blob: c6f9c34f7b32dffb3c79f185688c4365f8d2c71d [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
dan7a2347e2016-01-07 16:43:54 +0000453static int cursorOwnsBtShared(BtCursor *p){
454 assert( cursorHoldsMutex(p) );
455 return (p->pBtree->db==p->pBt->db);
456}
drh1fee73e2007-08-29 04:00:57 +0000457#endif
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459/*
dan5a500af2014-03-11 20:33:04 +0000460** Invalidate the overflow cache of the cursor passed as the first argument.
461** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000462*/
drh036dbec2014-03-11 23:40:44 +0000463#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000464
465/*
466** Invalidate the overflow page-list cache for all cursors opened
467** on the shared btree structure pBt.
468*/
469static void invalidateAllOverflowCache(BtShared *pBt){
470 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000471 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000472 for(p=pBt->pCursor; p; p=p->pNext){
473 invalidateOverflowCache(p);
474 }
475}
danielk197796d48e92009-06-29 06:00:37 +0000476
dan5a500af2014-03-11 20:33:04 +0000477#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000478/*
479** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000480** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000481** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000482**
483** If argument isClearTable is true, then the entire contents of the
484** table is about to be deleted. In this case invalidate all incrblob
485** cursors open on any row within the table with root-page pgnoRoot.
486**
487** Otherwise, if argument isClearTable is false, then the row with
488** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000489** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000490*/
491static void invalidateIncrblobCursors(
492 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000493 i64 iRow, /* The rowid that might be changing */
494 int isClearTable /* True if all rows are being deleted */
495){
496 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000497 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000498 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000499 pBtree->hasIncrblobCur = 0;
500 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
501 if( (p->curFlags & BTCF_Incrblob)!=0 ){
502 pBtree->hasIncrblobCur = 1;
503 if( isClearTable || p->info.nKey==iRow ){
504 p->eState = CURSOR_INVALID;
505 }
danielk197796d48e92009-06-29 06:00:37 +0000506 }
507 }
508}
509
danielk197792d4d7a2007-05-04 12:05:56 +0000510#else
dan5a500af2014-03-11 20:33:04 +0000511 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000512 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000513#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000514
drh980b1a72006-08-16 16:42:48 +0000515/*
danielk1977bea2a942009-01-20 17:06:27 +0000516** Set bit pgno of the BtShared.pHasContent bitvec. This is called
517** when a page that previously contained data becomes a free-list leaf
518** page.
519**
520** The BtShared.pHasContent bitvec exists to work around an obscure
521** bug caused by the interaction of two useful IO optimizations surrounding
522** free-list leaf pages:
523**
524** 1) When all data is deleted from a page and the page becomes
525** a free-list leaf page, the page is not written to the database
526** (as free-list leaf pages contain no meaningful data). Sometimes
527** such a page is not even journalled (as it will not be modified,
528** why bother journalling it?).
529**
530** 2) When a free-list leaf page is reused, its content is not read
531** from the database or written to the journal file (why should it
532** be, if it is not at all meaningful?).
533**
534** By themselves, these optimizations work fine and provide a handy
535** performance boost to bulk delete or insert operations. However, if
536** a page is moved to the free-list and then reused within the same
537** transaction, a problem comes up. If the page is not journalled when
538** it is moved to the free-list and it is also not journalled when it
539** is extracted from the free-list and reused, then the original data
540** may be lost. In the event of a rollback, it may not be possible
541** to restore the database to its original configuration.
542**
543** The solution is the BtShared.pHasContent bitvec. Whenever a page is
544** moved to become a free-list leaf page, the corresponding bit is
545** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000546** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000547** set in BtShared.pHasContent. The contents of the bitvec are cleared
548** at the end of every transaction.
549*/
550static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
551 int rc = SQLITE_OK;
552 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000553 assert( pgno<=pBt->nPage );
554 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000555 if( !pBt->pHasContent ){
556 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000557 }
558 }
559 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
560 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
561 }
562 return rc;
563}
564
565/*
566** Query the BtShared.pHasContent vector.
567**
568** This function is called when a free-list leaf page is removed from the
569** free-list for reuse. It returns false if it is safe to retrieve the
570** page from the pager layer with the 'no-content' flag set. True otherwise.
571*/
572static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
573 Bitvec *p = pBt->pHasContent;
574 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
575}
576
577/*
578** Clear (destroy) the BtShared.pHasContent bitvec. This should be
579** invoked at the conclusion of each write-transaction.
580*/
581static void btreeClearHasContent(BtShared *pBt){
582 sqlite3BitvecDestroy(pBt->pHasContent);
583 pBt->pHasContent = 0;
584}
585
586/*
drh138eeeb2013-03-27 03:15:23 +0000587** Release all of the apPage[] pages for a cursor.
588*/
589static void btreeReleaseAllCursorPages(BtCursor *pCur){
590 int i;
591 for(i=0; i<=pCur->iPage; i++){
592 releasePage(pCur->apPage[i]);
593 pCur->apPage[i] = 0;
594 }
595 pCur->iPage = -1;
596}
597
danf0ee1d32015-09-12 19:26:11 +0000598/*
599** The cursor passed as the only argument must point to a valid entry
600** when this function is called (i.e. have eState==CURSOR_VALID). This
601** function saves the current cursor key in variables pCur->nKey and
602** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
603** code otherwise.
604**
605** If the cursor is open on an intkey table, then the integer key
606** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
607** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
608** set to point to a malloced buffer pCur->nKey bytes in size containing
609** the key.
610*/
611static int saveCursorKey(BtCursor *pCur){
612 int rc;
613 assert( CURSOR_VALID==pCur->eState );
614 assert( 0==pCur->pKey );
615 assert( cursorHoldsMutex(pCur) );
616
617 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
618 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
619
620 /* If this is an intKey table, then the above call to BtreeKeySize()
621 ** stores the integer key in pCur->nKey. In this case this value is
622 ** all that is required. Otherwise, if pCur is not open on an intKey
623 ** table, then malloc space for and store the pCur->nKey bytes of key
624 ** data. */
625 if( 0==pCur->curIntKey ){
626 void *pKey = sqlite3Malloc( pCur->nKey );
627 if( pKey ){
628 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
629 if( rc==SQLITE_OK ){
630 pCur->pKey = pKey;
631 }else{
632 sqlite3_free(pKey);
633 }
634 }else{
635 rc = SQLITE_NOMEM;
636 }
637 }
638 assert( !pCur->curIntKey || !pCur->pKey );
639 return rc;
640}
drh138eeeb2013-03-27 03:15:23 +0000641
642/*
drh980b1a72006-08-16 16:42:48 +0000643** Save the current cursor position in the variables BtCursor.nKey
644** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000645**
646** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
647** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000648*/
649static int saveCursorPosition(BtCursor *pCur){
650 int rc;
651
drhd2f83132015-03-25 17:35:01 +0000652 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000653 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000654 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000655
drhd2f83132015-03-25 17:35:01 +0000656 if( pCur->eState==CURSOR_SKIPNEXT ){
657 pCur->eState = CURSOR_VALID;
658 }else{
659 pCur->skipNext = 0;
660 }
drh980b1a72006-08-16 16:42:48 +0000661
danf0ee1d32015-09-12 19:26:11 +0000662 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000663 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000664 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000665 pCur->eState = CURSOR_REQUIRESEEK;
666 }
667
dane755e102015-09-30 12:59:12 +0000668 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000669 return rc;
670}
671
drh637f3d82014-08-22 22:26:07 +0000672/* Forward reference */
673static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
674
drh980b1a72006-08-16 16:42:48 +0000675/*
drh0ee3dbe2009-10-16 15:05:18 +0000676** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000677** the table with root-page iRoot. "Saving the cursor position" means that
678** the location in the btree is remembered in such a way that it can be
679** moved back to the same spot after the btree has been modified. This
680** routine is called just before cursor pExcept is used to modify the
681** table, for example in BtreeDelete() or BtreeInsert().
682**
drh27fb7462015-06-30 02:47:36 +0000683** If there are two or more cursors on the same btree, then all such
684** cursors should have their BTCF_Multiple flag set. The btreeCursor()
685** routine enforces that rule. This routine only needs to be called in
686** the uncommon case when pExpect has the BTCF_Multiple flag set.
687**
688** If pExpect!=NULL and if no other cursors are found on the same root-page,
689** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
690** pointless call to this routine.
691**
drh637f3d82014-08-22 22:26:07 +0000692** Implementation note: This routine merely checks to see if any cursors
693** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
694** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000695*/
696static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
697 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000698 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000699 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000700 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000701 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
702 }
drh27fb7462015-06-30 02:47:36 +0000703 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
704 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
705 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000706}
707
708/* This helper routine to saveAllCursors does the actual work of saving
709** the cursors if and when a cursor is found that actually requires saving.
710** The common case is that no cursors need to be saved, so this routine is
711** broken out from its caller to avoid unnecessary stack pointer movement.
712*/
713static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000714 BtCursor *p, /* The first cursor that needs saving */
715 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
716 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000717){
718 do{
drh138eeeb2013-03-27 03:15:23 +0000719 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000720 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000721 int rc = saveCursorPosition(p);
722 if( SQLITE_OK!=rc ){
723 return rc;
724 }
725 }else{
726 testcase( p->iPage>0 );
727 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000728 }
729 }
drh637f3d82014-08-22 22:26:07 +0000730 p = p->pNext;
731 }while( p );
drh980b1a72006-08-16 16:42:48 +0000732 return SQLITE_OK;
733}
734
735/*
drhbf700f32007-03-31 02:36:44 +0000736** Clear the current cursor position.
737*/
danielk1977be51a652008-10-08 17:58:48 +0000738void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000739 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000740 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000741 pCur->pKey = 0;
742 pCur->eState = CURSOR_INVALID;
743}
744
745/*
danielk19773509a652009-07-06 18:56:13 +0000746** In this version of BtreeMoveto, pKey is a packed index record
747** such as is generated by the OP_MakeRecord opcode. Unpack the
748** record and then call BtreeMovetoUnpacked() to do the work.
749*/
750static int btreeMoveto(
751 BtCursor *pCur, /* Cursor open on the btree to be searched */
752 const void *pKey, /* Packed key if the btree is an index */
753 i64 nKey, /* Integer key for tables. Size of pKey for indices */
754 int bias, /* Bias search to the high end */
755 int *pRes /* Write search results here */
756){
757 int rc; /* Status code */
758 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000759 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000760 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000761
762 if( pKey ){
763 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000764 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
765 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
766 );
danielk19773509a652009-07-06 18:56:13 +0000767 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000768 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000769 if( pIdxKey->nField==0 ){
770 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
771 return SQLITE_CORRUPT_BKPT;
772 }
danielk19773509a652009-07-06 18:56:13 +0000773 }else{
774 pIdxKey = 0;
775 }
776 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000777 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000778 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000779 }
780 return rc;
781}
782
783/*
drh980b1a72006-08-16 16:42:48 +0000784** Restore the cursor to the position it was in (or as close to as possible)
785** when saveCursorPosition() was called. Note that this call deletes the
786** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000787** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000788** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000789*/
danielk197730548662009-07-09 05:07:37 +0000790static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000791 int rc;
drhd2f83132015-03-25 17:35:01 +0000792 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000793 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000794 assert( pCur->eState>=CURSOR_REQUIRESEEK );
795 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000796 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000797 }
drh980b1a72006-08-16 16:42:48 +0000798 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000799 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000800 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000801 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000802 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000803 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000804 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000805 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
806 pCur->eState = CURSOR_SKIPNEXT;
807 }
drh980b1a72006-08-16 16:42:48 +0000808 }
809 return rc;
810}
811
drha3460582008-07-11 21:02:53 +0000812#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000813 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000814 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000815 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000816
drha3460582008-07-11 21:02:53 +0000817/*
drh6848dad2014-08-22 23:33:03 +0000818** Determine whether or not a cursor has moved from the position where
819** it was last placed, or has been invalidated for any other reason.
820** Cursors can move when the row they are pointing at is deleted out
821** from under them, for example. Cursor might also move if a btree
822** is rebalanced.
drha3460582008-07-11 21:02:53 +0000823**
drh6848dad2014-08-22 23:33:03 +0000824** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000825**
drh6848dad2014-08-22 23:33:03 +0000826** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
827** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000828*/
drh6848dad2014-08-22 23:33:03 +0000829int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000830 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000831}
832
833/*
834** This routine restores a cursor back to its original position after it
835** has been moved by some outside activity (such as a btree rebalance or
836** a row having been deleted out from under the cursor).
837**
838** On success, the *pDifferentRow parameter is false if the cursor is left
839** pointing at exactly the same row. *pDifferntRow is the row the cursor
840** was pointing to has been deleted, forcing the cursor to point to some
841** nearby row.
842**
843** This routine should only be called for a cursor that just returned
844** TRUE from sqlite3BtreeCursorHasMoved().
845*/
846int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000847 int rc;
848
drh6848dad2014-08-22 23:33:03 +0000849 assert( pCur!=0 );
850 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000851 rc = restoreCursorPosition(pCur);
852 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 return rc;
855 }
drh606a3572015-03-25 18:29:10 +0000856 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000857 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000858 }else{
drh606a3572015-03-25 18:29:10 +0000859 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000860 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000861 }
862 return SQLITE_OK;
863}
864
drhf7854c72015-10-27 13:24:37 +0000865#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000866/*
drh0df57012015-08-14 15:05:55 +0000867** Provide hints to the cursor. The particular hint given (and the type
868** and number of the varargs parameters) is determined by the eHintType
869** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000870*/
drh0df57012015-08-14 15:05:55 +0000871void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000872 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000873}
drhf7854c72015-10-27 13:24:37 +0000874#endif
875
876/*
877** Provide flag hints to the cursor.
878*/
879void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
880 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
881 pCur->hints = x;
882}
883
drh28935362013-12-07 20:39:19 +0000884
danielk1977599fcba2004-11-08 07:13:13 +0000885#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000886/*
drha3152892007-05-05 11:48:52 +0000887** Given a page number of a regular database page, return the page
888** number for the pointer-map page that contains the entry for the
889** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000890**
891** Return 0 (not a valid page) for pgno==1 since there is
892** no pointer map associated with page 1. The integrity_check logic
893** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000894*/
danielk1977266664d2006-02-10 08:24:21 +0000895static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000896 int nPagesPerMapPage;
897 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000898 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000899 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000900 nPagesPerMapPage = (pBt->usableSize/5)+1;
901 iPtrMap = (pgno-2)/nPagesPerMapPage;
902 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000903 if( ret==PENDING_BYTE_PAGE(pBt) ){
904 ret++;
905 }
906 return ret;
907}
danielk1977a19df672004-11-03 11:37:07 +0000908
danielk1977afcdd022004-10-31 16:25:42 +0000909/*
danielk1977afcdd022004-10-31 16:25:42 +0000910** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000911**
912** This routine updates the pointer map entry for page number 'key'
913** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000914**
915** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
916** a no-op. If an error occurs, the appropriate error code is written
917** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000918*/
drh98add2e2009-07-20 17:11:49 +0000919static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000920 DbPage *pDbPage; /* The pointer map page */
921 u8 *pPtrmap; /* The pointer map data */
922 Pgno iPtrmap; /* The pointer map page number */
923 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000924 int rc; /* Return code from subfunctions */
925
926 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000927
drh1fee73e2007-08-29 04:00:57 +0000928 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000929 /* The master-journal page number must never be used as a pointer map page */
930 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
931
danielk1977ac11ee62005-01-15 12:45:51 +0000932 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000933 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000934 *pRC = SQLITE_CORRUPT_BKPT;
935 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000936 }
danielk1977266664d2006-02-10 08:24:21 +0000937 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000938 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000939 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000940 *pRC = rc;
941 return;
danielk1977afcdd022004-10-31 16:25:42 +0000942 }
danielk19778c666b12008-07-18 09:34:57 +0000943 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000944 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000945 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000946 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000947 }
drhfc243732011-05-17 15:21:56 +0000948 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000949 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000950
drh615ae552005-01-16 23:21:00 +0000951 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
952 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000953 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000954 if( rc==SQLITE_OK ){
955 pPtrmap[offset] = eType;
956 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000957 }
danielk1977afcdd022004-10-31 16:25:42 +0000958 }
959
drh4925a552009-07-07 11:39:58 +0000960ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000961 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000962}
963
964/*
965** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000966**
967** This routine retrieves the pointer map entry for page 'key', writing
968** the type and parent page number to *pEType and *pPgno respectively.
969** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000970*/
danielk1977aef0bf62005-12-30 16:28:01 +0000971static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000972 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000973 int iPtrmap; /* Pointer map page index */
974 u8 *pPtrmap; /* Pointer map page data */
975 int offset; /* Offset of entry in pointer map */
976 int rc;
977
drh1fee73e2007-08-29 04:00:57 +0000978 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000979
danielk1977266664d2006-02-10 08:24:21 +0000980 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000981 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000982 if( rc!=0 ){
983 return rc;
984 }
danielk19773b8a05f2007-03-19 17:44:26 +0000985 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000986
danielk19778c666b12008-07-18 09:34:57 +0000987 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000988 if( offset<0 ){
989 sqlite3PagerUnref(pDbPage);
990 return SQLITE_CORRUPT_BKPT;
991 }
992 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000993 assert( pEType!=0 );
994 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000995 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000996
danielk19773b8a05f2007-03-19 17:44:26 +0000997 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000998 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000999 return SQLITE_OK;
1000}
1001
danielk197785d90ca2008-07-19 14:25:15 +00001002#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001003 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001004 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001005 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001006#endif
danielk1977afcdd022004-10-31 16:25:42 +00001007
drh0d316a42002-08-11 20:10:47 +00001008/*
drh271efa52004-05-30 19:19:05 +00001009** Given a btree page and a cell index (0 means the first cell on
1010** the page, 1 means the second cell, and so forth) return a pointer
1011** to the cell content.
1012**
drhf44890a2015-06-27 03:58:15 +00001013** findCellPastPtr() does the same except it skips past the initial
1014** 4-byte child pointer found on interior pages, if there is one.
1015**
drh271efa52004-05-30 19:19:05 +00001016** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001017*/
drh1688c862008-07-18 02:44:17 +00001018#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001019 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001020#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001021 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001022
drh43605152004-05-29 21:46:49 +00001023
1024/*
drh5fa60512015-06-19 17:19:34 +00001025** This is common tail processing for btreeParseCellPtr() and
1026** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1027** on a single B-tree page. Make necessary adjustments to the CellInfo
1028** structure.
drh43605152004-05-29 21:46:49 +00001029*/
drh5fa60512015-06-19 17:19:34 +00001030static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1031 MemPage *pPage, /* Page containing the cell */
1032 u8 *pCell, /* Pointer to the cell text. */
1033 CellInfo *pInfo /* Fill in this structure */
1034){
1035 /* If the payload will not fit completely on the local page, we have
1036 ** to decide how much to store locally and how much to spill onto
1037 ** overflow pages. The strategy is to minimize the amount of unused
1038 ** space on overflow pages while keeping the amount of local storage
1039 ** in between minLocal and maxLocal.
1040 **
1041 ** Warning: changing the way overflow payload is distributed in any
1042 ** way will result in an incompatible file format.
1043 */
1044 int minLocal; /* Minimum amount of payload held locally */
1045 int maxLocal; /* Maximum amount of payload held locally */
1046 int surplus; /* Overflow payload available for local storage */
1047
1048 minLocal = pPage->minLocal;
1049 maxLocal = pPage->maxLocal;
1050 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1051 testcase( surplus==maxLocal );
1052 testcase( surplus==maxLocal+1 );
1053 if( surplus <= maxLocal ){
1054 pInfo->nLocal = (u16)surplus;
1055 }else{
1056 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001057 }
drh45ac1c72015-12-18 03:59:16 +00001058 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001059}
1060
1061/*
drh5fa60512015-06-19 17:19:34 +00001062** The following routines are implementations of the MemPage.xParseCell()
1063** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001064**
drh5fa60512015-06-19 17:19:34 +00001065** Parse a cell content block and fill in the CellInfo structure.
1066**
1067** btreeParseCellPtr() => table btree leaf nodes
1068** btreeParseCellNoPayload() => table btree internal nodes
1069** btreeParseCellPtrIndex() => index btree nodes
1070**
1071** There is also a wrapper function btreeParseCell() that works for
1072** all MemPage types and that references the cell by index rather than
1073** by pointer.
drh43605152004-05-29 21:46:49 +00001074*/
drh5fa60512015-06-19 17:19:34 +00001075static void btreeParseCellPtrNoPayload(
1076 MemPage *pPage, /* Page containing the cell */
1077 u8 *pCell, /* Pointer to the cell text. */
1078 CellInfo *pInfo /* Fill in this structure */
1079){
1080 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1081 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001082 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001083#ifndef SQLITE_DEBUG
1084 UNUSED_PARAMETER(pPage);
1085#endif
drh5fa60512015-06-19 17:19:34 +00001086 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1087 pInfo->nPayload = 0;
1088 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001089 pInfo->pPayload = 0;
1090 return;
1091}
danielk197730548662009-07-09 05:07:37 +00001092static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001093 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001094 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001095 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001096){
drh3e28ff52014-09-24 00:59:08 +00001097 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001098 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001099 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001100
drh1fee73e2007-08-29 04:00:57 +00001101 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001102 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001103 assert( pPage->intKeyLeaf );
1104 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001105 pIter = pCell;
1106
1107 /* The next block of code is equivalent to:
1108 **
1109 ** pIter += getVarint32(pIter, nPayload);
1110 **
1111 ** The code is inlined to avoid a function call.
1112 */
1113 nPayload = *pIter;
1114 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001115 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001116 nPayload &= 0x7f;
1117 do{
1118 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1119 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001120 }
drh56cb04e2015-06-19 18:24:37 +00001121 pIter++;
1122
1123 /* The next block of code is equivalent to:
1124 **
1125 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1126 **
1127 ** The code is inlined to avoid a function call.
1128 */
1129 iKey = *pIter;
1130 if( iKey>=0x80 ){
1131 u8 *pEnd = &pIter[7];
1132 iKey &= 0x7f;
1133 while(1){
1134 iKey = (iKey<<7) | (*++pIter & 0x7f);
1135 if( (*pIter)<0x80 ) break;
1136 if( pIter>=pEnd ){
1137 iKey = (iKey<<8) | *++pIter;
1138 break;
1139 }
1140 }
1141 }
1142 pIter++;
1143
1144 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001145 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001146 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001147 testcase( nPayload==pPage->maxLocal );
1148 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001149 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001150 /* This is the (easy) common case where the entire payload fits
1151 ** on the local page. No overflow is required.
1152 */
drhab1cc582014-09-23 21:25:19 +00001153 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1154 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001155 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001156 }else{
drh5fa60512015-06-19 17:19:34 +00001157 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001158 }
drh3aac2dd2004-04-26 14:10:20 +00001159}
drh5fa60512015-06-19 17:19:34 +00001160static void btreeParseCellPtrIndex(
1161 MemPage *pPage, /* Page containing the cell */
1162 u8 *pCell, /* Pointer to the cell text. */
1163 CellInfo *pInfo /* Fill in this structure */
1164){
1165 u8 *pIter; /* For scanning through pCell */
1166 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001167
drh5fa60512015-06-19 17:19:34 +00001168 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1169 assert( pPage->leaf==0 || pPage->leaf==1 );
1170 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001171 pIter = pCell + pPage->childPtrSize;
1172 nPayload = *pIter;
1173 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001174 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001175 nPayload &= 0x7f;
1176 do{
1177 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1178 }while( *(pIter)>=0x80 && pIter<pEnd );
1179 }
1180 pIter++;
1181 pInfo->nKey = nPayload;
1182 pInfo->nPayload = nPayload;
1183 pInfo->pPayload = pIter;
1184 testcase( nPayload==pPage->maxLocal );
1185 testcase( nPayload==pPage->maxLocal+1 );
1186 if( nPayload<=pPage->maxLocal ){
1187 /* This is the (easy) common case where the entire payload fits
1188 ** on the local page. No overflow is required.
1189 */
1190 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1191 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1192 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001193 }else{
1194 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001195 }
1196}
danielk197730548662009-07-09 05:07:37 +00001197static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001198 MemPage *pPage, /* Page containing the cell */
1199 int iCell, /* The cell index. First cell is 0 */
1200 CellInfo *pInfo /* Fill in this structure */
1201){
drh5fa60512015-06-19 17:19:34 +00001202 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001203}
drh3aac2dd2004-04-26 14:10:20 +00001204
1205/*
drh5fa60512015-06-19 17:19:34 +00001206** The following routines are implementations of the MemPage.xCellSize
1207** method.
1208**
drh43605152004-05-29 21:46:49 +00001209** Compute the total number of bytes that a Cell needs in the cell
1210** data area of the btree-page. The return number includes the cell
1211** data header and the local payload, but not any overflow page or
1212** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001213**
drh5fa60512015-06-19 17:19:34 +00001214** cellSizePtrNoPayload() => table internal nodes
1215** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001216*/
danielk1977ae5558b2009-04-29 11:31:47 +00001217static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001218 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1219 u8 *pEnd; /* End mark for a varint */
1220 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001221
1222#ifdef SQLITE_DEBUG
1223 /* The value returned by this function should always be the same as
1224 ** the (CellInfo.nSize) value found by doing a full parse of the
1225 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1226 ** this function verifies that this invariant is not violated. */
1227 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001228 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001229#endif
1230
drh3e28ff52014-09-24 00:59:08 +00001231 nSize = *pIter;
1232 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001233 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001234 nSize &= 0x7f;
1235 do{
1236 nSize = (nSize<<7) | (*++pIter & 0x7f);
1237 }while( *(pIter)>=0x80 && pIter<pEnd );
1238 }
1239 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001240 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001241 /* pIter now points at the 64-bit integer key value, a variable length
1242 ** integer. The following block moves pIter to point at the first byte
1243 ** past the end of the key value. */
1244 pEnd = &pIter[9];
1245 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001246 }
drh0a45c272009-07-08 01:49:11 +00001247 testcase( nSize==pPage->maxLocal );
1248 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001249 if( nSize<=pPage->maxLocal ){
1250 nSize += (u32)(pIter - pCell);
1251 if( nSize<4 ) nSize = 4;
1252 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001253 int minLocal = pPage->minLocal;
1254 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001255 testcase( nSize==pPage->maxLocal );
1256 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001257 if( nSize>pPage->maxLocal ){
1258 nSize = minLocal;
1259 }
drh3e28ff52014-09-24 00:59:08 +00001260 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001261 }
drhdc41d602014-09-22 19:51:35 +00001262 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001263 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001264}
drh25ada072015-06-19 15:07:14 +00001265static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1266 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1267 u8 *pEnd; /* End mark for a varint */
1268
1269#ifdef SQLITE_DEBUG
1270 /* The value returned by this function should always be the same as
1271 ** the (CellInfo.nSize) value found by doing a full parse of the
1272 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1273 ** this function verifies that this invariant is not violated. */
1274 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001275 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001276#else
1277 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001278#endif
1279
1280 assert( pPage->childPtrSize==4 );
1281 pEnd = pIter + 9;
1282 while( (*pIter++)&0x80 && pIter<pEnd );
1283 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1284 return (u16)(pIter - pCell);
1285}
1286
drh0ee3dbe2009-10-16 15:05:18 +00001287
1288#ifdef SQLITE_DEBUG
1289/* This variation on cellSizePtr() is used inside of assert() statements
1290** only. */
drha9121e42008-02-19 14:59:35 +00001291static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001292 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001293}
danielk1977bc6ada42004-06-30 08:20:16 +00001294#endif
drh3b7511c2001-05-26 13:15:44 +00001295
danielk197779a40da2005-01-16 08:00:01 +00001296#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001297/*
danielk197726836652005-01-17 01:33:13 +00001298** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001299** to an overflow page, insert an entry into the pointer-map
1300** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001301*/
drh98add2e2009-07-20 17:11:49 +00001302static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001303 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001304 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001305 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001306 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001307 if( info.nLocal<info.nPayload ){
1308 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001309 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001310 }
danielk1977ac11ee62005-01-15 12:45:51 +00001311}
danielk197779a40da2005-01-16 08:00:01 +00001312#endif
1313
danielk1977ac11ee62005-01-15 12:45:51 +00001314
drhda200cc2004-05-09 11:51:38 +00001315/*
drh72f82862001-05-24 21:06:34 +00001316** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001317** end of the page and all free space is collected into one
1318** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001319** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001320**
1321** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1322** b-tree page so that there are no freeblocks or fragment bytes, all
1323** unused bytes are contained in the unallocated space region, and all
1324** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001325*/
shane0af3f892008-11-12 04:55:34 +00001326static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001327 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001328 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001329 int hdr; /* Offset to the page header */
1330 int size; /* Size of a cell */
1331 int usableSize; /* Number of usable bytes on a page */
1332 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001333 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001334 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001335 unsigned char *data; /* The page data */
1336 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001337 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001338 int iCellFirst; /* First allowable cell index */
1339 int iCellLast; /* Last possible cell index */
1340
drh2af926b2001-05-15 00:39:25 +00001341
danielk19773b8a05f2007-03-19 17:44:26 +00001342 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001343 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001344 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001345 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001346 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001347 temp = 0;
1348 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001349 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001350 cellOffset = pPage->cellOffset;
1351 nCell = pPage->nCell;
1352 assert( nCell==get2byte(&data[hdr+3]) );
1353 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001354 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001355 iCellFirst = cellOffset + 2*nCell;
1356 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001357 for(i=0; i<nCell; i++){
1358 u8 *pAddr; /* The i-th cell pointer */
1359 pAddr = &data[cellOffset + i*2];
1360 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001361 testcase( pc==iCellFirst );
1362 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001363 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001364 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001365 */
1366 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001367 return SQLITE_CORRUPT_BKPT;
1368 }
drh17146622009-07-07 17:38:38 +00001369 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001370 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001371 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001372 if( cbrk<iCellFirst || pc+size>usableSize ){
1373 return SQLITE_CORRUPT_BKPT;
1374 }
drh7157e1d2009-07-09 13:25:32 +00001375 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001376 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001377 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001378 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001379 if( temp==0 ){
1380 int x;
1381 if( cbrk==pc ) continue;
1382 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1383 x = get2byte(&data[hdr+5]);
1384 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1385 src = temp;
1386 }
1387 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001388 }
drh17146622009-07-07 17:38:38 +00001389 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001390 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001391 data[hdr+1] = 0;
1392 data[hdr+2] = 0;
1393 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001394 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001395 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001396 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001397 return SQLITE_CORRUPT_BKPT;
1398 }
shane0af3f892008-11-12 04:55:34 +00001399 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001400}
1401
drha059ad02001-04-17 20:09:11 +00001402/*
dan8e9ba0c2014-10-14 17:27:04 +00001403** Search the free-list on page pPg for space to store a cell nByte bytes in
1404** size. If one can be found, return a pointer to the space and remove it
1405** from the free-list.
1406**
1407** If no suitable space can be found on the free-list, return NULL.
1408**
drhba0f9992014-10-30 20:48:44 +00001409** This function may detect corruption within pPg. If corruption is
1410** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001411**
drhb7580e82015-06-25 18:36:13 +00001412** Slots on the free list that are between 1 and 3 bytes larger than nByte
1413** will be ignored if adding the extra space to the fragmentation count
1414** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001415*/
drhb7580e82015-06-25 18:36:13 +00001416static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001417 const int hdr = pPg->hdrOffset;
1418 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001419 int iAddr = hdr + 1;
1420 int pc = get2byte(&aData[iAddr]);
1421 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001422 int usableSize = pPg->pBt->usableSize;
1423
drhb7580e82015-06-25 18:36:13 +00001424 assert( pc>0 );
1425 do{
dan8e9ba0c2014-10-14 17:27:04 +00001426 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001427 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1428 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001429 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001430 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001431 return 0;
1432 }
drh113762a2014-11-19 16:36:25 +00001433 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1434 ** freeblock form a big-endian integer which is the size of the freeblock
1435 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001436 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001437 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001438 testcase( x==4 );
1439 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001440 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1441 *pRc = SQLITE_CORRUPT_BKPT;
1442 return 0;
1443 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001444 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1445 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001446 if( aData[hdr+7]>57 ) return 0;
1447
dan8e9ba0c2014-10-14 17:27:04 +00001448 /* Remove the slot from the free-list. Update the number of
1449 ** fragmented bytes within the page. */
1450 memcpy(&aData[iAddr], &aData[pc], 2);
1451 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001452 }else{
1453 /* The slot remains on the free-list. Reduce its size to account
1454 ** for the portion used by the new allocation. */
1455 put2byte(&aData[pc+2], x);
1456 }
1457 return &aData[pc + x];
1458 }
drhb7580e82015-06-25 18:36:13 +00001459 iAddr = pc;
1460 pc = get2byte(&aData[pc]);
1461 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001462
1463 return 0;
1464}
1465
1466/*
danielk19776011a752009-04-01 16:25:32 +00001467** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001468** as the first argument. Write into *pIdx the index into pPage->aData[]
1469** of the first byte of allocated space. Return either SQLITE_OK or
1470** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001471**
drh0a45c272009-07-08 01:49:11 +00001472** The caller guarantees that there is sufficient space to make the
1473** allocation. This routine might need to defragment in order to bring
1474** all the space together, however. This routine will avoid using
1475** the first two bytes past the cell pointer area since presumably this
1476** allocation is being made in order to insert a new cell, so we will
1477** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001478*/
drh0a45c272009-07-08 01:49:11 +00001479static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001480 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1481 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001482 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001483 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001484 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001485
danielk19773b8a05f2007-03-19 17:44:26 +00001486 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001487 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001488 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001489 assert( nByte>=0 ); /* Minimum cell size is 4 */
1490 assert( pPage->nFree>=nByte );
1491 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001492 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001493
drh0a45c272009-07-08 01:49:11 +00001494 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1495 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001496 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001497 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1498 ** and the reserved space is zero (the usual value for reserved space)
1499 ** then the cell content offset of an empty page wants to be 65536.
1500 ** However, that integer is too large to be stored in a 2-byte unsigned
1501 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001502 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001503 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001504 if( gap>top ){
1505 if( top==0 && pPage->pBt->usableSize==65536 ){
1506 top = 65536;
1507 }else{
1508 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001509 }
1510 }
drh43605152004-05-29 21:46:49 +00001511
drh4c04f3c2014-08-20 11:56:14 +00001512 /* If there is enough space between gap and top for one more cell pointer
1513 ** array entry offset, and if the freelist is not empty, then search the
1514 ** freelist looking for a free slot big enough to satisfy the request.
1515 */
drh5e2f8b92001-05-28 00:41:15 +00001516 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001517 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001518 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001519 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001520 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001521 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001522 assert( pSpace>=data && (pSpace - data)<65536 );
1523 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001524 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001525 }else if( rc ){
1526 return rc;
drh9e572e62004-04-23 23:43:10 +00001527 }
1528 }
drh43605152004-05-29 21:46:49 +00001529
drh4c04f3c2014-08-20 11:56:14 +00001530 /* The request could not be fulfilled using a freelist slot. Check
1531 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001532 */
1533 testcase( gap+2+nByte==top );
1534 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001535 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001536 rc = defragmentPage(pPage);
1537 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001538 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001539 assert( gap+nByte<=top );
1540 }
1541
1542
drh43605152004-05-29 21:46:49 +00001543 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001544 ** and the cell content area. The btreeInitPage() call has already
1545 ** validated the freelist. Given that the freelist is valid, there
1546 ** is no way that the allocation can extend off the end of the page.
1547 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001548 */
drh0a45c272009-07-08 01:49:11 +00001549 top -= nByte;
drh43605152004-05-29 21:46:49 +00001550 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001551 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001552 *pIdx = top;
1553 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001554}
1555
1556/*
drh9e572e62004-04-23 23:43:10 +00001557** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001558** The first byte of the new free block is pPage->aData[iStart]
1559** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001560**
drh5f5c7532014-08-20 17:56:27 +00001561** Adjacent freeblocks are coalesced.
1562**
1563** Note that even though the freeblock list was checked by btreeInitPage(),
1564** that routine will not detect overlap between cells or freeblocks. Nor
1565** does it detect cells or freeblocks that encrouch into the reserved bytes
1566** at the end of the page. So do additional corruption checks inside this
1567** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001568*/
drh5f5c7532014-08-20 17:56:27 +00001569static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001570 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001571 u16 iFreeBlk; /* Address of the next freeblock */
1572 u8 hdr; /* Page header size. 0 or 100 */
1573 u8 nFrag = 0; /* Reduction in fragmentation */
1574 u16 iOrigSize = iSize; /* Original value of iSize */
1575 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1576 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001577 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001578
drh9e572e62004-04-23 23:43:10 +00001579 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001580 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001581 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001582 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001583 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001584 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001585 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001586
drh5f5c7532014-08-20 17:56:27 +00001587 /* Overwrite deleted information with zeros when the secure_delete
1588 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001589 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001590 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001591 }
drhfcce93f2006-02-22 03:08:32 +00001592
drh5f5c7532014-08-20 17:56:27 +00001593 /* The list of freeblocks must be in ascending order. Find the
1594 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001595 */
drh43605152004-05-29 21:46:49 +00001596 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001597 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001598 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1599 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1600 }else{
1601 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1602 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1603 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001604 }
drh7bc4c452014-08-20 18:43:44 +00001605 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1606 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1607
1608 /* At this point:
1609 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001610 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001611 **
1612 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1613 */
1614 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1615 nFrag = iFreeBlk - iEnd;
1616 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1617 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001618 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001619 iSize = iEnd - iStart;
1620 iFreeBlk = get2byte(&data[iFreeBlk]);
1621 }
1622
drh3f387402014-09-24 01:23:00 +00001623 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1624 ** pointer in the page header) then check to see if iStart should be
1625 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001626 */
1627 if( iPtr>hdr+1 ){
1628 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1629 if( iPtrEnd+3>=iStart ){
1630 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1631 nFrag += iStart - iPtrEnd;
1632 iSize = iEnd - iPtr;
1633 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001634 }
drh9e572e62004-04-23 23:43:10 +00001635 }
drh7bc4c452014-08-20 18:43:44 +00001636 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1637 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001638 }
drh7bc4c452014-08-20 18:43:44 +00001639 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001640 /* The new freeblock is at the beginning of the cell content area,
1641 ** so just extend the cell content area rather than create another
1642 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001643 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001644 put2byte(&data[hdr+1], iFreeBlk);
1645 put2byte(&data[hdr+5], iEnd);
1646 }else{
1647 /* Insert the new freeblock into the freelist */
1648 put2byte(&data[iPtr], iStart);
1649 put2byte(&data[iStart], iFreeBlk);
1650 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001651 }
drh5f5c7532014-08-20 17:56:27 +00001652 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001653 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001654}
1655
1656/*
drh271efa52004-05-30 19:19:05 +00001657** Decode the flags byte (the first byte of the header) for a page
1658** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001659**
1660** Only the following combinations are supported. Anything different
1661** indicates a corrupt database files:
1662**
1663** PTF_ZERODATA
1664** PTF_ZERODATA | PTF_LEAF
1665** PTF_LEAFDATA | PTF_INTKEY
1666** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001667*/
drh44845222008-07-17 18:39:57 +00001668static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001669 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001670
1671 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001672 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001673 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001674 flagByte &= ~PTF_LEAF;
1675 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001676 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001677 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001678 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001679 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1680 ** table b-tree page. */
1681 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1682 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1683 ** table b-tree page. */
1684 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001685 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001686 if( pPage->leaf ){
1687 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001688 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001689 }else{
1690 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001691 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001692 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001693 }
drh271efa52004-05-30 19:19:05 +00001694 pPage->maxLocal = pBt->maxLeaf;
1695 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001696 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001697 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1698 ** index b-tree page. */
1699 assert( (PTF_ZERODATA)==2 );
1700 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1701 ** index b-tree page. */
1702 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001703 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001704 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001705 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001706 pPage->maxLocal = pBt->maxLocal;
1707 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001708 }else{
drhfdab0262014-11-20 15:30:50 +00001709 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1710 ** an error. */
drh44845222008-07-17 18:39:57 +00001711 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001712 }
drhc9166342012-01-05 23:32:06 +00001713 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001714 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001715}
1716
1717/*
drh7e3b0a02001-04-28 16:52:40 +00001718** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001719**
1720** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001721** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001722** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1723** guarantee that the page is well-formed. It only shows that
1724** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001725*/
danielk197730548662009-07-09 05:07:37 +00001726static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001727
danielk197771d5d2c2008-09-29 11:49:47 +00001728 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001729 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001730 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001731 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001732 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1733 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001734
1735 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001736 u16 pc; /* Address of a freeblock within pPage->aData[] */
1737 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001738 u8 *data; /* Equal to pPage->aData */
1739 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001740 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001741 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001742 int nFree; /* Number of unused bytes on the page */
1743 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001744 int iCellFirst; /* First allowable cell or freeblock offset */
1745 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001746
1747 pBt = pPage->pBt;
1748
danielk1977eaa06f62008-09-18 17:34:44 +00001749 hdr = pPage->hdrOffset;
1750 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001751 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1752 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001753 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001754 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1755 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001756 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001757 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001758 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001759 pPage->aDataEnd = &data[usableSize];
1760 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001761 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001762 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1763 ** the start of the cell content area. A zero value for this integer is
1764 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001765 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001766 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1767 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001768 pPage->nCell = get2byte(&data[hdr+3]);
1769 if( pPage->nCell>MX_CELL(pBt) ){
1770 /* To many cells for a single page. The page must be corrupt */
1771 return SQLITE_CORRUPT_BKPT;
1772 }
drhb908d762009-07-08 16:54:40 +00001773 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001774 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1775 ** possible for a root page of a table that contains no rows) then the
1776 ** offset to the cell content area will equal the page size minus the
1777 ** bytes of reserved space. */
1778 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001779
shane5eff7cf2009-08-10 03:57:58 +00001780 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001781 ** of page when parsing a cell.
1782 **
1783 ** The following block of code checks early to see if a cell extends
1784 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1785 ** returned if it does.
1786 */
drh0a45c272009-07-08 01:49:11 +00001787 iCellFirst = cellOffset + 2*pPage->nCell;
1788 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001789 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001790 int i; /* Index into the cell pointer array */
1791 int sz; /* Size of a cell */
1792
drh69e931e2009-06-03 21:04:35 +00001793 if( !pPage->leaf ) iCellLast--;
1794 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001795 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001796 testcase( pc==iCellFirst );
1797 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001798 if( pc<iCellFirst || pc>iCellLast ){
1799 return SQLITE_CORRUPT_BKPT;
1800 }
drh25ada072015-06-19 15:07:14 +00001801 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001802 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001803 if( pc+sz>usableSize ){
1804 return SQLITE_CORRUPT_BKPT;
1805 }
1806 }
drh0a45c272009-07-08 01:49:11 +00001807 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001808 }
drh69e931e2009-06-03 21:04:35 +00001809
drhfdab0262014-11-20 15:30:50 +00001810 /* Compute the total free space on the page
1811 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1812 ** start of the first freeblock on the page, or is zero if there are no
1813 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001814 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001815 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001816 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001817 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001818 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001819 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1820 ** always be at least one cell before the first freeblock.
1821 **
1822 ** Or, the freeblock is off the end of the page
1823 */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 return SQLITE_CORRUPT_BKPT;
1825 }
1826 next = get2byte(&data[pc]);
1827 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001828 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1829 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001830 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001831 return SQLITE_CORRUPT_BKPT;
1832 }
shane85095702009-06-15 16:27:08 +00001833 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001834 pc = next;
1835 }
danielk197793c829c2009-06-03 17:26:17 +00001836
1837 /* At this point, nFree contains the sum of the offset to the start
1838 ** of the cell-content area plus the number of free bytes within
1839 ** the cell-content area. If this is greater than the usable-size
1840 ** of the page, then the page must be corrupted. This check also
1841 ** serves to verify that the offset to the start of the cell-content
1842 ** area, according to the page header, lies within the page.
1843 */
1844 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001845 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001846 }
shane5eff7cf2009-08-10 03:57:58 +00001847 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001848 pPage->isInit = 1;
1849 }
drh9e572e62004-04-23 23:43:10 +00001850 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001851}
1852
1853/*
drh8b2f49b2001-06-08 00:21:52 +00001854** Set up a raw page so that it looks like a database page holding
1855** no entries.
drhbd03cae2001-06-02 02:40:57 +00001856*/
drh9e572e62004-04-23 23:43:10 +00001857static void zeroPage(MemPage *pPage, int flags){
1858 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001859 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001860 u8 hdr = pPage->hdrOffset;
1861 u16 first;
drh9e572e62004-04-23 23:43:10 +00001862
danielk19773b8a05f2007-03-19 17:44:26 +00001863 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001864 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1865 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001866 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001867 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001868 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001869 memset(&data[hdr], 0, pBt->usableSize - hdr);
1870 }
drh1bd10f82008-12-10 21:19:56 +00001871 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001872 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001873 memset(&data[hdr+1], 0, 4);
1874 data[hdr+7] = 0;
1875 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001876 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001877 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001878 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001879 pPage->aDataEnd = &data[pBt->usableSize];
1880 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001881 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001882 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001883 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1884 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001885 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001886 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001887}
1888
drh897a8202008-09-18 01:08:15 +00001889
1890/*
1891** Convert a DbPage obtained from the pager into a MemPage used by
1892** the btree layer.
1893*/
1894static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1895 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001896 if( pgno!=pPage->pgno ){
1897 pPage->aData = sqlite3PagerGetData(pDbPage);
1898 pPage->pDbPage = pDbPage;
1899 pPage->pBt = pBt;
1900 pPage->pgno = pgno;
1901 pPage->hdrOffset = pgno==1 ? 100 : 0;
1902 }
1903 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001904 return pPage;
1905}
1906
drhbd03cae2001-06-02 02:40:57 +00001907/*
drh3aac2dd2004-04-26 14:10:20 +00001908** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001909** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001910**
drh7e8c6f12015-05-28 03:28:27 +00001911** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1912** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001913** to fetch the content. Just fill in the content with zeros for now.
1914** If in the future we call sqlite3PagerWrite() on this page, that
1915** means we have started to be concerned about content and the disk
1916** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001917*/
danielk197730548662009-07-09 05:07:37 +00001918static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001919 BtShared *pBt, /* The btree */
1920 Pgno pgno, /* Number of the page to fetch */
1921 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001922 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001923){
drh3aac2dd2004-04-26 14:10:20 +00001924 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001925 DbPage *pDbPage;
1926
drhb00fc3b2013-08-21 23:42:32 +00001927 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001928 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001929 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001930 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001931 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001932 return SQLITE_OK;
1933}
1934
1935/*
danielk1977bea2a942009-01-20 17:06:27 +00001936** Retrieve a page from the pager cache. If the requested page is not
1937** already in the pager cache return NULL. Initialize the MemPage.pBt and
1938** MemPage.aData elements if needed.
1939*/
1940static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1941 DbPage *pDbPage;
1942 assert( sqlite3_mutex_held(pBt->mutex) );
1943 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1944 if( pDbPage ){
1945 return btreePageFromDbPage(pDbPage, pgno, pBt);
1946 }
1947 return 0;
1948}
1949
1950/*
danielk197789d40042008-11-17 14:20:56 +00001951** Return the size of the database file in pages. If there is any kind of
1952** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001953*/
drhb1299152010-03-30 22:58:33 +00001954static Pgno btreePagecount(BtShared *pBt){
1955 return pBt->nPage;
1956}
1957u32 sqlite3BtreeLastPage(Btree *p){
1958 assert( sqlite3BtreeHoldsMutex(p) );
1959 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001960 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001961}
1962
1963/*
drh28f58dd2015-06-27 19:45:03 +00001964** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001965**
drh15a00212015-06-27 20:55:00 +00001966** If pCur!=0 then the page is being fetched as part of a moveToChild()
1967** call. Do additional sanity checking on the page in this case.
1968** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001969**
1970** The page is fetched as read-write unless pCur is not NULL and is
1971** a read-only cursor.
1972**
1973** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001974** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001975*/
1976static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001977 BtShared *pBt, /* The database file */
1978 Pgno pgno, /* Number of the page to get */
1979 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001980 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1981 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001982){
1983 int rc;
drh28f58dd2015-06-27 19:45:03 +00001984 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001985 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001986 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1987 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001988 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001989
danba3cbf32010-06-30 04:29:03 +00001990 if( pgno>btreePagecount(pBt) ){
1991 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001992 goto getAndInitPage_error;
1993 }
drh9584f582015-11-04 20:22:37 +00001994 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00001995 if( rc ){
1996 goto getAndInitPage_error;
1997 }
drh8dd1c252015-11-04 22:31:02 +00001998 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00001999 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002000 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002001 rc = btreeInitPage(*ppPage);
2002 if( rc!=SQLITE_OK ){
2003 releasePage(*ppPage);
2004 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002005 }
drhee696e22004-08-30 16:52:17 +00002006 }
drh8dd1c252015-11-04 22:31:02 +00002007 assert( (*ppPage)->pgno==pgno );
2008 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002009
drh15a00212015-06-27 20:55:00 +00002010 /* If obtaining a child page for a cursor, we must verify that the page is
2011 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002012 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002013 rc = SQLITE_CORRUPT_BKPT;
2014 releasePage(*ppPage);
2015 goto getAndInitPage_error;
2016 }
drh28f58dd2015-06-27 19:45:03 +00002017 return SQLITE_OK;
2018
2019getAndInitPage_error:
2020 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002021 testcase( pgno==0 );
2022 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002023 return rc;
2024}
2025
2026/*
drh3aac2dd2004-04-26 14:10:20 +00002027** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002028** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002029*/
drhbbf0f862015-06-27 14:59:26 +00002030static void releasePageNotNull(MemPage *pPage){
2031 assert( pPage->aData );
2032 assert( pPage->pBt );
2033 assert( pPage->pDbPage!=0 );
2034 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2035 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2036 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2037 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002038}
drh3aac2dd2004-04-26 14:10:20 +00002039static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002040 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002041}
2042
2043/*
drh7e8c6f12015-05-28 03:28:27 +00002044** Get an unused page.
2045**
2046** This works just like btreeGetPage() with the addition:
2047**
2048** * If the page is already in use for some other purpose, immediately
2049** release it and return an SQLITE_CURRUPT error.
2050** * Make sure the isInit flag is clear
2051*/
2052static int btreeGetUnusedPage(
2053 BtShared *pBt, /* The btree */
2054 Pgno pgno, /* Number of the page to fetch */
2055 MemPage **ppPage, /* Return the page in this parameter */
2056 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2057){
2058 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2059 if( rc==SQLITE_OK ){
2060 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2061 releasePage(*ppPage);
2062 *ppPage = 0;
2063 return SQLITE_CORRUPT_BKPT;
2064 }
2065 (*ppPage)->isInit = 0;
2066 }else{
2067 *ppPage = 0;
2068 }
2069 return rc;
2070}
2071
drha059ad02001-04-17 20:09:11 +00002072
2073/*
drha6abd042004-06-09 17:37:22 +00002074** During a rollback, when the pager reloads information into the cache
2075** so that the cache is restored to its original state at the start of
2076** the transaction, for each page restored this routine is called.
2077**
2078** This routine needs to reset the extra data section at the end of the
2079** page to agree with the restored data.
2080*/
danielk1977eaa06f62008-09-18 17:34:44 +00002081static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002082 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002083 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002084 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002085 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002086 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002087 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002088 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002089 /* pPage might not be a btree page; it might be an overflow page
2090 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002091 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002092 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002093 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002094 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002095 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002096 }
drha6abd042004-06-09 17:37:22 +00002097 }
2098}
2099
2100/*
drhe5fe6902007-12-07 18:55:28 +00002101** Invoke the busy handler for a btree.
2102*/
danielk19771ceedd32008-11-19 10:22:33 +00002103static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002104 BtShared *pBt = (BtShared*)pArg;
2105 assert( pBt->db );
2106 assert( sqlite3_mutex_held(pBt->db->mutex) );
2107 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2108}
2109
2110/*
drhad3e0102004-09-03 23:32:18 +00002111** Open a database file.
2112**
drh382c0242001-10-06 16:33:02 +00002113** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002114** then an ephemeral database is created. The ephemeral database might
2115** be exclusively in memory, or it might use a disk-based memory cache.
2116** Either way, the ephemeral database will be automatically deleted
2117** when sqlite3BtreeClose() is called.
2118**
drhe53831d2007-08-17 01:14:38 +00002119** If zFilename is ":memory:" then an in-memory database is created
2120** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002121**
drh33f111d2012-01-17 15:29:14 +00002122** The "flags" parameter is a bitmask that might contain bits like
2123** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002124**
drhc47fd8e2009-04-30 13:30:32 +00002125** If the database is already opened in the same database connection
2126** and we are in shared cache mode, then the open will fail with an
2127** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2128** objects in the same database connection since doing so will lead
2129** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002130*/
drh23e11ca2004-05-04 17:27:28 +00002131int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002132 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002133 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002134 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002135 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002136 int flags, /* Options */
2137 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002138){
drh7555d8e2009-03-20 13:15:30 +00002139 BtShared *pBt = 0; /* Shared part of btree structure */
2140 Btree *p; /* Handle to return */
2141 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2142 int rc = SQLITE_OK; /* Result code from this function */
2143 u8 nReserve; /* Byte of unused space on each page */
2144 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002145
drh75c014c2010-08-30 15:02:28 +00002146 /* True if opening an ephemeral, temporary database */
2147 const int isTempDb = zFilename==0 || zFilename[0]==0;
2148
danielk1977aef0bf62005-12-30 16:28:01 +00002149 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002150 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002151 */
drhb0a7c9c2010-12-06 21:09:59 +00002152#ifdef SQLITE_OMIT_MEMORYDB
2153 const int isMemdb = 0;
2154#else
2155 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002156 || (isTempDb && sqlite3TempInMemory(db))
2157 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002158#endif
2159
drhe5fe6902007-12-07 18:55:28 +00002160 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002161 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002162 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002163 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2164
2165 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2166 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2167
2168 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2169 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002170
drh75c014c2010-08-30 15:02:28 +00002171 if( isMemdb ){
2172 flags |= BTREE_MEMORY;
2173 }
2174 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2175 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2176 }
drh17435752007-08-16 04:30:38 +00002177 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002178 if( !p ){
2179 return SQLITE_NOMEM;
2180 }
2181 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002182 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002183#ifndef SQLITE_OMIT_SHARED_CACHE
2184 p->lock.pBtree = p;
2185 p->lock.iTable = 1;
2186#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002187
drh198bf392006-01-06 21:52:49 +00002188#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002189 /*
2190 ** If this Btree is a candidate for shared cache, try to find an
2191 ** existing BtShared object that we can share with
2192 */
drh4ab9d252012-05-26 20:08:49 +00002193 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002194 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002195 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002196 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002197 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002198 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002199
drhff0587c2007-08-29 17:43:19 +00002200 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002201 if( !zFullPathname ){
2202 sqlite3_free(p);
2203 return SQLITE_NOMEM;
2204 }
drhafc8b7f2012-05-26 18:06:38 +00002205 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002206 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002207 }else{
2208 rc = sqlite3OsFullPathname(pVfs, zFilename,
2209 nFullPathname, zFullPathname);
2210 if( rc ){
2211 sqlite3_free(zFullPathname);
2212 sqlite3_free(p);
2213 return rc;
2214 }
drh070ad6b2011-11-17 11:43:19 +00002215 }
drh30ddce62011-10-15 00:16:30 +00002216#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002217 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2218 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002219 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002220 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002221#endif
drh78f82d12008-09-02 00:52:52 +00002222 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002223 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002224 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002225 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002226 int iDb;
2227 for(iDb=db->nDb-1; iDb>=0; iDb--){
2228 Btree *pExisting = db->aDb[iDb].pBt;
2229 if( pExisting && pExisting->pBt==pBt ){
2230 sqlite3_mutex_leave(mutexShared);
2231 sqlite3_mutex_leave(mutexOpen);
2232 sqlite3_free(zFullPathname);
2233 sqlite3_free(p);
2234 return SQLITE_CONSTRAINT;
2235 }
2236 }
drhff0587c2007-08-29 17:43:19 +00002237 p->pBt = pBt;
2238 pBt->nRef++;
2239 break;
2240 }
2241 }
2242 sqlite3_mutex_leave(mutexShared);
2243 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002244 }
drhff0587c2007-08-29 17:43:19 +00002245#ifdef SQLITE_DEBUG
2246 else{
2247 /* In debug mode, we mark all persistent databases as sharable
2248 ** even when they are not. This exercises the locking code and
2249 ** gives more opportunity for asserts(sqlite3_mutex_held())
2250 ** statements to find locking problems.
2251 */
2252 p->sharable = 1;
2253 }
2254#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002255 }
2256#endif
drha059ad02001-04-17 20:09:11 +00002257 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002258 /*
2259 ** The following asserts make sure that structures used by the btree are
2260 ** the right size. This is to guard against size changes that result
2261 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002262 */
drh062cf272015-03-23 19:03:51 +00002263 assert( sizeof(i64)==8 );
2264 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002265 assert( sizeof(u32)==4 );
2266 assert( sizeof(u16)==2 );
2267 assert( sizeof(Pgno)==4 );
2268
2269 pBt = sqlite3MallocZero( sizeof(*pBt) );
2270 if( pBt==0 ){
2271 rc = SQLITE_NOMEM;
2272 goto btree_open_out;
2273 }
danielk197771d5d2c2008-09-29 11:49:47 +00002274 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002275 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002276 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002277 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002278 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2279 }
2280 if( rc!=SQLITE_OK ){
2281 goto btree_open_out;
2282 }
shanehbd2aaf92010-09-01 02:38:21 +00002283 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002284 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002285 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002286 p->pBt = pBt;
2287
drhe53831d2007-08-17 01:14:38 +00002288 pBt->pCursor = 0;
2289 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002290 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002291#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002292 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002293#endif
drh113762a2014-11-19 16:36:25 +00002294 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2295 ** determined by the 2-byte integer located at an offset of 16 bytes from
2296 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002297 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002298 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2299 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002300 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002301#ifndef SQLITE_OMIT_AUTOVACUUM
2302 /* If the magic name ":memory:" will create an in-memory database, then
2303 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2304 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2305 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2306 ** regular file-name. In this case the auto-vacuum applies as per normal.
2307 */
2308 if( zFilename && !isMemdb ){
2309 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2310 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2311 }
2312#endif
2313 nReserve = 0;
2314 }else{
drh113762a2014-11-19 16:36:25 +00002315 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2316 ** determined by the one-byte unsigned integer found at an offset of 20
2317 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002318 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002319 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002320#ifndef SQLITE_OMIT_AUTOVACUUM
2321 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2322 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2323#endif
2324 }
drhfa9601a2009-06-18 17:22:39 +00002325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002326 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002327 pBt->usableSize = pBt->pageSize - nReserve;
2328 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002329
2330#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2331 /* Add the new BtShared object to the linked list sharable BtShareds.
2332 */
2333 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002334 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002335 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002336 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002337 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002338 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002339 if( pBt->mutex==0 ){
2340 rc = SQLITE_NOMEM;
drh3285db22007-09-03 22:00:39 +00002341 goto btree_open_out;
2342 }
drhff0587c2007-08-29 17:43:19 +00002343 }
drhe53831d2007-08-17 01:14:38 +00002344 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002345 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2346 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002347 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002348 }
drheee46cf2004-11-06 00:02:48 +00002349#endif
drh90f5ecb2004-07-22 01:19:35 +00002350 }
danielk1977aef0bf62005-12-30 16:28:01 +00002351
drhcfed7bc2006-03-13 14:28:05 +00002352#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002353 /* If the new Btree uses a sharable pBtShared, then link the new
2354 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002355 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002356 */
drhe53831d2007-08-17 01:14:38 +00002357 if( p->sharable ){
2358 int i;
2359 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002360 for(i=0; i<db->nDb; i++){
2361 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002362 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2363 if( p->pBt<pSib->pBt ){
2364 p->pNext = pSib;
2365 p->pPrev = 0;
2366 pSib->pPrev = p;
2367 }else{
drhabddb0c2007-08-20 13:14:28 +00002368 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002369 pSib = pSib->pNext;
2370 }
2371 p->pNext = pSib->pNext;
2372 p->pPrev = pSib;
2373 if( p->pNext ){
2374 p->pNext->pPrev = p;
2375 }
2376 pSib->pNext = p;
2377 }
2378 break;
2379 }
2380 }
danielk1977aef0bf62005-12-30 16:28:01 +00002381 }
danielk1977aef0bf62005-12-30 16:28:01 +00002382#endif
2383 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002384
2385btree_open_out:
2386 if( rc!=SQLITE_OK ){
2387 if( pBt && pBt->pPager ){
2388 sqlite3PagerClose(pBt->pPager);
2389 }
drh17435752007-08-16 04:30:38 +00002390 sqlite3_free(pBt);
2391 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002392 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002393 }else{
2394 /* If the B-Tree was successfully opened, set the pager-cache size to the
2395 ** default value. Except, when opening on an existing shared pager-cache,
2396 ** do not change the pager-cache size.
2397 */
2398 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2399 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2400 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 }
drh7555d8e2009-03-20 13:15:30 +00002402 if( mutexOpen ){
2403 assert( sqlite3_mutex_held(mutexOpen) );
2404 sqlite3_mutex_leave(mutexOpen);
2405 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002406 return rc;
drha059ad02001-04-17 20:09:11 +00002407}
2408
2409/*
drhe53831d2007-08-17 01:14:38 +00002410** Decrement the BtShared.nRef counter. When it reaches zero,
2411** remove the BtShared structure from the sharing list. Return
2412** true if the BtShared.nRef counter reaches zero and return
2413** false if it is still positive.
2414*/
2415static int removeFromSharingList(BtShared *pBt){
2416#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002417 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002418 BtShared *pList;
2419 int removed = 0;
2420
drhd677b3d2007-08-20 22:48:41 +00002421 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002422 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002423 sqlite3_mutex_enter(pMaster);
2424 pBt->nRef--;
2425 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002426 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2427 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002428 }else{
drh78f82d12008-09-02 00:52:52 +00002429 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002430 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002431 pList=pList->pNext;
2432 }
drh34004ce2008-07-11 16:15:17 +00002433 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002434 pList->pNext = pBt->pNext;
2435 }
2436 }
drh3285db22007-09-03 22:00:39 +00002437 if( SQLITE_THREADSAFE ){
2438 sqlite3_mutex_free(pBt->mutex);
2439 }
drhe53831d2007-08-17 01:14:38 +00002440 removed = 1;
2441 }
2442 sqlite3_mutex_leave(pMaster);
2443 return removed;
2444#else
2445 return 1;
2446#endif
2447}
2448
2449/*
drhf7141992008-06-19 00:16:08 +00002450** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002451** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2452** pointer.
drhf7141992008-06-19 00:16:08 +00002453*/
2454static void allocateTempSpace(BtShared *pBt){
2455 if( !pBt->pTmpSpace ){
2456 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002457
2458 /* One of the uses of pBt->pTmpSpace is to format cells before
2459 ** inserting them into a leaf page (function fillInCell()). If
2460 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2461 ** by the various routines that manipulate binary cells. Which
2462 ** can mean that fillInCell() only initializes the first 2 or 3
2463 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2464 ** it into a database page. This is not actually a problem, but it
2465 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2466 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002467 ** zero the first 4 bytes of temp space here.
2468 **
2469 ** Also: Provide four bytes of initialized space before the
2470 ** beginning of pTmpSpace as an area available to prepend the
2471 ** left-child pointer to the beginning of a cell.
2472 */
2473 if( pBt->pTmpSpace ){
2474 memset(pBt->pTmpSpace, 0, 8);
2475 pBt->pTmpSpace += 4;
2476 }
drhf7141992008-06-19 00:16:08 +00002477 }
2478}
2479
2480/*
2481** Free the pBt->pTmpSpace allocation
2482*/
2483static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002484 if( pBt->pTmpSpace ){
2485 pBt->pTmpSpace -= 4;
2486 sqlite3PageFree(pBt->pTmpSpace);
2487 pBt->pTmpSpace = 0;
2488 }
drhf7141992008-06-19 00:16:08 +00002489}
2490
2491/*
drha059ad02001-04-17 20:09:11 +00002492** Close an open database and invalidate all cursors.
2493*/
danielk1977aef0bf62005-12-30 16:28:01 +00002494int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002495 BtShared *pBt = p->pBt;
2496 BtCursor *pCur;
2497
danielk1977aef0bf62005-12-30 16:28:01 +00002498 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002499 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002500 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002501 pCur = pBt->pCursor;
2502 while( pCur ){
2503 BtCursor *pTmp = pCur;
2504 pCur = pCur->pNext;
2505 if( pTmp->pBtree==p ){
2506 sqlite3BtreeCloseCursor(pTmp);
2507 }
drha059ad02001-04-17 20:09:11 +00002508 }
danielk1977aef0bf62005-12-30 16:28:01 +00002509
danielk19778d34dfd2006-01-24 16:37:57 +00002510 /* Rollback any active transaction and free the handle structure.
2511 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2512 ** this handle.
2513 */
drh47b7fc72014-11-11 01:33:57 +00002514 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002515 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002516
danielk1977aef0bf62005-12-30 16:28:01 +00002517 /* If there are still other outstanding references to the shared-btree
2518 ** structure, return now. The remainder of this procedure cleans
2519 ** up the shared-btree.
2520 */
drhe53831d2007-08-17 01:14:38 +00002521 assert( p->wantToLock==0 && p->locked==0 );
2522 if( !p->sharable || removeFromSharingList(pBt) ){
2523 /* The pBt is no longer on the sharing list, so we can access
2524 ** it without having to hold the mutex.
2525 **
2526 ** Clean out and delete the BtShared object.
2527 */
2528 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002529 sqlite3PagerClose(pBt->pPager);
2530 if( pBt->xFreeSchema && pBt->pSchema ){
2531 pBt->xFreeSchema(pBt->pSchema);
2532 }
drhb9755982010-07-24 16:34:37 +00002533 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002534 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002535 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002536 }
2537
drhe53831d2007-08-17 01:14:38 +00002538#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002539 assert( p->wantToLock==0 );
2540 assert( p->locked==0 );
2541 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2542 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002543#endif
2544
drhe53831d2007-08-17 01:14:38 +00002545 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002546 return SQLITE_OK;
2547}
2548
2549/*
drh9b0cf342015-11-12 14:57:19 +00002550** Change the "soft" limit on the number of pages in the cache.
2551** Unused and unmodified pages will be recycled when the number of
2552** pages in the cache exceeds this soft limit. But the size of the
2553** cache is allowed to grow larger than this limit if it contains
2554** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002555*/
danielk1977aef0bf62005-12-30 16:28:01 +00002556int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2557 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002558 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002559 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002560 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002561 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002562 return SQLITE_OK;
2563}
2564
drh9b0cf342015-11-12 14:57:19 +00002565/*
2566** Change the "spill" limit on the number of pages in the cache.
2567** If the number of pages exceeds this limit during a write transaction,
2568** the pager might attempt to "spill" pages to the journal early in
2569** order to free up memory.
2570**
2571** The value returned is the current spill size. If zero is passed
2572** as an argument, no changes are made to the spill size setting, so
2573** using mxPage of 0 is a way to query the current spill size.
2574*/
2575int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2576 BtShared *pBt = p->pBt;
2577 int res;
2578 assert( sqlite3_mutex_held(p->db->mutex) );
2579 sqlite3BtreeEnter(p);
2580 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2581 sqlite3BtreeLeave(p);
2582 return res;
2583}
2584
drh18c7e402014-03-14 11:46:10 +00002585#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002586/*
dan5d8a1372013-03-19 19:28:06 +00002587** Change the limit on the amount of the database file that may be
2588** memory mapped.
2589*/
drh9b4c59f2013-04-15 17:03:42 +00002590int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002591 BtShared *pBt = p->pBt;
2592 assert( sqlite3_mutex_held(p->db->mutex) );
2593 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002594 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002595 sqlite3BtreeLeave(p);
2596 return SQLITE_OK;
2597}
drh18c7e402014-03-14 11:46:10 +00002598#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002599
2600/*
drh973b6e32003-02-12 14:09:42 +00002601** Change the way data is synced to disk in order to increase or decrease
2602** how well the database resists damage due to OS crashes and power
2603** failures. Level 1 is the same as asynchronous (no syncs() occur and
2604** there is a high probability of damage) Level 2 is the default. There
2605** is a very low but non-zero probability of damage. Level 3 reduces the
2606** probability of damage to near zero but with a write performance reduction.
2607*/
danielk197793758c82005-01-21 08:13:14 +00002608#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002609int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002610 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002611 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002612){
danielk1977aef0bf62005-12-30 16:28:01 +00002613 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002614 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002615 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002616 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002617 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002618 return SQLITE_OK;
2619}
danielk197793758c82005-01-21 08:13:14 +00002620#endif
drh973b6e32003-02-12 14:09:42 +00002621
drh2c8997b2005-08-27 16:36:48 +00002622/*
2623** Return TRUE if the given btree is set to safety level 1. In other
2624** words, return TRUE if no sync() occurs on the disk files.
2625*/
danielk1977aef0bf62005-12-30 16:28:01 +00002626int sqlite3BtreeSyncDisabled(Btree *p){
2627 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002628 int rc;
drhe5fe6902007-12-07 18:55:28 +00002629 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002630 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002631 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002632 rc = sqlite3PagerNosync(pBt->pPager);
2633 sqlite3BtreeLeave(p);
2634 return rc;
drh2c8997b2005-08-27 16:36:48 +00002635}
2636
drh973b6e32003-02-12 14:09:42 +00002637/*
drh90f5ecb2004-07-22 01:19:35 +00002638** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002639** Or, if the page size has already been fixed, return SQLITE_READONLY
2640** without changing anything.
drh06f50212004-11-02 14:24:33 +00002641**
2642** The page size must be a power of 2 between 512 and 65536. If the page
2643** size supplied does not meet this constraint then the page size is not
2644** changed.
2645**
2646** Page sizes are constrained to be a power of two so that the region
2647** of the database file used for locking (beginning at PENDING_BYTE,
2648** the first byte past the 1GB boundary, 0x40000000) needs to occur
2649** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002650**
2651** If parameter nReserve is less than zero, then the number of reserved
2652** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002653**
drhc9166342012-01-05 23:32:06 +00002654** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002655** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002656*/
drhce4869f2009-04-02 20:16:58 +00002657int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002658 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002659 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002660 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002661 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002662#if SQLITE_HAS_CODEC
2663 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2664#endif
drhc9166342012-01-05 23:32:06 +00002665 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002666 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002667 return SQLITE_READONLY;
2668 }
2669 if( nReserve<0 ){
2670 nReserve = pBt->pageSize - pBt->usableSize;
2671 }
drhf49661a2008-12-10 16:45:50 +00002672 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002673 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2674 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002675 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002676 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002677 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002678 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002679 }
drhfa9601a2009-06-18 17:22:39 +00002680 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002681 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002682 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002683 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002684 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002685}
2686
2687/*
2688** Return the currently defined page size
2689*/
danielk1977aef0bf62005-12-30 16:28:01 +00002690int sqlite3BtreeGetPageSize(Btree *p){
2691 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002692}
drh7f751222009-03-17 22:33:00 +00002693
dan0094f372012-09-28 20:23:42 +00002694/*
2695** This function is similar to sqlite3BtreeGetReserve(), except that it
2696** may only be called if it is guaranteed that the b-tree mutex is already
2697** held.
2698**
2699** This is useful in one special case in the backup API code where it is
2700** known that the shared b-tree mutex is held, but the mutex on the
2701** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2702** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002703** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002704*/
2705int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002706 int n;
dan0094f372012-09-28 20:23:42 +00002707 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002708 n = p->pBt->pageSize - p->pBt->usableSize;
2709 return n;
dan0094f372012-09-28 20:23:42 +00002710}
2711
drh7f751222009-03-17 22:33:00 +00002712/*
2713** Return the number of bytes of space at the end of every page that
2714** are intentually left unused. This is the "reserved" space that is
2715** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002716**
2717** If SQLITE_HAS_MUTEX is defined then the number returned is the
2718** greater of the current reserved space and the maximum requested
2719** reserve space.
drh7f751222009-03-17 22:33:00 +00002720*/
drhad0961b2015-02-21 00:19:25 +00002721int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002722 int n;
2723 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002724 n = sqlite3BtreeGetReserveNoMutex(p);
2725#ifdef SQLITE_HAS_CODEC
2726 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2727#endif
drhd677b3d2007-08-20 22:48:41 +00002728 sqlite3BtreeLeave(p);
2729 return n;
drh2011d5f2004-07-22 02:40:37 +00002730}
drhf8e632b2007-05-08 14:51:36 +00002731
drhad0961b2015-02-21 00:19:25 +00002732
drhf8e632b2007-05-08 14:51:36 +00002733/*
2734** Set the maximum page count for a database if mxPage is positive.
2735** No changes are made if mxPage is 0 or negative.
2736** Regardless of the value of mxPage, return the maximum page count.
2737*/
2738int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002739 int n;
2740 sqlite3BtreeEnter(p);
2741 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2742 sqlite3BtreeLeave(p);
2743 return n;
drhf8e632b2007-05-08 14:51:36 +00002744}
drh5b47efa2010-02-12 18:18:39 +00002745
2746/*
drhc9166342012-01-05 23:32:06 +00002747** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2748** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002749** setting after the change.
2750*/
2751int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2752 int b;
drhaf034ed2010-02-12 19:46:26 +00002753 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002754 sqlite3BtreeEnter(p);
2755 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002756 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2757 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002758 }
drhc9166342012-01-05 23:32:06 +00002759 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002760 sqlite3BtreeLeave(p);
2761 return b;
2762}
drh90f5ecb2004-07-22 01:19:35 +00002763
2764/*
danielk1977951af802004-11-05 15:45:09 +00002765** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2766** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2767** is disabled. The default value for the auto-vacuum property is
2768** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2769*/
danielk1977aef0bf62005-12-30 16:28:01 +00002770int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002771#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002772 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002773#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002774 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002775 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002776 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002777
2778 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002779 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002780 rc = SQLITE_READONLY;
2781 }else{
drh076d4662009-02-18 20:31:18 +00002782 pBt->autoVacuum = av ?1:0;
2783 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002784 }
drhd677b3d2007-08-20 22:48:41 +00002785 sqlite3BtreeLeave(p);
2786 return rc;
danielk1977951af802004-11-05 15:45:09 +00002787#endif
2788}
2789
2790/*
2791** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2792** enabled 1 is returned. Otherwise 0.
2793*/
danielk1977aef0bf62005-12-30 16:28:01 +00002794int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002795#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002796 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002797#else
drhd677b3d2007-08-20 22:48:41 +00002798 int rc;
2799 sqlite3BtreeEnter(p);
2800 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002801 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2802 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2803 BTREE_AUTOVACUUM_INCR
2804 );
drhd677b3d2007-08-20 22:48:41 +00002805 sqlite3BtreeLeave(p);
2806 return rc;
danielk1977951af802004-11-05 15:45:09 +00002807#endif
2808}
2809
2810
2811/*
drha34b6762004-05-07 13:30:42 +00002812** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002813** also acquire a readlock on that file.
2814**
2815** SQLITE_OK is returned on success. If the file is not a
2816** well-formed database file, then SQLITE_CORRUPT is returned.
2817** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002818** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002819*/
danielk1977aef0bf62005-12-30 16:28:01 +00002820static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002821 int rc; /* Result code from subfunctions */
2822 MemPage *pPage1; /* Page 1 of the database file */
2823 int nPage; /* Number of pages in the database */
2824 int nPageFile = 0; /* Number of pages in the database file */
2825 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002826
drh1fee73e2007-08-29 04:00:57 +00002827 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002828 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002829 rc = sqlite3PagerSharedLock(pBt->pPager);
2830 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002831 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002832 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002833
2834 /* Do some checking to help insure the file we opened really is
2835 ** a valid database file.
2836 */
drhc2a4bab2010-04-02 12:46:45 +00002837 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002838 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002839 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002840 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002841 }
2842 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002843 u32 pageSize;
2844 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002845 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002846 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002847 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2848 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2849 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002850 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002851 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002852 }
dan5cf53532010-05-01 16:40:20 +00002853
2854#ifdef SQLITE_OMIT_WAL
2855 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002856 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002857 }
2858 if( page1[19]>1 ){
2859 goto page1_init_failed;
2860 }
2861#else
dane04dc882010-04-20 18:53:15 +00002862 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002863 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002864 }
dane04dc882010-04-20 18:53:15 +00002865 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002866 goto page1_init_failed;
2867 }
drhe5ae5732008-06-15 02:51:47 +00002868
dana470aeb2010-04-21 11:43:38 +00002869 /* If the write version is set to 2, this database should be accessed
2870 ** in WAL mode. If the log is not already open, open it now. Then
2871 ** return SQLITE_OK and return without populating BtShared.pPage1.
2872 ** The caller detects this and calls this function again. This is
2873 ** required as the version of page 1 currently in the page1 buffer
2874 ** may not be the latest version - there may be a newer one in the log
2875 ** file.
2876 */
drhc9166342012-01-05 23:32:06 +00002877 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002878 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002879 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002880 if( rc!=SQLITE_OK ){
2881 goto page1_init_failed;
2882 }else if( isOpen==0 ){
2883 releasePage(pPage1);
2884 return SQLITE_OK;
2885 }
dan8b5444b2010-04-27 14:37:47 +00002886 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002887 }
dan5cf53532010-05-01 16:40:20 +00002888#endif
dane04dc882010-04-20 18:53:15 +00002889
drh113762a2014-11-19 16:36:25 +00002890 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2891 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2892 **
drhe5ae5732008-06-15 02:51:47 +00002893 ** The original design allowed these amounts to vary, but as of
2894 ** version 3.6.0, we require them to be fixed.
2895 */
2896 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2897 goto page1_init_failed;
2898 }
drh113762a2014-11-19 16:36:25 +00002899 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2900 ** determined by the 2-byte integer located at an offset of 16 bytes from
2901 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002902 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002903 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2904 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002905 if( ((pageSize-1)&pageSize)!=0
2906 || pageSize>SQLITE_MAX_PAGE_SIZE
2907 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002908 ){
drh07d183d2005-05-01 22:52:42 +00002909 goto page1_init_failed;
2910 }
2911 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002912 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2913 ** integer at offset 20 is the number of bytes of space at the end of
2914 ** each page to reserve for extensions.
2915 **
2916 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2917 ** determined by the one-byte unsigned integer found at an offset of 20
2918 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002919 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002920 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002921 /* After reading the first page of the database assuming a page size
2922 ** of BtShared.pageSize, we have discovered that the page-size is
2923 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2924 ** zero and return SQLITE_OK. The caller will call this function
2925 ** again with the correct page-size.
2926 */
2927 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002928 pBt->usableSize = usableSize;
2929 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002930 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002931 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2932 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002933 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002934 }
danecac6702011-02-09 18:19:20 +00002935 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002936 rc = SQLITE_CORRUPT_BKPT;
2937 goto page1_init_failed;
2938 }
drh113762a2014-11-19 16:36:25 +00002939 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2940 ** be less than 480. In other words, if the page size is 512, then the
2941 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002942 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002943 goto page1_init_failed;
2944 }
drh43b18e12010-08-17 19:40:08 +00002945 pBt->pageSize = pageSize;
2946 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002947#ifndef SQLITE_OMIT_AUTOVACUUM
2948 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002949 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002950#endif
drh306dc212001-05-21 13:45:10 +00002951 }
drhb6f41482004-05-14 01:58:11 +00002952
2953 /* maxLocal is the maximum amount of payload to store locally for
2954 ** a cell. Make sure it is small enough so that at least minFanout
2955 ** cells can will fit on one page. We assume a 10-byte page header.
2956 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002957 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002958 ** 4-byte child pointer
2959 ** 9-byte nKey value
2960 ** 4-byte nData value
2961 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002962 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002963 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2964 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002965 */
shaneh1df2db72010-08-18 02:28:48 +00002966 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2967 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2968 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2969 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002970 if( pBt->maxLocal>127 ){
2971 pBt->max1bytePayload = 127;
2972 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002973 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002974 }
drh2e38c322004-09-03 18:38:44 +00002975 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002976 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002977 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002978 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002979
drh72f82862001-05-24 21:06:34 +00002980page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002981 releasePage(pPage1);
2982 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002983 return rc;
drh306dc212001-05-21 13:45:10 +00002984}
2985
drh85ec3b62013-05-14 23:12:06 +00002986#ifndef NDEBUG
2987/*
2988** Return the number of cursors open on pBt. This is for use
2989** in assert() expressions, so it is only compiled if NDEBUG is not
2990** defined.
2991**
2992** Only write cursors are counted if wrOnly is true. If wrOnly is
2993** false then all cursors are counted.
2994**
2995** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002996** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002997** have been tripped into the CURSOR_FAULT state are not counted.
2998*/
2999static int countValidCursors(BtShared *pBt, int wrOnly){
3000 BtCursor *pCur;
3001 int r = 0;
3002 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003003 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3004 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003005 }
3006 return r;
3007}
3008#endif
3009
drh306dc212001-05-21 13:45:10 +00003010/*
drhb8ca3072001-12-05 00:21:20 +00003011** If there are no outstanding cursors and we are not in the middle
3012** of a transaction but there is a read lock on the database, then
3013** this routine unrefs the first page of the database file which
3014** has the effect of releasing the read lock.
3015**
drhb8ca3072001-12-05 00:21:20 +00003016** If there is a transaction in progress, this routine is a no-op.
3017*/
danielk1977aef0bf62005-12-30 16:28:01 +00003018static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003019 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003020 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003021 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003022 MemPage *pPage1 = pBt->pPage1;
3023 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003024 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003025 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003026 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003027 }
3028}
3029
3030/*
drhe39f2f92009-07-23 01:43:59 +00003031** If pBt points to an empty file then convert that empty file
3032** into a new empty database by initializing the first page of
3033** the database.
drh8b2f49b2001-06-08 00:21:52 +00003034*/
danielk1977aef0bf62005-12-30 16:28:01 +00003035static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003036 MemPage *pP1;
3037 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003038 int rc;
drhd677b3d2007-08-20 22:48:41 +00003039
drh1fee73e2007-08-29 04:00:57 +00003040 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003041 if( pBt->nPage>0 ){
3042 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003043 }
drh3aac2dd2004-04-26 14:10:20 +00003044 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003045 assert( pP1!=0 );
3046 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003047 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003048 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003049 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3050 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003051 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3052 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003053 data[18] = 1;
3054 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003055 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3056 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003057 data[21] = 64;
3058 data[22] = 32;
3059 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003060 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003061 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003062 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003063#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003064 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003065 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003066 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003067 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003068#endif
drhdd3cd972010-03-27 17:12:36 +00003069 pBt->nPage = 1;
3070 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003071 return SQLITE_OK;
3072}
3073
3074/*
danb483eba2012-10-13 19:58:11 +00003075** Initialize the first page of the database file (creating a database
3076** consisting of a single page and no schema objects). Return SQLITE_OK
3077** if successful, or an SQLite error code otherwise.
3078*/
3079int sqlite3BtreeNewDb(Btree *p){
3080 int rc;
3081 sqlite3BtreeEnter(p);
3082 p->pBt->nPage = 0;
3083 rc = newDatabase(p->pBt);
3084 sqlite3BtreeLeave(p);
3085 return rc;
3086}
3087
3088/*
danielk1977ee5741e2004-05-31 10:01:34 +00003089** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003090** is started if the second argument is nonzero, otherwise a read-
3091** transaction. If the second argument is 2 or more and exclusive
3092** transaction is started, meaning that no other process is allowed
3093** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003094** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003095** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003096**
danielk1977ee5741e2004-05-31 10:01:34 +00003097** A write-transaction must be started before attempting any
3098** changes to the database. None of the following routines
3099** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003100**
drh23e11ca2004-05-04 17:27:28 +00003101** sqlite3BtreeCreateTable()
3102** sqlite3BtreeCreateIndex()
3103** sqlite3BtreeClearTable()
3104** sqlite3BtreeDropTable()
3105** sqlite3BtreeInsert()
3106** sqlite3BtreeDelete()
3107** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003108**
drhb8ef32c2005-03-14 02:01:49 +00003109** If an initial attempt to acquire the lock fails because of lock contention
3110** and the database was previously unlocked, then invoke the busy handler
3111** if there is one. But if there was previously a read-lock, do not
3112** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3113** returned when there is already a read-lock in order to avoid a deadlock.
3114**
3115** Suppose there are two processes A and B. A has a read lock and B has
3116** a reserved lock. B tries to promote to exclusive but is blocked because
3117** of A's read lock. A tries to promote to reserved but is blocked by B.
3118** One or the other of the two processes must give way or there can be
3119** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3120** when A already has a read lock, we encourage A to give up and let B
3121** proceed.
drha059ad02001-04-17 20:09:11 +00003122*/
danielk1977aef0bf62005-12-30 16:28:01 +00003123int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3124 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003125 int rc = SQLITE_OK;
3126
drhd677b3d2007-08-20 22:48:41 +00003127 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003128 btreeIntegrity(p);
3129
danielk1977ee5741e2004-05-31 10:01:34 +00003130 /* If the btree is already in a write-transaction, or it
3131 ** is already in a read-transaction and a read-transaction
3132 ** is requested, this is a no-op.
3133 */
danielk1977aef0bf62005-12-30 16:28:01 +00003134 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003135 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003136 }
dan56c517a2013-09-26 11:04:33 +00003137 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003138
3139 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003140 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003141 rc = SQLITE_READONLY;
3142 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003143 }
3144
danielk1977404ca072009-03-16 13:19:36 +00003145#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003146 {
3147 sqlite3 *pBlock = 0;
3148 /* If another database handle has already opened a write transaction
3149 ** on this shared-btree structure and a second write transaction is
3150 ** requested, return SQLITE_LOCKED.
3151 */
3152 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3153 || (pBt->btsFlags & BTS_PENDING)!=0
3154 ){
3155 pBlock = pBt->pWriter->db;
3156 }else if( wrflag>1 ){
3157 BtLock *pIter;
3158 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3159 if( pIter->pBtree!=p ){
3160 pBlock = pIter->pBtree->db;
3161 break;
3162 }
danielk1977641b0f42007-12-21 04:47:25 +00003163 }
3164 }
drh5a1fb182016-01-08 19:34:39 +00003165 if( pBlock ){
3166 sqlite3ConnectionBlocked(p->db, pBlock);
3167 rc = SQLITE_LOCKED_SHAREDCACHE;
3168 goto trans_begun;
3169 }
danielk1977404ca072009-03-16 13:19:36 +00003170 }
danielk1977641b0f42007-12-21 04:47:25 +00003171#endif
3172
danielk1977602b4662009-07-02 07:47:33 +00003173 /* Any read-only or read-write transaction implies a read-lock on
3174 ** page 1. So if some other shared-cache client already has a write-lock
3175 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003176 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3177 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003178
drhc9166342012-01-05 23:32:06 +00003179 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3180 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003181 do {
danielk1977295dc102009-04-01 19:07:03 +00003182 /* Call lockBtree() until either pBt->pPage1 is populated or
3183 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3184 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3185 ** reading page 1 it discovers that the page-size of the database
3186 ** file is not pBt->pageSize. In this case lockBtree() will update
3187 ** pBt->pageSize to the page-size of the file on disk.
3188 */
3189 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003190
drhb8ef32c2005-03-14 02:01:49 +00003191 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003192 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003193 rc = SQLITE_READONLY;
3194 }else{
danielk1977d8293352009-04-30 09:10:37 +00003195 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003196 if( rc==SQLITE_OK ){
3197 rc = newDatabase(pBt);
3198 }
drhb8ef32c2005-03-14 02:01:49 +00003199 }
3200 }
3201
danielk1977bd434552009-03-18 10:33:00 +00003202 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003203 unlockBtreeIfUnused(pBt);
3204 }
danf9b76712010-06-01 14:12:45 +00003205 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003206 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003207
3208 if( rc==SQLITE_OK ){
3209 if( p->inTrans==TRANS_NONE ){
3210 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003211#ifndef SQLITE_OMIT_SHARED_CACHE
3212 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003213 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003214 p->lock.eLock = READ_LOCK;
3215 p->lock.pNext = pBt->pLock;
3216 pBt->pLock = &p->lock;
3217 }
3218#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003219 }
3220 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3221 if( p->inTrans>pBt->inTransaction ){
3222 pBt->inTransaction = p->inTrans;
3223 }
danielk1977404ca072009-03-16 13:19:36 +00003224 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003225 MemPage *pPage1 = pBt->pPage1;
3226#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003227 assert( !pBt->pWriter );
3228 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003229 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3230 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003231#endif
dan59257dc2010-08-04 11:34:31 +00003232
3233 /* If the db-size header field is incorrect (as it may be if an old
3234 ** client has been writing the database file), update it now. Doing
3235 ** this sooner rather than later means the database size can safely
3236 ** re-read the database size from page 1 if a savepoint or transaction
3237 ** rollback occurs within the transaction.
3238 */
3239 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3240 rc = sqlite3PagerWrite(pPage1->pDbPage);
3241 if( rc==SQLITE_OK ){
3242 put4byte(&pPage1->aData[28], pBt->nPage);
3243 }
3244 }
3245 }
danielk1977aef0bf62005-12-30 16:28:01 +00003246 }
3247
drhd677b3d2007-08-20 22:48:41 +00003248
3249trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003250 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003251 /* This call makes sure that the pager has the correct number of
3252 ** open savepoints. If the second parameter is greater than 0 and
3253 ** the sub-journal is not already open, then it will be opened here.
3254 */
danielk1977fd7f0452008-12-17 17:30:26 +00003255 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3256 }
danielk197712dd5492008-12-18 15:45:07 +00003257
danielk1977aef0bf62005-12-30 16:28:01 +00003258 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003259 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003260 return rc;
drha059ad02001-04-17 20:09:11 +00003261}
3262
danielk1977687566d2004-11-02 12:56:41 +00003263#ifndef SQLITE_OMIT_AUTOVACUUM
3264
3265/*
3266** Set the pointer-map entries for all children of page pPage. Also, if
3267** pPage contains cells that point to overflow pages, set the pointer
3268** map entries for the overflow pages as well.
3269*/
3270static int setChildPtrmaps(MemPage *pPage){
3271 int i; /* Counter variable */
3272 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003273 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003274 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003275 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003276 Pgno pgno = pPage->pgno;
3277
drh1fee73e2007-08-29 04:00:57 +00003278 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003279 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003280 if( rc!=SQLITE_OK ){
3281 goto set_child_ptrmaps_out;
3282 }
danielk1977687566d2004-11-02 12:56:41 +00003283 nCell = pPage->nCell;
3284
3285 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003286 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003287
drh98add2e2009-07-20 17:11:49 +00003288 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003289
danielk1977687566d2004-11-02 12:56:41 +00003290 if( !pPage->leaf ){
3291 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003292 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003293 }
3294 }
3295
3296 if( !pPage->leaf ){
3297 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003298 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003299 }
3300
3301set_child_ptrmaps_out:
3302 pPage->isInit = isInitOrig;
3303 return rc;
3304}
3305
3306/*
drhf3aed592009-07-08 18:12:49 +00003307** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3308** that it points to iTo. Parameter eType describes the type of pointer to
3309** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003310**
3311** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3312** page of pPage.
3313**
3314** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3315** page pointed to by one of the cells on pPage.
3316**
3317** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3318** overflow page in the list.
3319*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003320static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003321 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003322 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003323 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003324 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003325 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003326 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003327 }
danielk1977f78fc082004-11-02 14:40:32 +00003328 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003329 }else{
drhf49661a2008-12-10 16:45:50 +00003330 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003331 int i;
3332 int nCell;
drha1f75d92015-05-24 10:18:12 +00003333 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003334
drha1f75d92015-05-24 10:18:12 +00003335 rc = btreeInitPage(pPage);
3336 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003337 nCell = pPage->nCell;
3338
danielk1977687566d2004-11-02 12:56:41 +00003339 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003340 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003341 if( eType==PTRMAP_OVERFLOW1 ){
3342 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003343 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003344 if( info.nLocal<info.nPayload
3345 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3346 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003347 ){
drh45ac1c72015-12-18 03:59:16 +00003348 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003349 break;
danielk1977687566d2004-11-02 12:56:41 +00003350 }
3351 }else{
3352 if( get4byte(pCell)==iFrom ){
3353 put4byte(pCell, iTo);
3354 break;
3355 }
3356 }
3357 }
3358
3359 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003360 if( eType!=PTRMAP_BTREE ||
3361 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003362 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003363 }
danielk1977687566d2004-11-02 12:56:41 +00003364 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3365 }
3366
3367 pPage->isInit = isInitOrig;
3368 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003369 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003370}
3371
danielk1977003ba062004-11-04 02:57:33 +00003372
danielk19777701e812005-01-10 12:59:51 +00003373/*
3374** Move the open database page pDbPage to location iFreePage in the
3375** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003376**
3377** The isCommit flag indicates that there is no need to remember that
3378** the journal needs to be sync()ed before database page pDbPage->pgno
3379** can be written to. The caller has already promised not to write to that
3380** page.
danielk19777701e812005-01-10 12:59:51 +00003381*/
danielk1977003ba062004-11-04 02:57:33 +00003382static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003383 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003384 MemPage *pDbPage, /* Open page to move */
3385 u8 eType, /* Pointer map 'type' entry for pDbPage */
3386 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003387 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003388 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003389){
3390 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3391 Pgno iDbPage = pDbPage->pgno;
3392 Pager *pPager = pBt->pPager;
3393 int rc;
3394
danielk1977a0bf2652004-11-04 14:30:04 +00003395 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3396 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003397 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003398 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003399
drh85b623f2007-12-13 21:54:09 +00003400 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003401 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3402 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003403 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003404 if( rc!=SQLITE_OK ){
3405 return rc;
3406 }
3407 pDbPage->pgno = iFreePage;
3408
3409 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3410 ** that point to overflow pages. The pointer map entries for all these
3411 ** pages need to be changed.
3412 **
3413 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3414 ** pointer to a subsequent overflow page. If this is the case, then
3415 ** the pointer map needs to be updated for the subsequent overflow page.
3416 */
danielk1977a0bf2652004-11-04 14:30:04 +00003417 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003418 rc = setChildPtrmaps(pDbPage);
3419 if( rc!=SQLITE_OK ){
3420 return rc;
3421 }
3422 }else{
3423 Pgno nextOvfl = get4byte(pDbPage->aData);
3424 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003425 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003426 if( rc!=SQLITE_OK ){
3427 return rc;
3428 }
3429 }
3430 }
3431
3432 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3433 ** that it points at iFreePage. Also fix the pointer map entry for
3434 ** iPtrPage.
3435 */
danielk1977a0bf2652004-11-04 14:30:04 +00003436 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003437 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003438 if( rc!=SQLITE_OK ){
3439 return rc;
3440 }
danielk19773b8a05f2007-03-19 17:44:26 +00003441 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003442 if( rc!=SQLITE_OK ){
3443 releasePage(pPtrPage);
3444 return rc;
3445 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003446 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003447 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003448 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003449 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003450 }
danielk1977003ba062004-11-04 02:57:33 +00003451 }
danielk1977003ba062004-11-04 02:57:33 +00003452 return rc;
3453}
3454
danielk1977dddbcdc2007-04-26 14:42:34 +00003455/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003456static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003457
3458/*
dan51f0b6d2013-02-22 20:16:34 +00003459** Perform a single step of an incremental-vacuum. If successful, return
3460** SQLITE_OK. If there is no work to do (and therefore no point in
3461** calling this function again), return SQLITE_DONE. Or, if an error
3462** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003463**
peter.d.reid60ec9142014-09-06 16:39:46 +00003464** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003465** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003466**
dan51f0b6d2013-02-22 20:16:34 +00003467** Parameter nFin is the number of pages that this database would contain
3468** were this function called until it returns SQLITE_DONE.
3469**
3470** If the bCommit parameter is non-zero, this function assumes that the
3471** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003472** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003473** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003474*/
dan51f0b6d2013-02-22 20:16:34 +00003475static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003476 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003477 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003478
drh1fee73e2007-08-29 04:00:57 +00003479 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003480 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003481
3482 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003483 u8 eType;
3484 Pgno iPtrPage;
3485
3486 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003487 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003488 return SQLITE_DONE;
3489 }
3490
3491 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3492 if( rc!=SQLITE_OK ){
3493 return rc;
3494 }
3495 if( eType==PTRMAP_ROOTPAGE ){
3496 return SQLITE_CORRUPT_BKPT;
3497 }
3498
3499 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003500 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003501 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003502 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003503 ** truncated to zero after this function returns, so it doesn't
3504 ** matter if it still contains some garbage entries.
3505 */
3506 Pgno iFreePg;
3507 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003508 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003509 if( rc!=SQLITE_OK ){
3510 return rc;
3511 }
3512 assert( iFreePg==iLastPg );
3513 releasePage(pFreePg);
3514 }
3515 } else {
3516 Pgno iFreePg; /* Index of free page to move pLastPg to */
3517 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003518 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3519 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003520
drhb00fc3b2013-08-21 23:42:32 +00003521 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003522 if( rc!=SQLITE_OK ){
3523 return rc;
3524 }
3525
dan51f0b6d2013-02-22 20:16:34 +00003526 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003527 ** is swapped with the first free page pulled off the free list.
3528 **
dan51f0b6d2013-02-22 20:16:34 +00003529 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003530 ** looping until a free-page located within the first nFin pages
3531 ** of the file is found.
3532 */
dan51f0b6d2013-02-22 20:16:34 +00003533 if( bCommit==0 ){
3534 eMode = BTALLOC_LE;
3535 iNear = nFin;
3536 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003537 do {
3538 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003539 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003540 if( rc!=SQLITE_OK ){
3541 releasePage(pLastPg);
3542 return rc;
3543 }
3544 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003545 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003546 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003547
dane1df4e32013-03-05 11:27:04 +00003548 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003549 releasePage(pLastPg);
3550 if( rc!=SQLITE_OK ){
3551 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003552 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003553 }
3554 }
3555
dan51f0b6d2013-02-22 20:16:34 +00003556 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003557 do {
danielk19773460d192008-12-27 15:23:13 +00003558 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003559 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3560 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003561 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003562 }
3563 return SQLITE_OK;
3564}
3565
3566/*
dan51f0b6d2013-02-22 20:16:34 +00003567** The database opened by the first argument is an auto-vacuum database
3568** nOrig pages in size containing nFree free pages. Return the expected
3569** size of the database in pages following an auto-vacuum operation.
3570*/
3571static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3572 int nEntry; /* Number of entries on one ptrmap page */
3573 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3574 Pgno nFin; /* Return value */
3575
3576 nEntry = pBt->usableSize/5;
3577 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3578 nFin = nOrig - nFree - nPtrmap;
3579 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3580 nFin--;
3581 }
3582 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3583 nFin--;
3584 }
dan51f0b6d2013-02-22 20:16:34 +00003585
3586 return nFin;
3587}
3588
3589/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003590** A write-transaction must be opened before calling this function.
3591** It performs a single unit of work towards an incremental vacuum.
3592**
3593** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003594** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003595** SQLITE_OK is returned. Otherwise an SQLite error code.
3596*/
3597int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003598 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003599 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003600
3601 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003602 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3603 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003604 rc = SQLITE_DONE;
3605 }else{
dan51f0b6d2013-02-22 20:16:34 +00003606 Pgno nOrig = btreePagecount(pBt);
3607 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3608 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3609
dan91384712013-02-24 11:50:43 +00003610 if( nOrig<nFin ){
3611 rc = SQLITE_CORRUPT_BKPT;
3612 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003613 rc = saveAllCursors(pBt, 0, 0);
3614 if( rc==SQLITE_OK ){
3615 invalidateAllOverflowCache(pBt);
3616 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3617 }
dan51f0b6d2013-02-22 20:16:34 +00003618 if( rc==SQLITE_OK ){
3619 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3620 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3621 }
3622 }else{
3623 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003624 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003625 }
drhd677b3d2007-08-20 22:48:41 +00003626 sqlite3BtreeLeave(p);
3627 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003628}
3629
3630/*
danielk19773b8a05f2007-03-19 17:44:26 +00003631** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003632** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003633**
3634** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3635** the database file should be truncated to during the commit process.
3636** i.e. the database has been reorganized so that only the first *pnTrunc
3637** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003638*/
danielk19773460d192008-12-27 15:23:13 +00003639static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003641 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003642 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003643
drh1fee73e2007-08-29 04:00:57 +00003644 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003645 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003646 assert(pBt->autoVacuum);
3647 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003648 Pgno nFin; /* Number of pages in database after autovacuuming */
3649 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003650 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003651 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003652
drhb1299152010-03-30 22:58:33 +00003653 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003654 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3655 /* It is not possible to create a database for which the final page
3656 ** is either a pointer-map page or the pending-byte page. If one
3657 ** is encountered, this indicates corruption.
3658 */
danielk19773460d192008-12-27 15:23:13 +00003659 return SQLITE_CORRUPT_BKPT;
3660 }
danielk1977ef165ce2009-04-06 17:50:03 +00003661
danielk19773460d192008-12-27 15:23:13 +00003662 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003663 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003664 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003665 if( nFin<nOrig ){
3666 rc = saveAllCursors(pBt, 0, 0);
3667 }
danielk19773460d192008-12-27 15:23:13 +00003668 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003669 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003670 }
danielk19773460d192008-12-27 15:23:13 +00003671 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003672 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3673 put4byte(&pBt->pPage1->aData[32], 0);
3674 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003675 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003676 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003677 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003678 }
3679 if( rc!=SQLITE_OK ){
3680 sqlite3PagerRollback(pPager);
3681 }
danielk1977687566d2004-11-02 12:56:41 +00003682 }
3683
dan0aed84d2013-03-26 14:16:20 +00003684 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003685 return rc;
3686}
danielk1977dddbcdc2007-04-26 14:42:34 +00003687
danielk1977a50d9aa2009-06-08 14:49:45 +00003688#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3689# define setChildPtrmaps(x) SQLITE_OK
3690#endif
danielk1977687566d2004-11-02 12:56:41 +00003691
3692/*
drh80e35f42007-03-30 14:06:34 +00003693** This routine does the first phase of a two-phase commit. This routine
3694** causes a rollback journal to be created (if it does not already exist)
3695** and populated with enough information so that if a power loss occurs
3696** the database can be restored to its original state by playing back
3697** the journal. Then the contents of the journal are flushed out to
3698** the disk. After the journal is safely on oxide, the changes to the
3699** database are written into the database file and flushed to oxide.
3700** At the end of this call, the rollback journal still exists on the
3701** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003702** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003703** commit process.
3704**
3705** This call is a no-op if no write-transaction is currently active on pBt.
3706**
3707** Otherwise, sync the database file for the btree pBt. zMaster points to
3708** the name of a master journal file that should be written into the
3709** individual journal file, or is NULL, indicating no master journal file
3710** (single database transaction).
3711**
3712** When this is called, the master journal should already have been
3713** created, populated with this journal pointer and synced to disk.
3714**
3715** Once this is routine has returned, the only thing required to commit
3716** the write-transaction for this database file is to delete the journal.
3717*/
3718int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3719 int rc = SQLITE_OK;
3720 if( p->inTrans==TRANS_WRITE ){
3721 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003722 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003723#ifndef SQLITE_OMIT_AUTOVACUUM
3724 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003725 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003726 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003727 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003728 return rc;
3729 }
3730 }
danbc1a3c62013-02-23 16:40:46 +00003731 if( pBt->bDoTruncate ){
3732 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3733 }
drh80e35f42007-03-30 14:06:34 +00003734#endif
drh49b9d332009-01-02 18:10:42 +00003735 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003736 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003737 }
3738 return rc;
3739}
3740
3741/*
danielk197794b30732009-07-02 17:21:57 +00003742** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3743** at the conclusion of a transaction.
3744*/
3745static void btreeEndTransaction(Btree *p){
3746 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003747 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003748 assert( sqlite3BtreeHoldsMutex(p) );
3749
danbc1a3c62013-02-23 16:40:46 +00003750#ifndef SQLITE_OMIT_AUTOVACUUM
3751 pBt->bDoTruncate = 0;
3752#endif
danc0537fe2013-06-28 19:41:43 +00003753 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003754 /* If there are other active statements that belong to this database
3755 ** handle, downgrade to a read-only transaction. The other statements
3756 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003757 downgradeAllSharedCacheTableLocks(p);
3758 p->inTrans = TRANS_READ;
3759 }else{
3760 /* If the handle had any kind of transaction open, decrement the
3761 ** transaction count of the shared btree. If the transaction count
3762 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3763 ** call below will unlock the pager. */
3764 if( p->inTrans!=TRANS_NONE ){
3765 clearAllSharedCacheTableLocks(p);
3766 pBt->nTransaction--;
3767 if( 0==pBt->nTransaction ){
3768 pBt->inTransaction = TRANS_NONE;
3769 }
3770 }
3771
3772 /* Set the current transaction state to TRANS_NONE and unlock the
3773 ** pager if this call closed the only read or write transaction. */
3774 p->inTrans = TRANS_NONE;
3775 unlockBtreeIfUnused(pBt);
3776 }
3777
3778 btreeIntegrity(p);
3779}
3780
3781/*
drh2aa679f2001-06-25 02:11:07 +00003782** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003783**
drh6e345992007-03-30 11:12:08 +00003784** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003785** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3786** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3787** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003788** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003789** routine has to do is delete or truncate or zero the header in the
3790** the rollback journal (which causes the transaction to commit) and
3791** drop locks.
drh6e345992007-03-30 11:12:08 +00003792**
dan60939d02011-03-29 15:40:55 +00003793** Normally, if an error occurs while the pager layer is attempting to
3794** finalize the underlying journal file, this function returns an error and
3795** the upper layer will attempt a rollback. However, if the second argument
3796** is non-zero then this b-tree transaction is part of a multi-file
3797** transaction. In this case, the transaction has already been committed
3798** (by deleting a master journal file) and the caller will ignore this
3799** functions return code. So, even if an error occurs in the pager layer,
3800** reset the b-tree objects internal state to indicate that the write
3801** transaction has been closed. This is quite safe, as the pager will have
3802** transitioned to the error state.
3803**
drh5e00f6c2001-09-13 13:46:56 +00003804** This will release the write lock on the database file. If there
3805** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003806*/
dan60939d02011-03-29 15:40:55 +00003807int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003808
drh075ed302010-10-14 01:17:30 +00003809 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003810 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003811 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003812
3813 /* If the handle has a write-transaction open, commit the shared-btrees
3814 ** transaction and set the shared state to TRANS_READ.
3815 */
3816 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003817 int rc;
drh075ed302010-10-14 01:17:30 +00003818 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003819 assert( pBt->inTransaction==TRANS_WRITE );
3820 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003821 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003822 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003823 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003824 return rc;
3825 }
drh3da9c042014-12-22 18:41:21 +00003826 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003827 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003828 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003829 }
danielk1977aef0bf62005-12-30 16:28:01 +00003830
danielk197794b30732009-07-02 17:21:57 +00003831 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003832 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003833 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003834}
3835
drh80e35f42007-03-30 14:06:34 +00003836/*
3837** Do both phases of a commit.
3838*/
3839int sqlite3BtreeCommit(Btree *p){
3840 int rc;
drhd677b3d2007-08-20 22:48:41 +00003841 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003842 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3843 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003844 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003845 }
drhd677b3d2007-08-20 22:48:41 +00003846 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003847 return rc;
3848}
3849
drhc39e0002004-05-07 23:50:57 +00003850/*
drhfb982642007-08-30 01:19:59 +00003851** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003852** code to errCode for every cursor on any BtShared that pBtree
3853** references. Or if the writeOnly flag is set to 1, then only
3854** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003855**
drh47b7fc72014-11-11 01:33:57 +00003856** Every cursor is a candidate to be tripped, including cursors
3857** that belong to other database connections that happen to be
3858** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003859**
dan80231042014-11-12 14:56:02 +00003860** This routine gets called when a rollback occurs. If the writeOnly
3861** flag is true, then only write-cursors need be tripped - read-only
3862** cursors save their current positions so that they may continue
3863** following the rollback. Or, if writeOnly is false, all cursors are
3864** tripped. In general, writeOnly is false if the transaction being
3865** rolled back modified the database schema. In this case b-tree root
3866** pages may be moved or deleted from the database altogether, making
3867** it unsafe for read cursors to continue.
3868**
3869** If the writeOnly flag is true and an error is encountered while
3870** saving the current position of a read-only cursor, all cursors,
3871** including all read-cursors are tripped.
3872**
3873** SQLITE_OK is returned if successful, or if an error occurs while
3874** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003875*/
dan80231042014-11-12 14:56:02 +00003876int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003877 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003878 int rc = SQLITE_OK;
3879
drh47b7fc72014-11-11 01:33:57 +00003880 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003881 if( pBtree ){
3882 sqlite3BtreeEnter(pBtree);
3883 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3884 int i;
3885 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003886 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003887 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003888 if( rc!=SQLITE_OK ){
3889 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3890 break;
3891 }
3892 }
3893 }else{
3894 sqlite3BtreeClearCursor(p);
3895 p->eState = CURSOR_FAULT;
3896 p->skipNext = errCode;
3897 }
3898 for(i=0; i<=p->iPage; i++){
3899 releasePage(p->apPage[i]);
3900 p->apPage[i] = 0;
3901 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003902 }
dan80231042014-11-12 14:56:02 +00003903 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003904 }
dan80231042014-11-12 14:56:02 +00003905 return rc;
drhfb982642007-08-30 01:19:59 +00003906}
3907
3908/*
drh47b7fc72014-11-11 01:33:57 +00003909** Rollback the transaction in progress.
3910**
3911** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3912** Only write cursors are tripped if writeOnly is true but all cursors are
3913** tripped if writeOnly is false. Any attempt to use
3914** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003915**
3916** This will release the write lock on the database file. If there
3917** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003918*/
drh47b7fc72014-11-11 01:33:57 +00003919int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003920 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003921 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003922 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003923
drh47b7fc72014-11-11 01:33:57 +00003924 assert( writeOnly==1 || writeOnly==0 );
3925 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003926 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003927 if( tripCode==SQLITE_OK ){
3928 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003929 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003930 }else{
3931 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003932 }
drh0f198a72012-02-13 16:43:16 +00003933 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003934 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3935 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3936 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003937 }
danielk1977aef0bf62005-12-30 16:28:01 +00003938 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003939
3940 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003941 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003942
danielk19778d34dfd2006-01-24 16:37:57 +00003943 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003944 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003945 if( rc2!=SQLITE_OK ){
3946 rc = rc2;
3947 }
3948
drh24cd67e2004-05-10 16:18:47 +00003949 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003950 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003951 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003952 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003953 int nPage = get4byte(28+(u8*)pPage1->aData);
3954 testcase( nPage==0 );
3955 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3956 testcase( pBt->nPage!=nPage );
3957 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003958 releasePage(pPage1);
3959 }
drh85ec3b62013-05-14 23:12:06 +00003960 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003961 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003962 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003963 }
danielk1977aef0bf62005-12-30 16:28:01 +00003964
danielk197794b30732009-07-02 17:21:57 +00003965 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003966 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003967 return rc;
3968}
3969
3970/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003971** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003972** back independently of the main transaction. You must start a transaction
3973** before starting a subtransaction. The subtransaction is ended automatically
3974** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003975**
3976** Statement subtransactions are used around individual SQL statements
3977** that are contained within a BEGIN...COMMIT block. If a constraint
3978** error occurs within the statement, the effect of that one statement
3979** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003980**
3981** A statement sub-transaction is implemented as an anonymous savepoint. The
3982** value passed as the second parameter is the total number of savepoints,
3983** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3984** are no active savepoints and no other statement-transactions open,
3985** iStatement is 1. This anonymous savepoint can be released or rolled back
3986** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003987*/
danielk1977bd434552009-03-18 10:33:00 +00003988int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003989 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003990 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003991 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003992 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003993 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003994 assert( iStatement>0 );
3995 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003996 assert( pBt->inTransaction==TRANS_WRITE );
3997 /* At the pager level, a statement transaction is a savepoint with
3998 ** an index greater than all savepoints created explicitly using
3999 ** SQL statements. It is illegal to open, release or rollback any
4000 ** such savepoints while the statement transaction savepoint is active.
4001 */
4002 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004003 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004004 return rc;
4005}
4006
4007/*
danielk1977fd7f0452008-12-17 17:30:26 +00004008** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4009** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004010** savepoint identified by parameter iSavepoint, depending on the value
4011** of op.
4012**
4013** Normally, iSavepoint is greater than or equal to zero. However, if op is
4014** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4015** contents of the entire transaction are rolled back. This is different
4016** from a normal transaction rollback, as no locks are released and the
4017** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004018*/
4019int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4020 int rc = SQLITE_OK;
4021 if( p && p->inTrans==TRANS_WRITE ){
4022 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004023 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4024 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4025 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004026 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004027 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004028 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4029 pBt->nPage = 0;
4030 }
drh9f0bbf92009-01-02 21:08:09 +00004031 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004032 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004033
4034 /* The database size was written into the offset 28 of the header
4035 ** when the transaction started, so we know that the value at offset
4036 ** 28 is nonzero. */
4037 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004038 }
danielk1977fd7f0452008-12-17 17:30:26 +00004039 sqlite3BtreeLeave(p);
4040 }
4041 return rc;
4042}
4043
4044/*
drh8b2f49b2001-06-08 00:21:52 +00004045** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004046** iTable. If a read-only cursor is requested, it is assumed that
4047** the caller already has at least a read-only transaction open
4048** on the database already. If a write-cursor is requested, then
4049** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004050**
drhe807bdb2016-01-21 17:06:33 +00004051** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4052** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4053** can be used for reading or for writing if other conditions for writing
4054** are also met. These are the conditions that must be met in order
4055** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004056**
drhe807bdb2016-01-21 17:06:33 +00004057** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004058**
drhfe5d71d2007-03-19 11:54:10 +00004059** 2: Other database connections that share the same pager cache
4060** but which are not in the READ_UNCOMMITTED state may not have
4061** cursors open with wrFlag==0 on the same table. Otherwise
4062** the changes made by this write cursor would be visible to
4063** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004064**
4065** 3: The database must be writable (not on read-only media)
4066**
4067** 4: There must be an active transaction.
4068**
drhe807bdb2016-01-21 17:06:33 +00004069** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4070** is set. If FORDELETE is set, that is a hint to the implementation that
4071** this cursor will only be used to seek to and delete entries of an index
4072** as part of a larger DELETE statement. The FORDELETE hint is not used by
4073** this implementation. But in a hypothetical alternative storage engine
4074** in which index entries are automatically deleted when corresponding table
4075** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4076** operations on this cursor can be no-ops and all READ operations can
4077** return a null row (2-bytes: 0x01 0x00).
4078**
drh6446c4d2001-12-15 14:22:18 +00004079** No checking is done to make sure that page iTable really is the
4080** root page of a b-tree. If it is not, then the cursor acquired
4081** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004082**
drhf25a5072009-11-18 23:01:25 +00004083** It is assumed that the sqlite3BtreeCursorZero() has been called
4084** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004085*/
drhd677b3d2007-08-20 22:48:41 +00004086static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004087 Btree *p, /* The btree */
4088 int iTable, /* Root page of table to open */
4089 int wrFlag, /* 1 to write. 0 read-only */
4090 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4091 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004092){
danielk19773e8add92009-07-04 17:16:00 +00004093 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004094 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004095
drh1fee73e2007-08-29 04:00:57 +00004096 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004097 assert( wrFlag==0
4098 || wrFlag==BTREE_WRCSR
4099 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4100 );
danielk197796d48e92009-06-29 06:00:37 +00004101
danielk1977602b4662009-07-02 07:47:33 +00004102 /* The following assert statements verify that if this is a sharable
4103 ** b-tree database, the connection is holding the required table locks,
4104 ** and that no other connection has any open cursor that conflicts with
4105 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004106 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004107 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4108
danielk19773e8add92009-07-04 17:16:00 +00004109 /* Assert that the caller has opened the required transaction. */
4110 assert( p->inTrans>TRANS_NONE );
4111 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4112 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004113 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004114
drh3fbb0222014-09-24 19:47:27 +00004115 if( wrFlag ){
4116 allocateTempSpace(pBt);
4117 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
drha0c9a112004-03-10 13:42:37 +00004118 }
drhb1299152010-03-30 22:58:33 +00004119 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004120 assert( wrFlag==0 );
4121 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004122 }
danielk1977aef0bf62005-12-30 16:28:01 +00004123
danielk1977aef0bf62005-12-30 16:28:01 +00004124 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004125 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004126 pCur->pgnoRoot = (Pgno)iTable;
4127 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004128 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004129 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004130 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004131 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004132 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004133 /* If there are two or more cursors on the same btree, then all such
4134 ** cursors *must* have the BTCF_Multiple flag set. */
4135 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4136 if( pX->pgnoRoot==(Pgno)iTable ){
4137 pX->curFlags |= BTCF_Multiple;
4138 pCur->curFlags |= BTCF_Multiple;
4139 }
drha059ad02001-04-17 20:09:11 +00004140 }
drh27fb7462015-06-30 02:47:36 +00004141 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004142 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004143 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004144 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004145}
drhd677b3d2007-08-20 22:48:41 +00004146int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004147 Btree *p, /* The btree */
4148 int iTable, /* Root page of table to open */
4149 int wrFlag, /* 1 to write. 0 read-only */
4150 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4151 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004152){
4153 int rc;
dan08f901b2015-05-25 19:24:36 +00004154 if( iTable<1 ){
4155 rc = SQLITE_CORRUPT_BKPT;
4156 }else{
4157 sqlite3BtreeEnter(p);
4158 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4159 sqlite3BtreeLeave(p);
4160 }
drhd677b3d2007-08-20 22:48:41 +00004161 return rc;
4162}
drh7f751222009-03-17 22:33:00 +00004163
4164/*
4165** Return the size of a BtCursor object in bytes.
4166**
4167** This interfaces is needed so that users of cursors can preallocate
4168** sufficient storage to hold a cursor. The BtCursor object is opaque
4169** to users so they cannot do the sizeof() themselves - they must call
4170** this routine.
4171*/
4172int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004173 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004174}
4175
drh7f751222009-03-17 22:33:00 +00004176/*
drhf25a5072009-11-18 23:01:25 +00004177** Initialize memory that will be converted into a BtCursor object.
4178**
4179** The simple approach here would be to memset() the entire object
4180** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4181** do not need to be zeroed and they are large, so we can save a lot
4182** of run-time by skipping the initialization of those elements.
4183*/
4184void sqlite3BtreeCursorZero(BtCursor *p){
4185 memset(p, 0, offsetof(BtCursor, iPage));
4186}
4187
4188/*
drh5e00f6c2001-09-13 13:46:56 +00004189** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004190** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004191*/
drh3aac2dd2004-04-26 14:10:20 +00004192int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004193 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004194 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004195 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004196 BtShared *pBt = pCur->pBt;
4197 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004198 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004199 assert( pBt->pCursor!=0 );
4200 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004201 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004202 }else{
4203 BtCursor *pPrev = pBt->pCursor;
4204 do{
4205 if( pPrev->pNext==pCur ){
4206 pPrev->pNext = pCur->pNext;
4207 break;
4208 }
4209 pPrev = pPrev->pNext;
4210 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004211 }
danielk197771d5d2c2008-09-29 11:49:47 +00004212 for(i=0; i<=pCur->iPage; i++){
4213 releasePage(pCur->apPage[i]);
4214 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004215 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004216 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004217 /* sqlite3_free(pCur); */
4218 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004219 }
drh8c42ca92001-06-22 19:15:00 +00004220 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004221}
4222
drh5e2f8b92001-05-28 00:41:15 +00004223/*
drh86057612007-06-26 01:04:48 +00004224** Make sure the BtCursor* given in the argument has a valid
4225** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004226** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004227**
4228** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004229** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004230*/
drh9188b382004-05-14 21:12:22 +00004231#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004232 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004233 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004234 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004235 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004236 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004237 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004238 }
danielk19771cc5ed82007-05-16 17:28:43 +00004239#else
4240 #define assertCellInfo(x)
4241#endif
drhc5b41ac2015-06-17 02:11:46 +00004242static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4243 if( pCur->info.nSize==0 ){
4244 int iPage = pCur->iPage;
4245 pCur->curFlags |= BTCF_ValidNKey;
4246 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4247 }else{
4248 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004249 }
drhc5b41ac2015-06-17 02:11:46 +00004250}
drh9188b382004-05-14 21:12:22 +00004251
drhea8ffdf2009-07-22 00:35:23 +00004252#ifndef NDEBUG /* The next routine used only within assert() statements */
4253/*
4254** Return true if the given BtCursor is valid. A valid cursor is one
4255** that is currently pointing to a row in a (non-empty) table.
4256** This is a verification routine is used only within assert() statements.
4257*/
4258int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4259 return pCur && pCur->eState==CURSOR_VALID;
4260}
4261#endif /* NDEBUG */
4262
drh9188b382004-05-14 21:12:22 +00004263/*
drh3aac2dd2004-04-26 14:10:20 +00004264** Set *pSize to the size of the buffer needed to hold the value of
4265** the key for the current entry. If the cursor is not pointing
4266** to a valid entry, *pSize is set to 0.
4267**
drh4b70f112004-05-02 21:12:19 +00004268** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004269** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004270**
4271** The caller must position the cursor prior to invoking this routine.
4272**
4273** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004274*/
drh4a1c3802004-05-12 15:15:47 +00004275int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004276 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004277 assert( pCur->eState==CURSOR_VALID );
4278 getCellInfo(pCur);
4279 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004280 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004281}
drh2af926b2001-05-15 00:39:25 +00004282
drh72f82862001-05-24 21:06:34 +00004283/*
drh0e1c19e2004-05-11 00:58:56 +00004284** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004285** cursor currently points to.
4286**
4287** The caller must guarantee that the cursor is pointing to a non-NULL
4288** valid entry. In other words, the calling procedure must guarantee
4289** that the cursor has Cursor.eState==CURSOR_VALID.
4290**
4291** Failure is not possible. This function always returns SQLITE_OK.
4292** It might just as well be a procedure (returning void) but we continue
4293** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004294*/
4295int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
dan7a2347e2016-01-07 16:43:54 +00004296 assert( cursorOwnsBtShared(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004297 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004298 assert( pCur->iPage>=0 );
4299 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004300 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004301 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004302 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004303 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004304}
4305
4306/*
danielk1977d04417962007-05-02 13:16:30 +00004307** Given the page number of an overflow page in the database (parameter
4308** ovfl), this function finds the page number of the next page in the
4309** linked list of overflow pages. If possible, it uses the auto-vacuum
4310** pointer-map data instead of reading the content of page ovfl to do so.
4311**
4312** If an error occurs an SQLite error code is returned. Otherwise:
4313**
danielk1977bea2a942009-01-20 17:06:27 +00004314** The page number of the next overflow page in the linked list is
4315** written to *pPgnoNext. If page ovfl is the last page in its linked
4316** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004317**
danielk1977bea2a942009-01-20 17:06:27 +00004318** If ppPage is not NULL, and a reference to the MemPage object corresponding
4319** to page number pOvfl was obtained, then *ppPage is set to point to that
4320** reference. It is the responsibility of the caller to call releasePage()
4321** on *ppPage to free the reference. In no reference was obtained (because
4322** the pointer-map was used to obtain the value for *pPgnoNext), then
4323** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004324*/
4325static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004326 BtShared *pBt, /* The database file */
4327 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004328 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004329 Pgno *pPgnoNext /* OUT: Next overflow page number */
4330){
4331 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004332 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004333 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004334
drh1fee73e2007-08-29 04:00:57 +00004335 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004336 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004337
4338#ifndef SQLITE_OMIT_AUTOVACUUM
4339 /* Try to find the next page in the overflow list using the
4340 ** autovacuum pointer-map pages. Guess that the next page in
4341 ** the overflow list is page number (ovfl+1). If that guess turns
4342 ** out to be wrong, fall back to loading the data of page
4343 ** number ovfl to determine the next page number.
4344 */
4345 if( pBt->autoVacuum ){
4346 Pgno pgno;
4347 Pgno iGuess = ovfl+1;
4348 u8 eType;
4349
4350 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4351 iGuess++;
4352 }
4353
drhb1299152010-03-30 22:58:33 +00004354 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004355 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004356 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004357 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004358 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004359 }
4360 }
4361 }
4362#endif
4363
danielk1977d8a3f3d2009-07-11 11:45:23 +00004364 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004365 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004366 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004367 assert( rc==SQLITE_OK || pPage==0 );
4368 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004369 next = get4byte(pPage->aData);
4370 }
danielk1977443c0592009-01-16 15:21:05 +00004371 }
danielk197745d68822009-01-16 16:23:38 +00004372
danielk1977bea2a942009-01-20 17:06:27 +00004373 *pPgnoNext = next;
4374 if( ppPage ){
4375 *ppPage = pPage;
4376 }else{
4377 releasePage(pPage);
4378 }
4379 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004380}
4381
danielk1977da107192007-05-04 08:32:13 +00004382/*
4383** Copy data from a buffer to a page, or from a page to a buffer.
4384**
4385** pPayload is a pointer to data stored on database page pDbPage.
4386** If argument eOp is false, then nByte bytes of data are copied
4387** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4388** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4389** of data are copied from the buffer pBuf to pPayload.
4390**
4391** SQLITE_OK is returned on success, otherwise an error code.
4392*/
4393static int copyPayload(
4394 void *pPayload, /* Pointer to page data */
4395 void *pBuf, /* Pointer to buffer */
4396 int nByte, /* Number of bytes to copy */
4397 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4398 DbPage *pDbPage /* Page containing pPayload */
4399){
4400 if( eOp ){
4401 /* Copy data from buffer to page (a write operation) */
4402 int rc = sqlite3PagerWrite(pDbPage);
4403 if( rc!=SQLITE_OK ){
4404 return rc;
4405 }
4406 memcpy(pPayload, pBuf, nByte);
4407 }else{
4408 /* Copy data from page to buffer (a read operation) */
4409 memcpy(pBuf, pPayload, nByte);
4410 }
4411 return SQLITE_OK;
4412}
danielk1977d04417962007-05-02 13:16:30 +00004413
4414/*
danielk19779f8d6402007-05-02 17:48:45 +00004415** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004416** for the entry that the pCur cursor is pointing to. The eOp
4417** argument is interpreted as follows:
4418**
4419** 0: The operation is a read. Populate the overflow cache.
4420** 1: The operation is a write. Populate the overflow cache.
4421** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004422**
4423** A total of "amt" bytes are read or written beginning at "offset".
4424** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004425**
drh3bcdfd22009-07-12 02:32:21 +00004426** The content being read or written might appear on the main page
4427** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004428**
dan5a500af2014-03-11 20:33:04 +00004429** If the current cursor entry uses one or more overflow pages and the
4430** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004431** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004432** Subsequent calls use this cache to make seeking to the supplied offset
4433** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004434**
4435** Once an overflow page-list cache has been allocated, it may be
4436** invalidated if some other cursor writes to the same table, or if
4437** the cursor is moved to a different row. Additionally, in auto-vacuum
4438** mode, the following events may invalidate an overflow page-list cache.
4439**
4440** * An incremental vacuum,
4441** * A commit in auto_vacuum="full" mode,
4442** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004443*/
danielk19779f8d6402007-05-02 17:48:45 +00004444static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004445 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004446 u32 offset, /* Begin reading this far into payload */
4447 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004448 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004449 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004450){
4451 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004452 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004453 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004454 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004455 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004456#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004457 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004458 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004459#endif
drh3aac2dd2004-04-26 14:10:20 +00004460
danielk1977da107192007-05-04 08:32:13 +00004461 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004462 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004463 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004464 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004465 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004466
drh86057612007-06-26 01:04:48 +00004467 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004468 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004469#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004470 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004471#endif
drhab1cc582014-09-23 21:25:19 +00004472 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004473
drhab1cc582014-09-23 21:25:19 +00004474 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004475 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004476 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004477 }
danielk1977da107192007-05-04 08:32:13 +00004478
4479 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004480 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004481 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004482 if( a+offset>pCur->info.nLocal ){
4483 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004484 }
dan5a500af2014-03-11 20:33:04 +00004485 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004486 offset = 0;
drha34b6762004-05-07 13:30:42 +00004487 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004488 amt -= a;
drhdd793422001-06-28 01:54:48 +00004489 }else{
drhfa1a98a2004-05-14 19:08:17 +00004490 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004491 }
danielk1977da107192007-05-04 08:32:13 +00004492
dan85753662014-12-11 16:38:18 +00004493
danielk1977da107192007-05-04 08:32:13 +00004494 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004495 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004496 Pgno nextPage;
4497
drhfa1a98a2004-05-14 19:08:17 +00004498 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004499
drha38c9512014-04-01 01:24:34 +00004500 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4501 ** Except, do not allocate aOverflow[] for eOp==2.
4502 **
4503 ** The aOverflow[] array is sized at one entry for each overflow page
4504 ** in the overflow chain. The page number of the first overflow page is
4505 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4506 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004507 */
drh036dbec2014-03-11 23:40:44 +00004508 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004509 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004510 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004511 Pgno *aNew = (Pgno*)sqlite3Realloc(
4512 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004513 );
4514 if( aNew==0 ){
4515 rc = SQLITE_NOMEM;
4516 }else{
4517 pCur->nOvflAlloc = nOvfl*2;
4518 pCur->aOverflow = aNew;
4519 }
4520 }
4521 if( rc==SQLITE_OK ){
4522 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004523 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004524 }
4525 }
danielk1977da107192007-05-04 08:32:13 +00004526
4527 /* If the overflow page-list cache has been allocated and the
4528 ** entry for the first required overflow page is valid, skip
4529 ** directly to it.
4530 */
drh3f387402014-09-24 01:23:00 +00004531 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4532 && pCur->aOverflow[offset/ovflSize]
4533 ){
danielk19772dec9702007-05-02 16:48:37 +00004534 iIdx = (offset/ovflSize);
4535 nextPage = pCur->aOverflow[iIdx];
4536 offset = (offset%ovflSize);
4537 }
danielk1977da107192007-05-04 08:32:13 +00004538
4539 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4540
danielk1977da107192007-05-04 08:32:13 +00004541 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004542 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004543 assert( pCur->aOverflow[iIdx]==0
4544 || pCur->aOverflow[iIdx]==nextPage
4545 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004546 pCur->aOverflow[iIdx] = nextPage;
4547 }
danielk1977da107192007-05-04 08:32:13 +00004548
danielk1977d04417962007-05-02 13:16:30 +00004549 if( offset>=ovflSize ){
4550 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004551 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004552 ** data is not required. So first try to lookup the overflow
4553 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004554 ** function.
drha38c9512014-04-01 01:24:34 +00004555 **
4556 ** Note that the aOverflow[] array must be allocated because eOp!=2
4557 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004558 */
drha38c9512014-04-01 01:24:34 +00004559 assert( eOp!=2 );
4560 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004561 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004562 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004563 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004564 }else{
danielk1977da107192007-05-04 08:32:13 +00004565 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004566 }
danielk1977da107192007-05-04 08:32:13 +00004567 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004568 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004569 /* Need to read this page properly. It contains some of the
4570 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004571 */
danf4ba1092011-10-08 14:57:07 +00004572#ifdef SQLITE_DIRECT_OVERFLOW_READ
4573 sqlite3_file *fd;
4574#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004575 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004576 if( a + offset > ovflSize ){
4577 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004578 }
danf4ba1092011-10-08 14:57:07 +00004579
4580#ifdef SQLITE_DIRECT_OVERFLOW_READ
4581 /* If all the following are true:
4582 **
4583 ** 1) this is a read operation, and
4584 ** 2) data is required from the start of this overflow page, and
4585 ** 3) the database is file-backed, and
4586 ** 4) there is no open write-transaction, and
4587 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004588 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004589 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004590 **
4591 ** then data can be read directly from the database file into the
4592 ** output buffer, bypassing the page-cache altogether. This speeds
4593 ** up loading large records that span many overflow pages.
4594 */
dan5a500af2014-03-11 20:33:04 +00004595 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004596 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004597 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004598 && pBt->inTransaction==TRANS_READ /* (4) */
4599 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4600 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004601 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004602 ){
4603 u8 aSave[4];
4604 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004605 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004606 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004607 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004608 nextPage = get4byte(aWrite);
4609 memcpy(aWrite, aSave, 4);
4610 }else
4611#endif
4612
4613 {
4614 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004615 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004616 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004617 );
danf4ba1092011-10-08 14:57:07 +00004618 if( rc==SQLITE_OK ){
4619 aPayload = sqlite3PagerGetData(pDbPage);
4620 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004621 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004622 sqlite3PagerUnref(pDbPage);
4623 offset = 0;
4624 }
4625 }
4626 amt -= a;
4627 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004628 }
drh2af926b2001-05-15 00:39:25 +00004629 }
drh2af926b2001-05-15 00:39:25 +00004630 }
danielk1977cfe9a692004-06-16 12:00:29 +00004631
danielk1977da107192007-05-04 08:32:13 +00004632 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004633 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004634 }
danielk1977da107192007-05-04 08:32:13 +00004635 return rc;
drh2af926b2001-05-15 00:39:25 +00004636}
4637
drh72f82862001-05-24 21:06:34 +00004638/*
drh3aac2dd2004-04-26 14:10:20 +00004639** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004640** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004641** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004642**
drh5d1a8722009-07-22 18:07:40 +00004643** The caller must ensure that pCur is pointing to a valid row
4644** in the table.
4645**
drh3aac2dd2004-04-26 14:10:20 +00004646** Return SQLITE_OK on success or an error code if anything goes
4647** wrong. An error is returned if "offset+amt" is larger than
4648** the available payload.
drh72f82862001-05-24 21:06:34 +00004649*/
drha34b6762004-05-07 13:30:42 +00004650int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004651 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004652 assert( pCur->eState==CURSOR_VALID );
4653 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4654 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4655 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004656}
4657
4658/*
drh3aac2dd2004-04-26 14:10:20 +00004659** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004660** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004661** begins at "offset".
4662**
4663** Return SQLITE_OK on success or an error code if anything goes
4664** wrong. An error is returned if "offset+amt" is larger than
4665** the available payload.
drh72f82862001-05-24 21:06:34 +00004666*/
drh3aac2dd2004-04-26 14:10:20 +00004667int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004668 int rc;
4669
danielk19773588ceb2008-06-10 17:30:26 +00004670#ifndef SQLITE_OMIT_INCRBLOB
4671 if ( pCur->eState==CURSOR_INVALID ){
4672 return SQLITE_ABORT;
4673 }
4674#endif
4675
dan7a2347e2016-01-07 16:43:54 +00004676 assert( cursorOwnsBtShared(pCur) );
drha3460582008-07-11 21:02:53 +00004677 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004678 if( rc==SQLITE_OK ){
4679 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004680 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4681 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004682 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004683 }
4684 return rc;
drh2af926b2001-05-15 00:39:25 +00004685}
4686
drh72f82862001-05-24 21:06:34 +00004687/*
drh0e1c19e2004-05-11 00:58:56 +00004688** Return a pointer to payload information from the entry that the
4689** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004690** the key if index btrees (pPage->intKey==0) and is the data for
4691** table btrees (pPage->intKey==1). The number of bytes of available
4692** key/data is written into *pAmt. If *pAmt==0, then the value
4693** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004694**
4695** This routine is an optimization. It is common for the entire key
4696** and data to fit on the local page and for there to be no overflow
4697** pages. When that is so, this routine can be used to access the
4698** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004699** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004700** the key/data and copy it into a preallocated buffer.
4701**
4702** The pointer returned by this routine looks directly into the cached
4703** page of the database. The data might change or move the next time
4704** any btree routine is called.
4705*/
drh2a8d2262013-12-09 20:43:22 +00004706static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004707 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004708 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004709){
drhf3392e32015-04-15 17:26:55 +00004710 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004711 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004712 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004713 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004714 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004715 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004716 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004717 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4718 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4719 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4720 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4721 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004722 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004723}
4724
4725
4726/*
drhe51c44f2004-05-30 20:46:09 +00004727** For the entry that cursor pCur is point to, return as
4728** many bytes of the key or data as are available on the local
4729** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004730**
4731** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004732** or be destroyed on the next call to any Btree routine,
4733** including calls from other threads against the same cache.
4734** Hence, a mutex on the BtShared should be held prior to calling
4735** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004736**
4737** These routines is used to get quick access to key and data
4738** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004739*/
drh501932c2013-11-21 21:59:53 +00004740const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004741 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004742}
drh501932c2013-11-21 21:59:53 +00004743const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004744 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004745}
4746
4747
4748/*
drh8178a752003-01-05 21:41:40 +00004749** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004750** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004751**
4752** This function returns SQLITE_CORRUPT if the page-header flags field of
4753** the new child page does not match the flags field of the parent (i.e.
4754** if an intkey page appears to be the parent of a non-intkey page, or
4755** vice-versa).
drh72f82862001-05-24 21:06:34 +00004756*/
drh3aac2dd2004-04-26 14:10:20 +00004757static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004758 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004759
dan7a2347e2016-01-07 16:43:54 +00004760 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004761 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004762 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004763 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004764 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4765 return SQLITE_CORRUPT_BKPT;
4766 }
drh271efa52004-05-30 19:19:05 +00004767 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004768 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004769 pCur->iPage++;
4770 pCur->aiIdx[pCur->iPage] = 0;
4771 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4772 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004773}
4774
drhcbd33492015-03-25 13:06:54 +00004775#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004776/*
4777** Page pParent is an internal (non-leaf) tree page. This function
4778** asserts that page number iChild is the left-child if the iIdx'th
4779** cell in page pParent. Or, if iIdx is equal to the total number of
4780** cells in pParent, that page number iChild is the right-child of
4781** the page.
4782*/
4783static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004784 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4785 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004786 assert( iIdx<=pParent->nCell );
4787 if( iIdx==pParent->nCell ){
4788 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4789 }else{
4790 assert( get4byte(findCell(pParent, iIdx))==iChild );
4791 }
4792}
4793#else
4794# define assertParentIndex(x,y,z)
4795#endif
4796
drh72f82862001-05-24 21:06:34 +00004797/*
drh5e2f8b92001-05-28 00:41:15 +00004798** Move the cursor up to the parent page.
4799**
4800** pCur->idx is set to the cell index that contains the pointer
4801** to the page we are coming from. If we are coming from the
4802** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004803** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004804*/
danielk197730548662009-07-09 05:07:37 +00004805static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004806 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004807 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004808 assert( pCur->iPage>0 );
4809 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004810 assertParentIndex(
4811 pCur->apPage[pCur->iPage-1],
4812 pCur->aiIdx[pCur->iPage-1],
4813 pCur->apPage[pCur->iPage]->pgno
4814 );
dan6c2688c2012-01-12 15:05:03 +00004815 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004816 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004817 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004818 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004819}
4820
4821/*
danielk19778f880a82009-07-13 09:41:45 +00004822** Move the cursor to point to the root page of its b-tree structure.
4823**
4824** If the table has a virtual root page, then the cursor is moved to point
4825** to the virtual root page instead of the actual root page. A table has a
4826** virtual root page when the actual root page contains no cells and a
4827** single child page. This can only happen with the table rooted at page 1.
4828**
4829** If the b-tree structure is empty, the cursor state is set to
4830** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4831** cell located on the root (or virtual root) page and the cursor state
4832** is set to CURSOR_VALID.
4833**
4834** If this function returns successfully, it may be assumed that the
4835** page-header flags indicate that the [virtual] root-page is the expected
4836** kind of b-tree page (i.e. if when opening the cursor the caller did not
4837** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4838** indicating a table b-tree, or if the caller did specify a KeyInfo
4839** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4840** b-tree).
drh72f82862001-05-24 21:06:34 +00004841*/
drh5e2f8b92001-05-28 00:41:15 +00004842static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004843 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004844 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004845
dan7a2347e2016-01-07 16:43:54 +00004846 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004847 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4848 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4849 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4850 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4851 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004852 assert( pCur->skipNext!=SQLITE_OK );
4853 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004854 }
danielk1977be51a652008-10-08 17:58:48 +00004855 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004856 }
danielk197771d5d2c2008-09-29 11:49:47 +00004857
4858 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004859 while( pCur->iPage ){
4860 assert( pCur->apPage[pCur->iPage]!=0 );
4861 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4862 }
dana205a482011-08-27 18:48:57 +00004863 }else if( pCur->pgnoRoot==0 ){
4864 pCur->eState = CURSOR_INVALID;
4865 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004866 }else{
drh28f58dd2015-06-27 19:45:03 +00004867 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004868 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004869 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004870 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004871 pCur->eState = CURSOR_INVALID;
4872 return rc;
4873 }
danielk1977172114a2009-07-07 15:47:12 +00004874 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004875 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004876 }
danielk197771d5d2c2008-09-29 11:49:47 +00004877 pRoot = pCur->apPage[0];
4878 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004879
4880 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4881 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4882 ** NULL, the caller expects a table b-tree. If this is not the case,
4883 ** return an SQLITE_CORRUPT error.
4884 **
4885 ** Earlier versions of SQLite assumed that this test could not fail
4886 ** if the root page was already loaded when this function was called (i.e.
4887 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4888 ** in such a way that page pRoot is linked into a second b-tree table
4889 ** (or the freelist). */
4890 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4891 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4892 return SQLITE_CORRUPT_BKPT;
4893 }
danielk19778f880a82009-07-13 09:41:45 +00004894
danielk197771d5d2c2008-09-29 11:49:47 +00004895 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004896 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004897 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004898
drh4e8fe3f2013-12-06 23:25:27 +00004899 if( pRoot->nCell>0 ){
4900 pCur->eState = CURSOR_VALID;
4901 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004902 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004903 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004904 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004905 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004906 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004907 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004908 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004909 }
4910 return rc;
drh72f82862001-05-24 21:06:34 +00004911}
drh2af926b2001-05-15 00:39:25 +00004912
drh5e2f8b92001-05-28 00:41:15 +00004913/*
4914** Move the cursor down to the left-most leaf entry beneath the
4915** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004916**
4917** The left-most leaf is the one with the smallest key - the first
4918** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004919*/
4920static int moveToLeftmost(BtCursor *pCur){
4921 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004922 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004923 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004924
dan7a2347e2016-01-07 16:43:54 +00004925 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004926 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004927 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4928 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4929 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004930 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004931 }
drhd677b3d2007-08-20 22:48:41 +00004932 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004933}
4934
drh2dcc9aa2002-12-04 13:40:25 +00004935/*
4936** Move the cursor down to the right-most leaf entry beneath the
4937** page to which it is currently pointing. Notice the difference
4938** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4939** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4940** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004941**
4942** The right-most entry is the one with the largest key - the last
4943** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004944*/
4945static int moveToRightmost(BtCursor *pCur){
4946 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004947 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004948 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004949
dan7a2347e2016-01-07 16:43:54 +00004950 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004951 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004952 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004953 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004954 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004955 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004956 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004957 }
drhee6438d2014-09-01 13:29:32 +00004958 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4959 assert( pCur->info.nSize==0 );
4960 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4961 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004962}
4963
drh5e00f6c2001-09-13 13:46:56 +00004964/* Move the cursor to the first entry in the table. Return SQLITE_OK
4965** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004966** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004967*/
drh3aac2dd2004-04-26 14:10:20 +00004968int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004969 int rc;
drhd677b3d2007-08-20 22:48:41 +00004970
dan7a2347e2016-01-07 16:43:54 +00004971 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004972 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004973 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004974 if( rc==SQLITE_OK ){
4975 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004976 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004977 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004978 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004979 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004980 *pRes = 0;
4981 rc = moveToLeftmost(pCur);
4982 }
drh5e00f6c2001-09-13 13:46:56 +00004983 }
drh5e00f6c2001-09-13 13:46:56 +00004984 return rc;
4985}
drh5e2f8b92001-05-28 00:41:15 +00004986
drh9562b552002-02-19 15:00:07 +00004987/* Move the cursor to the last entry in the table. Return SQLITE_OK
4988** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004989** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004990*/
drh3aac2dd2004-04-26 14:10:20 +00004991int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004992 int rc;
drhd677b3d2007-08-20 22:48:41 +00004993
dan7a2347e2016-01-07 16:43:54 +00004994 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004995 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004996
4997 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004998 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004999#ifdef SQLITE_DEBUG
5000 /* This block serves to assert() that the cursor really does point
5001 ** to the last entry in the b-tree. */
5002 int ii;
5003 for(ii=0; ii<pCur->iPage; ii++){
5004 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5005 }
5006 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5007 assert( pCur->apPage[pCur->iPage]->leaf );
5008#endif
5009 return SQLITE_OK;
5010 }
5011
drh9562b552002-02-19 15:00:07 +00005012 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005013 if( rc==SQLITE_OK ){
5014 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005015 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005016 *pRes = 1;
5017 }else{
5018 assert( pCur->eState==CURSOR_VALID );
5019 *pRes = 0;
5020 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005021 if( rc==SQLITE_OK ){
5022 pCur->curFlags |= BTCF_AtLast;
5023 }else{
5024 pCur->curFlags &= ~BTCF_AtLast;
5025 }
5026
drhd677b3d2007-08-20 22:48:41 +00005027 }
drh9562b552002-02-19 15:00:07 +00005028 }
drh9562b552002-02-19 15:00:07 +00005029 return rc;
5030}
5031
drhe14006d2008-03-25 17:23:32 +00005032/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005033** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005034**
drhe63d9992008-08-13 19:11:48 +00005035** For INTKEY tables, the intKey parameter is used. pIdxKey
5036** must be NULL. For index tables, pIdxKey is used and intKey
5037** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005038**
drh5e2f8b92001-05-28 00:41:15 +00005039** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005040** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005041** were present. The cursor might point to an entry that comes
5042** before or after the key.
5043**
drh64022502009-01-09 14:11:04 +00005044** An integer is written into *pRes which is the result of
5045** comparing the key with the entry to which the cursor is
5046** pointing. The meaning of the integer written into
5047** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005048**
5049** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005050** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005051** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005052**
5053** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005054** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005055**
5056** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005057** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005058**
drhb1d607d2015-11-05 22:30:54 +00005059** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5060** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005061*/
drhe63d9992008-08-13 19:11:48 +00005062int sqlite3BtreeMovetoUnpacked(
5063 BtCursor *pCur, /* The cursor to be moved */
5064 UnpackedRecord *pIdxKey, /* Unpacked index key */
5065 i64 intKey, /* The table key */
5066 int biasRight, /* If true, bias the search to the high end */
5067 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005068){
drh72f82862001-05-24 21:06:34 +00005069 int rc;
dan3b9330f2014-02-27 20:44:18 +00005070 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005071
dan7a2347e2016-01-07 16:43:54 +00005072 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005073 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005074 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005075 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005076
5077 /* If the cursor is already positioned at the point we are trying
5078 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005079 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005080 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005081 ){
drhe63d9992008-08-13 19:11:48 +00005082 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005083 *pRes = 0;
5084 return SQLITE_OK;
5085 }
drh036dbec2014-03-11 23:40:44 +00005086 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005087 *pRes = -1;
5088 return SQLITE_OK;
5089 }
5090 }
5091
dan1fed5da2014-02-25 21:01:25 +00005092 if( pIdxKey ){
5093 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005094 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005095 assert( pIdxKey->default_rc==1
5096 || pIdxKey->default_rc==0
5097 || pIdxKey->default_rc==-1
5098 );
drh13a747e2014-03-03 21:46:55 +00005099 }else{
drhb6e8fd12014-03-06 01:56:33 +00005100 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005101 }
5102
drh5e2f8b92001-05-28 00:41:15 +00005103 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005104 if( rc ){
5105 return rc;
5106 }
dana205a482011-08-27 18:48:57 +00005107 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5108 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5109 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005110 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005111 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005112 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005113 return SQLITE_OK;
5114 }
drhc75d8862015-06-27 23:55:20 +00005115 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5116 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005117 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005118 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005119 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005120 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005121 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005122
5123 /* pPage->nCell must be greater than zero. If this is the root-page
5124 ** the cursor would have been INVALID above and this for(;;) loop
5125 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005126 ** would have already detected db corruption. Similarly, pPage must
5127 ** be the right kind (index or table) of b-tree page. Otherwise
5128 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005129 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005130 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005131 lwr = 0;
5132 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005133 assert( biasRight==0 || biasRight==1 );
5134 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005135 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005136 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005137 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005138 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005139 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005140 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005141 while( 0x80 <= *(pCell++) ){
5142 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5143 }
drhd172f862006-01-12 15:01:15 +00005144 }
drha2c20e42008-03-29 16:01:04 +00005145 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005146 if( nCellKey<intKey ){
5147 lwr = idx+1;
5148 if( lwr>upr ){ c = -1; break; }
5149 }else if( nCellKey>intKey ){
5150 upr = idx-1;
5151 if( lwr>upr ){ c = +1; break; }
5152 }else{
5153 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005154 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005155 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005156 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005157 if( !pPage->leaf ){
5158 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005159 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005160 }else{
5161 *pRes = 0;
5162 rc = SQLITE_OK;
5163 goto moveto_finish;
5164 }
drhd793f442013-11-25 14:10:15 +00005165 }
drhebf10b12013-11-25 17:38:26 +00005166 assert( lwr+upr>=0 );
5167 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005168 }
5169 }else{
5170 for(;;){
drhc6827502015-05-28 15:14:32 +00005171 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005172 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005173
drhb2eced52010-08-12 02:41:12 +00005174 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005175 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005176 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005177 ** varint. This information is used to attempt to avoid parsing
5178 ** the entire cell by checking for the cases where the record is
5179 ** stored entirely within the b-tree page by inspecting the first
5180 ** 2 bytes of the cell.
5181 */
drhec3e6b12013-11-25 02:38:55 +00005182 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005183 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005184 /* This branch runs if the record-size field of the cell is a
5185 ** single byte varint and the record fits entirely on the main
5186 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005187 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005188 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005189 }else if( !(pCell[1] & 0x80)
5190 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5191 ){
5192 /* The record-size field is a 2 byte varint and the record
5193 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005194 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005195 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005196 }else{
danielk197711c327a2009-05-04 19:01:26 +00005197 /* The record flows over onto one or more overflow pages. In
5198 ** this case the whole cell needs to be parsed, a buffer allocated
5199 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005200 ** buffer before VdbeRecordCompare() can be called.
5201 **
5202 ** If the record is corrupt, the xRecordCompare routine may read
5203 ** up to two varints past the end of the buffer. An extra 18
5204 ** bytes of padding is allocated at the end of the buffer in
5205 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005206 void *pCellKey;
5207 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005208 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005209 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005210 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5211 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5212 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5213 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005214 if( nCell<2 ){
5215 rc = SQLITE_CORRUPT_BKPT;
5216 goto moveto_finish;
5217 }
5218 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005219 if( pCellKey==0 ){
5220 rc = SQLITE_NOMEM;
5221 goto moveto_finish;
5222 }
drhd793f442013-11-25 14:10:15 +00005223 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005224 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005225 if( rc ){
5226 sqlite3_free(pCellKey);
5227 goto moveto_finish;
5228 }
drh75179de2014-09-16 14:37:35 +00005229 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005230 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005231 }
dan38fdead2014-04-01 10:19:02 +00005232 assert(
5233 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005234 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005235 );
drhbb933ef2013-11-25 15:01:38 +00005236 if( c<0 ){
5237 lwr = idx+1;
5238 }else if( c>0 ){
5239 upr = idx-1;
5240 }else{
5241 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005242 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005243 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005244 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005245 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005246 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005247 }
drhebf10b12013-11-25 17:38:26 +00005248 if( lwr>upr ) break;
5249 assert( lwr+upr>=0 );
5250 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005251 }
drh72f82862001-05-24 21:06:34 +00005252 }
drhb07028f2011-10-14 21:49:18 +00005253 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005254 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005255 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005256 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005257 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005258 *pRes = c;
5259 rc = SQLITE_OK;
5260 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005261 }
5262moveto_next_layer:
5263 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005264 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005265 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005266 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005267 }
drhf49661a2008-12-10 16:45:50 +00005268 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005269 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005270 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005271 }
drh1e968a02008-03-25 00:22:21 +00005272moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005273 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005274 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005275 return rc;
5276}
5277
drhd677b3d2007-08-20 22:48:41 +00005278
drh72f82862001-05-24 21:06:34 +00005279/*
drhc39e0002004-05-07 23:50:57 +00005280** Return TRUE if the cursor is not pointing at an entry of the table.
5281**
5282** TRUE will be returned after a call to sqlite3BtreeNext() moves
5283** past the last entry in the table or sqlite3BtreePrev() moves past
5284** the first entry. TRUE is also returned if the table is empty.
5285*/
5286int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005287 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5288 ** have been deleted? This API will need to change to return an error code
5289 ** as well as the boolean result value.
5290 */
5291 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005292}
5293
5294/*
drhbd03cae2001-06-02 02:40:57 +00005295** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005296** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005297** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005298** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005299**
drhee6438d2014-09-01 13:29:32 +00005300** The main entry point is sqlite3BtreeNext(). That routine is optimized
5301** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5302** to the next cell on the current page. The (slower) btreeNext() helper
5303** routine is called when it is necessary to move to a different page or
5304** to restore the cursor.
5305**
drhe39a7322014-02-03 14:04:11 +00005306** The calling function will set *pRes to 0 or 1. The initial *pRes value
5307** will be 1 if the cursor being stepped corresponds to an SQL index and
5308** if this routine could have been skipped if that SQL index had been
5309** a unique index. Otherwise the caller will have set *pRes to zero.
5310** Zero is the common case. The btree implementation is free to use the
5311** initial *pRes value as a hint to improve performance, but the current
5312** SQLite btree implementation does not. (Note that the comdb2 btree
5313** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005314*/
drhee6438d2014-09-01 13:29:32 +00005315static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005316 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005317 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005318 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005319
dan7a2347e2016-01-07 16:43:54 +00005320 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005321 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005322 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005323 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005324 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005325 rc = restoreCursorPosition(pCur);
5326 if( rc!=SQLITE_OK ){
5327 return rc;
5328 }
5329 if( CURSOR_INVALID==pCur->eState ){
5330 *pRes = 1;
5331 return SQLITE_OK;
5332 }
drh9b47ee32013-08-20 03:13:51 +00005333 if( pCur->skipNext ){
5334 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5335 pCur->eState = CURSOR_VALID;
5336 if( pCur->skipNext>0 ){
5337 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005338 return SQLITE_OK;
5339 }
drhf66f26a2013-08-19 20:04:10 +00005340 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005341 }
danielk1977da184232006-01-05 11:34:32 +00005342 }
danielk1977da184232006-01-05 11:34:32 +00005343
danielk197771d5d2c2008-09-29 11:49:47 +00005344 pPage = pCur->apPage[pCur->iPage];
5345 idx = ++pCur->aiIdx[pCur->iPage];
5346 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005347
5348 /* If the database file is corrupt, it is possible for the value of idx
5349 ** to be invalid here. This can only occur if a second cursor modifies
5350 ** the page while cursor pCur is holding a reference to it. Which can
5351 ** only happen if the database is corrupt in such a way as to link the
5352 ** page into more than one b-tree structure. */
5353 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005354
danielk197771d5d2c2008-09-29 11:49:47 +00005355 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005356 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005357 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005358 if( rc ) return rc;
5359 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005360 }
drh5e2f8b92001-05-28 00:41:15 +00005361 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005362 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005363 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005364 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005365 return SQLITE_OK;
5366 }
danielk197730548662009-07-09 05:07:37 +00005367 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005368 pPage = pCur->apPage[pCur->iPage];
5369 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005370 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005371 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005372 }else{
drhee6438d2014-09-01 13:29:32 +00005373 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005374 }
drh8178a752003-01-05 21:41:40 +00005375 }
drh3aac2dd2004-04-26 14:10:20 +00005376 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005377 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005378 }else{
5379 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005380 }
drh72f82862001-05-24 21:06:34 +00005381}
drhee6438d2014-09-01 13:29:32 +00005382int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5383 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005384 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005385 assert( pRes!=0 );
5386 assert( *pRes==0 || *pRes==1 );
5387 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5388 pCur->info.nSize = 0;
5389 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5390 *pRes = 0;
5391 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5392 pPage = pCur->apPage[pCur->iPage];
5393 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5394 pCur->aiIdx[pCur->iPage]--;
5395 return btreeNext(pCur, pRes);
5396 }
5397 if( pPage->leaf ){
5398 return SQLITE_OK;
5399 }else{
5400 return moveToLeftmost(pCur);
5401 }
5402}
drh72f82862001-05-24 21:06:34 +00005403
drh3b7511c2001-05-26 13:15:44 +00005404/*
drh2dcc9aa2002-12-04 13:40:25 +00005405** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005406** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005407** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005408** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005409**
drhee6438d2014-09-01 13:29:32 +00005410** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5411** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005412** to the previous cell on the current page. The (slower) btreePrevious()
5413** helper routine is called when it is necessary to move to a different page
5414** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005415**
drhe39a7322014-02-03 14:04:11 +00005416** The calling function will set *pRes to 0 or 1. The initial *pRes value
5417** will be 1 if the cursor being stepped corresponds to an SQL index and
5418** if this routine could have been skipped if that SQL index had been
5419** a unique index. Otherwise the caller will have set *pRes to zero.
5420** Zero is the common case. The btree implementation is free to use the
5421** initial *pRes value as a hint to improve performance, but the current
5422** SQLite btree implementation does not. (Note that the comdb2 btree
5423** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005424*/
drhee6438d2014-09-01 13:29:32 +00005425static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005426 int rc;
drh8178a752003-01-05 21:41:40 +00005427 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005428
dan7a2347e2016-01-07 16:43:54 +00005429 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005430 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005431 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005432 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005433 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5434 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005435 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005436 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005437 if( rc!=SQLITE_OK ){
5438 return rc;
drhf66f26a2013-08-19 20:04:10 +00005439 }
5440 if( CURSOR_INVALID==pCur->eState ){
5441 *pRes = 1;
5442 return SQLITE_OK;
5443 }
drh9b47ee32013-08-20 03:13:51 +00005444 if( pCur->skipNext ){
5445 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5446 pCur->eState = CURSOR_VALID;
5447 if( pCur->skipNext<0 ){
5448 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005449 return SQLITE_OK;
5450 }
drhf66f26a2013-08-19 20:04:10 +00005451 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005452 }
danielk1977da184232006-01-05 11:34:32 +00005453 }
danielk1977da184232006-01-05 11:34:32 +00005454
danielk197771d5d2c2008-09-29 11:49:47 +00005455 pPage = pCur->apPage[pCur->iPage];
5456 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005457 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005458 int idx = pCur->aiIdx[pCur->iPage];
5459 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005460 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005461 rc = moveToRightmost(pCur);
5462 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005463 while( pCur->aiIdx[pCur->iPage]==0 ){
5464 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005465 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005466 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005467 return SQLITE_OK;
5468 }
danielk197730548662009-07-09 05:07:37 +00005469 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005470 }
drhee6438d2014-09-01 13:29:32 +00005471 assert( pCur->info.nSize==0 );
5472 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005473
5474 pCur->aiIdx[pCur->iPage]--;
5475 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005476 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005477 rc = sqlite3BtreePrevious(pCur, pRes);
5478 }else{
5479 rc = SQLITE_OK;
5480 }
drh2dcc9aa2002-12-04 13:40:25 +00005481 }
drh2dcc9aa2002-12-04 13:40:25 +00005482 return rc;
5483}
drhee6438d2014-09-01 13:29:32 +00005484int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005485 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005486 assert( pRes!=0 );
5487 assert( *pRes==0 || *pRes==1 );
5488 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5489 *pRes = 0;
5490 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5491 pCur->info.nSize = 0;
5492 if( pCur->eState!=CURSOR_VALID
5493 || pCur->aiIdx[pCur->iPage]==0
5494 || pCur->apPage[pCur->iPage]->leaf==0
5495 ){
5496 return btreePrevious(pCur, pRes);
5497 }
5498 pCur->aiIdx[pCur->iPage]--;
5499 return SQLITE_OK;
5500}
drh2dcc9aa2002-12-04 13:40:25 +00005501
5502/*
drh3b7511c2001-05-26 13:15:44 +00005503** Allocate a new page from the database file.
5504**
danielk19773b8a05f2007-03-19 17:44:26 +00005505** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005506** has already been called on the new page.) The new page has also
5507** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005508** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005509**
5510** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005511** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005512**
drh82e647d2013-03-02 03:25:55 +00005513** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005514** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005515** attempt to keep related pages close to each other in the database file,
5516** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005517**
drh82e647d2013-03-02 03:25:55 +00005518** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5519** anywhere on the free-list, then it is guaranteed to be returned. If
5520** eMode is BTALLOC_LT then the page returned will be less than or equal
5521** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5522** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005523*/
drh4f0c5872007-03-26 22:05:01 +00005524static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005525 BtShared *pBt, /* The btree */
5526 MemPage **ppPage, /* Store pointer to the allocated page here */
5527 Pgno *pPgno, /* Store the page number here */
5528 Pgno nearby, /* Search for a page near this one */
5529 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005530){
drh3aac2dd2004-04-26 14:10:20 +00005531 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005532 int rc;
drh35cd6432009-06-05 14:17:21 +00005533 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005534 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005535 MemPage *pTrunk = 0;
5536 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005537 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005538
drh1fee73e2007-08-29 04:00:57 +00005539 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005540 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005541 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005542 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005543 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5544 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005545 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005546 testcase( n==mxPage-1 );
5547 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005548 return SQLITE_CORRUPT_BKPT;
5549 }
drh3aac2dd2004-04-26 14:10:20 +00005550 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005551 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005552 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005553 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005554 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005555
drh82e647d2013-03-02 03:25:55 +00005556 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005557 ** shows that the page 'nearby' is somewhere on the free-list, then
5558 ** the entire-list will be searched for that page.
5559 */
5560#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005561 if( eMode==BTALLOC_EXACT ){
5562 if( nearby<=mxPage ){
5563 u8 eType;
5564 assert( nearby>0 );
5565 assert( pBt->autoVacuum );
5566 rc = ptrmapGet(pBt, nearby, &eType, 0);
5567 if( rc ) return rc;
5568 if( eType==PTRMAP_FREEPAGE ){
5569 searchList = 1;
5570 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005571 }
dan51f0b6d2013-02-22 20:16:34 +00005572 }else if( eMode==BTALLOC_LE ){
5573 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005574 }
5575#endif
5576
5577 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5578 ** first free-list trunk page. iPrevTrunk is initially 1.
5579 */
danielk19773b8a05f2007-03-19 17:44:26 +00005580 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005581 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005582 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005583
5584 /* The code within this loop is run only once if the 'searchList' variable
5585 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005586 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5587 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005588 */
5589 do {
5590 pPrevTrunk = pTrunk;
5591 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005592 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5593 ** is the page number of the next freelist trunk page in the list or
5594 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005595 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005596 }else{
drh113762a2014-11-19 16:36:25 +00005597 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5598 ** stores the page number of the first page of the freelist, or zero if
5599 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005600 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005601 }
drhdf35a082009-07-09 02:24:35 +00005602 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005603 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005604 rc = SQLITE_CORRUPT_BKPT;
5605 }else{
drh7e8c6f12015-05-28 03:28:27 +00005606 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005607 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005608 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005609 pTrunk = 0;
5610 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005611 }
drhb07028f2011-10-14 21:49:18 +00005612 assert( pTrunk!=0 );
5613 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005614 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5615 ** is the number of leaf page pointers to follow. */
5616 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005617 if( k==0 && !searchList ){
5618 /* The trunk has no leaves and the list is not being searched.
5619 ** So extract the trunk page itself and use it as the newly
5620 ** allocated page */
5621 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005622 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005623 if( rc ){
5624 goto end_allocate_page;
5625 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005626 *pPgno = iTrunk;
5627 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5628 *ppPage = pTrunk;
5629 pTrunk = 0;
5630 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005631 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005633 rc = SQLITE_CORRUPT_BKPT;
5634 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005635#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005636 }else if( searchList
5637 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5638 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005639 /* The list is being searched and this trunk page is the page
5640 ** to allocate, regardless of whether it has leaves.
5641 */
dan51f0b6d2013-02-22 20:16:34 +00005642 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005643 *ppPage = pTrunk;
5644 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005645 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005646 if( rc ){
5647 goto end_allocate_page;
5648 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005649 if( k==0 ){
5650 if( !pPrevTrunk ){
5651 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5652 }else{
danf48c3552010-08-23 15:41:24 +00005653 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5654 if( rc!=SQLITE_OK ){
5655 goto end_allocate_page;
5656 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005657 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5658 }
5659 }else{
5660 /* The trunk page is required by the caller but it contains
5661 ** pointers to free-list leaves. The first leaf becomes a trunk
5662 ** page in this case.
5663 */
5664 MemPage *pNewTrunk;
5665 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005666 if( iNewTrunk>mxPage ){
5667 rc = SQLITE_CORRUPT_BKPT;
5668 goto end_allocate_page;
5669 }
drhdf35a082009-07-09 02:24:35 +00005670 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005671 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005672 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005673 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005674 }
danielk19773b8a05f2007-03-19 17:44:26 +00005675 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005676 if( rc!=SQLITE_OK ){
5677 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005678 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005679 }
5680 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5681 put4byte(&pNewTrunk->aData[4], k-1);
5682 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005683 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005684 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005685 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 put4byte(&pPage1->aData[32], iNewTrunk);
5687 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005688 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005689 if( rc ){
5690 goto end_allocate_page;
5691 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005692 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5693 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005694 }
5695 pTrunk = 0;
5696 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5697#endif
danielk1977e5765212009-06-17 11:13:28 +00005698 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005699 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005700 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005701 Pgno iPage;
5702 unsigned char *aData = pTrunk->aData;
5703 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005704 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005705 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005706 if( eMode==BTALLOC_LE ){
5707 for(i=0; i<k; i++){
5708 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005709 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005710 closest = i;
5711 break;
5712 }
5713 }
5714 }else{
5715 int dist;
5716 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5717 for(i=1; i<k; i++){
5718 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5719 if( d2<dist ){
5720 closest = i;
5721 dist = d2;
5722 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005723 }
5724 }
5725 }else{
5726 closest = 0;
5727 }
5728
5729 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005730 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005731 if( iPage>mxPage ){
5732 rc = SQLITE_CORRUPT_BKPT;
5733 goto end_allocate_page;
5734 }
drhdf35a082009-07-09 02:24:35 +00005735 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005736 if( !searchList
5737 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5738 ){
danielk1977bea2a942009-01-20 17:06:27 +00005739 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005740 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5742 ": %d more free pages\n",
5743 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005744 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5745 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005746 if( closest<k-1 ){
5747 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5748 }
5749 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005750 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005751 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005752 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005753 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005754 if( rc!=SQLITE_OK ){
5755 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005756 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005757 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005758 }
5759 searchList = 0;
5760 }
drhee696e22004-08-30 16:52:17 +00005761 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005762 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005763 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005764 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005765 }else{
danbc1a3c62013-02-23 16:40:46 +00005766 /* There are no pages on the freelist, so append a new page to the
5767 ** database image.
5768 **
5769 ** Normally, new pages allocated by this block can be requested from the
5770 ** pager layer with the 'no-content' flag set. This prevents the pager
5771 ** from trying to read the pages content from disk. However, if the
5772 ** current transaction has already run one or more incremental-vacuum
5773 ** steps, then the page we are about to allocate may contain content
5774 ** that is required in the event of a rollback. In this case, do
5775 ** not set the no-content flag. This causes the pager to load and journal
5776 ** the current page content before overwriting it.
5777 **
5778 ** Note that the pager will not actually attempt to load or journal
5779 ** content for any page that really does lie past the end of the database
5780 ** file on disk. So the effects of disabling the no-content optimization
5781 ** here are confined to those pages that lie between the end of the
5782 ** database image and the end of the database file.
5783 */
drh3f387402014-09-24 01:23:00 +00005784 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005785
drhdd3cd972010-03-27 17:12:36 +00005786 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5787 if( rc ) return rc;
5788 pBt->nPage++;
5789 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005790
danielk1977afcdd022004-10-31 16:25:42 +00005791#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005792 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005793 /* If *pPgno refers to a pointer-map page, allocate two new pages
5794 ** at the end of the file instead of one. The first allocated page
5795 ** becomes a new pointer-map page, the second is used by the caller.
5796 */
danielk1977ac861692009-03-28 10:54:22 +00005797 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005798 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5799 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005800 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005801 if( rc==SQLITE_OK ){
5802 rc = sqlite3PagerWrite(pPg->pDbPage);
5803 releasePage(pPg);
5804 }
5805 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005806 pBt->nPage++;
5807 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005808 }
5809#endif
drhdd3cd972010-03-27 17:12:36 +00005810 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5811 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005812
danielk1977599fcba2004-11-08 07:13:13 +00005813 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005814 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005815 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005816 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005817 if( rc!=SQLITE_OK ){
5818 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005819 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005820 }
drh3a4c1412004-05-09 20:40:11 +00005821 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005822 }
danielk1977599fcba2004-11-08 07:13:13 +00005823
5824 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005825
5826end_allocate_page:
5827 releasePage(pTrunk);
5828 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005829 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5830 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005831 return rc;
5832}
5833
5834/*
danielk1977bea2a942009-01-20 17:06:27 +00005835** This function is used to add page iPage to the database file free-list.
5836** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005837**
danielk1977bea2a942009-01-20 17:06:27 +00005838** The value passed as the second argument to this function is optional.
5839** If the caller happens to have a pointer to the MemPage object
5840** corresponding to page iPage handy, it may pass it as the second value.
5841** Otherwise, it may pass NULL.
5842**
5843** If a pointer to a MemPage object is passed as the second argument,
5844** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005845*/
danielk1977bea2a942009-01-20 17:06:27 +00005846static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5847 MemPage *pTrunk = 0; /* Free-list trunk page */
5848 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5849 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5850 MemPage *pPage; /* Page being freed. May be NULL. */
5851 int rc; /* Return Code */
5852 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005853
danielk1977bea2a942009-01-20 17:06:27 +00005854 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005855 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005856 assert( !pMemPage || pMemPage->pgno==iPage );
5857
danfb0246b2015-05-26 12:18:17 +00005858 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005859 if( pMemPage ){
5860 pPage = pMemPage;
5861 sqlite3PagerRef(pPage->pDbPage);
5862 }else{
5863 pPage = btreePageLookup(pBt, iPage);
5864 }
drh3aac2dd2004-04-26 14:10:20 +00005865
drha34b6762004-05-07 13:30:42 +00005866 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005867 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005868 if( rc ) goto freepage_out;
5869 nFree = get4byte(&pPage1->aData[36]);
5870 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005871
drhc9166342012-01-05 23:32:06 +00005872 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005873 /* If the secure_delete option is enabled, then
5874 ** always fully overwrite deleted information with zeros.
5875 */
drhb00fc3b2013-08-21 23:42:32 +00005876 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005877 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005878 ){
5879 goto freepage_out;
5880 }
5881 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005882 }
drhfcce93f2006-02-22 03:08:32 +00005883
danielk1977687566d2004-11-02 12:56:41 +00005884 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005885 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005886 */
danielk197785d90ca2008-07-19 14:25:15 +00005887 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005888 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005889 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005890 }
danielk1977687566d2004-11-02 12:56:41 +00005891
danielk1977bea2a942009-01-20 17:06:27 +00005892 /* Now manipulate the actual database free-list structure. There are two
5893 ** possibilities. If the free-list is currently empty, or if the first
5894 ** trunk page in the free-list is full, then this page will become a
5895 ** new free-list trunk page. Otherwise, it will become a leaf of the
5896 ** first trunk page in the current free-list. This block tests if it
5897 ** is possible to add the page as a new free-list leaf.
5898 */
5899 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005900 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005901
5902 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005903 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005904 if( rc!=SQLITE_OK ){
5905 goto freepage_out;
5906 }
5907
5908 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005909 assert( pBt->usableSize>32 );
5910 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005911 rc = SQLITE_CORRUPT_BKPT;
5912 goto freepage_out;
5913 }
drheeb844a2009-08-08 18:01:07 +00005914 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005915 /* In this case there is room on the trunk page to insert the page
5916 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005917 **
5918 ** Note that the trunk page is not really full until it contains
5919 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5920 ** coded. But due to a coding error in versions of SQLite prior to
5921 ** 3.6.0, databases with freelist trunk pages holding more than
5922 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5923 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005924 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005925 ** for now. At some point in the future (once everyone has upgraded
5926 ** to 3.6.0 or later) we should consider fixing the conditional above
5927 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005928 **
5929 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5930 ** avoid using the last six entries in the freelist trunk page array in
5931 ** order that database files created by newer versions of SQLite can be
5932 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005933 */
danielk19773b8a05f2007-03-19 17:44:26 +00005934 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005935 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005936 put4byte(&pTrunk->aData[4], nLeaf+1);
5937 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005938 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005939 sqlite3PagerDontWrite(pPage->pDbPage);
5940 }
danielk1977bea2a942009-01-20 17:06:27 +00005941 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005942 }
drh3a4c1412004-05-09 20:40:11 +00005943 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005944 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005945 }
drh3b7511c2001-05-26 13:15:44 +00005946 }
danielk1977bea2a942009-01-20 17:06:27 +00005947
5948 /* If control flows to this point, then it was not possible to add the
5949 ** the page being freed as a leaf page of the first trunk in the free-list.
5950 ** Possibly because the free-list is empty, or possibly because the
5951 ** first trunk in the free-list is full. Either way, the page being freed
5952 ** will become the new first trunk page in the free-list.
5953 */
drhb00fc3b2013-08-21 23:42:32 +00005954 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005955 goto freepage_out;
5956 }
5957 rc = sqlite3PagerWrite(pPage->pDbPage);
5958 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005959 goto freepage_out;
5960 }
5961 put4byte(pPage->aData, iTrunk);
5962 put4byte(&pPage->aData[4], 0);
5963 put4byte(&pPage1->aData[32], iPage);
5964 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5965
5966freepage_out:
5967 if( pPage ){
5968 pPage->isInit = 0;
5969 }
5970 releasePage(pPage);
5971 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005972 return rc;
5973}
drhc314dc72009-07-21 11:52:34 +00005974static void freePage(MemPage *pPage, int *pRC){
5975 if( (*pRC)==SQLITE_OK ){
5976 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5977 }
danielk1977bea2a942009-01-20 17:06:27 +00005978}
drh3b7511c2001-05-26 13:15:44 +00005979
5980/*
drh9bfdc252014-09-24 02:05:41 +00005981** Free any overflow pages associated with the given Cell. Write the
5982** local Cell size (the number of bytes on the original page, omitting
5983** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005984*/
drh9bfdc252014-09-24 02:05:41 +00005985static int clearCell(
5986 MemPage *pPage, /* The page that contains the Cell */
5987 unsigned char *pCell, /* First byte of the Cell */
5988 u16 *pnSize /* Write the size of the Cell here */
5989){
danielk1977aef0bf62005-12-30 16:28:01 +00005990 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005991 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005992 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005993 int rc;
drh94440812007-03-06 11:42:19 +00005994 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005995 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005996
drh1fee73e2007-08-29 04:00:57 +00005997 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005998 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005999 *pnSize = info.nSize;
drh45ac1c72015-12-18 03:59:16 +00006000 if( info.nLocal==info.nPayload ){
drha34b6762004-05-07 13:30:42 +00006001 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006002 }
drh45ac1c72015-12-18 03:59:16 +00006003 if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006004 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006005 }
drh45ac1c72015-12-18 03:59:16 +00006006 ovflPgno = get4byte(pCell + info.nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006007 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006008 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006009 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006010 assert( nOvfl>0 ||
6011 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6012 );
drh72365832007-03-06 15:53:44 +00006013 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006014 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006015 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006016 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006017 /* 0 is not a legal page number and page 1 cannot be an
6018 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6019 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006020 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006021 }
danielk1977bea2a942009-01-20 17:06:27 +00006022 if( nOvfl ){
6023 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6024 if( rc ) return rc;
6025 }
dan887d4b22010-02-25 12:09:16 +00006026
shaneh1da207e2010-03-09 14:41:12 +00006027 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006028 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6029 ){
6030 /* There is no reason any cursor should have an outstanding reference
6031 ** to an overflow page belonging to a cell that is being deleted/updated.
6032 ** So if there exists more than one reference to this page, then it
6033 ** must not really be an overflow page and the database must be corrupt.
6034 ** It is helpful to detect this before calling freePage2(), as
6035 ** freePage2() may zero the page contents if secure-delete mode is
6036 ** enabled. If this 'overflow' page happens to be a page that the
6037 ** caller is iterating through or using in some other way, this
6038 ** can be problematic.
6039 */
6040 rc = SQLITE_CORRUPT_BKPT;
6041 }else{
6042 rc = freePage2(pBt, pOvfl, ovflPgno);
6043 }
6044
danielk1977bea2a942009-01-20 17:06:27 +00006045 if( pOvfl ){
6046 sqlite3PagerUnref(pOvfl->pDbPage);
6047 }
drh3b7511c2001-05-26 13:15:44 +00006048 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006049 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006050 }
drh5e2f8b92001-05-28 00:41:15 +00006051 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006052}
6053
6054/*
drh91025292004-05-03 19:49:32 +00006055** Create the byte sequence used to represent a cell on page pPage
6056** and write that byte sequence into pCell[]. Overflow pages are
6057** allocated and filled in as necessary. The calling procedure
6058** is responsible for making sure sufficient space has been allocated
6059** for pCell[].
6060**
6061** Note that pCell does not necessary need to point to the pPage->aData
6062** area. pCell might point to some temporary storage. The cell will
6063** be constructed in this temporary area then copied into pPage->aData
6064** later.
drh3b7511c2001-05-26 13:15:44 +00006065*/
6066static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006067 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006068 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006069 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006070 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006071 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006072 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006073){
drh3b7511c2001-05-26 13:15:44 +00006074 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006075 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006076 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006077 int spaceLeft;
6078 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006079 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006080 unsigned char *pPrior;
6081 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006082 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006083 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006084 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006085
drh1fee73e2007-08-29 04:00:57 +00006086 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006087
drhc5053fb2008-11-27 02:22:10 +00006088 /* pPage is not necessarily writeable since pCell might be auxiliary
6089 ** buffer space that is separate from the pPage buffer area */
6090 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6091 || sqlite3PagerIswriteable(pPage->pDbPage) );
6092
drh91025292004-05-03 19:49:32 +00006093 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006094 nHeader = pPage->childPtrSize;
6095 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006096 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006097 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006098 }else{
drh6200c882014-09-23 22:36:25 +00006099 assert( nData==0 );
6100 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006101 }
drh6f11bef2004-05-13 01:12:56 +00006102 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006103
drh6200c882014-09-23 22:36:25 +00006104 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006105 if( pPage->intKey ){
6106 pSrc = pData;
6107 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006108 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006109 }else{
drh98ef0f62015-06-30 01:25:52 +00006110 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006111 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006112 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006113 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006114 }
drh6200c882014-09-23 22:36:25 +00006115 if( nPayload<=pPage->maxLocal ){
6116 n = nHeader + nPayload;
6117 testcase( n==3 );
6118 testcase( n==4 );
6119 if( n<4 ) n = 4;
6120 *pnSize = n;
6121 spaceLeft = nPayload;
6122 pPrior = pCell;
6123 }else{
6124 int mn = pPage->minLocal;
6125 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6126 testcase( n==pPage->maxLocal );
6127 testcase( n==pPage->maxLocal+1 );
6128 if( n > pPage->maxLocal ) n = mn;
6129 spaceLeft = n;
6130 *pnSize = n + nHeader + 4;
6131 pPrior = &pCell[nHeader+n];
6132 }
drh3aac2dd2004-04-26 14:10:20 +00006133 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006134
drh6200c882014-09-23 22:36:25 +00006135 /* At this point variables should be set as follows:
6136 **
6137 ** nPayload Total payload size in bytes
6138 ** pPayload Begin writing payload here
6139 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6140 ** that means content must spill into overflow pages.
6141 ** *pnSize Size of the local cell (not counting overflow pages)
6142 ** pPrior Where to write the pgno of the first overflow page
6143 **
6144 ** Use a call to btreeParseCellPtr() to verify that the values above
6145 ** were computed correctly.
6146 */
6147#if SQLITE_DEBUG
6148 {
6149 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006150 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006151 assert( nHeader==(int)(info.pPayload - pCell) );
drh6200c882014-09-23 22:36:25 +00006152 assert( info.nKey==nKey );
6153 assert( *pnSize == info.nSize );
6154 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006155 }
6156#endif
6157
6158 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006159 while( nPayload>0 ){
6160 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006161#ifndef SQLITE_OMIT_AUTOVACUUM
6162 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006163 if( pBt->autoVacuum ){
6164 do{
6165 pgnoOvfl++;
6166 } while(
6167 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6168 );
danielk1977b39f70b2007-05-17 18:28:11 +00006169 }
danielk1977afcdd022004-10-31 16:25:42 +00006170#endif
drhf49661a2008-12-10 16:45:50 +00006171 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006172#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006173 /* If the database supports auto-vacuum, and the second or subsequent
6174 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006175 ** for that page now.
6176 **
6177 ** If this is the first overflow page, then write a partial entry
6178 ** to the pointer-map. If we write nothing to this pointer-map slot,
6179 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006180 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006181 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006182 */
danielk19774ef24492007-05-23 09:52:41 +00006183 if( pBt->autoVacuum && rc==SQLITE_OK ){
6184 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006185 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006186 if( rc ){
6187 releasePage(pOvfl);
6188 }
danielk1977afcdd022004-10-31 16:25:42 +00006189 }
6190#endif
drh3b7511c2001-05-26 13:15:44 +00006191 if( rc ){
drh9b171272004-05-08 02:03:22 +00006192 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006193 return rc;
6194 }
drhc5053fb2008-11-27 02:22:10 +00006195
6196 /* If pToRelease is not zero than pPrior points into the data area
6197 ** of pToRelease. Make sure pToRelease is still writeable. */
6198 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6199
6200 /* If pPrior is part of the data area of pPage, then make sure pPage
6201 ** is still writeable */
6202 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6203 || sqlite3PagerIswriteable(pPage->pDbPage) );
6204
drh3aac2dd2004-04-26 14:10:20 +00006205 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006206 releasePage(pToRelease);
6207 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006208 pPrior = pOvfl->aData;
6209 put4byte(pPrior, 0);
6210 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006211 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006212 }
6213 n = nPayload;
6214 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006215
6216 /* If pToRelease is not zero than pPayload points into the data area
6217 ** of pToRelease. Make sure pToRelease is still writeable. */
6218 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6219
6220 /* If pPayload is part of the data area of pPage, then make sure pPage
6221 ** is still writeable */
6222 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6223 || sqlite3PagerIswriteable(pPage->pDbPage) );
6224
drhb026e052007-05-02 01:34:31 +00006225 if( nSrc>0 ){
6226 if( n>nSrc ) n = nSrc;
6227 assert( pSrc );
6228 memcpy(pPayload, pSrc, n);
6229 }else{
6230 memset(pPayload, 0, n);
6231 }
drh3b7511c2001-05-26 13:15:44 +00006232 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006233 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006234 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006235 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006236 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006237 if( nSrc==0 ){
6238 nSrc = nData;
6239 pSrc = pData;
6240 }
drhdd793422001-06-28 01:54:48 +00006241 }
drh9b171272004-05-08 02:03:22 +00006242 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006243 return SQLITE_OK;
6244}
6245
drh14acc042001-06-10 19:56:58 +00006246/*
6247** Remove the i-th cell from pPage. This routine effects pPage only.
6248** The cell content is not freed or deallocated. It is assumed that
6249** the cell content has been copied someplace else. This routine just
6250** removes the reference to the cell from pPage.
6251**
6252** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006253*/
drh98add2e2009-07-20 17:11:49 +00006254static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006255 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006256 u8 *data; /* pPage->aData */
6257 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006258 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006259 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006260
drh98add2e2009-07-20 17:11:49 +00006261 if( *pRC ) return;
6262
drh8c42ca92001-06-22 19:15:00 +00006263 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006264 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006265 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006266 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006267 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006268 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006269 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006270 hdr = pPage->hdrOffset;
6271 testcase( pc==get2byte(&data[hdr+5]) );
6272 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006273 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006274 *pRC = SQLITE_CORRUPT_BKPT;
6275 return;
shane0af3f892008-11-12 04:55:34 +00006276 }
shanedcc50b72008-11-13 18:29:50 +00006277 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006278 if( rc ){
6279 *pRC = rc;
6280 return;
shanedcc50b72008-11-13 18:29:50 +00006281 }
drh14acc042001-06-10 19:56:58 +00006282 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006283 if( pPage->nCell==0 ){
6284 memset(&data[hdr+1], 0, 4);
6285 data[hdr+7] = 0;
6286 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6287 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6288 - pPage->childPtrSize - 8;
6289 }else{
6290 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6291 put2byte(&data[hdr+3], pPage->nCell);
6292 pPage->nFree += 2;
6293 }
drh14acc042001-06-10 19:56:58 +00006294}
6295
6296/*
6297** Insert a new cell on pPage at cell index "i". pCell points to the
6298** content of the cell.
6299**
6300** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006301** will not fit, then make a copy of the cell content into pTemp if
6302** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006303** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006304** in pTemp or the original pCell) and also record its index.
6305** Allocating a new entry in pPage->aCell[] implies that
6306** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006307*/
drh98add2e2009-07-20 17:11:49 +00006308static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006309 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006310 int i, /* New cell becomes the i-th cell of the page */
6311 u8 *pCell, /* Content of the new cell */
6312 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006313 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006314 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6315 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006316){
drh383d30f2010-02-26 13:07:37 +00006317 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006318 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006319 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006320 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006321
drh98add2e2009-07-20 17:11:49 +00006322 if( *pRC ) return;
6323
drh43605152004-05-29 21:46:49 +00006324 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006325 assert( MX_CELL(pPage->pBt)<=10921 );
6326 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006327 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6328 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006329 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006330 /* The cell should normally be sized correctly. However, when moving a
6331 ** malformed cell from a leaf page to an interior page, if the cell size
6332 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6333 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6334 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006335 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006336 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006337 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006338 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006339 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006340 }
danielk19774dbaa892009-06-16 16:50:22 +00006341 if( iChild ){
6342 put4byte(pCell, iChild);
6343 }
drh43605152004-05-29 21:46:49 +00006344 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006345 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6346 pPage->apOvfl[j] = pCell;
6347 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006348
6349 /* When multiple overflows occur, they are always sequential and in
6350 ** sorted order. This invariants arise because multiple overflows can
6351 ** only occur when inserting divider cells into the parent page during
6352 ** balancing, and the dividers are adjacent and sorted.
6353 */
6354 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6355 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006356 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006357 int rc = sqlite3PagerWrite(pPage->pDbPage);
6358 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006359 *pRC = rc;
6360 return;
danielk19776e465eb2007-08-21 13:11:00 +00006361 }
6362 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006363 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006364 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006365 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006366 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006367 /* The allocateSpace() routine guarantees the following properties
6368 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006369 assert( idx >= 0 );
6370 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006371 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006372 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006373 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006374 if( iChild ){
6375 put4byte(&data[idx], iChild);
6376 }
drh2c8fb922015-06-25 19:53:48 +00006377 pIns = pPage->aCellIdx + i*2;
6378 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6379 put2byte(pIns, idx);
6380 pPage->nCell++;
6381 /* increment the cell count */
6382 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6383 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006384#ifndef SQLITE_OMIT_AUTOVACUUM
6385 if( pPage->pBt->autoVacuum ){
6386 /* The cell may contain a pointer to an overflow page. If so, write
6387 ** the entry for the overflow page into the pointer map.
6388 */
drh98add2e2009-07-20 17:11:49 +00006389 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006390 }
6391#endif
drh14acc042001-06-10 19:56:58 +00006392 }
6393}
6394
6395/*
drh1ffd2472015-06-23 02:37:30 +00006396** A CellArray object contains a cache of pointers and sizes for a
6397** consecutive sequence of cells that might be held multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006398*/
drh1ffd2472015-06-23 02:37:30 +00006399typedef struct CellArray CellArray;
6400struct CellArray {
6401 int nCell; /* Number of cells in apCell[] */
6402 MemPage *pRef; /* Reference page */
6403 u8 **apCell; /* All cells begin balanced */
6404 u16 *szCell; /* Local size of all cells in apCell[] */
6405};
drhfa1a98a2004-05-14 19:08:17 +00006406
drh1ffd2472015-06-23 02:37:30 +00006407/*
6408** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6409** computed.
6410*/
6411static void populateCellCache(CellArray *p, int idx, int N){
6412 assert( idx>=0 && idx+N<=p->nCell );
6413 while( N>0 ){
6414 assert( p->apCell[idx]!=0 );
6415 if( p->szCell[idx]==0 ){
6416 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6417 }else{
6418 assert( CORRUPT_DB ||
6419 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6420 }
6421 idx++;
6422 N--;
drhfa1a98a2004-05-14 19:08:17 +00006423 }
drh1ffd2472015-06-23 02:37:30 +00006424}
6425
6426/*
6427** Return the size of the Nth element of the cell array
6428*/
6429static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6430 assert( N>=0 && N<p->nCell );
6431 assert( p->szCell[N]==0 );
6432 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6433 return p->szCell[N];
6434}
6435static u16 cachedCellSize(CellArray *p, int N){
6436 assert( N>=0 && N<p->nCell );
6437 if( p->szCell[N] ) return p->szCell[N];
6438 return computeCellSize(p, N);
6439}
6440
6441/*
dan8e9ba0c2014-10-14 17:27:04 +00006442** Array apCell[] contains pointers to nCell b-tree page cells. The
6443** szCell[] array contains the size in bytes of each cell. This function
6444** replaces the current contents of page pPg with the contents of the cell
6445** array.
6446**
6447** Some of the cells in apCell[] may currently be stored in pPg. This
6448** function works around problems caused by this by making a copy of any
6449** such cells before overwriting the page data.
6450**
6451** The MemPage.nFree field is invalidated by this function. It is the
6452** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006453*/
drh658873b2015-06-22 20:02:04 +00006454static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006455 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006456 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006457 u8 **apCell, /* Array of cells */
6458 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006459){
6460 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6461 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6462 const int usableSize = pPg->pBt->usableSize;
6463 u8 * const pEnd = &aData[usableSize];
6464 int i;
6465 u8 *pCellptr = pPg->aCellIdx;
6466 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6467 u8 *pData;
6468
6469 i = get2byte(&aData[hdr+5]);
6470 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006471
dan8e9ba0c2014-10-14 17:27:04 +00006472 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006473 for(i=0; i<nCell; i++){
6474 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006475 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006476 pCell = &pTmp[pCell - aData];
6477 }
6478 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006479 put2byte(pCellptr, (pData - aData));
6480 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006481 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6482 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006483 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006484 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006485 }
6486
dand7b545b2014-10-13 18:03:27 +00006487 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006488 pPg->nCell = nCell;
6489 pPg->nOverflow = 0;
6490
6491 put2byte(&aData[hdr+1], 0);
6492 put2byte(&aData[hdr+3], pPg->nCell);
6493 put2byte(&aData[hdr+5], pData - aData);
6494 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006495 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006496}
6497
dan8e9ba0c2014-10-14 17:27:04 +00006498/*
6499** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6500** contains the size in bytes of each such cell. This function attempts to
6501** add the cells stored in the array to page pPg. If it cannot (because
6502** the page needs to be defragmented before the cells will fit), non-zero
6503** is returned. Otherwise, if the cells are added successfully, zero is
6504** returned.
6505**
6506** Argument pCellptr points to the first entry in the cell-pointer array
6507** (part of page pPg) to populate. After cell apCell[0] is written to the
6508** page body, a 16-bit offset is written to pCellptr. And so on, for each
6509** cell in the array. It is the responsibility of the caller to ensure
6510** that it is safe to overwrite this part of the cell-pointer array.
6511**
6512** When this function is called, *ppData points to the start of the
6513** content area on page pPg. If the size of the content area is extended,
6514** *ppData is updated to point to the new start of the content area
6515** before returning.
6516**
6517** Finally, argument pBegin points to the byte immediately following the
6518** end of the space required by this page for the cell-pointer area (for
6519** all cells - not just those inserted by the current call). If the content
6520** area must be extended to before this point in order to accomodate all
6521** cells in apCell[], then the cells do not fit and non-zero is returned.
6522*/
dand7b545b2014-10-13 18:03:27 +00006523static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006524 MemPage *pPg, /* Page to add cells to */
6525 u8 *pBegin, /* End of cell-pointer array */
6526 u8 **ppData, /* IN/OUT: Page content -area pointer */
6527 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006528 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006529 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006530 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006531){
6532 int i;
6533 u8 *aData = pPg->aData;
6534 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006535 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006536 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006537 for(i=iFirst; i<iEnd; i++){
6538 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006539 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006540 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006541 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006542 pData -= sz;
6543 if( pData<pBegin ) return 1;
6544 pSlot = pData;
6545 }
drh48310f82015-10-10 16:41:28 +00006546 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6547 ** database. But they might for a corrupt database. Hence use memmove()
6548 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6549 assert( (pSlot+sz)<=pCArray->apCell[i]
6550 || pSlot>=(pCArray->apCell[i]+sz)
6551 || CORRUPT_DB );
6552 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006553 put2byte(pCellptr, (pSlot - aData));
6554 pCellptr += 2;
6555 }
6556 *ppData = pData;
6557 return 0;
6558}
6559
dan8e9ba0c2014-10-14 17:27:04 +00006560/*
6561** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6562** contains the size in bytes of each such cell. This function adds the
6563** space associated with each cell in the array that is currently stored
6564** within the body of pPg to the pPg free-list. The cell-pointers and other
6565** fields of the page are not updated.
6566**
6567** This function returns the total number of cells added to the free-list.
6568*/
dand7b545b2014-10-13 18:03:27 +00006569static int pageFreeArray(
6570 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006571 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006572 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006573 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006574){
6575 u8 * const aData = pPg->aData;
6576 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006577 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006578 int nRet = 0;
6579 int i;
drhf7838932015-06-23 15:36:34 +00006580 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006581 u8 *pFree = 0;
6582 int szFree = 0;
6583
drhf7838932015-06-23 15:36:34 +00006584 for(i=iFirst; i<iEnd; i++){
6585 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006586 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006587 int sz;
6588 /* No need to use cachedCellSize() here. The sizes of all cells that
6589 ** are to be freed have already been computing while deciding which
6590 ** cells need freeing */
6591 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006592 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006593 if( pFree ){
6594 assert( pFree>aData && (pFree - aData)<65536 );
6595 freeSpace(pPg, (u16)(pFree - aData), szFree);
6596 }
dand7b545b2014-10-13 18:03:27 +00006597 pFree = pCell;
6598 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006599 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006600 }else{
6601 pFree = pCell;
6602 szFree += sz;
6603 }
6604 nRet++;
6605 }
6606 }
drhfefa0942014-11-05 21:21:08 +00006607 if( pFree ){
6608 assert( pFree>aData && (pFree - aData)<65536 );
6609 freeSpace(pPg, (u16)(pFree - aData), szFree);
6610 }
dand7b545b2014-10-13 18:03:27 +00006611 return nRet;
6612}
6613
dand7b545b2014-10-13 18:03:27 +00006614/*
drh5ab63772014-11-27 03:46:04 +00006615** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6616** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6617** with apCell[iOld]. After balancing, this page should hold nNew cells
6618** starting at apCell[iNew].
6619**
6620** This routine makes the necessary adjustments to pPg so that it contains
6621** the correct cells after being balanced.
6622**
dand7b545b2014-10-13 18:03:27 +00006623** The pPg->nFree field is invalid when this function returns. It is the
6624** responsibility of the caller to set it correctly.
6625*/
drh658873b2015-06-22 20:02:04 +00006626static int editPage(
dan09c68402014-10-11 20:00:24 +00006627 MemPage *pPg, /* Edit this page */
6628 int iOld, /* Index of first cell currently on page */
6629 int iNew, /* Index of new first cell on page */
6630 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006631 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006632){
dand7b545b2014-10-13 18:03:27 +00006633 u8 * const aData = pPg->aData;
6634 const int hdr = pPg->hdrOffset;
6635 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6636 int nCell = pPg->nCell; /* Cells stored on pPg */
6637 u8 *pData;
6638 u8 *pCellptr;
6639 int i;
6640 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6641 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006642
6643#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006644 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6645 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006646#endif
6647
dand7b545b2014-10-13 18:03:27 +00006648 /* Remove cells from the start and end of the page */
6649 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006650 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006651 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6652 nCell -= nShift;
6653 }
6654 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006655 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006656 }
dan09c68402014-10-11 20:00:24 +00006657
drh5ab63772014-11-27 03:46:04 +00006658 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006659 if( pData<pBegin ) goto editpage_fail;
6660
6661 /* Add cells to the start of the page */
6662 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006663 int nAdd = MIN(nNew,iOld-iNew);
6664 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006665 pCellptr = pPg->aCellIdx;
6666 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6667 if( pageInsertArray(
6668 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006669 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006670 ) ) goto editpage_fail;
6671 nCell += nAdd;
6672 }
6673
6674 /* Add any overflow cells */
6675 for(i=0; i<pPg->nOverflow; i++){
6676 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6677 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006678 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006679 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6680 nCell++;
6681 if( pageInsertArray(
6682 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006683 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006684 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006685 }
dand7b545b2014-10-13 18:03:27 +00006686 }
dan09c68402014-10-11 20:00:24 +00006687
dand7b545b2014-10-13 18:03:27 +00006688 /* Append cells to the end of the page */
6689 pCellptr = &pPg->aCellIdx[nCell*2];
6690 if( pageInsertArray(
6691 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006692 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006693 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006694
dand7b545b2014-10-13 18:03:27 +00006695 pPg->nCell = nNew;
6696 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006697
dand7b545b2014-10-13 18:03:27 +00006698 put2byte(&aData[hdr+3], pPg->nCell);
6699 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006700
6701#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006702 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006703 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006704 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006705 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6706 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006707 }
drh1ffd2472015-06-23 02:37:30 +00006708 assert( 0==memcmp(pCell, &aData[iOff],
6709 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006710 }
dan09c68402014-10-11 20:00:24 +00006711#endif
6712
drh658873b2015-06-22 20:02:04 +00006713 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006714 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006715 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006716 populateCellCache(pCArray, iNew, nNew);
6717 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006718}
6719
drh14acc042001-06-10 19:56:58 +00006720/*
drhc3b70572003-01-04 19:44:07 +00006721** The following parameters determine how many adjacent pages get involved
6722** in a balancing operation. NN is the number of neighbors on either side
6723** of the page that participate in the balancing operation. NB is the
6724** total number of pages that participate, including the target page and
6725** NN neighbors on either side.
6726**
6727** The minimum value of NN is 1 (of course). Increasing NN above 1
6728** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6729** in exchange for a larger degradation in INSERT and UPDATE performance.
6730** The value of NN appears to give the best results overall.
6731*/
6732#define NN 1 /* Number of neighbors on either side of pPage */
6733#define NB (NN*2+1) /* Total pages involved in the balance */
6734
danielk1977ac245ec2005-01-14 13:50:11 +00006735
drh615ae552005-01-16 23:21:00 +00006736#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006737/*
6738** This version of balance() handles the common special case where
6739** a new entry is being inserted on the extreme right-end of the
6740** tree, in other words, when the new entry will become the largest
6741** entry in the tree.
6742**
drhc314dc72009-07-21 11:52:34 +00006743** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006744** a new page to the right-hand side and put the one new entry in
6745** that page. This leaves the right side of the tree somewhat
6746** unbalanced. But odds are that we will be inserting new entries
6747** at the end soon afterwards so the nearly empty page will quickly
6748** fill up. On average.
6749**
6750** pPage is the leaf page which is the right-most page in the tree.
6751** pParent is its parent. pPage must have a single overflow entry
6752** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006753**
6754** The pSpace buffer is used to store a temporary copy of the divider
6755** cell that will be inserted into pParent. Such a cell consists of a 4
6756** byte page number followed by a variable length integer. In other
6757** words, at most 13 bytes. Hence the pSpace buffer must be at
6758** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006759*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006760static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6761 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006762 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006763 int rc; /* Return Code */
6764 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006765
drh1fee73e2007-08-29 04:00:57 +00006766 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006767 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006768 assert( pPage->nOverflow==1 );
6769
drh5d433ce2010-08-14 16:02:52 +00006770 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006771 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006772
danielk1977a50d9aa2009-06-08 14:49:45 +00006773 /* Allocate a new page. This page will become the right-sibling of
6774 ** pPage. Make the parent page writable, so that the new divider cell
6775 ** may be inserted. If both these operations are successful, proceed.
6776 */
drh4f0c5872007-03-26 22:05:01 +00006777 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006778
danielk1977eaa06f62008-09-18 17:34:44 +00006779 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006780
6781 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006782 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006783 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006784 u8 *pStop;
6785
drhc5053fb2008-11-27 02:22:10 +00006786 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006787 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6788 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006789 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006790 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006791 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006792
6793 /* If this is an auto-vacuum database, update the pointer map
6794 ** with entries for the new page, and any pointer from the
6795 ** cell on the page to an overflow page. If either of these
6796 ** operations fails, the return code is set, but the contents
6797 ** of the parent page are still manipulated by thh code below.
6798 ** That is Ok, at this point the parent page is guaranteed to
6799 ** be marked as dirty. Returning an error code will cause a
6800 ** rollback, undoing any changes made to the parent page.
6801 */
6802 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006803 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6804 if( szCell>pNew->minLocal ){
6805 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006806 }
6807 }
danielk1977eaa06f62008-09-18 17:34:44 +00006808
danielk19776f235cc2009-06-04 14:46:08 +00006809 /* Create a divider cell to insert into pParent. The divider cell
6810 ** consists of a 4-byte page number (the page number of pPage) and
6811 ** a variable length key value (which must be the same value as the
6812 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006813 **
danielk19776f235cc2009-06-04 14:46:08 +00006814 ** To find the largest key value on pPage, first find the right-most
6815 ** cell on pPage. The first two fields of this cell are the
6816 ** record-length (a variable length integer at most 32-bits in size)
6817 ** and the key value (a variable length integer, may have any value).
6818 ** The first of the while(...) loops below skips over the record-length
6819 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006820 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006821 */
danielk1977eaa06f62008-09-18 17:34:44 +00006822 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006823 pStop = &pCell[9];
6824 while( (*(pCell++)&0x80) && pCell<pStop );
6825 pStop = &pCell[9];
6826 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6827
danielk19774dbaa892009-06-16 16:50:22 +00006828 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006829 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6830 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006831
6832 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006833 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6834
danielk1977e08a3c42008-09-18 18:17:03 +00006835 /* Release the reference to the new page. */
6836 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006837 }
6838
danielk1977eaa06f62008-09-18 17:34:44 +00006839 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006840}
drh615ae552005-01-16 23:21:00 +00006841#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006842
danielk19774dbaa892009-06-16 16:50:22 +00006843#if 0
drhc3b70572003-01-04 19:44:07 +00006844/*
danielk19774dbaa892009-06-16 16:50:22 +00006845** This function does not contribute anything to the operation of SQLite.
6846** it is sometimes activated temporarily while debugging code responsible
6847** for setting pointer-map entries.
6848*/
6849static int ptrmapCheckPages(MemPage **apPage, int nPage){
6850 int i, j;
6851 for(i=0; i<nPage; i++){
6852 Pgno n;
6853 u8 e;
6854 MemPage *pPage = apPage[i];
6855 BtShared *pBt = pPage->pBt;
6856 assert( pPage->isInit );
6857
6858 for(j=0; j<pPage->nCell; j++){
6859 CellInfo info;
6860 u8 *z;
6861
6862 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006863 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006864 if( info.nLocal<info.nPayload ){
6865 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006866 ptrmapGet(pBt, ovfl, &e, &n);
6867 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6868 }
6869 if( !pPage->leaf ){
6870 Pgno child = get4byte(z);
6871 ptrmapGet(pBt, child, &e, &n);
6872 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6873 }
6874 }
6875 if( !pPage->leaf ){
6876 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6877 ptrmapGet(pBt, child, &e, &n);
6878 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6879 }
6880 }
6881 return 1;
6882}
6883#endif
6884
danielk1977cd581a72009-06-23 15:43:39 +00006885/*
6886** This function is used to copy the contents of the b-tree node stored
6887** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6888** the pointer-map entries for each child page are updated so that the
6889** parent page stored in the pointer map is page pTo. If pFrom contained
6890** any cells with overflow page pointers, then the corresponding pointer
6891** map entries are also updated so that the parent page is page pTo.
6892**
6893** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006894** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006895**
danielk197730548662009-07-09 05:07:37 +00006896** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006897**
6898** The performance of this function is not critical. It is only used by
6899** the balance_shallower() and balance_deeper() procedures, neither of
6900** which are called often under normal circumstances.
6901*/
drhc314dc72009-07-21 11:52:34 +00006902static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6903 if( (*pRC)==SQLITE_OK ){
6904 BtShared * const pBt = pFrom->pBt;
6905 u8 * const aFrom = pFrom->aData;
6906 u8 * const aTo = pTo->aData;
6907 int const iFromHdr = pFrom->hdrOffset;
6908 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006909 int rc;
drhc314dc72009-07-21 11:52:34 +00006910 int iData;
6911
6912
6913 assert( pFrom->isInit );
6914 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006915 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006916
6917 /* Copy the b-tree node content from page pFrom to page pTo. */
6918 iData = get2byte(&aFrom[iFromHdr+5]);
6919 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6920 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6921
6922 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006923 ** match the new data. The initialization of pTo can actually fail under
6924 ** fairly obscure circumstances, even though it is a copy of initialized
6925 ** page pFrom.
6926 */
drhc314dc72009-07-21 11:52:34 +00006927 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006928 rc = btreeInitPage(pTo);
6929 if( rc!=SQLITE_OK ){
6930 *pRC = rc;
6931 return;
6932 }
drhc314dc72009-07-21 11:52:34 +00006933
6934 /* If this is an auto-vacuum database, update the pointer-map entries
6935 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6936 */
6937 if( ISAUTOVACUUM ){
6938 *pRC = setChildPtrmaps(pTo);
6939 }
danielk1977cd581a72009-06-23 15:43:39 +00006940 }
danielk1977cd581a72009-06-23 15:43:39 +00006941}
6942
6943/*
danielk19774dbaa892009-06-16 16:50:22 +00006944** This routine redistributes cells on the iParentIdx'th child of pParent
6945** (hereafter "the page") and up to 2 siblings so that all pages have about the
6946** same amount of free space. Usually a single sibling on either side of the
6947** page are used in the balancing, though both siblings might come from one
6948** side if the page is the first or last child of its parent. If the page
6949** has fewer than 2 siblings (something which can only happen if the page
6950** is a root page or a child of a root page) then all available siblings
6951** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006952**
danielk19774dbaa892009-06-16 16:50:22 +00006953** The number of siblings of the page might be increased or decreased by
6954** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006955**
danielk19774dbaa892009-06-16 16:50:22 +00006956** Note that when this routine is called, some of the cells on the page
6957** might not actually be stored in MemPage.aData[]. This can happen
6958** if the page is overfull. This routine ensures that all cells allocated
6959** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006960**
danielk19774dbaa892009-06-16 16:50:22 +00006961** In the course of balancing the page and its siblings, cells may be
6962** inserted into or removed from the parent page (pParent). Doing so
6963** may cause the parent page to become overfull or underfull. If this
6964** happens, it is the responsibility of the caller to invoke the correct
6965** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006966**
drh5e00f6c2001-09-13 13:46:56 +00006967** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006968** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006969** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006970**
6971** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006972** buffer big enough to hold one page. If while inserting cells into the parent
6973** page (pParent) the parent page becomes overfull, this buffer is
6974** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006975** a maximum of four divider cells into the parent page, and the maximum
6976** size of a cell stored within an internal node is always less than 1/4
6977** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6978** enough for all overflow cells.
6979**
6980** If aOvflSpace is set to a null pointer, this function returns
6981** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006982*/
danielk19774dbaa892009-06-16 16:50:22 +00006983static int balance_nonroot(
6984 MemPage *pParent, /* Parent page of siblings being balanced */
6985 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006986 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006987 int isRoot, /* True if pParent is a root-page */
6988 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006989){
drh16a9b832007-05-05 18:39:25 +00006990 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006991 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006992 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006993 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006994 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006995 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006996 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006997 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006998 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006999 int usableSpace; /* Bytes in pPage beyond the header */
7000 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007001 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007002 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007003 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007004 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007005 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007006 u8 *pRight; /* Location in parent of right-sibling pointer */
7007 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007008 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7009 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007010 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007011 u8 *aSpace1; /* Space for copies of dividers cells */
7012 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007013 u8 abDone[NB+2]; /* True after i'th new page is populated */
7014 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007015 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007016 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007017 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007018
dan33ea4862014-10-09 19:35:37 +00007019 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007020 b.nCell = 0;
7021 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007022 pBt = pParent->pBt;
7023 assert( sqlite3_mutex_held(pBt->mutex) );
7024 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007025
danielk1977e5765212009-06-17 11:13:28 +00007026#if 0
drh43605152004-05-29 21:46:49 +00007027 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007028#endif
drh2e38c322004-09-03 18:38:44 +00007029
danielk19774dbaa892009-06-16 16:50:22 +00007030 /* At this point pParent may have at most one overflow cell. And if
7031 ** this overflow cell is present, it must be the cell with
7032 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007033 ** is called (indirectly) from sqlite3BtreeDelete().
7034 */
danielk19774dbaa892009-06-16 16:50:22 +00007035 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007036 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007037
danielk197711a8a862009-06-17 11:49:52 +00007038 if( !aOvflSpace ){
7039 return SQLITE_NOMEM;
7040 }
7041
danielk1977a50d9aa2009-06-08 14:49:45 +00007042 /* Find the sibling pages to balance. Also locate the cells in pParent
7043 ** that divide the siblings. An attempt is made to find NN siblings on
7044 ** either side of pPage. More siblings are taken from one side, however,
7045 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007046 ** has NB or fewer children then all children of pParent are taken.
7047 **
7048 ** This loop also drops the divider cells from the parent page. This
7049 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007050 ** overflow cells in the parent page, since if any existed they will
7051 ** have already been removed.
7052 */
danielk19774dbaa892009-06-16 16:50:22 +00007053 i = pParent->nOverflow + pParent->nCell;
7054 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007055 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007056 }else{
dan7d6885a2012-08-08 14:04:56 +00007057 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007058 if( iParentIdx==0 ){
7059 nxDiv = 0;
7060 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007061 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007062 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007063 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007064 }
dan7d6885a2012-08-08 14:04:56 +00007065 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007066 }
dan7d6885a2012-08-08 14:04:56 +00007067 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007068 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7069 pRight = &pParent->aData[pParent->hdrOffset+8];
7070 }else{
7071 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7072 }
7073 pgno = get4byte(pRight);
7074 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007075 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007076 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007077 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007078 goto balance_cleanup;
7079 }
danielk1977634f2982005-03-28 08:44:07 +00007080 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007081 if( (i--)==0 ) break;
7082
drh2cbd78b2012-02-02 19:37:18 +00007083 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7084 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007085 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007086 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007087 pParent->nOverflow = 0;
7088 }else{
7089 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7090 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007091 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007092
7093 /* Drop the cell from the parent page. apDiv[i] still points to
7094 ** the cell within the parent, even though it has been dropped.
7095 ** This is safe because dropping a cell only overwrites the first
7096 ** four bytes of it, and this function does not need the first
7097 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007098 ** later on.
7099 **
drh8a575d92011-10-12 17:00:28 +00007100 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007101 ** the dropCell() routine will overwrite the entire cell with zeroes.
7102 ** In this case, temporarily copy the cell into the aOvflSpace[]
7103 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7104 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007105 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007106 int iOff;
7107
7108 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007109 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007110 rc = SQLITE_CORRUPT_BKPT;
7111 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7112 goto balance_cleanup;
7113 }else{
7114 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7115 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7116 }
drh5b47efa2010-02-12 18:18:39 +00007117 }
drh98add2e2009-07-20 17:11:49 +00007118 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007119 }
drh8b2f49b2001-06-08 00:21:52 +00007120 }
7121
drha9121e42008-02-19 14:59:35 +00007122 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007123 ** alignment */
drha9121e42008-02-19 14:59:35 +00007124 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007125
drh8b2f49b2001-06-08 00:21:52 +00007126 /*
danielk1977634f2982005-03-28 08:44:07 +00007127 ** Allocate space for memory structures
7128 */
drhfacf0302008-06-17 15:12:00 +00007129 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007130 nMaxCells*sizeof(u8*) /* b.apCell */
7131 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007132 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007133
drhcbd55b02014-11-04 14:22:27 +00007134 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7135 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007136 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007137 b.apCell = sqlite3ScratchMalloc( szScratch );
7138 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007139 rc = SQLITE_NOMEM;
7140 goto balance_cleanup;
7141 }
drh1ffd2472015-06-23 02:37:30 +00007142 b.szCell = (u16*)&b.apCell[nMaxCells];
7143 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007144 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007145
7146 /*
7147 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007148 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007149 ** into space obtained from aSpace1[]. The divider cells have already
7150 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007151 **
7152 ** If the siblings are on leaf pages, then the child pointers of the
7153 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007154 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007155 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007156 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007157 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007158 **
7159 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7160 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007161 */
drh1ffd2472015-06-23 02:37:30 +00007162 b.pRef = apOld[0];
7163 leafCorrection = b.pRef->leaf*4;
7164 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007165 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007166 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007167 int limit = pOld->nCell;
7168 u8 *aData = pOld->aData;
7169 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007170 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007171 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007172
drh73d340a2015-05-28 11:23:11 +00007173 /* Verify that all sibling pages are of the same "type" (table-leaf,
7174 ** table-interior, index-leaf, or index-interior).
7175 */
7176 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7177 rc = SQLITE_CORRUPT_BKPT;
7178 goto balance_cleanup;
7179 }
7180
drhfe647dc2015-06-23 18:24:25 +00007181 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7182 ** constains overflow cells, include them in the b.apCell[] array
7183 ** in the correct spot.
7184 **
7185 ** Note that when there are multiple overflow cells, it is always the
7186 ** case that they are sequential and adjacent. This invariant arises
7187 ** because multiple overflows can only occurs when inserting divider
7188 ** cells into a parent on a prior balance, and divider cells are always
7189 ** adjacent and are inserted in order. There is an assert() tagged
7190 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7191 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007192 **
7193 ** This must be done in advance. Once the balance starts, the cell
7194 ** offset section of the btree page will be overwritten and we will no
7195 ** long be able to find the cells if a pointer to each cell is not saved
7196 ** first.
7197 */
drh36b78ee2016-01-20 01:32:00 +00007198 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007199 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007200 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007201 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007202 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007203 piCell += 2;
7204 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007205 }
drhfe647dc2015-06-23 18:24:25 +00007206 for(k=0; k<pOld->nOverflow; k++){
7207 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007208 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007209 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007210 }
drh1ffd2472015-06-23 02:37:30 +00007211 }
drhfe647dc2015-06-23 18:24:25 +00007212 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7213 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007214 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007215 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007216 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007217 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007218 }
7219
drh1ffd2472015-06-23 02:37:30 +00007220 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007221 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007222 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007223 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007224 assert( b.nCell<nMaxCells );
7225 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007226 pTemp = &aSpace1[iSpace1];
7227 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007228 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007229 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007230 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007231 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007232 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007233 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007234 if( !pOld->leaf ){
7235 assert( leafCorrection==0 );
7236 assert( pOld->hdrOffset==0 );
7237 /* The right pointer of the child page pOld becomes the left
7238 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007239 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007240 }else{
7241 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007242 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007243 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7244 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007245 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7246 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007247 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007248 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007249 }
7250 }
drh1ffd2472015-06-23 02:37:30 +00007251 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007252 }
drh8b2f49b2001-06-08 00:21:52 +00007253 }
7254
7255 /*
drh1ffd2472015-06-23 02:37:30 +00007256 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007257 ** Store this number in "k". Also compute szNew[] which is the total
7258 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007259 ** in b.apCell[] of the cell that divides page i from page i+1.
7260 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007261 **
drh96f5b762004-05-16 16:24:36 +00007262 ** Values computed by this block:
7263 **
7264 ** k: The total number of sibling pages
7265 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007266 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007267 ** the right of the i-th sibling page.
7268 ** usableSpace: Number of bytes of space available on each sibling.
7269 **
drh8b2f49b2001-06-08 00:21:52 +00007270 */
drh43605152004-05-29 21:46:49 +00007271 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007272 for(i=0; i<nOld; i++){
7273 MemPage *p = apOld[i];
7274 szNew[i] = usableSpace - p->nFree;
7275 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7276 for(j=0; j<p->nOverflow; j++){
7277 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7278 }
7279 cntNew[i] = cntOld[i];
7280 }
7281 k = nOld;
7282 for(i=0; i<k; i++){
7283 int sz;
7284 while( szNew[i]>usableSpace ){
7285 if( i+1>=k ){
7286 k = i+2;
7287 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7288 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007289 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007290 }
drh1ffd2472015-06-23 02:37:30 +00007291 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007292 szNew[i] -= sz;
7293 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007294 if( cntNew[i]<b.nCell ){
7295 sz = 2 + cachedCellSize(&b, cntNew[i]);
7296 }else{
7297 sz = 0;
7298 }
drh658873b2015-06-22 20:02:04 +00007299 }
7300 szNew[i+1] += sz;
7301 cntNew[i]--;
7302 }
drh1ffd2472015-06-23 02:37:30 +00007303 while( cntNew[i]<b.nCell ){
7304 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007305 if( szNew[i]+sz>usableSpace ) break;
7306 szNew[i] += sz;
7307 cntNew[i]++;
7308 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007309 if( cntNew[i]<b.nCell ){
7310 sz = 2 + cachedCellSize(&b, cntNew[i]);
7311 }else{
7312 sz = 0;
7313 }
drh658873b2015-06-22 20:02:04 +00007314 }
7315 szNew[i+1] -= sz;
7316 }
drh1ffd2472015-06-23 02:37:30 +00007317 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007318 k = i+1;
drh672073a2015-06-24 12:07:40 +00007319 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007320 rc = SQLITE_CORRUPT_BKPT;
7321 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007322 }
7323 }
drh96f5b762004-05-16 16:24:36 +00007324
7325 /*
7326 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007327 ** on the left side (siblings with smaller keys). The left siblings are
7328 ** always nearly full, while the right-most sibling might be nearly empty.
7329 ** The next block of code attempts to adjust the packing of siblings to
7330 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007331 **
7332 ** This adjustment is more than an optimization. The packing above might
7333 ** be so out of balance as to be illegal. For example, the right-most
7334 ** sibling might be completely empty. This adjustment is not optional.
7335 */
drh6019e162001-07-02 17:51:45 +00007336 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007337 int szRight = szNew[i]; /* Size of sibling on the right */
7338 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7339 int r; /* Index of right-most cell in left sibling */
7340 int d; /* Index of first cell to the left of right sibling */
7341
7342 r = cntNew[i-1] - 1;
7343 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007344 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007345 do{
drh1ffd2472015-06-23 02:37:30 +00007346 assert( d<nMaxCells );
7347 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007348 (void)cachedCellSize(&b, r);
7349 if( szRight!=0
7350 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7351 break;
7352 }
7353 szRight += b.szCell[d] + 2;
7354 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007355 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007356 r--;
7357 d--;
drh672073a2015-06-24 12:07:40 +00007358 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007359 szNew[i] = szRight;
7360 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007361 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7362 rc = SQLITE_CORRUPT_BKPT;
7363 goto balance_cleanup;
7364 }
drh6019e162001-07-02 17:51:45 +00007365 }
drh09d0deb2005-08-02 17:13:09 +00007366
drh2a0df922014-10-30 23:14:56 +00007367 /* Sanity check: For a non-corrupt database file one of the follwing
7368 ** must be true:
7369 ** (1) We found one or more cells (cntNew[0])>0), or
7370 ** (2) pPage is a virtual root page. A virtual root page is when
7371 ** the real root page is page 1 and we are the only child of
7372 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007373 */
drh2a0df922014-10-30 23:14:56 +00007374 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007375 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7376 apOld[0]->pgno, apOld[0]->nCell,
7377 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7378 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007379 ));
7380
drh8b2f49b2001-06-08 00:21:52 +00007381 /*
drh6b308672002-07-08 02:16:37 +00007382 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007383 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007384 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007385 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007386 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007387 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007388 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007389 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007390 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007391 nNew++;
danielk197728129562005-01-11 10:25:06 +00007392 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007393 }else{
drh7aa8f852006-03-28 00:24:44 +00007394 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007395 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007396 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007397 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007398 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007399 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007400 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007401
7402 /* Set the pointer-map entry for the new sibling page. */
7403 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007404 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007405 if( rc!=SQLITE_OK ){
7406 goto balance_cleanup;
7407 }
7408 }
drh6b308672002-07-08 02:16:37 +00007409 }
drh8b2f49b2001-06-08 00:21:52 +00007410 }
7411
7412 /*
dan33ea4862014-10-09 19:35:37 +00007413 ** Reassign page numbers so that the new pages are in ascending order.
7414 ** This helps to keep entries in the disk file in order so that a scan
7415 ** of the table is closer to a linear scan through the file. That in turn
7416 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007417 **
dan33ea4862014-10-09 19:35:37 +00007418 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7419 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007420 **
dan33ea4862014-10-09 19:35:37 +00007421 ** When NB==3, this one optimization makes the database about 25% faster
7422 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007423 */
dan33ea4862014-10-09 19:35:37 +00007424 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007425 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007426 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007427 for(j=0; j<i; j++){
7428 if( aPgno[j]==aPgno[i] ){
7429 /* This branch is taken if the set of sibling pages somehow contains
7430 ** duplicate entries. This can happen if the database is corrupt.
7431 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007432 ** we do the detection here in order to avoid populating the pager
7433 ** cache with two separate objects associated with the same
7434 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007435 assert( CORRUPT_DB );
7436 rc = SQLITE_CORRUPT_BKPT;
7437 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007438 }
7439 }
dan33ea4862014-10-09 19:35:37 +00007440 }
7441 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007442 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007443 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007444 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007445 }
drh00fe08a2014-10-31 00:05:23 +00007446 pgno = aPgOrder[iBest];
7447 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007448 if( iBest!=i ){
7449 if( iBest>i ){
7450 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7451 }
7452 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7453 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007454 }
7455 }
dan33ea4862014-10-09 19:35:37 +00007456
7457 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7458 "%d(%d nc=%d) %d(%d nc=%d)\n",
7459 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007460 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007461 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007462 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007463 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007464 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007465 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7466 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7467 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7468 ));
danielk19774dbaa892009-06-16 16:50:22 +00007469
7470 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7471 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007472
dan33ea4862014-10-09 19:35:37 +00007473 /* If the sibling pages are not leaves, ensure that the right-child pointer
7474 ** of the right-most new sibling page is set to the value that was
7475 ** originally in the same field of the right-most old sibling page. */
7476 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7477 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7478 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7479 }
danielk1977ac11ee62005-01-15 12:45:51 +00007480
dan33ea4862014-10-09 19:35:37 +00007481 /* Make any required updates to pointer map entries associated with
7482 ** cells stored on sibling pages following the balance operation. Pointer
7483 ** map entries associated with divider cells are set by the insertCell()
7484 ** routine. The associated pointer map entries are:
7485 **
7486 ** a) if the cell contains a reference to an overflow chain, the
7487 ** entry associated with the first page in the overflow chain, and
7488 **
7489 ** b) if the sibling pages are not leaves, the child page associated
7490 ** with the cell.
7491 **
7492 ** If the sibling pages are not leaves, then the pointer map entry
7493 ** associated with the right-child of each sibling may also need to be
7494 ** updated. This happens below, after the sibling pages have been
7495 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007496 */
dan33ea4862014-10-09 19:35:37 +00007497 if( ISAUTOVACUUM ){
7498 MemPage *pNew = apNew[0];
7499 u8 *aOld = pNew->aData;
7500 int cntOldNext = pNew->nCell + pNew->nOverflow;
7501 int usableSize = pBt->usableSize;
7502 int iNew = 0;
7503 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007504
drh1ffd2472015-06-23 02:37:30 +00007505 for(i=0; i<b.nCell; i++){
7506 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007507 if( i==cntOldNext ){
7508 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7509 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7510 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007511 }
dan33ea4862014-10-09 19:35:37 +00007512 if( i==cntNew[iNew] ){
7513 pNew = apNew[++iNew];
7514 if( !leafData ) continue;
7515 }
danielk197785d90ca2008-07-19 14:25:15 +00007516
dan33ea4862014-10-09 19:35:37 +00007517 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007518 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007519 ** or else the divider cell to the left of sibling page iOld. So,
7520 ** if sibling page iOld had the same page number as pNew, and if
7521 ** pCell really was a part of sibling page iOld (not a divider or
7522 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007523 if( iOld>=nNew
7524 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007525 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007526 ){
dan33ea4862014-10-09 19:35:37 +00007527 if( !leafCorrection ){
7528 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7529 }
drh1ffd2472015-06-23 02:37:30 +00007530 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007531 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007532 }
drhea82b372015-06-23 21:35:28 +00007533 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007534 }
drh14acc042001-06-10 19:56:58 +00007535 }
7536 }
dan33ea4862014-10-09 19:35:37 +00007537
7538 /* Insert new divider cells into pParent. */
7539 for(i=0; i<nNew-1; i++){
7540 u8 *pCell;
7541 u8 *pTemp;
7542 int sz;
7543 MemPage *pNew = apNew[i];
7544 j = cntNew[i];
7545
7546 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007547 assert( b.apCell[j]!=0 );
7548 pCell = b.apCell[j];
7549 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007550 pTemp = &aOvflSpace[iOvflSpace];
7551 if( !pNew->leaf ){
7552 memcpy(&pNew->aData[8], pCell, 4);
7553 }else if( leafData ){
7554 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007555 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007556 ** cell consists of the integer key for the right-most cell of
7557 ** the sibling-page assembled above only.
7558 */
7559 CellInfo info;
7560 j--;
drh1ffd2472015-06-23 02:37:30 +00007561 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007562 pCell = pTemp;
7563 sz = 4 + putVarint(&pCell[4], info.nKey);
7564 pTemp = 0;
7565 }else{
7566 pCell -= 4;
7567 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7568 ** previously stored on a leaf node, and its reported size was 4
7569 ** bytes, then it may actually be smaller than this
7570 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7571 ** any cell). But it is important to pass the correct size to
7572 ** insertCell(), so reparse the cell now.
7573 **
7574 ** Note that this can never happen in an SQLite data file, as all
7575 ** cells are at least 4 bytes. It only happens in b-trees used
7576 ** to evaluate "IN (SELECT ...)" and similar clauses.
7577 */
drh1ffd2472015-06-23 02:37:30 +00007578 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007579 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007580 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007581 }
7582 }
7583 iOvflSpace += sz;
7584 assert( sz<=pBt->maxLocal+23 );
7585 assert( iOvflSpace <= (int)pBt->pageSize );
7586 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7587 if( rc!=SQLITE_OK ) goto balance_cleanup;
7588 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7589 }
7590
7591 /* Now update the actual sibling pages. The order in which they are updated
7592 ** is important, as this code needs to avoid disrupting any page from which
7593 ** cells may still to be read. In practice, this means:
7594 **
drhd836d422014-10-31 14:26:36 +00007595 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7596 ** then it is not safe to update page apNew[iPg] until after
7597 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007598 **
drhd836d422014-10-31 14:26:36 +00007599 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7600 ** then it is not safe to update page apNew[iPg] until after
7601 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007602 **
7603 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007604 **
7605 ** The iPg value in the following loop starts at nNew-1 goes down
7606 ** to 0, then back up to nNew-1 again, thus making two passes over
7607 ** the pages. On the initial downward pass, only condition (1) above
7608 ** needs to be tested because (2) will always be true from the previous
7609 ** step. On the upward pass, both conditions are always true, so the
7610 ** upwards pass simply processes pages that were missed on the downward
7611 ** pass.
dan33ea4862014-10-09 19:35:37 +00007612 */
drhbec021b2014-10-31 12:22:00 +00007613 for(i=1-nNew; i<nNew; i++){
7614 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007615 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007616 if( abDone[iPg] ) continue; /* Skip pages already processed */
7617 if( i>=0 /* On the upwards pass, or... */
7618 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007619 ){
dan09c68402014-10-11 20:00:24 +00007620 int iNew;
7621 int iOld;
7622 int nNewCell;
7623
drhd836d422014-10-31 14:26:36 +00007624 /* Verify condition (1): If cells are moving left, update iPg
7625 ** only after iPg-1 has already been updated. */
7626 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7627
7628 /* Verify condition (2): If cells are moving right, update iPg
7629 ** only after iPg+1 has already been updated. */
7630 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7631
dan09c68402014-10-11 20:00:24 +00007632 if( iPg==0 ){
7633 iNew = iOld = 0;
7634 nNewCell = cntNew[0];
7635 }else{
drh1ffd2472015-06-23 02:37:30 +00007636 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007637 iNew = cntNew[iPg-1] + !leafData;
7638 nNewCell = cntNew[iPg] - iNew;
7639 }
7640
drh1ffd2472015-06-23 02:37:30 +00007641 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007642 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007643 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007644 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007645 assert( apNew[iPg]->nOverflow==0 );
7646 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007647 }
7648 }
drhd836d422014-10-31 14:26:36 +00007649
7650 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007651 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7652
drh7aa8f852006-03-28 00:24:44 +00007653 assert( nOld>0 );
7654 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007655
danielk197713bd99f2009-06-24 05:40:34 +00007656 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7657 /* The root page of the b-tree now contains no cells. The only sibling
7658 ** page is the right-child of the parent. Copy the contents of the
7659 ** child page into the parent, decreasing the overall height of the
7660 ** b-tree structure by one. This is described as the "balance-shallower"
7661 ** sub-algorithm in some documentation.
7662 **
7663 ** If this is an auto-vacuum database, the call to copyNodeContent()
7664 ** sets all pointer-map entries corresponding to database image pages
7665 ** for which the pointer is stored within the content being copied.
7666 **
drh768f2902014-10-31 02:51:41 +00007667 ** It is critical that the child page be defragmented before being
7668 ** copied into the parent, because if the parent is page 1 then it will
7669 ** by smaller than the child due to the database header, and so all the
7670 ** free space needs to be up front.
7671 */
drh9b5351d2015-09-30 14:19:08 +00007672 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007673 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007674 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007675 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007676 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7677 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007678 );
drhc314dc72009-07-21 11:52:34 +00007679 copyNodeContent(apNew[0], pParent, &rc);
7680 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007681 }else if( ISAUTOVACUUM && !leafCorrection ){
7682 /* Fix the pointer map entries associated with the right-child of each
7683 ** sibling page. All other pointer map entries have already been taken
7684 ** care of. */
7685 for(i=0; i<nNew; i++){
7686 u32 key = get4byte(&apNew[i]->aData[8]);
7687 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007688 }
dan33ea4862014-10-09 19:35:37 +00007689 }
danielk19774dbaa892009-06-16 16:50:22 +00007690
dan33ea4862014-10-09 19:35:37 +00007691 assert( pParent->isInit );
7692 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007693 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007694
dan33ea4862014-10-09 19:35:37 +00007695 /* Free any old pages that were not reused as new pages.
7696 */
7697 for(i=nNew; i<nOld; i++){
7698 freePage(apOld[i], &rc);
7699 }
danielk19774dbaa892009-06-16 16:50:22 +00007700
7701#if 0
dan33ea4862014-10-09 19:35:37 +00007702 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007703 /* The ptrmapCheckPages() contains assert() statements that verify that
7704 ** all pointer map pages are set correctly. This is helpful while
7705 ** debugging. This is usually disabled because a corrupt database may
7706 ** cause an assert() statement to fail. */
7707 ptrmapCheckPages(apNew, nNew);
7708 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007709 }
dan33ea4862014-10-09 19:35:37 +00007710#endif
danielk1977cd581a72009-06-23 15:43:39 +00007711
drh8b2f49b2001-06-08 00:21:52 +00007712 /*
drh14acc042001-06-10 19:56:58 +00007713 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007714 */
drh14acc042001-06-10 19:56:58 +00007715balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007716 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007717 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007718 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007719 }
drh14acc042001-06-10 19:56:58 +00007720 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007721 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007722 }
danielk1977eaa06f62008-09-18 17:34:44 +00007723
drh8b2f49b2001-06-08 00:21:52 +00007724 return rc;
7725}
7726
drh43605152004-05-29 21:46:49 +00007727
7728/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007729** This function is called when the root page of a b-tree structure is
7730** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007731**
danielk1977a50d9aa2009-06-08 14:49:45 +00007732** A new child page is allocated and the contents of the current root
7733** page, including overflow cells, are copied into the child. The root
7734** page is then overwritten to make it an empty page with the right-child
7735** pointer pointing to the new page.
7736**
7737** Before returning, all pointer-map entries corresponding to pages
7738** that the new child-page now contains pointers to are updated. The
7739** entry corresponding to the new right-child pointer of the root
7740** page is also updated.
7741**
7742** If successful, *ppChild is set to contain a reference to the child
7743** page and SQLITE_OK is returned. In this case the caller is required
7744** to call releasePage() on *ppChild exactly once. If an error occurs,
7745** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007746*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007747static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7748 int rc; /* Return value from subprocedures */
7749 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007750 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007751 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007752
danielk1977a50d9aa2009-06-08 14:49:45 +00007753 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007754 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007755
danielk1977a50d9aa2009-06-08 14:49:45 +00007756 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7757 ** page that will become the new right-child of pPage. Copy the contents
7758 ** of the node stored on pRoot into the new child page.
7759 */
drh98add2e2009-07-20 17:11:49 +00007760 rc = sqlite3PagerWrite(pRoot->pDbPage);
7761 if( rc==SQLITE_OK ){
7762 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007763 copyNodeContent(pRoot, pChild, &rc);
7764 if( ISAUTOVACUUM ){
7765 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007766 }
7767 }
7768 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007769 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007770 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007771 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007772 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007773 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7774 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7775 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007776
danielk1977a50d9aa2009-06-08 14:49:45 +00007777 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7778
7779 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007780 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7781 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7782 memcpy(pChild->apOvfl, pRoot->apOvfl,
7783 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007784 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007785
7786 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7787 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7788 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7789
7790 *ppChild = pChild;
7791 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007792}
7793
7794/*
danielk197771d5d2c2008-09-29 11:49:47 +00007795** The page that pCur currently points to has just been modified in
7796** some way. This function figures out if this modification means the
7797** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007798** routine. Balancing routines are:
7799**
7800** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007801** balance_deeper()
7802** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007803*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007804static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007805 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007806 const int nMin = pCur->pBt->usableSize * 2 / 3;
7807 u8 aBalanceQuickSpace[13];
7808 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007809
drhcc5f8a42016-02-06 22:32:06 +00007810 VVA_ONLY( int balance_quick_called = 0 );
7811 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007812
7813 do {
7814 int iPage = pCur->iPage;
7815 MemPage *pPage = pCur->apPage[iPage];
7816
7817 if( iPage==0 ){
7818 if( pPage->nOverflow ){
7819 /* The root page of the b-tree is overfull. In this case call the
7820 ** balance_deeper() function to create a new child for the root-page
7821 ** and copy the current contents of the root-page to it. The
7822 ** next iteration of the do-loop will balance the child page.
7823 */
drhcc5f8a42016-02-06 22:32:06 +00007824 assert( balance_deeper_called==0 );
7825 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007826 rc = balance_deeper(pPage, &pCur->apPage[1]);
7827 if( rc==SQLITE_OK ){
7828 pCur->iPage = 1;
7829 pCur->aiIdx[0] = 0;
7830 pCur->aiIdx[1] = 0;
7831 assert( pCur->apPage[1]->nOverflow );
7832 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007833 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007834 break;
7835 }
7836 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7837 break;
7838 }else{
7839 MemPage * const pParent = pCur->apPage[iPage-1];
7840 int const iIdx = pCur->aiIdx[iPage-1];
7841
7842 rc = sqlite3PagerWrite(pParent->pDbPage);
7843 if( rc==SQLITE_OK ){
7844#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007845 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007846 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007847 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007848 && pParent->pgno!=1
7849 && pParent->nCell==iIdx
7850 ){
7851 /* Call balance_quick() to create a new sibling of pPage on which
7852 ** to store the overflow cell. balance_quick() inserts a new cell
7853 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007854 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007855 ** use either balance_nonroot() or balance_deeper(). Until this
7856 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7857 ** buffer.
7858 **
7859 ** The purpose of the following assert() is to check that only a
7860 ** single call to balance_quick() is made for each call to this
7861 ** function. If this were not verified, a subtle bug involving reuse
7862 ** of the aBalanceQuickSpace[] might sneak in.
7863 */
drhcc5f8a42016-02-06 22:32:06 +00007864 assert( balance_quick_called==0 );
7865 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007866 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7867 }else
7868#endif
7869 {
7870 /* In this case, call balance_nonroot() to redistribute cells
7871 ** between pPage and up to 2 of its sibling pages. This involves
7872 ** modifying the contents of pParent, which may cause pParent to
7873 ** become overfull or underfull. The next iteration of the do-loop
7874 ** will balance the parent page to correct this.
7875 **
7876 ** If the parent page becomes overfull, the overflow cell or cells
7877 ** are stored in the pSpace buffer allocated immediately below.
7878 ** A subsequent iteration of the do-loop will deal with this by
7879 ** calling balance_nonroot() (balance_deeper() may be called first,
7880 ** but it doesn't deal with overflow cells - just moves them to a
7881 ** different page). Once this subsequent call to balance_nonroot()
7882 ** has completed, it is safe to release the pSpace buffer used by
7883 ** the previous call, as the overflow cell data will have been
7884 ** copied either into the body of a database page or into the new
7885 ** pSpace buffer passed to the latter call to balance_nonroot().
7886 */
7887 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007888 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7889 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007890 if( pFree ){
7891 /* If pFree is not NULL, it points to the pSpace buffer used
7892 ** by a previous call to balance_nonroot(). Its contents are
7893 ** now stored either on real database pages or within the
7894 ** new pSpace buffer, so it may be safely freed here. */
7895 sqlite3PageFree(pFree);
7896 }
7897
danielk19774dbaa892009-06-16 16:50:22 +00007898 /* The pSpace buffer will be freed after the next call to
7899 ** balance_nonroot(), or just before this function returns, whichever
7900 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007901 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007902 }
7903 }
7904
7905 pPage->nOverflow = 0;
7906
7907 /* The next iteration of the do-loop balances the parent page. */
7908 releasePage(pPage);
7909 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007910 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007911 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007912 }while( rc==SQLITE_OK );
7913
7914 if( pFree ){
7915 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007916 }
7917 return rc;
7918}
7919
drhf74b8d92002-09-01 23:20:45 +00007920
7921/*
drh3b7511c2001-05-26 13:15:44 +00007922** Insert a new record into the BTree. The key is given by (pKey,nKey)
7923** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007924** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007925** is left pointing at a random location.
7926**
7927** For an INTKEY table, only the nKey value of the key is used. pKey is
7928** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007929**
7930** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007931** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007932** been performed. seekResult is the search result returned (a negative
7933** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007934** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007935** (pKey, nKey)).
7936**
drh3e9ca092009-09-08 01:14:48 +00007937** If the seekResult parameter is non-zero, then the caller guarantees that
7938** cursor pCur is pointing at the existing copy of a row that is to be
7939** overwritten. If the seekResult parameter is 0, then cursor pCur may
7940** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007941** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007942*/
drh3aac2dd2004-04-26 14:10:20 +00007943int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007944 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007945 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007946 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007947 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007948 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007949 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007950){
drh3b7511c2001-05-26 13:15:44 +00007951 int rc;
drh3e9ca092009-09-08 01:14:48 +00007952 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007953 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007954 int idx;
drh3b7511c2001-05-26 13:15:44 +00007955 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007956 Btree *p = pCur->pBtree;
7957 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007958 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007959 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007960
drh98add2e2009-07-20 17:11:49 +00007961 if( pCur->eState==CURSOR_FAULT ){
7962 assert( pCur->skipNext!=SQLITE_OK );
7963 return pCur->skipNext;
7964 }
7965
dan7a2347e2016-01-07 16:43:54 +00007966 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00007967 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7968 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007969 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007970 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7971
danielk197731d31b82009-07-13 13:18:07 +00007972 /* Assert that the caller has been consistent. If this cursor was opened
7973 ** expecting an index b-tree, then the caller should be inserting blob
7974 ** keys with no associated data. If the cursor was opened expecting an
7975 ** intkey table, the caller should be inserting integer keys with a
7976 ** blob of associated data. */
7977 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7978
danielk19779c3acf32009-05-02 07:36:49 +00007979 /* Save the positions of any other cursors open on this table.
7980 **
danielk19773509a652009-07-06 18:56:13 +00007981 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007982 ** example, when inserting data into a table with auto-generated integer
7983 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7984 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007985 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007986 ** that the cursor is already where it needs to be and returns without
7987 ** doing any work. To avoid thwarting these optimizations, it is important
7988 ** not to clear the cursor here.
7989 */
drh27fb7462015-06-30 02:47:36 +00007990 if( pCur->curFlags & BTCF_Multiple ){
7991 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7992 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007993 }
7994
danielk197771d5d2c2008-09-29 11:49:47 +00007995 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007996 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007997 /* If this is an insert into a table b-tree, invalidate any incrblob
7998 ** cursors open on the row being replaced */
drh4a1c3802004-05-12 15:15:47 +00007999 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008000
8001 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008002 ** new row onto the end, set the "loc" to avoid an unnecessary
8003 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00008004 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
8005 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008006 loc = -1;
8007 }else if( loc==0 ){
8008 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
8009 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008010 }
drh207c8172015-06-29 23:01:32 +00008011 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00008012 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8013 if( rc ) return rc;
drhf74b8d92002-09-01 23:20:45 +00008014 }
danielk1977b980d2212009-06-22 18:03:51 +00008015 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
drh3aac2dd2004-04-26 14:10:20 +00008016
drh3b7511c2001-05-26 13:15:44 +00008017 pPage = pCur->apPage[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008018 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008019 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008020
drh3a4c1412004-05-09 20:40:11 +00008021 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8022 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8023 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008024 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008025 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008026 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008027 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008028 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008029 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008030 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008031 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008032 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008033 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008034 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008035 rc = sqlite3PagerWrite(pPage->pDbPage);
8036 if( rc ){
8037 goto end_insert;
8038 }
danielk197771d5d2c2008-09-29 11:49:47 +00008039 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008040 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008041 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008042 }
drh9bfdc252014-09-24 02:05:41 +00008043 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008044 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008045 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008046 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008047 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008048 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008049 }else{
drh4b70f112004-05-02 21:12:19 +00008050 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008051 }
drh98add2e2009-07-20 17:11:49 +00008052 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008053 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008054
mistachkin48864df2013-03-21 21:20:32 +00008055 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008056 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008057 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008058 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008059 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008060 ** Previous versions of SQLite called moveToRoot() to move the cursor
8061 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008062 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8063 ** set the cursor state to "invalid". This makes common insert operations
8064 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008065 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008066 ** There is a subtle but important optimization here too. When inserting
8067 ** multiple records into an intkey b-tree using a single cursor (as can
8068 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8069 ** is advantageous to leave the cursor pointing to the last entry in
8070 ** the b-tree if possible. If the cursor is left pointing to the last
8071 ** entry in the table, and the next row inserted has an integer key
8072 ** larger than the largest existing key, it is possible to insert the
8073 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008074 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008075 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008076 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008077 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008078 rc = balance(pCur);
8079
8080 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008081 ** fails. Internal data structure corruption will result otherwise.
8082 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8083 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008084 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008085 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008086 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008087 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008088
drh2e38c322004-09-03 18:38:44 +00008089end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008090 return rc;
8091}
8092
8093/*
danf0ee1d32015-09-12 19:26:11 +00008094** Delete the entry that the cursor is pointing to.
8095**
drhe807bdb2016-01-21 17:06:33 +00008096** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8097** the cursor is left pointing at an arbitrary location after the delete.
8098** But if that bit is set, then the cursor is left in a state such that
8099** the next call to BtreeNext() or BtreePrev() moves it to the same row
8100** as it would have been on if the call to BtreeDelete() had been omitted.
8101**
drhdef19e32016-01-27 16:26:25 +00008102** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8103** associated with a single table entry and its indexes. Only one of those
8104** deletes is considered the "primary" delete. The primary delete occurs
8105** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8106** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8107** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008108** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008109*/
drhe807bdb2016-01-21 17:06:33 +00008110int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008111 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008112 BtShared *pBt = p->pBt;
8113 int rc; /* Return code */
8114 MemPage *pPage; /* Page to delete cell from */
8115 unsigned char *pCell; /* Pointer to cell to delete */
8116 int iCellIdx; /* Index of cell to delete */
8117 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008118 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008119 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008120 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008121
dan7a2347e2016-01-07 16:43:54 +00008122 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008123 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008124 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008125 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008126 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8127 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008128 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8129 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008130 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008131
danielk19774dbaa892009-06-16 16:50:22 +00008132 iCellDepth = pCur->iPage;
8133 iCellIdx = pCur->aiIdx[iCellDepth];
8134 pPage = pCur->apPage[iCellDepth];
8135 pCell = findCell(pPage, iCellIdx);
8136
8137 /* If the page containing the entry to delete is not a leaf page, move
8138 ** the cursor to the largest entry in the tree that is smaller than
8139 ** the entry being deleted. This cell will replace the cell being deleted
8140 ** from the internal node. The 'previous' entry is used for this instead
8141 ** of the 'next' entry, as the previous entry is always a part of the
8142 ** sub-tree headed by the child page of the cell being deleted. This makes
8143 ** balancing the tree following the delete operation easier. */
8144 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008145 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008146 rc = sqlite3BtreePrevious(pCur, &notUsed);
8147 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008148 }
8149
8150 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008151 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008152 if( pCur->curFlags & BTCF_Multiple ){
8153 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8154 if( rc ) return rc;
8155 }
drhd60f4f42012-03-23 14:23:52 +00008156
8157 /* If this is a delete operation to remove a row from a table b-tree,
8158 ** invalidate any incrblob cursors open on the row being deleted. */
8159 if( pCur->pKeyInfo==0 ){
8160 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8161 }
8162
danf0ee1d32015-09-12 19:26:11 +00008163 /* If the bPreserve flag is set to true, then the cursor position must
8164 ** be preserved following this delete operation. If the current delete
8165 ** will cause a b-tree rebalance, then this is done by saving the cursor
8166 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8167 ** returning.
8168 **
8169 ** Or, if the current delete will not cause a rebalance, then the cursor
8170 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8171 ** before or after the deleted entry. In this case set bSkipnext to true. */
8172 if( bPreserve ){
8173 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008174 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008175 ){
8176 /* A b-tree rebalance will be required after deleting this entry.
8177 ** Save the cursor key. */
8178 rc = saveCursorKey(pCur);
8179 if( rc ) return rc;
8180 }else{
8181 bSkipnext = 1;
8182 }
8183 }
8184
8185 /* Make the page containing the entry to be deleted writable. Then free any
8186 ** overflow pages associated with the entry and finally remove the cell
8187 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008188 rc = sqlite3PagerWrite(pPage->pDbPage);
8189 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008190 rc = clearCell(pPage, pCell, &szCell);
8191 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008192 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008193
danielk19774dbaa892009-06-16 16:50:22 +00008194 /* If the cell deleted was not located on a leaf page, then the cursor
8195 ** is currently pointing to the largest entry in the sub-tree headed
8196 ** by the child-page of the cell that was just deleted from an internal
8197 ** node. The cell from the leaf node needs to be moved to the internal
8198 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008199 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008200 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8201 int nCell;
8202 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8203 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008204
danielk19774dbaa892009-06-16 16:50:22 +00008205 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008206 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008207 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008208 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008209 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008210 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008211 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008212 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8213 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008214 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008215 }
danielk19774dbaa892009-06-16 16:50:22 +00008216
8217 /* Balance the tree. If the entry deleted was located on a leaf page,
8218 ** then the cursor still points to that page. In this case the first
8219 ** call to balance() repairs the tree, and the if(...) condition is
8220 ** never true.
8221 **
8222 ** Otherwise, if the entry deleted was on an internal node page, then
8223 ** pCur is pointing to the leaf page from which a cell was removed to
8224 ** replace the cell deleted from the internal node. This is slightly
8225 ** tricky as the leaf node may be underfull, and the internal node may
8226 ** be either under or overfull. In this case run the balancing algorithm
8227 ** on the leaf node first. If the balance proceeds far enough up the
8228 ** tree that we can be sure that any problem in the internal node has
8229 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8230 ** walk the cursor up the tree to the internal node and balance it as
8231 ** well. */
8232 rc = balance(pCur);
8233 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8234 while( pCur->iPage>iCellDepth ){
8235 releasePage(pCur->apPage[pCur->iPage--]);
8236 }
8237 rc = balance(pCur);
8238 }
8239
danielk19776b456a22005-03-21 04:04:02 +00008240 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008241 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008242 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008243 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008244 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008245 pCur->eState = CURSOR_SKIPNEXT;
8246 if( iCellIdx>=pPage->nCell ){
8247 pCur->skipNext = -1;
8248 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8249 }else{
8250 pCur->skipNext = 1;
8251 }
8252 }else{
8253 rc = moveToRoot(pCur);
8254 if( bPreserve ){
8255 pCur->eState = CURSOR_REQUIRESEEK;
8256 }
8257 }
danielk19776b456a22005-03-21 04:04:02 +00008258 }
drh5e2f8b92001-05-28 00:41:15 +00008259 return rc;
drh3b7511c2001-05-26 13:15:44 +00008260}
drh8b2f49b2001-06-08 00:21:52 +00008261
8262/*
drhc6b52df2002-01-04 03:09:29 +00008263** Create a new BTree table. Write into *piTable the page
8264** number for the root page of the new table.
8265**
drhab01f612004-05-22 02:55:23 +00008266** The type of type is determined by the flags parameter. Only the
8267** following values of flags are currently in use. Other values for
8268** flags might not work:
8269**
8270** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8271** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008272*/
drhd4187c72010-08-30 22:15:45 +00008273static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008274 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008275 MemPage *pRoot;
8276 Pgno pgnoRoot;
8277 int rc;
drhd4187c72010-08-30 22:15:45 +00008278 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008279
drh1fee73e2007-08-29 04:00:57 +00008280 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008281 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008282 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008283
danielk1977003ba062004-11-04 02:57:33 +00008284#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008285 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008286 if( rc ){
8287 return rc;
8288 }
danielk1977003ba062004-11-04 02:57:33 +00008289#else
danielk1977687566d2004-11-02 12:56:41 +00008290 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008291 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8292 MemPage *pPageMove; /* The page to move to. */
8293
danielk197720713f32007-05-03 11:43:33 +00008294 /* Creating a new table may probably require moving an existing database
8295 ** to make room for the new tables root page. In case this page turns
8296 ** out to be an overflow page, delete all overflow page-map caches
8297 ** held by open cursors.
8298 */
danielk197792d4d7a2007-05-04 12:05:56 +00008299 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008300
danielk1977003ba062004-11-04 02:57:33 +00008301 /* Read the value of meta[3] from the database to determine where the
8302 ** root page of the new table should go. meta[3] is the largest root-page
8303 ** created so far, so the new root-page is (meta[3]+1).
8304 */
danielk1977602b4662009-07-02 07:47:33 +00008305 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008306 pgnoRoot++;
8307
danielk1977599fcba2004-11-08 07:13:13 +00008308 /* The new root-page may not be allocated on a pointer-map page, or the
8309 ** PENDING_BYTE page.
8310 */
drh72190432008-01-31 14:54:43 +00008311 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008312 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008313 pgnoRoot++;
8314 }
drh499e15b2015-05-22 12:37:37 +00008315 assert( pgnoRoot>=3 || CORRUPT_DB );
8316 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008317
8318 /* Allocate a page. The page that currently resides at pgnoRoot will
8319 ** be moved to the allocated page (unless the allocated page happens
8320 ** to reside at pgnoRoot).
8321 */
dan51f0b6d2013-02-22 20:16:34 +00008322 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008323 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008324 return rc;
8325 }
danielk1977003ba062004-11-04 02:57:33 +00008326
8327 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008328 /* pgnoRoot is the page that will be used for the root-page of
8329 ** the new table (assuming an error did not occur). But we were
8330 ** allocated pgnoMove. If required (i.e. if it was not allocated
8331 ** by extending the file), the current page at position pgnoMove
8332 ** is already journaled.
8333 */
drheeb844a2009-08-08 18:01:07 +00008334 u8 eType = 0;
8335 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008336
danf7679ad2013-04-03 11:38:36 +00008337 /* Save the positions of any open cursors. This is required in
8338 ** case they are holding a reference to an xFetch reference
8339 ** corresponding to page pgnoRoot. */
8340 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008341 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008342 if( rc!=SQLITE_OK ){
8343 return rc;
8344 }
danielk1977f35843b2007-04-07 15:03:17 +00008345
8346 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008347 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008348 if( rc!=SQLITE_OK ){
8349 return rc;
8350 }
8351 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008352 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8353 rc = SQLITE_CORRUPT_BKPT;
8354 }
8355 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008356 releasePage(pRoot);
8357 return rc;
8358 }
drhccae6022005-02-26 17:31:26 +00008359 assert( eType!=PTRMAP_ROOTPAGE );
8360 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008361 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008362 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008363
8364 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008365 if( rc!=SQLITE_OK ){
8366 return rc;
8367 }
drhb00fc3b2013-08-21 23:42:32 +00008368 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008369 if( rc!=SQLITE_OK ){
8370 return rc;
8371 }
danielk19773b8a05f2007-03-19 17:44:26 +00008372 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008373 if( rc!=SQLITE_OK ){
8374 releasePage(pRoot);
8375 return rc;
8376 }
8377 }else{
8378 pRoot = pPageMove;
8379 }
8380
danielk197742741be2005-01-08 12:42:39 +00008381 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008382 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008383 if( rc ){
8384 releasePage(pRoot);
8385 return rc;
8386 }
drhbf592832010-03-30 15:51:12 +00008387
8388 /* When the new root page was allocated, page 1 was made writable in
8389 ** order either to increase the database filesize, or to decrement the
8390 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8391 */
8392 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008393 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008394 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008395 releasePage(pRoot);
8396 return rc;
8397 }
danielk197742741be2005-01-08 12:42:39 +00008398
danielk1977003ba062004-11-04 02:57:33 +00008399 }else{
drh4f0c5872007-03-26 22:05:01 +00008400 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008401 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008402 }
8403#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008404 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008405 if( createTabFlags & BTREE_INTKEY ){
8406 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8407 }else{
8408 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8409 }
8410 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008411 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008412 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008413 *piTable = (int)pgnoRoot;
8414 return SQLITE_OK;
8415}
drhd677b3d2007-08-20 22:48:41 +00008416int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8417 int rc;
8418 sqlite3BtreeEnter(p);
8419 rc = btreeCreateTable(p, piTable, flags);
8420 sqlite3BtreeLeave(p);
8421 return rc;
8422}
drh8b2f49b2001-06-08 00:21:52 +00008423
8424/*
8425** Erase the given database page and all its children. Return
8426** the page to the freelist.
8427*/
drh4b70f112004-05-02 21:12:19 +00008428static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008429 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008430 Pgno pgno, /* Page number to clear */
8431 int freePageFlag, /* Deallocate page if true */
8432 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008433){
danielk1977146ba992009-07-22 14:08:13 +00008434 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008435 int rc;
drh4b70f112004-05-02 21:12:19 +00008436 unsigned char *pCell;
8437 int i;
dan8ce71842014-01-14 20:14:09 +00008438 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008439 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008440
drh1fee73e2007-08-29 04:00:57 +00008441 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008442 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008443 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008444 }
drh28f58dd2015-06-27 19:45:03 +00008445 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008446 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008447 if( pPage->bBusy ){
8448 rc = SQLITE_CORRUPT_BKPT;
8449 goto cleardatabasepage_out;
8450 }
8451 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008452 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008453 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008454 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008455 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008456 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008457 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008458 }
drh9bfdc252014-09-24 02:05:41 +00008459 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008460 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008461 }
drha34b6762004-05-07 13:30:42 +00008462 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008463 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008464 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008465 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008466 assert( pPage->intKey || CORRUPT_DB );
8467 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008468 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008469 }
8470 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008471 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008472 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008473 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008474 }
danielk19776b456a22005-03-21 04:04:02 +00008475
8476cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008477 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008478 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008479 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008480}
8481
8482/*
drhab01f612004-05-22 02:55:23 +00008483** Delete all information from a single table in the database. iTable is
8484** the page number of the root of the table. After this routine returns,
8485** the root page is empty, but still exists.
8486**
8487** This routine will fail with SQLITE_LOCKED if there are any open
8488** read cursors on the table. Open write cursors are moved to the
8489** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008490**
8491** If pnChange is not NULL, then table iTable must be an intkey table. The
8492** integer value pointed to by pnChange is incremented by the number of
8493** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008494*/
danielk1977c7af4842008-10-27 13:59:33 +00008495int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008496 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008497 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008498 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008499 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008500
drhc046e3e2009-07-15 11:26:44 +00008501 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008502
drhc046e3e2009-07-15 11:26:44 +00008503 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008504 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8505 ** is the root of a table b-tree - if it is not, the following call is
8506 ** a no-op). */
8507 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008508 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008509 }
drhd677b3d2007-08-20 22:48:41 +00008510 sqlite3BtreeLeave(p);
8511 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008512}
8513
8514/*
drh079a3072014-03-19 14:10:55 +00008515** Delete all information from the single table that pCur is open on.
8516**
8517** This routine only work for pCur on an ephemeral table.
8518*/
8519int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8520 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8521}
8522
8523/*
drh8b2f49b2001-06-08 00:21:52 +00008524** Erase all information in a table and add the root of the table to
8525** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008526** page 1) is never added to the freelist.
8527**
8528** This routine will fail with SQLITE_LOCKED if there are any open
8529** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008530**
8531** If AUTOVACUUM is enabled and the page at iTable is not the last
8532** root page in the database file, then the last root page
8533** in the database file is moved into the slot formerly occupied by
8534** iTable and that last slot formerly occupied by the last root page
8535** is added to the freelist instead of iTable. In this say, all
8536** root pages are kept at the beginning of the database file, which
8537** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8538** page number that used to be the last root page in the file before
8539** the move. If no page gets moved, *piMoved is set to 0.
8540** The last root page is recorded in meta[3] and the value of
8541** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008542*/
danielk197789d40042008-11-17 14:20:56 +00008543static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008544 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008545 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008546 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008547
drh1fee73e2007-08-29 04:00:57 +00008548 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008549 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008550
danielk1977e6efa742004-11-10 11:55:10 +00008551 /* It is illegal to drop a table if any cursors are open on the
8552 ** database. This is because in auto-vacuum mode the backend may
8553 ** need to move another root-page to fill a gap left by the deleted
8554 ** root page. If an open cursor was using this page a problem would
8555 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008556 **
8557 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008558 */
drhc046e3e2009-07-15 11:26:44 +00008559 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008560 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8561 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008562 }
danielk1977a0bf2652004-11-04 14:30:04 +00008563
drh055f2982016-01-15 15:06:41 +00008564 /*
8565 ** It is illegal to drop the sqlite_master table on page 1. But again,
8566 ** this error is caught long before reaching this point.
8567 */
8568 if( NEVER(iTable<2) ){
8569 return SQLITE_CORRUPT_BKPT;
8570 }
8571
drhb00fc3b2013-08-21 23:42:32 +00008572 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008573 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008574 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008575 if( rc ){
8576 releasePage(pPage);
8577 return rc;
8578 }
danielk1977a0bf2652004-11-04 14:30:04 +00008579
drh205f48e2004-11-05 00:43:11 +00008580 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008581
danielk1977a0bf2652004-11-04 14:30:04 +00008582#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008583 freePage(pPage, &rc);
8584 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008585#else
drh055f2982016-01-15 15:06:41 +00008586 if( pBt->autoVacuum ){
8587 Pgno maxRootPgno;
8588 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008589
drh055f2982016-01-15 15:06:41 +00008590 if( iTable==maxRootPgno ){
8591 /* If the table being dropped is the table with the largest root-page
8592 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008593 */
drhc314dc72009-07-21 11:52:34 +00008594 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008595 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008596 if( rc!=SQLITE_OK ){
8597 return rc;
8598 }
8599 }else{
8600 /* The table being dropped does not have the largest root-page
8601 ** number in the database. So move the page that does into the
8602 ** gap left by the deleted root-page.
8603 */
8604 MemPage *pMove;
8605 releasePage(pPage);
8606 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8607 if( rc!=SQLITE_OK ){
8608 return rc;
8609 }
8610 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8611 releasePage(pMove);
8612 if( rc!=SQLITE_OK ){
8613 return rc;
8614 }
8615 pMove = 0;
8616 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8617 freePage(pMove, &rc);
8618 releasePage(pMove);
8619 if( rc!=SQLITE_OK ){
8620 return rc;
8621 }
8622 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008623 }
drh055f2982016-01-15 15:06:41 +00008624
8625 /* Set the new 'max-root-page' value in the database header. This
8626 ** is the old value less one, less one more if that happens to
8627 ** be a root-page number, less one again if that is the
8628 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008629 */
drh055f2982016-01-15 15:06:41 +00008630 maxRootPgno--;
8631 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8632 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8633 maxRootPgno--;
8634 }
8635 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8636
8637 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8638 }else{
8639 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008640 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008641 }
drh055f2982016-01-15 15:06:41 +00008642#endif
drh8b2f49b2001-06-08 00:21:52 +00008643 return rc;
8644}
drhd677b3d2007-08-20 22:48:41 +00008645int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8646 int rc;
8647 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008648 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008649 sqlite3BtreeLeave(p);
8650 return rc;
8651}
drh8b2f49b2001-06-08 00:21:52 +00008652
drh001bbcb2003-03-19 03:14:00 +00008653
drh8b2f49b2001-06-08 00:21:52 +00008654/*
danielk1977602b4662009-07-02 07:47:33 +00008655** This function may only be called if the b-tree connection already
8656** has a read or write transaction open on the database.
8657**
drh23e11ca2004-05-04 17:27:28 +00008658** Read the meta-information out of a database file. Meta[0]
8659** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008660** through meta[15] are available for use by higher layers. Meta[0]
8661** is read-only, the others are read/write.
8662**
8663** The schema layer numbers meta values differently. At the schema
8664** layer (and the SetCookie and ReadCookie opcodes) the number of
8665** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008666**
8667** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8668** of reading the value out of the header, it instead loads the "DataVersion"
8669** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8670** database file. It is a number computed by the pager. But its access
8671** pattern is the same as header meta values, and so it is convenient to
8672** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008673*/
danielk1977602b4662009-07-02 07:47:33 +00008674void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008675 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008676
drhd677b3d2007-08-20 22:48:41 +00008677 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008678 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008679 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008680 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008681 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008682
drh91618562014-12-19 19:28:02 +00008683 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008684 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008685 }else{
8686 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8687 }
drhae157872004-08-14 19:20:09 +00008688
danielk1977602b4662009-07-02 07:47:33 +00008689 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8690 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008691#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008692 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8693 pBt->btsFlags |= BTS_READ_ONLY;
8694 }
danielk1977003ba062004-11-04 02:57:33 +00008695#endif
drhae157872004-08-14 19:20:09 +00008696
drhd677b3d2007-08-20 22:48:41 +00008697 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008698}
8699
8700/*
drh23e11ca2004-05-04 17:27:28 +00008701** Write meta-information back into the database. Meta[0] is
8702** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008703*/
danielk1977aef0bf62005-12-30 16:28:01 +00008704int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8705 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008706 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008707 int rc;
drh23e11ca2004-05-04 17:27:28 +00008708 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008709 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008710 assert( p->inTrans==TRANS_WRITE );
8711 assert( pBt->pPage1!=0 );
8712 pP1 = pBt->pPage1->aData;
8713 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8714 if( rc==SQLITE_OK ){
8715 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008716#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008717 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008718 assert( pBt->autoVacuum || iMeta==0 );
8719 assert( iMeta==0 || iMeta==1 );
8720 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008721 }
drh64022502009-01-09 14:11:04 +00008722#endif
drh5df72a52002-06-06 23:16:05 +00008723 }
drhd677b3d2007-08-20 22:48:41 +00008724 sqlite3BtreeLeave(p);
8725 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008726}
drh8c42ca92001-06-22 19:15:00 +00008727
danielk1977a5533162009-02-24 10:01:51 +00008728#ifndef SQLITE_OMIT_BTREECOUNT
8729/*
8730** The first argument, pCur, is a cursor opened on some b-tree. Count the
8731** number of entries in the b-tree and write the result to *pnEntry.
8732**
8733** SQLITE_OK is returned if the operation is successfully executed.
8734** Otherwise, if an error is encountered (i.e. an IO error or database
8735** corruption) an SQLite error code is returned.
8736*/
8737int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8738 i64 nEntry = 0; /* Value to return in *pnEntry */
8739 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008740
8741 if( pCur->pgnoRoot==0 ){
8742 *pnEntry = 0;
8743 return SQLITE_OK;
8744 }
danielk1977a5533162009-02-24 10:01:51 +00008745 rc = moveToRoot(pCur);
8746
8747 /* Unless an error occurs, the following loop runs one iteration for each
8748 ** page in the B-Tree structure (not including overflow pages).
8749 */
8750 while( rc==SQLITE_OK ){
8751 int iIdx; /* Index of child node in parent */
8752 MemPage *pPage; /* Current page of the b-tree */
8753
8754 /* If this is a leaf page or the tree is not an int-key tree, then
8755 ** this page contains countable entries. Increment the entry counter
8756 ** accordingly.
8757 */
8758 pPage = pCur->apPage[pCur->iPage];
8759 if( pPage->leaf || !pPage->intKey ){
8760 nEntry += pPage->nCell;
8761 }
8762
8763 /* pPage is a leaf node. This loop navigates the cursor so that it
8764 ** points to the first interior cell that it points to the parent of
8765 ** the next page in the tree that has not yet been visited. The
8766 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8767 ** of the page, or to the number of cells in the page if the next page
8768 ** to visit is the right-child of its parent.
8769 **
8770 ** If all pages in the tree have been visited, return SQLITE_OK to the
8771 ** caller.
8772 */
8773 if( pPage->leaf ){
8774 do {
8775 if( pCur->iPage==0 ){
8776 /* All pages of the b-tree have been visited. Return successfully. */
8777 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008778 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008779 }
danielk197730548662009-07-09 05:07:37 +00008780 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008781 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8782
8783 pCur->aiIdx[pCur->iPage]++;
8784 pPage = pCur->apPage[pCur->iPage];
8785 }
8786
8787 /* Descend to the child node of the cell that the cursor currently
8788 ** points at. This is the right-child if (iIdx==pPage->nCell).
8789 */
8790 iIdx = pCur->aiIdx[pCur->iPage];
8791 if( iIdx==pPage->nCell ){
8792 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8793 }else{
8794 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8795 }
8796 }
8797
shanebe217792009-03-05 04:20:31 +00008798 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008799 return rc;
8800}
8801#endif
drhdd793422001-06-28 01:54:48 +00008802
drhdd793422001-06-28 01:54:48 +00008803/*
drh5eddca62001-06-30 21:53:53 +00008804** Return the pager associated with a BTree. This routine is used for
8805** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008806*/
danielk1977aef0bf62005-12-30 16:28:01 +00008807Pager *sqlite3BtreePager(Btree *p){
8808 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008809}
drh5eddca62001-06-30 21:53:53 +00008810
drhb7f91642004-10-31 02:22:47 +00008811#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008812/*
8813** Append a message to the error message string.
8814*/
drh2e38c322004-09-03 18:38:44 +00008815static void checkAppendMsg(
8816 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008817 const char *zFormat,
8818 ...
8819){
8820 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008821 if( !pCheck->mxErr ) return;
8822 pCheck->mxErr--;
8823 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008824 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008825 if( pCheck->errMsg.nChar ){
8826 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008827 }
drh867db832014-09-26 02:41:05 +00008828 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008829 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008830 }
drh5f4a6862016-01-30 12:50:25 +00008831 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008832 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008833 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008834 pCheck->mallocFailed = 1;
8835 }
drh5eddca62001-06-30 21:53:53 +00008836}
drhb7f91642004-10-31 02:22:47 +00008837#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008838
drhb7f91642004-10-31 02:22:47 +00008839#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008840
8841/*
8842** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8843** corresponds to page iPg is already set.
8844*/
8845static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8846 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8847 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8848}
8849
8850/*
8851** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8852*/
8853static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8854 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8855 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8856}
8857
8858
drh5eddca62001-06-30 21:53:53 +00008859/*
8860** Add 1 to the reference count for page iPage. If this is the second
8861** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008862** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008863** if this is the first reference to the page.
8864**
8865** Also check that the page number is in bounds.
8866*/
drh867db832014-09-26 02:41:05 +00008867static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008868 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008869 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008870 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008871 return 1;
8872 }
dan1235bb12012-04-03 17:43:28 +00008873 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008874 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008875 return 1;
8876 }
dan1235bb12012-04-03 17:43:28 +00008877 setPageReferenced(pCheck, iPage);
8878 return 0;
drh5eddca62001-06-30 21:53:53 +00008879}
8880
danielk1977afcdd022004-10-31 16:25:42 +00008881#ifndef SQLITE_OMIT_AUTOVACUUM
8882/*
8883** Check that the entry in the pointer-map for page iChild maps to
8884** page iParent, pointer type ptrType. If not, append an error message
8885** to pCheck.
8886*/
8887static void checkPtrmap(
8888 IntegrityCk *pCheck, /* Integrity check context */
8889 Pgno iChild, /* Child page number */
8890 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008891 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008892){
8893 int rc;
8894 u8 ePtrmapType;
8895 Pgno iPtrmapParent;
8896
8897 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8898 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008899 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008900 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008901 return;
8902 }
8903
8904 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008905 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008906 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8907 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8908 }
8909}
8910#endif
8911
drh5eddca62001-06-30 21:53:53 +00008912/*
8913** Check the integrity of the freelist or of an overflow page list.
8914** Verify that the number of pages on the list is N.
8915*/
drh30e58752002-03-02 20:41:57 +00008916static void checkList(
8917 IntegrityCk *pCheck, /* Integrity checking context */
8918 int isFreeList, /* True for a freelist. False for overflow page list */
8919 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008920 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008921){
8922 int i;
drh3a4c1412004-05-09 20:40:11 +00008923 int expected = N;
8924 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008925 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008926 DbPage *pOvflPage;
8927 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008928 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008929 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008930 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008931 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008932 break;
8933 }
drh867db832014-09-26 02:41:05 +00008934 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008935 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008936 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008937 break;
8938 }
danielk19773b8a05f2007-03-19 17:44:26 +00008939 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008940 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008941 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008942#ifndef SQLITE_OMIT_AUTOVACUUM
8943 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008944 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008945 }
8946#endif
drh43b18e12010-08-17 19:40:08 +00008947 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008948 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008949 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008950 N--;
8951 }else{
8952 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008953 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008954#ifndef SQLITE_OMIT_AUTOVACUUM
8955 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008956 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008957 }
8958#endif
drh867db832014-09-26 02:41:05 +00008959 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008960 }
8961 N -= n;
drh30e58752002-03-02 20:41:57 +00008962 }
drh30e58752002-03-02 20:41:57 +00008963 }
danielk1977afcdd022004-10-31 16:25:42 +00008964#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008965 else{
8966 /* If this database supports auto-vacuum and iPage is not the last
8967 ** page in this overflow list, check that the pointer-map entry for
8968 ** the following page matches iPage.
8969 */
8970 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008971 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008972 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008973 }
danielk1977afcdd022004-10-31 16:25:42 +00008974 }
8975#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008976 iPage = get4byte(pOvflData);
8977 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008978
8979 if( isFreeList && N<(iPage!=0) ){
8980 checkAppendMsg(pCheck, "free-page count in header is too small");
8981 }
drh5eddca62001-06-30 21:53:53 +00008982 }
8983}
drhb7f91642004-10-31 02:22:47 +00008984#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008985
drh67731a92015-04-16 11:56:03 +00008986/*
8987** An implementation of a min-heap.
8988**
8989** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008990** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008991** and aHeap[N*2+1].
8992**
8993** The heap property is this: Every node is less than or equal to both
8994** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008995** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008996**
8997** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8998** the heap, preserving the heap property. The btreeHeapPull() routine
8999** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009000** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009001** property.
9002**
9003** This heap is used for cell overlap and coverage testing. Each u32
9004** entry represents the span of a cell or freeblock on a btree page.
9005** The upper 16 bits are the index of the first byte of a range and the
9006** lower 16 bits are the index of the last byte of that range.
9007*/
9008static void btreeHeapInsert(u32 *aHeap, u32 x){
9009 u32 j, i = ++aHeap[0];
9010 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009011 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009012 x = aHeap[j];
9013 aHeap[j] = aHeap[i];
9014 aHeap[i] = x;
9015 i = j;
9016 }
9017}
9018static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9019 u32 j, i, x;
9020 if( (x = aHeap[0])==0 ) return 0;
9021 *pOut = aHeap[1];
9022 aHeap[1] = aHeap[x];
9023 aHeap[x] = 0xffffffff;
9024 aHeap[0]--;
9025 i = 1;
9026 while( (j = i*2)<=aHeap[0] ){
9027 if( aHeap[j]>aHeap[j+1] ) j++;
9028 if( aHeap[i]<aHeap[j] ) break;
9029 x = aHeap[i];
9030 aHeap[i] = aHeap[j];
9031 aHeap[j] = x;
9032 i = j;
9033 }
9034 return 1;
9035}
9036
drhb7f91642004-10-31 02:22:47 +00009037#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009038/*
9039** Do various sanity checks on a single page of a tree. Return
9040** the tree depth. Root pages return 0. Parents of root pages
9041** return 1, and so forth.
9042**
9043** These checks are done:
9044**
9045** 1. Make sure that cells and freeblocks do not overlap
9046** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009047** 2. Make sure integer cell keys are in order.
9048** 3. Check the integrity of overflow pages.
9049** 4. Recursively call checkTreePage on all children.
9050** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009051*/
9052static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009053 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009054 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009055 i64 *piMinKey, /* Write minimum integer primary key here */
9056 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009057){
drhcbc6b712015-07-02 16:17:30 +00009058 MemPage *pPage = 0; /* The page being analyzed */
9059 int i; /* Loop counter */
9060 int rc; /* Result code from subroutine call */
9061 int depth = -1, d2; /* Depth of a subtree */
9062 int pgno; /* Page number */
9063 int nFrag; /* Number of fragmented bytes on the page */
9064 int hdr; /* Offset to the page header */
9065 int cellStart; /* Offset to the start of the cell pointer array */
9066 int nCell; /* Number of cells */
9067 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9068 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9069 ** False if IPK must be strictly less than maxKey */
9070 u8 *data; /* Page content */
9071 u8 *pCell; /* Cell content */
9072 u8 *pCellIdx; /* Next element of the cell pointer array */
9073 BtShared *pBt; /* The BtShared object that owns pPage */
9074 u32 pc; /* Address of a cell */
9075 u32 usableSize; /* Usable size of the page */
9076 u32 contentOffset; /* Offset to the start of the cell content area */
9077 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009078 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009079 const char *saved_zPfx = pCheck->zPfx;
9080 int saved_v1 = pCheck->v1;
9081 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009082 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009083
drh5eddca62001-06-30 21:53:53 +00009084 /* Check that the page exists
9085 */
drhd9cb6ac2005-10-20 07:28:17 +00009086 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009087 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009088 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009089 if( checkRef(pCheck, iPage) ) return 0;
9090 pCheck->zPfx = "Page %d: ";
9091 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009092 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009093 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009094 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009095 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009096 }
danielk197793caf5a2009-07-11 06:55:33 +00009097
9098 /* Clear MemPage.isInit to make sure the corruption detection code in
9099 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009100 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009101 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009102 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009103 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009104 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009105 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009106 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009107 }
drhcbc6b712015-07-02 16:17:30 +00009108 data = pPage->aData;
9109 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009110
drhcbc6b712015-07-02 16:17:30 +00009111 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009112 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009113 contentOffset = get2byteNotZero(&data[hdr+5]);
9114 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9115
9116 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9117 ** number of cells on the page. */
9118 nCell = get2byte(&data[hdr+3]);
9119 assert( pPage->nCell==nCell );
9120
9121 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9122 ** immediately follows the b-tree page header. */
9123 cellStart = hdr + 12 - 4*pPage->leaf;
9124 assert( pPage->aCellIdx==&data[cellStart] );
9125 pCellIdx = &data[cellStart + 2*(nCell-1)];
9126
9127 if( !pPage->leaf ){
9128 /* Analyze the right-child page of internal pages */
9129 pgno = get4byte(&data[hdr+8]);
9130#ifndef SQLITE_OMIT_AUTOVACUUM
9131 if( pBt->autoVacuum ){
9132 pCheck->zPfx = "On page %d at right child: ";
9133 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9134 }
9135#endif
9136 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9137 keyCanBeEqual = 0;
9138 }else{
9139 /* For leaf pages, the coverage check will occur in the same loop
9140 ** as the other cell checks, so initialize the heap. */
9141 heap = pCheck->heap;
9142 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009143 }
9144
drhcbc6b712015-07-02 16:17:30 +00009145 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9146 ** integer offsets to the cell contents. */
9147 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009148 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009149
drhcbc6b712015-07-02 16:17:30 +00009150 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009151 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009152 assert( pCellIdx==&data[cellStart + i*2] );
9153 pc = get2byteAligned(pCellIdx);
9154 pCellIdx -= 2;
9155 if( pc<contentOffset || pc>usableSize-4 ){
9156 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9157 pc, contentOffset, usableSize-4);
9158 doCoverageCheck = 0;
9159 continue;
shaneh195475d2010-02-19 04:28:08 +00009160 }
drhcbc6b712015-07-02 16:17:30 +00009161 pCell = &data[pc];
9162 pPage->xParseCell(pPage, pCell, &info);
9163 if( pc+info.nSize>usableSize ){
9164 checkAppendMsg(pCheck, "Extends off end of page");
9165 doCoverageCheck = 0;
9166 continue;
drh5eddca62001-06-30 21:53:53 +00009167 }
9168
drhcbc6b712015-07-02 16:17:30 +00009169 /* Check for integer primary key out of range */
9170 if( pPage->intKey ){
9171 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9172 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9173 }
9174 maxKey = info.nKey;
9175 }
9176
9177 /* Check the content overflow list */
9178 if( info.nPayload>info.nLocal ){
9179 int nPage; /* Number of pages on the overflow chain */
9180 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009181 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009182 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009183 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009184#ifndef SQLITE_OMIT_AUTOVACUUM
9185 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009186 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009187 }
9188#endif
drh867db832014-09-26 02:41:05 +00009189 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009190 }
9191
drh5eddca62001-06-30 21:53:53 +00009192 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009193 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009194 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009195#ifndef SQLITE_OMIT_AUTOVACUUM
9196 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009197 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009198 }
9199#endif
drhcbc6b712015-07-02 16:17:30 +00009200 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9201 keyCanBeEqual = 0;
9202 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009203 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009204 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009205 }
drhcbc6b712015-07-02 16:17:30 +00009206 }else{
9207 /* Populate the coverage-checking heap for leaf pages */
9208 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009209 }
9210 }
drhcbc6b712015-07-02 16:17:30 +00009211 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009212
drh5eddca62001-06-30 21:53:53 +00009213 /* Check for complete coverage of the page
9214 */
drh867db832014-09-26 02:41:05 +00009215 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009216 if( doCoverageCheck && pCheck->mxErr>0 ){
9217 /* For leaf pages, the min-heap has already been initialized and the
9218 ** cells have already been inserted. But for internal pages, that has
9219 ** not yet been done, so do it now */
9220 if( !pPage->leaf ){
9221 heap = pCheck->heap;
9222 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009223 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009224 u32 size;
9225 pc = get2byteAligned(&data[cellStart+i*2]);
9226 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009227 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009228 }
drh2e38c322004-09-03 18:38:44 +00009229 }
drhcbc6b712015-07-02 16:17:30 +00009230 /* Add the freeblocks to the min-heap
9231 **
9232 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009233 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009234 ** freeblocks on the page.
9235 */
drh8c2bbb62009-07-10 02:52:20 +00009236 i = get2byte(&data[hdr+1]);
9237 while( i>0 ){
9238 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009239 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009240 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009241 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009242 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009243 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9244 ** big-endian integer which is the offset in the b-tree page of the next
9245 ** freeblock in the chain, or zero if the freeblock is the last on the
9246 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009247 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009248 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9249 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009250 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009251 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009252 i = j;
drh2e38c322004-09-03 18:38:44 +00009253 }
drhcbc6b712015-07-02 16:17:30 +00009254 /* Analyze the min-heap looking for overlap between cells and/or
9255 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009256 **
9257 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9258 ** There is an implied first entry the covers the page header, the cell
9259 ** pointer index, and the gap between the cell pointer index and the start
9260 ** of cell content.
9261 **
9262 ** The loop below pulls entries from the min-heap in order and compares
9263 ** the start_address against the previous end_address. If there is an
9264 ** overlap, that means bytes are used multiple times. If there is a gap,
9265 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009266 */
9267 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009268 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009269 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009270 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009271 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009272 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009273 break;
drh67731a92015-04-16 11:56:03 +00009274 }else{
drhcbc6b712015-07-02 16:17:30 +00009275 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009276 prev = x;
drh2e38c322004-09-03 18:38:44 +00009277 }
9278 }
drhcbc6b712015-07-02 16:17:30 +00009279 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009280 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9281 ** is stored in the fifth field of the b-tree page header.
9282 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9283 ** number of fragmented free bytes within the cell content area.
9284 */
drhcbc6b712015-07-02 16:17:30 +00009285 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009286 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009287 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009288 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009289 }
9290 }
drh867db832014-09-26 02:41:05 +00009291
9292end_of_check:
drh72e191e2015-07-04 11:14:20 +00009293 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009294 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009295 pCheck->zPfx = saved_zPfx;
9296 pCheck->v1 = saved_v1;
9297 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009298 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009299}
drhb7f91642004-10-31 02:22:47 +00009300#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009301
drhb7f91642004-10-31 02:22:47 +00009302#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009303/*
9304** This routine does a complete check of the given BTree file. aRoot[] is
9305** an array of pages numbers were each page number is the root page of
9306** a table. nRoot is the number of entries in aRoot.
9307**
danielk19773509a652009-07-06 18:56:13 +00009308** A read-only or read-write transaction must be opened before calling
9309** this function.
9310**
drhc890fec2008-08-01 20:10:08 +00009311** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009312** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009313** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009314** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009315*/
drh1dcdbc02007-01-27 02:24:54 +00009316char *sqlite3BtreeIntegrityCheck(
9317 Btree *p, /* The btree to be checked */
9318 int *aRoot, /* An array of root pages numbers for individual trees */
9319 int nRoot, /* Number of entries in aRoot[] */
9320 int mxErr, /* Stop reporting errors after this many */
9321 int *pnErr /* Write number of errors seen to this variable */
9322){
danielk197789d40042008-11-17 14:20:56 +00009323 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009324 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009325 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009326 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009327 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009328 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009329
drhd677b3d2007-08-20 22:48:41 +00009330 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009331 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009332 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9333 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009334 sCheck.pBt = pBt;
9335 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009336 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009337 sCheck.mxErr = mxErr;
9338 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009339 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009340 sCheck.zPfx = 0;
9341 sCheck.v1 = 0;
9342 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009343 sCheck.aPgRef = 0;
9344 sCheck.heap = 0;
9345 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009346 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009347 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009348 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009349 }
dan1235bb12012-04-03 17:43:28 +00009350
9351 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9352 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009353 sCheck.mallocFailed = 1;
9354 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009355 }
drhe05b3f82015-07-01 17:53:49 +00009356 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9357 if( sCheck.heap==0 ){
9358 sCheck.mallocFailed = 1;
9359 goto integrity_ck_cleanup;
9360 }
9361
drh42cac6d2004-11-20 20:31:11 +00009362 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009363 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009364
9365 /* Check the integrity of the freelist
9366 */
drh867db832014-09-26 02:41:05 +00009367 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009368 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009369 get4byte(&pBt->pPage1->aData[36]));
9370 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009371
9372 /* Check all the tables.
9373 */
drhcbc6b712015-07-02 16:17:30 +00009374 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9375 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009376 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009377 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009378 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009379#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009380 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009381 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009382 }
9383#endif
drhcbc6b712015-07-02 16:17:30 +00009384 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009385 }
drhcbc6b712015-07-02 16:17:30 +00009386 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009387
9388 /* Make sure every page in the file is referenced
9389 */
drh1dcdbc02007-01-27 02:24:54 +00009390 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009391#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009392 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009393 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009394 }
danielk1977afcdd022004-10-31 16:25:42 +00009395#else
9396 /* If the database supports auto-vacuum, make sure no tables contain
9397 ** references to pointer-map pages.
9398 */
dan1235bb12012-04-03 17:43:28 +00009399 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009400 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009401 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009402 }
dan1235bb12012-04-03 17:43:28 +00009403 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009404 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009405 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009406 }
9407#endif
drh5eddca62001-06-30 21:53:53 +00009408 }
9409
drh5eddca62001-06-30 21:53:53 +00009410 /* Clean up and report errors.
9411 */
drhe05b3f82015-07-01 17:53:49 +00009412integrity_ck_cleanup:
9413 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009414 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009415 if( sCheck.mallocFailed ){
9416 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009417 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009418 }
drh1dcdbc02007-01-27 02:24:54 +00009419 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009420 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009421 /* Make sure this analysis did not leave any unref() pages. */
9422 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9423 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009424 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009425}
drhb7f91642004-10-31 02:22:47 +00009426#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009427
drh73509ee2003-04-06 20:44:45 +00009428/*
drhd4e0bb02012-05-27 01:19:04 +00009429** Return the full pathname of the underlying database file. Return
9430** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009431**
9432** The pager filename is invariant as long as the pager is
9433** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009434*/
danielk1977aef0bf62005-12-30 16:28:01 +00009435const char *sqlite3BtreeGetFilename(Btree *p){
9436 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009437 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009438}
9439
9440/*
danielk19775865e3d2004-06-14 06:03:57 +00009441** Return the pathname of the journal file for this database. The return
9442** value of this routine is the same regardless of whether the journal file
9443** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009444**
9445** The pager journal filename is invariant as long as the pager is
9446** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009447*/
danielk1977aef0bf62005-12-30 16:28:01 +00009448const char *sqlite3BtreeGetJournalname(Btree *p){
9449 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009450 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009451}
9452
danielk19771d850a72004-05-31 08:26:49 +00009453/*
9454** Return non-zero if a transaction is active.
9455*/
danielk1977aef0bf62005-12-30 16:28:01 +00009456int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009457 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009458 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009459}
9460
dana550f2d2010-08-02 10:47:05 +00009461#ifndef SQLITE_OMIT_WAL
9462/*
9463** Run a checkpoint on the Btree passed as the first argument.
9464**
9465** Return SQLITE_LOCKED if this or any other connection has an open
9466** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009467**
dancdc1f042010-11-18 12:11:05 +00009468** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009469*/
dancdc1f042010-11-18 12:11:05 +00009470int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009471 int rc = SQLITE_OK;
9472 if( p ){
9473 BtShared *pBt = p->pBt;
9474 sqlite3BtreeEnter(p);
9475 if( pBt->inTransaction!=TRANS_NONE ){
9476 rc = SQLITE_LOCKED;
9477 }else{
dancdc1f042010-11-18 12:11:05 +00009478 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009479 }
9480 sqlite3BtreeLeave(p);
9481 }
9482 return rc;
9483}
9484#endif
9485
danielk19771d850a72004-05-31 08:26:49 +00009486/*
danielk19772372c2b2006-06-27 16:34:56 +00009487** Return non-zero if a read (or write) transaction is active.
9488*/
9489int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009490 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009491 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009492 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009493}
9494
danielk197704103022009-02-03 16:51:24 +00009495int sqlite3BtreeIsInBackup(Btree *p){
9496 assert( p );
9497 assert( sqlite3_mutex_held(p->db->mutex) );
9498 return p->nBackup!=0;
9499}
9500
danielk19772372c2b2006-06-27 16:34:56 +00009501/*
danielk1977da184232006-01-05 11:34:32 +00009502** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009503** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009504** purposes (for example, to store a high-level schema associated with
9505** the shared-btree). The btree layer manages reference counting issues.
9506**
9507** The first time this is called on a shared-btree, nBytes bytes of memory
9508** are allocated, zeroed, and returned to the caller. For each subsequent
9509** call the nBytes parameter is ignored and a pointer to the same blob
9510** of memory returned.
9511**
danielk1977171bfed2008-06-23 09:50:50 +00009512** If the nBytes parameter is 0 and the blob of memory has not yet been
9513** allocated, a null pointer is returned. If the blob has already been
9514** allocated, it is returned as normal.
9515**
danielk1977da184232006-01-05 11:34:32 +00009516** Just before the shared-btree is closed, the function passed as the
9517** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009518** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009519** on the memory, the btree layer does that.
9520*/
9521void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9522 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009523 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009524 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009525 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009526 pBt->xFreeSchema = xFree;
9527 }
drh27641702007-08-22 02:56:42 +00009528 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009529 return pBt->pSchema;
9530}
9531
danielk1977c87d34d2006-01-06 13:00:28 +00009532/*
danielk1977404ca072009-03-16 13:19:36 +00009533** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9534** btree as the argument handle holds an exclusive lock on the
9535** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009536*/
9537int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009538 int rc;
drhe5fe6902007-12-07 18:55:28 +00009539 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009540 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009541 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9542 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009543 sqlite3BtreeLeave(p);
9544 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009545}
9546
drha154dcd2006-03-22 22:10:07 +00009547
9548#ifndef SQLITE_OMIT_SHARED_CACHE
9549/*
9550** Obtain a lock on the table whose root page is iTab. The
9551** lock is a write lock if isWritelock is true or a read lock
9552** if it is false.
9553*/
danielk1977c00da102006-01-07 13:21:04 +00009554int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009555 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009556 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009557 if( p->sharable ){
9558 u8 lockType = READ_LOCK + isWriteLock;
9559 assert( READ_LOCK+1==WRITE_LOCK );
9560 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009561
drh6a9ad3d2008-04-02 16:29:30 +00009562 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009563 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009564 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009565 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009566 }
9567 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009568 }
9569 return rc;
9570}
drha154dcd2006-03-22 22:10:07 +00009571#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009572
danielk1977b4e9af92007-05-01 17:49:49 +00009573#ifndef SQLITE_OMIT_INCRBLOB
9574/*
9575** Argument pCsr must be a cursor opened for writing on an
9576** INTKEY table currently pointing at a valid table entry.
9577** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009578**
9579** Only the data content may only be modified, it is not possible to
9580** change the length of the data stored. If this function is called with
9581** parameters that attempt to write past the end of the existing data,
9582** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009583*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009584int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009585 int rc;
dan7a2347e2016-01-07 16:43:54 +00009586 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009587 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009588 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009589
danielk1977c9000e62009-07-08 13:55:28 +00009590 rc = restoreCursorPosition(pCsr);
9591 if( rc!=SQLITE_OK ){
9592 return rc;
9593 }
danielk19773588ceb2008-06-10 17:30:26 +00009594 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9595 if( pCsr->eState!=CURSOR_VALID ){
9596 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009597 }
9598
dan227a1c42013-04-03 11:17:39 +00009599 /* Save the positions of all other cursors open on this table. This is
9600 ** required in case any of them are holding references to an xFetch
9601 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009602 **
drh3f387402014-09-24 01:23:00 +00009603 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009604 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9605 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009606 */
drh370c9f42013-04-03 20:04:04 +00009607 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9608 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009609
danielk1977c9000e62009-07-08 13:55:28 +00009610 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009611 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009612 ** (b) there is a read/write transaction open,
9613 ** (c) the connection holds a write-lock on the table (if required),
9614 ** (d) there are no conflicting read-locks, and
9615 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009616 */
drh036dbec2014-03-11 23:40:44 +00009617 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009618 return SQLITE_READONLY;
9619 }
drhc9166342012-01-05 23:32:06 +00009620 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9621 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009622 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9623 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009624 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009625
drhfb192682009-07-11 18:26:28 +00009626 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009627}
danielk19772dec9702007-05-02 16:48:37 +00009628
9629/*
dan5a500af2014-03-11 20:33:04 +00009630** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009631*/
dan5a500af2014-03-11 20:33:04 +00009632void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009633 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009634 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009635}
danielk1977b4e9af92007-05-01 17:49:49 +00009636#endif
dane04dc882010-04-20 18:53:15 +00009637
9638/*
9639** Set both the "read version" (single byte at byte offset 18) and
9640** "write version" (single byte at byte offset 19) fields in the database
9641** header to iVersion.
9642*/
9643int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9644 BtShared *pBt = pBtree->pBt;
9645 int rc; /* Return code */
9646
dane04dc882010-04-20 18:53:15 +00009647 assert( iVersion==1 || iVersion==2 );
9648
danb9780022010-04-21 18:37:57 +00009649 /* If setting the version fields to 1, do not automatically open the
9650 ** WAL connection, even if the version fields are currently set to 2.
9651 */
drhc9166342012-01-05 23:32:06 +00009652 pBt->btsFlags &= ~BTS_NO_WAL;
9653 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009654
9655 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009656 if( rc==SQLITE_OK ){
9657 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009658 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009659 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009660 if( rc==SQLITE_OK ){
9661 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9662 if( rc==SQLITE_OK ){
9663 aData[18] = (u8)iVersion;
9664 aData[19] = (u8)iVersion;
9665 }
9666 }
9667 }
dane04dc882010-04-20 18:53:15 +00009668 }
9669
drhc9166342012-01-05 23:32:06 +00009670 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009671 return rc;
9672}
dan428c2182012-08-06 18:50:11 +00009673
drhe0997b32015-03-20 14:57:50 +00009674/*
9675** Return true if the cursor has a hint specified. This routine is
9676** only used from within assert() statements
9677*/
9678int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9679 return (pCsr->hints & mask)!=0;
9680}
drhe0997b32015-03-20 14:57:50 +00009681
drh781597f2014-05-21 08:21:07 +00009682/*
9683** Return true if the given Btree is read-only.
9684*/
9685int sqlite3BtreeIsReadonly(Btree *p){
9686 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9687}
drhdef68892014-11-04 12:11:23 +00009688
9689/*
9690** Return the size of the header added to each page by this module.
9691*/
drh37c057b2014-12-30 00:57:29 +00009692int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009693
drh5a1fb182016-01-08 19:34:39 +00009694#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009695/*
9696** Return true if the Btree passed as the only argument is sharable.
9697*/
9698int sqlite3BtreeSharable(Btree *p){
9699 return p->sharable;
9700}
drh5a1fb182016-01-08 19:34:39 +00009701#endif