blob: be6c0dd1716de8b0b67a9fcc929d21f85916df7b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000332 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000502 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000503 i64 iRow, /* The rowid that might be changing */
504 int isClearTable /* True if all rows are being deleted */
505){
506 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000507 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000508 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000509 pBtree->hasIncrblobCur = 0;
510 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
511 if( (p->curFlags & BTCF_Incrblob)!=0 ){
512 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000513 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000514 p->eState = CURSOR_INVALID;
515 }
danielk197796d48e92009-06-29 06:00:37 +0000516 }
517 }
518}
519
danielk197792d4d7a2007-05-04 12:05:56 +0000520#else
dan5a500af2014-03-11 20:33:04 +0000521 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000522 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000523#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000524
drh980b1a72006-08-16 16:42:48 +0000525/*
danielk1977bea2a942009-01-20 17:06:27 +0000526** Set bit pgno of the BtShared.pHasContent bitvec. This is called
527** when a page that previously contained data becomes a free-list leaf
528** page.
529**
530** The BtShared.pHasContent bitvec exists to work around an obscure
531** bug caused by the interaction of two useful IO optimizations surrounding
532** free-list leaf pages:
533**
534** 1) When all data is deleted from a page and the page becomes
535** a free-list leaf page, the page is not written to the database
536** (as free-list leaf pages contain no meaningful data). Sometimes
537** such a page is not even journalled (as it will not be modified,
538** why bother journalling it?).
539**
540** 2) When a free-list leaf page is reused, its content is not read
541** from the database or written to the journal file (why should it
542** be, if it is not at all meaningful?).
543**
544** By themselves, these optimizations work fine and provide a handy
545** performance boost to bulk delete or insert operations. However, if
546** a page is moved to the free-list and then reused within the same
547** transaction, a problem comes up. If the page is not journalled when
548** it is moved to the free-list and it is also not journalled when it
549** is extracted from the free-list and reused, then the original data
550** may be lost. In the event of a rollback, it may not be possible
551** to restore the database to its original configuration.
552**
553** The solution is the BtShared.pHasContent bitvec. Whenever a page is
554** moved to become a free-list leaf page, the corresponding bit is
555** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000556** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000557** set in BtShared.pHasContent. The contents of the bitvec are cleared
558** at the end of every transaction.
559*/
560static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
561 int rc = SQLITE_OK;
562 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000563 assert( pgno<=pBt->nPage );
564 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000565 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000566 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000567 }
568 }
569 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
570 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
571 }
572 return rc;
573}
574
575/*
576** Query the BtShared.pHasContent vector.
577**
578** This function is called when a free-list leaf page is removed from the
579** free-list for reuse. It returns false if it is safe to retrieve the
580** page from the pager layer with the 'no-content' flag set. True otherwise.
581*/
582static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
583 Bitvec *p = pBt->pHasContent;
584 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
585}
586
587/*
588** Clear (destroy) the BtShared.pHasContent bitvec. This should be
589** invoked at the conclusion of each write-transaction.
590*/
591static void btreeClearHasContent(BtShared *pBt){
592 sqlite3BitvecDestroy(pBt->pHasContent);
593 pBt->pHasContent = 0;
594}
595
596/*
drh138eeeb2013-03-27 03:15:23 +0000597** Release all of the apPage[] pages for a cursor.
598*/
599static void btreeReleaseAllCursorPages(BtCursor *pCur){
600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
606}
607
danf0ee1d32015-09-12 19:26:11 +0000608/*
609** The cursor passed as the only argument must point to a valid entry
610** when this function is called (i.e. have eState==CURSOR_VALID). This
611** function saves the current cursor key in variables pCur->nKey and
612** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
613** code otherwise.
614**
615** If the cursor is open on an intkey table, then the integer key
616** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
617** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
618** set to point to a malloced buffer pCur->nKey bytes in size containing
619** the key.
620*/
621static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000622 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000623 assert( CURSOR_VALID==pCur->eState );
624 assert( 0==pCur->pKey );
625 assert( cursorHoldsMutex(pCur) );
626
drha7c90c42016-06-04 20:37:10 +0000627 if( pCur->curIntKey ){
628 /* Only the rowid is required for a table btree */
629 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
630 }else{
631 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000632 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000633 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000634 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000635 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000636 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000637 if( rc==SQLITE_OK ){
638 pCur->pKey = pKey;
639 }else{
640 sqlite3_free(pKey);
641 }
642 }else{
mistachkinfad30392016-02-13 23:43:46 +0000643 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000644 }
645 }
646 assert( !pCur->curIntKey || !pCur->pKey );
647 return rc;
648}
drh138eeeb2013-03-27 03:15:23 +0000649
650/*
drh980b1a72006-08-16 16:42:48 +0000651** Save the current cursor position in the variables BtCursor.nKey
652** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000653**
654** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
655** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000656*/
657static int saveCursorPosition(BtCursor *pCur){
658 int rc;
659
drhd2f83132015-03-25 17:35:01 +0000660 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000661 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000662 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000663
drhd2f83132015-03-25 17:35:01 +0000664 if( pCur->eState==CURSOR_SKIPNEXT ){
665 pCur->eState = CURSOR_VALID;
666 }else{
667 pCur->skipNext = 0;
668 }
drh980b1a72006-08-16 16:42:48 +0000669
danf0ee1d32015-09-12 19:26:11 +0000670 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000671 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000672 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000673 pCur->eState = CURSOR_REQUIRESEEK;
674 }
675
dane755e102015-09-30 12:59:12 +0000676 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000677 return rc;
678}
679
drh637f3d82014-08-22 22:26:07 +0000680/* Forward reference */
681static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
682
drh980b1a72006-08-16 16:42:48 +0000683/*
drh0ee3dbe2009-10-16 15:05:18 +0000684** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000685** the table with root-page iRoot. "Saving the cursor position" means that
686** the location in the btree is remembered in such a way that it can be
687** moved back to the same spot after the btree has been modified. This
688** routine is called just before cursor pExcept is used to modify the
689** table, for example in BtreeDelete() or BtreeInsert().
690**
drh27fb7462015-06-30 02:47:36 +0000691** If there are two or more cursors on the same btree, then all such
692** cursors should have their BTCF_Multiple flag set. The btreeCursor()
693** routine enforces that rule. This routine only needs to be called in
694** the uncommon case when pExpect has the BTCF_Multiple flag set.
695**
696** If pExpect!=NULL and if no other cursors are found on the same root-page,
697** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
698** pointless call to this routine.
699**
drh637f3d82014-08-22 22:26:07 +0000700** Implementation note: This routine merely checks to see if any cursors
701** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
702** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000703*/
704static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
705 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000706 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000707 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000708 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000709 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
710 }
drh27fb7462015-06-30 02:47:36 +0000711 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
712 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
713 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000714}
715
716/* This helper routine to saveAllCursors does the actual work of saving
717** the cursors if and when a cursor is found that actually requires saving.
718** The common case is that no cursors need to be saved, so this routine is
719** broken out from its caller to avoid unnecessary stack pointer movement.
720*/
721static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000722 BtCursor *p, /* The first cursor that needs saving */
723 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
724 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000725){
726 do{
drh138eeeb2013-03-27 03:15:23 +0000727 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000728 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000729 int rc = saveCursorPosition(p);
730 if( SQLITE_OK!=rc ){
731 return rc;
732 }
733 }else{
734 testcase( p->iPage>0 );
735 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000736 }
737 }
drh637f3d82014-08-22 22:26:07 +0000738 p = p->pNext;
739 }while( p );
drh980b1a72006-08-16 16:42:48 +0000740 return SQLITE_OK;
741}
742
743/*
drhbf700f32007-03-31 02:36:44 +0000744** Clear the current cursor position.
745*/
danielk1977be51a652008-10-08 17:58:48 +0000746void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000747 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000748 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000749 pCur->pKey = 0;
750 pCur->eState = CURSOR_INVALID;
751}
752
753/*
danielk19773509a652009-07-06 18:56:13 +0000754** In this version of BtreeMoveto, pKey is a packed index record
755** such as is generated by the OP_MakeRecord opcode. Unpack the
756** record and then call BtreeMovetoUnpacked() to do the work.
757*/
758static int btreeMoveto(
759 BtCursor *pCur, /* Cursor open on the btree to be searched */
760 const void *pKey, /* Packed key if the btree is an index */
761 i64 nKey, /* Integer key for tables. Size of pKey for indices */
762 int bias, /* Bias search to the high end */
763 int *pRes /* Write search results here */
764){
765 int rc; /* Status code */
766 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000767
768 if( pKey ){
769 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000770 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000771 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000772 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000773 if( pIdxKey->nField==0 ){
drhcc97ca42017-06-07 22:32:59 +0000774 rc = SQLITE_CORRUPT_PGNO(pCur->apPage[pCur->iPage]->pgno);
drha582b012016-12-21 19:45:54 +0000775 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000776 }
danielk19773509a652009-07-06 18:56:13 +0000777 }else{
778 pIdxKey = 0;
779 }
780 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000781moveto_done:
782 if( pIdxKey ){
783 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000784 }
785 return rc;
786}
787
788/*
drh980b1a72006-08-16 16:42:48 +0000789** Restore the cursor to the position it was in (or as close to as possible)
790** when saveCursorPosition() was called. Note that this call deletes the
791** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000792** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000793** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000794*/
danielk197730548662009-07-09 05:07:37 +0000795static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000796 int rc;
drhd2f83132015-03-25 17:35:01 +0000797 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000798 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000799 assert( pCur->eState>=CURSOR_REQUIRESEEK );
800 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000801 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000802 }
drh980b1a72006-08-16 16:42:48 +0000803 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000804 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000805 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000806 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000807 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000808 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000809 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000810 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
811 pCur->eState = CURSOR_SKIPNEXT;
812 }
drh980b1a72006-08-16 16:42:48 +0000813 }
814 return rc;
815}
816
drha3460582008-07-11 21:02:53 +0000817#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000818 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000819 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000820 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000821
drha3460582008-07-11 21:02:53 +0000822/*
drh6848dad2014-08-22 23:33:03 +0000823** Determine whether or not a cursor has moved from the position where
824** it was last placed, or has been invalidated for any other reason.
825** Cursors can move when the row they are pointing at is deleted out
826** from under them, for example. Cursor might also move if a btree
827** is rebalanced.
drha3460582008-07-11 21:02:53 +0000828**
drh6848dad2014-08-22 23:33:03 +0000829** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000830**
drh6848dad2014-08-22 23:33:03 +0000831** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
832** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000833*/
drh6848dad2014-08-22 23:33:03 +0000834int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000835 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000836}
837
838/*
839** This routine restores a cursor back to its original position after it
840** has been moved by some outside activity (such as a btree rebalance or
841** a row having been deleted out from under the cursor).
842**
843** On success, the *pDifferentRow parameter is false if the cursor is left
844** pointing at exactly the same row. *pDifferntRow is the row the cursor
845** was pointing to has been deleted, forcing the cursor to point to some
846** nearby row.
847**
848** This routine should only be called for a cursor that just returned
849** TRUE from sqlite3BtreeCursorHasMoved().
850*/
851int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000852 int rc;
853
drh6848dad2014-08-22 23:33:03 +0000854 assert( pCur!=0 );
855 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000856 rc = restoreCursorPosition(pCur);
857 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000858 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000859 return rc;
860 }
drh606a3572015-03-25 18:29:10 +0000861 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000862 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000863 }else{
drh606a3572015-03-25 18:29:10 +0000864 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000865 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000866 }
867 return SQLITE_OK;
868}
869
drhf7854c72015-10-27 13:24:37 +0000870#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000871/*
drh0df57012015-08-14 15:05:55 +0000872** Provide hints to the cursor. The particular hint given (and the type
873** and number of the varargs parameters) is determined by the eHintType
874** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000875*/
drh0df57012015-08-14 15:05:55 +0000876void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000877 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000878}
drhf7854c72015-10-27 13:24:37 +0000879#endif
880
881/*
882** Provide flag hints to the cursor.
883*/
884void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
885 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
886 pCur->hints = x;
887}
888
drh28935362013-12-07 20:39:19 +0000889
danielk1977599fcba2004-11-08 07:13:13 +0000890#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000891/*
drha3152892007-05-05 11:48:52 +0000892** Given a page number of a regular database page, return the page
893** number for the pointer-map page that contains the entry for the
894** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000895**
896** Return 0 (not a valid page) for pgno==1 since there is
897** no pointer map associated with page 1. The integrity_check logic
898** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000899*/
danielk1977266664d2006-02-10 08:24:21 +0000900static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000901 int nPagesPerMapPage;
902 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000904 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000905 nPagesPerMapPage = (pBt->usableSize/5)+1;
906 iPtrMap = (pgno-2)/nPagesPerMapPage;
907 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000908 if( ret==PENDING_BYTE_PAGE(pBt) ){
909 ret++;
910 }
911 return ret;
912}
danielk1977a19df672004-11-03 11:37:07 +0000913
danielk1977afcdd022004-10-31 16:25:42 +0000914/*
danielk1977afcdd022004-10-31 16:25:42 +0000915** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000916**
917** This routine updates the pointer map entry for page number 'key'
918** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000919**
920** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
921** a no-op. If an error occurs, the appropriate error code is written
922** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000923*/
drh98add2e2009-07-20 17:11:49 +0000924static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000925 DbPage *pDbPage; /* The pointer map page */
926 u8 *pPtrmap; /* The pointer map data */
927 Pgno iPtrmap; /* The pointer map page number */
928 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000929 int rc; /* Return code from subfunctions */
930
931 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000932
drh1fee73e2007-08-29 04:00:57 +0000933 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000934 /* The master-journal page number must never be used as a pointer map page */
935 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
936
danielk1977ac11ee62005-01-15 12:45:51 +0000937 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000938 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000939 *pRC = SQLITE_CORRUPT_BKPT;
940 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000941 }
danielk1977266664d2006-02-10 08:24:21 +0000942 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000943 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000944 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000945 *pRC = rc;
946 return;
danielk1977afcdd022004-10-31 16:25:42 +0000947 }
danielk19778c666b12008-07-18 09:34:57 +0000948 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000949 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000950 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000951 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000952 }
drhfc243732011-05-17 15:21:56 +0000953 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000954 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000955
drh615ae552005-01-16 23:21:00 +0000956 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
957 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000958 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000959 if( rc==SQLITE_OK ){
960 pPtrmap[offset] = eType;
961 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000962 }
danielk1977afcdd022004-10-31 16:25:42 +0000963 }
964
drh4925a552009-07-07 11:39:58 +0000965ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000966 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000967}
968
969/*
970** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000971**
972** This routine retrieves the pointer map entry for page 'key', writing
973** the type and parent page number to *pEType and *pPgno respectively.
974** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000975*/
danielk1977aef0bf62005-12-30 16:28:01 +0000976static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000977 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000978 int iPtrmap; /* Pointer map page index */
979 u8 *pPtrmap; /* Pointer map page data */
980 int offset; /* Offset of entry in pointer map */
981 int rc;
982
drh1fee73e2007-08-29 04:00:57 +0000983 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000984
danielk1977266664d2006-02-10 08:24:21 +0000985 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000986 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000987 if( rc!=0 ){
988 return rc;
989 }
danielk19773b8a05f2007-03-19 17:44:26 +0000990 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000991
danielk19778c666b12008-07-18 09:34:57 +0000992 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000993 if( offset<0 ){
994 sqlite3PagerUnref(pDbPage);
995 return SQLITE_CORRUPT_BKPT;
996 }
997 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000998 assert( pEType!=0 );
999 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001000 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001001
danielk19773b8a05f2007-03-19 17:44:26 +00001002 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001003 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001004 return SQLITE_OK;
1005}
1006
danielk197785d90ca2008-07-19 14:25:15 +00001007#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001008 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001009 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001010 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001011#endif
danielk1977afcdd022004-10-31 16:25:42 +00001012
drh0d316a42002-08-11 20:10:47 +00001013/*
drh271efa52004-05-30 19:19:05 +00001014** Given a btree page and a cell index (0 means the first cell on
1015** the page, 1 means the second cell, and so forth) return a pointer
1016** to the cell content.
1017**
drhf44890a2015-06-27 03:58:15 +00001018** findCellPastPtr() does the same except it skips past the initial
1019** 4-byte child pointer found on interior pages, if there is one.
1020**
drh271efa52004-05-30 19:19:05 +00001021** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001022*/
drh1688c862008-07-18 02:44:17 +00001023#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001024 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001025#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001026 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001027
drh43605152004-05-29 21:46:49 +00001028
1029/*
drh5fa60512015-06-19 17:19:34 +00001030** This is common tail processing for btreeParseCellPtr() and
1031** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1032** on a single B-tree page. Make necessary adjustments to the CellInfo
1033** structure.
drh43605152004-05-29 21:46:49 +00001034*/
drh5fa60512015-06-19 17:19:34 +00001035static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1036 MemPage *pPage, /* Page containing the cell */
1037 u8 *pCell, /* Pointer to the cell text. */
1038 CellInfo *pInfo /* Fill in this structure */
1039){
1040 /* If the payload will not fit completely on the local page, we have
1041 ** to decide how much to store locally and how much to spill onto
1042 ** overflow pages. The strategy is to minimize the amount of unused
1043 ** space on overflow pages while keeping the amount of local storage
1044 ** in between minLocal and maxLocal.
1045 **
1046 ** Warning: changing the way overflow payload is distributed in any
1047 ** way will result in an incompatible file format.
1048 */
1049 int minLocal; /* Minimum amount of payload held locally */
1050 int maxLocal; /* Maximum amount of payload held locally */
1051 int surplus; /* Overflow payload available for local storage */
1052
1053 minLocal = pPage->minLocal;
1054 maxLocal = pPage->maxLocal;
1055 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1056 testcase( surplus==maxLocal );
1057 testcase( surplus==maxLocal+1 );
1058 if( surplus <= maxLocal ){
1059 pInfo->nLocal = (u16)surplus;
1060 }else{
1061 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001062 }
drh45ac1c72015-12-18 03:59:16 +00001063 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001064}
1065
1066/*
drh5fa60512015-06-19 17:19:34 +00001067** The following routines are implementations of the MemPage.xParseCell()
1068** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001069**
drh5fa60512015-06-19 17:19:34 +00001070** Parse a cell content block and fill in the CellInfo structure.
1071**
1072** btreeParseCellPtr() => table btree leaf nodes
1073** btreeParseCellNoPayload() => table btree internal nodes
1074** btreeParseCellPtrIndex() => index btree nodes
1075**
1076** There is also a wrapper function btreeParseCell() that works for
1077** all MemPage types and that references the cell by index rather than
1078** by pointer.
drh43605152004-05-29 21:46:49 +00001079*/
drh5fa60512015-06-19 17:19:34 +00001080static void btreeParseCellPtrNoPayload(
1081 MemPage *pPage, /* Page containing the cell */
1082 u8 *pCell, /* Pointer to the cell text. */
1083 CellInfo *pInfo /* Fill in this structure */
1084){
1085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1086 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001087 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001088#ifndef SQLITE_DEBUG
1089 UNUSED_PARAMETER(pPage);
1090#endif
drh5fa60512015-06-19 17:19:34 +00001091 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1092 pInfo->nPayload = 0;
1093 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001094 pInfo->pPayload = 0;
1095 return;
1096}
danielk197730548662009-07-09 05:07:37 +00001097static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001098 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001099 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001100 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001101){
drh3e28ff52014-09-24 00:59:08 +00001102 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001103 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001104 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001105
drh1fee73e2007-08-29 04:00:57 +00001106 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001107 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001108 assert( pPage->intKeyLeaf );
1109 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001110 pIter = pCell;
1111
1112 /* The next block of code is equivalent to:
1113 **
1114 ** pIter += getVarint32(pIter, nPayload);
1115 **
1116 ** The code is inlined to avoid a function call.
1117 */
1118 nPayload = *pIter;
1119 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001120 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001121 nPayload &= 0x7f;
1122 do{
1123 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1124 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001125 }
drh56cb04e2015-06-19 18:24:37 +00001126 pIter++;
1127
1128 /* The next block of code is equivalent to:
1129 **
1130 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1131 **
1132 ** The code is inlined to avoid a function call.
1133 */
1134 iKey = *pIter;
1135 if( iKey>=0x80 ){
1136 u8 *pEnd = &pIter[7];
1137 iKey &= 0x7f;
1138 while(1){
1139 iKey = (iKey<<7) | (*++pIter & 0x7f);
1140 if( (*pIter)<0x80 ) break;
1141 if( pIter>=pEnd ){
1142 iKey = (iKey<<8) | *++pIter;
1143 break;
1144 }
1145 }
1146 }
1147 pIter++;
1148
1149 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001150 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001151 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001152 testcase( nPayload==pPage->maxLocal );
1153 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001154 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001155 /* This is the (easy) common case where the entire payload fits
1156 ** on the local page. No overflow is required.
1157 */
drhab1cc582014-09-23 21:25:19 +00001158 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1159 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001160 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001161 }else{
drh5fa60512015-06-19 17:19:34 +00001162 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001163 }
drh3aac2dd2004-04-26 14:10:20 +00001164}
drh5fa60512015-06-19 17:19:34 +00001165static void btreeParseCellPtrIndex(
1166 MemPage *pPage, /* Page containing the cell */
1167 u8 *pCell, /* Pointer to the cell text. */
1168 CellInfo *pInfo /* Fill in this structure */
1169){
1170 u8 *pIter; /* For scanning through pCell */
1171 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001172
drh5fa60512015-06-19 17:19:34 +00001173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1174 assert( pPage->leaf==0 || pPage->leaf==1 );
1175 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001176 pIter = pCell + pPage->childPtrSize;
1177 nPayload = *pIter;
1178 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001179 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001180 nPayload &= 0x7f;
1181 do{
1182 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1183 }while( *(pIter)>=0x80 && pIter<pEnd );
1184 }
1185 pIter++;
1186 pInfo->nKey = nPayload;
1187 pInfo->nPayload = nPayload;
1188 pInfo->pPayload = pIter;
1189 testcase( nPayload==pPage->maxLocal );
1190 testcase( nPayload==pPage->maxLocal+1 );
1191 if( nPayload<=pPage->maxLocal ){
1192 /* This is the (easy) common case where the entire payload fits
1193 ** on the local page. No overflow is required.
1194 */
1195 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1196 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1197 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001198 }else{
1199 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001200 }
1201}
danielk197730548662009-07-09 05:07:37 +00001202static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001203 MemPage *pPage, /* Page containing the cell */
1204 int iCell, /* The cell index. First cell is 0 */
1205 CellInfo *pInfo /* Fill in this structure */
1206){
drh5fa60512015-06-19 17:19:34 +00001207 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001208}
drh3aac2dd2004-04-26 14:10:20 +00001209
1210/*
drh5fa60512015-06-19 17:19:34 +00001211** The following routines are implementations of the MemPage.xCellSize
1212** method.
1213**
drh43605152004-05-29 21:46:49 +00001214** Compute the total number of bytes that a Cell needs in the cell
1215** data area of the btree-page. The return number includes the cell
1216** data header and the local payload, but not any overflow page or
1217** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001218**
drh5fa60512015-06-19 17:19:34 +00001219** cellSizePtrNoPayload() => table internal nodes
1220** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001221*/
danielk1977ae5558b2009-04-29 11:31:47 +00001222static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001223 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1224 u8 *pEnd; /* End mark for a varint */
1225 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001226
1227#ifdef SQLITE_DEBUG
1228 /* The value returned by this function should always be the same as
1229 ** the (CellInfo.nSize) value found by doing a full parse of the
1230 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1231 ** this function verifies that this invariant is not violated. */
1232 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001233 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001234#endif
1235
drh3e28ff52014-09-24 00:59:08 +00001236 nSize = *pIter;
1237 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001238 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001239 nSize &= 0x7f;
1240 do{
1241 nSize = (nSize<<7) | (*++pIter & 0x7f);
1242 }while( *(pIter)>=0x80 && pIter<pEnd );
1243 }
1244 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001245 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001246 /* pIter now points at the 64-bit integer key value, a variable length
1247 ** integer. The following block moves pIter to point at the first byte
1248 ** past the end of the key value. */
1249 pEnd = &pIter[9];
1250 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001251 }
drh0a45c272009-07-08 01:49:11 +00001252 testcase( nSize==pPage->maxLocal );
1253 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001254 if( nSize<=pPage->maxLocal ){
1255 nSize += (u32)(pIter - pCell);
1256 if( nSize<4 ) nSize = 4;
1257 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001258 int minLocal = pPage->minLocal;
1259 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001260 testcase( nSize==pPage->maxLocal );
1261 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001262 if( nSize>pPage->maxLocal ){
1263 nSize = minLocal;
1264 }
drh3e28ff52014-09-24 00:59:08 +00001265 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001266 }
drhdc41d602014-09-22 19:51:35 +00001267 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001268 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001269}
drh25ada072015-06-19 15:07:14 +00001270static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1271 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1272 u8 *pEnd; /* End mark for a varint */
1273
1274#ifdef SQLITE_DEBUG
1275 /* The value returned by this function should always be the same as
1276 ** the (CellInfo.nSize) value found by doing a full parse of the
1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278 ** this function verifies that this invariant is not violated. */
1279 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001280 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001281#else
1282 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001283#endif
1284
1285 assert( pPage->childPtrSize==4 );
1286 pEnd = pIter + 9;
1287 while( (*pIter++)&0x80 && pIter<pEnd );
1288 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1289 return (u16)(pIter - pCell);
1290}
1291
drh0ee3dbe2009-10-16 15:05:18 +00001292
1293#ifdef SQLITE_DEBUG
1294/* This variation on cellSizePtr() is used inside of assert() statements
1295** only. */
drha9121e42008-02-19 14:59:35 +00001296static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001297 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001298}
danielk1977bc6ada42004-06-30 08:20:16 +00001299#endif
drh3b7511c2001-05-26 13:15:44 +00001300
danielk197779a40da2005-01-16 08:00:01 +00001301#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001302/*
danielk197726836652005-01-17 01:33:13 +00001303** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001304** to an overflow page, insert an entry into the pointer-map
1305** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001306*/
drh98add2e2009-07-20 17:11:49 +00001307static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001308 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001309 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001310 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001311 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001312 if( info.nLocal<info.nPayload ){
1313 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001314 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001315 }
danielk1977ac11ee62005-01-15 12:45:51 +00001316}
danielk197779a40da2005-01-16 08:00:01 +00001317#endif
1318
danielk1977ac11ee62005-01-15 12:45:51 +00001319
drhda200cc2004-05-09 11:51:38 +00001320/*
dane6d065a2017-02-24 19:58:22 +00001321** Defragment the page given. This routine reorganizes cells within the
1322** page so that there are no free-blocks on the free-block list.
1323**
1324** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1325** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001326**
1327** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1328** b-tree page so that there are no freeblocks or fragment bytes, all
1329** unused bytes are contained in the unallocated space region, and all
1330** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001331*/
dane6d065a2017-02-24 19:58:22 +00001332static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001333 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001334 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001335 int hdr; /* Offset to the page header */
1336 int size; /* Size of a cell */
1337 int usableSize; /* Number of usable bytes on a page */
1338 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001339 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001340 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001341 unsigned char *data; /* The page data */
1342 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001343 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001344 int iCellFirst; /* First allowable cell index */
1345 int iCellLast; /* Last possible cell index */
1346
danielk19773b8a05f2007-03-19 17:44:26 +00001347 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001348 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001349 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001350 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001351 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001352 temp = 0;
1353 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001354 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001355 cellOffset = pPage->cellOffset;
1356 nCell = pPage->nCell;
1357 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001358 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001359 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001360
1361 /* This block handles pages with two or fewer free blocks and nMaxFrag
1362 ** or fewer fragmented bytes. In this case it is faster to move the
1363 ** two (or one) blocks of cells using memmove() and add the required
1364 ** offsets to each pointer in the cell-pointer array than it is to
1365 ** reconstruct the entire page. */
1366 if( (int)data[hdr+7]<=nMaxFrag ){
1367 int iFree = get2byte(&data[hdr+1]);
1368 if( iFree ){
1369 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001370
1371 /* pageFindSlot() has already verified that free blocks are sorted
1372 ** in order of offset within the page, and that no block extends
1373 ** past the end of the page. Provided the two free slots do not
1374 ** overlap, this guarantees that the memmove() calls below will not
1375 ** overwrite the usableSize byte buffer, even if the database page
1376 ** is corrupt. */
1377 assert( iFree2==0 || iFree2>iFree );
1378 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1379 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1380
dane6d065a2017-02-24 19:58:22 +00001381 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1382 u8 *pEnd = &data[cellOffset + nCell*2];
1383 u8 *pAddr;
1384 int sz2 = 0;
1385 int sz = get2byte(&data[iFree+2]);
1386 int top = get2byte(&data[hdr+5]);
1387 if( iFree2 ){
drhcc97ca42017-06-07 22:32:59 +00001388 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
dane6d065a2017-02-24 19:58:22 +00001389 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001390 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001391 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1392 sz += sz2;
1393 }
1394 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001395 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001396 memmove(&data[cbrk], &data[top], iFree-top);
1397 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1398 pc = get2byte(pAddr);
1399 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1400 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1401 }
1402 goto defragment_out;
1403 }
1404 }
1405 }
1406
drh281b21d2008-08-22 12:57:08 +00001407 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001408 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001409 for(i=0; i<nCell; i++){
1410 u8 *pAddr; /* The i-th cell pointer */
1411 pAddr = &data[cellOffset + i*2];
1412 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001413 testcase( pc==iCellFirst );
1414 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001415 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001416 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001417 */
1418 if( pc<iCellFirst || pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001419 return SQLITE_CORRUPT_PGNO(pPage->pgno);
shane0af3f892008-11-12 04:55:34 +00001420 }
drh17146622009-07-07 17:38:38 +00001421 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001422 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001423 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001424 if( cbrk<iCellFirst || pc+size>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001425 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh17146622009-07-07 17:38:38 +00001426 }
drh7157e1d2009-07-09 13:25:32 +00001427 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001428 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001429 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001430 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001431 if( temp==0 ){
1432 int x;
1433 if( cbrk==pc ) continue;
1434 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1435 x = get2byte(&data[hdr+5]);
1436 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1437 src = temp;
1438 }
1439 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001440 }
dane6d065a2017-02-24 19:58:22 +00001441 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001442
1443 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001444 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
drhcc97ca42017-06-07 22:32:59 +00001445 return SQLITE_CORRUPT_PGNO(pPage->pgno);
dan3b2ede12017-02-25 16:24:02 +00001446 }
drh17146622009-07-07 17:38:38 +00001447 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001448 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001449 data[hdr+1] = 0;
1450 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001451 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001452 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001453 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001454}
1455
drha059ad02001-04-17 20:09:11 +00001456/*
dan8e9ba0c2014-10-14 17:27:04 +00001457** Search the free-list on page pPg for space to store a cell nByte bytes in
1458** size. If one can be found, return a pointer to the space and remove it
1459** from the free-list.
1460**
1461** If no suitable space can be found on the free-list, return NULL.
1462**
drhba0f9992014-10-30 20:48:44 +00001463** This function may detect corruption within pPg. If corruption is
1464** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001465**
drhb7580e82015-06-25 18:36:13 +00001466** Slots on the free list that are between 1 and 3 bytes larger than nByte
1467** will be ignored if adding the extra space to the fragmentation count
1468** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001469*/
drhb7580e82015-06-25 18:36:13 +00001470static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001471 const int hdr = pPg->hdrOffset;
1472 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001473 int iAddr = hdr + 1;
1474 int pc = get2byte(&aData[iAddr]);
1475 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001476 int usableSize = pPg->pBt->usableSize;
1477
drhb7580e82015-06-25 18:36:13 +00001478 assert( pc>0 );
1479 do{
dan8e9ba0c2014-10-14 17:27:04 +00001480 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001481 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1482 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001483 if( pc>usableSize-4 || pc<iAddr+4 ){
drhcc97ca42017-06-07 22:32:59 +00001484 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
dan8e9ba0c2014-10-14 17:27:04 +00001485 return 0;
1486 }
drh113762a2014-11-19 16:36:25 +00001487 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1488 ** freeblock form a big-endian integer which is the size of the freeblock
1489 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001490 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001491 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001492 testcase( x==4 );
1493 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001494 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001495 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
drh24dee9d2015-06-02 19:36:29 +00001496 return 0;
1497 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001498 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1499 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001500 if( aData[hdr+7]>57 ) return 0;
1501
dan8e9ba0c2014-10-14 17:27:04 +00001502 /* Remove the slot from the free-list. Update the number of
1503 ** fragmented bytes within the page. */
1504 memcpy(&aData[iAddr], &aData[pc], 2);
1505 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001506 }else{
1507 /* The slot remains on the free-list. Reduce its size to account
1508 ** for the portion used by the new allocation. */
1509 put2byte(&aData[pc+2], x);
1510 }
1511 return &aData[pc + x];
1512 }
drhb7580e82015-06-25 18:36:13 +00001513 iAddr = pc;
1514 pc = get2byte(&aData[pc]);
1515 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001516
1517 return 0;
1518}
1519
1520/*
danielk19776011a752009-04-01 16:25:32 +00001521** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001522** as the first argument. Write into *pIdx the index into pPage->aData[]
1523** of the first byte of allocated space. Return either SQLITE_OK or
1524** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001525**
drh0a45c272009-07-08 01:49:11 +00001526** The caller guarantees that there is sufficient space to make the
1527** allocation. This routine might need to defragment in order to bring
1528** all the space together, however. This routine will avoid using
1529** the first two bytes past the cell pointer area since presumably this
1530** allocation is being made in order to insert a new cell, so we will
1531** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001532*/
drh0a45c272009-07-08 01:49:11 +00001533static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001534 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1535 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001536 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001537 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001538 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001539
danielk19773b8a05f2007-03-19 17:44:26 +00001540 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001541 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001542 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001543 assert( nByte>=0 ); /* Minimum cell size is 4 */
1544 assert( pPage->nFree>=nByte );
1545 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001546 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001547
drh0a45c272009-07-08 01:49:11 +00001548 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1549 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001550 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001551 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1552 ** and the reserved space is zero (the usual value for reserved space)
1553 ** then the cell content offset of an empty page wants to be 65536.
1554 ** However, that integer is too large to be stored in a 2-byte unsigned
1555 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001556 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001557 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001558 if( gap>top ){
1559 if( top==0 && pPage->pBt->usableSize==65536 ){
1560 top = 65536;
1561 }else{
drhcc97ca42017-06-07 22:32:59 +00001562 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh9e572e62004-04-23 23:43:10 +00001563 }
1564 }
drh43605152004-05-29 21:46:49 +00001565
drh4c04f3c2014-08-20 11:56:14 +00001566 /* If there is enough space between gap and top for one more cell pointer
1567 ** array entry offset, and if the freelist is not empty, then search the
1568 ** freelist looking for a free slot big enough to satisfy the request.
1569 */
drh5e2f8b92001-05-28 00:41:15 +00001570 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001571 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001572 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001573 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001574 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001575 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001576 assert( pSpace>=data && (pSpace - data)<65536 );
1577 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001578 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001579 }else if( rc ){
1580 return rc;
drh9e572e62004-04-23 23:43:10 +00001581 }
1582 }
drh43605152004-05-29 21:46:49 +00001583
drh4c04f3c2014-08-20 11:56:14 +00001584 /* The request could not be fulfilled using a freelist slot. Check
1585 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001586 */
1587 testcase( gap+2+nByte==top );
1588 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001589 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001590 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001591 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001592 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001593 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001594 }
1595
1596
drh43605152004-05-29 21:46:49 +00001597 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001598 ** and the cell content area. The btreeInitPage() call has already
1599 ** validated the freelist. Given that the freelist is valid, there
1600 ** is no way that the allocation can extend off the end of the page.
1601 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001602 */
drh0a45c272009-07-08 01:49:11 +00001603 top -= nByte;
drh43605152004-05-29 21:46:49 +00001604 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001605 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001606 *pIdx = top;
1607 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001608}
1609
1610/*
drh9e572e62004-04-23 23:43:10 +00001611** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001612** The first byte of the new free block is pPage->aData[iStart]
1613** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001614**
drh5f5c7532014-08-20 17:56:27 +00001615** Adjacent freeblocks are coalesced.
1616**
1617** Note that even though the freeblock list was checked by btreeInitPage(),
1618** that routine will not detect overlap between cells or freeblocks. Nor
1619** does it detect cells or freeblocks that encrouch into the reserved bytes
1620** at the end of the page. So do additional corruption checks inside this
1621** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001622*/
drh5f5c7532014-08-20 17:56:27 +00001623static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001624 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001625 u16 iFreeBlk; /* Address of the next freeblock */
1626 u8 hdr; /* Page header size. 0 or 100 */
1627 u8 nFrag = 0; /* Reduction in fragmentation */
1628 u16 iOrigSize = iSize; /* Original value of iSize */
1629 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1630 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001631 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001632
drh9e572e62004-04-23 23:43:10 +00001633 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001634 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001635 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001636 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001637 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001638 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001639 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001640
drh5f5c7532014-08-20 17:56:27 +00001641 /* Overwrite deleted information with zeros when the secure_delete
1642 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001643 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001644 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001645 }
drhfcce93f2006-02-22 03:08:32 +00001646
drh5f5c7532014-08-20 17:56:27 +00001647 /* The list of freeblocks must be in ascending order. Find the
1648 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001649 */
drh43605152004-05-29 21:46:49 +00001650 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001651 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001652 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1653 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1654 }else{
drh85f071b2016-09-17 19:34:32 +00001655 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1656 if( iFreeBlk<iPtr+4 ){
1657 if( iFreeBlk==0 ) break;
drhcc97ca42017-06-07 22:32:59 +00001658 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh85f071b2016-09-17 19:34:32 +00001659 }
drh7bc4c452014-08-20 18:43:44 +00001660 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001661 }
drhcc97ca42017-06-07 22:32:59 +00001662 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001663 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1664
1665 /* At this point:
1666 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001667 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001668 **
1669 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1670 */
1671 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1672 nFrag = iFreeBlk - iEnd;
drhcc97ca42017-06-07 22:32:59 +00001673 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001674 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001675 if( iEnd > pPage->pBt->usableSize ){
1676 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1677 }
drh7bc4c452014-08-20 18:43:44 +00001678 iSize = iEnd - iStart;
1679 iFreeBlk = get2byte(&data[iFreeBlk]);
1680 }
1681
drh3f387402014-09-24 01:23:00 +00001682 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1683 ** pointer in the page header) then check to see if iStart should be
1684 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001685 */
1686 if( iPtr>hdr+1 ){
1687 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1688 if( iPtrEnd+3>=iStart ){
drhcc97ca42017-06-07 22:32:59 +00001689 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001690 nFrag += iStart - iPtrEnd;
1691 iSize = iEnd - iPtr;
1692 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001693 }
drh9e572e62004-04-23 23:43:10 +00001694 }
drhcc97ca42017-06-07 22:32:59 +00001695 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001696 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001697 }
drh7bc4c452014-08-20 18:43:44 +00001698 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001699 /* The new freeblock is at the beginning of the cell content area,
1700 ** so just extend the cell content area rather than create another
1701 ** freelist entry */
drhcc97ca42017-06-07 22:32:59 +00001702 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh5f5c7532014-08-20 17:56:27 +00001703 put2byte(&data[hdr+1], iFreeBlk);
1704 put2byte(&data[hdr+5], iEnd);
1705 }else{
1706 /* Insert the new freeblock into the freelist */
1707 put2byte(&data[iPtr], iStart);
1708 put2byte(&data[iStart], iFreeBlk);
1709 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001710 }
drh5f5c7532014-08-20 17:56:27 +00001711 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001712 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001713}
1714
1715/*
drh271efa52004-05-30 19:19:05 +00001716** Decode the flags byte (the first byte of the header) for a page
1717** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001718**
1719** Only the following combinations are supported. Anything different
1720** indicates a corrupt database files:
1721**
1722** PTF_ZERODATA
1723** PTF_ZERODATA | PTF_LEAF
1724** PTF_LEAFDATA | PTF_INTKEY
1725** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001726*/
drh44845222008-07-17 18:39:57 +00001727static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001728 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001729
1730 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001731 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001732 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001733 flagByte &= ~PTF_LEAF;
1734 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001735 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001736 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001737 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001738 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1739 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001740 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001741 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1742 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001743 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001744 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001745 if( pPage->leaf ){
1746 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001747 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001748 }else{
1749 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001750 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001751 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001752 }
drh271efa52004-05-30 19:19:05 +00001753 pPage->maxLocal = pBt->maxLeaf;
1754 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001755 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001756 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1757 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001758 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001759 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1760 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001761 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001762 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001763 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001764 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001765 pPage->maxLocal = pBt->maxLocal;
1766 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001767 }else{
drhfdab0262014-11-20 15:30:50 +00001768 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1769 ** an error. */
drhcc97ca42017-06-07 22:32:59 +00001770 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh271efa52004-05-30 19:19:05 +00001771 }
drhc9166342012-01-05 23:32:06 +00001772 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001773 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001774}
1775
1776/*
drh7e3b0a02001-04-28 16:52:40 +00001777** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001778**
1779** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001780** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001781** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1782** guarantee that the page is well-formed. It only shows that
1783** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001784*/
danielk197730548662009-07-09 05:07:37 +00001785static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001786 int pc; /* Address of a freeblock within pPage->aData[] */
1787 u8 hdr; /* Offset to beginning of page header */
1788 u8 *data; /* Equal to pPage->aData */
1789 BtShared *pBt; /* The main btree structure */
1790 int usableSize; /* Amount of usable space on each page */
1791 u16 cellOffset; /* Offset from start of page to first cell pointer */
1792 int nFree; /* Number of unused bytes on the page */
1793 int top; /* First byte of the cell content area */
1794 int iCellFirst; /* First allowable cell or freeblock offset */
1795 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001796
danielk197771d5d2c2008-09-29 11:49:47 +00001797 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001798 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001799 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001800 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001801 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1802 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001803 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001804
drh14e845a2017-05-25 21:35:56 +00001805 pBt = pPage->pBt;
1806 hdr = pPage->hdrOffset;
1807 data = pPage->aData;
1808 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1809 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001810 if( decodeFlags(pPage, data[hdr]) ){
1811 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1812 }
drh14e845a2017-05-25 21:35:56 +00001813 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1814 pPage->maskPage = (u16)(pBt->pageSize - 1);
1815 pPage->nOverflow = 0;
1816 usableSize = pBt->usableSize;
1817 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1818 pPage->aDataEnd = &data[usableSize];
1819 pPage->aCellIdx = &data[cellOffset];
1820 pPage->aDataOfst = &data[pPage->childPtrSize];
1821 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1822 ** the start of the cell content area. A zero value for this integer is
1823 ** interpreted as 65536. */
1824 top = get2byteNotZero(&data[hdr+5]);
1825 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1826 ** number of cells on the page. */
1827 pPage->nCell = get2byte(&data[hdr+3]);
1828 if( pPage->nCell>MX_CELL(pBt) ){
1829 /* To many cells for a single page. The page must be corrupt */
drhcc97ca42017-06-07 22:32:59 +00001830 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001831 }
1832 testcase( pPage->nCell==MX_CELL(pBt) );
1833 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1834 ** possible for a root page of a table that contains no rows) then the
1835 ** offset to the cell content area will equal the page size minus the
1836 ** bytes of reserved space. */
1837 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001838
drh14e845a2017-05-25 21:35:56 +00001839 /* A malformed database page might cause us to read past the end
1840 ** of page when parsing a cell.
1841 **
1842 ** The following block of code checks early to see if a cell extends
1843 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1844 ** returned if it does.
1845 */
1846 iCellFirst = cellOffset + 2*pPage->nCell;
1847 iCellLast = usableSize - 4;
1848 if( pBt->db->flags & SQLITE_CellSizeCk ){
1849 int i; /* Index into the cell pointer array */
1850 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001851
drh14e845a2017-05-25 21:35:56 +00001852 if( !pPage->leaf ) iCellLast--;
1853 for(i=0; i<pPage->nCell; i++){
1854 pc = get2byteAligned(&data[cellOffset+i*2]);
1855 testcase( pc==iCellFirst );
1856 testcase( pc==iCellLast );
1857 if( pc<iCellFirst || pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001858 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh69e931e2009-06-03 21:04:35 +00001859 }
drh14e845a2017-05-25 21:35:56 +00001860 sz = pPage->xCellSize(pPage, &data[pc]);
1861 testcase( pc+sz==usableSize );
1862 if( pc+sz>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001863 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh77dc0ed2016-12-12 01:30:01 +00001864 }
danielk1977eaa06f62008-09-18 17:34:44 +00001865 }
drh14e845a2017-05-25 21:35:56 +00001866 if( !pPage->leaf ) iCellLast++;
1867 }
danielk197793c829c2009-06-03 17:26:17 +00001868
drh14e845a2017-05-25 21:35:56 +00001869 /* Compute the total free space on the page
1870 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1871 ** start of the first freeblock on the page, or is zero if there are no
1872 ** freeblocks. */
1873 pc = get2byte(&data[hdr+1]);
1874 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1875 if( pc>0 ){
1876 u32 next, size;
1877 if( pc<iCellFirst ){
1878 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1879 ** always be at least one cell before the first freeblock.
1880 */
drhcc97ca42017-06-07 22:32:59 +00001881 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhee696e22004-08-30 16:52:17 +00001882 }
drh14e845a2017-05-25 21:35:56 +00001883 while( 1 ){
1884 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001885 /* Freeblock off the end of the page */
1886 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001887 }
1888 next = get2byte(&data[pc]);
1889 size = get2byte(&data[pc+2]);
1890 nFree = nFree + size;
1891 if( next<=pc+size+3 ) break;
1892 pc = next;
1893 }
1894 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001895 /* Freeblock not in ascending order */
1896 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001897 }
1898 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001899 /* Last freeblock extends past page end */
1900 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001901 }
danielk197771d5d2c2008-09-29 11:49:47 +00001902 }
drh14e845a2017-05-25 21:35:56 +00001903
1904 /* At this point, nFree contains the sum of the offset to the start
1905 ** of the cell-content area plus the number of free bytes within
1906 ** the cell-content area. If this is greater than the usable-size
1907 ** of the page, then the page must be corrupted. This check also
1908 ** serves to verify that the offset to the start of the cell-content
1909 ** area, according to the page header, lies within the page.
1910 */
1911 if( nFree>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001912 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001913 }
1914 pPage->nFree = (u16)(nFree - iCellFirst);
1915 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001916 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001917}
1918
1919/*
drh8b2f49b2001-06-08 00:21:52 +00001920** Set up a raw page so that it looks like a database page holding
1921** no entries.
drhbd03cae2001-06-02 02:40:57 +00001922*/
drh9e572e62004-04-23 23:43:10 +00001923static void zeroPage(MemPage *pPage, int flags){
1924 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001925 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001926 u8 hdr = pPage->hdrOffset;
1927 u16 first;
drh9e572e62004-04-23 23:43:10 +00001928
danielk19773b8a05f2007-03-19 17:44:26 +00001929 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001930 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1931 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001932 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001933 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001934 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001935 memset(&data[hdr], 0, pBt->usableSize - hdr);
1936 }
drh1bd10f82008-12-10 21:19:56 +00001937 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001938 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001939 memset(&data[hdr+1], 0, 4);
1940 data[hdr+7] = 0;
1941 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001942 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001943 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001944 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001945 pPage->aDataEnd = &data[pBt->usableSize];
1946 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001947 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001948 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001949 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1950 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001951 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001952 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001953}
1954
drh897a8202008-09-18 01:08:15 +00001955
1956/*
1957** Convert a DbPage obtained from the pager into a MemPage used by
1958** the btree layer.
1959*/
1960static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1961 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001962 if( pgno!=pPage->pgno ){
1963 pPage->aData = sqlite3PagerGetData(pDbPage);
1964 pPage->pDbPage = pDbPage;
1965 pPage->pBt = pBt;
1966 pPage->pgno = pgno;
1967 pPage->hdrOffset = pgno==1 ? 100 : 0;
1968 }
1969 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001970 return pPage;
1971}
1972
drhbd03cae2001-06-02 02:40:57 +00001973/*
drh3aac2dd2004-04-26 14:10:20 +00001974** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001975** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001976**
drh7e8c6f12015-05-28 03:28:27 +00001977** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1978** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001979** to fetch the content. Just fill in the content with zeros for now.
1980** If in the future we call sqlite3PagerWrite() on this page, that
1981** means we have started to be concerned about content and the disk
1982** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001983*/
danielk197730548662009-07-09 05:07:37 +00001984static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001985 BtShared *pBt, /* The btree */
1986 Pgno pgno, /* Number of the page to fetch */
1987 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001988 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001989){
drh3aac2dd2004-04-26 14:10:20 +00001990 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001991 DbPage *pDbPage;
1992
drhb00fc3b2013-08-21 23:42:32 +00001993 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001994 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001995 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001996 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001997 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001998 return SQLITE_OK;
1999}
2000
2001/*
danielk1977bea2a942009-01-20 17:06:27 +00002002** Retrieve a page from the pager cache. If the requested page is not
2003** already in the pager cache return NULL. Initialize the MemPage.pBt and
2004** MemPage.aData elements if needed.
2005*/
2006static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2007 DbPage *pDbPage;
2008 assert( sqlite3_mutex_held(pBt->mutex) );
2009 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2010 if( pDbPage ){
2011 return btreePageFromDbPage(pDbPage, pgno, pBt);
2012 }
2013 return 0;
2014}
2015
2016/*
danielk197789d40042008-11-17 14:20:56 +00002017** Return the size of the database file in pages. If there is any kind of
2018** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002019*/
drhb1299152010-03-30 22:58:33 +00002020static Pgno btreePagecount(BtShared *pBt){
2021 return pBt->nPage;
2022}
2023u32 sqlite3BtreeLastPage(Btree *p){
2024 assert( sqlite3BtreeHoldsMutex(p) );
2025 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002026 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002027}
2028
2029/*
drh28f58dd2015-06-27 19:45:03 +00002030** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002031**
drh15a00212015-06-27 20:55:00 +00002032** If pCur!=0 then the page is being fetched as part of a moveToChild()
2033** call. Do additional sanity checking on the page in this case.
2034** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002035**
2036** The page is fetched as read-write unless pCur is not NULL and is
2037** a read-only cursor.
2038**
2039** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002040** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002041*/
2042static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002043 BtShared *pBt, /* The database file */
2044 Pgno pgno, /* Number of the page to get */
2045 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002046 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2047 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002048){
2049 int rc;
drh28f58dd2015-06-27 19:45:03 +00002050 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002051 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002052 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2053 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002054 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002055
danba3cbf32010-06-30 04:29:03 +00002056 if( pgno>btreePagecount(pBt) ){
2057 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002058 goto getAndInitPage_error;
2059 }
drh9584f582015-11-04 20:22:37 +00002060 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002061 if( rc ){
2062 goto getAndInitPage_error;
2063 }
drh8dd1c252015-11-04 22:31:02 +00002064 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002065 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002066 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002067 rc = btreeInitPage(*ppPage);
2068 if( rc!=SQLITE_OK ){
2069 releasePage(*ppPage);
2070 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002071 }
drhee696e22004-08-30 16:52:17 +00002072 }
drh8dd1c252015-11-04 22:31:02 +00002073 assert( (*ppPage)->pgno==pgno );
2074 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002075
drh15a00212015-06-27 20:55:00 +00002076 /* If obtaining a child page for a cursor, we must verify that the page is
2077 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002078 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002079 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002080 releasePage(*ppPage);
2081 goto getAndInitPage_error;
2082 }
drh28f58dd2015-06-27 19:45:03 +00002083 return SQLITE_OK;
2084
2085getAndInitPage_error:
2086 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002087 testcase( pgno==0 );
2088 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002089 return rc;
2090}
2091
2092/*
drh3aac2dd2004-04-26 14:10:20 +00002093** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002094** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002095*/
drhbbf0f862015-06-27 14:59:26 +00002096static void releasePageNotNull(MemPage *pPage){
2097 assert( pPage->aData );
2098 assert( pPage->pBt );
2099 assert( pPage->pDbPage!=0 );
2100 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2101 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2102 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2103 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002104}
drh3aac2dd2004-04-26 14:10:20 +00002105static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002106 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002107}
2108
2109/*
drh7e8c6f12015-05-28 03:28:27 +00002110** Get an unused page.
2111**
2112** This works just like btreeGetPage() with the addition:
2113**
2114** * If the page is already in use for some other purpose, immediately
2115** release it and return an SQLITE_CURRUPT error.
2116** * Make sure the isInit flag is clear
2117*/
2118static int btreeGetUnusedPage(
2119 BtShared *pBt, /* The btree */
2120 Pgno pgno, /* Number of the page to fetch */
2121 MemPage **ppPage, /* Return the page in this parameter */
2122 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2123){
2124 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2125 if( rc==SQLITE_OK ){
2126 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2127 releasePage(*ppPage);
2128 *ppPage = 0;
2129 return SQLITE_CORRUPT_BKPT;
2130 }
2131 (*ppPage)->isInit = 0;
2132 }else{
2133 *ppPage = 0;
2134 }
2135 return rc;
2136}
2137
drha059ad02001-04-17 20:09:11 +00002138
2139/*
drha6abd042004-06-09 17:37:22 +00002140** During a rollback, when the pager reloads information into the cache
2141** so that the cache is restored to its original state at the start of
2142** the transaction, for each page restored this routine is called.
2143**
2144** This routine needs to reset the extra data section at the end of the
2145** page to agree with the restored data.
2146*/
danielk1977eaa06f62008-09-18 17:34:44 +00002147static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002148 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002149 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002150 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002151 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002153 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002154 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002155 /* pPage might not be a btree page; it might be an overflow page
2156 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002157 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002158 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002159 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002160 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002161 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002162 }
drha6abd042004-06-09 17:37:22 +00002163 }
2164}
2165
2166/*
drhe5fe6902007-12-07 18:55:28 +00002167** Invoke the busy handler for a btree.
2168*/
danielk19771ceedd32008-11-19 10:22:33 +00002169static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002170 BtShared *pBt = (BtShared*)pArg;
2171 assert( pBt->db );
2172 assert( sqlite3_mutex_held(pBt->db->mutex) );
2173 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2174}
2175
2176/*
drhad3e0102004-09-03 23:32:18 +00002177** Open a database file.
2178**
drh382c0242001-10-06 16:33:02 +00002179** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002180** then an ephemeral database is created. The ephemeral database might
2181** be exclusively in memory, or it might use a disk-based memory cache.
2182** Either way, the ephemeral database will be automatically deleted
2183** when sqlite3BtreeClose() is called.
2184**
drhe53831d2007-08-17 01:14:38 +00002185** If zFilename is ":memory:" then an in-memory database is created
2186** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002187**
drh33f111d2012-01-17 15:29:14 +00002188** The "flags" parameter is a bitmask that might contain bits like
2189** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002190**
drhc47fd8e2009-04-30 13:30:32 +00002191** If the database is already opened in the same database connection
2192** and we are in shared cache mode, then the open will fail with an
2193** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2194** objects in the same database connection since doing so will lead
2195** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002196*/
drh23e11ca2004-05-04 17:27:28 +00002197int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002198 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002199 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002200 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002201 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002202 int flags, /* Options */
2203 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002204){
drh7555d8e2009-03-20 13:15:30 +00002205 BtShared *pBt = 0; /* Shared part of btree structure */
2206 Btree *p; /* Handle to return */
2207 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2208 int rc = SQLITE_OK; /* Result code from this function */
2209 u8 nReserve; /* Byte of unused space on each page */
2210 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002211
drh75c014c2010-08-30 15:02:28 +00002212 /* True if opening an ephemeral, temporary database */
2213 const int isTempDb = zFilename==0 || zFilename[0]==0;
2214
danielk1977aef0bf62005-12-30 16:28:01 +00002215 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002216 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002217 */
drhb0a7c9c2010-12-06 21:09:59 +00002218#ifdef SQLITE_OMIT_MEMORYDB
2219 const int isMemdb = 0;
2220#else
2221 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002222 || (isTempDb && sqlite3TempInMemory(db))
2223 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002224#endif
2225
drhe5fe6902007-12-07 18:55:28 +00002226 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002227 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002228 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002229 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2230
2231 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2232 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2233
2234 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2235 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002236
drh75c014c2010-08-30 15:02:28 +00002237 if( isMemdb ){
2238 flags |= BTREE_MEMORY;
2239 }
2240 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2241 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2242 }
drh17435752007-08-16 04:30:38 +00002243 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002244 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002245 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002246 }
2247 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002248 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002249#ifndef SQLITE_OMIT_SHARED_CACHE
2250 p->lock.pBtree = p;
2251 p->lock.iTable = 1;
2252#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002253
drh198bf392006-01-06 21:52:49 +00002254#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002255 /*
2256 ** If this Btree is a candidate for shared cache, try to find an
2257 ** existing BtShared object that we can share with
2258 */
drh4ab9d252012-05-26 20:08:49 +00002259 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002260 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002261 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002262 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002263 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002264 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002265
drhff0587c2007-08-29 17:43:19 +00002266 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002267 if( !zFullPathname ){
2268 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002269 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002270 }
drhafc8b7f2012-05-26 18:06:38 +00002271 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002272 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002273 }else{
2274 rc = sqlite3OsFullPathname(pVfs, zFilename,
2275 nFullPathname, zFullPathname);
2276 if( rc ){
2277 sqlite3_free(zFullPathname);
2278 sqlite3_free(p);
2279 return rc;
2280 }
drh070ad6b2011-11-17 11:43:19 +00002281 }
drh30ddce62011-10-15 00:16:30 +00002282#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002283 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2284 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002285 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002286 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002287#endif
drh78f82d12008-09-02 00:52:52 +00002288 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002289 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002290 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002291 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002292 int iDb;
2293 for(iDb=db->nDb-1; iDb>=0; iDb--){
2294 Btree *pExisting = db->aDb[iDb].pBt;
2295 if( pExisting && pExisting->pBt==pBt ){
2296 sqlite3_mutex_leave(mutexShared);
2297 sqlite3_mutex_leave(mutexOpen);
2298 sqlite3_free(zFullPathname);
2299 sqlite3_free(p);
2300 return SQLITE_CONSTRAINT;
2301 }
2302 }
drhff0587c2007-08-29 17:43:19 +00002303 p->pBt = pBt;
2304 pBt->nRef++;
2305 break;
2306 }
2307 }
2308 sqlite3_mutex_leave(mutexShared);
2309 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002310 }
drhff0587c2007-08-29 17:43:19 +00002311#ifdef SQLITE_DEBUG
2312 else{
2313 /* In debug mode, we mark all persistent databases as sharable
2314 ** even when they are not. This exercises the locking code and
2315 ** gives more opportunity for asserts(sqlite3_mutex_held())
2316 ** statements to find locking problems.
2317 */
2318 p->sharable = 1;
2319 }
2320#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002321 }
2322#endif
drha059ad02001-04-17 20:09:11 +00002323 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002324 /*
2325 ** The following asserts make sure that structures used by the btree are
2326 ** the right size. This is to guard against size changes that result
2327 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002328 */
drh062cf272015-03-23 19:03:51 +00002329 assert( sizeof(i64)==8 );
2330 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002331 assert( sizeof(u32)==4 );
2332 assert( sizeof(u16)==2 );
2333 assert( sizeof(Pgno)==4 );
2334
2335 pBt = sqlite3MallocZero( sizeof(*pBt) );
2336 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002337 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002338 goto btree_open_out;
2339 }
danielk197771d5d2c2008-09-29 11:49:47 +00002340 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002341 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002342 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002343 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002344 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2345 }
2346 if( rc!=SQLITE_OK ){
2347 goto btree_open_out;
2348 }
shanehbd2aaf92010-09-01 02:38:21 +00002349 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002350 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002351 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002352 p->pBt = pBt;
2353
drhe53831d2007-08-17 01:14:38 +00002354 pBt->pCursor = 0;
2355 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002356 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002357#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002358 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002359#endif
drh113762a2014-11-19 16:36:25 +00002360 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2361 ** determined by the 2-byte integer located at an offset of 16 bytes from
2362 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002363 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002364 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2365 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002366 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002367#ifndef SQLITE_OMIT_AUTOVACUUM
2368 /* If the magic name ":memory:" will create an in-memory database, then
2369 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2370 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2371 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2372 ** regular file-name. In this case the auto-vacuum applies as per normal.
2373 */
2374 if( zFilename && !isMemdb ){
2375 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2376 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2377 }
2378#endif
2379 nReserve = 0;
2380 }else{
drh113762a2014-11-19 16:36:25 +00002381 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2382 ** determined by the one-byte unsigned integer found at an offset of 20
2383 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002384 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002385 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002386#ifndef SQLITE_OMIT_AUTOVACUUM
2387 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2388 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2389#endif
2390 }
drhfa9601a2009-06-18 17:22:39 +00002391 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002392 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002393 pBt->usableSize = pBt->pageSize - nReserve;
2394 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002395
2396#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2397 /* Add the new BtShared object to the linked list sharable BtShareds.
2398 */
dan272989b2016-07-06 10:12:02 +00002399 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002400 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002401 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002402 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002403 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002404 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002405 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002406 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002407 goto btree_open_out;
2408 }
drhff0587c2007-08-29 17:43:19 +00002409 }
drhe53831d2007-08-17 01:14:38 +00002410 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002411 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2412 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002413 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002414 }
drheee46cf2004-11-06 00:02:48 +00002415#endif
drh90f5ecb2004-07-22 01:19:35 +00002416 }
danielk1977aef0bf62005-12-30 16:28:01 +00002417
drhcfed7bc2006-03-13 14:28:05 +00002418#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002419 /* If the new Btree uses a sharable pBtShared, then link the new
2420 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002421 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002422 */
drhe53831d2007-08-17 01:14:38 +00002423 if( p->sharable ){
2424 int i;
2425 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002426 for(i=0; i<db->nDb; i++){
2427 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002428 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002429 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002430 p->pNext = pSib;
2431 p->pPrev = 0;
2432 pSib->pPrev = p;
2433 }else{
drh3bfa7e82016-03-22 14:37:59 +00002434 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002435 pSib = pSib->pNext;
2436 }
2437 p->pNext = pSib->pNext;
2438 p->pPrev = pSib;
2439 if( p->pNext ){
2440 p->pNext->pPrev = p;
2441 }
2442 pSib->pNext = p;
2443 }
2444 break;
2445 }
2446 }
danielk1977aef0bf62005-12-30 16:28:01 +00002447 }
danielk1977aef0bf62005-12-30 16:28:01 +00002448#endif
2449 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002450
2451btree_open_out:
2452 if( rc!=SQLITE_OK ){
2453 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002454 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002455 }
drh17435752007-08-16 04:30:38 +00002456 sqlite3_free(pBt);
2457 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002458 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002459 }else{
dan0f5a1862016-08-13 14:30:23 +00002460 sqlite3_file *pFile;
2461
drh75c014c2010-08-30 15:02:28 +00002462 /* If the B-Tree was successfully opened, set the pager-cache size to the
2463 ** default value. Except, when opening on an existing shared pager-cache,
2464 ** do not change the pager-cache size.
2465 */
2466 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2467 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2468 }
dan0f5a1862016-08-13 14:30:23 +00002469
2470 pFile = sqlite3PagerFile(pBt->pPager);
2471 if( pFile->pMethods ){
2472 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2473 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002474 }
drh7555d8e2009-03-20 13:15:30 +00002475 if( mutexOpen ){
2476 assert( sqlite3_mutex_held(mutexOpen) );
2477 sqlite3_mutex_leave(mutexOpen);
2478 }
dan272989b2016-07-06 10:12:02 +00002479 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002480 return rc;
drha059ad02001-04-17 20:09:11 +00002481}
2482
2483/*
drhe53831d2007-08-17 01:14:38 +00002484** Decrement the BtShared.nRef counter. When it reaches zero,
2485** remove the BtShared structure from the sharing list. Return
2486** true if the BtShared.nRef counter reaches zero and return
2487** false if it is still positive.
2488*/
2489static int removeFromSharingList(BtShared *pBt){
2490#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002491 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002492 BtShared *pList;
2493 int removed = 0;
2494
drhd677b3d2007-08-20 22:48:41 +00002495 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002496 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002497 sqlite3_mutex_enter(pMaster);
2498 pBt->nRef--;
2499 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002500 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2501 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002502 }else{
drh78f82d12008-09-02 00:52:52 +00002503 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002504 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002505 pList=pList->pNext;
2506 }
drh34004ce2008-07-11 16:15:17 +00002507 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002508 pList->pNext = pBt->pNext;
2509 }
2510 }
drh3285db22007-09-03 22:00:39 +00002511 if( SQLITE_THREADSAFE ){
2512 sqlite3_mutex_free(pBt->mutex);
2513 }
drhe53831d2007-08-17 01:14:38 +00002514 removed = 1;
2515 }
2516 sqlite3_mutex_leave(pMaster);
2517 return removed;
2518#else
2519 return 1;
2520#endif
2521}
2522
2523/*
drhf7141992008-06-19 00:16:08 +00002524** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002525** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2526** pointer.
drhf7141992008-06-19 00:16:08 +00002527*/
2528static void allocateTempSpace(BtShared *pBt){
2529 if( !pBt->pTmpSpace ){
2530 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002531
2532 /* One of the uses of pBt->pTmpSpace is to format cells before
2533 ** inserting them into a leaf page (function fillInCell()). If
2534 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2535 ** by the various routines that manipulate binary cells. Which
2536 ** can mean that fillInCell() only initializes the first 2 or 3
2537 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2538 ** it into a database page. This is not actually a problem, but it
2539 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2540 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002541 ** zero the first 4 bytes of temp space here.
2542 **
2543 ** Also: Provide four bytes of initialized space before the
2544 ** beginning of pTmpSpace as an area available to prepend the
2545 ** left-child pointer to the beginning of a cell.
2546 */
2547 if( pBt->pTmpSpace ){
2548 memset(pBt->pTmpSpace, 0, 8);
2549 pBt->pTmpSpace += 4;
2550 }
drhf7141992008-06-19 00:16:08 +00002551 }
2552}
2553
2554/*
2555** Free the pBt->pTmpSpace allocation
2556*/
2557static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002558 if( pBt->pTmpSpace ){
2559 pBt->pTmpSpace -= 4;
2560 sqlite3PageFree(pBt->pTmpSpace);
2561 pBt->pTmpSpace = 0;
2562 }
drhf7141992008-06-19 00:16:08 +00002563}
2564
2565/*
drha059ad02001-04-17 20:09:11 +00002566** Close an open database and invalidate all cursors.
2567*/
danielk1977aef0bf62005-12-30 16:28:01 +00002568int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002569 BtShared *pBt = p->pBt;
2570 BtCursor *pCur;
2571
danielk1977aef0bf62005-12-30 16:28:01 +00002572 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002573 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002574 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002575 pCur = pBt->pCursor;
2576 while( pCur ){
2577 BtCursor *pTmp = pCur;
2578 pCur = pCur->pNext;
2579 if( pTmp->pBtree==p ){
2580 sqlite3BtreeCloseCursor(pTmp);
2581 }
drha059ad02001-04-17 20:09:11 +00002582 }
danielk1977aef0bf62005-12-30 16:28:01 +00002583
danielk19778d34dfd2006-01-24 16:37:57 +00002584 /* Rollback any active transaction and free the handle structure.
2585 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2586 ** this handle.
2587 */
drh47b7fc72014-11-11 01:33:57 +00002588 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002589 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002590
danielk1977aef0bf62005-12-30 16:28:01 +00002591 /* If there are still other outstanding references to the shared-btree
2592 ** structure, return now. The remainder of this procedure cleans
2593 ** up the shared-btree.
2594 */
drhe53831d2007-08-17 01:14:38 +00002595 assert( p->wantToLock==0 && p->locked==0 );
2596 if( !p->sharable || removeFromSharingList(pBt) ){
2597 /* The pBt is no longer on the sharing list, so we can access
2598 ** it without having to hold the mutex.
2599 **
2600 ** Clean out and delete the BtShared object.
2601 */
2602 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002603 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002604 if( pBt->xFreeSchema && pBt->pSchema ){
2605 pBt->xFreeSchema(pBt->pSchema);
2606 }
drhb9755982010-07-24 16:34:37 +00002607 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002608 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002609 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002610 }
2611
drhe53831d2007-08-17 01:14:38 +00002612#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002613 assert( p->wantToLock==0 );
2614 assert( p->locked==0 );
2615 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2616 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002617#endif
2618
drhe53831d2007-08-17 01:14:38 +00002619 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002620 return SQLITE_OK;
2621}
2622
2623/*
drh9b0cf342015-11-12 14:57:19 +00002624** Change the "soft" limit on the number of pages in the cache.
2625** Unused and unmodified pages will be recycled when the number of
2626** pages in the cache exceeds this soft limit. But the size of the
2627** cache is allowed to grow larger than this limit if it contains
2628** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002629*/
danielk1977aef0bf62005-12-30 16:28:01 +00002630int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2631 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002632 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002633 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002634 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002635 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002636 return SQLITE_OK;
2637}
2638
drh9b0cf342015-11-12 14:57:19 +00002639/*
2640** Change the "spill" limit on the number of pages in the cache.
2641** If the number of pages exceeds this limit during a write transaction,
2642** the pager might attempt to "spill" pages to the journal early in
2643** order to free up memory.
2644**
2645** The value returned is the current spill size. If zero is passed
2646** as an argument, no changes are made to the spill size setting, so
2647** using mxPage of 0 is a way to query the current spill size.
2648*/
2649int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2650 BtShared *pBt = p->pBt;
2651 int res;
2652 assert( sqlite3_mutex_held(p->db->mutex) );
2653 sqlite3BtreeEnter(p);
2654 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2655 sqlite3BtreeLeave(p);
2656 return res;
2657}
2658
drh18c7e402014-03-14 11:46:10 +00002659#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002660/*
dan5d8a1372013-03-19 19:28:06 +00002661** Change the limit on the amount of the database file that may be
2662** memory mapped.
2663*/
drh9b4c59f2013-04-15 17:03:42 +00002664int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002665 BtShared *pBt = p->pBt;
2666 assert( sqlite3_mutex_held(p->db->mutex) );
2667 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002668 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002669 sqlite3BtreeLeave(p);
2670 return SQLITE_OK;
2671}
drh18c7e402014-03-14 11:46:10 +00002672#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002673
2674/*
drh973b6e32003-02-12 14:09:42 +00002675** Change the way data is synced to disk in order to increase or decrease
2676** how well the database resists damage due to OS crashes and power
2677** failures. Level 1 is the same as asynchronous (no syncs() occur and
2678** there is a high probability of damage) Level 2 is the default. There
2679** is a very low but non-zero probability of damage. Level 3 reduces the
2680** probability of damage to near zero but with a write performance reduction.
2681*/
danielk197793758c82005-01-21 08:13:14 +00002682#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002683int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002684 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002685 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002686){
danielk1977aef0bf62005-12-30 16:28:01 +00002687 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002688 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002689 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002690 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002691 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002692 return SQLITE_OK;
2693}
danielk197793758c82005-01-21 08:13:14 +00002694#endif
drh973b6e32003-02-12 14:09:42 +00002695
drh2c8997b2005-08-27 16:36:48 +00002696/*
drh90f5ecb2004-07-22 01:19:35 +00002697** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002698** Or, if the page size has already been fixed, return SQLITE_READONLY
2699** without changing anything.
drh06f50212004-11-02 14:24:33 +00002700**
2701** The page size must be a power of 2 between 512 and 65536. If the page
2702** size supplied does not meet this constraint then the page size is not
2703** changed.
2704**
2705** Page sizes are constrained to be a power of two so that the region
2706** of the database file used for locking (beginning at PENDING_BYTE,
2707** the first byte past the 1GB boundary, 0x40000000) needs to occur
2708** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002709**
2710** If parameter nReserve is less than zero, then the number of reserved
2711** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002712**
drhc9166342012-01-05 23:32:06 +00002713** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002714** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002715*/
drhce4869f2009-04-02 20:16:58 +00002716int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002717 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002718 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002719 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002720 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002721#if SQLITE_HAS_CODEC
2722 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2723#endif
drhc9166342012-01-05 23:32:06 +00002724 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002725 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002726 return SQLITE_READONLY;
2727 }
2728 if( nReserve<0 ){
2729 nReserve = pBt->pageSize - pBt->usableSize;
2730 }
drhf49661a2008-12-10 16:45:50 +00002731 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002732 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2733 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002734 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002735 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002736 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002737 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002738 }
drhfa9601a2009-06-18 17:22:39 +00002739 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002740 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002741 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002742 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002743 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002744}
2745
2746/*
2747** Return the currently defined page size
2748*/
danielk1977aef0bf62005-12-30 16:28:01 +00002749int sqlite3BtreeGetPageSize(Btree *p){
2750 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002751}
drh7f751222009-03-17 22:33:00 +00002752
dan0094f372012-09-28 20:23:42 +00002753/*
2754** This function is similar to sqlite3BtreeGetReserve(), except that it
2755** may only be called if it is guaranteed that the b-tree mutex is already
2756** held.
2757**
2758** This is useful in one special case in the backup API code where it is
2759** known that the shared b-tree mutex is held, but the mutex on the
2760** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2761** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002762** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002763*/
2764int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002765 int n;
dan0094f372012-09-28 20:23:42 +00002766 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002767 n = p->pBt->pageSize - p->pBt->usableSize;
2768 return n;
dan0094f372012-09-28 20:23:42 +00002769}
2770
drh7f751222009-03-17 22:33:00 +00002771/*
2772** Return the number of bytes of space at the end of every page that
2773** are intentually left unused. This is the "reserved" space that is
2774** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002775**
2776** If SQLITE_HAS_MUTEX is defined then the number returned is the
2777** greater of the current reserved space and the maximum requested
2778** reserve space.
drh7f751222009-03-17 22:33:00 +00002779*/
drhad0961b2015-02-21 00:19:25 +00002780int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002781 int n;
2782 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002783 n = sqlite3BtreeGetReserveNoMutex(p);
2784#ifdef SQLITE_HAS_CODEC
2785 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2786#endif
drhd677b3d2007-08-20 22:48:41 +00002787 sqlite3BtreeLeave(p);
2788 return n;
drh2011d5f2004-07-22 02:40:37 +00002789}
drhf8e632b2007-05-08 14:51:36 +00002790
drhad0961b2015-02-21 00:19:25 +00002791
drhf8e632b2007-05-08 14:51:36 +00002792/*
2793** Set the maximum page count for a database if mxPage is positive.
2794** No changes are made if mxPage is 0 or negative.
2795** Regardless of the value of mxPage, return the maximum page count.
2796*/
2797int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002798 int n;
2799 sqlite3BtreeEnter(p);
2800 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2801 sqlite3BtreeLeave(p);
2802 return n;
drhf8e632b2007-05-08 14:51:36 +00002803}
drh5b47efa2010-02-12 18:18:39 +00002804
2805/*
drhc9166342012-01-05 23:32:06 +00002806** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2807** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002808** setting after the change.
2809*/
2810int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2811 int b;
drhaf034ed2010-02-12 19:46:26 +00002812 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002813 sqlite3BtreeEnter(p);
2814 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002815 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2816 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002817 }
drhc9166342012-01-05 23:32:06 +00002818 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002819 sqlite3BtreeLeave(p);
2820 return b;
2821}
drh90f5ecb2004-07-22 01:19:35 +00002822
2823/*
danielk1977951af802004-11-05 15:45:09 +00002824** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2825** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2826** is disabled. The default value for the auto-vacuum property is
2827** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2828*/
danielk1977aef0bf62005-12-30 16:28:01 +00002829int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002830#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002831 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002832#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002833 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002834 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002835 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002836
2837 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002838 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002839 rc = SQLITE_READONLY;
2840 }else{
drh076d4662009-02-18 20:31:18 +00002841 pBt->autoVacuum = av ?1:0;
2842 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002843 }
drhd677b3d2007-08-20 22:48:41 +00002844 sqlite3BtreeLeave(p);
2845 return rc;
danielk1977951af802004-11-05 15:45:09 +00002846#endif
2847}
2848
2849/*
2850** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2851** enabled 1 is returned. Otherwise 0.
2852*/
danielk1977aef0bf62005-12-30 16:28:01 +00002853int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002854#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002855 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002856#else
drhd677b3d2007-08-20 22:48:41 +00002857 int rc;
2858 sqlite3BtreeEnter(p);
2859 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002860 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2861 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2862 BTREE_AUTOVACUUM_INCR
2863 );
drhd677b3d2007-08-20 22:48:41 +00002864 sqlite3BtreeLeave(p);
2865 return rc;
danielk1977951af802004-11-05 15:45:09 +00002866#endif
2867}
2868
danf5da7db2017-03-16 18:14:39 +00002869/*
2870** If the user has not set the safety-level for this database connection
2871** using "PRAGMA synchronous", and if the safety-level is not already
2872** set to the value passed to this function as the second parameter,
2873** set it so.
2874*/
2875#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2876static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2877 sqlite3 *db;
2878 Db *pDb;
2879 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2880 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2881 if( pDb->bSyncSet==0
2882 && pDb->safety_level!=safety_level
2883 && pDb!=&db->aDb[1]
2884 ){
2885 pDb->safety_level = safety_level;
2886 sqlite3PagerSetFlags(pBt->pPager,
2887 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2888 }
2889 }
2890}
2891#else
danfc8f4b62017-03-16 18:54:42 +00002892# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002893#endif
danielk1977951af802004-11-05 15:45:09 +00002894
2895/*
drha34b6762004-05-07 13:30:42 +00002896** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002897** also acquire a readlock on that file.
2898**
2899** SQLITE_OK is returned on success. If the file is not a
2900** well-formed database file, then SQLITE_CORRUPT is returned.
2901** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002902** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002903*/
danielk1977aef0bf62005-12-30 16:28:01 +00002904static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002905 int rc; /* Result code from subfunctions */
2906 MemPage *pPage1; /* Page 1 of the database file */
2907 int nPage; /* Number of pages in the database */
2908 int nPageFile = 0; /* Number of pages in the database file */
2909 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002910
drh1fee73e2007-08-29 04:00:57 +00002911 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002912 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002913 rc = sqlite3PagerSharedLock(pBt->pPager);
2914 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002915 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002916 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002917
2918 /* Do some checking to help insure the file we opened really is
2919 ** a valid database file.
2920 */
drhc2a4bab2010-04-02 12:46:45 +00002921 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002922 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002923 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002924 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002925 }
2926 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002927 u32 pageSize;
2928 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002929 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002930 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002931 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2932 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2933 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002934 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002935 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002936 }
dan5cf53532010-05-01 16:40:20 +00002937
2938#ifdef SQLITE_OMIT_WAL
2939 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002940 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002941 }
2942 if( page1[19]>1 ){
2943 goto page1_init_failed;
2944 }
2945#else
dane04dc882010-04-20 18:53:15 +00002946 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002947 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002948 }
dane04dc882010-04-20 18:53:15 +00002949 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002950 goto page1_init_failed;
2951 }
drhe5ae5732008-06-15 02:51:47 +00002952
dana470aeb2010-04-21 11:43:38 +00002953 /* If the write version is set to 2, this database should be accessed
2954 ** in WAL mode. If the log is not already open, open it now. Then
2955 ** return SQLITE_OK and return without populating BtShared.pPage1.
2956 ** The caller detects this and calls this function again. This is
2957 ** required as the version of page 1 currently in the page1 buffer
2958 ** may not be the latest version - there may be a newer one in the log
2959 ** file.
2960 */
drhc9166342012-01-05 23:32:06 +00002961 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002962 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002963 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002964 if( rc!=SQLITE_OK ){
2965 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002966 }else{
danf5da7db2017-03-16 18:14:39 +00002967 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00002968 if( isOpen==0 ){
2969 releasePage(pPage1);
2970 return SQLITE_OK;
2971 }
dane04dc882010-04-20 18:53:15 +00002972 }
dan8b5444b2010-04-27 14:37:47 +00002973 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00002974 }else{
2975 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00002976 }
dan5cf53532010-05-01 16:40:20 +00002977#endif
dane04dc882010-04-20 18:53:15 +00002978
drh113762a2014-11-19 16:36:25 +00002979 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2980 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2981 **
drhe5ae5732008-06-15 02:51:47 +00002982 ** The original design allowed these amounts to vary, but as of
2983 ** version 3.6.0, we require them to be fixed.
2984 */
2985 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2986 goto page1_init_failed;
2987 }
drh113762a2014-11-19 16:36:25 +00002988 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2989 ** determined by the 2-byte integer located at an offset of 16 bytes from
2990 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002991 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002992 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2993 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002994 if( ((pageSize-1)&pageSize)!=0
2995 || pageSize>SQLITE_MAX_PAGE_SIZE
2996 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002997 ){
drh07d183d2005-05-01 22:52:42 +00002998 goto page1_init_failed;
2999 }
3000 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003001 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3002 ** integer at offset 20 is the number of bytes of space at the end of
3003 ** each page to reserve for extensions.
3004 **
3005 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3006 ** determined by the one-byte unsigned integer found at an offset of 20
3007 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003008 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003009 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003010 /* After reading the first page of the database assuming a page size
3011 ** of BtShared.pageSize, we have discovered that the page-size is
3012 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3013 ** zero and return SQLITE_OK. The caller will call this function
3014 ** again with the correct page-size.
3015 */
3016 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00003017 pBt->usableSize = usableSize;
3018 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003019 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003020 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3021 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003022 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003023 }
drh169dd922017-06-26 13:57:49 +00003024 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003025 rc = SQLITE_CORRUPT_BKPT;
3026 goto page1_init_failed;
3027 }
drh113762a2014-11-19 16:36:25 +00003028 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3029 ** be less than 480. In other words, if the page size is 512, then the
3030 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003031 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003032 goto page1_init_failed;
3033 }
drh43b18e12010-08-17 19:40:08 +00003034 pBt->pageSize = pageSize;
3035 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003036#ifndef SQLITE_OMIT_AUTOVACUUM
3037 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003038 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003039#endif
drh306dc212001-05-21 13:45:10 +00003040 }
drhb6f41482004-05-14 01:58:11 +00003041
3042 /* maxLocal is the maximum amount of payload to store locally for
3043 ** a cell. Make sure it is small enough so that at least minFanout
3044 ** cells can will fit on one page. We assume a 10-byte page header.
3045 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003046 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003047 ** 4-byte child pointer
3048 ** 9-byte nKey value
3049 ** 4-byte nData value
3050 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003051 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003052 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3053 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003054 */
shaneh1df2db72010-08-18 02:28:48 +00003055 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3056 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3057 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3058 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003059 if( pBt->maxLocal>127 ){
3060 pBt->max1bytePayload = 127;
3061 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003062 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003063 }
drh2e38c322004-09-03 18:38:44 +00003064 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003065 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003066 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003067 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003068
drh72f82862001-05-24 21:06:34 +00003069page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003070 releasePage(pPage1);
3071 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003072 return rc;
drh306dc212001-05-21 13:45:10 +00003073}
3074
drh85ec3b62013-05-14 23:12:06 +00003075#ifndef NDEBUG
3076/*
3077** Return the number of cursors open on pBt. This is for use
3078** in assert() expressions, so it is only compiled if NDEBUG is not
3079** defined.
3080**
3081** Only write cursors are counted if wrOnly is true. If wrOnly is
3082** false then all cursors are counted.
3083**
3084** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003085** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003086** have been tripped into the CURSOR_FAULT state are not counted.
3087*/
3088static int countValidCursors(BtShared *pBt, int wrOnly){
3089 BtCursor *pCur;
3090 int r = 0;
3091 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003092 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3093 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003094 }
3095 return r;
3096}
3097#endif
3098
drh306dc212001-05-21 13:45:10 +00003099/*
drhb8ca3072001-12-05 00:21:20 +00003100** If there are no outstanding cursors and we are not in the middle
3101** of a transaction but there is a read lock on the database, then
3102** this routine unrefs the first page of the database file which
3103** has the effect of releasing the read lock.
3104**
drhb8ca3072001-12-05 00:21:20 +00003105** If there is a transaction in progress, this routine is a no-op.
3106*/
danielk1977aef0bf62005-12-30 16:28:01 +00003107static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003108 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003109 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003110 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003111 MemPage *pPage1 = pBt->pPage1;
3112 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003113 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003114 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003115 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003116 }
3117}
3118
3119/*
drhe39f2f92009-07-23 01:43:59 +00003120** If pBt points to an empty file then convert that empty file
3121** into a new empty database by initializing the first page of
3122** the database.
drh8b2f49b2001-06-08 00:21:52 +00003123*/
danielk1977aef0bf62005-12-30 16:28:01 +00003124static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003125 MemPage *pP1;
3126 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003127 int rc;
drhd677b3d2007-08-20 22:48:41 +00003128
drh1fee73e2007-08-29 04:00:57 +00003129 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003130 if( pBt->nPage>0 ){
3131 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003132 }
drh3aac2dd2004-04-26 14:10:20 +00003133 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003134 assert( pP1!=0 );
3135 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003136 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003137 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003138 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3139 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003140 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3141 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003142 data[18] = 1;
3143 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003144 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3145 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003146 data[21] = 64;
3147 data[22] = 32;
3148 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003149 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003150 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003151 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003152#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003153 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003154 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003155 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003156 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003157#endif
drhdd3cd972010-03-27 17:12:36 +00003158 pBt->nPage = 1;
3159 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003160 return SQLITE_OK;
3161}
3162
3163/*
danb483eba2012-10-13 19:58:11 +00003164** Initialize the first page of the database file (creating a database
3165** consisting of a single page and no schema objects). Return SQLITE_OK
3166** if successful, or an SQLite error code otherwise.
3167*/
3168int sqlite3BtreeNewDb(Btree *p){
3169 int rc;
3170 sqlite3BtreeEnter(p);
3171 p->pBt->nPage = 0;
3172 rc = newDatabase(p->pBt);
3173 sqlite3BtreeLeave(p);
3174 return rc;
3175}
3176
3177/*
danielk1977ee5741e2004-05-31 10:01:34 +00003178** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003179** is started if the second argument is nonzero, otherwise a read-
3180** transaction. If the second argument is 2 or more and exclusive
3181** transaction is started, meaning that no other process is allowed
3182** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003183** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003184** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003185**
danielk1977ee5741e2004-05-31 10:01:34 +00003186** A write-transaction must be started before attempting any
3187** changes to the database. None of the following routines
3188** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003189**
drh23e11ca2004-05-04 17:27:28 +00003190** sqlite3BtreeCreateTable()
3191** sqlite3BtreeCreateIndex()
3192** sqlite3BtreeClearTable()
3193** sqlite3BtreeDropTable()
3194** sqlite3BtreeInsert()
3195** sqlite3BtreeDelete()
3196** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003197**
drhb8ef32c2005-03-14 02:01:49 +00003198** If an initial attempt to acquire the lock fails because of lock contention
3199** and the database was previously unlocked, then invoke the busy handler
3200** if there is one. But if there was previously a read-lock, do not
3201** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3202** returned when there is already a read-lock in order to avoid a deadlock.
3203**
3204** Suppose there are two processes A and B. A has a read lock and B has
3205** a reserved lock. B tries to promote to exclusive but is blocked because
3206** of A's read lock. A tries to promote to reserved but is blocked by B.
3207** One or the other of the two processes must give way or there can be
3208** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3209** when A already has a read lock, we encourage A to give up and let B
3210** proceed.
drha059ad02001-04-17 20:09:11 +00003211*/
danielk1977aef0bf62005-12-30 16:28:01 +00003212int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3213 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003214 int rc = SQLITE_OK;
3215
drhd677b3d2007-08-20 22:48:41 +00003216 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003217 btreeIntegrity(p);
3218
danielk1977ee5741e2004-05-31 10:01:34 +00003219 /* If the btree is already in a write-transaction, or it
3220 ** is already in a read-transaction and a read-transaction
3221 ** is requested, this is a no-op.
3222 */
danielk1977aef0bf62005-12-30 16:28:01 +00003223 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003224 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003225 }
dan56c517a2013-09-26 11:04:33 +00003226 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003227
3228 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003229 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003230 rc = SQLITE_READONLY;
3231 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003232 }
3233
danielk1977404ca072009-03-16 13:19:36 +00003234#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003235 {
3236 sqlite3 *pBlock = 0;
3237 /* If another database handle has already opened a write transaction
3238 ** on this shared-btree structure and a second write transaction is
3239 ** requested, return SQLITE_LOCKED.
3240 */
3241 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3242 || (pBt->btsFlags & BTS_PENDING)!=0
3243 ){
3244 pBlock = pBt->pWriter->db;
3245 }else if( wrflag>1 ){
3246 BtLock *pIter;
3247 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3248 if( pIter->pBtree!=p ){
3249 pBlock = pIter->pBtree->db;
3250 break;
3251 }
danielk1977641b0f42007-12-21 04:47:25 +00003252 }
3253 }
drh5a1fb182016-01-08 19:34:39 +00003254 if( pBlock ){
3255 sqlite3ConnectionBlocked(p->db, pBlock);
3256 rc = SQLITE_LOCKED_SHAREDCACHE;
3257 goto trans_begun;
3258 }
danielk1977404ca072009-03-16 13:19:36 +00003259 }
danielk1977641b0f42007-12-21 04:47:25 +00003260#endif
3261
danielk1977602b4662009-07-02 07:47:33 +00003262 /* Any read-only or read-write transaction implies a read-lock on
3263 ** page 1. So if some other shared-cache client already has a write-lock
3264 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003265 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3266 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003267
drhc9166342012-01-05 23:32:06 +00003268 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3269 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003270 do {
danielk1977295dc102009-04-01 19:07:03 +00003271 /* Call lockBtree() until either pBt->pPage1 is populated or
3272 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3273 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3274 ** reading page 1 it discovers that the page-size of the database
3275 ** file is not pBt->pageSize. In this case lockBtree() will update
3276 ** pBt->pageSize to the page-size of the file on disk.
3277 */
3278 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003279
drhb8ef32c2005-03-14 02:01:49 +00003280 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003281 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003282 rc = SQLITE_READONLY;
3283 }else{
danielk1977d8293352009-04-30 09:10:37 +00003284 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003285 if( rc==SQLITE_OK ){
3286 rc = newDatabase(pBt);
3287 }
drhb8ef32c2005-03-14 02:01:49 +00003288 }
3289 }
3290
danielk1977bd434552009-03-18 10:33:00 +00003291 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003292 unlockBtreeIfUnused(pBt);
3293 }
danf9b76712010-06-01 14:12:45 +00003294 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003295 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003296
3297 if( rc==SQLITE_OK ){
3298 if( p->inTrans==TRANS_NONE ){
3299 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003300#ifndef SQLITE_OMIT_SHARED_CACHE
3301 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003302 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003303 p->lock.eLock = READ_LOCK;
3304 p->lock.pNext = pBt->pLock;
3305 pBt->pLock = &p->lock;
3306 }
3307#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003308 }
3309 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3310 if( p->inTrans>pBt->inTransaction ){
3311 pBt->inTransaction = p->inTrans;
3312 }
danielk1977404ca072009-03-16 13:19:36 +00003313 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003314 MemPage *pPage1 = pBt->pPage1;
3315#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003316 assert( !pBt->pWriter );
3317 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003318 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3319 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003320#endif
dan59257dc2010-08-04 11:34:31 +00003321
3322 /* If the db-size header field is incorrect (as it may be if an old
3323 ** client has been writing the database file), update it now. Doing
3324 ** this sooner rather than later means the database size can safely
3325 ** re-read the database size from page 1 if a savepoint or transaction
3326 ** rollback occurs within the transaction.
3327 */
3328 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3329 rc = sqlite3PagerWrite(pPage1->pDbPage);
3330 if( rc==SQLITE_OK ){
3331 put4byte(&pPage1->aData[28], pBt->nPage);
3332 }
3333 }
3334 }
danielk1977aef0bf62005-12-30 16:28:01 +00003335 }
3336
drhd677b3d2007-08-20 22:48:41 +00003337
3338trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003339 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003340 /* This call makes sure that the pager has the correct number of
3341 ** open savepoints. If the second parameter is greater than 0 and
3342 ** the sub-journal is not already open, then it will be opened here.
3343 */
danielk1977fd7f0452008-12-17 17:30:26 +00003344 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3345 }
danielk197712dd5492008-12-18 15:45:07 +00003346
danielk1977aef0bf62005-12-30 16:28:01 +00003347 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003348 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003349 return rc;
drha059ad02001-04-17 20:09:11 +00003350}
3351
danielk1977687566d2004-11-02 12:56:41 +00003352#ifndef SQLITE_OMIT_AUTOVACUUM
3353
3354/*
3355** Set the pointer-map entries for all children of page pPage. Also, if
3356** pPage contains cells that point to overflow pages, set the pointer
3357** map entries for the overflow pages as well.
3358*/
3359static int setChildPtrmaps(MemPage *pPage){
3360 int i; /* Counter variable */
3361 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003362 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003363 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003364 Pgno pgno = pPage->pgno;
3365
drh1fee73e2007-08-29 04:00:57 +00003366 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003367 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003368 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003369 nCell = pPage->nCell;
3370
3371 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003372 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003373
drh98add2e2009-07-20 17:11:49 +00003374 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003375
danielk1977687566d2004-11-02 12:56:41 +00003376 if( !pPage->leaf ){
3377 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003378 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003379 }
3380 }
3381
3382 if( !pPage->leaf ){
3383 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003384 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003385 }
3386
danielk1977687566d2004-11-02 12:56:41 +00003387 return rc;
3388}
3389
3390/*
drhf3aed592009-07-08 18:12:49 +00003391** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3392** that it points to iTo. Parameter eType describes the type of pointer to
3393** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003394**
3395** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3396** page of pPage.
3397**
3398** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3399** page pointed to by one of the cells on pPage.
3400**
3401** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3402** overflow page in the list.
3403*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003404static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003405 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003406 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003407 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003408 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003409 if( get4byte(pPage->aData)!=iFrom ){
drhcc97ca42017-06-07 22:32:59 +00003410 return SQLITE_CORRUPT_PGNO(pPage->pgno);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003411 }
danielk1977f78fc082004-11-02 14:40:32 +00003412 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003413 }else{
danielk1977687566d2004-11-02 12:56:41 +00003414 int i;
3415 int nCell;
drha1f75d92015-05-24 10:18:12 +00003416 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003417
drh14e845a2017-05-25 21:35:56 +00003418 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003419 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003420 nCell = pPage->nCell;
3421
danielk1977687566d2004-11-02 12:56:41 +00003422 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003423 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003424 if( eType==PTRMAP_OVERFLOW1 ){
3425 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003426 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003427 if( info.nLocal<info.nPayload ){
3428 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
drhcc97ca42017-06-07 22:32:59 +00003429 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhb701c9a2017-01-12 15:11:03 +00003430 }
3431 if( iFrom==get4byte(pCell+info.nSize-4) ){
3432 put4byte(pCell+info.nSize-4, iTo);
3433 break;
3434 }
danielk1977687566d2004-11-02 12:56:41 +00003435 }
3436 }else{
3437 if( get4byte(pCell)==iFrom ){
3438 put4byte(pCell, iTo);
3439 break;
3440 }
3441 }
3442 }
3443
3444 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003445 if( eType!=PTRMAP_BTREE ||
3446 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drhcc97ca42017-06-07 22:32:59 +00003447 return SQLITE_CORRUPT_PGNO(pPage->pgno);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003448 }
danielk1977687566d2004-11-02 12:56:41 +00003449 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3450 }
danielk1977687566d2004-11-02 12:56:41 +00003451 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003452 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003453}
3454
danielk1977003ba062004-11-04 02:57:33 +00003455
danielk19777701e812005-01-10 12:59:51 +00003456/*
3457** Move the open database page pDbPage to location iFreePage in the
3458** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003459**
3460** The isCommit flag indicates that there is no need to remember that
3461** the journal needs to be sync()ed before database page pDbPage->pgno
3462** can be written to. The caller has already promised not to write to that
3463** page.
danielk19777701e812005-01-10 12:59:51 +00003464*/
danielk1977003ba062004-11-04 02:57:33 +00003465static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003466 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003467 MemPage *pDbPage, /* Open page to move */
3468 u8 eType, /* Pointer map 'type' entry for pDbPage */
3469 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003470 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003471 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003472){
3473 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3474 Pgno iDbPage = pDbPage->pgno;
3475 Pager *pPager = pBt->pPager;
3476 int rc;
3477
danielk1977a0bf2652004-11-04 14:30:04 +00003478 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3479 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003480 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003481 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003482
drh85b623f2007-12-13 21:54:09 +00003483 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003484 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3485 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003486 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003487 if( rc!=SQLITE_OK ){
3488 return rc;
3489 }
3490 pDbPage->pgno = iFreePage;
3491
3492 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3493 ** that point to overflow pages. The pointer map entries for all these
3494 ** pages need to be changed.
3495 **
3496 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3497 ** pointer to a subsequent overflow page. If this is the case, then
3498 ** the pointer map needs to be updated for the subsequent overflow page.
3499 */
danielk1977a0bf2652004-11-04 14:30:04 +00003500 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003501 rc = setChildPtrmaps(pDbPage);
3502 if( rc!=SQLITE_OK ){
3503 return rc;
3504 }
3505 }else{
3506 Pgno nextOvfl = get4byte(pDbPage->aData);
3507 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003508 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003509 if( rc!=SQLITE_OK ){
3510 return rc;
3511 }
3512 }
3513 }
3514
3515 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3516 ** that it points at iFreePage. Also fix the pointer map entry for
3517 ** iPtrPage.
3518 */
danielk1977a0bf2652004-11-04 14:30:04 +00003519 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003520 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003521 if( rc!=SQLITE_OK ){
3522 return rc;
3523 }
danielk19773b8a05f2007-03-19 17:44:26 +00003524 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003525 if( rc!=SQLITE_OK ){
3526 releasePage(pPtrPage);
3527 return rc;
3528 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003529 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003530 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003531 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003532 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003533 }
danielk1977003ba062004-11-04 02:57:33 +00003534 }
danielk1977003ba062004-11-04 02:57:33 +00003535 return rc;
3536}
3537
danielk1977dddbcdc2007-04-26 14:42:34 +00003538/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003539static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003540
3541/*
dan51f0b6d2013-02-22 20:16:34 +00003542** Perform a single step of an incremental-vacuum. If successful, return
3543** SQLITE_OK. If there is no work to do (and therefore no point in
3544** calling this function again), return SQLITE_DONE. Or, if an error
3545** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003546**
peter.d.reid60ec9142014-09-06 16:39:46 +00003547** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003548** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003549**
dan51f0b6d2013-02-22 20:16:34 +00003550** Parameter nFin is the number of pages that this database would contain
3551** were this function called until it returns SQLITE_DONE.
3552**
3553** If the bCommit parameter is non-zero, this function assumes that the
3554** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003555** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003556** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003557*/
dan51f0b6d2013-02-22 20:16:34 +00003558static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003559 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003560 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003561
drh1fee73e2007-08-29 04:00:57 +00003562 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003563 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003564
3565 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003566 u8 eType;
3567 Pgno iPtrPage;
3568
3569 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003570 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003571 return SQLITE_DONE;
3572 }
3573
3574 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3575 if( rc!=SQLITE_OK ){
3576 return rc;
3577 }
3578 if( eType==PTRMAP_ROOTPAGE ){
3579 return SQLITE_CORRUPT_BKPT;
3580 }
3581
3582 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003583 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003584 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003585 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003586 ** truncated to zero after this function returns, so it doesn't
3587 ** matter if it still contains some garbage entries.
3588 */
3589 Pgno iFreePg;
3590 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003591 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003592 if( rc!=SQLITE_OK ){
3593 return rc;
3594 }
3595 assert( iFreePg==iLastPg );
3596 releasePage(pFreePg);
3597 }
3598 } else {
3599 Pgno iFreePg; /* Index of free page to move pLastPg to */
3600 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003601 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3602 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003603
drhb00fc3b2013-08-21 23:42:32 +00003604 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003605 if( rc!=SQLITE_OK ){
3606 return rc;
3607 }
3608
dan51f0b6d2013-02-22 20:16:34 +00003609 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003610 ** is swapped with the first free page pulled off the free list.
3611 **
dan51f0b6d2013-02-22 20:16:34 +00003612 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003613 ** looping until a free-page located within the first nFin pages
3614 ** of the file is found.
3615 */
dan51f0b6d2013-02-22 20:16:34 +00003616 if( bCommit==0 ){
3617 eMode = BTALLOC_LE;
3618 iNear = nFin;
3619 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003620 do {
3621 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003622 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003623 if( rc!=SQLITE_OK ){
3624 releasePage(pLastPg);
3625 return rc;
3626 }
3627 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003628 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003629 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003630
dane1df4e32013-03-05 11:27:04 +00003631 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003632 releasePage(pLastPg);
3633 if( rc!=SQLITE_OK ){
3634 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003635 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003636 }
3637 }
3638
dan51f0b6d2013-02-22 20:16:34 +00003639 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003640 do {
danielk19773460d192008-12-27 15:23:13 +00003641 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003642 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3643 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003644 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003645 }
3646 return SQLITE_OK;
3647}
3648
3649/*
dan51f0b6d2013-02-22 20:16:34 +00003650** The database opened by the first argument is an auto-vacuum database
3651** nOrig pages in size containing nFree free pages. Return the expected
3652** size of the database in pages following an auto-vacuum operation.
3653*/
3654static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3655 int nEntry; /* Number of entries on one ptrmap page */
3656 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3657 Pgno nFin; /* Return value */
3658
3659 nEntry = pBt->usableSize/5;
3660 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3661 nFin = nOrig - nFree - nPtrmap;
3662 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3663 nFin--;
3664 }
3665 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3666 nFin--;
3667 }
dan51f0b6d2013-02-22 20:16:34 +00003668
3669 return nFin;
3670}
3671
3672/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003673** A write-transaction must be opened before calling this function.
3674** It performs a single unit of work towards an incremental vacuum.
3675**
3676** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003677** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003678** SQLITE_OK is returned. Otherwise an SQLite error code.
3679*/
3680int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003681 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003682 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003683
3684 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003685 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3686 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003687 rc = SQLITE_DONE;
3688 }else{
dan51f0b6d2013-02-22 20:16:34 +00003689 Pgno nOrig = btreePagecount(pBt);
3690 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3691 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3692
dan91384712013-02-24 11:50:43 +00003693 if( nOrig<nFin ){
3694 rc = SQLITE_CORRUPT_BKPT;
3695 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003696 rc = saveAllCursors(pBt, 0, 0);
3697 if( rc==SQLITE_OK ){
3698 invalidateAllOverflowCache(pBt);
3699 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3700 }
dan51f0b6d2013-02-22 20:16:34 +00003701 if( rc==SQLITE_OK ){
3702 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3703 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3704 }
3705 }else{
3706 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003707 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003708 }
drhd677b3d2007-08-20 22:48:41 +00003709 sqlite3BtreeLeave(p);
3710 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003711}
3712
3713/*
danielk19773b8a05f2007-03-19 17:44:26 +00003714** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003715** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003716**
3717** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3718** the database file should be truncated to during the commit process.
3719** i.e. the database has been reorganized so that only the first *pnTrunc
3720** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003721*/
danielk19773460d192008-12-27 15:23:13 +00003722static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003723 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003724 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003725 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003726
drh1fee73e2007-08-29 04:00:57 +00003727 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003728 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003729 assert(pBt->autoVacuum);
3730 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003731 Pgno nFin; /* Number of pages in database after autovacuuming */
3732 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003733 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003734 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003735
drhb1299152010-03-30 22:58:33 +00003736 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003737 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3738 /* It is not possible to create a database for which the final page
3739 ** is either a pointer-map page or the pending-byte page. If one
3740 ** is encountered, this indicates corruption.
3741 */
danielk19773460d192008-12-27 15:23:13 +00003742 return SQLITE_CORRUPT_BKPT;
3743 }
danielk1977ef165ce2009-04-06 17:50:03 +00003744
danielk19773460d192008-12-27 15:23:13 +00003745 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003746 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003747 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003748 if( nFin<nOrig ){
3749 rc = saveAllCursors(pBt, 0, 0);
3750 }
danielk19773460d192008-12-27 15:23:13 +00003751 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003752 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003753 }
danielk19773460d192008-12-27 15:23:13 +00003754 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003755 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3756 put4byte(&pBt->pPage1->aData[32], 0);
3757 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003758 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003759 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003760 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003761 }
3762 if( rc!=SQLITE_OK ){
3763 sqlite3PagerRollback(pPager);
3764 }
danielk1977687566d2004-11-02 12:56:41 +00003765 }
3766
dan0aed84d2013-03-26 14:16:20 +00003767 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003768 return rc;
3769}
danielk1977dddbcdc2007-04-26 14:42:34 +00003770
danielk1977a50d9aa2009-06-08 14:49:45 +00003771#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3772# define setChildPtrmaps(x) SQLITE_OK
3773#endif
danielk1977687566d2004-11-02 12:56:41 +00003774
3775/*
drh80e35f42007-03-30 14:06:34 +00003776** This routine does the first phase of a two-phase commit. This routine
3777** causes a rollback journal to be created (if it does not already exist)
3778** and populated with enough information so that if a power loss occurs
3779** the database can be restored to its original state by playing back
3780** the journal. Then the contents of the journal are flushed out to
3781** the disk. After the journal is safely on oxide, the changes to the
3782** database are written into the database file and flushed to oxide.
3783** At the end of this call, the rollback journal still exists on the
3784** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003785** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003786** commit process.
3787**
3788** This call is a no-op if no write-transaction is currently active on pBt.
3789**
3790** Otherwise, sync the database file for the btree pBt. zMaster points to
3791** the name of a master journal file that should be written into the
3792** individual journal file, or is NULL, indicating no master journal file
3793** (single database transaction).
3794**
3795** When this is called, the master journal should already have been
3796** created, populated with this journal pointer and synced to disk.
3797**
3798** Once this is routine has returned, the only thing required to commit
3799** the write-transaction for this database file is to delete the journal.
3800*/
3801int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3802 int rc = SQLITE_OK;
3803 if( p->inTrans==TRANS_WRITE ){
3804 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003805 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003806#ifndef SQLITE_OMIT_AUTOVACUUM
3807 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003808 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003809 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003810 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003811 return rc;
3812 }
3813 }
danbc1a3c62013-02-23 16:40:46 +00003814 if( pBt->bDoTruncate ){
3815 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3816 }
drh80e35f42007-03-30 14:06:34 +00003817#endif
drh49b9d332009-01-02 18:10:42 +00003818 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003819 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003820 }
3821 return rc;
3822}
3823
3824/*
danielk197794b30732009-07-02 17:21:57 +00003825** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3826** at the conclusion of a transaction.
3827*/
3828static void btreeEndTransaction(Btree *p){
3829 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003830 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003831 assert( sqlite3BtreeHoldsMutex(p) );
3832
danbc1a3c62013-02-23 16:40:46 +00003833#ifndef SQLITE_OMIT_AUTOVACUUM
3834 pBt->bDoTruncate = 0;
3835#endif
danc0537fe2013-06-28 19:41:43 +00003836 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003837 /* If there are other active statements that belong to this database
3838 ** handle, downgrade to a read-only transaction. The other statements
3839 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003840 downgradeAllSharedCacheTableLocks(p);
3841 p->inTrans = TRANS_READ;
3842 }else{
3843 /* If the handle had any kind of transaction open, decrement the
3844 ** transaction count of the shared btree. If the transaction count
3845 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3846 ** call below will unlock the pager. */
3847 if( p->inTrans!=TRANS_NONE ){
3848 clearAllSharedCacheTableLocks(p);
3849 pBt->nTransaction--;
3850 if( 0==pBt->nTransaction ){
3851 pBt->inTransaction = TRANS_NONE;
3852 }
3853 }
3854
3855 /* Set the current transaction state to TRANS_NONE and unlock the
3856 ** pager if this call closed the only read or write transaction. */
3857 p->inTrans = TRANS_NONE;
3858 unlockBtreeIfUnused(pBt);
3859 }
3860
3861 btreeIntegrity(p);
3862}
3863
3864/*
drh2aa679f2001-06-25 02:11:07 +00003865** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003866**
drh6e345992007-03-30 11:12:08 +00003867** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003868** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3869** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3870** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003871** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003872** routine has to do is delete or truncate or zero the header in the
3873** the rollback journal (which causes the transaction to commit) and
3874** drop locks.
drh6e345992007-03-30 11:12:08 +00003875**
dan60939d02011-03-29 15:40:55 +00003876** Normally, if an error occurs while the pager layer is attempting to
3877** finalize the underlying journal file, this function returns an error and
3878** the upper layer will attempt a rollback. However, if the second argument
3879** is non-zero then this b-tree transaction is part of a multi-file
3880** transaction. In this case, the transaction has already been committed
3881** (by deleting a master journal file) and the caller will ignore this
3882** functions return code. So, even if an error occurs in the pager layer,
3883** reset the b-tree objects internal state to indicate that the write
3884** transaction has been closed. This is quite safe, as the pager will have
3885** transitioned to the error state.
3886**
drh5e00f6c2001-09-13 13:46:56 +00003887** This will release the write lock on the database file. If there
3888** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003889*/
dan60939d02011-03-29 15:40:55 +00003890int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003891
drh075ed302010-10-14 01:17:30 +00003892 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003893 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003894 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003895
3896 /* If the handle has a write-transaction open, commit the shared-btrees
3897 ** transaction and set the shared state to TRANS_READ.
3898 */
3899 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003900 int rc;
drh075ed302010-10-14 01:17:30 +00003901 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003902 assert( pBt->inTransaction==TRANS_WRITE );
3903 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003904 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003905 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003906 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003907 return rc;
3908 }
drh3da9c042014-12-22 18:41:21 +00003909 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003910 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003911 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003912 }
danielk1977aef0bf62005-12-30 16:28:01 +00003913
danielk197794b30732009-07-02 17:21:57 +00003914 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003915 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003916 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003917}
3918
drh80e35f42007-03-30 14:06:34 +00003919/*
3920** Do both phases of a commit.
3921*/
3922int sqlite3BtreeCommit(Btree *p){
3923 int rc;
drhd677b3d2007-08-20 22:48:41 +00003924 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003925 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3926 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003927 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003928 }
drhd677b3d2007-08-20 22:48:41 +00003929 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003930 return rc;
3931}
3932
drhc39e0002004-05-07 23:50:57 +00003933/*
drhfb982642007-08-30 01:19:59 +00003934** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003935** code to errCode for every cursor on any BtShared that pBtree
3936** references. Or if the writeOnly flag is set to 1, then only
3937** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003938**
drh47b7fc72014-11-11 01:33:57 +00003939** Every cursor is a candidate to be tripped, including cursors
3940** that belong to other database connections that happen to be
3941** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003942**
dan80231042014-11-12 14:56:02 +00003943** This routine gets called when a rollback occurs. If the writeOnly
3944** flag is true, then only write-cursors need be tripped - read-only
3945** cursors save their current positions so that they may continue
3946** following the rollback. Or, if writeOnly is false, all cursors are
3947** tripped. In general, writeOnly is false if the transaction being
3948** rolled back modified the database schema. In this case b-tree root
3949** pages may be moved or deleted from the database altogether, making
3950** it unsafe for read cursors to continue.
3951**
3952** If the writeOnly flag is true and an error is encountered while
3953** saving the current position of a read-only cursor, all cursors,
3954** including all read-cursors are tripped.
3955**
3956** SQLITE_OK is returned if successful, or if an error occurs while
3957** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003958*/
dan80231042014-11-12 14:56:02 +00003959int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003960 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003961 int rc = SQLITE_OK;
3962
drh47b7fc72014-11-11 01:33:57 +00003963 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003964 if( pBtree ){
3965 sqlite3BtreeEnter(pBtree);
3966 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3967 int i;
3968 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003969 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003970 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003971 if( rc!=SQLITE_OK ){
3972 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3973 break;
3974 }
3975 }
3976 }else{
3977 sqlite3BtreeClearCursor(p);
3978 p->eState = CURSOR_FAULT;
3979 p->skipNext = errCode;
3980 }
3981 for(i=0; i<=p->iPage; i++){
3982 releasePage(p->apPage[i]);
3983 p->apPage[i] = 0;
3984 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003985 }
dan80231042014-11-12 14:56:02 +00003986 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003987 }
dan80231042014-11-12 14:56:02 +00003988 return rc;
drhfb982642007-08-30 01:19:59 +00003989}
3990
3991/*
drh47b7fc72014-11-11 01:33:57 +00003992** Rollback the transaction in progress.
3993**
3994** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3995** Only write cursors are tripped if writeOnly is true but all cursors are
3996** tripped if writeOnly is false. Any attempt to use
3997** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003998**
3999** This will release the write lock on the database file. If there
4000** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004001*/
drh47b7fc72014-11-11 01:33:57 +00004002int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004003 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004004 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004005 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004006
drh47b7fc72014-11-11 01:33:57 +00004007 assert( writeOnly==1 || writeOnly==0 );
4008 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004009 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004010 if( tripCode==SQLITE_OK ){
4011 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004012 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004013 }else{
4014 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004015 }
drh0f198a72012-02-13 16:43:16 +00004016 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004017 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4018 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4019 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004020 }
danielk1977aef0bf62005-12-30 16:28:01 +00004021 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004022
4023 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004024 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004025
danielk19778d34dfd2006-01-24 16:37:57 +00004026 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004027 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004028 if( rc2!=SQLITE_OK ){
4029 rc = rc2;
4030 }
4031
drh24cd67e2004-05-10 16:18:47 +00004032 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004033 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004034 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004035 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004036 int nPage = get4byte(28+(u8*)pPage1->aData);
4037 testcase( nPage==0 );
4038 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4039 testcase( pBt->nPage!=nPage );
4040 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00004041 releasePage(pPage1);
4042 }
drh85ec3b62013-05-14 23:12:06 +00004043 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004044 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004045 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004046 }
danielk1977aef0bf62005-12-30 16:28:01 +00004047
danielk197794b30732009-07-02 17:21:57 +00004048 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004049 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004050 return rc;
4051}
4052
4053/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004054** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004055** back independently of the main transaction. You must start a transaction
4056** before starting a subtransaction. The subtransaction is ended automatically
4057** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004058**
4059** Statement subtransactions are used around individual SQL statements
4060** that are contained within a BEGIN...COMMIT block. If a constraint
4061** error occurs within the statement, the effect of that one statement
4062** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004063**
4064** A statement sub-transaction is implemented as an anonymous savepoint. The
4065** value passed as the second parameter is the total number of savepoints,
4066** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4067** are no active savepoints and no other statement-transactions open,
4068** iStatement is 1. This anonymous savepoint can be released or rolled back
4069** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004070*/
danielk1977bd434552009-03-18 10:33:00 +00004071int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004072 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004073 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004074 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004075 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004076 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004077 assert( iStatement>0 );
4078 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004079 assert( pBt->inTransaction==TRANS_WRITE );
4080 /* At the pager level, a statement transaction is a savepoint with
4081 ** an index greater than all savepoints created explicitly using
4082 ** SQL statements. It is illegal to open, release or rollback any
4083 ** such savepoints while the statement transaction savepoint is active.
4084 */
4085 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004086 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004087 return rc;
4088}
4089
4090/*
danielk1977fd7f0452008-12-17 17:30:26 +00004091** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4092** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004093** savepoint identified by parameter iSavepoint, depending on the value
4094** of op.
4095**
4096** Normally, iSavepoint is greater than or equal to zero. However, if op is
4097** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4098** contents of the entire transaction are rolled back. This is different
4099** from a normal transaction rollback, as no locks are released and the
4100** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004101*/
4102int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4103 int rc = SQLITE_OK;
4104 if( p && p->inTrans==TRANS_WRITE ){
4105 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004106 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4107 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4108 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004109 if( op==SAVEPOINT_ROLLBACK ){
4110 rc = saveAllCursors(pBt, 0, 0);
4111 }
4112 if( rc==SQLITE_OK ){
4113 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4114 }
drh9f0bbf92009-01-02 21:08:09 +00004115 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004116 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4117 pBt->nPage = 0;
4118 }
drh9f0bbf92009-01-02 21:08:09 +00004119 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004120 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004121
4122 /* The database size was written into the offset 28 of the header
4123 ** when the transaction started, so we know that the value at offset
4124 ** 28 is nonzero. */
4125 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004126 }
danielk1977fd7f0452008-12-17 17:30:26 +00004127 sqlite3BtreeLeave(p);
4128 }
4129 return rc;
4130}
4131
4132/*
drh8b2f49b2001-06-08 00:21:52 +00004133** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004134** iTable. If a read-only cursor is requested, it is assumed that
4135** the caller already has at least a read-only transaction open
4136** on the database already. If a write-cursor is requested, then
4137** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004138**
drhe807bdb2016-01-21 17:06:33 +00004139** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4140** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4141** can be used for reading or for writing if other conditions for writing
4142** are also met. These are the conditions that must be met in order
4143** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004144**
drhe807bdb2016-01-21 17:06:33 +00004145** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004146**
drhfe5d71d2007-03-19 11:54:10 +00004147** 2: Other database connections that share the same pager cache
4148** but which are not in the READ_UNCOMMITTED state may not have
4149** cursors open with wrFlag==0 on the same table. Otherwise
4150** the changes made by this write cursor would be visible to
4151** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004152**
4153** 3: The database must be writable (not on read-only media)
4154**
4155** 4: There must be an active transaction.
4156**
drhe807bdb2016-01-21 17:06:33 +00004157** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4158** is set. If FORDELETE is set, that is a hint to the implementation that
4159** this cursor will only be used to seek to and delete entries of an index
4160** as part of a larger DELETE statement. The FORDELETE hint is not used by
4161** this implementation. But in a hypothetical alternative storage engine
4162** in which index entries are automatically deleted when corresponding table
4163** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4164** operations on this cursor can be no-ops and all READ operations can
4165** return a null row (2-bytes: 0x01 0x00).
4166**
drh6446c4d2001-12-15 14:22:18 +00004167** No checking is done to make sure that page iTable really is the
4168** root page of a b-tree. If it is not, then the cursor acquired
4169** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004170**
drhf25a5072009-11-18 23:01:25 +00004171** It is assumed that the sqlite3BtreeCursorZero() has been called
4172** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004173*/
drhd677b3d2007-08-20 22:48:41 +00004174static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004175 Btree *p, /* The btree */
4176 int iTable, /* Root page of table to open */
4177 int wrFlag, /* 1 to write. 0 read-only */
4178 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4179 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004180){
danielk19773e8add92009-07-04 17:16:00 +00004181 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004182 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004183
drh1fee73e2007-08-29 04:00:57 +00004184 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004185 assert( wrFlag==0
4186 || wrFlag==BTREE_WRCSR
4187 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4188 );
danielk197796d48e92009-06-29 06:00:37 +00004189
danielk1977602b4662009-07-02 07:47:33 +00004190 /* The following assert statements verify that if this is a sharable
4191 ** b-tree database, the connection is holding the required table locks,
4192 ** and that no other connection has any open cursor that conflicts with
4193 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004194 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004195 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4196
danielk19773e8add92009-07-04 17:16:00 +00004197 /* Assert that the caller has opened the required transaction. */
4198 assert( p->inTrans>TRANS_NONE );
4199 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4200 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004201 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004202
drh3fbb0222014-09-24 19:47:27 +00004203 if( wrFlag ){
4204 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004205 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004206 }
drhb1299152010-03-30 22:58:33 +00004207 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004208 assert( wrFlag==0 );
4209 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004210 }
danielk1977aef0bf62005-12-30 16:28:01 +00004211
danielk1977aef0bf62005-12-30 16:28:01 +00004212 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004213 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004214 pCur->pgnoRoot = (Pgno)iTable;
4215 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004216 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004217 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004218 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004219 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004220 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004221 /* If there are two or more cursors on the same btree, then all such
4222 ** cursors *must* have the BTCF_Multiple flag set. */
4223 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4224 if( pX->pgnoRoot==(Pgno)iTable ){
4225 pX->curFlags |= BTCF_Multiple;
4226 pCur->curFlags |= BTCF_Multiple;
4227 }
drha059ad02001-04-17 20:09:11 +00004228 }
drh27fb7462015-06-30 02:47:36 +00004229 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004230 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004231 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004232 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004233}
drhd677b3d2007-08-20 22:48:41 +00004234int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004235 Btree *p, /* The btree */
4236 int iTable, /* Root page of table to open */
4237 int wrFlag, /* 1 to write. 0 read-only */
4238 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4239 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004240){
4241 int rc;
dan08f901b2015-05-25 19:24:36 +00004242 if( iTable<1 ){
4243 rc = SQLITE_CORRUPT_BKPT;
4244 }else{
4245 sqlite3BtreeEnter(p);
4246 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4247 sqlite3BtreeLeave(p);
4248 }
drhd677b3d2007-08-20 22:48:41 +00004249 return rc;
4250}
drh7f751222009-03-17 22:33:00 +00004251
4252/*
4253** Return the size of a BtCursor object in bytes.
4254**
4255** This interfaces is needed so that users of cursors can preallocate
4256** sufficient storage to hold a cursor. The BtCursor object is opaque
4257** to users so they cannot do the sizeof() themselves - they must call
4258** this routine.
4259*/
4260int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004261 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004262}
4263
drh7f751222009-03-17 22:33:00 +00004264/*
drhf25a5072009-11-18 23:01:25 +00004265** Initialize memory that will be converted into a BtCursor object.
4266**
4267** The simple approach here would be to memset() the entire object
4268** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4269** do not need to be zeroed and they are large, so we can save a lot
4270** of run-time by skipping the initialization of those elements.
4271*/
4272void sqlite3BtreeCursorZero(BtCursor *p){
4273 memset(p, 0, offsetof(BtCursor, iPage));
4274}
4275
4276/*
drh5e00f6c2001-09-13 13:46:56 +00004277** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004278** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004279*/
drh3aac2dd2004-04-26 14:10:20 +00004280int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004281 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004282 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004283 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004284 BtShared *pBt = pCur->pBt;
4285 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004286 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004287 assert( pBt->pCursor!=0 );
4288 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004289 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004290 }else{
4291 BtCursor *pPrev = pBt->pCursor;
4292 do{
4293 if( pPrev->pNext==pCur ){
4294 pPrev->pNext = pCur->pNext;
4295 break;
4296 }
4297 pPrev = pPrev->pNext;
4298 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004299 }
danielk197771d5d2c2008-09-29 11:49:47 +00004300 for(i=0; i<=pCur->iPage; i++){
4301 releasePage(pCur->apPage[i]);
4302 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004303 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004304 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004305 /* sqlite3_free(pCur); */
4306 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004307 }
drh8c42ca92001-06-22 19:15:00 +00004308 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004309}
4310
drh5e2f8b92001-05-28 00:41:15 +00004311/*
drh86057612007-06-26 01:04:48 +00004312** Make sure the BtCursor* given in the argument has a valid
4313** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004314** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004315**
4316** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004317** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004318*/
drh9188b382004-05-14 21:12:22 +00004319#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004320 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004321 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004322 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004323 memset(&info, 0, sizeof(info));
drh75e96b32017-04-01 00:20:06 +00004324 btreeParseCell(pCur->apPage[iPage], pCur->ix, &info);
dan7df42ab2014-01-20 18:25:44 +00004325 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004326 }
danielk19771cc5ed82007-05-16 17:28:43 +00004327#else
4328 #define assertCellInfo(x)
4329#endif
drhc5b41ac2015-06-17 02:11:46 +00004330static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4331 if( pCur->info.nSize==0 ){
4332 int iPage = pCur->iPage;
4333 pCur->curFlags |= BTCF_ValidNKey;
drh75e96b32017-04-01 00:20:06 +00004334 btreeParseCell(pCur->apPage[iPage],pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004335 }else{
4336 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004337 }
drhc5b41ac2015-06-17 02:11:46 +00004338}
drh9188b382004-05-14 21:12:22 +00004339
drhea8ffdf2009-07-22 00:35:23 +00004340#ifndef NDEBUG /* The next routine used only within assert() statements */
4341/*
4342** Return true if the given BtCursor is valid. A valid cursor is one
4343** that is currently pointing to a row in a (non-empty) table.
4344** This is a verification routine is used only within assert() statements.
4345*/
4346int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4347 return pCur && pCur->eState==CURSOR_VALID;
4348}
4349#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004350int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4351 assert( pCur!=0 );
4352 return pCur->eState==CURSOR_VALID;
4353}
drhea8ffdf2009-07-22 00:35:23 +00004354
drh9188b382004-05-14 21:12:22 +00004355/*
drha7c90c42016-06-04 20:37:10 +00004356** Return the value of the integer key or "rowid" for a table btree.
4357** This routine is only valid for a cursor that is pointing into a
4358** ordinary table btree. If the cursor points to an index btree or
4359** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004360*/
drha7c90c42016-06-04 20:37:10 +00004361i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004362 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004363 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004364 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004365 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004366 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004367}
drh2af926b2001-05-15 00:39:25 +00004368
drh72f82862001-05-24 21:06:34 +00004369/*
drha7c90c42016-06-04 20:37:10 +00004370** Return the number of bytes of payload for the entry that pCur is
4371** currently pointing to. For table btrees, this will be the amount
4372** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004373**
4374** The caller must guarantee that the cursor is pointing to a non-NULL
4375** valid entry. In other words, the calling procedure must guarantee
4376** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004377*/
drha7c90c42016-06-04 20:37:10 +00004378u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4379 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004380 assert( pCur->eState==CURSOR_VALID );
4381 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004382 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004383}
4384
4385/*
danielk1977d04417962007-05-02 13:16:30 +00004386** Given the page number of an overflow page in the database (parameter
4387** ovfl), this function finds the page number of the next page in the
4388** linked list of overflow pages. If possible, it uses the auto-vacuum
4389** pointer-map data instead of reading the content of page ovfl to do so.
4390**
4391** If an error occurs an SQLite error code is returned. Otherwise:
4392**
danielk1977bea2a942009-01-20 17:06:27 +00004393** The page number of the next overflow page in the linked list is
4394** written to *pPgnoNext. If page ovfl is the last page in its linked
4395** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004396**
danielk1977bea2a942009-01-20 17:06:27 +00004397** If ppPage is not NULL, and a reference to the MemPage object corresponding
4398** to page number pOvfl was obtained, then *ppPage is set to point to that
4399** reference. It is the responsibility of the caller to call releasePage()
4400** on *ppPage to free the reference. In no reference was obtained (because
4401** the pointer-map was used to obtain the value for *pPgnoNext), then
4402** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004403*/
4404static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004405 BtShared *pBt, /* The database file */
4406 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004407 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004408 Pgno *pPgnoNext /* OUT: Next overflow page number */
4409){
4410 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004411 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004412 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004413
drh1fee73e2007-08-29 04:00:57 +00004414 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004415 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004416
4417#ifndef SQLITE_OMIT_AUTOVACUUM
4418 /* Try to find the next page in the overflow list using the
4419 ** autovacuum pointer-map pages. Guess that the next page in
4420 ** the overflow list is page number (ovfl+1). If that guess turns
4421 ** out to be wrong, fall back to loading the data of page
4422 ** number ovfl to determine the next page number.
4423 */
4424 if( pBt->autoVacuum ){
4425 Pgno pgno;
4426 Pgno iGuess = ovfl+1;
4427 u8 eType;
4428
4429 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4430 iGuess++;
4431 }
4432
drhb1299152010-03-30 22:58:33 +00004433 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004434 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004435 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004436 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004437 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004438 }
4439 }
4440 }
4441#endif
4442
danielk1977d8a3f3d2009-07-11 11:45:23 +00004443 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004444 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004445 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004446 assert( rc==SQLITE_OK || pPage==0 );
4447 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004448 next = get4byte(pPage->aData);
4449 }
danielk1977443c0592009-01-16 15:21:05 +00004450 }
danielk197745d68822009-01-16 16:23:38 +00004451
danielk1977bea2a942009-01-20 17:06:27 +00004452 *pPgnoNext = next;
4453 if( ppPage ){
4454 *ppPage = pPage;
4455 }else{
4456 releasePage(pPage);
4457 }
4458 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004459}
4460
danielk1977da107192007-05-04 08:32:13 +00004461/*
4462** Copy data from a buffer to a page, or from a page to a buffer.
4463**
4464** pPayload is a pointer to data stored on database page pDbPage.
4465** If argument eOp is false, then nByte bytes of data are copied
4466** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4467** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4468** of data are copied from the buffer pBuf to pPayload.
4469**
4470** SQLITE_OK is returned on success, otherwise an error code.
4471*/
4472static int copyPayload(
4473 void *pPayload, /* Pointer to page data */
4474 void *pBuf, /* Pointer to buffer */
4475 int nByte, /* Number of bytes to copy */
4476 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4477 DbPage *pDbPage /* Page containing pPayload */
4478){
4479 if( eOp ){
4480 /* Copy data from buffer to page (a write operation) */
4481 int rc = sqlite3PagerWrite(pDbPage);
4482 if( rc!=SQLITE_OK ){
4483 return rc;
4484 }
4485 memcpy(pPayload, pBuf, nByte);
4486 }else{
4487 /* Copy data from page to buffer (a read operation) */
4488 memcpy(pBuf, pPayload, nByte);
4489 }
4490 return SQLITE_OK;
4491}
danielk1977d04417962007-05-02 13:16:30 +00004492
4493/*
danielk19779f8d6402007-05-02 17:48:45 +00004494** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004495** for the entry that the pCur cursor is pointing to. The eOp
4496** argument is interpreted as follows:
4497**
4498** 0: The operation is a read. Populate the overflow cache.
4499** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004500**
4501** A total of "amt" bytes are read or written beginning at "offset".
4502** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004503**
drh3bcdfd22009-07-12 02:32:21 +00004504** The content being read or written might appear on the main page
4505** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004506**
drh42e28f12017-01-27 00:31:59 +00004507** If the current cursor entry uses one or more overflow pages
4508** this function may allocate space for and lazily populate
4509** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004510** Subsequent calls use this cache to make seeking to the supplied offset
4511** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004512**
drh42e28f12017-01-27 00:31:59 +00004513** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004514** invalidated if some other cursor writes to the same table, or if
4515** the cursor is moved to a different row. Additionally, in auto-vacuum
4516** mode, the following events may invalidate an overflow page-list cache.
4517**
4518** * An incremental vacuum,
4519** * A commit in auto_vacuum="full" mode,
4520** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004521*/
danielk19779f8d6402007-05-02 17:48:45 +00004522static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004523 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004524 u32 offset, /* Begin reading this far into payload */
4525 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004526 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004527 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004528){
4529 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004530 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004531 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004532 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004533 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004534#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004535 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004536#endif
drh3aac2dd2004-04-26 14:10:20 +00004537
danielk1977da107192007-05-04 08:32:13 +00004538 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004539 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004540 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004541 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004542 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004543
drh86057612007-06-26 01:04:48 +00004544 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004545 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004546 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004547
drh0b982072016-03-22 14:10:45 +00004548 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004549 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004550 /* Trying to read or write past the end of the data is an error. The
4551 ** conditional above is really:
4552 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4553 ** but is recast into its current form to avoid integer overflow problems
4554 */
drhcc97ca42017-06-07 22:32:59 +00004555 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh3aac2dd2004-04-26 14:10:20 +00004556 }
danielk1977da107192007-05-04 08:32:13 +00004557
4558 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004559 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004560 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004561 if( a+offset>pCur->info.nLocal ){
4562 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004563 }
drh42e28f12017-01-27 00:31:59 +00004564 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004565 offset = 0;
drha34b6762004-05-07 13:30:42 +00004566 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004567 amt -= a;
drhdd793422001-06-28 01:54:48 +00004568 }else{
drhfa1a98a2004-05-14 19:08:17 +00004569 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004570 }
danielk1977da107192007-05-04 08:32:13 +00004571
dan85753662014-12-11 16:38:18 +00004572
danielk1977da107192007-05-04 08:32:13 +00004573 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004574 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004575 Pgno nextPage;
4576
drhfa1a98a2004-05-14 19:08:17 +00004577 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004578
drha38c9512014-04-01 01:24:34 +00004579 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004580 **
4581 ** The aOverflow[] array is sized at one entry for each overflow page
4582 ** in the overflow chain. The page number of the first overflow page is
4583 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4584 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004585 */
drh42e28f12017-01-27 00:31:59 +00004586 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004587 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004588 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004589 Pgno *aNew = (Pgno*)sqlite3Realloc(
4590 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004591 );
4592 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004593 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004594 }else{
4595 pCur->nOvflAlloc = nOvfl*2;
4596 pCur->aOverflow = aNew;
4597 }
4598 }
drhcd645532017-01-20 20:43:14 +00004599 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4600 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004601 }else{
4602 /* If the overflow page-list cache has been allocated and the
4603 ** entry for the first required overflow page is valid, skip
4604 ** directly to it.
4605 */
4606 if( pCur->aOverflow[offset/ovflSize] ){
4607 iIdx = (offset/ovflSize);
4608 nextPage = pCur->aOverflow[iIdx];
4609 offset = (offset%ovflSize);
4610 }
danielk19772dec9702007-05-02 16:48:37 +00004611 }
danielk1977da107192007-05-04 08:32:13 +00004612
drhcd645532017-01-20 20:43:14 +00004613 assert( rc==SQLITE_OK && amt>0 );
4614 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004615 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004616 assert( pCur->aOverflow[iIdx]==0
4617 || pCur->aOverflow[iIdx]==nextPage
4618 || CORRUPT_DB );
4619 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004620
danielk1977d04417962007-05-02 13:16:30 +00004621 if( offset>=ovflSize ){
4622 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004623 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004624 ** data is not required. So first try to lookup the overflow
4625 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004626 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004627 */
drha38c9512014-04-01 01:24:34 +00004628 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004629 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004630 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004631 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004632 }else{
danielk1977da107192007-05-04 08:32:13 +00004633 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004634 }
danielk1977da107192007-05-04 08:32:13 +00004635 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004636 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004637 /* Need to read this page properly. It contains some of the
4638 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004639 */
danf4ba1092011-10-08 14:57:07 +00004640#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004641 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004642#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004643 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004644 if( a + offset > ovflSize ){
4645 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004646 }
danf4ba1092011-10-08 14:57:07 +00004647
4648#ifdef SQLITE_DIRECT_OVERFLOW_READ
4649 /* If all the following are true:
4650 **
4651 ** 1) this is a read operation, and
4652 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004653 ** 3) there is no open write-transaction, and
4654 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004655 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004656 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004657 **
4658 ** then data can be read directly from the database file into the
4659 ** output buffer, bypassing the page-cache altogether. This speeds
4660 ** up loading large records that span many overflow pages.
4661 */
drh42e28f12017-01-27 00:31:59 +00004662 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004663 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004664 && pBt->inTransaction==TRANS_READ /* (3) */
4665 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004666 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004667 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004668 ){
4669 u8 aSave[4];
4670 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004671 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004672 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004673 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004674 nextPage = get4byte(aWrite);
4675 memcpy(aWrite, aSave, 4);
4676 }else
4677#endif
4678
4679 {
4680 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004681 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004682 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004683 );
danf4ba1092011-10-08 14:57:07 +00004684 if( rc==SQLITE_OK ){
4685 aPayload = sqlite3PagerGetData(pDbPage);
4686 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004687 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004688 sqlite3PagerUnref(pDbPage);
4689 offset = 0;
4690 }
4691 }
4692 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004693 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004694 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004695 }
drhcd645532017-01-20 20:43:14 +00004696 if( rc ) break;
4697 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004698 }
drh2af926b2001-05-15 00:39:25 +00004699 }
danielk1977cfe9a692004-06-16 12:00:29 +00004700
danielk1977da107192007-05-04 08:32:13 +00004701 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004702 /* Overflow chain ends prematurely */
4703 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drha7fcb052001-12-14 15:09:55 +00004704 }
danielk1977da107192007-05-04 08:32:13 +00004705 return rc;
drh2af926b2001-05-15 00:39:25 +00004706}
4707
drh72f82862001-05-24 21:06:34 +00004708/*
drhcb3cabd2016-11-25 19:18:28 +00004709** Read part of the payload for the row at which that cursor pCur is currently
4710** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004711** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004712**
drhcb3cabd2016-11-25 19:18:28 +00004713** pCur can be pointing to either a table or an index b-tree.
4714** If pointing to a table btree, then the content section is read. If
4715** pCur is pointing to an index b-tree then the key section is read.
4716**
4717** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4718** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4719** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004720**
drh3aac2dd2004-04-26 14:10:20 +00004721** Return SQLITE_OK on success or an error code if anything goes
4722** wrong. An error is returned if "offset+amt" is larger than
4723** the available payload.
drh72f82862001-05-24 21:06:34 +00004724*/
drhcb3cabd2016-11-25 19:18:28 +00004725int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004726 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004727 assert( pCur->eState==CURSOR_VALID );
4728 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
drh75e96b32017-04-01 00:20:06 +00004729 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh5d1a8722009-07-22 18:07:40 +00004730 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004731}
drh83ec2762017-01-26 16:54:47 +00004732
4733/*
4734** This variant of sqlite3BtreePayload() works even if the cursor has not
4735** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4736** interface.
4737*/
danielk19773588ceb2008-06-10 17:30:26 +00004738#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004739static SQLITE_NOINLINE int accessPayloadChecked(
4740 BtCursor *pCur,
4741 u32 offset,
4742 u32 amt,
4743 void *pBuf
4744){
drhcb3cabd2016-11-25 19:18:28 +00004745 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004746 if ( pCur->eState==CURSOR_INVALID ){
4747 return SQLITE_ABORT;
4748 }
dan7a2347e2016-01-07 16:43:54 +00004749 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004750 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004751 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4752}
4753int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4754 if( pCur->eState==CURSOR_VALID ){
4755 assert( cursorOwnsBtShared(pCur) );
4756 return accessPayload(pCur, offset, amt, pBuf, 0);
4757 }else{
4758 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004759 }
drh2af926b2001-05-15 00:39:25 +00004760}
drhcb3cabd2016-11-25 19:18:28 +00004761#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004762
drh72f82862001-05-24 21:06:34 +00004763/*
drh0e1c19e2004-05-11 00:58:56 +00004764** Return a pointer to payload information from the entry that the
4765** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004766** the key if index btrees (pPage->intKey==0) and is the data for
4767** table btrees (pPage->intKey==1). The number of bytes of available
4768** key/data is written into *pAmt. If *pAmt==0, then the value
4769** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004770**
4771** This routine is an optimization. It is common for the entire key
4772** and data to fit on the local page and for there to be no overflow
4773** pages. When that is so, this routine can be used to access the
4774** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004775** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004776** the key/data and copy it into a preallocated buffer.
4777**
4778** The pointer returned by this routine looks directly into the cached
4779** page of the database. The data might change or move the next time
4780** any btree routine is called.
4781*/
drh2a8d2262013-12-09 20:43:22 +00004782static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004783 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004784 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004785){
drhf3392e32015-04-15 17:26:55 +00004786 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004787 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004788 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004789 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004790 assert( cursorOwnsBtShared(pCur) );
drh75e96b32017-04-01 00:20:06 +00004791 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004792 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004793 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4794 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4795 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4796 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4797 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004798 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004799}
4800
4801
4802/*
drhe51c44f2004-05-30 20:46:09 +00004803** For the entry that cursor pCur is point to, return as
4804** many bytes of the key or data as are available on the local
4805** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004806**
4807** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004808** or be destroyed on the next call to any Btree routine,
4809** including calls from other threads against the same cache.
4810** Hence, a mutex on the BtShared should be held prior to calling
4811** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004812**
4813** These routines is used to get quick access to key and data
4814** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004815*/
drha7c90c42016-06-04 20:37:10 +00004816const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004817 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004818}
4819
4820
4821/*
drh8178a752003-01-05 21:41:40 +00004822** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004823** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004824**
4825** This function returns SQLITE_CORRUPT if the page-header flags field of
4826** the new child page does not match the flags field of the parent (i.e.
4827** if an intkey page appears to be the parent of a non-intkey page, or
4828** vice-versa).
drh72f82862001-05-24 21:06:34 +00004829*/
drh3aac2dd2004-04-26 14:10:20 +00004830static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004831 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004832
dan7a2347e2016-01-07 16:43:54 +00004833 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004834 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004835 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004836 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004837 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4838 return SQLITE_CORRUPT_BKPT;
4839 }
drh271efa52004-05-30 19:19:05 +00004840 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004841 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004842 pCur->aiIdx[pCur->iPage++] = pCur->ix;
4843 pCur->ix = 0;
drh28f58dd2015-06-27 19:45:03 +00004844 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4845 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004846}
4847
drhd879e3e2017-02-13 13:35:55 +00004848#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004849/*
4850** Page pParent is an internal (non-leaf) tree page. This function
4851** asserts that page number iChild is the left-child if the iIdx'th
4852** cell in page pParent. Or, if iIdx is equal to the total number of
4853** cells in pParent, that page number iChild is the right-child of
4854** the page.
4855*/
4856static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004857 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4858 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004859 assert( iIdx<=pParent->nCell );
4860 if( iIdx==pParent->nCell ){
4861 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4862 }else{
4863 assert( get4byte(findCell(pParent, iIdx))==iChild );
4864 }
4865}
4866#else
4867# define assertParentIndex(x,y,z)
4868#endif
4869
drh72f82862001-05-24 21:06:34 +00004870/*
drh5e2f8b92001-05-28 00:41:15 +00004871** Move the cursor up to the parent page.
4872**
4873** pCur->idx is set to the cell index that contains the pointer
4874** to the page we are coming from. If we are coming from the
4875** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004876** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004877*/
danielk197730548662009-07-09 05:07:37 +00004878static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004879 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004880 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004881 assert( pCur->iPage>0 );
4882 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004883 assertParentIndex(
4884 pCur->apPage[pCur->iPage-1],
4885 pCur->aiIdx[pCur->iPage-1],
4886 pCur->apPage[pCur->iPage]->pgno
4887 );
dan6c2688c2012-01-12 15:05:03 +00004888 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004889 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004890 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004891 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drhbbf0f862015-06-27 14:59:26 +00004892 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004893}
4894
4895/*
danielk19778f880a82009-07-13 09:41:45 +00004896** Move the cursor to point to the root page of its b-tree structure.
4897**
4898** If the table has a virtual root page, then the cursor is moved to point
4899** to the virtual root page instead of the actual root page. A table has a
4900** virtual root page when the actual root page contains no cells and a
4901** single child page. This can only happen with the table rooted at page 1.
4902**
4903** If the b-tree structure is empty, the cursor state is set to
4904** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4905** cell located on the root (or virtual root) page and the cursor state
4906** is set to CURSOR_VALID.
4907**
4908** If this function returns successfully, it may be assumed that the
4909** page-header flags indicate that the [virtual] root-page is the expected
4910** kind of b-tree page (i.e. if when opening the cursor the caller did not
4911** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4912** indicating a table b-tree, or if the caller did specify a KeyInfo
4913** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4914** b-tree).
drh72f82862001-05-24 21:06:34 +00004915*/
drh5e2f8b92001-05-28 00:41:15 +00004916static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004917 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004918 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004919
dan7a2347e2016-01-07 16:43:54 +00004920 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004921 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4922 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4923 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4924 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4925 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004926 assert( pCur->skipNext!=SQLITE_OK );
4927 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004928 }
danielk1977be51a652008-10-08 17:58:48 +00004929 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004930 }
danielk197771d5d2c2008-09-29 11:49:47 +00004931
4932 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004933 if( pCur->iPage ){
4934 do{
4935 assert( pCur->apPage[pCur->iPage]!=0 );
4936 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4937 }while( pCur->iPage);
4938 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004939 }
dana205a482011-08-27 18:48:57 +00004940 }else if( pCur->pgnoRoot==0 ){
4941 pCur->eState = CURSOR_INVALID;
4942 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004943 }else{
drh28f58dd2015-06-27 19:45:03 +00004944 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004945 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004946 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004947 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004948 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004949 return rc;
drh777e4c42006-01-13 04:31:58 +00004950 }
danielk1977172114a2009-07-07 15:47:12 +00004951 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004952 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004953 }
danielk197771d5d2c2008-09-29 11:49:47 +00004954 pRoot = pCur->apPage[0];
4955 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004956
4957 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4958 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4959 ** NULL, the caller expects a table b-tree. If this is not the case,
4960 ** return an SQLITE_CORRUPT error.
4961 **
4962 ** Earlier versions of SQLite assumed that this test could not fail
4963 ** if the root page was already loaded when this function was called (i.e.
4964 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4965 ** in such a way that page pRoot is linked into a second b-tree table
4966 ** (or the freelist). */
4967 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4968 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
drhcc97ca42017-06-07 22:32:59 +00004969 return SQLITE_CORRUPT_PGNO(pCur->apPage[pCur->iPage]->pgno);
dan7df42ab2014-01-20 18:25:44 +00004970 }
danielk19778f880a82009-07-13 09:41:45 +00004971
drh7ad3eb62016-10-24 01:01:09 +00004972skip_init:
drh75e96b32017-04-01 00:20:06 +00004973 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00004974 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004975 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004976
drh7ad3eb62016-10-24 01:01:09 +00004977 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004978 if( pRoot->nCell>0 ){
4979 pCur->eState = CURSOR_VALID;
4980 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004981 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004982 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004983 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004984 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004985 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004986 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004987 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004988 }
4989 return rc;
drh72f82862001-05-24 21:06:34 +00004990}
drh2af926b2001-05-15 00:39:25 +00004991
drh5e2f8b92001-05-28 00:41:15 +00004992/*
4993** Move the cursor down to the left-most leaf entry beneath the
4994** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004995**
4996** The left-most leaf is the one with the smallest key - the first
4997** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004998*/
4999static int moveToLeftmost(BtCursor *pCur){
5000 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005001 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005002 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005003
dan7a2347e2016-01-07 16:43:54 +00005004 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005005 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005006 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh75e96b32017-04-01 00:20:06 +00005007 assert( pCur->ix<pPage->nCell );
5008 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005009 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005010 }
drhd677b3d2007-08-20 22:48:41 +00005011 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005012}
5013
drh2dcc9aa2002-12-04 13:40:25 +00005014/*
5015** Move the cursor down to the right-most leaf entry beneath the
5016** page to which it is currently pointing. Notice the difference
5017** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5018** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5019** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005020**
5021** The right-most entry is the one with the largest key - the last
5022** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005023*/
5024static int moveToRightmost(BtCursor *pCur){
5025 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005026 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005027 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005028
dan7a2347e2016-01-07 16:43:54 +00005029 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005030 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005031 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00005032 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005033 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005034 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005035 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005036 }
drh75e96b32017-04-01 00:20:06 +00005037 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005038 assert( pCur->info.nSize==0 );
5039 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5040 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005041}
5042
drh5e00f6c2001-09-13 13:46:56 +00005043/* Move the cursor to the first entry in the table. Return SQLITE_OK
5044** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005045** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005046*/
drh3aac2dd2004-04-26 14:10:20 +00005047int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005048 int rc;
drhd677b3d2007-08-20 22:48:41 +00005049
dan7a2347e2016-01-07 16:43:54 +00005050 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005051 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005052 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005053 if( rc==SQLITE_OK ){
5054 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00005055 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005056 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00005057 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005058 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005059 *pRes = 0;
5060 rc = moveToLeftmost(pCur);
5061 }
drh5e00f6c2001-09-13 13:46:56 +00005062 }
drh5e00f6c2001-09-13 13:46:56 +00005063 return rc;
5064}
drh5e2f8b92001-05-28 00:41:15 +00005065
drh9562b552002-02-19 15:00:07 +00005066/* Move the cursor to the last entry in the table. Return SQLITE_OK
5067** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005068** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005069*/
drh3aac2dd2004-04-26 14:10:20 +00005070int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005071 int rc;
drhd677b3d2007-08-20 22:48:41 +00005072
dan7a2347e2016-01-07 16:43:54 +00005073 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005074 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005075
5076 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005077 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005078#ifdef SQLITE_DEBUG
5079 /* This block serves to assert() that the cursor really does point
5080 ** to the last entry in the b-tree. */
5081 int ii;
5082 for(ii=0; ii<pCur->iPage; ii++){
5083 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5084 }
drh75e96b32017-04-01 00:20:06 +00005085 assert( pCur->ix==pCur->apPage[pCur->iPage]->nCell-1 );
danielk19773f632d52009-05-02 10:03:09 +00005086 assert( pCur->apPage[pCur->iPage]->leaf );
5087#endif
5088 return SQLITE_OK;
5089 }
5090
drh9562b552002-02-19 15:00:07 +00005091 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005092 if( rc==SQLITE_OK ){
5093 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005094 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005095 *pRes = 1;
5096 }else{
5097 assert( pCur->eState==CURSOR_VALID );
5098 *pRes = 0;
5099 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005100 if( rc==SQLITE_OK ){
5101 pCur->curFlags |= BTCF_AtLast;
5102 }else{
5103 pCur->curFlags &= ~BTCF_AtLast;
5104 }
5105
drhd677b3d2007-08-20 22:48:41 +00005106 }
drh9562b552002-02-19 15:00:07 +00005107 }
drh9562b552002-02-19 15:00:07 +00005108 return rc;
5109}
5110
drhe14006d2008-03-25 17:23:32 +00005111/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005112** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005113**
drhe63d9992008-08-13 19:11:48 +00005114** For INTKEY tables, the intKey parameter is used. pIdxKey
5115** must be NULL. For index tables, pIdxKey is used and intKey
5116** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005117**
drh5e2f8b92001-05-28 00:41:15 +00005118** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005119** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005120** were present. The cursor might point to an entry that comes
5121** before or after the key.
5122**
drh64022502009-01-09 14:11:04 +00005123** An integer is written into *pRes which is the result of
5124** comparing the key with the entry to which the cursor is
5125** pointing. The meaning of the integer written into
5126** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005127**
5128** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005129** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005130** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005131**
5132** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005133** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005134**
5135** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005136** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005137**
drhb1d607d2015-11-05 22:30:54 +00005138** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5139** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005140*/
drhe63d9992008-08-13 19:11:48 +00005141int sqlite3BtreeMovetoUnpacked(
5142 BtCursor *pCur, /* The cursor to be moved */
5143 UnpackedRecord *pIdxKey, /* Unpacked index key */
5144 i64 intKey, /* The table key */
5145 int biasRight, /* If true, bias the search to the high end */
5146 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005147){
drh72f82862001-05-24 21:06:34 +00005148 int rc;
dan3b9330f2014-02-27 20:44:18 +00005149 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005150
dan7a2347e2016-01-07 16:43:54 +00005151 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005152 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005153 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005154 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005155 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005156
5157 /* If the cursor is already positioned at the point we are trying
5158 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005159 if( pIdxKey==0
5160 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005161 ){
drhe63d9992008-08-13 19:11:48 +00005162 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005163 *pRes = 0;
5164 return SQLITE_OK;
5165 }
drh451e76d2017-01-21 16:54:19 +00005166 if( pCur->info.nKey<intKey ){
5167 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5168 *pRes = -1;
5169 return SQLITE_OK;
5170 }
drh7f11afa2017-01-21 21:47:54 +00005171 /* If the requested key is one more than the previous key, then
5172 ** try to get there using sqlite3BtreeNext() rather than a full
5173 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005174 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005175 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5176 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005177 rc = sqlite3BtreeNext(pCur, 0);
5178 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005179 getCellInfo(pCur);
5180 if( pCur->info.nKey==intKey ){
5181 return SQLITE_OK;
5182 }
drh2ab792e2017-05-30 18:34:07 +00005183 }else if( rc==SQLITE_DONE ){
5184 rc = SQLITE_OK;
5185 }else{
5186 return rc;
drh451e76d2017-01-21 16:54:19 +00005187 }
5188 }
drha2c20e42008-03-29 16:01:04 +00005189 }
5190 }
5191
dan1fed5da2014-02-25 21:01:25 +00005192 if( pIdxKey ){
5193 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005194 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005195 assert( pIdxKey->default_rc==1
5196 || pIdxKey->default_rc==0
5197 || pIdxKey->default_rc==-1
5198 );
drh13a747e2014-03-03 21:46:55 +00005199 }else{
drhb6e8fd12014-03-06 01:56:33 +00005200 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005201 }
5202
drh5e2f8b92001-05-28 00:41:15 +00005203 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005204 if( rc ){
5205 return rc;
5206 }
dana205a482011-08-27 18:48:57 +00005207 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5208 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5209 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005210 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005211 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005212 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005213 return SQLITE_OK;
5214 }
drhc75d8862015-06-27 23:55:20 +00005215 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5216 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005217 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005218 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005219 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005220 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005221 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005222
5223 /* pPage->nCell must be greater than zero. If this is the root-page
5224 ** the cursor would have been INVALID above and this for(;;) loop
5225 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005226 ** would have already detected db corruption. Similarly, pPage must
5227 ** be the right kind (index or table) of b-tree page. Otherwise
5228 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005229 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005230 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005231 lwr = 0;
5232 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005233 assert( biasRight==0 || biasRight==1 );
5234 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005235 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005236 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005237 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005238 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005239 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005240 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005241 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005242 if( pCell>=pPage->aDataEnd ){
5243 return SQLITE_CORRUPT_PGNO(pPage->pgno);
5244 }
drh9b2fc612013-11-25 20:14:13 +00005245 }
drhd172f862006-01-12 15:01:15 +00005246 }
drha2c20e42008-03-29 16:01:04 +00005247 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005248 if( nCellKey<intKey ){
5249 lwr = idx+1;
5250 if( lwr>upr ){ c = -1; break; }
5251 }else if( nCellKey>intKey ){
5252 upr = idx-1;
5253 if( lwr>upr ){ c = +1; break; }
5254 }else{
5255 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005256 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005257 if( !pPage->leaf ){
5258 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005259 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005260 }else{
drhd95ef5c2016-11-11 18:19:05 +00005261 pCur->curFlags |= BTCF_ValidNKey;
5262 pCur->info.nKey = nCellKey;
5263 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005264 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005265 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005266 }
drhd793f442013-11-25 14:10:15 +00005267 }
drhebf10b12013-11-25 17:38:26 +00005268 assert( lwr+upr>=0 );
5269 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005270 }
5271 }else{
5272 for(;;){
drhc6827502015-05-28 15:14:32 +00005273 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005274 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005275
drhb2eced52010-08-12 02:41:12 +00005276 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005277 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005278 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005279 ** varint. This information is used to attempt to avoid parsing
5280 ** the entire cell by checking for the cases where the record is
5281 ** stored entirely within the b-tree page by inspecting the first
5282 ** 2 bytes of the cell.
5283 */
drhec3e6b12013-11-25 02:38:55 +00005284 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005285 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005286 /* This branch runs if the record-size field of the cell is a
5287 ** single byte varint and the record fits entirely on the main
5288 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005289 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005290 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005291 }else if( !(pCell[1] & 0x80)
5292 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5293 ){
5294 /* The record-size field is a 2 byte varint and the record
5295 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005296 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005297 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005298 }else{
danielk197711c327a2009-05-04 19:01:26 +00005299 /* The record flows over onto one or more overflow pages. In
5300 ** this case the whole cell needs to be parsed, a buffer allocated
5301 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005302 ** buffer before VdbeRecordCompare() can be called.
5303 **
5304 ** If the record is corrupt, the xRecordCompare routine may read
5305 ** up to two varints past the end of the buffer. An extra 18
5306 ** bytes of padding is allocated at the end of the buffer in
5307 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005308 void *pCellKey;
5309 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005310 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005311 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005312 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5313 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5314 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5315 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005316 if( nCell<2 ){
drhcc97ca42017-06-07 22:32:59 +00005317 rc = SQLITE_CORRUPT_PGNO(pPage->pgno);
dan3548db72015-05-27 14:21:05 +00005318 goto moveto_finish;
5319 }
5320 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005321 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005322 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005323 goto moveto_finish;
5324 }
drh75e96b32017-04-01 00:20:06 +00005325 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005326 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5327 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005328 if( rc ){
5329 sqlite3_free(pCellKey);
5330 goto moveto_finish;
5331 }
drh75179de2014-09-16 14:37:35 +00005332 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005333 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005334 }
dan38fdead2014-04-01 10:19:02 +00005335 assert(
5336 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005337 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005338 );
drhbb933ef2013-11-25 15:01:38 +00005339 if( c<0 ){
5340 lwr = idx+1;
5341 }else if( c>0 ){
5342 upr = idx-1;
5343 }else{
5344 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005345 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005346 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005347 pCur->ix = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005348 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005349 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005350 }
drhebf10b12013-11-25 17:38:26 +00005351 if( lwr>upr ) break;
5352 assert( lwr+upr>=0 );
5353 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005354 }
drh72f82862001-05-24 21:06:34 +00005355 }
drhb07028f2011-10-14 21:49:18 +00005356 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005357 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005358 if( pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005359 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
5360 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005361 *pRes = c;
5362 rc = SQLITE_OK;
5363 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005364 }
5365moveto_next_layer:
5366 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005367 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005368 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005369 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005370 }
drh75e96b32017-04-01 00:20:06 +00005371 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005372 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005373 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005374 }
drh1e968a02008-03-25 00:22:21 +00005375moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005376 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005377 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005378 return rc;
5379}
5380
drhd677b3d2007-08-20 22:48:41 +00005381
drh72f82862001-05-24 21:06:34 +00005382/*
drhc39e0002004-05-07 23:50:57 +00005383** Return TRUE if the cursor is not pointing at an entry of the table.
5384**
5385** TRUE will be returned after a call to sqlite3BtreeNext() moves
5386** past the last entry in the table or sqlite3BtreePrev() moves past
5387** the first entry. TRUE is also returned if the table is empty.
5388*/
5389int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005390 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5391 ** have been deleted? This API will need to change to return an error code
5392 ** as well as the boolean result value.
5393 */
5394 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005395}
5396
5397/*
drh5e98e832017-02-17 19:24:06 +00005398** Return an estimate for the number of rows in the table that pCur is
5399** pointing to. Return a negative number if no estimate is currently
5400** available.
5401*/
5402i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5403 i64 n;
5404 u8 i;
5405
5406 assert( cursorOwnsBtShared(pCur) );
5407 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005408
5409 /* Currently this interface is only called by the OP_IfSmaller
5410 ** opcode, and it that case the cursor will always be valid and
5411 ** will always point to a leaf node. */
5412 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5413 if( NEVER(pCur->apPage[pCur->iPage]->leaf==0) ) return -1;
5414
drhdfe11ba2017-02-18 02:42:54 +00005415 for(n=1, i=0; i<=pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005416 n *= pCur->apPage[i]->nCell;
5417 }
5418 return n;
5419}
5420
5421/*
drh2ab792e2017-05-30 18:34:07 +00005422** Advance the cursor to the next entry in the database.
5423** Return value:
5424**
5425** SQLITE_OK success
5426** SQLITE_DONE cursor is already pointing at the last element
5427** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005428**
drhee6438d2014-09-01 13:29:32 +00005429** The main entry point is sqlite3BtreeNext(). That routine is optimized
5430** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5431** to the next cell on the current page. The (slower) btreeNext() helper
5432** routine is called when it is necessary to move to a different page or
5433** to restore the cursor.
5434**
drh2ab792e2017-05-30 18:34:07 +00005435** If bit 0x01 of the flags argument is 1, then the cursor corresponds to
5436** an SQL index and this routine could have been skipped if the SQL index
5437** had been a unique index. The flags argument is a hint to the implement.
5438** SQLite btree implementation does not use this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005439*/
drh2ab792e2017-05-30 18:34:07 +00005440static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int flags){
drh72f82862001-05-24 21:06:34 +00005441 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005442 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005443 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005444
dan7a2347e2016-01-07 16:43:54 +00005445 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005446 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh2ab792e2017-05-30 18:34:07 +00005447 assert( flags==0 );
drhf66f26a2013-08-19 20:04:10 +00005448 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005449 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005450 rc = restoreCursorPosition(pCur);
5451 if( rc!=SQLITE_OK ){
5452 return rc;
5453 }
5454 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005455 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005456 }
drh9b47ee32013-08-20 03:13:51 +00005457 if( pCur->skipNext ){
5458 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5459 pCur->eState = CURSOR_VALID;
5460 if( pCur->skipNext>0 ){
5461 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005462 return SQLITE_OK;
5463 }
drhf66f26a2013-08-19 20:04:10 +00005464 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005465 }
danielk1977da184232006-01-05 11:34:32 +00005466 }
danielk1977da184232006-01-05 11:34:32 +00005467
danielk197771d5d2c2008-09-29 11:49:47 +00005468 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005469 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005470 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005471
5472 /* If the database file is corrupt, it is possible for the value of idx
5473 ** to be invalid here. This can only occur if a second cursor modifies
5474 ** the page while cursor pCur is holding a reference to it. Which can
5475 ** only happen if the database is corrupt in such a way as to link the
5476 ** page into more than one b-tree structure. */
5477 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005478
danielk197771d5d2c2008-09-29 11:49:47 +00005479 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005480 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005481 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005482 if( rc ) return rc;
5483 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005484 }
drh5e2f8b92001-05-28 00:41:15 +00005485 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005486 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005487 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005488 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005489 }
danielk197730548662009-07-09 05:07:37 +00005490 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005491 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005492 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005493 if( pPage->intKey ){
drh2ab792e2017-05-30 18:34:07 +00005494 return sqlite3BtreeNext(pCur, flags);
drh8b18dd42004-05-12 19:18:15 +00005495 }else{
drhee6438d2014-09-01 13:29:32 +00005496 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005497 }
drh8178a752003-01-05 21:41:40 +00005498 }
drh3aac2dd2004-04-26 14:10:20 +00005499 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005500 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005501 }else{
5502 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005503 }
drh72f82862001-05-24 21:06:34 +00005504}
drh2ab792e2017-05-30 18:34:07 +00005505int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005506 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005507 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005508 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005509 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5510 pCur->info.nSize = 0;
5511 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh2ab792e2017-05-30 18:34:07 +00005512 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, 0);
drhee6438d2014-09-01 13:29:32 +00005513 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005514 if( (++pCur->ix)>=pPage->nCell ){
5515 pCur->ix--;
drh2ab792e2017-05-30 18:34:07 +00005516 return btreeNext(pCur, 0);
drhee6438d2014-09-01 13:29:32 +00005517 }
5518 if( pPage->leaf ){
5519 return SQLITE_OK;
5520 }else{
5521 return moveToLeftmost(pCur);
5522 }
5523}
drh72f82862001-05-24 21:06:34 +00005524
drh3b7511c2001-05-26 13:15:44 +00005525/*
drh2ab792e2017-05-30 18:34:07 +00005526** Step the cursor to the back to the previous entry in the database.
5527** Return values:
5528**
5529** SQLITE_OK success
5530** SQLITE_DONE the cursor is already on the first element of the table
5531** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005532**
drhee6438d2014-09-01 13:29:32 +00005533** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5534** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005535** to the previous cell on the current page. The (slower) btreePrevious()
5536** helper routine is called when it is necessary to move to a different page
5537** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005538**
drh2ab792e2017-05-30 18:34:07 +00005539**
5540** If bit 0x01 of the flags argument is 1, then the cursor corresponds to
5541** an SQL index and this routine could have been skipped if the SQL index
5542** had been a unique index. The flags argument is a hint to the implement.
5543** SQLite btree implementation does not use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005544*/
drh2ab792e2017-05-30 18:34:07 +00005545static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int flags){
drh2dcc9aa2002-12-04 13:40:25 +00005546 int rc;
drh8178a752003-01-05 21:41:40 +00005547 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005548
dan7a2347e2016-01-07 16:43:54 +00005549 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005550 assert( flags==0 );
drh9b47ee32013-08-20 03:13:51 +00005551 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005552 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5553 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005554 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005555 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005556 if( rc!=SQLITE_OK ){
5557 return rc;
drhf66f26a2013-08-19 20:04:10 +00005558 }
5559 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005560 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005561 }
drh9b47ee32013-08-20 03:13:51 +00005562 if( pCur->skipNext ){
5563 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5564 pCur->eState = CURSOR_VALID;
5565 if( pCur->skipNext<0 ){
5566 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005567 return SQLITE_OK;
5568 }
drhf66f26a2013-08-19 20:04:10 +00005569 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005570 }
danielk1977da184232006-01-05 11:34:32 +00005571 }
danielk1977da184232006-01-05 11:34:32 +00005572
danielk197771d5d2c2008-09-29 11:49:47 +00005573 pPage = pCur->apPage[pCur->iPage];
5574 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005575 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005576 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005577 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005578 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005579 rc = moveToRightmost(pCur);
5580 }else{
drh75e96b32017-04-01 00:20:06 +00005581 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005582 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005583 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005584 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005585 }
danielk197730548662009-07-09 05:07:37 +00005586 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005587 }
drhee6438d2014-09-01 13:29:32 +00005588 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005589 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005590
drh75e96b32017-04-01 00:20:06 +00005591 pCur->ix--;
danielk197771d5d2c2008-09-29 11:49:47 +00005592 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005593 if( pPage->intKey && !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00005594 rc = sqlite3BtreePrevious(pCur, flags);
drh8b18dd42004-05-12 19:18:15 +00005595 }else{
5596 rc = SQLITE_OK;
5597 }
drh2dcc9aa2002-12-04 13:40:25 +00005598 }
drh2dcc9aa2002-12-04 13:40:25 +00005599 return rc;
5600}
drh2ab792e2017-05-30 18:34:07 +00005601int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005602 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005603 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005604 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005605 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5606 pCur->info.nSize = 0;
5607 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005608 || pCur->ix==0
drhee6438d2014-09-01 13:29:32 +00005609 || pCur->apPage[pCur->iPage]->leaf==0
5610 ){
drh2ab792e2017-05-30 18:34:07 +00005611 return btreePrevious(pCur, 0);
drhee6438d2014-09-01 13:29:32 +00005612 }
drh75e96b32017-04-01 00:20:06 +00005613 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005614 return SQLITE_OK;
5615}
drh2dcc9aa2002-12-04 13:40:25 +00005616
5617/*
drh3b7511c2001-05-26 13:15:44 +00005618** Allocate a new page from the database file.
5619**
danielk19773b8a05f2007-03-19 17:44:26 +00005620** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005621** has already been called on the new page.) The new page has also
5622** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005623** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005624**
5625** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005626** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005627**
drh82e647d2013-03-02 03:25:55 +00005628** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005629** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005630** attempt to keep related pages close to each other in the database file,
5631** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632**
drh82e647d2013-03-02 03:25:55 +00005633** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5634** anywhere on the free-list, then it is guaranteed to be returned. If
5635** eMode is BTALLOC_LT then the page returned will be less than or equal
5636** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5637** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005638*/
drh4f0c5872007-03-26 22:05:01 +00005639static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005640 BtShared *pBt, /* The btree */
5641 MemPage **ppPage, /* Store pointer to the allocated page here */
5642 Pgno *pPgno, /* Store the page number here */
5643 Pgno nearby, /* Search for a page near this one */
5644 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005645){
drh3aac2dd2004-04-26 14:10:20 +00005646 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005647 int rc;
drh35cd6432009-06-05 14:17:21 +00005648 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005649 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005650 MemPage *pTrunk = 0;
5651 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005652 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005653
drh1fee73e2007-08-29 04:00:57 +00005654 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005655 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005656 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005657 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005658 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5659 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005660 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005661 testcase( n==mxPage-1 );
5662 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005663 return SQLITE_CORRUPT_BKPT;
5664 }
drh3aac2dd2004-04-26 14:10:20 +00005665 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005666 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005667 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005668 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005669 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005670
drh82e647d2013-03-02 03:25:55 +00005671 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005672 ** shows that the page 'nearby' is somewhere on the free-list, then
5673 ** the entire-list will be searched for that page.
5674 */
5675#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005676 if( eMode==BTALLOC_EXACT ){
5677 if( nearby<=mxPage ){
5678 u8 eType;
5679 assert( nearby>0 );
5680 assert( pBt->autoVacuum );
5681 rc = ptrmapGet(pBt, nearby, &eType, 0);
5682 if( rc ) return rc;
5683 if( eType==PTRMAP_FREEPAGE ){
5684 searchList = 1;
5685 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 }
dan51f0b6d2013-02-22 20:16:34 +00005687 }else if( eMode==BTALLOC_LE ){
5688 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005689 }
5690#endif
5691
5692 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5693 ** first free-list trunk page. iPrevTrunk is initially 1.
5694 */
danielk19773b8a05f2007-03-19 17:44:26 +00005695 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005696 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005697 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698
5699 /* The code within this loop is run only once if the 'searchList' variable
5700 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005701 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5702 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005703 */
5704 do {
5705 pPrevTrunk = pTrunk;
5706 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005707 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5708 ** is the page number of the next freelist trunk page in the list or
5709 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005710 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005711 }else{
drh113762a2014-11-19 16:36:25 +00005712 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5713 ** stores the page number of the first page of the freelist, or zero if
5714 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005715 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005716 }
drhdf35a082009-07-09 02:24:35 +00005717 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005718 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005719 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005720 }else{
drh7e8c6f12015-05-28 03:28:27 +00005721 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005722 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005723 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005724 pTrunk = 0;
5725 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005726 }
drhb07028f2011-10-14 21:49:18 +00005727 assert( pTrunk!=0 );
5728 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005729 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5730 ** is the number of leaf page pointers to follow. */
5731 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005732 if( k==0 && !searchList ){
5733 /* The trunk has no leaves and the list is not being searched.
5734 ** So extract the trunk page itself and use it as the newly
5735 ** allocated page */
5736 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005737 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005738 if( rc ){
5739 goto end_allocate_page;
5740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 *pPgno = iTrunk;
5742 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5743 *ppPage = pTrunk;
5744 pTrunk = 0;
5745 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005746 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005747 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005748 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005749 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005750#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005751 }else if( searchList
5752 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5753 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005754 /* The list is being searched and this trunk page is the page
5755 ** to allocate, regardless of whether it has leaves.
5756 */
dan51f0b6d2013-02-22 20:16:34 +00005757 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005758 *ppPage = pTrunk;
5759 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005760 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005761 if( rc ){
5762 goto end_allocate_page;
5763 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005764 if( k==0 ){
5765 if( !pPrevTrunk ){
5766 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5767 }else{
danf48c3552010-08-23 15:41:24 +00005768 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5769 if( rc!=SQLITE_OK ){
5770 goto end_allocate_page;
5771 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005772 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5773 }
5774 }else{
5775 /* The trunk page is required by the caller but it contains
5776 ** pointers to free-list leaves. The first leaf becomes a trunk
5777 ** page in this case.
5778 */
5779 MemPage *pNewTrunk;
5780 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005781 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005782 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005783 goto end_allocate_page;
5784 }
drhdf35a082009-07-09 02:24:35 +00005785 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005786 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005787 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005788 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005789 }
danielk19773b8a05f2007-03-19 17:44:26 +00005790 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005791 if( rc!=SQLITE_OK ){
5792 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005793 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005794 }
5795 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5796 put4byte(&pNewTrunk->aData[4], k-1);
5797 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005798 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005799 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005800 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005801 put4byte(&pPage1->aData[32], iNewTrunk);
5802 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005803 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005804 if( rc ){
5805 goto end_allocate_page;
5806 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005807 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5808 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005809 }
5810 pTrunk = 0;
5811 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5812#endif
danielk1977e5765212009-06-17 11:13:28 +00005813 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005814 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005815 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005816 Pgno iPage;
5817 unsigned char *aData = pTrunk->aData;
5818 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005819 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005820 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005821 if( eMode==BTALLOC_LE ){
5822 for(i=0; i<k; i++){
5823 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005824 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005825 closest = i;
5826 break;
5827 }
5828 }
5829 }else{
5830 int dist;
5831 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5832 for(i=1; i<k; i++){
5833 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5834 if( d2<dist ){
5835 closest = i;
5836 dist = d2;
5837 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005838 }
5839 }
5840 }else{
5841 closest = 0;
5842 }
5843
5844 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005845 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005846 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005847 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005848 goto end_allocate_page;
5849 }
drhdf35a082009-07-09 02:24:35 +00005850 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005851 if( !searchList
5852 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5853 ){
danielk1977bea2a942009-01-20 17:06:27 +00005854 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005855 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005856 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5857 ": %d more free pages\n",
5858 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005859 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5860 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005861 if( closest<k-1 ){
5862 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5863 }
5864 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005865 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005866 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005867 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005868 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005869 if( rc!=SQLITE_OK ){
5870 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005871 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005872 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005873 }
5874 searchList = 0;
5875 }
drhee696e22004-08-30 16:52:17 +00005876 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005877 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005878 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005879 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005880 }else{
danbc1a3c62013-02-23 16:40:46 +00005881 /* There are no pages on the freelist, so append a new page to the
5882 ** database image.
5883 **
5884 ** Normally, new pages allocated by this block can be requested from the
5885 ** pager layer with the 'no-content' flag set. This prevents the pager
5886 ** from trying to read the pages content from disk. However, if the
5887 ** current transaction has already run one or more incremental-vacuum
5888 ** steps, then the page we are about to allocate may contain content
5889 ** that is required in the event of a rollback. In this case, do
5890 ** not set the no-content flag. This causes the pager to load and journal
5891 ** the current page content before overwriting it.
5892 **
5893 ** Note that the pager will not actually attempt to load or journal
5894 ** content for any page that really does lie past the end of the database
5895 ** file on disk. So the effects of disabling the no-content optimization
5896 ** here are confined to those pages that lie between the end of the
5897 ** database image and the end of the database file.
5898 */
drh3f387402014-09-24 01:23:00 +00005899 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005900
drhdd3cd972010-03-27 17:12:36 +00005901 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5902 if( rc ) return rc;
5903 pBt->nPage++;
5904 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005905
danielk1977afcdd022004-10-31 16:25:42 +00005906#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005907 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005908 /* If *pPgno refers to a pointer-map page, allocate two new pages
5909 ** at the end of the file instead of one. The first allocated page
5910 ** becomes a new pointer-map page, the second is used by the caller.
5911 */
danielk1977ac861692009-03-28 10:54:22 +00005912 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005913 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5914 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005915 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005916 if( rc==SQLITE_OK ){
5917 rc = sqlite3PagerWrite(pPg->pDbPage);
5918 releasePage(pPg);
5919 }
5920 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005921 pBt->nPage++;
5922 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005923 }
5924#endif
drhdd3cd972010-03-27 17:12:36 +00005925 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5926 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005927
danielk1977599fcba2004-11-08 07:13:13 +00005928 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005929 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005930 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005931 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005932 if( rc!=SQLITE_OK ){
5933 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005934 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005935 }
drh3a4c1412004-05-09 20:40:11 +00005936 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005937 }
danielk1977599fcba2004-11-08 07:13:13 +00005938
5939 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005940
5941end_allocate_page:
5942 releasePage(pTrunk);
5943 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005944 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5945 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005946 return rc;
5947}
5948
5949/*
danielk1977bea2a942009-01-20 17:06:27 +00005950** This function is used to add page iPage to the database file free-list.
5951** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005952**
danielk1977bea2a942009-01-20 17:06:27 +00005953** The value passed as the second argument to this function is optional.
5954** If the caller happens to have a pointer to the MemPage object
5955** corresponding to page iPage handy, it may pass it as the second value.
5956** Otherwise, it may pass NULL.
5957**
5958** If a pointer to a MemPage object is passed as the second argument,
5959** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005960*/
danielk1977bea2a942009-01-20 17:06:27 +00005961static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5962 MemPage *pTrunk = 0; /* Free-list trunk page */
5963 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5964 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5965 MemPage *pPage; /* Page being freed. May be NULL. */
5966 int rc; /* Return Code */
5967 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005968
danielk1977bea2a942009-01-20 17:06:27 +00005969 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005970 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005971 assert( !pMemPage || pMemPage->pgno==iPage );
5972
danfb0246b2015-05-26 12:18:17 +00005973 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005974 if( pMemPage ){
5975 pPage = pMemPage;
5976 sqlite3PagerRef(pPage->pDbPage);
5977 }else{
5978 pPage = btreePageLookup(pBt, iPage);
5979 }
drh3aac2dd2004-04-26 14:10:20 +00005980
drha34b6762004-05-07 13:30:42 +00005981 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005982 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005983 if( rc ) goto freepage_out;
5984 nFree = get4byte(&pPage1->aData[36]);
5985 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005986
drhc9166342012-01-05 23:32:06 +00005987 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005988 /* If the secure_delete option is enabled, then
5989 ** always fully overwrite deleted information with zeros.
5990 */
drhb00fc3b2013-08-21 23:42:32 +00005991 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005992 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005993 ){
5994 goto freepage_out;
5995 }
5996 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005997 }
drhfcce93f2006-02-22 03:08:32 +00005998
danielk1977687566d2004-11-02 12:56:41 +00005999 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006000 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006001 */
danielk197785d90ca2008-07-19 14:25:15 +00006002 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006003 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006004 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006005 }
danielk1977687566d2004-11-02 12:56:41 +00006006
danielk1977bea2a942009-01-20 17:06:27 +00006007 /* Now manipulate the actual database free-list structure. There are two
6008 ** possibilities. If the free-list is currently empty, or if the first
6009 ** trunk page in the free-list is full, then this page will become a
6010 ** new free-list trunk page. Otherwise, it will become a leaf of the
6011 ** first trunk page in the current free-list. This block tests if it
6012 ** is possible to add the page as a new free-list leaf.
6013 */
6014 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006015 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006016
6017 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006018 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006019 if( rc!=SQLITE_OK ){
6020 goto freepage_out;
6021 }
6022
6023 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006024 assert( pBt->usableSize>32 );
6025 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006026 rc = SQLITE_CORRUPT_BKPT;
6027 goto freepage_out;
6028 }
drheeb844a2009-08-08 18:01:07 +00006029 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006030 /* In this case there is room on the trunk page to insert the page
6031 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006032 **
6033 ** Note that the trunk page is not really full until it contains
6034 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6035 ** coded. But due to a coding error in versions of SQLite prior to
6036 ** 3.6.0, databases with freelist trunk pages holding more than
6037 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6038 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006039 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006040 ** for now. At some point in the future (once everyone has upgraded
6041 ** to 3.6.0 or later) we should consider fixing the conditional above
6042 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006043 **
6044 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6045 ** avoid using the last six entries in the freelist trunk page array in
6046 ** order that database files created by newer versions of SQLite can be
6047 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006048 */
danielk19773b8a05f2007-03-19 17:44:26 +00006049 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006050 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006051 put4byte(&pTrunk->aData[4], nLeaf+1);
6052 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006053 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006054 sqlite3PagerDontWrite(pPage->pDbPage);
6055 }
danielk1977bea2a942009-01-20 17:06:27 +00006056 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006057 }
drh3a4c1412004-05-09 20:40:11 +00006058 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006059 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006060 }
drh3b7511c2001-05-26 13:15:44 +00006061 }
danielk1977bea2a942009-01-20 17:06:27 +00006062
6063 /* If control flows to this point, then it was not possible to add the
6064 ** the page being freed as a leaf page of the first trunk in the free-list.
6065 ** Possibly because the free-list is empty, or possibly because the
6066 ** first trunk in the free-list is full. Either way, the page being freed
6067 ** will become the new first trunk page in the free-list.
6068 */
drhb00fc3b2013-08-21 23:42:32 +00006069 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006070 goto freepage_out;
6071 }
6072 rc = sqlite3PagerWrite(pPage->pDbPage);
6073 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006074 goto freepage_out;
6075 }
6076 put4byte(pPage->aData, iTrunk);
6077 put4byte(&pPage->aData[4], 0);
6078 put4byte(&pPage1->aData[32], iPage);
6079 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6080
6081freepage_out:
6082 if( pPage ){
6083 pPage->isInit = 0;
6084 }
6085 releasePage(pPage);
6086 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006087 return rc;
6088}
drhc314dc72009-07-21 11:52:34 +00006089static void freePage(MemPage *pPage, int *pRC){
6090 if( (*pRC)==SQLITE_OK ){
6091 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6092 }
danielk1977bea2a942009-01-20 17:06:27 +00006093}
drh3b7511c2001-05-26 13:15:44 +00006094
6095/*
drh9bfdc252014-09-24 02:05:41 +00006096** Free any overflow pages associated with the given Cell. Write the
6097** local Cell size (the number of bytes on the original page, omitting
6098** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006099*/
drh9bfdc252014-09-24 02:05:41 +00006100static int clearCell(
6101 MemPage *pPage, /* The page that contains the Cell */
6102 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006103 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006104){
danielk1977aef0bf62005-12-30 16:28:01 +00006105 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006106 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006107 int rc;
drh94440812007-03-06 11:42:19 +00006108 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006109 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006110
drh1fee73e2007-08-29 04:00:57 +00006111 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006112 pPage->xParseCell(pPage, pCell, pInfo);
6113 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006114 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006115 }
drh80159da2016-12-09 17:32:51 +00006116 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
drhcc97ca42017-06-07 22:32:59 +00006117 /* Cell extends past end of page */
6118 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhe42a9b42011-08-31 13:27:19 +00006119 }
drh80159da2016-12-09 17:32:51 +00006120 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006121 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006122 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006123 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006124 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006125 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006126 );
drh72365832007-03-06 15:53:44 +00006127 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006128 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006129 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006130 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006131 /* 0 is not a legal page number and page 1 cannot be an
6132 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6133 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006134 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006135 }
danielk1977bea2a942009-01-20 17:06:27 +00006136 if( nOvfl ){
6137 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6138 if( rc ) return rc;
6139 }
dan887d4b22010-02-25 12:09:16 +00006140
shaneh1da207e2010-03-09 14:41:12 +00006141 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006142 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6143 ){
6144 /* There is no reason any cursor should have an outstanding reference
6145 ** to an overflow page belonging to a cell that is being deleted/updated.
6146 ** So if there exists more than one reference to this page, then it
6147 ** must not really be an overflow page and the database must be corrupt.
6148 ** It is helpful to detect this before calling freePage2(), as
6149 ** freePage2() may zero the page contents if secure-delete mode is
6150 ** enabled. If this 'overflow' page happens to be a page that the
6151 ** caller is iterating through or using in some other way, this
6152 ** can be problematic.
6153 */
6154 rc = SQLITE_CORRUPT_BKPT;
6155 }else{
6156 rc = freePage2(pBt, pOvfl, ovflPgno);
6157 }
6158
danielk1977bea2a942009-01-20 17:06:27 +00006159 if( pOvfl ){
6160 sqlite3PagerUnref(pOvfl->pDbPage);
6161 }
drh3b7511c2001-05-26 13:15:44 +00006162 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006163 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006164 }
drh5e2f8b92001-05-28 00:41:15 +00006165 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006166}
6167
6168/*
drh91025292004-05-03 19:49:32 +00006169** Create the byte sequence used to represent a cell on page pPage
6170** and write that byte sequence into pCell[]. Overflow pages are
6171** allocated and filled in as necessary. The calling procedure
6172** is responsible for making sure sufficient space has been allocated
6173** for pCell[].
6174**
6175** Note that pCell does not necessary need to point to the pPage->aData
6176** area. pCell might point to some temporary storage. The cell will
6177** be constructed in this temporary area then copied into pPage->aData
6178** later.
drh3b7511c2001-05-26 13:15:44 +00006179*/
6180static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006181 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006182 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006183 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006184 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006185){
drh3b7511c2001-05-26 13:15:44 +00006186 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006187 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006188 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006189 int spaceLeft;
6190 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006191 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006192 unsigned char *pPrior;
6193 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006194 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006195 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006196 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006197
drh1fee73e2007-08-29 04:00:57 +00006198 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006199
drhc5053fb2008-11-27 02:22:10 +00006200 /* pPage is not necessarily writeable since pCell might be auxiliary
6201 ** buffer space that is separate from the pPage buffer area */
6202 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6203 || sqlite3PagerIswriteable(pPage->pDbPage) );
6204
drh91025292004-05-03 19:49:32 +00006205 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006206 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006207 if( pPage->intKey ){
6208 nPayload = pX->nData + pX->nZero;
6209 pSrc = pX->pData;
6210 nSrc = pX->nData;
6211 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006212 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006213 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006214 }else{
drh8eeb4462016-05-21 20:03:42 +00006215 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6216 nSrc = nPayload = (int)pX->nKey;
6217 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006218 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006219 }
drhdfc2daa2016-05-21 23:25:29 +00006220
6221 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006222 if( nPayload<=pPage->maxLocal ){
6223 n = nHeader + nPayload;
6224 testcase( n==3 );
6225 testcase( n==4 );
6226 if( n<4 ) n = 4;
6227 *pnSize = n;
6228 spaceLeft = nPayload;
6229 pPrior = pCell;
6230 }else{
6231 int mn = pPage->minLocal;
6232 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6233 testcase( n==pPage->maxLocal );
6234 testcase( n==pPage->maxLocal+1 );
6235 if( n > pPage->maxLocal ) n = mn;
6236 spaceLeft = n;
6237 *pnSize = n + nHeader + 4;
6238 pPrior = &pCell[nHeader+n];
6239 }
drh3aac2dd2004-04-26 14:10:20 +00006240 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006241
drh6200c882014-09-23 22:36:25 +00006242 /* At this point variables should be set as follows:
6243 **
6244 ** nPayload Total payload size in bytes
6245 ** pPayload Begin writing payload here
6246 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6247 ** that means content must spill into overflow pages.
6248 ** *pnSize Size of the local cell (not counting overflow pages)
6249 ** pPrior Where to write the pgno of the first overflow page
6250 **
6251 ** Use a call to btreeParseCellPtr() to verify that the values above
6252 ** were computed correctly.
6253 */
drhd879e3e2017-02-13 13:35:55 +00006254#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006255 {
6256 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006257 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006258 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006259 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006260 assert( *pnSize == info.nSize );
6261 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006262 }
6263#endif
6264
6265 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006266 while( nPayload>0 ){
6267 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006268#ifndef SQLITE_OMIT_AUTOVACUUM
6269 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006270 if( pBt->autoVacuum ){
6271 do{
6272 pgnoOvfl++;
6273 } while(
6274 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6275 );
danielk1977b39f70b2007-05-17 18:28:11 +00006276 }
danielk1977afcdd022004-10-31 16:25:42 +00006277#endif
drhf49661a2008-12-10 16:45:50 +00006278 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006279#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006280 /* If the database supports auto-vacuum, and the second or subsequent
6281 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006282 ** for that page now.
6283 **
6284 ** If this is the first overflow page, then write a partial entry
6285 ** to the pointer-map. If we write nothing to this pointer-map slot,
6286 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006287 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006288 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006289 */
danielk19774ef24492007-05-23 09:52:41 +00006290 if( pBt->autoVacuum && rc==SQLITE_OK ){
6291 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006292 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006293 if( rc ){
6294 releasePage(pOvfl);
6295 }
danielk1977afcdd022004-10-31 16:25:42 +00006296 }
6297#endif
drh3b7511c2001-05-26 13:15:44 +00006298 if( rc ){
drh9b171272004-05-08 02:03:22 +00006299 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006300 return rc;
6301 }
drhc5053fb2008-11-27 02:22:10 +00006302
6303 /* If pToRelease is not zero than pPrior points into the data area
6304 ** of pToRelease. Make sure pToRelease is still writeable. */
6305 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6306
6307 /* If pPrior is part of the data area of pPage, then make sure pPage
6308 ** is still writeable */
6309 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6310 || sqlite3PagerIswriteable(pPage->pDbPage) );
6311
drh3aac2dd2004-04-26 14:10:20 +00006312 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006313 releasePage(pToRelease);
6314 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006315 pPrior = pOvfl->aData;
6316 put4byte(pPrior, 0);
6317 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006318 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006319 }
6320 n = nPayload;
6321 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006322
6323 /* If pToRelease is not zero than pPayload points into the data area
6324 ** of pToRelease. Make sure pToRelease is still writeable. */
6325 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6326
6327 /* If pPayload is part of the data area of pPage, then make sure pPage
6328 ** is still writeable */
6329 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6330 || sqlite3PagerIswriteable(pPage->pDbPage) );
6331
drhb026e052007-05-02 01:34:31 +00006332 if( nSrc>0 ){
6333 if( n>nSrc ) n = nSrc;
6334 assert( pSrc );
6335 memcpy(pPayload, pSrc, n);
6336 }else{
6337 memset(pPayload, 0, n);
6338 }
drh3b7511c2001-05-26 13:15:44 +00006339 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006340 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006341 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006342 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006343 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006344 }
drh9b171272004-05-08 02:03:22 +00006345 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006346 return SQLITE_OK;
6347}
6348
drh14acc042001-06-10 19:56:58 +00006349/*
6350** Remove the i-th cell from pPage. This routine effects pPage only.
6351** The cell content is not freed or deallocated. It is assumed that
6352** the cell content has been copied someplace else. This routine just
6353** removes the reference to the cell from pPage.
6354**
6355** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006356*/
drh98add2e2009-07-20 17:11:49 +00006357static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006358 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006359 u8 *data; /* pPage->aData */
6360 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006361 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006362 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006363
drh98add2e2009-07-20 17:11:49 +00006364 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006365 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006366 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006367 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006369 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006370 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006371 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006372 hdr = pPage->hdrOffset;
6373 testcase( pc==get2byte(&data[hdr+5]) );
6374 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006375 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006376 *pRC = SQLITE_CORRUPT_BKPT;
6377 return;
shane0af3f892008-11-12 04:55:34 +00006378 }
shanedcc50b72008-11-13 18:29:50 +00006379 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006380 if( rc ){
6381 *pRC = rc;
6382 return;
shanedcc50b72008-11-13 18:29:50 +00006383 }
drh14acc042001-06-10 19:56:58 +00006384 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006385 if( pPage->nCell==0 ){
6386 memset(&data[hdr+1], 0, 4);
6387 data[hdr+7] = 0;
6388 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6389 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6390 - pPage->childPtrSize - 8;
6391 }else{
6392 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6393 put2byte(&data[hdr+3], pPage->nCell);
6394 pPage->nFree += 2;
6395 }
drh14acc042001-06-10 19:56:58 +00006396}
6397
6398/*
6399** Insert a new cell on pPage at cell index "i". pCell points to the
6400** content of the cell.
6401**
6402** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006403** will not fit, then make a copy of the cell content into pTemp if
6404** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006405** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006406** in pTemp or the original pCell) and also record its index.
6407** Allocating a new entry in pPage->aCell[] implies that
6408** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006409**
6410** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006411*/
drh98add2e2009-07-20 17:11:49 +00006412static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006413 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006414 int i, /* New cell becomes the i-th cell of the page */
6415 u8 *pCell, /* Content of the new cell */
6416 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006417 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006418 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6419 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006420){
drh383d30f2010-02-26 13:07:37 +00006421 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006422 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006423 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006424 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006425
drhcb89f4a2016-05-21 11:23:26 +00006426 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006427 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006428 assert( MX_CELL(pPage->pBt)<=10921 );
6429 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006430 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6431 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006432 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006433 /* The cell should normally be sized correctly. However, when moving a
6434 ** malformed cell from a leaf page to an interior page, if the cell size
6435 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6436 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6437 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006438 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006439 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006440 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006441 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006442 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006443 }
danielk19774dbaa892009-06-16 16:50:22 +00006444 if( iChild ){
6445 put4byte(pCell, iChild);
6446 }
drh43605152004-05-29 21:46:49 +00006447 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006448 /* Comparison against ArraySize-1 since we hold back one extra slot
6449 ** as a contingency. In other words, never need more than 3 overflow
6450 ** slots but 4 are allocated, just to be safe. */
6451 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006452 pPage->apOvfl[j] = pCell;
6453 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006454
6455 /* When multiple overflows occur, they are always sequential and in
6456 ** sorted order. This invariants arise because multiple overflows can
6457 ** only occur when inserting divider cells into the parent page during
6458 ** balancing, and the dividers are adjacent and sorted.
6459 */
6460 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6461 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006462 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006463 int rc = sqlite3PagerWrite(pPage->pDbPage);
6464 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006465 *pRC = rc;
6466 return;
danielk19776e465eb2007-08-21 13:11:00 +00006467 }
6468 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006469 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006470 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006471 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006472 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006473 /* The allocateSpace() routine guarantees the following properties
6474 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006475 assert( idx >= 0 );
6476 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006477 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006478 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006479 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006480 if( iChild ){
6481 put4byte(&data[idx], iChild);
6482 }
drh2c8fb922015-06-25 19:53:48 +00006483 pIns = pPage->aCellIdx + i*2;
6484 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6485 put2byte(pIns, idx);
6486 pPage->nCell++;
6487 /* increment the cell count */
6488 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6489 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006490#ifndef SQLITE_OMIT_AUTOVACUUM
6491 if( pPage->pBt->autoVacuum ){
6492 /* The cell may contain a pointer to an overflow page. If so, write
6493 ** the entry for the overflow page into the pointer map.
6494 */
drh98add2e2009-07-20 17:11:49 +00006495 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006496 }
6497#endif
drh14acc042001-06-10 19:56:58 +00006498 }
6499}
6500
6501/*
drh1ffd2472015-06-23 02:37:30 +00006502** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006503** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006504*/
drh1ffd2472015-06-23 02:37:30 +00006505typedef struct CellArray CellArray;
6506struct CellArray {
6507 int nCell; /* Number of cells in apCell[] */
6508 MemPage *pRef; /* Reference page */
6509 u8 **apCell; /* All cells begin balanced */
6510 u16 *szCell; /* Local size of all cells in apCell[] */
6511};
drhfa1a98a2004-05-14 19:08:17 +00006512
drh1ffd2472015-06-23 02:37:30 +00006513/*
6514** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6515** computed.
6516*/
6517static void populateCellCache(CellArray *p, int idx, int N){
6518 assert( idx>=0 && idx+N<=p->nCell );
6519 while( N>0 ){
6520 assert( p->apCell[idx]!=0 );
6521 if( p->szCell[idx]==0 ){
6522 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6523 }else{
6524 assert( CORRUPT_DB ||
6525 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6526 }
6527 idx++;
6528 N--;
drhfa1a98a2004-05-14 19:08:17 +00006529 }
drh1ffd2472015-06-23 02:37:30 +00006530}
6531
6532/*
6533** Return the size of the Nth element of the cell array
6534*/
6535static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6536 assert( N>=0 && N<p->nCell );
6537 assert( p->szCell[N]==0 );
6538 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6539 return p->szCell[N];
6540}
6541static u16 cachedCellSize(CellArray *p, int N){
6542 assert( N>=0 && N<p->nCell );
6543 if( p->szCell[N] ) return p->szCell[N];
6544 return computeCellSize(p, N);
6545}
6546
6547/*
dan8e9ba0c2014-10-14 17:27:04 +00006548** Array apCell[] contains pointers to nCell b-tree page cells. The
6549** szCell[] array contains the size in bytes of each cell. This function
6550** replaces the current contents of page pPg with the contents of the cell
6551** array.
6552**
6553** Some of the cells in apCell[] may currently be stored in pPg. This
6554** function works around problems caused by this by making a copy of any
6555** such cells before overwriting the page data.
6556**
6557** The MemPage.nFree field is invalidated by this function. It is the
6558** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006559*/
drh658873b2015-06-22 20:02:04 +00006560static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006561 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006562 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006563 u8 **apCell, /* Array of cells */
6564 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006565){
6566 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6567 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6568 const int usableSize = pPg->pBt->usableSize;
6569 u8 * const pEnd = &aData[usableSize];
6570 int i;
6571 u8 *pCellptr = pPg->aCellIdx;
6572 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6573 u8 *pData;
6574
6575 i = get2byte(&aData[hdr+5]);
6576 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006577
dan8e9ba0c2014-10-14 17:27:04 +00006578 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006579 for(i=0; i<nCell; i++){
6580 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006581 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006582 pCell = &pTmp[pCell - aData];
6583 }
6584 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006585 put2byte(pCellptr, (pData - aData));
6586 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006587 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6588 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006589 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006590 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006591 }
6592
dand7b545b2014-10-13 18:03:27 +00006593 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006594 pPg->nCell = nCell;
6595 pPg->nOverflow = 0;
6596
6597 put2byte(&aData[hdr+1], 0);
6598 put2byte(&aData[hdr+3], pPg->nCell);
6599 put2byte(&aData[hdr+5], pData - aData);
6600 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006601 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006602}
6603
dan8e9ba0c2014-10-14 17:27:04 +00006604/*
6605** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6606** contains the size in bytes of each such cell. This function attempts to
6607** add the cells stored in the array to page pPg. If it cannot (because
6608** the page needs to be defragmented before the cells will fit), non-zero
6609** is returned. Otherwise, if the cells are added successfully, zero is
6610** returned.
6611**
6612** Argument pCellptr points to the first entry in the cell-pointer array
6613** (part of page pPg) to populate. After cell apCell[0] is written to the
6614** page body, a 16-bit offset is written to pCellptr. And so on, for each
6615** cell in the array. It is the responsibility of the caller to ensure
6616** that it is safe to overwrite this part of the cell-pointer array.
6617**
6618** When this function is called, *ppData points to the start of the
6619** content area on page pPg. If the size of the content area is extended,
6620** *ppData is updated to point to the new start of the content area
6621** before returning.
6622**
6623** Finally, argument pBegin points to the byte immediately following the
6624** end of the space required by this page for the cell-pointer area (for
6625** all cells - not just those inserted by the current call). If the content
6626** area must be extended to before this point in order to accomodate all
6627** cells in apCell[], then the cells do not fit and non-zero is returned.
6628*/
dand7b545b2014-10-13 18:03:27 +00006629static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006630 MemPage *pPg, /* Page to add cells to */
6631 u8 *pBegin, /* End of cell-pointer array */
6632 u8 **ppData, /* IN/OUT: Page content -area pointer */
6633 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006634 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006635 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006636 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006637){
6638 int i;
6639 u8 *aData = pPg->aData;
6640 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006641 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006642 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006643 for(i=iFirst; i<iEnd; i++){
6644 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006645 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006646 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006647 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006648 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006649 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006650 pSlot = pData;
6651 }
drh48310f82015-10-10 16:41:28 +00006652 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6653 ** database. But they might for a corrupt database. Hence use memmove()
6654 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6655 assert( (pSlot+sz)<=pCArray->apCell[i]
6656 || pSlot>=(pCArray->apCell[i]+sz)
6657 || CORRUPT_DB );
6658 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006659 put2byte(pCellptr, (pSlot - aData));
6660 pCellptr += 2;
6661 }
6662 *ppData = pData;
6663 return 0;
6664}
6665
dan8e9ba0c2014-10-14 17:27:04 +00006666/*
6667** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6668** contains the size in bytes of each such cell. This function adds the
6669** space associated with each cell in the array that is currently stored
6670** within the body of pPg to the pPg free-list. The cell-pointers and other
6671** fields of the page are not updated.
6672**
6673** This function returns the total number of cells added to the free-list.
6674*/
dand7b545b2014-10-13 18:03:27 +00006675static int pageFreeArray(
6676 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006677 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006678 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006679 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006680){
6681 u8 * const aData = pPg->aData;
6682 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006683 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006684 int nRet = 0;
6685 int i;
drhf7838932015-06-23 15:36:34 +00006686 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006687 u8 *pFree = 0;
6688 int szFree = 0;
6689
drhf7838932015-06-23 15:36:34 +00006690 for(i=iFirst; i<iEnd; i++){
6691 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006692 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006693 int sz;
6694 /* No need to use cachedCellSize() here. The sizes of all cells that
6695 ** are to be freed have already been computing while deciding which
6696 ** cells need freeing */
6697 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006698 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006699 if( pFree ){
6700 assert( pFree>aData && (pFree - aData)<65536 );
6701 freeSpace(pPg, (u16)(pFree - aData), szFree);
6702 }
dand7b545b2014-10-13 18:03:27 +00006703 pFree = pCell;
6704 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006705 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006706 }else{
6707 pFree = pCell;
6708 szFree += sz;
6709 }
6710 nRet++;
6711 }
6712 }
drhfefa0942014-11-05 21:21:08 +00006713 if( pFree ){
6714 assert( pFree>aData && (pFree - aData)<65536 );
6715 freeSpace(pPg, (u16)(pFree - aData), szFree);
6716 }
dand7b545b2014-10-13 18:03:27 +00006717 return nRet;
6718}
6719
dand7b545b2014-10-13 18:03:27 +00006720/*
drh5ab63772014-11-27 03:46:04 +00006721** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6722** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6723** with apCell[iOld]. After balancing, this page should hold nNew cells
6724** starting at apCell[iNew].
6725**
6726** This routine makes the necessary adjustments to pPg so that it contains
6727** the correct cells after being balanced.
6728**
dand7b545b2014-10-13 18:03:27 +00006729** The pPg->nFree field is invalid when this function returns. It is the
6730** responsibility of the caller to set it correctly.
6731*/
drh658873b2015-06-22 20:02:04 +00006732static int editPage(
dan09c68402014-10-11 20:00:24 +00006733 MemPage *pPg, /* Edit this page */
6734 int iOld, /* Index of first cell currently on page */
6735 int iNew, /* Index of new first cell on page */
6736 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006737 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006738){
dand7b545b2014-10-13 18:03:27 +00006739 u8 * const aData = pPg->aData;
6740 const int hdr = pPg->hdrOffset;
6741 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6742 int nCell = pPg->nCell; /* Cells stored on pPg */
6743 u8 *pData;
6744 u8 *pCellptr;
6745 int i;
6746 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6747 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006748
6749#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006750 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6751 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006752#endif
6753
dand7b545b2014-10-13 18:03:27 +00006754 /* Remove cells from the start and end of the page */
6755 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006756 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006757 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6758 nCell -= nShift;
6759 }
6760 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006761 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006762 }
dan09c68402014-10-11 20:00:24 +00006763
drh5ab63772014-11-27 03:46:04 +00006764 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006765 if( pData<pBegin ) goto editpage_fail;
6766
6767 /* Add cells to the start of the page */
6768 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006769 int nAdd = MIN(nNew,iOld-iNew);
6770 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006771 pCellptr = pPg->aCellIdx;
6772 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6773 if( pageInsertArray(
6774 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006775 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006776 ) ) goto editpage_fail;
6777 nCell += nAdd;
6778 }
6779
6780 /* Add any overflow cells */
6781 for(i=0; i<pPg->nOverflow; i++){
6782 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6783 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006784 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006785 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6786 nCell++;
6787 if( pageInsertArray(
6788 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006789 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006790 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006791 }
dand7b545b2014-10-13 18:03:27 +00006792 }
dan09c68402014-10-11 20:00:24 +00006793
dand7b545b2014-10-13 18:03:27 +00006794 /* Append cells to the end of the page */
6795 pCellptr = &pPg->aCellIdx[nCell*2];
6796 if( pageInsertArray(
6797 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006798 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006799 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006800
dand7b545b2014-10-13 18:03:27 +00006801 pPg->nCell = nNew;
6802 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006803
dand7b545b2014-10-13 18:03:27 +00006804 put2byte(&aData[hdr+3], pPg->nCell);
6805 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006806
6807#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006808 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006809 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006810 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006811 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006812 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006813 }
drh1ffd2472015-06-23 02:37:30 +00006814 assert( 0==memcmp(pCell, &aData[iOff],
6815 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006816 }
dan09c68402014-10-11 20:00:24 +00006817#endif
6818
drh658873b2015-06-22 20:02:04 +00006819 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006820 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006821 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006822 populateCellCache(pCArray, iNew, nNew);
6823 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006824}
6825
drh14acc042001-06-10 19:56:58 +00006826/*
drhc3b70572003-01-04 19:44:07 +00006827** The following parameters determine how many adjacent pages get involved
6828** in a balancing operation. NN is the number of neighbors on either side
6829** of the page that participate in the balancing operation. NB is the
6830** total number of pages that participate, including the target page and
6831** NN neighbors on either side.
6832**
6833** The minimum value of NN is 1 (of course). Increasing NN above 1
6834** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6835** in exchange for a larger degradation in INSERT and UPDATE performance.
6836** The value of NN appears to give the best results overall.
6837*/
6838#define NN 1 /* Number of neighbors on either side of pPage */
6839#define NB (NN*2+1) /* Total pages involved in the balance */
6840
danielk1977ac245ec2005-01-14 13:50:11 +00006841
drh615ae552005-01-16 23:21:00 +00006842#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006843/*
6844** This version of balance() handles the common special case where
6845** a new entry is being inserted on the extreme right-end of the
6846** tree, in other words, when the new entry will become the largest
6847** entry in the tree.
6848**
drhc314dc72009-07-21 11:52:34 +00006849** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006850** a new page to the right-hand side and put the one new entry in
6851** that page. This leaves the right side of the tree somewhat
6852** unbalanced. But odds are that we will be inserting new entries
6853** at the end soon afterwards so the nearly empty page will quickly
6854** fill up. On average.
6855**
6856** pPage is the leaf page which is the right-most page in the tree.
6857** pParent is its parent. pPage must have a single overflow entry
6858** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006859**
6860** The pSpace buffer is used to store a temporary copy of the divider
6861** cell that will be inserted into pParent. Such a cell consists of a 4
6862** byte page number followed by a variable length integer. In other
6863** words, at most 13 bytes. Hence the pSpace buffer must be at
6864** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006865*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006866static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6867 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006868 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006869 int rc; /* Return Code */
6870 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006871
drh1fee73e2007-08-29 04:00:57 +00006872 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006873 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006874 assert( pPage->nOverflow==1 );
6875
drh5d433ce2010-08-14 16:02:52 +00006876 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006877 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006878
danielk1977a50d9aa2009-06-08 14:49:45 +00006879 /* Allocate a new page. This page will become the right-sibling of
6880 ** pPage. Make the parent page writable, so that the new divider cell
6881 ** may be inserted. If both these operations are successful, proceed.
6882 */
drh4f0c5872007-03-26 22:05:01 +00006883 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006884
danielk1977eaa06f62008-09-18 17:34:44 +00006885 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006886
6887 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006888 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006889 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006890 u8 *pStop;
6891
drhc5053fb2008-11-27 02:22:10 +00006892 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006893 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6894 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006895 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006896 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006897 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006898
6899 /* If this is an auto-vacuum database, update the pointer map
6900 ** with entries for the new page, and any pointer from the
6901 ** cell on the page to an overflow page. If either of these
6902 ** operations fails, the return code is set, but the contents
6903 ** of the parent page are still manipulated by thh code below.
6904 ** That is Ok, at this point the parent page is guaranteed to
6905 ** be marked as dirty. Returning an error code will cause a
6906 ** rollback, undoing any changes made to the parent page.
6907 */
6908 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006909 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6910 if( szCell>pNew->minLocal ){
6911 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006912 }
6913 }
danielk1977eaa06f62008-09-18 17:34:44 +00006914
danielk19776f235cc2009-06-04 14:46:08 +00006915 /* Create a divider cell to insert into pParent. The divider cell
6916 ** consists of a 4-byte page number (the page number of pPage) and
6917 ** a variable length key value (which must be the same value as the
6918 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006919 **
danielk19776f235cc2009-06-04 14:46:08 +00006920 ** To find the largest key value on pPage, first find the right-most
6921 ** cell on pPage. The first two fields of this cell are the
6922 ** record-length (a variable length integer at most 32-bits in size)
6923 ** and the key value (a variable length integer, may have any value).
6924 ** The first of the while(...) loops below skips over the record-length
6925 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006926 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006927 */
danielk1977eaa06f62008-09-18 17:34:44 +00006928 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006929 pStop = &pCell[9];
6930 while( (*(pCell++)&0x80) && pCell<pStop );
6931 pStop = &pCell[9];
6932 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6933
danielk19774dbaa892009-06-16 16:50:22 +00006934 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006935 if( rc==SQLITE_OK ){
6936 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6937 0, pPage->pgno, &rc);
6938 }
danielk19776f235cc2009-06-04 14:46:08 +00006939
6940 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006941 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6942
danielk1977e08a3c42008-09-18 18:17:03 +00006943 /* Release the reference to the new page. */
6944 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006945 }
6946
danielk1977eaa06f62008-09-18 17:34:44 +00006947 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006948}
drh615ae552005-01-16 23:21:00 +00006949#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006950
danielk19774dbaa892009-06-16 16:50:22 +00006951#if 0
drhc3b70572003-01-04 19:44:07 +00006952/*
danielk19774dbaa892009-06-16 16:50:22 +00006953** This function does not contribute anything to the operation of SQLite.
6954** it is sometimes activated temporarily while debugging code responsible
6955** for setting pointer-map entries.
6956*/
6957static int ptrmapCheckPages(MemPage **apPage, int nPage){
6958 int i, j;
6959 for(i=0; i<nPage; i++){
6960 Pgno n;
6961 u8 e;
6962 MemPage *pPage = apPage[i];
6963 BtShared *pBt = pPage->pBt;
6964 assert( pPage->isInit );
6965
6966 for(j=0; j<pPage->nCell; j++){
6967 CellInfo info;
6968 u8 *z;
6969
6970 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006971 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006972 if( info.nLocal<info.nPayload ){
6973 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006974 ptrmapGet(pBt, ovfl, &e, &n);
6975 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6976 }
6977 if( !pPage->leaf ){
6978 Pgno child = get4byte(z);
6979 ptrmapGet(pBt, child, &e, &n);
6980 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6981 }
6982 }
6983 if( !pPage->leaf ){
6984 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6985 ptrmapGet(pBt, child, &e, &n);
6986 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6987 }
6988 }
6989 return 1;
6990}
6991#endif
6992
danielk1977cd581a72009-06-23 15:43:39 +00006993/*
6994** This function is used to copy the contents of the b-tree node stored
6995** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6996** the pointer-map entries for each child page are updated so that the
6997** parent page stored in the pointer map is page pTo. If pFrom contained
6998** any cells with overflow page pointers, then the corresponding pointer
6999** map entries are also updated so that the parent page is page pTo.
7000**
7001** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007002** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007003**
danielk197730548662009-07-09 05:07:37 +00007004** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007005**
7006** The performance of this function is not critical. It is only used by
7007** the balance_shallower() and balance_deeper() procedures, neither of
7008** which are called often under normal circumstances.
7009*/
drhc314dc72009-07-21 11:52:34 +00007010static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7011 if( (*pRC)==SQLITE_OK ){
7012 BtShared * const pBt = pFrom->pBt;
7013 u8 * const aFrom = pFrom->aData;
7014 u8 * const aTo = pTo->aData;
7015 int const iFromHdr = pFrom->hdrOffset;
7016 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007017 int rc;
drhc314dc72009-07-21 11:52:34 +00007018 int iData;
7019
7020
7021 assert( pFrom->isInit );
7022 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007023 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007024
7025 /* Copy the b-tree node content from page pFrom to page pTo. */
7026 iData = get2byte(&aFrom[iFromHdr+5]);
7027 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7028 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7029
7030 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007031 ** match the new data. The initialization of pTo can actually fail under
7032 ** fairly obscure circumstances, even though it is a copy of initialized
7033 ** page pFrom.
7034 */
drhc314dc72009-07-21 11:52:34 +00007035 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007036 rc = btreeInitPage(pTo);
7037 if( rc!=SQLITE_OK ){
7038 *pRC = rc;
7039 return;
7040 }
drhc314dc72009-07-21 11:52:34 +00007041
7042 /* If this is an auto-vacuum database, update the pointer-map entries
7043 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7044 */
7045 if( ISAUTOVACUUM ){
7046 *pRC = setChildPtrmaps(pTo);
7047 }
danielk1977cd581a72009-06-23 15:43:39 +00007048 }
danielk1977cd581a72009-06-23 15:43:39 +00007049}
7050
7051/*
danielk19774dbaa892009-06-16 16:50:22 +00007052** This routine redistributes cells on the iParentIdx'th child of pParent
7053** (hereafter "the page") and up to 2 siblings so that all pages have about the
7054** same amount of free space. Usually a single sibling on either side of the
7055** page are used in the balancing, though both siblings might come from one
7056** side if the page is the first or last child of its parent. If the page
7057** has fewer than 2 siblings (something which can only happen if the page
7058** is a root page or a child of a root page) then all available siblings
7059** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007060**
danielk19774dbaa892009-06-16 16:50:22 +00007061** The number of siblings of the page might be increased or decreased by
7062** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007063**
danielk19774dbaa892009-06-16 16:50:22 +00007064** Note that when this routine is called, some of the cells on the page
7065** might not actually be stored in MemPage.aData[]. This can happen
7066** if the page is overfull. This routine ensures that all cells allocated
7067** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007068**
danielk19774dbaa892009-06-16 16:50:22 +00007069** In the course of balancing the page and its siblings, cells may be
7070** inserted into or removed from the parent page (pParent). Doing so
7071** may cause the parent page to become overfull or underfull. If this
7072** happens, it is the responsibility of the caller to invoke the correct
7073** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007074**
drh5e00f6c2001-09-13 13:46:56 +00007075** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007076** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007077** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007078**
7079** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007080** buffer big enough to hold one page. If while inserting cells into the parent
7081** page (pParent) the parent page becomes overfull, this buffer is
7082** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007083** a maximum of four divider cells into the parent page, and the maximum
7084** size of a cell stored within an internal node is always less than 1/4
7085** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7086** enough for all overflow cells.
7087**
7088** If aOvflSpace is set to a null pointer, this function returns
7089** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007090*/
danielk19774dbaa892009-06-16 16:50:22 +00007091static int balance_nonroot(
7092 MemPage *pParent, /* Parent page of siblings being balanced */
7093 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007094 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007095 int isRoot, /* True if pParent is a root-page */
7096 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007097){
drh16a9b832007-05-05 18:39:25 +00007098 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007099 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007100 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007101 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007102 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007103 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007104 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007105 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007106 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007107 int usableSpace; /* Bytes in pPage beyond the header */
7108 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007109 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007110 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007111 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007112 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007113 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007114 u8 *pRight; /* Location in parent of right-sibling pointer */
7115 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007116 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7117 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007118 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007119 u8 *aSpace1; /* Space for copies of dividers cells */
7120 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007121 u8 abDone[NB+2]; /* True after i'th new page is populated */
7122 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007123 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007124 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007125 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007126
dan33ea4862014-10-09 19:35:37 +00007127 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007128 b.nCell = 0;
7129 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007130 pBt = pParent->pBt;
7131 assert( sqlite3_mutex_held(pBt->mutex) );
7132 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007133
danielk1977e5765212009-06-17 11:13:28 +00007134#if 0
drh43605152004-05-29 21:46:49 +00007135 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007136#endif
drh2e38c322004-09-03 18:38:44 +00007137
danielk19774dbaa892009-06-16 16:50:22 +00007138 /* At this point pParent may have at most one overflow cell. And if
7139 ** this overflow cell is present, it must be the cell with
7140 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007141 ** is called (indirectly) from sqlite3BtreeDelete().
7142 */
danielk19774dbaa892009-06-16 16:50:22 +00007143 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007144 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007145
danielk197711a8a862009-06-17 11:49:52 +00007146 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007147 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007148 }
7149
danielk1977a50d9aa2009-06-08 14:49:45 +00007150 /* Find the sibling pages to balance. Also locate the cells in pParent
7151 ** that divide the siblings. An attempt is made to find NN siblings on
7152 ** either side of pPage. More siblings are taken from one side, however,
7153 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007154 ** has NB or fewer children then all children of pParent are taken.
7155 **
7156 ** This loop also drops the divider cells from the parent page. This
7157 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007158 ** overflow cells in the parent page, since if any existed they will
7159 ** have already been removed.
7160 */
danielk19774dbaa892009-06-16 16:50:22 +00007161 i = pParent->nOverflow + pParent->nCell;
7162 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007163 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007164 }else{
dan7d6885a2012-08-08 14:04:56 +00007165 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007166 if( iParentIdx==0 ){
7167 nxDiv = 0;
7168 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007169 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007170 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007171 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007172 }
dan7d6885a2012-08-08 14:04:56 +00007173 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007174 }
dan7d6885a2012-08-08 14:04:56 +00007175 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007176 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7177 pRight = &pParent->aData[pParent->hdrOffset+8];
7178 }else{
7179 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7180 }
7181 pgno = get4byte(pRight);
7182 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007183 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007184 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007185 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007186 goto balance_cleanup;
7187 }
danielk1977634f2982005-03-28 08:44:07 +00007188 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007189 if( (i--)==0 ) break;
7190
drh9cc5b4e2016-12-26 01:41:33 +00007191 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007192 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007193 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007194 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007195 pParent->nOverflow = 0;
7196 }else{
7197 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7198 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007199 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007200
7201 /* Drop the cell from the parent page. apDiv[i] still points to
7202 ** the cell within the parent, even though it has been dropped.
7203 ** This is safe because dropping a cell only overwrites the first
7204 ** four bytes of it, and this function does not need the first
7205 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007206 ** later on.
7207 **
drh8a575d92011-10-12 17:00:28 +00007208 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007209 ** the dropCell() routine will overwrite the entire cell with zeroes.
7210 ** In this case, temporarily copy the cell into the aOvflSpace[]
7211 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7212 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007213 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007214 int iOff;
7215
7216 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007217 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007218 rc = SQLITE_CORRUPT_BKPT;
7219 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7220 goto balance_cleanup;
7221 }else{
7222 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7223 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7224 }
drh5b47efa2010-02-12 18:18:39 +00007225 }
drh98add2e2009-07-20 17:11:49 +00007226 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007227 }
drh8b2f49b2001-06-08 00:21:52 +00007228 }
7229
drha9121e42008-02-19 14:59:35 +00007230 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007231 ** alignment */
drha9121e42008-02-19 14:59:35 +00007232 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007233
drh8b2f49b2001-06-08 00:21:52 +00007234 /*
danielk1977634f2982005-03-28 08:44:07 +00007235 ** Allocate space for memory structures
7236 */
drhfacf0302008-06-17 15:12:00 +00007237 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007238 nMaxCells*sizeof(u8*) /* b.apCell */
7239 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007240 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007241
drhcbd55b02014-11-04 14:22:27 +00007242 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7243 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007244 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007245 b.apCell = sqlite3ScratchMalloc( szScratch );
7246 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007247 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007248 goto balance_cleanup;
7249 }
drh1ffd2472015-06-23 02:37:30 +00007250 b.szCell = (u16*)&b.apCell[nMaxCells];
7251 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007252 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007253
7254 /*
7255 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007256 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007257 ** into space obtained from aSpace1[]. The divider cells have already
7258 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007259 **
7260 ** If the siblings are on leaf pages, then the child pointers of the
7261 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007262 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007263 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007264 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007265 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007266 **
7267 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7268 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007269 */
drh1ffd2472015-06-23 02:37:30 +00007270 b.pRef = apOld[0];
7271 leafCorrection = b.pRef->leaf*4;
7272 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007273 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007274 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007275 int limit = pOld->nCell;
7276 u8 *aData = pOld->aData;
7277 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007278 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007279 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007280
drh73d340a2015-05-28 11:23:11 +00007281 /* Verify that all sibling pages are of the same "type" (table-leaf,
7282 ** table-interior, index-leaf, or index-interior).
7283 */
7284 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7285 rc = SQLITE_CORRUPT_BKPT;
7286 goto balance_cleanup;
7287 }
7288
drhfe647dc2015-06-23 18:24:25 +00007289 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7290 ** constains overflow cells, include them in the b.apCell[] array
7291 ** in the correct spot.
7292 **
7293 ** Note that when there are multiple overflow cells, it is always the
7294 ** case that they are sequential and adjacent. This invariant arises
7295 ** because multiple overflows can only occurs when inserting divider
7296 ** cells into a parent on a prior balance, and divider cells are always
7297 ** adjacent and are inserted in order. There is an assert() tagged
7298 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7299 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007300 **
7301 ** This must be done in advance. Once the balance starts, the cell
7302 ** offset section of the btree page will be overwritten and we will no
7303 ** long be able to find the cells if a pointer to each cell is not saved
7304 ** first.
7305 */
drh36b78ee2016-01-20 01:32:00 +00007306 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007307 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007308 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007309 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007310 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007311 piCell += 2;
7312 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007313 }
drhfe647dc2015-06-23 18:24:25 +00007314 for(k=0; k<pOld->nOverflow; k++){
7315 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007316 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007317 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007318 }
drh1ffd2472015-06-23 02:37:30 +00007319 }
drhfe647dc2015-06-23 18:24:25 +00007320 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7321 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007322 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007323 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007324 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007325 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007326 }
7327
drh1ffd2472015-06-23 02:37:30 +00007328 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007329 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007330 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007331 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007332 assert( b.nCell<nMaxCells );
7333 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007334 pTemp = &aSpace1[iSpace1];
7335 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007336 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007337 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007338 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007339 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007340 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007341 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007342 if( !pOld->leaf ){
7343 assert( leafCorrection==0 );
7344 assert( pOld->hdrOffset==0 );
7345 /* The right pointer of the child page pOld becomes the left
7346 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007347 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007348 }else{
7349 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007350 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007351 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7352 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007353 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7354 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007355 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007356 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007357 }
7358 }
drh1ffd2472015-06-23 02:37:30 +00007359 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007360 }
drh8b2f49b2001-06-08 00:21:52 +00007361 }
7362
7363 /*
drh1ffd2472015-06-23 02:37:30 +00007364 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007365 ** Store this number in "k". Also compute szNew[] which is the total
7366 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007367 ** in b.apCell[] of the cell that divides page i from page i+1.
7368 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007369 **
drh96f5b762004-05-16 16:24:36 +00007370 ** Values computed by this block:
7371 **
7372 ** k: The total number of sibling pages
7373 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007374 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007375 ** the right of the i-th sibling page.
7376 ** usableSpace: Number of bytes of space available on each sibling.
7377 **
drh8b2f49b2001-06-08 00:21:52 +00007378 */
drh43605152004-05-29 21:46:49 +00007379 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007380 for(i=0; i<nOld; i++){
7381 MemPage *p = apOld[i];
7382 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007383 for(j=0; j<p->nOverflow; j++){
7384 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7385 }
7386 cntNew[i] = cntOld[i];
7387 }
7388 k = nOld;
7389 for(i=0; i<k; i++){
7390 int sz;
7391 while( szNew[i]>usableSpace ){
7392 if( i+1>=k ){
7393 k = i+2;
7394 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7395 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007396 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007397 }
drh1ffd2472015-06-23 02:37:30 +00007398 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007399 szNew[i] -= sz;
7400 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007401 if( cntNew[i]<b.nCell ){
7402 sz = 2 + cachedCellSize(&b, cntNew[i]);
7403 }else{
7404 sz = 0;
7405 }
drh658873b2015-06-22 20:02:04 +00007406 }
7407 szNew[i+1] += sz;
7408 cntNew[i]--;
7409 }
drh1ffd2472015-06-23 02:37:30 +00007410 while( cntNew[i]<b.nCell ){
7411 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007412 if( szNew[i]+sz>usableSpace ) break;
7413 szNew[i] += sz;
7414 cntNew[i]++;
7415 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007416 if( cntNew[i]<b.nCell ){
7417 sz = 2 + cachedCellSize(&b, cntNew[i]);
7418 }else{
7419 sz = 0;
7420 }
drh658873b2015-06-22 20:02:04 +00007421 }
7422 szNew[i+1] -= sz;
7423 }
drh1ffd2472015-06-23 02:37:30 +00007424 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007425 k = i+1;
drh672073a2015-06-24 12:07:40 +00007426 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007427 rc = SQLITE_CORRUPT_BKPT;
7428 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007429 }
7430 }
drh96f5b762004-05-16 16:24:36 +00007431
7432 /*
7433 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007434 ** on the left side (siblings with smaller keys). The left siblings are
7435 ** always nearly full, while the right-most sibling might be nearly empty.
7436 ** The next block of code attempts to adjust the packing of siblings to
7437 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007438 **
7439 ** This adjustment is more than an optimization. The packing above might
7440 ** be so out of balance as to be illegal. For example, the right-most
7441 ** sibling might be completely empty. This adjustment is not optional.
7442 */
drh6019e162001-07-02 17:51:45 +00007443 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007444 int szRight = szNew[i]; /* Size of sibling on the right */
7445 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7446 int r; /* Index of right-most cell in left sibling */
7447 int d; /* Index of first cell to the left of right sibling */
7448
7449 r = cntNew[i-1] - 1;
7450 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007451 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007452 do{
drh1ffd2472015-06-23 02:37:30 +00007453 assert( d<nMaxCells );
7454 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007455 (void)cachedCellSize(&b, r);
7456 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007457 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007458 break;
7459 }
7460 szRight += b.szCell[d] + 2;
7461 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007462 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007463 r--;
7464 d--;
drh672073a2015-06-24 12:07:40 +00007465 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007466 szNew[i] = szRight;
7467 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007468 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7469 rc = SQLITE_CORRUPT_BKPT;
7470 goto balance_cleanup;
7471 }
drh6019e162001-07-02 17:51:45 +00007472 }
drh09d0deb2005-08-02 17:13:09 +00007473
drh2a0df922014-10-30 23:14:56 +00007474 /* Sanity check: For a non-corrupt database file one of the follwing
7475 ** must be true:
7476 ** (1) We found one or more cells (cntNew[0])>0), or
7477 ** (2) pPage is a virtual root page. A virtual root page is when
7478 ** the real root page is page 1 and we are the only child of
7479 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007480 */
drh2a0df922014-10-30 23:14:56 +00007481 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007482 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7483 apOld[0]->pgno, apOld[0]->nCell,
7484 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7485 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007486 ));
7487
drh8b2f49b2001-06-08 00:21:52 +00007488 /*
drh6b308672002-07-08 02:16:37 +00007489 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007490 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007491 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007492 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007493 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007494 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007495 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007496 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007497 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007498 nNew++;
danielk197728129562005-01-11 10:25:06 +00007499 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007500 }else{
drh7aa8f852006-03-28 00:24:44 +00007501 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007502 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007503 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007504 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007505 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007506 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007507 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007508
7509 /* Set the pointer-map entry for the new sibling page. */
7510 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007511 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007512 if( rc!=SQLITE_OK ){
7513 goto balance_cleanup;
7514 }
7515 }
drh6b308672002-07-08 02:16:37 +00007516 }
drh8b2f49b2001-06-08 00:21:52 +00007517 }
7518
7519 /*
dan33ea4862014-10-09 19:35:37 +00007520 ** Reassign page numbers so that the new pages are in ascending order.
7521 ** This helps to keep entries in the disk file in order so that a scan
7522 ** of the table is closer to a linear scan through the file. That in turn
7523 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007524 **
dan33ea4862014-10-09 19:35:37 +00007525 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7526 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007527 **
dan33ea4862014-10-09 19:35:37 +00007528 ** When NB==3, this one optimization makes the database about 25% faster
7529 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007530 */
dan33ea4862014-10-09 19:35:37 +00007531 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007532 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007533 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007534 for(j=0; j<i; j++){
7535 if( aPgno[j]==aPgno[i] ){
7536 /* This branch is taken if the set of sibling pages somehow contains
7537 ** duplicate entries. This can happen if the database is corrupt.
7538 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007539 ** we do the detection here in order to avoid populating the pager
7540 ** cache with two separate objects associated with the same
7541 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007542 assert( CORRUPT_DB );
7543 rc = SQLITE_CORRUPT_BKPT;
7544 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007545 }
7546 }
dan33ea4862014-10-09 19:35:37 +00007547 }
7548 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007549 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007550 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007551 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007552 }
drh00fe08a2014-10-31 00:05:23 +00007553 pgno = aPgOrder[iBest];
7554 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007555 if( iBest!=i ){
7556 if( iBest>i ){
7557 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7558 }
7559 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7560 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007561 }
7562 }
dan33ea4862014-10-09 19:35:37 +00007563
7564 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7565 "%d(%d nc=%d) %d(%d nc=%d)\n",
7566 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007567 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007568 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007569 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007570 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007571 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007572 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7573 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7574 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7575 ));
danielk19774dbaa892009-06-16 16:50:22 +00007576
7577 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7578 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007579
dan33ea4862014-10-09 19:35:37 +00007580 /* If the sibling pages are not leaves, ensure that the right-child pointer
7581 ** of the right-most new sibling page is set to the value that was
7582 ** originally in the same field of the right-most old sibling page. */
7583 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7584 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7585 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7586 }
danielk1977ac11ee62005-01-15 12:45:51 +00007587
dan33ea4862014-10-09 19:35:37 +00007588 /* Make any required updates to pointer map entries associated with
7589 ** cells stored on sibling pages following the balance operation. Pointer
7590 ** map entries associated with divider cells are set by the insertCell()
7591 ** routine. The associated pointer map entries are:
7592 **
7593 ** a) if the cell contains a reference to an overflow chain, the
7594 ** entry associated with the first page in the overflow chain, and
7595 **
7596 ** b) if the sibling pages are not leaves, the child page associated
7597 ** with the cell.
7598 **
7599 ** If the sibling pages are not leaves, then the pointer map entry
7600 ** associated with the right-child of each sibling may also need to be
7601 ** updated. This happens below, after the sibling pages have been
7602 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007603 */
dan33ea4862014-10-09 19:35:37 +00007604 if( ISAUTOVACUUM ){
7605 MemPage *pNew = apNew[0];
7606 u8 *aOld = pNew->aData;
7607 int cntOldNext = pNew->nCell + pNew->nOverflow;
7608 int usableSize = pBt->usableSize;
7609 int iNew = 0;
7610 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007611
drh1ffd2472015-06-23 02:37:30 +00007612 for(i=0; i<b.nCell; i++){
7613 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007614 if( i==cntOldNext ){
7615 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7616 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7617 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007618 }
dan33ea4862014-10-09 19:35:37 +00007619 if( i==cntNew[iNew] ){
7620 pNew = apNew[++iNew];
7621 if( !leafData ) continue;
7622 }
danielk197785d90ca2008-07-19 14:25:15 +00007623
dan33ea4862014-10-09 19:35:37 +00007624 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007625 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007626 ** or else the divider cell to the left of sibling page iOld. So,
7627 ** if sibling page iOld had the same page number as pNew, and if
7628 ** pCell really was a part of sibling page iOld (not a divider or
7629 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007630 if( iOld>=nNew
7631 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007632 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007633 ){
dan33ea4862014-10-09 19:35:37 +00007634 if( !leafCorrection ){
7635 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7636 }
drh1ffd2472015-06-23 02:37:30 +00007637 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007638 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007639 }
drhea82b372015-06-23 21:35:28 +00007640 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007641 }
drh14acc042001-06-10 19:56:58 +00007642 }
7643 }
dan33ea4862014-10-09 19:35:37 +00007644
7645 /* Insert new divider cells into pParent. */
7646 for(i=0; i<nNew-1; i++){
7647 u8 *pCell;
7648 u8 *pTemp;
7649 int sz;
7650 MemPage *pNew = apNew[i];
7651 j = cntNew[i];
7652
7653 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007654 assert( b.apCell[j]!=0 );
7655 pCell = b.apCell[j];
7656 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007657 pTemp = &aOvflSpace[iOvflSpace];
7658 if( !pNew->leaf ){
7659 memcpy(&pNew->aData[8], pCell, 4);
7660 }else if( leafData ){
7661 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007662 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007663 ** cell consists of the integer key for the right-most cell of
7664 ** the sibling-page assembled above only.
7665 */
7666 CellInfo info;
7667 j--;
drh1ffd2472015-06-23 02:37:30 +00007668 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007669 pCell = pTemp;
7670 sz = 4 + putVarint(&pCell[4], info.nKey);
7671 pTemp = 0;
7672 }else{
7673 pCell -= 4;
7674 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7675 ** previously stored on a leaf node, and its reported size was 4
7676 ** bytes, then it may actually be smaller than this
7677 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7678 ** any cell). But it is important to pass the correct size to
7679 ** insertCell(), so reparse the cell now.
7680 **
drhc1fb2b82016-03-09 03:29:27 +00007681 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7682 ** and WITHOUT ROWID tables with exactly one column which is the
7683 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007684 */
drh1ffd2472015-06-23 02:37:30 +00007685 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007686 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007687 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007688 }
7689 }
7690 iOvflSpace += sz;
7691 assert( sz<=pBt->maxLocal+23 );
7692 assert( iOvflSpace <= (int)pBt->pageSize );
7693 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7694 if( rc!=SQLITE_OK ) goto balance_cleanup;
7695 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7696 }
7697
7698 /* Now update the actual sibling pages. The order in which they are updated
7699 ** is important, as this code needs to avoid disrupting any page from which
7700 ** cells may still to be read. In practice, this means:
7701 **
drhd836d422014-10-31 14:26:36 +00007702 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7703 ** then it is not safe to update page apNew[iPg] until after
7704 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007705 **
drhd836d422014-10-31 14:26:36 +00007706 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7707 ** then it is not safe to update page apNew[iPg] until after
7708 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007709 **
7710 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007711 **
7712 ** The iPg value in the following loop starts at nNew-1 goes down
7713 ** to 0, then back up to nNew-1 again, thus making two passes over
7714 ** the pages. On the initial downward pass, only condition (1) above
7715 ** needs to be tested because (2) will always be true from the previous
7716 ** step. On the upward pass, both conditions are always true, so the
7717 ** upwards pass simply processes pages that were missed on the downward
7718 ** pass.
dan33ea4862014-10-09 19:35:37 +00007719 */
drhbec021b2014-10-31 12:22:00 +00007720 for(i=1-nNew; i<nNew; i++){
7721 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007722 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007723 if( abDone[iPg] ) continue; /* Skip pages already processed */
7724 if( i>=0 /* On the upwards pass, or... */
7725 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007726 ){
dan09c68402014-10-11 20:00:24 +00007727 int iNew;
7728 int iOld;
7729 int nNewCell;
7730
drhd836d422014-10-31 14:26:36 +00007731 /* Verify condition (1): If cells are moving left, update iPg
7732 ** only after iPg-1 has already been updated. */
7733 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7734
7735 /* Verify condition (2): If cells are moving right, update iPg
7736 ** only after iPg+1 has already been updated. */
7737 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7738
dan09c68402014-10-11 20:00:24 +00007739 if( iPg==0 ){
7740 iNew = iOld = 0;
7741 nNewCell = cntNew[0];
7742 }else{
drh1ffd2472015-06-23 02:37:30 +00007743 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007744 iNew = cntNew[iPg-1] + !leafData;
7745 nNewCell = cntNew[iPg] - iNew;
7746 }
7747
drh1ffd2472015-06-23 02:37:30 +00007748 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007749 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007750 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007751 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007752 assert( apNew[iPg]->nOverflow==0 );
7753 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007754 }
7755 }
drhd836d422014-10-31 14:26:36 +00007756
7757 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007758 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7759
drh7aa8f852006-03-28 00:24:44 +00007760 assert( nOld>0 );
7761 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007762
danielk197713bd99f2009-06-24 05:40:34 +00007763 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7764 /* The root page of the b-tree now contains no cells. The only sibling
7765 ** page is the right-child of the parent. Copy the contents of the
7766 ** child page into the parent, decreasing the overall height of the
7767 ** b-tree structure by one. This is described as the "balance-shallower"
7768 ** sub-algorithm in some documentation.
7769 **
7770 ** If this is an auto-vacuum database, the call to copyNodeContent()
7771 ** sets all pointer-map entries corresponding to database image pages
7772 ** for which the pointer is stored within the content being copied.
7773 **
drh768f2902014-10-31 02:51:41 +00007774 ** It is critical that the child page be defragmented before being
7775 ** copied into the parent, because if the parent is page 1 then it will
7776 ** by smaller than the child due to the database header, and so all the
7777 ** free space needs to be up front.
7778 */
drh9b5351d2015-09-30 14:19:08 +00007779 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007780 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007781 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007782 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007783 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7784 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007785 );
drhc314dc72009-07-21 11:52:34 +00007786 copyNodeContent(apNew[0], pParent, &rc);
7787 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007788 }else if( ISAUTOVACUUM && !leafCorrection ){
7789 /* Fix the pointer map entries associated with the right-child of each
7790 ** sibling page. All other pointer map entries have already been taken
7791 ** care of. */
7792 for(i=0; i<nNew; i++){
7793 u32 key = get4byte(&apNew[i]->aData[8]);
7794 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007795 }
dan33ea4862014-10-09 19:35:37 +00007796 }
danielk19774dbaa892009-06-16 16:50:22 +00007797
dan33ea4862014-10-09 19:35:37 +00007798 assert( pParent->isInit );
7799 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007800 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007801
dan33ea4862014-10-09 19:35:37 +00007802 /* Free any old pages that were not reused as new pages.
7803 */
7804 for(i=nNew; i<nOld; i++){
7805 freePage(apOld[i], &rc);
7806 }
danielk19774dbaa892009-06-16 16:50:22 +00007807
7808#if 0
dan33ea4862014-10-09 19:35:37 +00007809 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007810 /* The ptrmapCheckPages() contains assert() statements that verify that
7811 ** all pointer map pages are set correctly. This is helpful while
7812 ** debugging. This is usually disabled because a corrupt database may
7813 ** cause an assert() statement to fail. */
7814 ptrmapCheckPages(apNew, nNew);
7815 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007816 }
dan33ea4862014-10-09 19:35:37 +00007817#endif
danielk1977cd581a72009-06-23 15:43:39 +00007818
drh8b2f49b2001-06-08 00:21:52 +00007819 /*
drh14acc042001-06-10 19:56:58 +00007820 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007821 */
drh14acc042001-06-10 19:56:58 +00007822balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007823 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007824 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007825 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007826 }
drh14acc042001-06-10 19:56:58 +00007827 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007828 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007829 }
danielk1977eaa06f62008-09-18 17:34:44 +00007830
drh8b2f49b2001-06-08 00:21:52 +00007831 return rc;
7832}
7833
drh43605152004-05-29 21:46:49 +00007834
7835/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007836** This function is called when the root page of a b-tree structure is
7837** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007838**
danielk1977a50d9aa2009-06-08 14:49:45 +00007839** A new child page is allocated and the contents of the current root
7840** page, including overflow cells, are copied into the child. The root
7841** page is then overwritten to make it an empty page with the right-child
7842** pointer pointing to the new page.
7843**
7844** Before returning, all pointer-map entries corresponding to pages
7845** that the new child-page now contains pointers to are updated. The
7846** entry corresponding to the new right-child pointer of the root
7847** page is also updated.
7848**
7849** If successful, *ppChild is set to contain a reference to the child
7850** page and SQLITE_OK is returned. In this case the caller is required
7851** to call releasePage() on *ppChild exactly once. If an error occurs,
7852** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007853*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007854static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7855 int rc; /* Return value from subprocedures */
7856 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007857 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007858 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007859
danielk1977a50d9aa2009-06-08 14:49:45 +00007860 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007861 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007862
danielk1977a50d9aa2009-06-08 14:49:45 +00007863 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7864 ** page that will become the new right-child of pPage. Copy the contents
7865 ** of the node stored on pRoot into the new child page.
7866 */
drh98add2e2009-07-20 17:11:49 +00007867 rc = sqlite3PagerWrite(pRoot->pDbPage);
7868 if( rc==SQLITE_OK ){
7869 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007870 copyNodeContent(pRoot, pChild, &rc);
7871 if( ISAUTOVACUUM ){
7872 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007873 }
7874 }
7875 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007876 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007877 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007878 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007879 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007880 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7881 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7882 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007883
danielk1977a50d9aa2009-06-08 14:49:45 +00007884 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7885
7886 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007887 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7888 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7889 memcpy(pChild->apOvfl, pRoot->apOvfl,
7890 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007891 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007892
7893 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7894 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7895 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7896
7897 *ppChild = pChild;
7898 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007899}
7900
7901/*
danielk197771d5d2c2008-09-29 11:49:47 +00007902** The page that pCur currently points to has just been modified in
7903** some way. This function figures out if this modification means the
7904** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007905** routine. Balancing routines are:
7906**
7907** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007908** balance_deeper()
7909** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007910*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007911static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007912 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007913 const int nMin = pCur->pBt->usableSize * 2 / 3;
7914 u8 aBalanceQuickSpace[13];
7915 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007916
drhcc5f8a42016-02-06 22:32:06 +00007917 VVA_ONLY( int balance_quick_called = 0 );
7918 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007919
7920 do {
7921 int iPage = pCur->iPage;
7922 MemPage *pPage = pCur->apPage[iPage];
7923
7924 if( iPage==0 ){
7925 if( pPage->nOverflow ){
7926 /* The root page of the b-tree is overfull. In this case call the
7927 ** balance_deeper() function to create a new child for the root-page
7928 ** and copy the current contents of the root-page to it. The
7929 ** next iteration of the do-loop will balance the child page.
7930 */
drhcc5f8a42016-02-06 22:32:06 +00007931 assert( balance_deeper_called==0 );
7932 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007933 rc = balance_deeper(pPage, &pCur->apPage[1]);
7934 if( rc==SQLITE_OK ){
7935 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00007936 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007937 pCur->aiIdx[0] = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007938 assert( pCur->apPage[1]->nOverflow );
7939 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007940 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007941 break;
7942 }
7943 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7944 break;
7945 }else{
7946 MemPage * const pParent = pCur->apPage[iPage-1];
7947 int const iIdx = pCur->aiIdx[iPage-1];
7948
7949 rc = sqlite3PagerWrite(pParent->pDbPage);
7950 if( rc==SQLITE_OK ){
7951#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007952 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007953 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007954 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007955 && pParent->pgno!=1
7956 && pParent->nCell==iIdx
7957 ){
7958 /* Call balance_quick() to create a new sibling of pPage on which
7959 ** to store the overflow cell. balance_quick() inserts a new cell
7960 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007961 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007962 ** use either balance_nonroot() or balance_deeper(). Until this
7963 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7964 ** buffer.
7965 **
7966 ** The purpose of the following assert() is to check that only a
7967 ** single call to balance_quick() is made for each call to this
7968 ** function. If this were not verified, a subtle bug involving reuse
7969 ** of the aBalanceQuickSpace[] might sneak in.
7970 */
drhcc5f8a42016-02-06 22:32:06 +00007971 assert( balance_quick_called==0 );
7972 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007973 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7974 }else
7975#endif
7976 {
7977 /* In this case, call balance_nonroot() to redistribute cells
7978 ** between pPage and up to 2 of its sibling pages. This involves
7979 ** modifying the contents of pParent, which may cause pParent to
7980 ** become overfull or underfull. The next iteration of the do-loop
7981 ** will balance the parent page to correct this.
7982 **
7983 ** If the parent page becomes overfull, the overflow cell or cells
7984 ** are stored in the pSpace buffer allocated immediately below.
7985 ** A subsequent iteration of the do-loop will deal with this by
7986 ** calling balance_nonroot() (balance_deeper() may be called first,
7987 ** but it doesn't deal with overflow cells - just moves them to a
7988 ** different page). Once this subsequent call to balance_nonroot()
7989 ** has completed, it is safe to release the pSpace buffer used by
7990 ** the previous call, as the overflow cell data will have been
7991 ** copied either into the body of a database page or into the new
7992 ** pSpace buffer passed to the latter call to balance_nonroot().
7993 */
7994 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007995 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7996 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007997 if( pFree ){
7998 /* If pFree is not NULL, it points to the pSpace buffer used
7999 ** by a previous call to balance_nonroot(). Its contents are
8000 ** now stored either on real database pages or within the
8001 ** new pSpace buffer, so it may be safely freed here. */
8002 sqlite3PageFree(pFree);
8003 }
8004
danielk19774dbaa892009-06-16 16:50:22 +00008005 /* The pSpace buffer will be freed after the next call to
8006 ** balance_nonroot(), or just before this function returns, whichever
8007 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008008 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008009 }
8010 }
8011
8012 pPage->nOverflow = 0;
8013
8014 /* The next iteration of the do-loop balances the parent page. */
8015 releasePage(pPage);
8016 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008017 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00008018 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008019 }while( rc==SQLITE_OK );
8020
8021 if( pFree ){
8022 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008023 }
8024 return rc;
8025}
8026
drhf74b8d92002-09-01 23:20:45 +00008027
8028/*
drh8eeb4462016-05-21 20:03:42 +00008029** Insert a new record into the BTree. The content of the new record
8030** is described by the pX object. The pCur cursor is used only to
8031** define what table the record should be inserted into, and is left
8032** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008033**
drh8eeb4462016-05-21 20:03:42 +00008034** For a table btree (used for rowid tables), only the pX.nKey value of
8035** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8036** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8037** hold the content of the row.
8038**
8039** For an index btree (used for indexes and WITHOUT ROWID tables), the
8040** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8041** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008042**
8043** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008044** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8045** been performed. In other words, if seekResult!=0 then the cursor
8046** is currently pointing to a cell that will be adjacent to the cell
8047** to be inserted. If seekResult<0 then pCur points to a cell that is
8048** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8049** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008050**
drheaf6ae22016-11-09 20:14:34 +00008051** If seekResult==0, that means pCur is pointing at some unknown location.
8052** In that case, this routine must seek the cursor to the correct insertion
8053** point for (pKey,nKey) before doing the insertion. For index btrees,
8054** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8055** key values and pX->aMem can be used instead of pX->pKey to avoid having
8056** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008057*/
drh3aac2dd2004-04-26 14:10:20 +00008058int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008059 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008060 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008061 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008062 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008063){
drh3b7511c2001-05-26 13:15:44 +00008064 int rc;
drh3e9ca092009-09-08 01:14:48 +00008065 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008066 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008067 int idx;
drh3b7511c2001-05-26 13:15:44 +00008068 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008069 Btree *p = pCur->pBtree;
8070 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008071 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008072 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008073
danf91c1312017-01-10 20:04:38 +00008074 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8075
drh98add2e2009-07-20 17:11:49 +00008076 if( pCur->eState==CURSOR_FAULT ){
8077 assert( pCur->skipNext!=SQLITE_OK );
8078 return pCur->skipNext;
8079 }
8080
dan7a2347e2016-01-07 16:43:54 +00008081 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008082 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8083 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008084 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008085 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8086
danielk197731d31b82009-07-13 13:18:07 +00008087 /* Assert that the caller has been consistent. If this cursor was opened
8088 ** expecting an index b-tree, then the caller should be inserting blob
8089 ** keys with no associated data. If the cursor was opened expecting an
8090 ** intkey table, the caller should be inserting integer keys with a
8091 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008092 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008093
danielk19779c3acf32009-05-02 07:36:49 +00008094 /* Save the positions of any other cursors open on this table.
8095 **
danielk19773509a652009-07-06 18:56:13 +00008096 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008097 ** example, when inserting data into a table with auto-generated integer
8098 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8099 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008100 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008101 ** that the cursor is already where it needs to be and returns without
8102 ** doing any work. To avoid thwarting these optimizations, it is important
8103 ** not to clear the cursor here.
8104 */
drh27fb7462015-06-30 02:47:36 +00008105 if( pCur->curFlags & BTCF_Multiple ){
8106 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8107 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008108 }
8109
danielk197771d5d2c2008-09-29 11:49:47 +00008110 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008111 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008112 /* If this is an insert into a table b-tree, invalidate any incrblob
8113 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008114 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008115
danf91c1312017-01-10 20:04:38 +00008116 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8117 ** to a row with the same key as the new entry being inserted. */
8118 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8119 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8120
drhe0670b62014-02-12 21:31:12 +00008121 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008122 ** new row onto the end, set the "loc" to avoid an unnecessary
8123 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008124 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8125 loc = 0;
drh207c8172015-06-29 23:01:32 +00008126 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008127 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008128 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008129 }
danf91c1312017-01-10 20:04:38 +00008130 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008131 if( pX->nMem ){
8132 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008133 r.pKeyInfo = pCur->pKeyInfo;
8134 r.aMem = pX->aMem;
8135 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008136 r.default_rc = 0;
8137 r.errCode = 0;
8138 r.r1 = 0;
8139 r.r2 = 0;
8140 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008141 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008142 }else{
danf91c1312017-01-10 20:04:38 +00008143 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008144 }
drh4c301aa2009-07-15 17:25:45 +00008145 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008146 }
danielk1977b980d2212009-06-22 18:03:51 +00008147 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008148
drh14acc042001-06-10 19:56:58 +00008149 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008150 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008151 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008152
drh3a4c1412004-05-09 20:40:11 +00008153 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008154 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008155 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008156 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008157 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008158 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008159 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008160 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008161 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008162 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008163 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008164 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008165 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008166 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008167 rc = sqlite3PagerWrite(pPage->pDbPage);
8168 if( rc ){
8169 goto end_insert;
8170 }
danielk197771d5d2c2008-09-29 11:49:47 +00008171 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008172 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008173 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008174 }
drh80159da2016-12-09 17:32:51 +00008175 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008176 if( info.nSize==szNew && info.nLocal==info.nPayload
8177 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8178 ){
drhf9238252016-12-09 18:09:42 +00008179 /* Overwrite the old cell with the new if they are the same size.
8180 ** We could also try to do this if the old cell is smaller, then add
8181 ** the leftover space to the free list. But experiments show that
8182 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008183 ** calling dropCell() and insertCell().
8184 **
8185 ** This optimization cannot be used on an autovacuum database if the
8186 ** new entry uses overflow pages, as the insertCell() call below is
8187 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008188 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008189 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008190 memcpy(oldCell, newCell, szNew);
8191 return SQLITE_OK;
8192 }
8193 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008194 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008195 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008196 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008197 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008198 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008199 }else{
drh4b70f112004-05-02 21:12:19 +00008200 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008201 }
drh98add2e2009-07-20 17:11:49 +00008202 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008203 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008204 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008205
mistachkin48864df2013-03-21 21:20:32 +00008206 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008207 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008208 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008209 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008210 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008211 ** Previous versions of SQLite called moveToRoot() to move the cursor
8212 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008213 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8214 ** set the cursor state to "invalid". This makes common insert operations
8215 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008216 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008217 ** There is a subtle but important optimization here too. When inserting
8218 ** multiple records into an intkey b-tree using a single cursor (as can
8219 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8220 ** is advantageous to leave the cursor pointing to the last entry in
8221 ** the b-tree if possible. If the cursor is left pointing to the last
8222 ** entry in the table, and the next row inserted has an integer key
8223 ** larger than the largest existing key, it is possible to insert the
8224 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008225 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008226 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008227 if( pPage->nOverflow ){
8228 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008229 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008230 rc = balance(pCur);
8231
8232 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008233 ** fails. Internal data structure corruption will result otherwise.
8234 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8235 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008236 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008237 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008238 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8239 rc = moveToRoot(pCur);
drh7b20a152017-01-12 19:10:55 +00008240 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008241 assert( pCur->pKey==0 );
8242 pCur->pKey = sqlite3Malloc( pX->nKey );
8243 if( pCur->pKey==0 ){
8244 rc = SQLITE_NOMEM;
8245 }else{
8246 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8247 }
8248 }
8249 pCur->eState = CURSOR_REQUIRESEEK;
8250 pCur->nKey = pX->nKey;
8251 }
danielk19773f632d52009-05-02 10:03:09 +00008252 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008253 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008254
drh2e38c322004-09-03 18:38:44 +00008255end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008256 return rc;
8257}
8258
8259/*
danf0ee1d32015-09-12 19:26:11 +00008260** Delete the entry that the cursor is pointing to.
8261**
drhe807bdb2016-01-21 17:06:33 +00008262** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8263** the cursor is left pointing at an arbitrary location after the delete.
8264** But if that bit is set, then the cursor is left in a state such that
8265** the next call to BtreeNext() or BtreePrev() moves it to the same row
8266** as it would have been on if the call to BtreeDelete() had been omitted.
8267**
drhdef19e32016-01-27 16:26:25 +00008268** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8269** associated with a single table entry and its indexes. Only one of those
8270** deletes is considered the "primary" delete. The primary delete occurs
8271** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8272** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8273** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008274** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008275*/
drhe807bdb2016-01-21 17:06:33 +00008276int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008277 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008278 BtShared *pBt = p->pBt;
8279 int rc; /* Return code */
8280 MemPage *pPage; /* Page to delete cell from */
8281 unsigned char *pCell; /* Pointer to cell to delete */
8282 int iCellIdx; /* Index of cell to delete */
8283 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008284 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008285 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008286 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008287
dan7a2347e2016-01-07 16:43:54 +00008288 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008289 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008290 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008291 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008292 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8293 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh75e96b32017-04-01 00:20:06 +00008294 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh98ef0f62015-06-30 01:25:52 +00008295 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008296 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008297
danielk19774dbaa892009-06-16 16:50:22 +00008298 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008299 iCellIdx = pCur->ix;
danielk19774dbaa892009-06-16 16:50:22 +00008300 pPage = pCur->apPage[iCellDepth];
8301 pCell = findCell(pPage, iCellIdx);
8302
drhbfc7a8b2016-04-09 17:04:05 +00008303 /* If the bPreserve flag is set to true, then the cursor position must
8304 ** be preserved following this delete operation. If the current delete
8305 ** will cause a b-tree rebalance, then this is done by saving the cursor
8306 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8307 ** returning.
8308 **
8309 ** Or, if the current delete will not cause a rebalance, then the cursor
8310 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8311 ** before or after the deleted entry. In this case set bSkipnext to true. */
8312 if( bPreserve ){
8313 if( !pPage->leaf
8314 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8315 ){
8316 /* A b-tree rebalance will be required after deleting this entry.
8317 ** Save the cursor key. */
8318 rc = saveCursorKey(pCur);
8319 if( rc ) return rc;
8320 }else{
8321 bSkipnext = 1;
8322 }
8323 }
8324
danielk19774dbaa892009-06-16 16:50:22 +00008325 /* If the page containing the entry to delete is not a leaf page, move
8326 ** the cursor to the largest entry in the tree that is smaller than
8327 ** the entry being deleted. This cell will replace the cell being deleted
8328 ** from the internal node. The 'previous' entry is used for this instead
8329 ** of the 'next' entry, as the previous entry is always a part of the
8330 ** sub-tree headed by the child page of the cell being deleted. This makes
8331 ** balancing the tree following the delete operation easier. */
8332 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008333 rc = sqlite3BtreePrevious(pCur, 0);
8334 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008335 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008336 }
8337
8338 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008339 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008340 if( pCur->curFlags & BTCF_Multiple ){
8341 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8342 if( rc ) return rc;
8343 }
drhd60f4f42012-03-23 14:23:52 +00008344
8345 /* If this is a delete operation to remove a row from a table b-tree,
8346 ** invalidate any incrblob cursors open on the row being deleted. */
8347 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008348 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008349 }
8350
danf0ee1d32015-09-12 19:26:11 +00008351 /* Make the page containing the entry to be deleted writable. Then free any
8352 ** overflow pages associated with the entry and finally remove the cell
8353 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008354 rc = sqlite3PagerWrite(pPage->pDbPage);
8355 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008356 rc = clearCell(pPage, pCell, &info);
8357 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008358 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008359
danielk19774dbaa892009-06-16 16:50:22 +00008360 /* If the cell deleted was not located on a leaf page, then the cursor
8361 ** is currently pointing to the largest entry in the sub-tree headed
8362 ** by the child-page of the cell that was just deleted from an internal
8363 ** node. The cell from the leaf node needs to be moved to the internal
8364 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008365 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008366 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8367 int nCell;
8368 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8369 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008370
danielk19774dbaa892009-06-16 16:50:22 +00008371 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008372 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008373 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008374 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008375 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008376 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008377 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008378 if( rc==SQLITE_OK ){
8379 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8380 }
drh98add2e2009-07-20 17:11:49 +00008381 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008382 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008383 }
danielk19774dbaa892009-06-16 16:50:22 +00008384
8385 /* Balance the tree. If the entry deleted was located on a leaf page,
8386 ** then the cursor still points to that page. In this case the first
8387 ** call to balance() repairs the tree, and the if(...) condition is
8388 ** never true.
8389 **
8390 ** Otherwise, if the entry deleted was on an internal node page, then
8391 ** pCur is pointing to the leaf page from which a cell was removed to
8392 ** replace the cell deleted from the internal node. This is slightly
8393 ** tricky as the leaf node may be underfull, and the internal node may
8394 ** be either under or overfull. In this case run the balancing algorithm
8395 ** on the leaf node first. If the balance proceeds far enough up the
8396 ** tree that we can be sure that any problem in the internal node has
8397 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8398 ** walk the cursor up the tree to the internal node and balance it as
8399 ** well. */
8400 rc = balance(pCur);
8401 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8402 while( pCur->iPage>iCellDepth ){
8403 releasePage(pCur->apPage[pCur->iPage--]);
8404 }
8405 rc = balance(pCur);
8406 }
8407
danielk19776b456a22005-03-21 04:04:02 +00008408 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008409 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008410 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008411 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008412 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008413 pCur->eState = CURSOR_SKIPNEXT;
8414 if( iCellIdx>=pPage->nCell ){
8415 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008416 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008417 }else{
8418 pCur->skipNext = 1;
8419 }
8420 }else{
8421 rc = moveToRoot(pCur);
8422 if( bPreserve ){
8423 pCur->eState = CURSOR_REQUIRESEEK;
8424 }
8425 }
danielk19776b456a22005-03-21 04:04:02 +00008426 }
drh5e2f8b92001-05-28 00:41:15 +00008427 return rc;
drh3b7511c2001-05-26 13:15:44 +00008428}
drh8b2f49b2001-06-08 00:21:52 +00008429
8430/*
drhc6b52df2002-01-04 03:09:29 +00008431** Create a new BTree table. Write into *piTable the page
8432** number for the root page of the new table.
8433**
drhab01f612004-05-22 02:55:23 +00008434** The type of type is determined by the flags parameter. Only the
8435** following values of flags are currently in use. Other values for
8436** flags might not work:
8437**
8438** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8439** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008440*/
drhd4187c72010-08-30 22:15:45 +00008441static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008442 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008443 MemPage *pRoot;
8444 Pgno pgnoRoot;
8445 int rc;
drhd4187c72010-08-30 22:15:45 +00008446 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008447
drh1fee73e2007-08-29 04:00:57 +00008448 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008449 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008450 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008451
danielk1977003ba062004-11-04 02:57:33 +00008452#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008453 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008454 if( rc ){
8455 return rc;
8456 }
danielk1977003ba062004-11-04 02:57:33 +00008457#else
danielk1977687566d2004-11-02 12:56:41 +00008458 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008459 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8460 MemPage *pPageMove; /* The page to move to. */
8461
danielk197720713f32007-05-03 11:43:33 +00008462 /* Creating a new table may probably require moving an existing database
8463 ** to make room for the new tables root page. In case this page turns
8464 ** out to be an overflow page, delete all overflow page-map caches
8465 ** held by open cursors.
8466 */
danielk197792d4d7a2007-05-04 12:05:56 +00008467 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008468
danielk1977003ba062004-11-04 02:57:33 +00008469 /* Read the value of meta[3] from the database to determine where the
8470 ** root page of the new table should go. meta[3] is the largest root-page
8471 ** created so far, so the new root-page is (meta[3]+1).
8472 */
danielk1977602b4662009-07-02 07:47:33 +00008473 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008474 pgnoRoot++;
8475
danielk1977599fcba2004-11-08 07:13:13 +00008476 /* The new root-page may not be allocated on a pointer-map page, or the
8477 ** PENDING_BYTE page.
8478 */
drh72190432008-01-31 14:54:43 +00008479 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008480 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008481 pgnoRoot++;
8482 }
drh499e15b2015-05-22 12:37:37 +00008483 assert( pgnoRoot>=3 || CORRUPT_DB );
8484 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008485
8486 /* Allocate a page. The page that currently resides at pgnoRoot will
8487 ** be moved to the allocated page (unless the allocated page happens
8488 ** to reside at pgnoRoot).
8489 */
dan51f0b6d2013-02-22 20:16:34 +00008490 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008491 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008492 return rc;
8493 }
danielk1977003ba062004-11-04 02:57:33 +00008494
8495 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008496 /* pgnoRoot is the page that will be used for the root-page of
8497 ** the new table (assuming an error did not occur). But we were
8498 ** allocated pgnoMove. If required (i.e. if it was not allocated
8499 ** by extending the file), the current page at position pgnoMove
8500 ** is already journaled.
8501 */
drheeb844a2009-08-08 18:01:07 +00008502 u8 eType = 0;
8503 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008504
danf7679ad2013-04-03 11:38:36 +00008505 /* Save the positions of any open cursors. This is required in
8506 ** case they are holding a reference to an xFetch reference
8507 ** corresponding to page pgnoRoot. */
8508 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008509 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008510 if( rc!=SQLITE_OK ){
8511 return rc;
8512 }
danielk1977f35843b2007-04-07 15:03:17 +00008513
8514 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008515 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008516 if( rc!=SQLITE_OK ){
8517 return rc;
8518 }
8519 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008520 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8521 rc = SQLITE_CORRUPT_BKPT;
8522 }
8523 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008524 releasePage(pRoot);
8525 return rc;
8526 }
drhccae6022005-02-26 17:31:26 +00008527 assert( eType!=PTRMAP_ROOTPAGE );
8528 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008529 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008530 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008531
8532 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008533 if( rc!=SQLITE_OK ){
8534 return rc;
8535 }
drhb00fc3b2013-08-21 23:42:32 +00008536 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008537 if( rc!=SQLITE_OK ){
8538 return rc;
8539 }
danielk19773b8a05f2007-03-19 17:44:26 +00008540 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008541 if( rc!=SQLITE_OK ){
8542 releasePage(pRoot);
8543 return rc;
8544 }
8545 }else{
8546 pRoot = pPageMove;
8547 }
8548
danielk197742741be2005-01-08 12:42:39 +00008549 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008550 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008551 if( rc ){
8552 releasePage(pRoot);
8553 return rc;
8554 }
drhbf592832010-03-30 15:51:12 +00008555
8556 /* When the new root page was allocated, page 1 was made writable in
8557 ** order either to increase the database filesize, or to decrement the
8558 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8559 */
8560 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008561 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008562 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008563 releasePage(pRoot);
8564 return rc;
8565 }
danielk197742741be2005-01-08 12:42:39 +00008566
danielk1977003ba062004-11-04 02:57:33 +00008567 }else{
drh4f0c5872007-03-26 22:05:01 +00008568 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008569 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008570 }
8571#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008572 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008573 if( createTabFlags & BTREE_INTKEY ){
8574 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8575 }else{
8576 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8577 }
8578 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008579 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008580 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008581 *piTable = (int)pgnoRoot;
8582 return SQLITE_OK;
8583}
drhd677b3d2007-08-20 22:48:41 +00008584int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8585 int rc;
8586 sqlite3BtreeEnter(p);
8587 rc = btreeCreateTable(p, piTable, flags);
8588 sqlite3BtreeLeave(p);
8589 return rc;
8590}
drh8b2f49b2001-06-08 00:21:52 +00008591
8592/*
8593** Erase the given database page and all its children. Return
8594** the page to the freelist.
8595*/
drh4b70f112004-05-02 21:12:19 +00008596static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008597 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008598 Pgno pgno, /* Page number to clear */
8599 int freePageFlag, /* Deallocate page if true */
8600 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008601){
danielk1977146ba992009-07-22 14:08:13 +00008602 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008603 int rc;
drh4b70f112004-05-02 21:12:19 +00008604 unsigned char *pCell;
8605 int i;
dan8ce71842014-01-14 20:14:09 +00008606 int hdr;
drh80159da2016-12-09 17:32:51 +00008607 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008608
drh1fee73e2007-08-29 04:00:57 +00008609 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008610 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008611 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008612 }
drh28f58dd2015-06-27 19:45:03 +00008613 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008614 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008615 if( pPage->bBusy ){
8616 rc = SQLITE_CORRUPT_BKPT;
8617 goto cleardatabasepage_out;
8618 }
8619 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008620 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008621 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008622 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008623 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008624 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008625 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008626 }
drh80159da2016-12-09 17:32:51 +00008627 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008628 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008629 }
drha34b6762004-05-07 13:30:42 +00008630 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008631 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008632 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008633 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008634 assert( pPage->intKey || CORRUPT_DB );
8635 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008636 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008637 }
8638 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008639 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008640 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008641 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008642 }
danielk19776b456a22005-03-21 04:04:02 +00008643
8644cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008645 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008646 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008647 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008648}
8649
8650/*
drhab01f612004-05-22 02:55:23 +00008651** Delete all information from a single table in the database. iTable is
8652** the page number of the root of the table. After this routine returns,
8653** the root page is empty, but still exists.
8654**
8655** This routine will fail with SQLITE_LOCKED if there are any open
8656** read cursors on the table. Open write cursors are moved to the
8657** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008658**
8659** If pnChange is not NULL, then table iTable must be an intkey table. The
8660** integer value pointed to by pnChange is incremented by the number of
8661** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008662*/
danielk1977c7af4842008-10-27 13:59:33 +00008663int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008664 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008665 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008666 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008667 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008668
drhc046e3e2009-07-15 11:26:44 +00008669 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008670
drhc046e3e2009-07-15 11:26:44 +00008671 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008672 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8673 ** is the root of a table b-tree - if it is not, the following call is
8674 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008675 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008676 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008677 }
drhd677b3d2007-08-20 22:48:41 +00008678 sqlite3BtreeLeave(p);
8679 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008680}
8681
8682/*
drh079a3072014-03-19 14:10:55 +00008683** Delete all information from the single table that pCur is open on.
8684**
8685** This routine only work for pCur on an ephemeral table.
8686*/
8687int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8688 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8689}
8690
8691/*
drh8b2f49b2001-06-08 00:21:52 +00008692** Erase all information in a table and add the root of the table to
8693** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008694** page 1) is never added to the freelist.
8695**
8696** This routine will fail with SQLITE_LOCKED if there are any open
8697** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008698**
8699** If AUTOVACUUM is enabled and the page at iTable is not the last
8700** root page in the database file, then the last root page
8701** in the database file is moved into the slot formerly occupied by
8702** iTable and that last slot formerly occupied by the last root page
8703** is added to the freelist instead of iTable. In this say, all
8704** root pages are kept at the beginning of the database file, which
8705** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8706** page number that used to be the last root page in the file before
8707** the move. If no page gets moved, *piMoved is set to 0.
8708** The last root page is recorded in meta[3] and the value of
8709** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008710*/
danielk197789d40042008-11-17 14:20:56 +00008711static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008712 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008713 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008714 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008715
drh1fee73e2007-08-29 04:00:57 +00008716 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008717 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008718 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008719
drhb00fc3b2013-08-21 23:42:32 +00008720 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008721 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008722 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008723 if( rc ){
8724 releasePage(pPage);
8725 return rc;
8726 }
danielk1977a0bf2652004-11-04 14:30:04 +00008727
drh205f48e2004-11-05 00:43:11 +00008728 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008729
danielk1977a0bf2652004-11-04 14:30:04 +00008730#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008731 freePage(pPage, &rc);
8732 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008733#else
drh055f2982016-01-15 15:06:41 +00008734 if( pBt->autoVacuum ){
8735 Pgno maxRootPgno;
8736 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008737
drh055f2982016-01-15 15:06:41 +00008738 if( iTable==maxRootPgno ){
8739 /* If the table being dropped is the table with the largest root-page
8740 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008741 */
drhc314dc72009-07-21 11:52:34 +00008742 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008743 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008744 if( rc!=SQLITE_OK ){
8745 return rc;
8746 }
8747 }else{
8748 /* The table being dropped does not have the largest root-page
8749 ** number in the database. So move the page that does into the
8750 ** gap left by the deleted root-page.
8751 */
8752 MemPage *pMove;
8753 releasePage(pPage);
8754 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8755 if( rc!=SQLITE_OK ){
8756 return rc;
8757 }
8758 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8759 releasePage(pMove);
8760 if( rc!=SQLITE_OK ){
8761 return rc;
8762 }
8763 pMove = 0;
8764 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8765 freePage(pMove, &rc);
8766 releasePage(pMove);
8767 if( rc!=SQLITE_OK ){
8768 return rc;
8769 }
8770 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008771 }
drh055f2982016-01-15 15:06:41 +00008772
8773 /* Set the new 'max-root-page' value in the database header. This
8774 ** is the old value less one, less one more if that happens to
8775 ** be a root-page number, less one again if that is the
8776 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008777 */
drh055f2982016-01-15 15:06:41 +00008778 maxRootPgno--;
8779 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8780 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8781 maxRootPgno--;
8782 }
8783 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8784
8785 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8786 }else{
8787 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008788 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008789 }
drh055f2982016-01-15 15:06:41 +00008790#endif
drh8b2f49b2001-06-08 00:21:52 +00008791 return rc;
8792}
drhd677b3d2007-08-20 22:48:41 +00008793int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8794 int rc;
8795 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008796 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008797 sqlite3BtreeLeave(p);
8798 return rc;
8799}
drh8b2f49b2001-06-08 00:21:52 +00008800
drh001bbcb2003-03-19 03:14:00 +00008801
drh8b2f49b2001-06-08 00:21:52 +00008802/*
danielk1977602b4662009-07-02 07:47:33 +00008803** This function may only be called if the b-tree connection already
8804** has a read or write transaction open on the database.
8805**
drh23e11ca2004-05-04 17:27:28 +00008806** Read the meta-information out of a database file. Meta[0]
8807** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008808** through meta[15] are available for use by higher layers. Meta[0]
8809** is read-only, the others are read/write.
8810**
8811** The schema layer numbers meta values differently. At the schema
8812** layer (and the SetCookie and ReadCookie opcodes) the number of
8813** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008814**
8815** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8816** of reading the value out of the header, it instead loads the "DataVersion"
8817** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8818** database file. It is a number computed by the pager. But its access
8819** pattern is the same as header meta values, and so it is convenient to
8820** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008821*/
danielk1977602b4662009-07-02 07:47:33 +00008822void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008823 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008824
drhd677b3d2007-08-20 22:48:41 +00008825 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008826 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008827 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008828 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008829 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008830
drh91618562014-12-19 19:28:02 +00008831 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008832 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008833 }else{
8834 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8835 }
drhae157872004-08-14 19:20:09 +00008836
danielk1977602b4662009-07-02 07:47:33 +00008837 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8838 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008839#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008840 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8841 pBt->btsFlags |= BTS_READ_ONLY;
8842 }
danielk1977003ba062004-11-04 02:57:33 +00008843#endif
drhae157872004-08-14 19:20:09 +00008844
drhd677b3d2007-08-20 22:48:41 +00008845 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008846}
8847
8848/*
drh23e11ca2004-05-04 17:27:28 +00008849** Write meta-information back into the database. Meta[0] is
8850** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008851*/
danielk1977aef0bf62005-12-30 16:28:01 +00008852int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8853 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008854 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008855 int rc;
drh23e11ca2004-05-04 17:27:28 +00008856 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008857 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008858 assert( p->inTrans==TRANS_WRITE );
8859 assert( pBt->pPage1!=0 );
8860 pP1 = pBt->pPage1->aData;
8861 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8862 if( rc==SQLITE_OK ){
8863 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008864#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008865 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008866 assert( pBt->autoVacuum || iMeta==0 );
8867 assert( iMeta==0 || iMeta==1 );
8868 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008869 }
drh64022502009-01-09 14:11:04 +00008870#endif
drh5df72a52002-06-06 23:16:05 +00008871 }
drhd677b3d2007-08-20 22:48:41 +00008872 sqlite3BtreeLeave(p);
8873 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008874}
drh8c42ca92001-06-22 19:15:00 +00008875
danielk1977a5533162009-02-24 10:01:51 +00008876#ifndef SQLITE_OMIT_BTREECOUNT
8877/*
8878** The first argument, pCur, is a cursor opened on some b-tree. Count the
8879** number of entries in the b-tree and write the result to *pnEntry.
8880**
8881** SQLITE_OK is returned if the operation is successfully executed.
8882** Otherwise, if an error is encountered (i.e. an IO error or database
8883** corruption) an SQLite error code is returned.
8884*/
8885int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8886 i64 nEntry = 0; /* Value to return in *pnEntry */
8887 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008888
8889 if( pCur->pgnoRoot==0 ){
8890 *pnEntry = 0;
8891 return SQLITE_OK;
8892 }
danielk1977a5533162009-02-24 10:01:51 +00008893 rc = moveToRoot(pCur);
8894
8895 /* Unless an error occurs, the following loop runs one iteration for each
8896 ** page in the B-Tree structure (not including overflow pages).
8897 */
8898 while( rc==SQLITE_OK ){
8899 int iIdx; /* Index of child node in parent */
8900 MemPage *pPage; /* Current page of the b-tree */
8901
8902 /* If this is a leaf page or the tree is not an int-key tree, then
8903 ** this page contains countable entries. Increment the entry counter
8904 ** accordingly.
8905 */
8906 pPage = pCur->apPage[pCur->iPage];
8907 if( pPage->leaf || !pPage->intKey ){
8908 nEntry += pPage->nCell;
8909 }
8910
8911 /* pPage is a leaf node. This loop navigates the cursor so that it
8912 ** points to the first interior cell that it points to the parent of
8913 ** the next page in the tree that has not yet been visited. The
8914 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8915 ** of the page, or to the number of cells in the page if the next page
8916 ** to visit is the right-child of its parent.
8917 **
8918 ** If all pages in the tree have been visited, return SQLITE_OK to the
8919 ** caller.
8920 */
8921 if( pPage->leaf ){
8922 do {
8923 if( pCur->iPage==0 ){
8924 /* All pages of the b-tree have been visited. Return successfully. */
8925 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008926 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008927 }
danielk197730548662009-07-09 05:07:37 +00008928 moveToParent(pCur);
drh75e96b32017-04-01 00:20:06 +00008929 }while ( pCur->ix>=pCur->apPage[pCur->iPage]->nCell );
danielk1977a5533162009-02-24 10:01:51 +00008930
drh75e96b32017-04-01 00:20:06 +00008931 pCur->ix++;
danielk1977a5533162009-02-24 10:01:51 +00008932 pPage = pCur->apPage[pCur->iPage];
8933 }
8934
8935 /* Descend to the child node of the cell that the cursor currently
8936 ** points at. This is the right-child if (iIdx==pPage->nCell).
8937 */
drh75e96b32017-04-01 00:20:06 +00008938 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00008939 if( iIdx==pPage->nCell ){
8940 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8941 }else{
8942 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8943 }
8944 }
8945
shanebe217792009-03-05 04:20:31 +00008946 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008947 return rc;
8948}
8949#endif
drhdd793422001-06-28 01:54:48 +00008950
drhdd793422001-06-28 01:54:48 +00008951/*
drh5eddca62001-06-30 21:53:53 +00008952** Return the pager associated with a BTree. This routine is used for
8953** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008954*/
danielk1977aef0bf62005-12-30 16:28:01 +00008955Pager *sqlite3BtreePager(Btree *p){
8956 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008957}
drh5eddca62001-06-30 21:53:53 +00008958
drhb7f91642004-10-31 02:22:47 +00008959#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008960/*
8961** Append a message to the error message string.
8962*/
drh2e38c322004-09-03 18:38:44 +00008963static void checkAppendMsg(
8964 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008965 const char *zFormat,
8966 ...
8967){
8968 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008969 if( !pCheck->mxErr ) return;
8970 pCheck->mxErr--;
8971 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008972 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008973 if( pCheck->errMsg.nChar ){
8974 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008975 }
drh867db832014-09-26 02:41:05 +00008976 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008977 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008978 }
drh5f4a6862016-01-30 12:50:25 +00008979 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008980 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008981 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008982 pCheck->mallocFailed = 1;
8983 }
drh5eddca62001-06-30 21:53:53 +00008984}
drhb7f91642004-10-31 02:22:47 +00008985#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008986
drhb7f91642004-10-31 02:22:47 +00008987#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008988
8989/*
8990** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8991** corresponds to page iPg is already set.
8992*/
8993static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8994 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8995 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8996}
8997
8998/*
8999** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9000*/
9001static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9002 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9003 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9004}
9005
9006
drh5eddca62001-06-30 21:53:53 +00009007/*
9008** Add 1 to the reference count for page iPage. If this is the second
9009** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009010** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009011** if this is the first reference to the page.
9012**
9013** Also check that the page number is in bounds.
9014*/
drh867db832014-09-26 02:41:05 +00009015static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009016 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009017 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009018 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009019 return 1;
9020 }
dan1235bb12012-04-03 17:43:28 +00009021 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009022 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009023 return 1;
9024 }
dan1235bb12012-04-03 17:43:28 +00009025 setPageReferenced(pCheck, iPage);
9026 return 0;
drh5eddca62001-06-30 21:53:53 +00009027}
9028
danielk1977afcdd022004-10-31 16:25:42 +00009029#ifndef SQLITE_OMIT_AUTOVACUUM
9030/*
9031** Check that the entry in the pointer-map for page iChild maps to
9032** page iParent, pointer type ptrType. If not, append an error message
9033** to pCheck.
9034*/
9035static void checkPtrmap(
9036 IntegrityCk *pCheck, /* Integrity check context */
9037 Pgno iChild, /* Child page number */
9038 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009039 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009040){
9041 int rc;
9042 u8 ePtrmapType;
9043 Pgno iPtrmapParent;
9044
9045 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9046 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009047 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009048 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009049 return;
9050 }
9051
9052 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009053 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009054 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9055 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9056 }
9057}
9058#endif
9059
drh5eddca62001-06-30 21:53:53 +00009060/*
9061** Check the integrity of the freelist or of an overflow page list.
9062** Verify that the number of pages on the list is N.
9063*/
drh30e58752002-03-02 20:41:57 +00009064static void checkList(
9065 IntegrityCk *pCheck, /* Integrity checking context */
9066 int isFreeList, /* True for a freelist. False for overflow page list */
9067 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009068 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009069){
9070 int i;
drh3a4c1412004-05-09 20:40:11 +00009071 int expected = N;
9072 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009073 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009074 DbPage *pOvflPage;
9075 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009076 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009077 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009078 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009079 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009080 break;
9081 }
drh867db832014-09-26 02:41:05 +00009082 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009083 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009084 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009085 break;
9086 }
danielk19773b8a05f2007-03-19 17:44:26 +00009087 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009088 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009089 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009090#ifndef SQLITE_OMIT_AUTOVACUUM
9091 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009092 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009093 }
9094#endif
drh43b18e12010-08-17 19:40:08 +00009095 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009096 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009097 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009098 N--;
9099 }else{
9100 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009101 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009102#ifndef SQLITE_OMIT_AUTOVACUUM
9103 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009104 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009105 }
9106#endif
drh867db832014-09-26 02:41:05 +00009107 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009108 }
9109 N -= n;
drh30e58752002-03-02 20:41:57 +00009110 }
drh30e58752002-03-02 20:41:57 +00009111 }
danielk1977afcdd022004-10-31 16:25:42 +00009112#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009113 else{
9114 /* If this database supports auto-vacuum and iPage is not the last
9115 ** page in this overflow list, check that the pointer-map entry for
9116 ** the following page matches iPage.
9117 */
9118 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009119 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009120 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009121 }
danielk1977afcdd022004-10-31 16:25:42 +00009122 }
9123#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009124 iPage = get4byte(pOvflData);
9125 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009126
9127 if( isFreeList && N<(iPage!=0) ){
9128 checkAppendMsg(pCheck, "free-page count in header is too small");
9129 }
drh5eddca62001-06-30 21:53:53 +00009130 }
9131}
drhb7f91642004-10-31 02:22:47 +00009132#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009133
drh67731a92015-04-16 11:56:03 +00009134/*
9135** An implementation of a min-heap.
9136**
9137** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009138** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009139** and aHeap[N*2+1].
9140**
9141** The heap property is this: Every node is less than or equal to both
9142** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009143** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009144**
9145** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9146** the heap, preserving the heap property. The btreeHeapPull() routine
9147** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009148** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009149** property.
9150**
9151** This heap is used for cell overlap and coverage testing. Each u32
9152** entry represents the span of a cell or freeblock on a btree page.
9153** The upper 16 bits are the index of the first byte of a range and the
9154** lower 16 bits are the index of the last byte of that range.
9155*/
9156static void btreeHeapInsert(u32 *aHeap, u32 x){
9157 u32 j, i = ++aHeap[0];
9158 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009159 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009160 x = aHeap[j];
9161 aHeap[j] = aHeap[i];
9162 aHeap[i] = x;
9163 i = j;
9164 }
9165}
9166static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9167 u32 j, i, x;
9168 if( (x = aHeap[0])==0 ) return 0;
9169 *pOut = aHeap[1];
9170 aHeap[1] = aHeap[x];
9171 aHeap[x] = 0xffffffff;
9172 aHeap[0]--;
9173 i = 1;
9174 while( (j = i*2)<=aHeap[0] ){
9175 if( aHeap[j]>aHeap[j+1] ) j++;
9176 if( aHeap[i]<aHeap[j] ) break;
9177 x = aHeap[i];
9178 aHeap[i] = aHeap[j];
9179 aHeap[j] = x;
9180 i = j;
9181 }
9182 return 1;
9183}
9184
drhb7f91642004-10-31 02:22:47 +00009185#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009186/*
9187** Do various sanity checks on a single page of a tree. Return
9188** the tree depth. Root pages return 0. Parents of root pages
9189** return 1, and so forth.
9190**
9191** These checks are done:
9192**
9193** 1. Make sure that cells and freeblocks do not overlap
9194** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009195** 2. Make sure integer cell keys are in order.
9196** 3. Check the integrity of overflow pages.
9197** 4. Recursively call checkTreePage on all children.
9198** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009199*/
9200static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009201 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009202 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009203 i64 *piMinKey, /* Write minimum integer primary key here */
9204 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009205){
drhcbc6b712015-07-02 16:17:30 +00009206 MemPage *pPage = 0; /* The page being analyzed */
9207 int i; /* Loop counter */
9208 int rc; /* Result code from subroutine call */
9209 int depth = -1, d2; /* Depth of a subtree */
9210 int pgno; /* Page number */
9211 int nFrag; /* Number of fragmented bytes on the page */
9212 int hdr; /* Offset to the page header */
9213 int cellStart; /* Offset to the start of the cell pointer array */
9214 int nCell; /* Number of cells */
9215 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9216 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9217 ** False if IPK must be strictly less than maxKey */
9218 u8 *data; /* Page content */
9219 u8 *pCell; /* Cell content */
9220 u8 *pCellIdx; /* Next element of the cell pointer array */
9221 BtShared *pBt; /* The BtShared object that owns pPage */
9222 u32 pc; /* Address of a cell */
9223 u32 usableSize; /* Usable size of the page */
9224 u32 contentOffset; /* Offset to the start of the cell content area */
9225 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009226 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009227 const char *saved_zPfx = pCheck->zPfx;
9228 int saved_v1 = pCheck->v1;
9229 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009230 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009231
drh5eddca62001-06-30 21:53:53 +00009232 /* Check that the page exists
9233 */
drhd9cb6ac2005-10-20 07:28:17 +00009234 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009235 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009236 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009237 if( checkRef(pCheck, iPage) ) return 0;
9238 pCheck->zPfx = "Page %d: ";
9239 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009240 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009241 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009242 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009243 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009244 }
danielk197793caf5a2009-07-11 06:55:33 +00009245
9246 /* Clear MemPage.isInit to make sure the corruption detection code in
9247 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009248 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009249 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009250 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009251 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009252 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009253 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009254 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009255 }
drhcbc6b712015-07-02 16:17:30 +00009256 data = pPage->aData;
9257 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009258
drhcbc6b712015-07-02 16:17:30 +00009259 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009260 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009261 contentOffset = get2byteNotZero(&data[hdr+5]);
9262 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9263
9264 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9265 ** number of cells on the page. */
9266 nCell = get2byte(&data[hdr+3]);
9267 assert( pPage->nCell==nCell );
9268
9269 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9270 ** immediately follows the b-tree page header. */
9271 cellStart = hdr + 12 - 4*pPage->leaf;
9272 assert( pPage->aCellIdx==&data[cellStart] );
9273 pCellIdx = &data[cellStart + 2*(nCell-1)];
9274
9275 if( !pPage->leaf ){
9276 /* Analyze the right-child page of internal pages */
9277 pgno = get4byte(&data[hdr+8]);
9278#ifndef SQLITE_OMIT_AUTOVACUUM
9279 if( pBt->autoVacuum ){
9280 pCheck->zPfx = "On page %d at right child: ";
9281 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9282 }
9283#endif
9284 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9285 keyCanBeEqual = 0;
9286 }else{
9287 /* For leaf pages, the coverage check will occur in the same loop
9288 ** as the other cell checks, so initialize the heap. */
9289 heap = pCheck->heap;
9290 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009291 }
9292
drhcbc6b712015-07-02 16:17:30 +00009293 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9294 ** integer offsets to the cell contents. */
9295 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009296 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009297
drhcbc6b712015-07-02 16:17:30 +00009298 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009299 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009300 assert( pCellIdx==&data[cellStart + i*2] );
9301 pc = get2byteAligned(pCellIdx);
9302 pCellIdx -= 2;
9303 if( pc<contentOffset || pc>usableSize-4 ){
9304 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9305 pc, contentOffset, usableSize-4);
9306 doCoverageCheck = 0;
9307 continue;
shaneh195475d2010-02-19 04:28:08 +00009308 }
drhcbc6b712015-07-02 16:17:30 +00009309 pCell = &data[pc];
9310 pPage->xParseCell(pPage, pCell, &info);
9311 if( pc+info.nSize>usableSize ){
9312 checkAppendMsg(pCheck, "Extends off end of page");
9313 doCoverageCheck = 0;
9314 continue;
drh5eddca62001-06-30 21:53:53 +00009315 }
9316
drhcbc6b712015-07-02 16:17:30 +00009317 /* Check for integer primary key out of range */
9318 if( pPage->intKey ){
9319 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9320 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9321 }
9322 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009323 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009324 }
9325
9326 /* Check the content overflow list */
9327 if( info.nPayload>info.nLocal ){
9328 int nPage; /* Number of pages on the overflow chain */
9329 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009330 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009331 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009332 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009333#ifndef SQLITE_OMIT_AUTOVACUUM
9334 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009335 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009336 }
9337#endif
drh867db832014-09-26 02:41:05 +00009338 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009339 }
9340
drh5eddca62001-06-30 21:53:53 +00009341 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009342 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009343 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009344#ifndef SQLITE_OMIT_AUTOVACUUM
9345 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009346 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009347 }
9348#endif
drhcbc6b712015-07-02 16:17:30 +00009349 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9350 keyCanBeEqual = 0;
9351 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009352 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009353 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009354 }
drhcbc6b712015-07-02 16:17:30 +00009355 }else{
9356 /* Populate the coverage-checking heap for leaf pages */
9357 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009358 }
9359 }
drhcbc6b712015-07-02 16:17:30 +00009360 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009361
drh5eddca62001-06-30 21:53:53 +00009362 /* Check for complete coverage of the page
9363 */
drh867db832014-09-26 02:41:05 +00009364 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009365 if( doCoverageCheck && pCheck->mxErr>0 ){
9366 /* For leaf pages, the min-heap has already been initialized and the
9367 ** cells have already been inserted. But for internal pages, that has
9368 ** not yet been done, so do it now */
9369 if( !pPage->leaf ){
9370 heap = pCheck->heap;
9371 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009372 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009373 u32 size;
9374 pc = get2byteAligned(&data[cellStart+i*2]);
9375 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009376 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009377 }
drh2e38c322004-09-03 18:38:44 +00009378 }
drhcbc6b712015-07-02 16:17:30 +00009379 /* Add the freeblocks to the min-heap
9380 **
9381 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009382 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009383 ** freeblocks on the page.
9384 */
drh8c2bbb62009-07-10 02:52:20 +00009385 i = get2byte(&data[hdr+1]);
9386 while( i>0 ){
9387 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009388 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009389 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009390 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009391 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009392 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9393 ** big-endian integer which is the offset in the b-tree page of the next
9394 ** freeblock in the chain, or zero if the freeblock is the last on the
9395 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009396 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009397 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9398 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009399 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009400 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009401 i = j;
drh2e38c322004-09-03 18:38:44 +00009402 }
drhcbc6b712015-07-02 16:17:30 +00009403 /* Analyze the min-heap looking for overlap between cells and/or
9404 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009405 **
9406 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9407 ** There is an implied first entry the covers the page header, the cell
9408 ** pointer index, and the gap between the cell pointer index and the start
9409 ** of cell content.
9410 **
9411 ** The loop below pulls entries from the min-heap in order and compares
9412 ** the start_address against the previous end_address. If there is an
9413 ** overlap, that means bytes are used multiple times. If there is a gap,
9414 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009415 */
9416 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009417 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009418 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009419 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009420 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009421 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009422 break;
drh67731a92015-04-16 11:56:03 +00009423 }else{
drhcbc6b712015-07-02 16:17:30 +00009424 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009425 prev = x;
drh2e38c322004-09-03 18:38:44 +00009426 }
9427 }
drhcbc6b712015-07-02 16:17:30 +00009428 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009429 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9430 ** is stored in the fifth field of the b-tree page header.
9431 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9432 ** number of fragmented free bytes within the cell content area.
9433 */
drhcbc6b712015-07-02 16:17:30 +00009434 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009435 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009436 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009437 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009438 }
9439 }
drh867db832014-09-26 02:41:05 +00009440
9441end_of_check:
drh72e191e2015-07-04 11:14:20 +00009442 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009443 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009444 pCheck->zPfx = saved_zPfx;
9445 pCheck->v1 = saved_v1;
9446 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009447 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009448}
drhb7f91642004-10-31 02:22:47 +00009449#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009450
drhb7f91642004-10-31 02:22:47 +00009451#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009452/*
9453** This routine does a complete check of the given BTree file. aRoot[] is
9454** an array of pages numbers were each page number is the root page of
9455** a table. nRoot is the number of entries in aRoot.
9456**
danielk19773509a652009-07-06 18:56:13 +00009457** A read-only or read-write transaction must be opened before calling
9458** this function.
9459**
drhc890fec2008-08-01 20:10:08 +00009460** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009461** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009462** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009463** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009464*/
drh1dcdbc02007-01-27 02:24:54 +00009465char *sqlite3BtreeIntegrityCheck(
9466 Btree *p, /* The btree to be checked */
9467 int *aRoot, /* An array of root pages numbers for individual trees */
9468 int nRoot, /* Number of entries in aRoot[] */
9469 int mxErr, /* Stop reporting errors after this many */
9470 int *pnErr /* Write number of errors seen to this variable */
9471){
danielk197789d40042008-11-17 14:20:56 +00009472 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009473 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009474 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009475 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009476 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009477 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009478
drhd677b3d2007-08-20 22:48:41 +00009479 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009480 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009481 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9482 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009483 sCheck.pBt = pBt;
9484 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009485 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009486 sCheck.mxErr = mxErr;
9487 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009488 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009489 sCheck.zPfx = 0;
9490 sCheck.v1 = 0;
9491 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009492 sCheck.aPgRef = 0;
9493 sCheck.heap = 0;
9494 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009495 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009496 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009497 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009498 }
dan1235bb12012-04-03 17:43:28 +00009499
9500 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9501 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009502 sCheck.mallocFailed = 1;
9503 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009504 }
drhe05b3f82015-07-01 17:53:49 +00009505 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9506 if( sCheck.heap==0 ){
9507 sCheck.mallocFailed = 1;
9508 goto integrity_ck_cleanup;
9509 }
9510
drh42cac6d2004-11-20 20:31:11 +00009511 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009512 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009513
9514 /* Check the integrity of the freelist
9515 */
drh867db832014-09-26 02:41:05 +00009516 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009517 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009518 get4byte(&pBt->pPage1->aData[36]));
9519 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009520
9521 /* Check all the tables.
9522 */
drhcbc6b712015-07-02 16:17:30 +00009523 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9524 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009525 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009526 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009527 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009528#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009529 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009530 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009531 }
9532#endif
drhcbc6b712015-07-02 16:17:30 +00009533 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009534 }
drhcbc6b712015-07-02 16:17:30 +00009535 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009536
9537 /* Make sure every page in the file is referenced
9538 */
drh1dcdbc02007-01-27 02:24:54 +00009539 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009540#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009541 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009542 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009543 }
danielk1977afcdd022004-10-31 16:25:42 +00009544#else
9545 /* If the database supports auto-vacuum, make sure no tables contain
9546 ** references to pointer-map pages.
9547 */
dan1235bb12012-04-03 17:43:28 +00009548 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009549 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009550 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009551 }
dan1235bb12012-04-03 17:43:28 +00009552 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009553 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009554 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009555 }
9556#endif
drh5eddca62001-06-30 21:53:53 +00009557 }
9558
drh5eddca62001-06-30 21:53:53 +00009559 /* Clean up and report errors.
9560 */
drhe05b3f82015-07-01 17:53:49 +00009561integrity_ck_cleanup:
9562 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009563 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009564 if( sCheck.mallocFailed ){
9565 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009566 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009567 }
drh1dcdbc02007-01-27 02:24:54 +00009568 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009569 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009570 /* Make sure this analysis did not leave any unref() pages. */
9571 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9572 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009573 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009574}
drhb7f91642004-10-31 02:22:47 +00009575#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009576
drh73509ee2003-04-06 20:44:45 +00009577/*
drhd4e0bb02012-05-27 01:19:04 +00009578** Return the full pathname of the underlying database file. Return
9579** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009580**
9581** The pager filename is invariant as long as the pager is
9582** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009583*/
danielk1977aef0bf62005-12-30 16:28:01 +00009584const char *sqlite3BtreeGetFilename(Btree *p){
9585 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009586 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009587}
9588
9589/*
danielk19775865e3d2004-06-14 06:03:57 +00009590** Return the pathname of the journal file for this database. The return
9591** value of this routine is the same regardless of whether the journal file
9592** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009593**
9594** The pager journal filename is invariant as long as the pager is
9595** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009596*/
danielk1977aef0bf62005-12-30 16:28:01 +00009597const char *sqlite3BtreeGetJournalname(Btree *p){
9598 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009599 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009600}
9601
danielk19771d850a72004-05-31 08:26:49 +00009602/*
9603** Return non-zero if a transaction is active.
9604*/
danielk1977aef0bf62005-12-30 16:28:01 +00009605int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009606 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009607 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009608}
9609
dana550f2d2010-08-02 10:47:05 +00009610#ifndef SQLITE_OMIT_WAL
9611/*
9612** Run a checkpoint on the Btree passed as the first argument.
9613**
9614** Return SQLITE_LOCKED if this or any other connection has an open
9615** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009616**
dancdc1f042010-11-18 12:11:05 +00009617** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009618*/
dancdc1f042010-11-18 12:11:05 +00009619int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009620 int rc = SQLITE_OK;
9621 if( p ){
9622 BtShared *pBt = p->pBt;
9623 sqlite3BtreeEnter(p);
9624 if( pBt->inTransaction!=TRANS_NONE ){
9625 rc = SQLITE_LOCKED;
9626 }else{
dan7fb89902016-08-12 16:21:15 +00009627 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009628 }
9629 sqlite3BtreeLeave(p);
9630 }
9631 return rc;
9632}
9633#endif
9634
danielk19771d850a72004-05-31 08:26:49 +00009635/*
danielk19772372c2b2006-06-27 16:34:56 +00009636** Return non-zero if a read (or write) transaction is active.
9637*/
9638int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009639 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009640 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009641 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009642}
9643
danielk197704103022009-02-03 16:51:24 +00009644int sqlite3BtreeIsInBackup(Btree *p){
9645 assert( p );
9646 assert( sqlite3_mutex_held(p->db->mutex) );
9647 return p->nBackup!=0;
9648}
9649
danielk19772372c2b2006-06-27 16:34:56 +00009650/*
danielk1977da184232006-01-05 11:34:32 +00009651** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009652** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009653** purposes (for example, to store a high-level schema associated with
9654** the shared-btree). The btree layer manages reference counting issues.
9655**
9656** The first time this is called on a shared-btree, nBytes bytes of memory
9657** are allocated, zeroed, and returned to the caller. For each subsequent
9658** call the nBytes parameter is ignored and a pointer to the same blob
9659** of memory returned.
9660**
danielk1977171bfed2008-06-23 09:50:50 +00009661** If the nBytes parameter is 0 and the blob of memory has not yet been
9662** allocated, a null pointer is returned. If the blob has already been
9663** allocated, it is returned as normal.
9664**
danielk1977da184232006-01-05 11:34:32 +00009665** Just before the shared-btree is closed, the function passed as the
9666** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009667** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009668** on the memory, the btree layer does that.
9669*/
9670void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9671 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009672 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009673 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009674 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009675 pBt->xFreeSchema = xFree;
9676 }
drh27641702007-08-22 02:56:42 +00009677 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009678 return pBt->pSchema;
9679}
9680
danielk1977c87d34d2006-01-06 13:00:28 +00009681/*
danielk1977404ca072009-03-16 13:19:36 +00009682** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9683** btree as the argument handle holds an exclusive lock on the
9684** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009685*/
9686int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009687 int rc;
drhe5fe6902007-12-07 18:55:28 +00009688 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009689 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009690 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9691 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009692 sqlite3BtreeLeave(p);
9693 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009694}
9695
drha154dcd2006-03-22 22:10:07 +00009696
9697#ifndef SQLITE_OMIT_SHARED_CACHE
9698/*
9699** Obtain a lock on the table whose root page is iTab. The
9700** lock is a write lock if isWritelock is true or a read lock
9701** if it is false.
9702*/
danielk1977c00da102006-01-07 13:21:04 +00009703int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009704 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009705 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009706 if( p->sharable ){
9707 u8 lockType = READ_LOCK + isWriteLock;
9708 assert( READ_LOCK+1==WRITE_LOCK );
9709 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009710
drh6a9ad3d2008-04-02 16:29:30 +00009711 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009712 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009713 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009714 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009715 }
9716 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009717 }
9718 return rc;
9719}
drha154dcd2006-03-22 22:10:07 +00009720#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009721
danielk1977b4e9af92007-05-01 17:49:49 +00009722#ifndef SQLITE_OMIT_INCRBLOB
9723/*
9724** Argument pCsr must be a cursor opened for writing on an
9725** INTKEY table currently pointing at a valid table entry.
9726** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009727**
9728** Only the data content may only be modified, it is not possible to
9729** change the length of the data stored. If this function is called with
9730** parameters that attempt to write past the end of the existing data,
9731** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009732*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009733int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009734 int rc;
dan7a2347e2016-01-07 16:43:54 +00009735 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009736 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009737 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009738
danielk1977c9000e62009-07-08 13:55:28 +00009739 rc = restoreCursorPosition(pCsr);
9740 if( rc!=SQLITE_OK ){
9741 return rc;
9742 }
danielk19773588ceb2008-06-10 17:30:26 +00009743 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9744 if( pCsr->eState!=CURSOR_VALID ){
9745 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009746 }
9747
dan227a1c42013-04-03 11:17:39 +00009748 /* Save the positions of all other cursors open on this table. This is
9749 ** required in case any of them are holding references to an xFetch
9750 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009751 **
drh3f387402014-09-24 01:23:00 +00009752 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009753 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9754 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009755 */
drh370c9f42013-04-03 20:04:04 +00009756 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9757 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009758
danielk1977c9000e62009-07-08 13:55:28 +00009759 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009760 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009761 ** (b) there is a read/write transaction open,
9762 ** (c) the connection holds a write-lock on the table (if required),
9763 ** (d) there are no conflicting read-locks, and
9764 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009765 */
drh036dbec2014-03-11 23:40:44 +00009766 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009767 return SQLITE_READONLY;
9768 }
drhc9166342012-01-05 23:32:06 +00009769 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9770 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009771 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9772 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009773 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009774
drhfb192682009-07-11 18:26:28 +00009775 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009776}
danielk19772dec9702007-05-02 16:48:37 +00009777
9778/*
dan5a500af2014-03-11 20:33:04 +00009779** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009780*/
dan5a500af2014-03-11 20:33:04 +00009781void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009782 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009783 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009784}
danielk1977b4e9af92007-05-01 17:49:49 +00009785#endif
dane04dc882010-04-20 18:53:15 +00009786
9787/*
9788** Set both the "read version" (single byte at byte offset 18) and
9789** "write version" (single byte at byte offset 19) fields in the database
9790** header to iVersion.
9791*/
9792int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9793 BtShared *pBt = pBtree->pBt;
9794 int rc; /* Return code */
9795
dane04dc882010-04-20 18:53:15 +00009796 assert( iVersion==1 || iVersion==2 );
9797
danb9780022010-04-21 18:37:57 +00009798 /* If setting the version fields to 1, do not automatically open the
9799 ** WAL connection, even if the version fields are currently set to 2.
9800 */
drhc9166342012-01-05 23:32:06 +00009801 pBt->btsFlags &= ~BTS_NO_WAL;
9802 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009803
9804 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009805 if( rc==SQLITE_OK ){
9806 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009807 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009808 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009809 if( rc==SQLITE_OK ){
9810 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9811 if( rc==SQLITE_OK ){
9812 aData[18] = (u8)iVersion;
9813 aData[19] = (u8)iVersion;
9814 }
9815 }
9816 }
dane04dc882010-04-20 18:53:15 +00009817 }
9818
drhc9166342012-01-05 23:32:06 +00009819 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009820 return rc;
9821}
dan428c2182012-08-06 18:50:11 +00009822
drhe0997b32015-03-20 14:57:50 +00009823/*
9824** Return true if the cursor has a hint specified. This routine is
9825** only used from within assert() statements
9826*/
9827int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9828 return (pCsr->hints & mask)!=0;
9829}
drhe0997b32015-03-20 14:57:50 +00009830
drh781597f2014-05-21 08:21:07 +00009831/*
9832** Return true if the given Btree is read-only.
9833*/
9834int sqlite3BtreeIsReadonly(Btree *p){
9835 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9836}
drhdef68892014-11-04 12:11:23 +00009837
9838/*
9839** Return the size of the header added to each page by this module.
9840*/
drh37c057b2014-12-30 00:57:29 +00009841int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009842
drh5a1fb182016-01-08 19:34:39 +00009843#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009844/*
9845** Return true if the Btree passed as the only argument is sharable.
9846*/
9847int sqlite3BtreeSharable(Btree *p){
9848 return p->sharable;
9849}
dan272989b2016-07-06 10:12:02 +00009850
9851/*
9852** Return the number of connections to the BtShared object accessed by
9853** the Btree handle passed as the only argument. For private caches
9854** this is always 1. For shared caches it may be 1 or greater.
9855*/
9856int sqlite3BtreeConnectionCount(Btree *p){
9857 testcase( p->sharable );
9858 return p->pBt->nRef;
9859}
drh5a1fb182016-01-08 19:34:39 +00009860#endif