testcase( n==4 );
6119 if( n<4 ) n = 4;
6120 *pnSize = n;
6121 spaceLeft = nPayload;
6122 pPrior = pCell;
6123 }else{
6124 int mn = pPage->minLocal;
6125 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6126 testcase( n==pPage->maxLocal );
6127 testcase( n==pPage->maxLocal+1 );
6128 if( n > pPage->maxLocal ) n = mn;
6129 spaceLeft = n;
6130 *pnSize = n + nHeader + 4;
6131 pPrior = &pCell[nHeader+n];
6132 }
drh3aac2dd2004-04-26 14:10:20 +00006133 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006134
drh6200c882014-09-23 22:36:25 +00006135 /* At this point variables should be set as follows:
6136 **
6137 ** nPayload Total payload size in bytes
6138 ** pPayload Begin writing payload here
6139 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6140 ** that means content must spill into overflow pages.
6141 ** *pnSize Size of the local cell (not counting overflow pages)
6142 ** pPrior Where to write the pgno of the first overflow page
6143 **
6144 ** Use a call to btreeParseCellPtr() to verify that the values above
6145 ** were computed correctly.
6146 */
6147#if SQLITE_DEBUG
6148 {
6149 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006150 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006151 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006152 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006153 assert( *pnSize == info.nSize );
6154 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006155 }
6156#endif
6157
6158 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006159 while( nPayload>0 ){
6160 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006161#ifndef SQLITE_OMIT_AUTOVACUUM
6162 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006163 if( pBt->autoVacuum ){
6164 do{
6165 pgnoOvfl++;
6166 } while(
6167 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6168 );
danielk1977b39f70b2007-05-17 18:28:11 +00006169 }
danielk1977afcdd022004-10-31 16:25:42 +00006170#endif
drhf49661a2008-12-10 16:45:50 +00006171 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006172#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006173 /* If the database supports auto-vacuum, and the second or subsequent
6174 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006175 ** for that page now.
6176 **
6177 ** If this is the first overflow page, then write a partial entry
6178 ** to the pointer-map. If we write nothing to this pointer-map slot,
6179 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006180 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006181 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006182 */
danielk19774ef24492007-05-23 09:52:41 +00006183 if( pBt->autoVacuum && rc==SQLITE_OK ){
6184 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006185 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006186 if( rc ){
6187 releasePage(pOvfl);
6188 }
danielk1977afcdd022004-10-31 16:25:42 +00006189 }
6190#endif
drh3b7511c2001-05-26 13:15:44 +00006191 if( rc ){
drh9b171272004-05-08 02:03:22 +00006192 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006193 return rc;
6194 }
drhc5053fb2008-11-27 02:22:10 +00006195
6196 /* If pToRelease is not zero than pPrior points into the data area
6197 ** of pToRelease. Make sure pToRelease is still writeable. */
6198 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6199
6200 /* If pPrior is part of the data area of pPage, then make sure pPage
6201 ** is still writeable */
6202 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6203 || sqlite3PagerIswriteable(pPage->pDbPage) );
6204
drh3aac2dd2004-04-26 14:10:20 +00006205 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006206 releasePage(pToRelease);
6207 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006208 pPrior = pOvfl->aData;
6209 put4byte(pPrior, 0);
6210 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006211 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006212 }
6213 n = nPayload;
6214 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006215
6216 /* If pToRelease is not zero than pPayload points into the data area
6217 ** of pToRelease. Make sure pToRelease is still writeable. */
6218 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6219
6220 /* If pPayload is part of the data area of pPage, then make sure pPage
6221 ** is still writeable */
6222 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6223 || sqlite3PagerIswriteable(pPage->pDbPage) );
6224
drhb026e052007-05-02 01:34:31 +00006225 if( nSrc>0 ){
6226 if( n>nSrc ) n = nSrc;
6227 assert( pSrc );
6228 memcpy(pPayload, pSrc, n);
6229 }else{
6230 memset(pPayload, 0, n);
6231 }
drh3b7511c2001-05-26 13:15:44 +00006232 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006233 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006234 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006235 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006236 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006237 }
drh9b171272004-05-08 02:03:22 +00006238 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006239 return SQLITE_OK;
6240}
6241
drh14acc042001-06-10 19:56:58 +00006242/*
6243** Remove the i-th cell from pPage. This routine effects pPage only.
6244** The cell content is not freed or deallocated. It is assumed that
6245** the cell content has been copied someplace else. This routine just
6246** removes the reference to the cell from pPage.
6247**
6248** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006249*/
drh98add2e2009-07-20 17:11:49 +00006250static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006251 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006252 u8 *data; /* pPage->aData */
6253 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006254 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006255 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006256
drh98add2e2009-07-20 17:11:49 +00006257 if( *pRC ) return;
6258
drh8c42ca92001-06-22 19:15:00 +00006259 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006260 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006261 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006262 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006263 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006264 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006265 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006266 hdr = pPage->hdrOffset;
6267 testcase( pc==get2byte(&data[hdr+5]) );
6268 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006269 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006270 *pRC = SQLITE_CORRUPT_BKPT;
6271 return;
shane0af3f892008-11-12 04:55:34 +00006272 }
shanedcc50b72008-11-13 18:29:50 +00006273 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006274 if( rc ){
6275 *pRC = rc;
6276 return;
shanedcc50b72008-11-13 18:29:50 +00006277 }
drh14acc042001-06-10 19:56:58 +00006278 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006279 if( pPage->nCell==0 ){
6280 memset(&data[hdr+1], 0, 4);
6281 data[hdr+7] = 0;
6282 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6283 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6284 - pPage->childPtrSize - 8;
6285 }else{
6286 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6287 put2byte(&data[hdr+3], pPage->nCell);
6288 pPage->nFree += 2;
6289 }
drh14acc042001-06-10 19:56:58 +00006290}
6291
6292/*
6293** Insert a new cell on pPage at cell index "i". pCell points to the
6294** content of the cell.
6295**
6296** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006297** will not fit, then make a copy of the cell content into pTemp if
6298** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006299** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006300** in pTemp or the original pCell) and also record its index.
6301** Allocating a new entry in pPage->aCell[] implies that
6302** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006303**
6304** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006305*/
drh98add2e2009-07-20 17:11:49 +00006306static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006307 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006308 int i, /* New cell becomes the i-th cell of the page */
6309 u8 *pCell, /* Content of the new cell */
6310 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006311 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006312 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6313 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006314){
drh383d30f2010-02-26 13:07:37 +00006315 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006316 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006317 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006318 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006319
drhcb89f4a2016-05-21 11:23:26 +00006320 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006321 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006322 assert( MX_CELL(pPage->pBt)<=10921 );
6323 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006324 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6325 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006326 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006327 /* The cell should normally be sized correctly. However, when moving a
6328 ** malformed cell from a leaf page to an interior page, if the cell size
6329 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6330 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6331 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006332 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006333 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006334 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006335 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006336 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006337 }
danielk19774dbaa892009-06-16 16:50:22 +00006338 if( iChild ){
6339 put4byte(pCell, iChild);
6340 }
drh43605152004-05-29 21:46:49 +00006341 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006342 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6343 pPage->apOvfl[j] = pCell;
6344 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006345
6346 /* When multiple overflows occur, they are always sequential and in
6347 ** sorted order. This invariants arise because multiple overflows can
6348 ** only occur when inserting divider cells into the parent page during
6349 ** balancing, and the dividers are adjacent and sorted.
6350 */
6351 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6352 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006353 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006354 int rc = sqlite3PagerWrite(pPage->pDbPage);
6355 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006356 *pRC = rc;
6357 return;
danielk19776e465eb2007-08-21 13:11:00 +00006358 }
6359 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006360 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006361 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006362 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006363 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006364 /* The allocateSpace() routine guarantees the following properties
6365 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006366 assert( idx >= 0 );
6367 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006368 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006369 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006370 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006371 if( iChild ){
6372 put4byte(&data[idx], iChild);
6373 }
drh2c8fb922015-06-25 19:53:48 +00006374 pIns = pPage->aCellIdx + i*2;
6375 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6376 put2byte(pIns, idx);
6377 pPage->nCell++;
6378 /* increment the cell count */
6379 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6380 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006381#ifndef SQLITE_OMIT_AUTOVACUUM
6382 if( pPage->pBt->autoVacuum ){
6383 /* The cell may contain a pointer to an overflow page. If so, write
6384 ** the entry for the overflow page into the pointer map.
6385 */
drh98add2e2009-07-20 17:11:49 +00006386 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006387 }
6388#endif
drh14acc042001-06-10 19:56:58 +00006389 }
6390}
6391
6392/*
drh1ffd2472015-06-23 02:37:30 +00006393** A CellArray object contains a cache of pointers and sizes for a
6394** consecutive sequence of cells that might be held multiple pages.
6395*/
6396typedef struct CellArray CellArray;
6397struct CellArray {
6398 int nCell; /* Number of cells in apCell[] */
6399 MemPage *pRef; /* Reference page */
6400 u8 **apCell; /* All cells begin balanced */
6401 u16 *szCell; /* Local size of all cells in apCell[] */
6402};
6403
6404/*
6405** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6406** computed.
6407*/
6408static void populateCellCache(CellArray *p, int idx, int N){
6409 assert( idx>=0 && idx+N<=p->nCell );
6410 while( N>0 ){
6411 assert( p->apCell[idx]!=0 );
6412 if( p->szCell[idx]==0 ){
6413 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6414 }else{
6415 assert( CORRUPT_DB ||
6416 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6417 }
6418 idx++;
6419 N--;
6420 }
6421}
6422
6423/*
6424** Return the size of the Nth element of the cell array
6425*/
6426static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6427 assert( N>=0 && N<p->nCell );
6428 assert( p->szCell[N]==0 );
6429 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6430 return p->szCell[N];
6431}
6432static u16 cachedCellSize(CellArray *p, int N){
6433 assert( N>=0 && N<p->nCell );
6434 if( p->szCell[N] ) return p->szCell[N];
6435 return computeCellSize(p, N);
6436}
6437
6438/*
dan8e9ba0c2014-10-14 17:27:04 +00006439** Array apCell[] contains pointers to nCell b-tree page cells. The
6440** szCell[] array contains the size in bytes of each cell. This function
6441** replaces the current contents of page pPg with the contents of the cell
6442** array.
6443**
6444** Some of the cells in apCell[] may currently be stored in pPg. This
6445** function works around problems caused by this by making a copy of any
6446** such cells before overwriting the page data.
6447**
6448** The MemPage.nFree field is invalidated by this function. It is the
6449** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006450*/
drh658873b2015-06-22 20:02:04 +00006451static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006452 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006453 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006454 u8 **apCell, /* Array of cells */
6455 u16 *szCell /* Array of cell sizes */
drhfa1a98a2004-05-14 19:08:17 +00006456){
dan33ea4862014-10-09 19:35:37 +00006457 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6458 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6459 const int usableSize = pPg->pBt->usableSize;
6460 u8 * const pEnd = &aData[usableSize];
6461 int i;
6462 u8 *pCellptr = pPg->aCellIdx;
6463 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6464 u8 *pData;
drhfa1a98a2004-05-14 19:08:17 +00006465
dan33ea4862014-10-09 19:35:37 +00006466 i = get2byte(&aData[hdr+5]);
6467 memcpy(&pTmp[i], &aData[i], usableSize - i);
danielk1977fad91942009-04-29 17:49:59 +00006468
dan8e9ba0c2014-10-14 17:27:04 +00006469 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006470 for(i=0; i<nCell; i++){
6471 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006472 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006473 pCell = &pTmp[pCell - aData];
6474 }
6475 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006476 put2byte(pCellptr, (pData - aData));
6477 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006478 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6479 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006480 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006481 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
drhfa1a98a2004-05-14 19:08:17 +00006482 }
dan33ea4862014-10-09 19:35:37 +00006483
dand7b545b2014-10-13 18:03:27 +00006484 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006485 pPg->nCell = nCell;
6486 pPg->nOverflow = 0;
6487
6488 put2byte(&aData[hdr+1], 0);
6489 put2byte(&aData[hdr+3], pPg->nCell);
6490 put2byte(&aData[hdr+5], pData - aData);
6491 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006492 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006493}
6494
dan8e9ba0c2014-10-14 17:27:04 +00006495/*
6496** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6497** contains the size in bytes of each such cell. This function attempts to
6498** add the cells stored in the array to page pPg. If it cannot (because
6499** the page needs to be defragmented before the cells will fit), non-zero
6500** is returned. Otherwise, if the cells are added successfully, zero is
6501** returned.
6502**
6503** Argument pCellptr points to the first entry in the cell-pointer array
6504** (part of page pPg) to populate. After cell apCell[0] is written to the
6505** page body, a 16-bit offset is written to pCellptr. And so on, for each
6506** cell in the array. It is the responsibility of the caller to ensure
6507** that it is safe to overwrite this part of the cell-pointer array.
6508**
6509** When this function is called, *ppData points to the start of the
6510** content area on page pPg. If the size of the content area is extended,
6511** *ppData is updated to point to the new start of the content area
6512** before returning.
6513**
6514** Finally, argument pBegin points to the byte immediately following the
6515** end of the space required by this page for the cell-pointer area (for
6516** all cells - not just those inserted by the current call). If the content
6517** area must be extended to before this point in order to accomodate all
6518** cells in apCell[], then the cells do not fit and non-zero is returned.
6519*/
dand7b545b2014-10-13 18:03:27 +00006520static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006521 MemPage *pPg, /* Page to add cells to */
6522 u8 *pBegin, /* End of cell-pointer array */
6523 u8 **ppData, /* IN/OUT: Page content -area pointer */
6524 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006525 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006526 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006527 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006528){
6529 int i;
6530 u8 *aData = pPg->aData;
6531 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006532 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006533 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006534 for(i=iFirst; i<iEnd; i++){
6535 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006536 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006537 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006538 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006539 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006540 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006541 pSlot = pData;
6542 }
drh48310f82015-10-10 16:41:28 +00006543 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6544 ** database. But they might for a corrupt database. Hence use memmove()
6545 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6546 assert( (pSlot+sz)<=pCArray->apCell[i]
6547 || pSlot>=(pCArray->apCell[i]+sz)
6548 || CORRUPT_DB );
6549 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006550 put2byte(pCellptr, (pSlot - aData));
6551 pCellptr += 2;
6552 }
6553 *ppData = pData;
6554 return 0;
6555}
6556
dan8e9ba0c2014-10-14 17:27:04 +00006557/*
6558** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6559** contains the size in bytes of each such cell. This function adds the
6560** space associated with each cell in the array that is currently stored
6561** within the body of pPg to the pPg free-list. The cell-pointers and other
6562** fields of the page are not updated.
6563**
6564** This function returns the total number of cells added to the free-list.
6565*/
dand7b545b2014-10-13 18:03:27 +00006566static int pageFreeArray(
6567 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006568 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006569 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006570 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006571){
6572 u8 * const aData = pPg->aData;
6573 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006574 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006575 int nRet = 0;
6576 int i;
drhf7838932015-06-23 15:36:34 +00006577 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006578 u8 *pFree = 0;
6579 int szFree = 0;
6580
drhf7838932015-06-23 15:36:34 +00006581 for(i=iFirst; i<iEnd; i++){
6582 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006583 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006584 int sz;
6585 /* No need to use cachedCellSize() here. The sizes of all cells that
6586 ** are to be freed have already been computing while deciding which
6587 ** cells need freeing */
6588 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006589 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006590 if( pFree ){
6591 assert( pFree>aData && (pFree - aData)<65536 );
6592 freeSpace(pPg, (u16)(pFree - aData), szFree);
6593 }
dand7b545b2014-10-13 18:03:27 +00006594 pFree = pCell;
6595 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006596 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006597 }else{
6598 pFree = pCell;
6599 szFree += sz;
6600 }
6601 nRet++;
6602 }
6603 }
drhfefa0942014-11-05 21:21:08 +00006604 if( pFree ){
6605 assert( pFree>aData && (pFree - aData)<65536 );
6606 freeSpace(pPg, (u16)(pFree - aData), szFree);
6607 }
dand7b545b2014-10-13 18:03:27 +00006608 return nRet;
6609}
6610
dand7b545b2014-10-13 18:03:27 +00006611/*
drh5ab63772014-11-27 03:46:04 +00006612** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6613** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6614** with apCell[iOld]. After balancing, this page should hold nNew cells
6615** starting at apCell[iNew].
6616**
6617** This routine makes the necessary adjustments to pPg so that it contains
6618** the correct cells after being balanced.
6619**
dand7b545b2014-10-13 18:03:27 +00006620** The pPg->nFree field is invalid when this function returns. It is the
6621** responsibility of the caller to set it correctly.
6622*/
drh658873b2015-06-22 20:02:04 +00006623static int editPage(
dan09c68402014-10-11 20:00:24 +00006624 MemPage *pPg, /* Edit this page */
6625 int iOld, /* Index of first cell currently on page */
6626 int iNew, /* Index of new first cell on page */
6627 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006628 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006629){
dand7b545b2014-10-13 18:03:27 +00006630 u8 * const aData = pPg->aData;
6631 const int hdr = pPg->hdrOffset;
6632 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6633 int nCell = pPg->nCell; /* Cells stored on pPg */
6634 u8 *pData;
6635 u8 *pCellptr;
6636 int i;
6637 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6638 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006639
6640#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006641 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6642 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006643#endif
6644
dand7b545b2014-10-13 18:03:27 +00006645 /* Remove cells from the start and end of the page */
6646 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006647 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006648 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6649 nCell -= nShift;
6650 }
6651 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006652 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006653 }
dan09c68402014-10-11 20:00:24 +00006654
drh5ab63772014-11-27 03:46:04 +00006655 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006656 if( pData<pBegin ) goto editpage_fail;
6657
6658 /* Add cells to the start of the page */
6659 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006660 int nAdd = MIN(nNew,iOld-iNew);
6661 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006662 pCellptr = pPg->aCellIdx;
6663 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6664 if( pageInsertArray(
6665 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006666 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006667 ) ) goto editpage_fail;
6668 nCell += nAdd;
6669 }
6670
6671 /* Add any overflow cells */
6672 for(i=0; i<pPg->nOverflow; i++){
6673 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6674 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006675 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006676 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6677 nCell++;
6678 if( pageInsertArray(
6679 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006680 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006681 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006682 }
dand7b545b2014-10-13 18:03:27 +00006683 }
dan09c68402014-10-11 20:00:24 +00006684
dand7b545b2014-10-13 18:03:27 +00006685 /* Append cells to the end of the page */
6686 pCellptr = &pPg->aCellIdx[nCell*2];
6687 if( pageInsertArray(
6688 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006689 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006690 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006691
dand7b545b2014-10-13 18:03:27 +00006692 pPg->nCell = nNew;
6693 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006694
dand7b545b2014-10-13 18:03:27 +00006695 put2byte(&aData[hdr+3], pPg->nCell);
6696 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006697
6698#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006699 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006700 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006701 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006702 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006703 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006704 }
drh1ffd2472015-06-23 02:37:30 +00006705 assert( 0==memcmp(pCell, &aData[iOff],
6706 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006707 }
dan09c68402014-10-11 20:00:24 +00006708#endif
6709
drh658873b2015-06-22 20:02:04 +00006710 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006711 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006712 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006713 populateCellCache(pCArray, iNew, nNew);
6714 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006715}
6716
drh14acc042001-06-10 19:56:58 +00006717/*
drhc3b70572003-01-04 19:44:07 +00006718** The following parameters determine how many adjacent pages get involved
6719** in a balancing operation. NN is the number of neighbors on either side
6720** of the page that participate in the balancing operation. NB is the
6721** total number of pages that participate, including the target page and
6722** NN neighbors on either side.
6723**
6724** The minimum value of NN is 1 (of course). Increasing NN above 1
6725** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6726** in exchange for a larger degradation in INSERT and UPDATE performance.
6727** The value of NN appears to give the best results overall.
6728*/
6729#define NN 1 /* Number of neighbors on either side of pPage */
6730#define NB (NN*2+1) /* Total pages involved in the balance */
6731
danielk1977ac245ec2005-01-14 13:50:11 +00006732
drh615ae552005-01-16 23:21:00 +00006733#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006734/*
6735** This version of balance() handles the common special case where
6736** a new entry is being inserted on the extreme right-end of the
6737** tree, in other words, when the new entry will become the largest
6738** entry in the tree.
6739**
drhc314dc72009-07-21 11:52:34 +00006740** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006741** a new page to the right-hand side and put the one new entry in
6742** that page. This leaves the right side of the tree somewhat
6743** unbalanced. But odds are that we will be inserting new entries
6744** at the end soon afterwards so the nearly empty page will quickly
6745** fill up. On average.
6746**
6747** pPage is the leaf page which is the right-most page in the tree.
6748** pParent is its parent. pPage must have a single overflow entry
6749** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006750**
6751** The pSpace buffer is used to store a temporary copy of the divider
6752** cell that will be inserted into pParent. Such a cell consists of a 4
6753** byte page number followed by a variable length integer. In other
6754** words, at most 13 bytes. Hence the pSpace buffer must be at
6755** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006756*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006757static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6758 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006759 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006760 int rc; /* Return Code */
6761 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006762
drh1fee73e2007-08-29 04:00:57 +00006763 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006764 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006765 assert( pPage->nOverflow==1 );
6766
drh5d433ce2010-08-14 16:02:52 +00006767 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006768 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006769
danielk1977a50d9aa2009-06-08 14:49:45 +00006770 /* Allocate a new page. This page will become the right-sibling of
6771 ** pPage. Make the parent page writable, so that the new divider cell
6772 ** may be inserted. If both these operations are successful, proceed.
6773 */
drh4f0c5872007-03-26 22:05:01 +00006774 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006775
danielk1977eaa06f62008-09-18 17:34:44 +00006776 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006777
6778 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006779 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006780 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006781 u8 *pStop;
6782
drhc5053fb2008-11-27 02:22:10 +00006783 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006784 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6785 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006786 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006787 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006788 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006789
6790 /* If this is an auto-vacuum database, update the pointer map
6791 ** with entries for the new page, and any pointer from the
6792 ** cell on the page to an overflow page. If either of these
6793 ** operations fails, the return code is set, but the contents
6794 ** of the parent page are still manipulated by thh code below.
6795 ** That is Ok, at this point the parent page is guaranteed to
6796 ** be marked as dirty. Returning an error code will cause a
6797 ** rollback, undoing any changes made to the parent page.
6798 */
6799 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006800 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6801 if( szCell>pNew->minLocal ){
6802 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006803 }
6804 }
danielk1977eaa06f62008-09-18 17:34:44 +00006805
danielk19776f235cc2009-06-04 14:46:08 +00006806 /* Create a divider cell to insert into pParent. The divider cell
6807 ** consists of a 4-byte page number (the page number of pPage) and
6808 ** a variable length key value (which must be the same value as the
6809 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006810 **
danielk19776f235cc2009-06-04 14:46:08 +00006811 ** To find the largest key value on pPage, first find the right-most
6812 ** cell on pPage. The first two fields of this cell are the
6813 ** record-length (a variable length integer at most 32-bits in size)
6814 ** and the key value (a variable length integer, may have any value).
6815 ** The first of the while(...) loops below skips over the record-length
6816 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006817 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006818 */
danielk1977eaa06f62008-09-18 17:34:44 +00006819 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006820 pStop = &pCell[9];
6821 while( (*(pCell++)&0x80) && pCell<pStop );
6822 pStop = &pCell[9];
6823 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6824
danielk19774dbaa892009-06-16 16:50:22 +00006825 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006826 if( rc==SQLITE_OK ){
6827 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6828 0, pPage->pgno, &rc);
6829 }
danielk19776f235cc2009-06-04 14:46:08 +00006830
6831 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006832 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6833
danielk1977e08a3c42008-09-18 18:17:03 +00006834 /* Release the reference to the new page. */
6835 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006836 }
6837
danielk1977eaa06f62008-09-18 17:34:44 +00006838 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006839}
drh615ae552005-01-16 23:21:00 +00006840#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006841
danielk19774dbaa892009-06-16 16:50:22 +00006842#if 0
drhc3b70572003-01-04 19:44:07 +00006843/*
danielk19774dbaa892009-06-16 16:50:22 +00006844** This function does not contribute anything to the operation of SQLite.
6845** it is sometimes activated temporarily while debugging code responsible
6846** for setting pointer-map entries.
6847*/
6848static int ptrmapCheckPages(MemPage **apPage, int nPage){
6849 int i, j;
6850 for(i=0; i<nPage; i++){
6851 Pgno n;
6852 u8 e;
6853 MemPage *pPage = apPage[i];
6854 BtShared *pBt = pPage->pBt;
6855 assert( pPage->isInit );
6856
6857 for(j=0; j<pPage->nCell; j++){
6858 CellInfo info;
6859 u8 *z;
6860
6861 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006862 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006863 if( info.nLocal<info.nPayload ){
6864 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006865 ptrmapGet(pBt, ovfl, &e, &n);
6866 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6867 }
6868 if( !pPage->leaf ){
6869 Pgno child = get4byte(z);
6870 ptrmapGet(pBt, child, &e, &n);
6871 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6872 }
6873 }
6874 if( !pPage->leaf ){
6875 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6876 ptrmapGet(pBt, child, &e, &n);
6877 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6878 }
6879 }
6880 return 1;
6881}
6882#endif
6883
danielk1977cd581a72009-06-23 15:43:39 +00006884/*
6885** This function is used to copy the contents of the b-tree node stored
6886** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6887** the pointer-map entries for each child page are updated so that the
6888** parent page stored in the pointer map is page pTo. If pFrom contained
6889** any cells with overflow page pointers, then the corresponding pointer
6890** map entries are also updated so that the parent page is page pTo.
6891**
6892** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006893** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006894**
danielk197730548662009-07-09 05:07:37 +00006895** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006896**
6897** The performance of this function is not critical. It is only used by
6898** the balance_shallower() and balance_deeper() procedures, neither of
6899** which are called often under normal circumstances.
6900*/
drhc314dc72009-07-21 11:52:34 +00006901static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6902 if( (*pRC)==SQLITE_OK ){
6903 BtShared * const pBt = pFrom->pBt;
6904 u8 * const aFrom = pFrom->aData;
6905 u8 * const aTo = pTo->aData;
6906 int const iFromHdr = pFrom->hdrOffset;
6907 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006908 int rc;
drhc314dc72009-07-21 11:52:34 +00006909 int iData;
6910
6911
6912 assert( pFrom->isInit );
6913 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006914 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006915
6916 /* Copy the b-tree node content from page pFrom to page pTo. */
6917 iData = get2byte(&aFrom[iFromHdr+5]);
6918 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6919 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6920
6921 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006922 ** match the new data. The initialization of pTo can actually fail under
6923 ** fairly obscure circumstances, even though it is a copy of initialized
6924 ** page pFrom.
6925 */
drhc314dc72009-07-21 11:52:34 +00006926 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006927 rc = btreeInitPage(pTo);
6928 if( rc!=SQLITE_OK ){
6929 *pRC = rc;
6930 return;
6931 }
drhc314dc72009-07-21 11:52:34 +00006932
6933 /* If this is an auto-vacuum database, update the pointer-map entries
6934 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6935 */
6936 if( ISAUTOVACUUM ){
6937 *pRC = setChildPtrmaps(pTo);
6938 }
danielk1977cd581a72009-06-23 15:43:39 +00006939 }
danielk1977cd581a72009-06-23 15:43:39 +00006940}
6941
6942/*
danielk19774dbaa892009-06-16 16:50:22 +00006943** This routine redistributes cells on the iParentIdx'th child of pParent
6944** (hereafter "the page") and up to 2 siblings so that all pages have about the
6945** same amount of free space. Usually a single sibling on either side of the
6946** page are used in the balancing, though both siblings might come from one
6947** side if the page is the first or last child of its parent. If the page
6948** has fewer than 2 siblings (something which can only happen if the page
6949** is a root page or a child of a root page) then all available siblings
6950** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006951**
danielk19774dbaa892009-06-16 16:50:22 +00006952** The number of siblings of the page might be increased or decreased by
6953** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006954**
danielk19774dbaa892009-06-16 16:50:22 +00006955** Note that when this routine is called, some of the cells on the page
6956** might not actually be stored in MemPage.aData[]. This can happen
6957** if the page is overfull. This routine ensures that all cells allocated
6958** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006959**
danielk19774dbaa892009-06-16 16:50:22 +00006960** In the course of balancing the page and its siblings, cells may be
6961** inserted into or removed from the parent page (pParent). Doing so
6962** may cause the parent page to become overfull or underfull. If this
6963** happens, it is the responsibility of the caller to invoke the correct
6964** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006965**
drh5e00f6c2001-09-13 13:46:56 +00006966** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006967** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006968** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006969**
6970** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006971** buffer big enough to hold one page. If while inserting cells into the parent
6972** page (pParent) the parent page becomes overfull, this buffer is
6973** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006974** a maximum of four divider cells into the parent page, and the maximum
6975** size of a cell stored within an internal node is always less than 1/4
6976** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6977** enough for all overflow cells.
6978**
6979** If aOvflSpace is set to a null pointer, this function returns
6980** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006981*/
danielk19774dbaa892009-06-16 16:50:22 +00006982static int balance_nonroot(
6983 MemPage *pParent, /* Parent page of siblings being balanced */
6984 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006985 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006986 int isRoot, /* True if pParent is a root-page */
6987 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006988){
drh16a9b832007-05-05 18:39:25 +00006989 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006990 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006991 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006992 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006993 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006994 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006995 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006996 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006997 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006998 int usableSpace; /* Bytes in pPage beyond the header */
6999 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007000 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007001 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007002 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007003 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007004 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007005 u8 *pRight; /* Location in parent of right-sibling pointer */
7006 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007007 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7008 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007009 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007010 u8 *aSpace1; /* Space for copies of dividers cells */
7011 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007012 u8 abDone[NB+2]; /* True after i'th new page is populated */
7013 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007014 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007015 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007016 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007017
dan33ea4862014-10-09 19:35:37 +00007018 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007019 b.nCell = 0;
7020 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007021 pBt = pParent->pBt;
7022 assert( sqlite3_mutex_held(pBt->mutex) );
7023 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007024
danielk1977e5765212009-06-17 11:13:28 +00007025#if 0
drh43605152004-05-29 21:46:49 +00007026 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007027#endif
drh2e38c322004-09-03 18:38:44 +00007028
danielk19774dbaa892009-06-16 16:50:22 +00007029 /* At this point pParent may have at most one overflow cell. And if
7030 ** this overflow cell is present, it must be the cell with
7031 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007032 ** is called (indirectly) from sqlite3BtreeDelete().
7033 */
danielk19774dbaa892009-06-16 16:50:22 +00007034 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007035 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007036
danielk197711a8a862009-06-17 11:49:52 +00007037 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007038 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007039 }
7040
danielk1977a50d9aa2009-06-08 14:49:45 +00007041 /* Find the sibling pages to balance. Also locate the cells in pParent
7042 ** that divide the siblings. An attempt is made to find NN siblings on
7043 ** either side of pPage. More siblings are taken from one side, however,
7044 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007045 ** has NB or fewer children then all children of pParent are taken.
7046 **
7047 ** This loop also drops the divider cells from the parent page. This
7048 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007049 ** overflow cells in the parent page, since if any existed they will
7050 ** have already been removed.
7051 */
danielk19774dbaa892009-06-16 16:50:22 +00007052 i = pParent->nOverflow + pParent->nCell;
7053 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007054 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007055 }else{
dan7d6885a2012-08-08 14:04:56 +00007056 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007057 if( iParentIdx==0 ){
7058 nxDiv = 0;
7059 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007060 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007061 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007062 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007063 }
dan7d6885a2012-08-08 14:04:56 +00007064 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007065 }
dan7d6885a2012-08-08 14:04:56 +00007066 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007067 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7068 pRight = &pParent->aData[pParent->hdrOffset+8];
7069 }else{
7070 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7071 }
7072 pgno = get4byte(pRight);
7073 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007074 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007075 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007076 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007077 goto balance_cleanup;
7078 }
danielk1977634f2982005-03-28 08:44:07 +00007079 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007080 if( (i--)==0 ) break;
7081
drh2cbd78b2012-02-02 19:37:18 +00007082 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7083 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007084 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007085 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007086 pParent->nOverflow = 0;
7087 }else{
7088 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7089 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007090 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007091
7092 /* Drop the cell from the parent page. apDiv[i] still points to
7093 ** the cell within the parent, even though it has been dropped.
7094 ** This is safe because dropping a cell only overwrites the first
7095 ** four bytes of it, and this function does not need the first
7096 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007097 ** later on.
7098 **
drh8a575d92011-10-12 17:00:28 +00007099 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007100 ** the dropCell() routine will overwrite the entire cell with zeroes.
7101 ** In this case, temporarily copy the cell into the aOvflSpace[]
7102 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7103 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007104 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007105 int iOff;
7106
7107 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007108 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007109 rc = SQLITE_CORRUPT_BKPT;
7110 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7111 goto balance_cleanup;
7112 }else{
7113 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7114 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7115 }
drh5b47efa2010-02-12 18:18:39 +00007116 }
drh98add2e2009-07-20 17:11:49 +00007117 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007118 }
drh8b2f49b2001-06-08 00:21:52 +00007119 }
7120
drha9121e42008-02-19 14:59:35 +00007121 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007122 ** alignment */
drha9121e42008-02-19 14:59:35 +00007123 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007124
drh8b2f49b2001-06-08 00:21:52 +00007125 /*
danielk1977634f2982005-03-28 08:44:07 +00007126 ** Allocate space for memory structures
7127 */
drhfacf0302008-06-17 15:12:00 +00007128 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007129 nMaxCells*sizeof(u8*) /* b.apCell */
7130 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007131 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007132
drhcbd55b02014-11-04 14:22:27 +00007133 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7134 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007135 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007136 b.apCell = sqlite3ScratchMalloc( szScratch );
7137 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007138 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007139 goto balance_cleanup;
7140 }
drh1ffd2472015-06-23 02:37:30 +00007141 b.szCell = (u16*)&b.apCell[nMaxCells];
7142 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007143 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007144
7145 /*
7146 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007147 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007148 ** into space obtained from aSpace1[]. The divider cells have already
7149 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007150 **
7151 ** If the siblings are on leaf pages, then the child pointers of the
7152 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007153 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007154 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007155 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007156 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007157 **
7158 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7159 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007160 */
drh1ffd2472015-06-23 02:37:30 +00007161 b.pRef = apOld[0];
7162 leafCorrection = b.pRef->leaf*4;
7163 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007164 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007165 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007166 int limit = pOld->nCell;
7167 u8 *aData = pOld->aData;
7168 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007169 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007170 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007171
drh73d340a2015-05-28 11:23:11 +00007172 /* Verify that all sibling pages are of the same "type" (table-leaf,
7173 ** table-interior, index-leaf, or index-interior).
7174 */
7175 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7176 rc = SQLITE_CORRUPT_BKPT;
7177 goto balance_cleanup;
7178 }
7179
drhfe647dc2015-06-23 18:24:25 +00007180 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7181 ** constains overflow cells, include them in the b.apCell[] array
7182 ** in the correct spot.
7183 **
7184 ** Note that when there are multiple overflow cells, it is always the
7185 ** case that they are sequential and adjacent. This invariant arises
7186 ** because multiple overflows can only occurs when inserting divider
7187 ** cells into a parent on a prior balance, and divider cells are always
7188 ** adjacent and are inserted in order. There is an assert() tagged
7189 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7190 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007191 **
7192 ** This must be done in advance. Once the balance starts, the cell
7193 ** offset section of the btree page will be overwritten and we will no
7194 ** long be able to find the cells if a pointer to each cell is not saved
7195 ** first.
7196 */
drh36b78ee2016-01-20 01:32:00 +00007197 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007198 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007199 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007200 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007201 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007202 piCell += 2;
7203 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007204 }
drhfe647dc2015-06-23 18:24:25 +00007205 for(k=0; k<pOld->nOverflow; k++){
7206 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007207 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007208 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007209 }
drh1ffd2472015-06-23 02:37:30 +00007210 }
drhfe647dc2015-06-23 18:24:25 +00007211 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7212 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007213 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007214 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007215 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007216 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007217 }
7218
drh1ffd2472015-06-23 02:37:30 +00007219 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007220 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007221 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007222 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007223 assert( b.nCell<nMaxCells );
7224 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007225 pTemp = &aSpace1[iSpace1];
7226 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007227 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007228 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007229 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007230 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007231 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007232 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007233 if( !pOld->leaf ){
7234 assert( leafCorrection==0 );
7235 assert( pOld->hdrOffset==0 );
7236 /* The right pointer of the child page pOld becomes the left
7237 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007238 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007239 }else{
7240 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007241 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007242 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7243 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007244 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7245 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007246 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007247 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007248 }
7249 }
drh1ffd2472015-06-23 02:37:30 +00007250 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007251 }
drh8b2f49b2001-06-08 00:21:52 +00007252 }
7253
7254 /*
drh1ffd2472015-06-23 02:37:30 +00007255 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007256 ** Store this number in "k". Also compute szNew[] which is the total
7257 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007258 ** in b.apCell[] of the cell that divides page i from page i+1.
7259 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007260 **
drh96f5b762004-05-16 16:24:36 +00007261 ** Values computed by this block:
7262 **
7263 ** k: The total number of sibling pages
7264 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007265 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007266 ** the right of the i-th sibling page.
7267 ** usableSpace: Number of bytes of space available on each sibling.
7268 **
drh8b2f49b2001-06-08 00:21:52 +00007269 */
drh43605152004-05-29 21:46:49 +00007270 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007271 for(i=0; i<nOld; i++){
7272 MemPage *p = apOld[i];
7273 szNew[i] = usableSpace - p->nFree;
7274 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7275 for(j=0; j<p->nOverflow; j++){
7276 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7277 }
7278 cntNew[i] = cntOld[i];
7279 }
7280 k = nOld;
7281 for(i=0; i<k; i++){
7282 int sz;
7283 while( szNew[i]>usableSpace ){
7284 if( i+1>=k ){
7285 k = i+2;
7286 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7287 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007288 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007289 }
drh1ffd2472015-06-23 02:37:30 +00007290 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007291 szNew[i] -= sz;
7292 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007293 if( cntNew[i]<b.nCell ){
7294 sz = 2 + cachedCellSize(&b, cntNew[i]);
7295 }else{
7296 sz = 0;
7297 }
drh658873b2015-06-22 20:02:04 +00007298 }
7299 szNew[i+1] += sz;
7300 cntNew[i]--;
7301 }
drh1ffd2472015-06-23 02:37:30 +00007302 while( cntNew[i]<b.nCell ){
7303 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007304 if( szNew[i]+sz>usableSpace ) break;
7305 szNew[i] += sz;
7306 cntNew[i]++;
7307 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007308 if( cntNew[i]<b.nCell ){
7309 sz = 2 + cachedCellSize(&b, cntNew[i]);
7310 }else{
7311 sz = 0;
7312 }
drh658873b2015-06-22 20:02:04 +00007313 }
7314 szNew[i+1] -= sz;
7315 }
drh1ffd2472015-06-23 02:37:30 +00007316 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007317 k = i+1;
drh672073a2015-06-24 12:07:40 +00007318 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007319 rc = SQLITE_CORRUPT_BKPT;
7320 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007321 }
7322 }
drh96f5b762004-05-16 16:24:36 +00007323
7324 /*
7325 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007326 ** on the left side (siblings with smaller keys). The left siblings are
7327 ** always nearly full, while the right-most sibling might be nearly empty.
7328 ** The next block of code attempts to adjust the packing of siblings to
7329 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007330 **
7331 ** This adjustment is more than an optimization. The packing above might
7332 ** be so out of balance as to be illegal. For example, the right-most
7333 ** sibling might be completely empty. This adjustment is not optional.
7334 */
drh6019e162001-07-02 17:51:45 +00007335 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007336 int szRight = szNew[i]; /* Size of sibling on the right */
7337 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7338 int r; /* Index of right-most cell in left sibling */
7339 int d; /* Index of first cell to the left of right sibling */
7340
7341 r = cntNew[i-1] - 1;
7342 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007343 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007344 do{
drh1ffd2472015-06-23 02:37:30 +00007345 assert( d<nMaxCells );
7346 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007347 (void)cachedCellSize(&b, r);
7348 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007349 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007350 break;
7351 }
7352 szRight += b.szCell[d] + 2;
7353 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007354 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007355 r--;
7356 d--;
drh672073a2015-06-24 12:07:40 +00007357 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007358 szNew[i] = szRight;
7359 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007360 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7361 rc = SQLITE_CORRUPT_BKPT;
7362 goto balance_cleanup;
7363 }
drh6019e162001-07-02 17:51:45 +00007364 }
drh09d0deb2005-08-02 17:13:09 +00007365
drh2a0df922014-10-30 23:14:56 +00007366 /* Sanity check: For a non-corrupt database file one of the follwing
7367 ** must be true:
7368 ** (1) We found one or more cells (cntNew[0])>0), or
7369 ** (2) pPage is a virtual root page. A virtual root page is when
7370 ** the real root page is page 1 and we are the only child of
7371 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007372 */
drh2a0df922014-10-30 23:14:56 +00007373 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007374 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7375 apOld[0]->pgno, apOld[0]->nCell,
7376 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7377 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007378 ));
7379
drh8b2f49b2001-06-08 00:21:52 +00007380 /*
drh6b308672002-07-08 02:16:37 +00007381 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007382 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007383 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007384 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007385 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007386 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007387 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007388 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007389 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007390 nNew++;
danielk197728129562005-01-11 10:25:06 +00007391 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007392 }else{
drh7aa8f852006-03-28 00:24:44 +00007393 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007394 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007395 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007396 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007397 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007398 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007399 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007400
7401 /* Set the pointer-map entry for the new sibling page. */
7402 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007403 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007404 if( rc!=SQLITE_OK ){
7405 goto balance_cleanup;
7406 }
7407 }
drh6b308672002-07-08 02:16:37 +00007408 }
drh8b2f49b2001-06-08 00:21:52 +00007409 }
7410
7411 /*
dan33ea4862014-10-09 19:35:37 +00007412 ** Reassign page numbers so that the new pages are in ascending order.
7413 ** This helps to keep entries in the disk file in order so that a scan
7414 ** of the table is closer to a linear scan through the file. That in turn
7415 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007416 **
dan33ea4862014-10-09 19:35:37 +00007417 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7418 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007419 **
dan33ea4862014-10-09 19:35:37 +00007420 ** When NB==3, this one optimization makes the database about 25% faster
7421 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007422 */
dan33ea4862014-10-09 19:35:37 +00007423 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007424 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007425 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007426 for(j=0; j<i; j++){
7427 if( aPgno[j]==aPgno[i] ){
7428 /* This branch is taken if the set of sibling pages somehow contains
7429 ** duplicate entries. This can happen if the database is corrupt.
7430 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007431 ** we do the detection here in order to avoid populating the pager
7432 ** cache with two separate objects associated with the same
7433 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007434 assert( CORRUPT_DB );
7435 rc = SQLITE_CORRUPT_BKPT;
7436 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007437 }
7438 }
dan33ea4862014-10-09 19:35:37 +00007439 }
7440 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007441 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007442 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007443 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007444 }
drh00fe08a2014-10-31 00:05:23 +00007445 pgno = aPgOrder[iBest];
7446 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007447 if( iBest!=i ){
7448 if( iBest>i ){
7449 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7450 }
7451 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7452 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007453 }
7454 }
dan33ea4862014-10-09 19:35:37 +00007455
7456 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7457 "%d(%d nc=%d) %d(%d nc=%d)\n",
7458 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007459 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007460 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007461 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007462 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007463 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007464 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7465 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7466 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7467 ));
danielk19774dbaa892009-06-16 16:50:22 +00007468
7469 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7470 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007471
dan33ea4862014-10-09 19:35:37 +00007472 /* If the sibling pages are not leaves, ensure that the right-child pointer
7473 ** of the right-most new sibling page is set to the value that was
7474 ** originally in the same field of the right-most old sibling page. */
7475 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7476 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7477 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7478 }
danielk1977ac11ee62005-01-15 12:45:51 +00007479
dan33ea4862014-10-09 19:35:37 +00007480 /* Make any required updates to pointer map entries associated with
7481 ** cells stored on sibling pages following the balance operation. Pointer
7482 ** map entries associated with divider cells are set by the insertCell()
7483 ** routine. The associated pointer map entries are:
7484 **
7485 ** a) if the cell contains a reference to an overflow chain, the
7486 ** entry associated with the first page in the overflow chain, and
7487 **
7488 ** b) if the sibling pages are not leaves, the child page associated
7489 ** with the cell.
7490 **
7491 ** If the sibling pages are not leaves, then the pointer map entry
7492 ** associated with the right-child of each sibling may also need to be
7493 ** updated. This happens below, after the sibling pages have been
7494 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007495 */
dan33ea4862014-10-09 19:35:37 +00007496 if( ISAUTOVACUUM ){
7497 MemPage *pNew = apNew[0];
7498 u8 *aOld = pNew->aData;
7499 int cntOldNext = pNew->nCell + pNew->nOverflow;
7500 int usableSize = pBt->usableSize;
7501 int iNew = 0;
7502 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007503
drh1ffd2472015-06-23 02:37:30 +00007504 for(i=0; i<b.nCell; i++){
7505 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007506 if( i==cntOldNext ){
7507 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7508 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7509 aOld = pOld->aData;
7510 }
7511 if( i==cntNew[iNew] ){
7512 pNew = apNew[++iNew];
7513 if( !leafData ) continue;
7514 }
danielk1977ac11ee62005-01-15 12:45:51 +00007515
dan33ea4862014-10-09 19:35:37 +00007516 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007517 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007518 ** or else the divider cell to the left of sibling page iOld. So,
7519 ** if sibling page iOld had the same page number as pNew, and if
7520 ** pCell really was a part of sibling page iOld (not a divider or
7521 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007522 if( iOld>=nNew
7523 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007524 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007525 ){
dan33ea4862014-10-09 19:35:37 +00007526 if( !leafCorrection ){
7527 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7528 }
drh1ffd2472015-06-23 02:37:30 +00007529 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007530 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007531 }
drhea82b372015-06-23 21:35:28 +00007532 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007533 }
drh14acc042001-06-10 19:56:58 +00007534 }
7535 }
dan33ea4862014-10-09 19:35:37 +00007536
7537 /* Insert new divider cells into pParent. */
7538 for(i=0; i<nNew-1; i++){
7539 u8 *pCell;
7540 u8 *pTemp;
7541 int sz;
7542 MemPage *pNew = apNew[i];
7543 j = cntNew[i];
7544
7545 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007546 assert( b.apCell[j]!=0 );
7547 pCell = b.apCell[j];
7548 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007549 pTemp = &aOvflSpace[iOvflSpace];
7550 if( !pNew->leaf ){
7551 memcpy(&pNew->aData[8], pCell, 4);
7552 }else if( leafData ){
7553 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007554 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007555 ** cell consists of the integer key for the right-most cell of
7556 ** the sibling-page assembled above only.
7557 */
7558 CellInfo info;
7559 j--;
drh1ffd2472015-06-23 02:37:30 +00007560 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007561 pCell = pTemp;
7562 sz = 4 + putVarint(&pCell[4], info.nKey);
7563 pTemp = 0;
7564 }else{
7565 pCell -= 4;
7566 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7567 ** previously stored on a leaf node, and its reported size was 4
7568 ** bytes, then it may actually be smaller than this
7569 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7570 ** any cell). But it is important to pass the correct size to
7571 ** insertCell(), so reparse the cell now.
7572 **
drhc1fb2b82016-03-09 03:29:27 +00007573 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7574 ** and WITHOUT ROWID tables with exactly one column which is the
7575 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007576 */
drh1ffd2472015-06-23 02:37:30 +00007577 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007578 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007579 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007580 }
7581 }
7582 iOvflSpace += sz;
7583 assert( sz<=pBt->maxLocal+23 );
7584 assert( iOvflSpace <= (int)pBt->pageSize );
7585 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7586 if( rc!=SQLITE_OK ) goto balance_cleanup;
7587 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7588 }
7589
7590 /* Now update the actual sibling pages. The order in which they are updated
7591 ** is important, as this code needs to avoid disrupting any page from which
7592 ** cells may still to be read. In practice, this means:
7593 **
drhd836d422014-10-31 14:26:36 +00007594 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7595 ** then it is not safe to update page apNew[iPg] until after
7596 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007597 **
drhd836d422014-10-31 14:26:36 +00007598 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7599 ** then it is not safe to update page apNew[iPg] until after
7600 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007601 **
7602 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007603 **
7604 ** The iPg value in the following loop starts at nNew-1 goes down
7605 ** to 0, then back up to nNew-1 again, thus making two passes over
7606 ** the pages. On the initial downward pass, only condition (1) above
7607 ** needs to be tested because (2) will always be true from the previous
7608 ** step. On the upward pass, both conditions are always true, so the
7609 ** upwards pass simply processes pages that were missed on the downward
7610 ** pass.
dan33ea4862014-10-09 19:35:37 +00007611 */
drhbec021b2014-10-31 12:22:00 +00007612 for(i=1-nNew; i<nNew; i++){
7613 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007614 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007615 if( abDone[iPg] ) continue; /* Skip pages already processed */
7616 if( i>=0 /* On the upwards pass, or... */
7617 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007618 ){
dan09c68402014-10-11 20:00:24 +00007619 int iNew;
7620 int iOld;
7621 int nNewCell;
7622
drhd836d422014-10-31 14:26:36 +00007623 /* Verify condition (1): If cells are moving left, update iPg
7624 ** only after iPg-1 has already been updated. */
7625 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7626
7627 /* Verify condition (2): If cells are moving right, update iPg
7628 ** only after iPg+1 has already been updated. */
7629 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7630
dan09c68402014-10-11 20:00:24 +00007631 if( iPg==0 ){
7632 iNew = iOld = 0;
7633 nNewCell = cntNew[0];
7634 }else{
drh1ffd2472015-06-23 02:37:30 +00007635 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007636 iNew = cntNew[iPg-1] + !leafData;
7637 nNewCell = cntNew[iPg] - iNew;
7638 }
7639
drh1ffd2472015-06-23 02:37:30 +00007640 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007641 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007642 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007643 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007644 assert( apNew[iPg]->nOverflow==0 );
7645 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007646 }
7647 }
drhd836d422014-10-31 14:26:36 +00007648
7649 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007650 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7651
drh7aa8f852006-03-28 00:24:44 +00007652 assert( nOld>0 );
7653 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007654
danielk197713bd99f2009-06-24 05:40:34 +00007655 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7656 /* The root page of the b-tree now contains no cells. The only sibling
7657 ** page is the right-child of the parent. Copy the contents of the
7658 ** child page into the parent, decreasing the overall height of the
7659 ** b-tree structure by one. This is described as the "balance-shallower"
7660 ** sub-algorithm in some documentation.
7661 **
7662 ** If this is an auto-vacuum database, the call to copyNodeContent()
7663 ** sets all pointer-map entries corresponding to database image pages
7664 ** for which the pointer is stored within the content being copied.
7665 **
drh768f2902014-10-31 02:51:41 +00007666 ** It is critical that the child page be defragmented before being
7667 ** copied into the parent, because if the parent is page 1 then it will
7668 ** by smaller than the child due to the database header, and so all the
7669 ** free space needs to be up front.
7670 */
drh9b5351d2015-09-30 14:19:08 +00007671 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007672 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007673 testcase( rc!=SQLITE_OK );
7674 assert( apNew[0]->nFree ==
7675 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7676 || rc!=SQLITE_OK
7677 );
7678 copyNodeContent(apNew[0], pParent, &rc);
7679 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007680 }else if( ISAUTOVACUUM && !leafCorrection ){
7681 /* Fix the pointer map entries associated with the right-child of each
7682 ** sibling page. All other pointer map entries have already been taken
7683 ** care of. */
7684 for(i=0; i<nNew; i++){
7685 u32 key = get4byte(&apNew[i]->aData[8]);
7686 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007687 }
dan33ea4862014-10-09 19:35:37 +00007688 }
danielk19774dbaa892009-06-16 16:50:22 +00007689
dan33ea4862014-10-09 19:35:37 +00007690 assert( pParent->isInit );
7691 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007692 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007693
dan33ea4862014-10-09 19:35:37 +00007694 /* Free any old pages that were not reused as new pages.
7695 */
7696 for(i=nNew; i<nOld; i++){
7697 freePage(apOld[i], &rc);
7698 }
danielk19774dbaa892009-06-16 16:50:22 +00007699
7700#if 0
dan33ea4862014-10-09 19:35:37 +00007701 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007702 /* The ptrmapCheckPages() contains assert() statements that verify that
7703 ** all pointer map pages are set correctly. This is helpful while
7704 ** debugging. This is usually disabled because a corrupt database may
7705 ** cause an assert() statement to fail. */
7706 ptrmapCheckPages(apNew, nNew);
7707 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007708 }
dan33ea4862014-10-09 19:35:37 +00007709#endif
danielk1977cd581a72009-06-23 15:43:39 +00007710
drh8b2f49b2001-06-08 00:21:52 +00007711 /*
drh14acc042001-06-10 19:56:58 +00007712 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007713 */
drh14acc042001-06-10 19:56:58 +00007714balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007715 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007716 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007717 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007718 }
drh14acc042001-06-10 19:56:58 +00007719 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007720 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007721 }
danielk1977eaa06f62008-09-18 17:34:44 +00007722
drh8b2f49b2001-06-08 00:21:52 +00007723 return rc;
7724}
7725
drh43605152004-05-29 21:46:49 +00007726
7727/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007728** This function is called when the root page of a b-tree structure is
7729** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007730**
danielk1977a50d9aa2009-06-08 14:49:45 +00007731** A new child page is allocated and the contents of the current root
7732** page, including overflow cells, are copied into the child. The root
7733** page is then overwritten to make it an empty page with the right-child
7734** pointer pointing to the new page.
7735**
7736** Before returning, all pointer-map entries corresponding to pages
7737** that the new child-page now contains pointers to are updated. The
7738** entry corresponding to the new right-child pointer of the root
7739** page is also updated.
7740**
7741** If successful, *ppChild is set to contain a reference to the child
7742** page and SQLITE_OK is returned. In this case the caller is required
7743** to call releasePage() on *ppChild exactly once. If an error occurs,
7744** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007745*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007746static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7747 int rc; /* Return value from subprocedures */
7748 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007749 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007750 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007751
danielk1977a50d9aa2009-06-08 14:49:45 +00007752 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007753 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007754
danielk1977a50d9aa2009-06-08 14:49:45 +00007755 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7756 ** page that will become the new right-child of pPage. Copy the contents
7757 ** of the node stored on pRoot into the new child page.
7758 */
drh98add2e2009-07-20 17:11:49 +00007759 rc = sqlite3PagerWrite(pRoot->pDbPage);
7760 if( rc==SQLITE_OK ){
7761 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007762 copyNodeContent(pRoot, pChild, &rc);
7763 if( ISAUTOVACUUM ){
7764 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007765 }
7766 }
7767 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007768 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007769 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007771 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007772 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7773 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7774 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007775
danielk1977a50d9aa2009-06-08 14:49:45 +00007776 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7777
7778 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007779 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7780 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7781 memcpy(pChild->apOvfl, pRoot->apOvfl,
7782 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007783 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007784
7785 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7786 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7787 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7788
7789 *ppChild = pChild;
7790 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007791}
7792
7793/*
danielk197771d5d2c2008-09-29 11:49:47 +00007794** The page that pCur currently points to has just been modified in
7795** some way. This function figures out if this modification means the
7796** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007797** routine. Balancing routines are:
7798**
7799** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007800** balance_deeper()
7801** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007802*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007803static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007804 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007805 const int nMin = pCur->pBt->usableSize * 2 / 3;
7806 u8 aBalanceQuickSpace[13];
7807 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007808
drhcc5f8a42016-02-06 22:32:06 +00007809 VVA_ONLY( int balance_quick_called = 0 );
7810 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007811
7812 do {
7813 int iPage = pCur->iPage;
7814 MemPage *pPage = pCur->apPage[iPage];
7815
7816 if( iPage==0 ){
7817 if( pPage->nOverflow ){
7818 /* The root page of the b-tree is overfull. In this case call the
7819 ** balance_deeper() function to create a new child for the root-page
7820 ** and copy the current contents of the root-page to it. The
7821 ** next iteration of the do-loop will balance the child page.
7822 */
drhcc5f8a42016-02-06 22:32:06 +00007823 assert( balance_deeper_called==0 );
7824 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007825 rc = balance_deeper(pPage, &pCur->apPage[1]);
7826 if( rc==SQLITE_OK ){
7827 pCur->iPage = 1;
7828 pCur->aiIdx[0] = 0;
7829 pCur->aiIdx[1] = 0;
7830 assert( pCur->apPage[1]->nOverflow );
7831 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007832 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007833 break;
7834 }
7835 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7836 break;
7837 }else{
7838 MemPage * const pParent = pCur->apPage[iPage-1];
7839 int const iIdx = pCur->aiIdx[iPage-1];
7840
7841 rc = sqlite3PagerWrite(pParent->pDbPage);
7842 if( rc==SQLITE_OK ){
7843#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007844 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007845 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007846 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007847 && pParent->pgno!=1
7848 && pParent->nCell==iIdx
7849 ){
7850 /* Call balance_quick() to create a new sibling of pPage on which
7851 ** to store the overflow cell. balance_quick() inserts a new cell
7852 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007853 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007854 ** use either balance_nonroot() or balance_deeper(). Until this
7855 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7856 ** buffer.
7857 **
7858 ** The purpose of the following assert() is to check that only a
7859 ** single call to balance_quick() is made for each call to this
7860 ** function. If this were not verified, a subtle bug involving reuse
7861 ** of the aBalanceQuickSpace[] might sneak in.
7862 */
drhcc5f8a42016-02-06 22:32:06 +00007863 assert( balance_quick_called==0 );
7864 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007865 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7866 }else
7867#endif
7868 {
7869 /* In this case, call balance_nonroot() to redistribute cells
7870 ** between pPage and up to 2 of its sibling pages. This involves
7871 ** modifying the contents of pParent, which may cause pParent to
7872 ** become overfull or underfull. The next iteration of the do-loop
7873 ** will balance the parent page to correct this.
7874 **
7875 ** If the parent page becomes overfull, the overflow cell or cells
7876 ** are stored in the pSpace buffer allocated immediately below.
7877 ** A subsequent iteration of the do-loop will deal with this by
7878 ** calling balance_nonroot() (balance_deeper() may be called first,
7879 ** but it doesn't deal with overflow cells - just moves them to a
7880 ** different page). Once this subsequent call to balance_nonroot()
7881 ** has completed, it is safe to release the pSpace buffer used by
7882 ** the previous call, as the overflow cell data will have been
7883 ** copied either into the body of a database page or into the new
7884 ** pSpace buffer passed to the latter call to balance_nonroot().
7885 */
7886 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007887 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7888 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007889 if( pFree ){
7890 /* If pFree is not NULL, it points to the pSpace buffer used
7891 ** by a previous call to balance_nonroot(). Its contents are
7892 ** now stored either on real database pages or within the
7893 ** new pSpace buffer, so it may be safely freed here. */
7894 sqlite3PageFree(pFree);
7895 }
7896
danielk19774dbaa892009-06-16 16:50:22 +00007897 /* The pSpace buffer will be freed after the next call to
7898 ** balance_nonroot(), or just before this function returns, whichever
7899 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007900 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007901 }
7902 }
7903
7904 pPage->nOverflow = 0;
7905
7906 /* The next iteration of the do-loop balances the parent page. */
7907 releasePage(pPage);
7908 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007909 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007910 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007911 }while( rc==SQLITE_OK );
7912
7913 if( pFree ){
7914 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007915 }
7916 return rc;
7917}
7918
drhf74b8d92002-09-01 23:20:45 +00007919
7920/*
drh8eeb4462016-05-21 20:03:42 +00007921** Insert a new record into the BTree. The content of the new record
7922** is described by the pX object. The pCur cursor is used only to
7923** define what table the record should be inserted into, and is left
7924** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00007925**
drh8eeb4462016-05-21 20:03:42 +00007926** For a table btree (used for rowid tables), only the pX.nKey value of
7927** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
7928** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
7929** hold the content of the row.
7930**
7931** For an index btree (used for indexes and WITHOUT ROWID tables), the
7932** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
7933** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00007934**
7935** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007936** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007937** been performed. seekResult is the search result returned (a negative
7938** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007939** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007940** (pKey, nKey)).
7941**
drh3e9ca092009-09-08 01:14:48 +00007942** If the seekResult parameter is non-zero, then the caller guarantees that
7943** cursor pCur is pointing at the existing copy of a row that is to be
7944** overwritten. If the seekResult parameter is 0, then cursor pCur may
7945** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007946** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007947*/
drh3aac2dd2004-04-26 14:10:20 +00007948int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007949 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00007950 const BtreePayload *pX, /* Content of the row to be inserted */
danielk1977de630352009-05-04 11:42:29 +00007951 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007952 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007953){
drh3b7511c2001-05-26 13:15:44 +00007954 int rc;
drh3e9ca092009-09-08 01:14:48 +00007955 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007956 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007957 int idx;
drh3b7511c2001-05-26 13:15:44 +00007958 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007959 Btree *p = pCur->pBtree;
7960 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007961 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007962 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007963
drh98add2e2009-07-20 17:11:49 +00007964 if( pCur->eState==CURSOR_FAULT ){
7965 assert( pCur->skipNext!=SQLITE_OK );
7966 return pCur->skipNext;
7967 }
7968
dan7a2347e2016-01-07 16:43:54 +00007969 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00007970 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7971 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007972 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007973 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7974
danielk197731d31b82009-07-13 13:18:07 +00007975 /* Assert that the caller has been consistent. If this cursor was opened
7976 ** expecting an index b-tree, then the caller should be inserting blob
7977 ** keys with no associated data. If the cursor was opened expecting an
7978 ** intkey table, the caller should be inserting integer keys with a
7979 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00007980 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00007981
danielk19779c3acf32009-05-02 07:36:49 +00007982 /* Save the positions of any other cursors open on this table.
7983 **
danielk19773509a652009-07-06 18:56:13 +00007984 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007985 ** example, when inserting data into a table with auto-generated integer
7986 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7987 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007988 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007989 ** that the cursor is already where it needs to be and returns without
7990 ** doing any work. To avoid thwarting these optimizations, it is important
7991 ** not to clear the cursor here.
7992 */
drh27fb7462015-06-30 02:47:36 +00007993 if( pCur->curFlags & BTCF_Multiple ){
7994 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7995 if( rc ) return rc;
7996 }
drhd60f4f42012-03-23 14:23:52 +00007997
drhd60f4f42012-03-23 14:23:52 +00007998 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00007999 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008000 /* If this is an insert into a table b-tree, invalidate any incrblob
8001 ** cursors open on the row being replaced */
drh8eeb4462016-05-21 20:03:42 +00008002 invalidateIncrblobCursors(p, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008003
8004 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008005 ** new row onto the end, set the "loc" to avoid an unnecessary
8006 ** btreeMoveto() call */
drh8eeb4462016-05-21 20:03:42 +00008007 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8008 && pCur->info.nKey==pX->nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008009 loc = -1;
8010 }else if( loc==0 ){
drh8eeb4462016-05-21 20:03:42 +00008011 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
drh207c8172015-06-29 23:01:32 +00008012 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008013 }
drh207c8172015-06-29 23:01:32 +00008014 }else if( loc==0 ){
drh8eeb4462016-05-21 20:03:42 +00008015 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
drh4c301aa2009-07-15 17:25:45 +00008016 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008017 }
danielk1977b980d2212009-06-22 18:03:51 +00008018 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008019
danielk197771d5d2c2008-09-29 11:49:47 +00008020 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008021 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008022 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008023
drh3a4c1412004-05-09 20:40:11 +00008024 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008025 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008026 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008027 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008028 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008029 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008030 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008031 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008032 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008033 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008034 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008035 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008036 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008037 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008038 rc = sqlite3PagerWrite(pPage->pDbPage);
8039 if( rc ){
8040 goto end_insert;
8041 }
danielk197771d5d2c2008-09-29 11:49:47 +00008042 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008043 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008044 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008045 }
drh9bfdc252014-09-24 02:05:41 +00008046 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008047 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008048 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008049 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008050 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008051 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008052 }else{
drh4b70f112004-05-02 21:12:19 +00008053 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008054 }
drh98add2e2009-07-20 17:11:49 +00008055 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008056 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008057 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008058
mistachkin48864df2013-03-21 21:20:32 +00008059 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008060 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008061 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008062 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008063 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008064 ** Previous versions of SQLite called moveToRoot() to move the cursor
8065 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008066 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8067 ** set the cursor state to "invalid". This makes common insert operations
8068 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008069 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008070 ** There is a subtle but important optimization here too. When inserting
8071 ** multiple records into an intkey b-tree using a single cursor (as can
8072 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8073 ** is advantageous to leave the cursor pointing to the last entry in
8074 ** the b-tree if possible. If the cursor is left pointing to the last
8075 ** entry in the table, and the next row inserted has an integer key
8076 ** larger than the largest existing key, it is possible to insert the
8077 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008078 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008079 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008080 if( pPage->nOverflow ){
8081 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008082 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008083 rc = balance(pCur);
8084
8085 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008086 ** fails. Internal data structure corruption will result otherwise.
8087 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8088 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008089 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008090 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008091 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008092 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008093
drh2e38c322004-09-03 18:38:44 +00008094end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008095 return rc;
8096}
8097
8098/*
danf0ee1d32015-09-12 19:26:11 +00008099** Delete the entry that the cursor is pointing to.
8100**
drhe807bdb2016-01-21 17:06:33 +00008101** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8102** the cursor is left pointing at an arbitrary location after the delete.
8103** But if that bit is set, then the cursor is left in a state such that
8104** the next call to BtreeNext() or BtreePrev() moves it to the same row
8105** as it would have been on if the call to BtreeDelete() had been omitted.
8106**
drhdef19e32016-01-27 16:26:25 +00008107** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8108** associated with a single table entry and its indexes. Only one of those
8109** deletes is considered the "primary" delete. The primary delete occurs
8110** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8111** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8112** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008113** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008114*/
drhe807bdb2016-01-21 17:06:33 +00008115int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008116 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008117 BtShared *pBt = p->pBt;
8118 int rc; /* Return code */
8119 MemPage *pPage; /* Page to delete cell from */
8120 unsigned char *pCell; /* Pointer to cell to delete */
8121 int iCellIdx; /* Index of cell to delete */
8122 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008123 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008124 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008125 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008126
dan7a2347e2016-01-07 16:43:54 +00008127 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008128 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008129 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008130 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008131 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8132 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008133 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8134 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008135 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008136
danielk19774dbaa892009-06-16 16:50:22 +00008137 iCellDepth = pCur->iPage;
8138 iCellIdx = pCur->aiIdx[iCellDepth];
8139 pPage = pCur->apPage[iCellDepth];
8140 pCell = findCell(pPage, iCellIdx);
8141
drhbfc7a8b2016-04-09 17:04:05 +00008142 /* If the bPreserve flag is set to true, then the cursor position must
8143 ** be preserved following this delete operation. If the current delete
8144 ** will cause a b-tree rebalance, then this is done by saving the cursor
8145 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8146 ** returning.
8147 **
8148 ** Or, if the current delete will not cause a rebalance, then the cursor
8149 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8150 ** before or after the deleted entry. In this case set bSkipnext to true. */
8151 if( bPreserve ){
8152 if( !pPage->leaf
8153 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8154 ){
8155 /* A b-tree rebalance will be required after deleting this entry.
8156 ** Save the cursor key. */
8157 rc = saveCursorKey(pCur);
8158 if( rc ) return rc;
8159 }else{
8160 bSkipnext = 1;
8161 }
8162 }
8163
danielk19774dbaa892009-06-16 16:50:22 +00008164 /* If the page containing the entry to delete is not a leaf page, move
8165 ** the cursor to the largest entry in the tree that is smaller than
8166 ** the entry being deleted. This cell will replace the cell being deleted
8167 ** from the internal node. The 'previous' entry is used for this instead
8168 ** of the 'next' entry, as the previous entry is always a part of the
8169 ** sub-tree headed by the child page of the cell being deleted. This makes
8170 ** balancing the tree following the delete operation easier. */
8171 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008172 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008173 rc = sqlite3BtreePrevious(pCur, &notUsed);
8174 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008175 }
8176
8177 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008178 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008179 if( pCur->curFlags & BTCF_Multiple ){
8180 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8181 if( rc ) return rc;
8182 }
drhd60f4f42012-03-23 14:23:52 +00008183
8184 /* If this is a delete operation to remove a row from a table b-tree,
8185 ** invalidate any incrblob cursors open on the row being deleted. */
8186 if( pCur->pKeyInfo==0 ){
8187 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8188 }
8189
danf0ee1d32015-09-12 19:26:11 +00008190 /* Make the page containing the entry to be deleted writable. Then free any
8191 ** overflow pages associated with the entry and finally remove the cell
8192 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008193 rc = sqlite3PagerWrite(pPage->pDbPage);
8194 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008195 rc = clearCell(pPage, pCell, &szCell);
8196 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008197 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008198
danielk19774dbaa892009-06-16 16:50:22 +00008199 /* If the cell deleted was not located on a leaf page, then the cursor
8200 ** is currently pointing to the largest entry in the sub-tree headed
8201 ** by the child-page of the cell that was just deleted from an internal
8202 ** node. The cell from the leaf node needs to be moved to the internal
8203 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008204 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008205 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8206 int nCell;
8207 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8208 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008209
danielk19774dbaa892009-06-16 16:50:22 +00008210 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008211 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008212 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008213 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008214 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008215 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008216 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008217 if( rc==SQLITE_OK ){
8218 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8219 }
drh98add2e2009-07-20 17:11:49 +00008220 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008221 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008222 }
danielk19774dbaa892009-06-16 16:50:22 +00008223
8224 /* Balance the tree. If the entry deleted was located on a leaf page,
8225 ** then the cursor still points to that page. In this case the first
8226 ** call to balance() repairs the tree, and the if(...) condition is
8227 ** never true.
8228 **
8229 ** Otherwise, if the entry deleted was on an internal node page, then
8230 ** pCur is pointing to the leaf page from which a cell was removed to
8231 ** replace the cell deleted from the internal node. This is slightly
8232 ** tricky as the leaf node may be underfull, and the internal node may
8233 ** be either under or overfull. In this case run the balancing algorithm
8234 ** on the leaf node first. If the balance proceeds far enough up the
8235 ** tree that we can be sure that any problem in the internal node has
8236 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8237 ** walk the cursor up the tree to the internal node and balance it as
8238 ** well. */
8239 rc = balance(pCur);
8240 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8241 while( pCur->iPage>iCellDepth ){
8242 releasePage(pCur->apPage[pCur->iPage--]);
8243 }
8244 rc = balance(pCur);
8245 }
8246
danielk19776b456a22005-03-21 04:04:02 +00008247 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008248 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008249 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008250 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008251 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008252 pCur->eState = CURSOR_SKIPNEXT;
8253 if( iCellIdx>=pPage->nCell ){
8254 pCur->skipNext = -1;
8255 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8256 }else{
8257 pCur->skipNext = 1;
8258 }
8259 }else{
8260 rc = moveToRoot(pCur);
8261 if( bPreserve ){
8262 pCur->eState = CURSOR_REQUIRESEEK;
8263 }
8264 }
danielk19776b456a22005-03-21 04:04:02 +00008265 }
drh5e2f8b92001-05-28 00:41:15 +00008266 return rc;
drh3b7511c2001-05-26 13:15:44 +00008267}
drh8b2f49b2001-06-08 00:21:52 +00008268
8269/*
drhc6b52df2002-01-04 03:09:29 +00008270** Create a new BTree table. Write into *piTable the page
8271** number for the root page of the new table.
8272**
drhab01f612004-05-22 02:55:23 +00008273** The type of type is determined by the flags parameter. Only the
8274** following values of flags are currently in use. Other values for
8275** flags might not work:
8276**
8277** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8278** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008279*/
drhd4187c72010-08-30 22:15:45 +00008280static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008281 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008282 MemPage *pRoot;
8283 Pgno pgnoRoot;
8284 int rc;
drhd4187c72010-08-30 22:15:45 +00008285 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008286
drh1fee73e2007-08-29 04:00:57 +00008287 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008288 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008289 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008290
danielk1977003ba062004-11-04 02:57:33 +00008291#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008292 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008293 if( rc ){
8294 return rc;
8295 }
danielk1977003ba062004-11-04 02:57:33 +00008296#else
danielk1977687566d2004-11-02 12:56:41 +00008297 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008298 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8299 MemPage *pPageMove; /* The page to move to. */
8300
danielk197720713f32007-05-03 11:43:33 +00008301 /* Creating a new table may probably require moving an existing database
8302 ** to make room for the new tables root page. In case this page turns
8303 ** out to be an overflow page, delete all overflow page-map caches
8304 ** held by open cursors.
8305 */
danielk197792d4d7a2007-05-04 12:05:56 +00008306 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008307
danielk1977003ba062004-11-04 02:57:33 +00008308 /* Read the value of meta[3] from the database to determine where the
8309 ** root page of the new table should go. meta[3] is the largest root-page
8310 ** created so far, so the new root-page is (meta[3]+1).
8311 */
danielk1977602b4662009-07-02 07:47:33 +00008312 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008313 pgnoRoot++;
8314
danielk1977599fcba2004-11-08 07:13:13 +00008315 /* The new root-page may not be allocated on a pointer-map page, or the
8316 ** PENDING_BYTE page.
8317 */
drh72190432008-01-31 14:54:43 +00008318 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008319 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008320 pgnoRoot++;
8321 }
drh499e15b2015-05-22 12:37:37 +00008322 assert( pgnoRoot>=3 || CORRUPT_DB );
8323 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008324
8325 /* Allocate a page. The page that currently resides at pgnoRoot will
8326 ** be moved to the allocated page (unless the allocated page happens
8327 ** to reside at pgnoRoot).
8328 */
dan51f0b6d2013-02-22 20:16:34 +00008329 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008330 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008331 return rc;
8332 }
danielk1977003ba062004-11-04 02:57:33 +00008333
8334 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008335 /* pgnoRoot is the page that will be used for the root-page of
8336 ** the new table (assuming an error did not occur). But we were
8337 ** allocated pgnoMove. If required (i.e. if it was not allocated
8338 ** by extending the file), the current page at position pgnoMove
8339 ** is already journaled.
8340 */
drheeb844a2009-08-08 18:01:07 +00008341 u8 eType = 0;
8342 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008343
danf7679ad2013-04-03 11:38:36 +00008344 /* Save the positions of any open cursors. This is required in
8345 ** case they are holding a reference to an xFetch reference
8346 ** corresponding to page pgnoRoot. */
8347 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008348 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008349 if( rc!=SQLITE_OK ){
8350 return rc;
8351 }
danielk1977f35843b2007-04-07 15:03:17 +00008352
8353 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00008354 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008355 if( rc!=SQLITE_OK ){
8356 return rc;
8357 }
8358 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008359 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8360 rc = SQLITE_CORRUPT_BKPT;
8361 }
8362 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008363 releasePage(pRoot);
8364 return rc;
8365 }
drhccae6022005-02-26 17:31:26 +00008366 assert( eType!=PTRMAP_ROOTPAGE );
8367 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008368 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008369 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008370
8371 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008372 if( rc!=SQLITE_OK ){
8373 return rc;
8374 }
danielk197730548662009-07-09 05:07:37 +00008375 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008376 if( rc!=SQLITE_OK ){
8377 return rc;
8378 }
danielk19773b8a05f2007-03-19 17:44:26 +00008379 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008380 if( rc!=SQLITE_OK ){
8381 releasePage(pRoot);
8382 return rc;
8383 }
8384 }else{
8385 pRoot = pPageMove;
8386 }
8387
danielk197742741be2005-01-08 12:42:39 +00008388 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008389 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008390 if( rc ){
8391 releasePage(pRoot);
8392 return rc;
8393 }
drhbf592832010-03-30 15:51:12 +00008394
8395 /* When the new root page was allocated, page 1 was made writable in
8396 ** order either to increase the database filesize, or to decrement the
8397 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8398 */
8399 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008400 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008401 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008402 releasePage(pRoot);
8403 return rc;
8404 }
danielk197742741be2005-01-08 12:42:39 +00008405
danielk1977003ba062004-11-04 02:57:33 +00008406 }else{
drh4f0c5872007-03-26 22:05:01 +00008407 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008408 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008409 }
8410#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008411 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008412 if( createTabFlags & BTREE_INTKEY ){
8413 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8414 }else{
8415 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8416 }
8417 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008418 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008419 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008420 *piTable = (int)pgnoRoot;
8421 return SQLITE_OK;
8422}
drhd677b3d2007-08-20 22:48:41 +00008423int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8424 int rc;
8425 sqlite3BtreeEnter(p);
8426 rc = btreeCreateTable(p, piTable, flags);
8427 sqlite3BtreeLeave(p);
8428 return rc;
8429}
drh8b2f49b2001-06-08 00:21:52 +00008430
8431/*
8432** Erase the given database page and all its children. Return
8433** the page to the freelist.
8434*/
drh4b70f112004-05-02 21:12:19 +00008435static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008436 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008437 Pgno pgno, /* Page number to clear */
8438 int freePageFlag, /* Deallocate page if true */
8439 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008440){
danielk1977146ba992009-07-22 14:08:13 +00008441 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008442 int rc;
drh4b70f112004-05-02 21:12:19 +00008443 unsigned char *pCell;
8444 int i;
dan8ce71842014-01-14 20:14:09 +00008445 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008446 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008447
drh1fee73e2007-08-29 04:00:57 +00008448 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008449 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008450 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008451 }
drh28f58dd2015-06-27 19:45:03 +00008452 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008453 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008454 if( pPage->bBusy ){
8455 rc = SQLITE_CORRUPT_BKPT;
8456 goto cleardatabasepage_out;
8457 }
8458 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008459 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008460 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008461 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008462 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008463 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008464 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008465 }
drh9bfdc252014-09-24 02:05:41 +00008466 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008467 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008468 }
drhccf46d02015-04-01 13:21:33 +00008469 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008470 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008471 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008472 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008473 assert( pPage->intKey || CORRUPT_DB );
8474 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008475 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008476 }
8477 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008478 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008479 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008480 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008481 }
danielk19776b456a22005-03-21 04:04:02 +00008482
8483cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008484 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008485 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008486 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008487}
8488
8489/*
drhab01f612004-05-22 02:55:23 +00008490** Delete all information from a single table in the database. iTable is
8491** the page number of the root of the table. After this routine returns,
8492** the root page is empty, but still exists.
8493**
8494** This routine will fail with SQLITE_LOCKED if there are any open
8495** read cursors on the table. Open write cursors are moved to the
8496** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008497**
8498** If pnChange is not NULL, then table iTable must be an intkey table. The
8499** integer value pointed to by pnChange is incremented by the number of
8500** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008501*/
danielk1977c7af4842008-10-27 13:59:33 +00008502int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008503 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008504 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008505 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008506 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008507
drhc046e3e2009-07-15 11:26:44 +00008508 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008509
drhc046e3e2009-07-15 11:26:44 +00008510 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008511 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8512 ** is the root of a table b-tree - if it is not, the following call is
8513 ** a no-op). */
8514 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008515 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008516 }
drhd677b3d2007-08-20 22:48:41 +00008517 sqlite3BtreeLeave(p);
8518 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008519}
8520
8521/*
drh079a3072014-03-19 14:10:55 +00008522** Delete all information from the single table that pCur is open on.
8523**
8524** This routine only work for pCur on an ephemeral table.
8525*/
8526int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8527 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8528}
8529
8530/*
drh8b2f49b2001-06-08 00:21:52 +00008531** Erase all information in a table and add the root of the table to
8532** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008533** page 1) is never added to the freelist.
8534**
8535** This routine will fail with SQLITE_LOCKED if there are any open
8536** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008537**
8538** If AUTOVACUUM is enabled and the page at iTable is not the last
8539** root page in the database file, then the last root page
8540** in the database file is moved into the slot formerly occupied by
8541** iTable and that last slot formerly occupied by the last root page
8542** is added to the freelist instead of iTable. In this say, all
8543** root pages are kept at the beginning of the database file, which
8544** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8545** page number that used to be the last root page in the file before
8546** the move. If no page gets moved, *piMoved is set to 0.
8547** The last root page is recorded in meta[3] and the value of
8548** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008549*/
danielk197789d40042008-11-17 14:20:56 +00008550static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008551 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008552 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008553 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008554
drh1fee73e2007-08-29 04:00:57 +00008555 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008556 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008557
danielk1977e6efa742004-11-10 11:55:10 +00008558 /* It is illegal to drop a table if any cursors are open on the
8559 ** database. This is because in auto-vacuum mode the backend may
8560 ** need to move another root-page to fill a gap left by the deleted
8561 ** root page. If an open cursor was using this page a problem would
8562 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008563 **
8564 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008565 */
drhc046e3e2009-07-15 11:26:44 +00008566 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008567 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8568 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008569 }
danielk1977a0bf2652004-11-04 14:30:04 +00008570
drh055f2982016-01-15 15:06:41 +00008571 /*
8572 ** It is illegal to drop the sqlite_master table on page 1. But again,
8573 ** this error is caught long before reaching this point.
8574 */
8575 if( NEVER(iTable<2) ){
8576 return SQLITE_CORRUPT_BKPT;
8577 }
8578
danielk197730548662009-07-09 05:07:37 +00008579 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008580 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008581 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008582 if( rc ){
8583 releasePage(pPage);
8584 return rc;
8585 }
danielk1977a0bf2652004-11-04 14:30:04 +00008586
drh205f48e2004-11-05 00:43:11 +00008587 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008588
danielk1977a0bf2652004-11-04 14:30:04 +00008589#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008590 freePage(pPage, &rc);
8591 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008592#else
drh055f2982016-01-15 15:06:41 +00008593 if( pBt->autoVacuum ){
8594 Pgno maxRootPgno;
8595 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008596
drh055f2982016-01-15 15:06:41 +00008597 if( iTable==maxRootPgno ){
8598 /* If the table being dropped is the table with the largest root-page
8599 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008600 */
drhc314dc72009-07-21 11:52:34 +00008601 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008602 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008603 if( rc!=SQLITE_OK ){
8604 return rc;
8605 }
8606 }else{
8607 /* The table being dropped does not have the largest root-page
8608 ** number in the database. So move the page that does into the
8609 ** gap left by the deleted root-page.
8610 */
8611 MemPage *pMove;
8612 releasePage(pPage);
8613 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8614 if( rc!=SQLITE_OK ){
8615 return rc;
8616 }
8617 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8618 releasePage(pMove);
8619 if( rc!=SQLITE_OK ){
8620 return rc;
8621 }
8622 pMove = 0;
8623 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8624 freePage(pMove, &rc);
8625 releasePage(pMove);
8626 if( rc!=SQLITE_OK ){
8627 return rc;
8628 }
8629 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008630 }
drh055f2982016-01-15 15:06:41 +00008631
8632 /* Set the new 'max-root-page' value in the database header. This
8633 ** is the old value less one, less one more if that happens to
8634 ** be a root-page number, less one again if that is the
8635 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008636 */
drh055f2982016-01-15 15:06:41 +00008637 maxRootPgno--;
8638 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8639 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8640 maxRootPgno--;
8641 }
8642 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8643
8644 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8645 }else{
8646 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008647 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008648 }
drh055f2982016-01-15 15:06:41 +00008649#endif
drh8b2f49b2001-06-08 00:21:52 +00008650 return rc;
8651}
drhd677b3d2007-08-20 22:48:41 +00008652int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8653 int rc;
8654 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008655 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008656 sqlite3BtreeLeave(p);
8657 return rc;
8658}
drh8b2f49b2001-06-08 00:21:52 +00008659
drh001bbcb2003-03-19 03:14:00 +00008660
drh8b2f49b2001-06-08 00:21:52 +00008661/*
danielk1977602b4662009-07-02 07:47:33 +00008662** This function may only be called if the b-tree connection already
8663** has a read or write transaction open on the database.
8664**
drh23e11ca2004-05-04 17:27:28 +00008665** Read the meta-information out of a database file. Meta[0]
8666** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008667** through meta[15] are available for use by higher layers. Meta[0]
8668** is read-only, the others are read/write.
8669**
8670** The schema layer numbers meta values differently. At the schema
8671** layer (and the SetCookie and ReadCookie opcodes) the number of
8672** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008673**
8674** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8675** of reading the value out of the header, it instead loads the "DataVersion"
8676** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8677** database file. It is a number computed by the pager. But its access
8678** pattern is the same as header meta values, and so it is convenient to
8679** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008680*/
danielk1977602b4662009-07-02 07:47:33 +00008681void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008682 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008683
drhd677b3d2007-08-20 22:48:41 +00008684 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008685 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008686 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008687 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008688 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008689
drh91618562014-12-19 19:28:02 +00008690 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008691 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008692 }else{
8693 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8694 }
drhae157872004-08-14 19:20:09 +00008695
danielk1977602b4662009-07-02 07:47:33 +00008696 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8697 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008698#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008699 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8700 pBt->btsFlags |= BTS_READ_ONLY;
8701 }
danielk1977003ba062004-11-04 02:57:33 +00008702#endif
drhae157872004-08-14 19:20:09 +00008703
drhd677b3d2007-08-20 22:48:41 +00008704 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008705}
8706
8707/*
drh23e11ca2004-05-04 17:27:28 +00008708** Write meta-information back into the database. Meta[0] is
8709** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008710*/
danielk1977aef0bf62005-12-30 16:28:01 +00008711int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8712 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008713 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008714 int rc;
drh23e11ca2004-05-04 17:27:28 +00008715 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008716 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008717 assert( p->inTrans==TRANS_WRITE );
8718 assert( pBt->pPage1!=0 );
8719 pP1 = pBt->pPage1->aData;
8720 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8721 if( rc==SQLITE_OK ){
8722 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008723#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008724 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008725 assert( pBt->autoVacuum || iMeta==0 );
8726 assert( iMeta==0 || iMeta==1 );
8727 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008728 }
drh64022502009-01-09 14:11:04 +00008729#endif
drh5df72a52002-06-06 23:16:05 +00008730 }
drhd677b3d2007-08-20 22:48:41 +00008731 sqlite3BtreeLeave(p);
8732 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008733}
drh8c42ca92001-06-22 19:15:00 +00008734
danielk1977a5533162009-02-24 10:01:51 +00008735#ifndef SQLITE_OMIT_BTREECOUNT
8736/*
8737** The first argument, pCur, is a cursor opened on some b-tree. Count the
8738** number of entries in the b-tree and write the result to *pnEntry.
8739**
8740** SQLITE_OK is returned if the operation is successfully executed.
8741** Otherwise, if an error is encountered (i.e. an IO error or database
8742** corruption) an SQLite error code is returned.
8743*/
8744int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8745 i64 nEntry = 0; /* Value to return in *pnEntry */
8746 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008747
8748 if( pCur->pgnoRoot==0 ){
8749 *pnEntry = 0;
8750 return SQLITE_OK;
8751 }
danielk1977a5533162009-02-24 10:01:51 +00008752 rc = moveToRoot(pCur);
8753
8754 /* Unless an error occurs, the following loop runs one iteration for each
8755 ** page in the B-Tree structure (not including overflow pages).
8756 */
8757 while( rc==SQLITE_OK ){
8758 int iIdx; /* Index of child node in parent */
8759 MemPage *pPage; /* Current page of the b-tree */
8760
8761 /* If this is a leaf page or the tree is not an int-key tree, then
8762 ** this page contains countable entries. Increment the entry counter
8763 ** accordingly.
8764 */
8765 pPage = pCur->apPage[pCur->iPage];
8766 if( pPage->leaf || !pPage->intKey ){
8767 nEntry += pPage->nCell;
8768 }
8769
8770 /* pPage is a leaf node. This loop navigates the cursor so that it
8771 ** points to the first interior cell that it points to the parent of
8772 ** the next page in the tree that has not yet been visited. The
8773 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8774 ** of the page, or to the number of cells in the page if the next page
8775 ** to visit is the right-child of its parent.
8776 **
8777 ** If all pages in the tree have been visited, return SQLITE_OK to the
8778 ** caller.
8779 */
8780 if( pPage->leaf ){
8781 do {
8782 if( pCur->iPage==0 ){
8783 /* All pages of the b-tree have been visited. Return successfully. */
8784 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008785 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008786 }
danielk197730548662009-07-09 05:07:37 +00008787 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008788 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8789
8790 pCur->aiIdx[pCur->iPage]++;
8791 pPage = pCur->apPage[pCur->iPage];
8792 }
8793
8794 /* Descend to the child node of the cell that the cursor currently
8795 ** points at. This is the right-child if (iIdx==pPage->nCell).
8796 */
8797 iIdx = pCur->aiIdx[pCur->iPage];
8798 if( iIdx==pPage->nCell ){
8799 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8800 }else{
8801 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8802 }
8803 }
8804
shanebe217792009-03-05 04:20:31 +00008805 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008806 return rc;
8807}
8808#endif
drhdd793422001-06-28 01:54:48 +00008809
drhdd793422001-06-28 01:54:48 +00008810/*
drh5eddca62001-06-30 21:53:53 +00008811** Return the pager associated with a BTree. This routine is used for
8812** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008813*/
danielk1977aef0bf62005-12-30 16:28:01 +00008814Pager *sqlite3BtreePager(Btree *p){
8815 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008816}
drh5eddca62001-06-30 21:53:53 +00008817
drhb7f91642004-10-31 02:22:47 +00008818#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008819/*
8820** Append a message to the error message string.
8821*/
drh2e38c322004-09-03 18:38:44 +00008822static void checkAppendMsg(
8823 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008824 const char *zFormat,
8825 ...
8826){
8827 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008828 if( !pCheck->mxErr ) return;
8829 pCheck->mxErr--;
8830 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008831 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008832 if( pCheck->errMsg.nChar ){
8833 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008834 }
drh867db832014-09-26 02:41:05 +00008835 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008836 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008837 }
drh5f4a6862016-01-30 12:50:25 +00008838 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008839 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008840 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008841 pCheck->mallocFailed = 1;
8842 }
drh5eddca62001-06-30 21:53:53 +00008843}
drhb7f91642004-10-31 02:22:47 +00008844#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008845
drhb7f91642004-10-31 02:22:47 +00008846#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008847
8848/*
8849** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8850** corresponds to page iPg is already set.
8851*/
8852static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8853 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8854 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8855}
8856
8857/*
8858** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8859*/
8860static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8861 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8862 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8863}
8864
8865
drh5eddca62001-06-30 21:53:53 +00008866/*
8867** Add 1 to the reference count for page iPage. If this is the second
8868** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008869** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008870** if this is the first reference to the page.
8871**
8872** Also check that the page number is in bounds.
8873*/
drh867db832014-09-26 02:41:05 +00008874static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008875 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008876 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008877 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008878 return 1;
8879 }
dan1235bb12012-04-03 17:43:28 +00008880 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008881 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008882 return 1;
8883 }
dan1235bb12012-04-03 17:43:28 +00008884 setPageReferenced(pCheck, iPage);
8885 return 0;
drh5eddca62001-06-30 21:53:53 +00008886}
8887
danielk1977afcdd022004-10-31 16:25:42 +00008888#ifndef SQLITE_OMIT_AUTOVACUUM
8889/*
8890** Check that the entry in the pointer-map for page iChild maps to
8891** page iParent, pointer type ptrType. If not, append an error message
8892** to pCheck.
8893*/
8894static void checkPtrmap(
8895 IntegrityCk *pCheck, /* Integrity check context */
8896 Pgno iChild, /* Child page number */
8897 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008898 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008899){
8900 int rc;
8901 u8 ePtrmapType;
8902 Pgno iPtrmapParent;
8903
8904 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8905 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008906 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008907 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008908 return;
8909 }
8910
8911 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008912 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008913 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8914 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8915 }
8916}
8917#endif
8918
drh5eddca62001-06-30 21:53:53 +00008919/*
8920** Check the integrity of the freelist or of an overflow page list.
8921** Verify that the number of pages on the list is N.
8922*/
drh30e58752002-03-02 20:41:57 +00008923static void checkList(
8924 IntegrityCk *pCheck, /* Integrity checking context */
8925 int isFreeList, /* True for a freelist. False for overflow page list */
8926 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008927 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008928){
8929 int i;
drh3a4c1412004-05-09 20:40:11 +00008930 int expected = N;
8931 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008932 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008933 DbPage *pOvflPage;
8934 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008935 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008936 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008937 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008938 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008939 break;
8940 }
drh867db832014-09-26 02:41:05 +00008941 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008942 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008943 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008944 break;
8945 }
danielk19773b8a05f2007-03-19 17:44:26 +00008946 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008947 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008948 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008949#ifndef SQLITE_OMIT_AUTOVACUUM
8950 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008951 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008952 }
8953#endif
drh43b18e12010-08-17 19:40:08 +00008954 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008955 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008956 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008957 N--;
8958 }else{
8959 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008960 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008961#ifndef SQLITE_OMIT_AUTOVACUUM
8962 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008963 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008964 }
8965#endif
drh867db832014-09-26 02:41:05 +00008966 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008967 }
8968 N -= n;
drh30e58752002-03-02 20:41:57 +00008969 }
drh30e58752002-03-02 20:41:57 +00008970 }
danielk1977afcdd022004-10-31 16:25:42 +00008971#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008972 else{
8973 /* If this database supports auto-vacuum and iPage is not the last
8974 ** page in this overflow list, check that the pointer-map entry for
8975 ** the following page matches iPage.
8976 */
8977 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008978 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008979 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008980 }
danielk1977afcdd022004-10-31 16:25:42 +00008981 }
8982#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008983 iPage = get4byte(pOvflData);
8984 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008985
8986 if( isFreeList && N<(iPage!=0) ){
8987 checkAppendMsg(pCheck, "free-page count in header is too small");
8988 }
drh5eddca62001-06-30 21:53:53 +00008989 }
8990}
drhb7f91642004-10-31 02:22:47 +00008991#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008992
drh67731a92015-04-16 11:56:03 +00008993/*
8994** An implementation of a min-heap.
8995**
8996** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008997** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008998** and aHeap[N*2+1].
8999**
9000** The heap property is this: Every node is less than or equal to both
9001** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009002** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009003**
9004** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9005** the heap, preserving the heap property. The btreeHeapPull() routine
9006** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009007** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009008** property.
9009**
9010** This heap is used for cell overlap and coverage testing. Each u32
9011** entry represents the span of a cell or freeblock on a btree page.
9012** The upper 16 bits are the index of the first byte of a range and the
9013** lower 16 bits are the index of the last byte of that range.
9014*/
9015static void btreeHeapInsert(u32 *aHeap, u32 x){
9016 u32 j, i = ++aHeap[0];
9017 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009018 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009019 x = aHeap[j];
9020 aHeap[j] = aHeap[i];
9021 aHeap[i] = x;
9022 i = j;
9023 }
9024}
9025static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9026 u32 j, i, x;
9027 if( (x = aHeap[0])==0 ) return 0;
9028 *pOut = aHeap[1];
9029 aHeap[1] = aHeap[x];
9030 aHeap[x] = 0xffffffff;
9031 aHeap[0]--;
9032 i = 1;
9033 while( (j = i*2)<=aHeap[0] ){
9034 if( aHeap[j]>aHeap[j+1] ) j++;
9035 if( aHeap[i]<aHeap[j] ) break;
9036 x = aHeap[i];
9037 aHeap[i] = aHeap[j];
9038 aHeap[j] = x;
9039 i = j;
9040 }
9041 return 1;
9042}
9043
drhb7f91642004-10-31 02:22:47 +00009044#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009045/*
9046** Do various sanity checks on a single page of a tree. Return
9047** the tree depth. Root pages return 0. Parents of root pages
9048** return 1, and so forth.
9049**
9050** These checks are done:
9051**
9052** 1. Make sure that cells and freeblocks do not overlap
9053** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009054** 2. Make sure integer cell keys are in order.
9055** 3. Check the integrity of overflow pages.
9056** 4. Recursively call checkTreePage on all children.
9057** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009058*/
9059static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009060 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009061 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009062 i64 *piMinKey, /* Write minimum integer primary key here */
9063 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009064){
drhcbc6b712015-07-02 16:17:30 +00009065 MemPage *pPage = 0; /* The page being analyzed */
9066 int i; /* Loop counter */
9067 int rc; /* Result code from subroutine call */
9068 int depth = -1, d2; /* Depth of a subtree */
9069 int pgno; /* Page number */
9070 int nFrag; /* Number of fragmented bytes on the page */
9071 int hdr; /* Offset to the page header */
9072 int cellStart; /* Offset to the start of the cell pointer array */
9073 int nCell; /* Number of cells */
9074 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9075 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9076 ** False if IPK must be strictly less than maxKey */
9077 u8 *data; /* Page content */
9078 u8 *pCell; /* Cell content */
9079 u8 *pCellIdx; /* Next element of the cell pointer array */
9080 BtShared *pBt; /* The BtShared object that owns pPage */
9081 u32 pc; /* Address of a cell */
9082 u32 usableSize; /* Usable size of the page */
9083 u32 contentOffset; /* Offset to the start of the cell content area */
9084 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009085 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009086 const char *saved_zPfx = pCheck->zPfx;
9087 int saved_v1 = pCheck->v1;
9088 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009089 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009090
drh5eddca62001-06-30 21:53:53 +00009091 /* Check that the page exists
9092 */
drhd9cb6ac2005-10-20 07:28:17 +00009093 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009094 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009095 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009096 if( checkRef(pCheck, iPage) ) return 0;
9097 pCheck->zPfx = "Page %d: ";
9098 pCheck->v1 = iPage;
danielk197730548662009-07-09 05:07:37 +00009099 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009100 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009101 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009102 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009103 }
danielk197793caf5a2009-07-11 06:55:33 +00009104
9105 /* Clear MemPage.isInit to make sure the corruption detection code in
9106 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009107 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009108 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009109 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009110 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009111 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009112 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009113 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009114 }
drhcbc6b712015-07-02 16:17:30 +00009115 data = pPage->aData;
9116 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009117
drhcbc6b712015-07-02 16:17:30 +00009118 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009119 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009120 contentOffset = get2byteNotZero(&data[hdr+5]);
9121 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9122
9123 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9124 ** number of cells on the page. */
9125 nCell = get2byte(&data[hdr+3]);
9126 assert( pPage->nCell==nCell );
9127
9128 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9129 ** immediately follows the b-tree page header. */
9130 cellStart = hdr + 12 - 4*pPage->leaf;
9131 assert( pPage->aCellIdx==&data[cellStart] );
9132 pCellIdx = &data[cellStart + 2*(nCell-1)];
9133
9134 if( !pPage->leaf ){
9135 /* Analyze the right-child page of internal pages */
9136 pgno = get4byte(&data[hdr+8]);
9137#ifndef SQLITE_OMIT_AUTOVACUUM
9138 if( pBt->autoVacuum ){
9139 pCheck->zPfx = "On page %d at right child: ";
9140 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9141 }
9142#endif
9143 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9144 keyCanBeEqual = 0;
9145 }else{
9146 /* For leaf pages, the coverage check will occur in the same loop
9147 ** as the other cell checks, so initialize the heap. */
9148 heap = pCheck->heap;
9149 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009150 }
9151
9152 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9153 ** integer offsets to the cell contents. */
9154 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009155 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009156
drhcbc6b712015-07-02 16:17:30 +00009157 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009158 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009159 assert( pCellIdx==&data[cellStart + i*2] );
9160 pc = get2byteAligned(pCellIdx);
9161 pCellIdx -= 2;
9162 if( pc<contentOffset || pc>usableSize-4 ){
9163 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9164 pc, contentOffset, usableSize-4);
9165 doCoverageCheck = 0;
9166 continue;
shaneh195475d2010-02-19 04:28:08 +00009167 }
drhcbc6b712015-07-02 16:17:30 +00009168 pCell = &data[pc];
9169 pPage->xParseCell(pPage, pCell, &info);
9170 if( pc+info.nSize>usableSize ){
9171 checkAppendMsg(pCheck, "Extends off end of page");
9172 doCoverageCheck = 0;
9173 continue;
9174 }
9175
9176 /* Check for integer primary key out of range */
9177 if( pPage->intKey ){
9178 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9179 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9180 }
9181 maxKey = info.nKey;
9182 }
9183
9184 /* Check the content overflow list */
9185 if( info.nPayload>info.nLocal ){
9186 int nPage; /* Number of pages on the overflow chain */
9187 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009188 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009189 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009190 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
danielk1977afcdd022004-10-31 16:25:42 +00009191#ifndef SQLITE_OMIT_AUTOVACUUM
9192 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009193 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009194 }
9195#endif
drh867db832014-09-26 02:41:05 +00009196 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009197 }
9198
drhda200cc2004-05-09 11:51:38 +00009199 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009200 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009201 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009202#ifndef SQLITE_OMIT_AUTOVACUUM
9203 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009204 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009205 }
9206#endif
drhcbc6b712015-07-02 16:17:30 +00009207 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9208 keyCanBeEqual = 0;
9209 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009210 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009211 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009212 }
drhcbc6b712015-07-02 16:17:30 +00009213 }else{
9214 /* Populate the coverage-checking heap for leaf pages */
9215 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009216 }
drh5eddca62001-06-30 21:53:53 +00009217 }
drhcbc6b712015-07-02 16:17:30 +00009218 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009219
drh5eddca62001-06-30 21:53:53 +00009220 /* Check for complete coverage of the page
9221 */
drh867db832014-09-26 02:41:05 +00009222 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009223 if( doCoverageCheck && pCheck->mxErr>0 ){
9224 /* For leaf pages, the min-heap has already been initialized and the
9225 ** cells have already been inserted. But for internal pages, that has
9226 ** not yet been done, so do it now */
9227 if( !pPage->leaf ){
9228 heap = pCheck->heap;
9229 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009230 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009231 u32 size;
9232 pc = get2byteAligned(&data[cellStart+i*2]);
9233 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009234 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009235 }
drh2e38c322004-09-03 18:38:44 +00009236 }
drhcbc6b712015-07-02 16:17:30 +00009237 /* Add the freeblocks to the min-heap
9238 **
9239 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009240 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009241 ** freeblocks on the page.
9242 */
drh8c2bbb62009-07-10 02:52:20 +00009243 i = get2byte(&data[hdr+1]);
9244 while( i>0 ){
9245 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009246 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009247 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009248 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009249 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009250 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9251 ** big-endian integer which is the offset in the b-tree page of the next
9252 ** freeblock in the chain, or zero if the freeblock is the last on the
9253 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009254 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009255 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9256 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009257 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009258 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009259 i = j;
drh2e38c322004-09-03 18:38:44 +00009260 }
drhcbc6b712015-07-02 16:17:30 +00009261 /* Analyze the min-heap looking for overlap between cells and/or
9262 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009263 **
9264 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9265 ** There is an implied first entry the covers the page header, the cell
9266 ** pointer index, and the gap between the cell pointer index and the start
9267 ** of cell content.
9268 **
9269 ** The loop below pulls entries from the min-heap in order and compares
9270 ** the start_address against the previous end_address. If there is an
9271 ** overlap, that means bytes are used multiple times. If there is a gap,
9272 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009273 */
9274 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009275 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009276 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009277 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009278 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009279 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009280 break;
drh67731a92015-04-16 11:56:03 +00009281 }else{
drhcbc6b712015-07-02 16:17:30 +00009282 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009283 prev = x;
drh2e38c322004-09-03 18:38:44 +00009284 }
9285 }
drhcbc6b712015-07-02 16:17:30 +00009286 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009287 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9288 ** is stored in the fifth field of the b-tree page header.
9289 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9290 ** number of fragmented free bytes within the cell content area.
9291 */
drhcbc6b712015-07-02 16:17:30 +00009292 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009293 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009294 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009295 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009296 }
9297 }
drh867db832014-09-26 02:41:05 +00009298
9299end_of_check:
drh72e191e2015-07-04 11:14:20 +00009300 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009301 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009302 pCheck->zPfx = saved_zPfx;
9303 pCheck->v1 = saved_v1;
9304 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009305 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009306}
drhb7f91642004-10-31 02:22:47 +00009307#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009308
drhb7f91642004-10-31 02:22:47 +00009309#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009310/*
9311** This routine does a complete check of the given BTree file. aRoot[] is
9312** an array of pages numbers were each page number is the root page of
9313** a table. nRoot is the number of entries in aRoot.
9314**
danielk19773509a652009-07-06 18:56:13 +00009315** A read-only or read-write transaction must be opened before calling
9316** this function.
9317**
drhc890fec2008-08-01 20:10:08 +00009318** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009319** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009320** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009321** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009322*/
drh1dcdbc02007-01-27 02:24:54 +00009323char *sqlite3BtreeIntegrityCheck(
9324 Btree *p, /* The btree to be checked */
9325 int *aRoot, /* An array of root pages numbers for individual trees */
9326 int nRoot, /* Number of entries in aRoot[] */
9327 int mxErr, /* Stop reporting errors after this many */
9328 int *pnErr /* Write number of errors seen to this variable */
9329){
danielk197789d40042008-11-17 14:20:56 +00009330 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009331 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009332 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009333 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009334 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009335 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009336
drhd677b3d2007-08-20 22:48:41 +00009337 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009338 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009339 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9340 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009341 sCheck.pBt = pBt;
9342 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009343 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009344 sCheck.mxErr = mxErr;
9345 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009346 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009347 sCheck.zPfx = 0;
9348 sCheck.v1 = 0;
9349 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009350 sCheck.aPgRef = 0;
9351 sCheck.heap = 0;
9352 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009353 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009354 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009355 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009356 }
dan1235bb12012-04-03 17:43:28 +00009357
9358 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9359 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009360 sCheck.mallocFailed = 1;
9361 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009362 }
drhe05b3f82015-07-01 17:53:49 +00009363 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9364 if( sCheck.heap==0 ){
9365 sCheck.mallocFailed = 1;
9366 goto integrity_ck_cleanup;
9367 }
9368
drh42cac6d2004-11-20 20:31:11 +00009369 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009370 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009371
9372 /* Check the integrity of the freelist
9373 */
drh867db832014-09-26 02:41:05 +00009374 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009375 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009376 get4byte(&pBt->pPage1->aData[36]));
9377 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009378
9379 /* Check all the tables.
9380 */
drhcbc6b712015-07-02 16:17:30 +00009381 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9382 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009383 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009384 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009385 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009386#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009387 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009388 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009389 }
9390#endif
drhcbc6b712015-07-02 16:17:30 +00009391 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009392 }
drhcbc6b712015-07-02 16:17:30 +00009393 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009394
9395 /* Make sure every page in the file is referenced
9396 */
drh1dcdbc02007-01-27 02:24:54 +00009397 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009398#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009399 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009400 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009401 }
danielk1977afcdd022004-10-31 16:25:42 +00009402#else
9403 /* If the database supports auto-vacuum, make sure no tables contain
9404 ** references to pointer-map pages.
9405 */
dan1235bb12012-04-03 17:43:28 +00009406 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009407 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009408 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009409 }
dan1235bb12012-04-03 17:43:28 +00009410 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009411 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009412 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009413 }
9414#endif
drh5eddca62001-06-30 21:53:53 +00009415 }
9416
drh5eddca62001-06-30 21:53:53 +00009417 /* Clean up and report errors.
9418 */
drhe05b3f82015-07-01 17:53:49 +00009419integrity_ck_cleanup:
9420 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009421 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009422 if( sCheck.mallocFailed ){
9423 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009424 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009425 }
drh1dcdbc02007-01-27 02:24:54 +00009426 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009427 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009428 /* Make sure this analysis did not leave any unref() pages. */
9429 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9430 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009431 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009432}
drhb7f91642004-10-31 02:22:47 +00009433#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009434
drh73509ee2003-04-06 20:44:45 +00009435/*
drhd4e0bb02012-05-27 01:19:04 +00009436** Return the full pathname of the underlying database file. Return
9437** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009438**
9439** The pager filename is invariant as long as the pager is
9440** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009441*/
danielk1977aef0bf62005-12-30 16:28:01 +00009442const char *sqlite3BtreeGetFilename(Btree *p){
9443 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009444 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009445}
9446
9447/*
danielk19775865e3d2004-06-14 06:03:57 +00009448** Return the pathname of the journal file for this database. The return
9449** value of this routine is the same regardless of whether the journal file
9450** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009451**
9452** The pager journal filename is invariant as long as the pager is
9453** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009454*/
danielk1977aef0bf62005-12-30 16:28:01 +00009455const char *sqlite3BtreeGetJournalname(Btree *p){
9456 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009457 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009458}
9459
danielk19771d850a72004-05-31 08:26:49 +00009460/*
9461** Return non-zero if a transaction is active.
9462*/
danielk1977aef0bf62005-12-30 16:28:01 +00009463int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009464 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009465 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009466}
9467
dana550f2d2010-08-02 10:47:05 +00009468#ifndef SQLITE_OMIT_WAL
9469/*
9470** Run a checkpoint on the Btree passed as the first argument.
9471**
9472** Return SQLITE_LOCKED if this or any other connection has an open
9473** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009474**
dancdc1f042010-11-18 12:11:05 +00009475** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009476*/
dancdc1f042010-11-18 12:11:05 +00009477int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009478 int rc = SQLITE_OK;
9479 if( p ){
9480 BtShared *pBt = p->pBt;
9481 sqlite3BtreeEnter(p);
9482 if( pBt->inTransaction!=TRANS_NONE ){
9483 rc = SQLITE_LOCKED;
9484 }else{
dancdc1f042010-11-18 12:11:05 +00009485 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009486 }
9487 sqlite3BtreeLeave(p);
9488 }
9489 return rc;
9490}
9491#endif
9492
danielk19771d850a72004-05-31 08:26:49 +00009493/*
danielk19772372c2b2006-06-27 16:34:56 +00009494** Return non-zero if a read (or write) transaction is active.
9495*/
9496int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009497 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009498 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009499 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009500}
9501
danielk197704103022009-02-03 16:51:24 +00009502int sqlite3BtreeIsInBackup(Btree *p){
9503 assert( p );
9504 assert( sqlite3_mutex_held(p->db->mutex) );
9505 return p->nBackup!=0;
9506}
9507
danielk19772372c2b2006-06-27 16:34:56 +00009508/*
danielk1977da184232006-01-05 11:34:32 +00009509** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009510** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009511** purposes (for example, to store a high-level schema associated with
9512** the shared-btree). The btree layer manages reference counting issues.
9513**
9514** The first time this is called on a shared-btree, nBytes bytes of memory
9515** are allocated, zeroed, and returned to the caller. For each subsequent
9516** call the nBytes parameter is ignored and a pointer to the same blob
9517** of memory returned.
9518**
danielk1977171bfed2008-06-23 09:50:50 +00009519** If the nBytes parameter is 0 and the blob of memory has not yet been
9520** allocated, a null pointer is returned. If the blob has already been
9521** allocated, it is returned as normal.
9522**
danielk1977da184232006-01-05 11:34:32 +00009523** Just before the shared-btree is closed, the function passed as the
9524** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009525** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009526** on the memory, the btree layer does that.
9527*/
9528void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9529 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009530 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009531 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009532 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009533 pBt->xFreeSchema = xFree;
9534 }
drh27641702007-08-22 02:56:42 +00009535 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009536 return pBt->pSchema;
9537}
9538
danielk1977c87d34d2006-01-06 13:00:28 +00009539/*
danielk1977404ca072009-03-16 13:19:36 +00009540** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9541** btree as the argument handle holds an exclusive lock on the
9542** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009543*/
9544int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009545 int rc;
drhe5fe6902007-12-07 18:55:28 +00009546 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009547 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009548 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9549 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009550 sqlite3BtreeLeave(p);
9551 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009552}
9553
drha154dcd2006-03-22 22:10:07 +00009554
9555#ifndef SQLITE_OMIT_SHARED_CACHE
9556/*
9557** Obtain a lock on the table whose root page is iTab. The
9558** lock is a write lock if isWritelock is true or a read lock
9559** if it is false.
9560*/
danielk1977c00da102006-01-07 13:21:04 +00009561int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009562 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009563 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009564 if( p->sharable ){
9565 u8 lockType = READ_LOCK + isWriteLock;
9566 assert( READ_LOCK+1==WRITE_LOCK );
9567 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009568
drh6a9ad3d2008-04-02 16:29:30 +00009569 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009570 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009571 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009572 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009573 }
9574 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009575 }
9576 return rc;
9577}
drha154dcd2006-03-22 22:10:07 +00009578#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009579
danielk1977b4e9af92007-05-01 17:49:49 +00009580#ifndef SQLITE_OMIT_INCRBLOB
9581/*
9582** Argument pCsr must be a cursor opened for writing on an
9583** INTKEY table currently pointing at a valid table entry.
9584** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009585**
9586** Only the data content may only be modified, it is not possible to
9587** change the length of the data stored. If this function is called with
9588** parameters that attempt to write past the end of the existing data,
9589** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009590*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009591int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009592 int rc;
dan7a2347e2016-01-07 16:43:54 +00009593 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009594 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009595 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009596
danielk1977c9000e62009-07-08 13:55:28 +00009597 rc = restoreCursorPosition(pCsr);
9598 if( rc!=SQLITE_OK ){
9599 return rc;
9600 }
danielk19773588ceb2008-06-10 17:30:26 +00009601 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9602 if( pCsr->eState!=CURSOR_VALID ){
9603 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009604 }
9605
dan227a1c42013-04-03 11:17:39 +00009606 /* Save the positions of all other cursors open on this table. This is
9607 ** required in case any of them are holding references to an xFetch
9608 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009609 **
drh3f387402014-09-24 01:23:00 +00009610 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009611 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9612 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009613 */
drh370c9f42013-04-03 20:04:04 +00009614 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9615 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009616
danielk1977c9000e62009-07-08 13:55:28 +00009617 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009618 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009619 ** (b) there is a read/write transaction open,
9620 ** (c) the connection holds a write-lock on the table (if required),
9621 ** (d) there are no conflicting read-locks, and
9622 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009623 */
drh036dbec2014-03-11 23:40:44 +00009624 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009625 return SQLITE_READONLY;
9626 }
drhc9166342012-01-05 23:32:06 +00009627 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9628 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009629 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9630 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009631 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009632
drhfb192682009-07-11 18:26:28 +00009633 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009634}
danielk19772dec9702007-05-02 16:48:37 +00009635
9636/*
dan5a500af2014-03-11 20:33:04 +00009637** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009638*/
dan5a500af2014-03-11 20:33:04 +00009639void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009640 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009641 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009642}
danielk1977b4e9af92007-05-01 17:49:49 +00009643#endif
dane04dc882010-04-20 18:53:15 +00009644
9645/*
9646** Set both the "read version" (single byte at byte offset 18) and
9647** "write version" (single byte at byte offset 19) fields in the database
9648** header to iVersion.
9649*/
9650int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9651 BtShared *pBt = pBtree->pBt;
9652 int rc; /* Return code */
9653
dane04dc882010-04-20 18:53:15 +00009654 assert( iVersion==1 || iVersion==2 );
9655
danb9780022010-04-21 18:37:57 +00009656 /* If setting the version fields to 1, do not automatically open the
9657 ** WAL connection, even if the version fields are currently set to 2.
9658 */
drhc9166342012-01-05 23:32:06 +00009659 pBt->btsFlags &= ~BTS_NO_WAL;
9660 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009661
9662 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009663 if( rc==SQLITE_OK ){
9664 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009665 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009666 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009667 if( rc==SQLITE_OK ){
9668 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9669 if( rc==SQLITE_OK ){
9670 aData[18] = (u8)iVersion;
9671 aData[19] = (u8)iVersion;
9672 }
9673 }
9674 }
dane04dc882010-04-20 18:53:15 +00009675 }
9676
drhc9166342012-01-05 23:32:06 +00009677 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009678 return rc;
9679}
dan428c2182012-08-06 18:50:11 +00009680
drhe0997b32015-03-20 14:57:50 +00009681/*
9682** Return true if the cursor has a hint specified. This routine is
9683** only used from within assert() statements
9684*/
9685int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9686 return (pCsr->hints & mask)!=0;
9687}
drhe0997b32015-03-20 14:57:50 +00009688
drh781597f2014-05-21 08:21:07 +00009689/*
9690** Return true if the given Btree is read-only.
9691*/
9692int sqlite3BtreeIsReadonly(Btree *p){
9693 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9694}
drhdef68892014-11-04 12:11:23 +00009695
9696/*
9697** Return the size of the header added to each page by this module.
9698*/
drh37c057b2014-12-30 00:57:29 +00009699int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009700
drh5a1fb182016-01-08 19:34:39 +00009701#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009702/*
9703** Return true if the Btree passed as the only argument is sharable.
9704*/
9705int sqlite3BtreeSharable(Btree *p){
9706 return p->sharable;
9707}
dan272989b2016-07-06 10:12:02 +00009708
9709/*
9710** Return the number of connections to the BtShared object accessed by
9711** the Btree handle passed as the only argument. For private caches
9712** this is always 1. For shared caches it may be 1 or greater.
9713*/
9714int sqlite3BtreeConnectionCount(Btree *p){
9715 testcase( p->sharable );
9716 return p->pBt->nRef;
9717}
drh5a1fb182016-01-08 19:34:39 +00009718#endif