blob: a73896e1610e48a28d10e8b1c6c66676a2423869 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
663 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000664 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000665 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000666 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000667 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000668 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000669 if( rc==SQLITE_OK ){
670 pCur->pKey = pKey;
671 }else{
672 sqlite3_free(pKey);
673 }
674 }else{
mistachkinfad30392016-02-13 23:43:46 +0000675 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000676 }
677 }
678 assert( !pCur->curIntKey || !pCur->pKey );
679 return rc;
680}
drh138eeeb2013-03-27 03:15:23 +0000681
682/*
drh980b1a72006-08-16 16:42:48 +0000683** Save the current cursor position in the variables BtCursor.nKey
684** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000685**
686** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000688*/
689static int saveCursorPosition(BtCursor *pCur){
690 int rc;
691
drhd2f83132015-03-25 17:35:01 +0000692 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000693 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000694 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000695
drhd2f83132015-03-25 17:35:01 +0000696 if( pCur->eState==CURSOR_SKIPNEXT ){
697 pCur->eState = CURSOR_VALID;
698 }else{
699 pCur->skipNext = 0;
700 }
drh980b1a72006-08-16 16:42:48 +0000701
danf0ee1d32015-09-12 19:26:11 +0000702 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000703 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000704 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000705 pCur->eState = CURSOR_REQUIRESEEK;
706 }
707
dane755e102015-09-30 12:59:12 +0000708 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000709 return rc;
710}
711
drh637f3d82014-08-22 22:26:07 +0000712/* Forward reference */
713static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
714
drh980b1a72006-08-16 16:42:48 +0000715/*
drh0ee3dbe2009-10-16 15:05:18 +0000716** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000717** the table with root-page iRoot. "Saving the cursor position" means that
718** the location in the btree is remembered in such a way that it can be
719** moved back to the same spot after the btree has been modified. This
720** routine is called just before cursor pExcept is used to modify the
721** table, for example in BtreeDelete() or BtreeInsert().
722**
drh27fb7462015-06-30 02:47:36 +0000723** If there are two or more cursors on the same btree, then all such
724** cursors should have their BTCF_Multiple flag set. The btreeCursor()
725** routine enforces that rule. This routine only needs to be called in
726** the uncommon case when pExpect has the BTCF_Multiple flag set.
727**
728** If pExpect!=NULL and if no other cursors are found on the same root-page,
729** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730** pointless call to this routine.
731**
drh637f3d82014-08-22 22:26:07 +0000732** Implementation note: This routine merely checks to see if any cursors
733** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
734** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000735*/
736static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
737 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000738 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000739 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000740 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000741 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
742 }
drh27fb7462015-06-30 02:47:36 +0000743 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
744 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
745 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000746}
747
748/* This helper routine to saveAllCursors does the actual work of saving
749** the cursors if and when a cursor is found that actually requires saving.
750** The common case is that no cursors need to be saved, so this routine is
751** broken out from its caller to avoid unnecessary stack pointer movement.
752*/
753static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000754 BtCursor *p, /* The first cursor that needs saving */
755 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
756 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000757){
758 do{
drh138eeeb2013-03-27 03:15:23 +0000759 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000760 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000761 int rc = saveCursorPosition(p);
762 if( SQLITE_OK!=rc ){
763 return rc;
764 }
765 }else{
drh85ef6302017-08-02 15:50:09 +0000766 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000767 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000768 }
769 }
drh637f3d82014-08-22 22:26:07 +0000770 p = p->pNext;
771 }while( p );
drh980b1a72006-08-16 16:42:48 +0000772 return SQLITE_OK;
773}
774
775/*
drhbf700f32007-03-31 02:36:44 +0000776** Clear the current cursor position.
777*/
danielk1977be51a652008-10-08 17:58:48 +0000778void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000779 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000780 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000781 pCur->pKey = 0;
782 pCur->eState = CURSOR_INVALID;
783}
784
785/*
danielk19773509a652009-07-06 18:56:13 +0000786** In this version of BtreeMoveto, pKey is a packed index record
787** such as is generated by the OP_MakeRecord opcode. Unpack the
788** record and then call BtreeMovetoUnpacked() to do the work.
789*/
790static int btreeMoveto(
791 BtCursor *pCur, /* Cursor open on the btree to be searched */
792 const void *pKey, /* Packed key if the btree is an index */
793 i64 nKey, /* Integer key for tables. Size of pKey for indices */
794 int bias, /* Bias search to the high end */
795 int *pRes /* Write search results here */
796){
797 int rc; /* Status code */
798 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000799
800 if( pKey ){
801 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000802 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000803 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000804 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000805 if( pIdxKey->nField==0 ){
mistachkin88a79732017-09-04 19:31:54 +0000806 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000807 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000808 }
danielk19773509a652009-07-06 18:56:13 +0000809 }else{
810 pIdxKey = 0;
811 }
812 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000813moveto_done:
814 if( pIdxKey ){
815 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000816 }
817 return rc;
818}
819
820/*
drh980b1a72006-08-16 16:42:48 +0000821** Restore the cursor to the position it was in (or as close to as possible)
822** when saveCursorPosition() was called. Note that this call deletes the
823** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000824** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000825** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000826*/
danielk197730548662009-07-09 05:07:37 +0000827static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000828 int rc;
drhd2f83132015-03-25 17:35:01 +0000829 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000830 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000831 assert( pCur->eState>=CURSOR_REQUIRESEEK );
832 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000833 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000834 }
drh980b1a72006-08-16 16:42:48 +0000835 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000836 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000837 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000838 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000839 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000840 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000841 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000842 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
843 pCur->eState = CURSOR_SKIPNEXT;
844 }
drh980b1a72006-08-16 16:42:48 +0000845 }
846 return rc;
847}
848
drha3460582008-07-11 21:02:53 +0000849#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000850 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000851 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000852 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000853
drha3460582008-07-11 21:02:53 +0000854/*
drh6848dad2014-08-22 23:33:03 +0000855** Determine whether or not a cursor has moved from the position where
856** it was last placed, or has been invalidated for any other reason.
857** Cursors can move when the row they are pointing at is deleted out
858** from under them, for example. Cursor might also move if a btree
859** is rebalanced.
drha3460582008-07-11 21:02:53 +0000860**
drh6848dad2014-08-22 23:33:03 +0000861** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000862**
drh6848dad2014-08-22 23:33:03 +0000863** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000865*/
drh6848dad2014-08-22 23:33:03 +0000866int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000867 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000868}
869
870/*
drhfe0cf7a2017-08-16 19:20:20 +0000871** Return a pointer to a fake BtCursor object that will always answer
872** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
873** cursor returned must not be used with any other Btree interface.
874*/
875BtCursor *sqlite3BtreeFakeValidCursor(void){
876 static u8 fakeCursor = CURSOR_VALID;
877 assert( offsetof(BtCursor, eState)==0 );
878 return (BtCursor*)&fakeCursor;
879}
880
881/*
drh6848dad2014-08-22 23:33:03 +0000882** This routine restores a cursor back to its original position after it
883** has been moved by some outside activity (such as a btree rebalance or
884** a row having been deleted out from under the cursor).
885**
886** On success, the *pDifferentRow parameter is false if the cursor is left
887** pointing at exactly the same row. *pDifferntRow is the row the cursor
888** was pointing to has been deleted, forcing the cursor to point to some
889** nearby row.
890**
891** This routine should only be called for a cursor that just returned
892** TRUE from sqlite3BtreeCursorHasMoved().
893*/
894int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000895 int rc;
896
drh6848dad2014-08-22 23:33:03 +0000897 assert( pCur!=0 );
898 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000899 rc = restoreCursorPosition(pCur);
900 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000901 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000902 return rc;
903 }
drh606a3572015-03-25 18:29:10 +0000904 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000905 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000906 }else{
drh606a3572015-03-25 18:29:10 +0000907 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000908 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000909 }
910 return SQLITE_OK;
911}
912
drhf7854c72015-10-27 13:24:37 +0000913#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000914/*
drh0df57012015-08-14 15:05:55 +0000915** Provide hints to the cursor. The particular hint given (and the type
916** and number of the varargs parameters) is determined by the eHintType
917** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000918*/
drh0df57012015-08-14 15:05:55 +0000919void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000920 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000921}
drhf7854c72015-10-27 13:24:37 +0000922#endif
923
924/*
925** Provide flag hints to the cursor.
926*/
927void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
928 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
929 pCur->hints = x;
930}
931
drh28935362013-12-07 20:39:19 +0000932
danielk1977599fcba2004-11-08 07:13:13 +0000933#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000934/*
drha3152892007-05-05 11:48:52 +0000935** Given a page number of a regular database page, return the page
936** number for the pointer-map page that contains the entry for the
937** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000938**
939** Return 0 (not a valid page) for pgno==1 since there is
940** no pointer map associated with page 1. The integrity_check logic
941** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000942*/
danielk1977266664d2006-02-10 08:24:21 +0000943static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000944 int nPagesPerMapPage;
945 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000946 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000947 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000948 nPagesPerMapPage = (pBt->usableSize/5)+1;
949 iPtrMap = (pgno-2)/nPagesPerMapPage;
950 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000951 if( ret==PENDING_BYTE_PAGE(pBt) ){
952 ret++;
953 }
954 return ret;
955}
danielk1977a19df672004-11-03 11:37:07 +0000956
danielk1977afcdd022004-10-31 16:25:42 +0000957/*
danielk1977afcdd022004-10-31 16:25:42 +0000958** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000959**
960** This routine updates the pointer map entry for page number 'key'
961** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000962**
963** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
964** a no-op. If an error occurs, the appropriate error code is written
965** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000966*/
drh98add2e2009-07-20 17:11:49 +0000967static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000968 DbPage *pDbPage; /* The pointer map page */
969 u8 *pPtrmap; /* The pointer map data */
970 Pgno iPtrmap; /* The pointer map page number */
971 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000972 int rc; /* Return code from subfunctions */
973
974 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000975
drh1fee73e2007-08-29 04:00:57 +0000976 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000977 /* The master-journal page number must never be used as a pointer map page */
978 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
979
danielk1977ac11ee62005-01-15 12:45:51 +0000980 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000981 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000982 *pRC = SQLITE_CORRUPT_BKPT;
983 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000984 }
danielk1977266664d2006-02-10 08:24:21 +0000985 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000986 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000987 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000988 *pRC = rc;
989 return;
danielk1977afcdd022004-10-31 16:25:42 +0000990 }
danielk19778c666b12008-07-18 09:34:57 +0000991 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000992 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000993 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000994 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000995 }
drhfc243732011-05-17 15:21:56 +0000996 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000997 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000998
drh615ae552005-01-16 23:21:00 +0000999 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1000 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001001 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001002 if( rc==SQLITE_OK ){
1003 pPtrmap[offset] = eType;
1004 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001005 }
danielk1977afcdd022004-10-31 16:25:42 +00001006 }
1007
drh4925a552009-07-07 11:39:58 +00001008ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001009 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001010}
1011
1012/*
1013** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001014**
1015** This routine retrieves the pointer map entry for page 'key', writing
1016** the type and parent page number to *pEType and *pPgno respectively.
1017** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001018*/
danielk1977aef0bf62005-12-30 16:28:01 +00001019static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001020 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001021 int iPtrmap; /* Pointer map page index */
1022 u8 *pPtrmap; /* Pointer map page data */
1023 int offset; /* Offset of entry in pointer map */
1024 int rc;
1025
drh1fee73e2007-08-29 04:00:57 +00001026 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001027
danielk1977266664d2006-02-10 08:24:21 +00001028 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001029 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001030 if( rc!=0 ){
1031 return rc;
1032 }
danielk19773b8a05f2007-03-19 17:44:26 +00001033 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001034
danielk19778c666b12008-07-18 09:34:57 +00001035 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001036 if( offset<0 ){
1037 sqlite3PagerUnref(pDbPage);
1038 return SQLITE_CORRUPT_BKPT;
1039 }
1040 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001041 assert( pEType!=0 );
1042 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001043 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001044
danielk19773b8a05f2007-03-19 17:44:26 +00001045 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001046 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001047 return SQLITE_OK;
1048}
1049
danielk197785d90ca2008-07-19 14:25:15 +00001050#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001051 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001052 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001053 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001054#endif
danielk1977afcdd022004-10-31 16:25:42 +00001055
drh0d316a42002-08-11 20:10:47 +00001056/*
drh271efa52004-05-30 19:19:05 +00001057** Given a btree page and a cell index (0 means the first cell on
1058** the page, 1 means the second cell, and so forth) return a pointer
1059** to the cell content.
1060**
drhf44890a2015-06-27 03:58:15 +00001061** findCellPastPtr() does the same except it skips past the initial
1062** 4-byte child pointer found on interior pages, if there is one.
1063**
drh271efa52004-05-30 19:19:05 +00001064** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001065*/
drh1688c862008-07-18 02:44:17 +00001066#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001067 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001068#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001069 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001070
drh43605152004-05-29 21:46:49 +00001071
1072/*
drh5fa60512015-06-19 17:19:34 +00001073** This is common tail processing for btreeParseCellPtr() and
1074** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1075** on a single B-tree page. Make necessary adjustments to the CellInfo
1076** structure.
drh43605152004-05-29 21:46:49 +00001077*/
drh5fa60512015-06-19 17:19:34 +00001078static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1079 MemPage *pPage, /* Page containing the cell */
1080 u8 *pCell, /* Pointer to the cell text. */
1081 CellInfo *pInfo /* Fill in this structure */
1082){
1083 /* If the payload will not fit completely on the local page, we have
1084 ** to decide how much to store locally and how much to spill onto
1085 ** overflow pages. The strategy is to minimize the amount of unused
1086 ** space on overflow pages while keeping the amount of local storage
1087 ** in between minLocal and maxLocal.
1088 **
1089 ** Warning: changing the way overflow payload is distributed in any
1090 ** way will result in an incompatible file format.
1091 */
1092 int minLocal; /* Minimum amount of payload held locally */
1093 int maxLocal; /* Maximum amount of payload held locally */
1094 int surplus; /* Overflow payload available for local storage */
1095
1096 minLocal = pPage->minLocal;
1097 maxLocal = pPage->maxLocal;
1098 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1099 testcase( surplus==maxLocal );
1100 testcase( surplus==maxLocal+1 );
1101 if( surplus <= maxLocal ){
1102 pInfo->nLocal = (u16)surplus;
1103 }else{
1104 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001105 }
drh45ac1c72015-12-18 03:59:16 +00001106 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001107}
1108
1109/*
drh5fa60512015-06-19 17:19:34 +00001110** The following routines are implementations of the MemPage.xParseCell()
1111** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001112**
drh5fa60512015-06-19 17:19:34 +00001113** Parse a cell content block and fill in the CellInfo structure.
1114**
1115** btreeParseCellPtr() => table btree leaf nodes
1116** btreeParseCellNoPayload() => table btree internal nodes
1117** btreeParseCellPtrIndex() => index btree nodes
1118**
1119** There is also a wrapper function btreeParseCell() that works for
1120** all MemPage types and that references the cell by index rather than
1121** by pointer.
drh43605152004-05-29 21:46:49 +00001122*/
drh5fa60512015-06-19 17:19:34 +00001123static void btreeParseCellPtrNoPayload(
1124 MemPage *pPage, /* Page containing the cell */
1125 u8 *pCell, /* Pointer to the cell text. */
1126 CellInfo *pInfo /* Fill in this structure */
1127){
1128 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1129 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001130 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001131#ifndef SQLITE_DEBUG
1132 UNUSED_PARAMETER(pPage);
1133#endif
drh5fa60512015-06-19 17:19:34 +00001134 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1135 pInfo->nPayload = 0;
1136 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001137 pInfo->pPayload = 0;
1138 return;
1139}
danielk197730548662009-07-09 05:07:37 +00001140static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001141 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001142 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001143 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001144){
drh3e28ff52014-09-24 00:59:08 +00001145 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001146 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001147 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001148
drh1fee73e2007-08-29 04:00:57 +00001149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001150 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001151 assert( pPage->intKeyLeaf );
1152 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001153 pIter = pCell;
1154
1155 /* The next block of code is equivalent to:
1156 **
1157 ** pIter += getVarint32(pIter, nPayload);
1158 **
1159 ** The code is inlined to avoid a function call.
1160 */
1161 nPayload = *pIter;
1162 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001163 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001164 nPayload &= 0x7f;
1165 do{
1166 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1167 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001168 }
drh56cb04e2015-06-19 18:24:37 +00001169 pIter++;
1170
1171 /* The next block of code is equivalent to:
1172 **
1173 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1174 **
1175 ** The code is inlined to avoid a function call.
1176 */
1177 iKey = *pIter;
1178 if( iKey>=0x80 ){
1179 u8 *pEnd = &pIter[7];
1180 iKey &= 0x7f;
1181 while(1){
1182 iKey = (iKey<<7) | (*++pIter & 0x7f);
1183 if( (*pIter)<0x80 ) break;
1184 if( pIter>=pEnd ){
1185 iKey = (iKey<<8) | *++pIter;
1186 break;
1187 }
1188 }
1189 }
1190 pIter++;
1191
1192 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001193 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001194 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001195 testcase( nPayload==pPage->maxLocal );
1196 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001197 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001198 /* This is the (easy) common case where the entire payload fits
1199 ** on the local page. No overflow is required.
1200 */
drhab1cc582014-09-23 21:25:19 +00001201 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1202 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001203 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001204 }else{
drh5fa60512015-06-19 17:19:34 +00001205 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001206 }
drh3aac2dd2004-04-26 14:10:20 +00001207}
drh5fa60512015-06-19 17:19:34 +00001208static void btreeParseCellPtrIndex(
1209 MemPage *pPage, /* Page containing the cell */
1210 u8 *pCell, /* Pointer to the cell text. */
1211 CellInfo *pInfo /* Fill in this structure */
1212){
1213 u8 *pIter; /* For scanning through pCell */
1214 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001215
drh5fa60512015-06-19 17:19:34 +00001216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1217 assert( pPage->leaf==0 || pPage->leaf==1 );
1218 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001219 pIter = pCell + pPage->childPtrSize;
1220 nPayload = *pIter;
1221 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001222 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001223 nPayload &= 0x7f;
1224 do{
1225 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1226 }while( *(pIter)>=0x80 && pIter<pEnd );
1227 }
1228 pIter++;
1229 pInfo->nKey = nPayload;
1230 pInfo->nPayload = nPayload;
1231 pInfo->pPayload = pIter;
1232 testcase( nPayload==pPage->maxLocal );
1233 testcase( nPayload==pPage->maxLocal+1 );
1234 if( nPayload<=pPage->maxLocal ){
1235 /* This is the (easy) common case where the entire payload fits
1236 ** on the local page. No overflow is required.
1237 */
1238 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1239 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1240 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001241 }else{
1242 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001243 }
1244}
danielk197730548662009-07-09 05:07:37 +00001245static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001246 MemPage *pPage, /* Page containing the cell */
1247 int iCell, /* The cell index. First cell is 0 */
1248 CellInfo *pInfo /* Fill in this structure */
1249){
drh5fa60512015-06-19 17:19:34 +00001250 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001251}
drh3aac2dd2004-04-26 14:10:20 +00001252
1253/*
drh5fa60512015-06-19 17:19:34 +00001254** The following routines are implementations of the MemPage.xCellSize
1255** method.
1256**
drh43605152004-05-29 21:46:49 +00001257** Compute the total number of bytes that a Cell needs in the cell
1258** data area of the btree-page. The return number includes the cell
1259** data header and the local payload, but not any overflow page or
1260** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001261**
drh5fa60512015-06-19 17:19:34 +00001262** cellSizePtrNoPayload() => table internal nodes
1263** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001264*/
danielk1977ae5558b2009-04-29 11:31:47 +00001265static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001266 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1267 u8 *pEnd; /* End mark for a varint */
1268 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001269
1270#ifdef SQLITE_DEBUG
1271 /* The value returned by this function should always be the same as
1272 ** the (CellInfo.nSize) value found by doing a full parse of the
1273 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1274 ** this function verifies that this invariant is not violated. */
1275 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001276 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001277#endif
1278
drh3e28ff52014-09-24 00:59:08 +00001279 nSize = *pIter;
1280 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001281 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001282 nSize &= 0x7f;
1283 do{
1284 nSize = (nSize<<7) | (*++pIter & 0x7f);
1285 }while( *(pIter)>=0x80 && pIter<pEnd );
1286 }
1287 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001288 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001289 /* pIter now points at the 64-bit integer key value, a variable length
1290 ** integer. The following block moves pIter to point at the first byte
1291 ** past the end of the key value. */
1292 pEnd = &pIter[9];
1293 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001294 }
drh0a45c272009-07-08 01:49:11 +00001295 testcase( nSize==pPage->maxLocal );
1296 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001297 if( nSize<=pPage->maxLocal ){
1298 nSize += (u32)(pIter - pCell);
1299 if( nSize<4 ) nSize = 4;
1300 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001301 int minLocal = pPage->minLocal;
1302 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001303 testcase( nSize==pPage->maxLocal );
1304 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001305 if( nSize>pPage->maxLocal ){
1306 nSize = minLocal;
1307 }
drh3e28ff52014-09-24 00:59:08 +00001308 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001309 }
drhdc41d602014-09-22 19:51:35 +00001310 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001311 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001312}
drh25ada072015-06-19 15:07:14 +00001313static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1314 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1315 u8 *pEnd; /* End mark for a varint */
1316
1317#ifdef SQLITE_DEBUG
1318 /* The value returned by this function should always be the same as
1319 ** the (CellInfo.nSize) value found by doing a full parse of the
1320 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1321 ** this function verifies that this invariant is not violated. */
1322 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001323 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001324#else
1325 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001326#endif
1327
1328 assert( pPage->childPtrSize==4 );
1329 pEnd = pIter + 9;
1330 while( (*pIter++)&0x80 && pIter<pEnd );
1331 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1332 return (u16)(pIter - pCell);
1333}
1334
drh0ee3dbe2009-10-16 15:05:18 +00001335
1336#ifdef SQLITE_DEBUG
1337/* This variation on cellSizePtr() is used inside of assert() statements
1338** only. */
drha9121e42008-02-19 14:59:35 +00001339static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001340 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001341}
danielk1977bc6ada42004-06-30 08:20:16 +00001342#endif
drh3b7511c2001-05-26 13:15:44 +00001343
danielk197779a40da2005-01-16 08:00:01 +00001344#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001345/*
danielk197726836652005-01-17 01:33:13 +00001346** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001347** to an overflow page, insert an entry into the pointer-map
1348** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001349*/
drh98add2e2009-07-20 17:11:49 +00001350static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001351 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001352 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001353 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001354 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001355 if( info.nLocal<info.nPayload ){
1356 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001357 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001358 }
danielk1977ac11ee62005-01-15 12:45:51 +00001359}
danielk197779a40da2005-01-16 08:00:01 +00001360#endif
1361
danielk1977ac11ee62005-01-15 12:45:51 +00001362
drhda200cc2004-05-09 11:51:38 +00001363/*
dane6d065a2017-02-24 19:58:22 +00001364** Defragment the page given. This routine reorganizes cells within the
1365** page so that there are no free-blocks on the free-block list.
1366**
1367** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1368** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001369**
1370** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1371** b-tree page so that there are no freeblocks or fragment bytes, all
1372** unused bytes are contained in the unallocated space region, and all
1373** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001374*/
dane6d065a2017-02-24 19:58:22 +00001375static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001376 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001377 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001378 int hdr; /* Offset to the page header */
1379 int size; /* Size of a cell */
1380 int usableSize; /* Number of usable bytes on a page */
1381 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001382 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001383 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001384 unsigned char *data; /* The page data */
1385 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001386 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001387 int iCellFirst; /* First allowable cell index */
1388 int iCellLast; /* Last possible cell index */
1389
danielk19773b8a05f2007-03-19 17:44:26 +00001390 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001391 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001392 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001393 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001394 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001395 temp = 0;
1396 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001397 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001398 cellOffset = pPage->cellOffset;
1399 nCell = pPage->nCell;
1400 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001401 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001402 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001403
1404 /* This block handles pages with two or fewer free blocks and nMaxFrag
1405 ** or fewer fragmented bytes. In this case it is faster to move the
1406 ** two (or one) blocks of cells using memmove() and add the required
1407 ** offsets to each pointer in the cell-pointer array than it is to
1408 ** reconstruct the entire page. */
1409 if( (int)data[hdr+7]<=nMaxFrag ){
1410 int iFree = get2byte(&data[hdr+1]);
1411 if( iFree ){
1412 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001413
1414 /* pageFindSlot() has already verified that free blocks are sorted
1415 ** in order of offset within the page, and that no block extends
1416 ** past the end of the page. Provided the two free slots do not
1417 ** overlap, this guarantees that the memmove() calls below will not
1418 ** overwrite the usableSize byte buffer, even if the database page
1419 ** is corrupt. */
1420 assert( iFree2==0 || iFree2>iFree );
1421 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1422 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1423
dane6d065a2017-02-24 19:58:22 +00001424 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1425 u8 *pEnd = &data[cellOffset + nCell*2];
1426 u8 *pAddr;
1427 int sz2 = 0;
1428 int sz = get2byte(&data[iFree+2]);
1429 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001430 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001431 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001432 }
dane6d065a2017-02-24 19:58:22 +00001433 if( iFree2 ){
drh60348462017-08-25 13:02:48 +00001434 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
dane6d065a2017-02-24 19:58:22 +00001435 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001436 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001437 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1438 sz += sz2;
1439 }
1440 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001441 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001442 memmove(&data[cbrk], &data[top], iFree-top);
1443 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1444 pc = get2byte(pAddr);
1445 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1446 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1447 }
1448 goto defragment_out;
1449 }
1450 }
1451 }
1452
drh281b21d2008-08-22 12:57:08 +00001453 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001454 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001455 for(i=0; i<nCell; i++){
1456 u8 *pAddr; /* The i-th cell pointer */
1457 pAddr = &data[cellOffset + i*2];
1458 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001459 testcase( pc==iCellFirst );
1460 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001461 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001462 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001463 */
1464 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001465 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001466 }
drh17146622009-07-07 17:38:38 +00001467 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001468 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001469 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001470 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001471 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001472 }
drh7157e1d2009-07-09 13:25:32 +00001473 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001474 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001475 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001476 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001477 if( temp==0 ){
1478 int x;
1479 if( cbrk==pc ) continue;
1480 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1481 x = get2byte(&data[hdr+5]);
1482 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1483 src = temp;
1484 }
1485 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001486 }
dane6d065a2017-02-24 19:58:22 +00001487 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001488
1489 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001490 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001491 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001492 }
drh17146622009-07-07 17:38:38 +00001493 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001494 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001495 data[hdr+1] = 0;
1496 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001497 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001498 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001499 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001500}
1501
drha059ad02001-04-17 20:09:11 +00001502/*
dan8e9ba0c2014-10-14 17:27:04 +00001503** Search the free-list on page pPg for space to store a cell nByte bytes in
1504** size. If one can be found, return a pointer to the space and remove it
1505** from the free-list.
1506**
1507** If no suitable space can be found on the free-list, return NULL.
1508**
drhba0f9992014-10-30 20:48:44 +00001509** This function may detect corruption within pPg. If corruption is
1510** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001511**
drhb7580e82015-06-25 18:36:13 +00001512** Slots on the free list that are between 1 and 3 bytes larger than nByte
1513** will be ignored if adding the extra space to the fragmentation count
1514** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001515*/
drhb7580e82015-06-25 18:36:13 +00001516static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001517 const int hdr = pPg->hdrOffset;
1518 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001519 int iAddr = hdr + 1;
1520 int pc = get2byte(&aData[iAddr]);
1521 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001522 int usableSize = pPg->pBt->usableSize;
drh87d63c92017-08-23 23:09:03 +00001523 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001524
drhb7580e82015-06-25 18:36:13 +00001525 assert( pc>0 );
drh87d63c92017-08-23 23:09:03 +00001526 while( pc<=usableSize-4 ){
drh113762a2014-11-19 16:36:25 +00001527 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1528 ** freeblock form a big-endian integer which is the size of the freeblock
1529 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001530 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001531 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001532 testcase( x==4 );
1533 testcase( x==3 );
drh5e398e42017-08-23 20:36:06 +00001534 if( size+pc > usableSize ){
daneebf2f52017-11-18 17:30:08 +00001535 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh24dee9d2015-06-02 19:36:29 +00001536 return 0;
1537 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001538 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1539 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001540 if( aData[hdr+7]>57 ) return 0;
1541
dan8e9ba0c2014-10-14 17:27:04 +00001542 /* Remove the slot from the free-list. Update the number of
1543 ** fragmented bytes within the page. */
1544 memcpy(&aData[iAddr], &aData[pc], 2);
1545 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001546 }else{
1547 /* The slot remains on the free-list. Reduce its size to account
1548 ** for the portion used by the new allocation. */
1549 put2byte(&aData[pc+2], x);
1550 }
1551 return &aData[pc + x];
1552 }
drhb7580e82015-06-25 18:36:13 +00001553 iAddr = pc;
1554 pc = get2byte(&aData[pc]);
drh87d63c92017-08-23 23:09:03 +00001555 if( pc<iAddr+size ) break;
1556 }
1557 if( pc ){
daneebf2f52017-11-18 17:30:08 +00001558 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001559 }
dan8e9ba0c2014-10-14 17:27:04 +00001560
1561 return 0;
1562}
1563
1564/*
danielk19776011a752009-04-01 16:25:32 +00001565** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001566** as the first argument. Write into *pIdx the index into pPage->aData[]
1567** of the first byte of allocated space. Return either SQLITE_OK or
1568** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001569**
drh0a45c272009-07-08 01:49:11 +00001570** The caller guarantees that there is sufficient space to make the
1571** allocation. This routine might need to defragment in order to bring
1572** all the space together, however. This routine will avoid using
1573** the first two bytes past the cell pointer area since presumably this
1574** allocation is being made in order to insert a new cell, so we will
1575** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001576*/
drh0a45c272009-07-08 01:49:11 +00001577static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001578 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1579 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001580 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001581 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001582 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001583
danielk19773b8a05f2007-03-19 17:44:26 +00001584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001585 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001586 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001587 assert( nByte>=0 ); /* Minimum cell size is 4 */
1588 assert( pPage->nFree>=nByte );
1589 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001590 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001591
drh0a45c272009-07-08 01:49:11 +00001592 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1593 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001594 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001595 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1596 ** and the reserved space is zero (the usual value for reserved space)
1597 ** then the cell content offset of an empty page wants to be 65536.
1598 ** However, that integer is too large to be stored in a 2-byte unsigned
1599 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001600 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001601 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001602 if( gap>top ){
1603 if( top==0 && pPage->pBt->usableSize==65536 ){
1604 top = 65536;
1605 }else{
daneebf2f52017-11-18 17:30:08 +00001606 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001607 }
1608 }
drh43605152004-05-29 21:46:49 +00001609
drh4c04f3c2014-08-20 11:56:14 +00001610 /* If there is enough space between gap and top for one more cell pointer
1611 ** array entry offset, and if the freelist is not empty, then search the
1612 ** freelist looking for a free slot big enough to satisfy the request.
1613 */
drh5e2f8b92001-05-28 00:41:15 +00001614 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001615 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001616 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001617 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001618 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001619 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001620 assert( pSpace>=data && (pSpace - data)<65536 );
1621 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001622 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001623 }else if( rc ){
1624 return rc;
drh9e572e62004-04-23 23:43:10 +00001625 }
1626 }
drh43605152004-05-29 21:46:49 +00001627
drh4c04f3c2014-08-20 11:56:14 +00001628 /* The request could not be fulfilled using a freelist slot. Check
1629 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001630 */
1631 testcase( gap+2+nByte==top );
1632 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001633 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001634 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001635 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001636 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001637 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001638 }
1639
1640
drh43605152004-05-29 21:46:49 +00001641 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001642 ** and the cell content area. The btreeInitPage() call has already
1643 ** validated the freelist. Given that the freelist is valid, there
1644 ** is no way that the allocation can extend off the end of the page.
1645 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001646 */
drh0a45c272009-07-08 01:49:11 +00001647 top -= nByte;
drh43605152004-05-29 21:46:49 +00001648 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001649 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001650 *pIdx = top;
1651 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001652}
1653
1654/*
drh9e572e62004-04-23 23:43:10 +00001655** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001656** The first byte of the new free block is pPage->aData[iStart]
1657** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001658**
drh5f5c7532014-08-20 17:56:27 +00001659** Adjacent freeblocks are coalesced.
1660**
1661** Note that even though the freeblock list was checked by btreeInitPage(),
1662** that routine will not detect overlap between cells or freeblocks. Nor
1663** does it detect cells or freeblocks that encrouch into the reserved bytes
1664** at the end of the page. So do additional corruption checks inside this
1665** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001666*/
drh5f5c7532014-08-20 17:56:27 +00001667static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001668 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001669 u16 iFreeBlk; /* Address of the next freeblock */
1670 u8 hdr; /* Page header size. 0 or 100 */
1671 u8 nFrag = 0; /* Reduction in fragmentation */
1672 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001673 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001674 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001675 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001676
drh9e572e62004-04-23 23:43:10 +00001677 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001678 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001679 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001680 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001681 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001682 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001683 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001684
drh5f5c7532014-08-20 17:56:27 +00001685 /* The list of freeblocks must be in ascending order. Find the
1686 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001687 */
drh43605152004-05-29 21:46:49 +00001688 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001689 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001690 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1691 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1692 }else{
drh85f071b2016-09-17 19:34:32 +00001693 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1694 if( iFreeBlk<iPtr+4 ){
1695 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001696 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001697 }
drh7bc4c452014-08-20 18:43:44 +00001698 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001699 }
drh5e398e42017-08-23 20:36:06 +00001700 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001701 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001702 }
drh7bc4c452014-08-20 18:43:44 +00001703 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1704
1705 /* At this point:
1706 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001707 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001708 **
1709 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1710 */
1711 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1712 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001713 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001714 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001715 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001716 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001717 }
drh7bc4c452014-08-20 18:43:44 +00001718 iSize = iEnd - iStart;
1719 iFreeBlk = get2byte(&data[iFreeBlk]);
1720 }
1721
drh3f387402014-09-24 01:23:00 +00001722 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1723 ** pointer in the page header) then check to see if iStart should be
1724 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001725 */
1726 if( iPtr>hdr+1 ){
1727 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1728 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001729 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001730 nFrag += iStart - iPtrEnd;
1731 iSize = iEnd - iPtr;
1732 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001733 }
drh9e572e62004-04-23 23:43:10 +00001734 }
daneebf2f52017-11-18 17:30:08 +00001735 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001736 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001737 }
drh5e398e42017-08-23 20:36:06 +00001738 x = get2byte(&data[hdr+5]);
1739 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001740 /* The new freeblock is at the beginning of the cell content area,
1741 ** so just extend the cell content area rather than create another
1742 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001743 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001744 put2byte(&data[hdr+1], iFreeBlk);
1745 put2byte(&data[hdr+5], iEnd);
1746 }else{
1747 /* Insert the new freeblock into the freelist */
1748 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001749 }
drh5e398e42017-08-23 20:36:06 +00001750 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1751 /* Overwrite deleted information with zeros when the secure_delete
1752 ** option is enabled */
1753 memset(&data[iStart], 0, iSize);
1754 }
1755 put2byte(&data[iStart], iFreeBlk);
1756 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001757 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001758 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001759}
1760
1761/*
drh271efa52004-05-30 19:19:05 +00001762** Decode the flags byte (the first byte of the header) for a page
1763** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001764**
1765** Only the following combinations are supported. Anything different
1766** indicates a corrupt database files:
1767**
1768** PTF_ZERODATA
1769** PTF_ZERODATA | PTF_LEAF
1770** PTF_LEAFDATA | PTF_INTKEY
1771** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001772*/
drh44845222008-07-17 18:39:57 +00001773static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001774 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001775
1776 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001777 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001778 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001779 flagByte &= ~PTF_LEAF;
1780 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001781 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001782 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001783 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001784 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1785 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001786 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001787 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1788 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001789 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001790 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001791 if( pPage->leaf ){
1792 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001793 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001794 }else{
1795 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001796 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001797 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001798 }
drh271efa52004-05-30 19:19:05 +00001799 pPage->maxLocal = pBt->maxLeaf;
1800 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001801 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001802 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1803 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001804 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001805 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1806 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001807 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001808 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001809 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001810 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001811 pPage->maxLocal = pBt->maxLocal;
1812 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001813 }else{
drhfdab0262014-11-20 15:30:50 +00001814 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1815 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001816 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001817 }
drhc9166342012-01-05 23:32:06 +00001818 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001819 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001820}
1821
1822/*
drh7e3b0a02001-04-28 16:52:40 +00001823** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001824**
1825** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001826** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001827** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1828** guarantee that the page is well-formed. It only shows that
1829** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001830*/
danielk197730548662009-07-09 05:07:37 +00001831static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001832 int pc; /* Address of a freeblock within pPage->aData[] */
1833 u8 hdr; /* Offset to beginning of page header */
1834 u8 *data; /* Equal to pPage->aData */
1835 BtShared *pBt; /* The main btree structure */
1836 int usableSize; /* Amount of usable space on each page */
1837 u16 cellOffset; /* Offset from start of page to first cell pointer */
1838 int nFree; /* Number of unused bytes on the page */
1839 int top; /* First byte of the cell content area */
1840 int iCellFirst; /* First allowable cell or freeblock offset */
1841 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001842
danielk197771d5d2c2008-09-29 11:49:47 +00001843 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001844 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001845 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001846 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001847 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1848 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001849 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001850
drh14e845a2017-05-25 21:35:56 +00001851 pBt = pPage->pBt;
1852 hdr = pPage->hdrOffset;
1853 data = pPage->aData;
1854 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1855 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001856 if( decodeFlags(pPage, data[hdr]) ){
daneebf2f52017-11-18 17:30:08 +00001857 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001858 }
drh14e845a2017-05-25 21:35:56 +00001859 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1860 pPage->maskPage = (u16)(pBt->pageSize - 1);
1861 pPage->nOverflow = 0;
1862 usableSize = pBt->usableSize;
1863 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1864 pPage->aDataEnd = &data[usableSize];
1865 pPage->aCellIdx = &data[cellOffset];
1866 pPage->aDataOfst = &data[pPage->childPtrSize];
1867 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1868 ** the start of the cell content area. A zero value for this integer is
1869 ** interpreted as 65536. */
1870 top = get2byteNotZero(&data[hdr+5]);
1871 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1872 ** number of cells on the page. */
1873 pPage->nCell = get2byte(&data[hdr+3]);
1874 if( pPage->nCell>MX_CELL(pBt) ){
1875 /* To many cells for a single page. The page must be corrupt */
daneebf2f52017-11-18 17:30:08 +00001876 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001877 }
1878 testcase( pPage->nCell==MX_CELL(pBt) );
1879 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1880 ** possible for a root page of a table that contains no rows) then the
1881 ** offset to the cell content area will equal the page size minus the
1882 ** bytes of reserved space. */
1883 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001884
drh14e845a2017-05-25 21:35:56 +00001885 /* A malformed database page might cause us to read past the end
1886 ** of page when parsing a cell.
1887 **
1888 ** The following block of code checks early to see if a cell extends
1889 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1890 ** returned if it does.
1891 */
1892 iCellFirst = cellOffset + 2*pPage->nCell;
1893 iCellLast = usableSize - 4;
1894 if( pBt->db->flags & SQLITE_CellSizeCk ){
1895 int i; /* Index into the cell pointer array */
1896 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001897
drh14e845a2017-05-25 21:35:56 +00001898 if( !pPage->leaf ) iCellLast--;
1899 for(i=0; i<pPage->nCell; i++){
1900 pc = get2byteAligned(&data[cellOffset+i*2]);
1901 testcase( pc==iCellFirst );
1902 testcase( pc==iCellLast );
1903 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001904 return SQLITE_CORRUPT_PAGE(pPage);
drh69e931e2009-06-03 21:04:35 +00001905 }
drh14e845a2017-05-25 21:35:56 +00001906 sz = pPage->xCellSize(pPage, &data[pc]);
1907 testcase( pc+sz==usableSize );
1908 if( pc+sz>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001909 return SQLITE_CORRUPT_PAGE(pPage);
drh77dc0ed2016-12-12 01:30:01 +00001910 }
danielk1977eaa06f62008-09-18 17:34:44 +00001911 }
drh14e845a2017-05-25 21:35:56 +00001912 if( !pPage->leaf ) iCellLast++;
1913 }
danielk197793c829c2009-06-03 17:26:17 +00001914
drh14e845a2017-05-25 21:35:56 +00001915 /* Compute the total free space on the page
1916 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1917 ** start of the first freeblock on the page, or is zero if there are no
1918 ** freeblocks. */
1919 pc = get2byte(&data[hdr+1]);
1920 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1921 if( pc>0 ){
1922 u32 next, size;
1923 if( pc<iCellFirst ){
1924 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1925 ** always be at least one cell before the first freeblock.
1926 */
daneebf2f52017-11-18 17:30:08 +00001927 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001928 }
drh14e845a2017-05-25 21:35:56 +00001929 while( 1 ){
1930 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001931 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001932 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001933 }
1934 next = get2byte(&data[pc]);
1935 size = get2byte(&data[pc+2]);
1936 nFree = nFree + size;
1937 if( next<=pc+size+3 ) break;
1938 pc = next;
1939 }
1940 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001941 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001942 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001943 }
1944 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001945 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001946 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001947 }
danielk197771d5d2c2008-09-29 11:49:47 +00001948 }
drh14e845a2017-05-25 21:35:56 +00001949
1950 /* At this point, nFree contains the sum of the offset to the start
1951 ** of the cell-content area plus the number of free bytes within
1952 ** the cell-content area. If this is greater than the usable-size
1953 ** of the page, then the page must be corrupted. This check also
1954 ** serves to verify that the offset to the start of the cell-content
1955 ** area, according to the page header, lies within the page.
1956 */
1957 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001958 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001959 }
1960 pPage->nFree = (u16)(nFree - iCellFirst);
1961 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001962 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001963}
1964
1965/*
drh8b2f49b2001-06-08 00:21:52 +00001966** Set up a raw page so that it looks like a database page holding
1967** no entries.
drhbd03cae2001-06-02 02:40:57 +00001968*/
drh9e572e62004-04-23 23:43:10 +00001969static void zeroPage(MemPage *pPage, int flags){
1970 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001971 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001972 u8 hdr = pPage->hdrOffset;
1973 u16 first;
drh9e572e62004-04-23 23:43:10 +00001974
danielk19773b8a05f2007-03-19 17:44:26 +00001975 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001976 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1977 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001978 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001979 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001980 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001981 memset(&data[hdr], 0, pBt->usableSize - hdr);
1982 }
drh1bd10f82008-12-10 21:19:56 +00001983 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001984 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001985 memset(&data[hdr+1], 0, 4);
1986 data[hdr+7] = 0;
1987 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001988 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001989 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001990 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001991 pPage->aDataEnd = &data[pBt->usableSize];
1992 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001993 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001994 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001995 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1996 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001997 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001998 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001999}
2000
drh897a8202008-09-18 01:08:15 +00002001
2002/*
2003** Convert a DbPage obtained from the pager into a MemPage used by
2004** the btree layer.
2005*/
2006static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2007 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002008 if( pgno!=pPage->pgno ){
2009 pPage->aData = sqlite3PagerGetData(pDbPage);
2010 pPage->pDbPage = pDbPage;
2011 pPage->pBt = pBt;
2012 pPage->pgno = pgno;
2013 pPage->hdrOffset = pgno==1 ? 100 : 0;
2014 }
2015 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002016 return pPage;
2017}
2018
drhbd03cae2001-06-02 02:40:57 +00002019/*
drh3aac2dd2004-04-26 14:10:20 +00002020** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002021** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002022**
drh7e8c6f12015-05-28 03:28:27 +00002023** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2024** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002025** to fetch the content. Just fill in the content with zeros for now.
2026** If in the future we call sqlite3PagerWrite() on this page, that
2027** means we have started to be concerned about content and the disk
2028** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002029*/
danielk197730548662009-07-09 05:07:37 +00002030static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002031 BtShared *pBt, /* The btree */
2032 Pgno pgno, /* Number of the page to fetch */
2033 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002034 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002035){
drh3aac2dd2004-04-26 14:10:20 +00002036 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002037 DbPage *pDbPage;
2038
drhb00fc3b2013-08-21 23:42:32 +00002039 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002040 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002041 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002042 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002043 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002044 return SQLITE_OK;
2045}
2046
2047/*
danielk1977bea2a942009-01-20 17:06:27 +00002048** Retrieve a page from the pager cache. If the requested page is not
2049** already in the pager cache return NULL. Initialize the MemPage.pBt and
2050** MemPage.aData elements if needed.
2051*/
2052static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2053 DbPage *pDbPage;
2054 assert( sqlite3_mutex_held(pBt->mutex) );
2055 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2056 if( pDbPage ){
2057 return btreePageFromDbPage(pDbPage, pgno, pBt);
2058 }
2059 return 0;
2060}
2061
2062/*
danielk197789d40042008-11-17 14:20:56 +00002063** Return the size of the database file in pages. If there is any kind of
2064** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002065*/
drhb1299152010-03-30 22:58:33 +00002066static Pgno btreePagecount(BtShared *pBt){
2067 return pBt->nPage;
2068}
2069u32 sqlite3BtreeLastPage(Btree *p){
2070 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002071 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002072 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002073}
2074
2075/*
drh28f58dd2015-06-27 19:45:03 +00002076** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002077**
drh15a00212015-06-27 20:55:00 +00002078** If pCur!=0 then the page is being fetched as part of a moveToChild()
2079** call. Do additional sanity checking on the page in this case.
2080** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002081**
2082** The page is fetched as read-write unless pCur is not NULL and is
2083** a read-only cursor.
2084**
2085** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002086** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002087*/
2088static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002089 BtShared *pBt, /* The database file */
2090 Pgno pgno, /* Number of the page to get */
2091 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002092 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2093 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002094){
2095 int rc;
drh28f58dd2015-06-27 19:45:03 +00002096 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002097 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002098 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002099 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002100 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002101
danba3cbf32010-06-30 04:29:03 +00002102 if( pgno>btreePagecount(pBt) ){
2103 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002104 goto getAndInitPage_error;
2105 }
drh9584f582015-11-04 20:22:37 +00002106 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002107 if( rc ){
2108 goto getAndInitPage_error;
2109 }
drh8dd1c252015-11-04 22:31:02 +00002110 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002111 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002112 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002113 rc = btreeInitPage(*ppPage);
2114 if( rc!=SQLITE_OK ){
2115 releasePage(*ppPage);
2116 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002117 }
drhee696e22004-08-30 16:52:17 +00002118 }
drh8dd1c252015-11-04 22:31:02 +00002119 assert( (*ppPage)->pgno==pgno );
2120 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002121
drh15a00212015-06-27 20:55:00 +00002122 /* If obtaining a child page for a cursor, we must verify that the page is
2123 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002124 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002125 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002126 releasePage(*ppPage);
2127 goto getAndInitPage_error;
2128 }
drh28f58dd2015-06-27 19:45:03 +00002129 return SQLITE_OK;
2130
2131getAndInitPage_error:
drh352a35a2017-08-15 03:46:47 +00002132 if( pCur ){
2133 pCur->iPage--;
2134 pCur->pPage = pCur->apPage[pCur->iPage];
2135 }
danba3cbf32010-06-30 04:29:03 +00002136 testcase( pgno==0 );
2137 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002138 return rc;
2139}
2140
2141/*
drh3aac2dd2004-04-26 14:10:20 +00002142** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002143** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002144**
2145** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002146*/
drhbbf0f862015-06-27 14:59:26 +00002147static void releasePageNotNull(MemPage *pPage){
2148 assert( pPage->aData );
2149 assert( pPage->pBt );
2150 assert( pPage->pDbPage!=0 );
2151 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2152 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2153 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2154 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002155}
drh3aac2dd2004-04-26 14:10:20 +00002156static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002157 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002158}
drh3908fe92017-09-01 14:50:19 +00002159static void releasePageOne(MemPage *pPage){
2160 assert( pPage!=0 );
2161 assert( pPage->aData );
2162 assert( pPage->pBt );
2163 assert( pPage->pDbPage!=0 );
2164 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2165 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2166 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2167 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2168}
drh3aac2dd2004-04-26 14:10:20 +00002169
2170/*
drh7e8c6f12015-05-28 03:28:27 +00002171** Get an unused page.
2172**
2173** This works just like btreeGetPage() with the addition:
2174**
2175** * If the page is already in use for some other purpose, immediately
2176** release it and return an SQLITE_CURRUPT error.
2177** * Make sure the isInit flag is clear
2178*/
2179static int btreeGetUnusedPage(
2180 BtShared *pBt, /* The btree */
2181 Pgno pgno, /* Number of the page to fetch */
2182 MemPage **ppPage, /* Return the page in this parameter */
2183 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2184){
2185 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2186 if( rc==SQLITE_OK ){
2187 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2188 releasePage(*ppPage);
2189 *ppPage = 0;
2190 return SQLITE_CORRUPT_BKPT;
2191 }
2192 (*ppPage)->isInit = 0;
2193 }else{
2194 *ppPage = 0;
2195 }
2196 return rc;
2197}
2198
drha059ad02001-04-17 20:09:11 +00002199
2200/*
drha6abd042004-06-09 17:37:22 +00002201** During a rollback, when the pager reloads information into the cache
2202** so that the cache is restored to its original state at the start of
2203** the transaction, for each page restored this routine is called.
2204**
2205** This routine needs to reset the extra data section at the end of the
2206** page to agree with the restored data.
2207*/
danielk1977eaa06f62008-09-18 17:34:44 +00002208static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002209 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002210 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002211 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002212 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002213 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002214 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002215 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002216 /* pPage might not be a btree page; it might be an overflow page
2217 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002218 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002219 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002220 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002221 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002222 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002223 }
drha6abd042004-06-09 17:37:22 +00002224 }
2225}
2226
2227/*
drhe5fe6902007-12-07 18:55:28 +00002228** Invoke the busy handler for a btree.
2229*/
danielk19771ceedd32008-11-19 10:22:33 +00002230static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002231 BtShared *pBt = (BtShared*)pArg;
2232 assert( pBt->db );
2233 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002234 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2235 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002236}
2237
2238/*
drhad3e0102004-09-03 23:32:18 +00002239** Open a database file.
2240**
drh382c0242001-10-06 16:33:02 +00002241** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002242** then an ephemeral database is created. The ephemeral database might
2243** be exclusively in memory, or it might use a disk-based memory cache.
2244** Either way, the ephemeral database will be automatically deleted
2245** when sqlite3BtreeClose() is called.
2246**
drhe53831d2007-08-17 01:14:38 +00002247** If zFilename is ":memory:" then an in-memory database is created
2248** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002249**
drh33f111d2012-01-17 15:29:14 +00002250** The "flags" parameter is a bitmask that might contain bits like
2251** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002252**
drhc47fd8e2009-04-30 13:30:32 +00002253** If the database is already opened in the same database connection
2254** and we are in shared cache mode, then the open will fail with an
2255** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2256** objects in the same database connection since doing so will lead
2257** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002258*/
drh23e11ca2004-05-04 17:27:28 +00002259int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002260 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002261 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002262 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002263 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002264 int flags, /* Options */
2265 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002266){
drh7555d8e2009-03-20 13:15:30 +00002267 BtShared *pBt = 0; /* Shared part of btree structure */
2268 Btree *p; /* Handle to return */
2269 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2270 int rc = SQLITE_OK; /* Result code from this function */
2271 u8 nReserve; /* Byte of unused space on each page */
2272 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002273
drh75c014c2010-08-30 15:02:28 +00002274 /* True if opening an ephemeral, temporary database */
2275 const int isTempDb = zFilename==0 || zFilename[0]==0;
2276
danielk1977aef0bf62005-12-30 16:28:01 +00002277 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002278 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002279 */
drhb0a7c9c2010-12-06 21:09:59 +00002280#ifdef SQLITE_OMIT_MEMORYDB
2281 const int isMemdb = 0;
2282#else
2283 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002284 || (isTempDb && sqlite3TempInMemory(db))
2285 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002286#endif
2287
drhe5fe6902007-12-07 18:55:28 +00002288 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002289 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002290 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002291 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2292
2293 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2294 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2295
2296 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2297 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002298
drh75c014c2010-08-30 15:02:28 +00002299 if( isMemdb ){
2300 flags |= BTREE_MEMORY;
2301 }
2302 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2303 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2304 }
drh17435752007-08-16 04:30:38 +00002305 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002306 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002307 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002308 }
2309 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002310 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002311#ifndef SQLITE_OMIT_SHARED_CACHE
2312 p->lock.pBtree = p;
2313 p->lock.iTable = 1;
2314#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002315
drh198bf392006-01-06 21:52:49 +00002316#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002317 /*
2318 ** If this Btree is a candidate for shared cache, try to find an
2319 ** existing BtShared object that we can share with
2320 */
drh4ab9d252012-05-26 20:08:49 +00002321 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002322 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002323 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002324 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002325 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002326 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002327
drhff0587c2007-08-29 17:43:19 +00002328 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002329 if( !zFullPathname ){
2330 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002331 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002332 }
drhafc8b7f2012-05-26 18:06:38 +00002333 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002334 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002335 }else{
2336 rc = sqlite3OsFullPathname(pVfs, zFilename,
2337 nFullPathname, zFullPathname);
2338 if( rc ){
2339 sqlite3_free(zFullPathname);
2340 sqlite3_free(p);
2341 return rc;
2342 }
drh070ad6b2011-11-17 11:43:19 +00002343 }
drh30ddce62011-10-15 00:16:30 +00002344#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002345 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2346 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002347 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002348 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002349#endif
drh78f82d12008-09-02 00:52:52 +00002350 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002351 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002352 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002353 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002354 int iDb;
2355 for(iDb=db->nDb-1; iDb>=0; iDb--){
2356 Btree *pExisting = db->aDb[iDb].pBt;
2357 if( pExisting && pExisting->pBt==pBt ){
2358 sqlite3_mutex_leave(mutexShared);
2359 sqlite3_mutex_leave(mutexOpen);
2360 sqlite3_free(zFullPathname);
2361 sqlite3_free(p);
2362 return SQLITE_CONSTRAINT;
2363 }
2364 }
drhff0587c2007-08-29 17:43:19 +00002365 p->pBt = pBt;
2366 pBt->nRef++;
2367 break;
2368 }
2369 }
2370 sqlite3_mutex_leave(mutexShared);
2371 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002372 }
drhff0587c2007-08-29 17:43:19 +00002373#ifdef SQLITE_DEBUG
2374 else{
2375 /* In debug mode, we mark all persistent databases as sharable
2376 ** even when they are not. This exercises the locking code and
2377 ** gives more opportunity for asserts(sqlite3_mutex_held())
2378 ** statements to find locking problems.
2379 */
2380 p->sharable = 1;
2381 }
2382#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002383 }
2384#endif
drha059ad02001-04-17 20:09:11 +00002385 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002386 /*
2387 ** The following asserts make sure that structures used by the btree are
2388 ** the right size. This is to guard against size changes that result
2389 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002390 */
drh062cf272015-03-23 19:03:51 +00002391 assert( sizeof(i64)==8 );
2392 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002393 assert( sizeof(u32)==4 );
2394 assert( sizeof(u16)==2 );
2395 assert( sizeof(Pgno)==4 );
2396
2397 pBt = sqlite3MallocZero( sizeof(*pBt) );
2398 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002399 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002400 goto btree_open_out;
2401 }
danielk197771d5d2c2008-09-29 11:49:47 +00002402 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002403 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002404 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002405 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002406 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2407 }
2408 if( rc!=SQLITE_OK ){
2409 goto btree_open_out;
2410 }
shanehbd2aaf92010-09-01 02:38:21 +00002411 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002412 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002413 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002414 p->pBt = pBt;
2415
drhe53831d2007-08-17 01:14:38 +00002416 pBt->pCursor = 0;
2417 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002418 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002419#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002420 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002421#elif defined(SQLITE_FAST_SECURE_DELETE)
2422 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002423#endif
drh113762a2014-11-19 16:36:25 +00002424 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2425 ** determined by the 2-byte integer located at an offset of 16 bytes from
2426 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002427 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002428 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2429 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002430 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002431#ifndef SQLITE_OMIT_AUTOVACUUM
2432 /* If the magic name ":memory:" will create an in-memory database, then
2433 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2434 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2435 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2436 ** regular file-name. In this case the auto-vacuum applies as per normal.
2437 */
2438 if( zFilename && !isMemdb ){
2439 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2440 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2441 }
2442#endif
2443 nReserve = 0;
2444 }else{
drh113762a2014-11-19 16:36:25 +00002445 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2446 ** determined by the one-byte unsigned integer found at an offset of 20
2447 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002448 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002449 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002450#ifndef SQLITE_OMIT_AUTOVACUUM
2451 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2452 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2453#endif
2454 }
drhfa9601a2009-06-18 17:22:39 +00002455 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002456 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002457 pBt->usableSize = pBt->pageSize - nReserve;
2458 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002459
2460#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2461 /* Add the new BtShared object to the linked list sharable BtShareds.
2462 */
dan272989b2016-07-06 10:12:02 +00002463 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002464 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002465 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002466 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002467 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002468 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002469 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002470 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002471 goto btree_open_out;
2472 }
drhff0587c2007-08-29 17:43:19 +00002473 }
drhe53831d2007-08-17 01:14:38 +00002474 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002475 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2476 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002477 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002478 }
drheee46cf2004-11-06 00:02:48 +00002479#endif
drh90f5ecb2004-07-22 01:19:35 +00002480 }
danielk1977aef0bf62005-12-30 16:28:01 +00002481
drhcfed7bc2006-03-13 14:28:05 +00002482#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002483 /* If the new Btree uses a sharable pBtShared, then link the new
2484 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002485 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002486 */
drhe53831d2007-08-17 01:14:38 +00002487 if( p->sharable ){
2488 int i;
2489 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002490 for(i=0; i<db->nDb; i++){
2491 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002492 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002493 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002494 p->pNext = pSib;
2495 p->pPrev = 0;
2496 pSib->pPrev = p;
2497 }else{
drh3bfa7e82016-03-22 14:37:59 +00002498 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002499 pSib = pSib->pNext;
2500 }
2501 p->pNext = pSib->pNext;
2502 p->pPrev = pSib;
2503 if( p->pNext ){
2504 p->pNext->pPrev = p;
2505 }
2506 pSib->pNext = p;
2507 }
2508 break;
2509 }
2510 }
danielk1977aef0bf62005-12-30 16:28:01 +00002511 }
danielk1977aef0bf62005-12-30 16:28:01 +00002512#endif
2513 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002514
2515btree_open_out:
2516 if( rc!=SQLITE_OK ){
2517 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002518 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002519 }
drh17435752007-08-16 04:30:38 +00002520 sqlite3_free(pBt);
2521 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002522 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002523 }else{
dan0f5a1862016-08-13 14:30:23 +00002524 sqlite3_file *pFile;
2525
drh75c014c2010-08-30 15:02:28 +00002526 /* If the B-Tree was successfully opened, set the pager-cache size to the
2527 ** default value. Except, when opening on an existing shared pager-cache,
2528 ** do not change the pager-cache size.
2529 */
2530 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2531 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2532 }
dan0f5a1862016-08-13 14:30:23 +00002533
2534 pFile = sqlite3PagerFile(pBt->pPager);
2535 if( pFile->pMethods ){
2536 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2537 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002538 }
drh7555d8e2009-03-20 13:15:30 +00002539 if( mutexOpen ){
2540 assert( sqlite3_mutex_held(mutexOpen) );
2541 sqlite3_mutex_leave(mutexOpen);
2542 }
dan272989b2016-07-06 10:12:02 +00002543 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002544 return rc;
drha059ad02001-04-17 20:09:11 +00002545}
2546
2547/*
drhe53831d2007-08-17 01:14:38 +00002548** Decrement the BtShared.nRef counter. When it reaches zero,
2549** remove the BtShared structure from the sharing list. Return
2550** true if the BtShared.nRef counter reaches zero and return
2551** false if it is still positive.
2552*/
2553static int removeFromSharingList(BtShared *pBt){
2554#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002555 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002556 BtShared *pList;
2557 int removed = 0;
2558
drhd677b3d2007-08-20 22:48:41 +00002559 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002560 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002561 sqlite3_mutex_enter(pMaster);
2562 pBt->nRef--;
2563 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002564 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2565 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002566 }else{
drh78f82d12008-09-02 00:52:52 +00002567 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002568 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002569 pList=pList->pNext;
2570 }
drh34004ce2008-07-11 16:15:17 +00002571 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002572 pList->pNext = pBt->pNext;
2573 }
2574 }
drh3285db22007-09-03 22:00:39 +00002575 if( SQLITE_THREADSAFE ){
2576 sqlite3_mutex_free(pBt->mutex);
2577 }
drhe53831d2007-08-17 01:14:38 +00002578 removed = 1;
2579 }
2580 sqlite3_mutex_leave(pMaster);
2581 return removed;
2582#else
2583 return 1;
2584#endif
2585}
2586
2587/*
drhf7141992008-06-19 00:16:08 +00002588** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002589** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2590** pointer.
drhf7141992008-06-19 00:16:08 +00002591*/
2592static void allocateTempSpace(BtShared *pBt){
2593 if( !pBt->pTmpSpace ){
2594 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002595
2596 /* One of the uses of pBt->pTmpSpace is to format cells before
2597 ** inserting them into a leaf page (function fillInCell()). If
2598 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2599 ** by the various routines that manipulate binary cells. Which
2600 ** can mean that fillInCell() only initializes the first 2 or 3
2601 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2602 ** it into a database page. This is not actually a problem, but it
2603 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2604 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002605 ** zero the first 4 bytes of temp space here.
2606 **
2607 ** Also: Provide four bytes of initialized space before the
2608 ** beginning of pTmpSpace as an area available to prepend the
2609 ** left-child pointer to the beginning of a cell.
2610 */
2611 if( pBt->pTmpSpace ){
2612 memset(pBt->pTmpSpace, 0, 8);
2613 pBt->pTmpSpace += 4;
2614 }
drhf7141992008-06-19 00:16:08 +00002615 }
2616}
2617
2618/*
2619** Free the pBt->pTmpSpace allocation
2620*/
2621static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002622 if( pBt->pTmpSpace ){
2623 pBt->pTmpSpace -= 4;
2624 sqlite3PageFree(pBt->pTmpSpace);
2625 pBt->pTmpSpace = 0;
2626 }
drhf7141992008-06-19 00:16:08 +00002627}
2628
2629/*
drha059ad02001-04-17 20:09:11 +00002630** Close an open database and invalidate all cursors.
2631*/
danielk1977aef0bf62005-12-30 16:28:01 +00002632int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002633 BtShared *pBt = p->pBt;
2634 BtCursor *pCur;
2635
danielk1977aef0bf62005-12-30 16:28:01 +00002636 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002637 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002638 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002639 pCur = pBt->pCursor;
2640 while( pCur ){
2641 BtCursor *pTmp = pCur;
2642 pCur = pCur->pNext;
2643 if( pTmp->pBtree==p ){
2644 sqlite3BtreeCloseCursor(pTmp);
2645 }
drha059ad02001-04-17 20:09:11 +00002646 }
danielk1977aef0bf62005-12-30 16:28:01 +00002647
danielk19778d34dfd2006-01-24 16:37:57 +00002648 /* Rollback any active transaction and free the handle structure.
2649 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2650 ** this handle.
2651 */
drh47b7fc72014-11-11 01:33:57 +00002652 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002653 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002654
danielk1977aef0bf62005-12-30 16:28:01 +00002655 /* If there are still other outstanding references to the shared-btree
2656 ** structure, return now. The remainder of this procedure cleans
2657 ** up the shared-btree.
2658 */
drhe53831d2007-08-17 01:14:38 +00002659 assert( p->wantToLock==0 && p->locked==0 );
2660 if( !p->sharable || removeFromSharingList(pBt) ){
2661 /* The pBt is no longer on the sharing list, so we can access
2662 ** it without having to hold the mutex.
2663 **
2664 ** Clean out and delete the BtShared object.
2665 */
2666 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002667 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002668 if( pBt->xFreeSchema && pBt->pSchema ){
2669 pBt->xFreeSchema(pBt->pSchema);
2670 }
drhb9755982010-07-24 16:34:37 +00002671 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002672 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002673 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002674 }
2675
drhe53831d2007-08-17 01:14:38 +00002676#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002677 assert( p->wantToLock==0 );
2678 assert( p->locked==0 );
2679 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2680 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002681#endif
2682
drhe53831d2007-08-17 01:14:38 +00002683 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002684 return SQLITE_OK;
2685}
2686
2687/*
drh9b0cf342015-11-12 14:57:19 +00002688** Change the "soft" limit on the number of pages in the cache.
2689** Unused and unmodified pages will be recycled when the number of
2690** pages in the cache exceeds this soft limit. But the size of the
2691** cache is allowed to grow larger than this limit if it contains
2692** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002693*/
danielk1977aef0bf62005-12-30 16:28:01 +00002694int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2695 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002696 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002697 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002698 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002699 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002700 return SQLITE_OK;
2701}
2702
drh9b0cf342015-11-12 14:57:19 +00002703/*
2704** Change the "spill" limit on the number of pages in the cache.
2705** If the number of pages exceeds this limit during a write transaction,
2706** the pager might attempt to "spill" pages to the journal early in
2707** order to free up memory.
2708**
2709** The value returned is the current spill size. If zero is passed
2710** as an argument, no changes are made to the spill size setting, so
2711** using mxPage of 0 is a way to query the current spill size.
2712*/
2713int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2714 BtShared *pBt = p->pBt;
2715 int res;
2716 assert( sqlite3_mutex_held(p->db->mutex) );
2717 sqlite3BtreeEnter(p);
2718 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2719 sqlite3BtreeLeave(p);
2720 return res;
2721}
2722
drh18c7e402014-03-14 11:46:10 +00002723#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002724/*
dan5d8a1372013-03-19 19:28:06 +00002725** Change the limit on the amount of the database file that may be
2726** memory mapped.
2727*/
drh9b4c59f2013-04-15 17:03:42 +00002728int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002729 BtShared *pBt = p->pBt;
2730 assert( sqlite3_mutex_held(p->db->mutex) );
2731 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002732 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002733 sqlite3BtreeLeave(p);
2734 return SQLITE_OK;
2735}
drh18c7e402014-03-14 11:46:10 +00002736#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002737
2738/*
drh973b6e32003-02-12 14:09:42 +00002739** Change the way data is synced to disk in order to increase or decrease
2740** how well the database resists damage due to OS crashes and power
2741** failures. Level 1 is the same as asynchronous (no syncs() occur and
2742** there is a high probability of damage) Level 2 is the default. There
2743** is a very low but non-zero probability of damage. Level 3 reduces the
2744** probability of damage to near zero but with a write performance reduction.
2745*/
danielk197793758c82005-01-21 08:13:14 +00002746#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002747int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002748 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002749 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002750){
danielk1977aef0bf62005-12-30 16:28:01 +00002751 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002752 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002753 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002754 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002755 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002756 return SQLITE_OK;
2757}
danielk197793758c82005-01-21 08:13:14 +00002758#endif
drh973b6e32003-02-12 14:09:42 +00002759
drh2c8997b2005-08-27 16:36:48 +00002760/*
drh90f5ecb2004-07-22 01:19:35 +00002761** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002762** Or, if the page size has already been fixed, return SQLITE_READONLY
2763** without changing anything.
drh06f50212004-11-02 14:24:33 +00002764**
2765** The page size must be a power of 2 between 512 and 65536. If the page
2766** size supplied does not meet this constraint then the page size is not
2767** changed.
2768**
2769** Page sizes are constrained to be a power of two so that the region
2770** of the database file used for locking (beginning at PENDING_BYTE,
2771** the first byte past the 1GB boundary, 0x40000000) needs to occur
2772** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002773**
2774** If parameter nReserve is less than zero, then the number of reserved
2775** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002776**
drhc9166342012-01-05 23:32:06 +00002777** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002778** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002779*/
drhce4869f2009-04-02 20:16:58 +00002780int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002781 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002782 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002783 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002784 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002785#if SQLITE_HAS_CODEC
2786 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2787#endif
drhc9166342012-01-05 23:32:06 +00002788 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002789 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002790 return SQLITE_READONLY;
2791 }
2792 if( nReserve<0 ){
2793 nReserve = pBt->pageSize - pBt->usableSize;
2794 }
drhf49661a2008-12-10 16:45:50 +00002795 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002796 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2797 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002798 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002799 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002800 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002801 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002802 }
drhfa9601a2009-06-18 17:22:39 +00002803 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002804 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002805 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002806 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002807 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002808}
2809
2810/*
2811** Return the currently defined page size
2812*/
danielk1977aef0bf62005-12-30 16:28:01 +00002813int sqlite3BtreeGetPageSize(Btree *p){
2814 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002815}
drh7f751222009-03-17 22:33:00 +00002816
dan0094f372012-09-28 20:23:42 +00002817/*
2818** This function is similar to sqlite3BtreeGetReserve(), except that it
2819** may only be called if it is guaranteed that the b-tree mutex is already
2820** held.
2821**
2822** This is useful in one special case in the backup API code where it is
2823** known that the shared b-tree mutex is held, but the mutex on the
2824** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2825** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002826** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002827*/
2828int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002829 int n;
dan0094f372012-09-28 20:23:42 +00002830 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002831 n = p->pBt->pageSize - p->pBt->usableSize;
2832 return n;
dan0094f372012-09-28 20:23:42 +00002833}
2834
drh7f751222009-03-17 22:33:00 +00002835/*
2836** Return the number of bytes of space at the end of every page that
2837** are intentually left unused. This is the "reserved" space that is
2838** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002839**
2840** If SQLITE_HAS_MUTEX is defined then the number returned is the
2841** greater of the current reserved space and the maximum requested
2842** reserve space.
drh7f751222009-03-17 22:33:00 +00002843*/
drhad0961b2015-02-21 00:19:25 +00002844int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002845 int n;
2846 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002847 n = sqlite3BtreeGetReserveNoMutex(p);
2848#ifdef SQLITE_HAS_CODEC
2849 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2850#endif
drhd677b3d2007-08-20 22:48:41 +00002851 sqlite3BtreeLeave(p);
2852 return n;
drh2011d5f2004-07-22 02:40:37 +00002853}
drhf8e632b2007-05-08 14:51:36 +00002854
drhad0961b2015-02-21 00:19:25 +00002855
drhf8e632b2007-05-08 14:51:36 +00002856/*
2857** Set the maximum page count for a database if mxPage is positive.
2858** No changes are made if mxPage is 0 or negative.
2859** Regardless of the value of mxPage, return the maximum page count.
2860*/
2861int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002862 int n;
2863 sqlite3BtreeEnter(p);
2864 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2865 sqlite3BtreeLeave(p);
2866 return n;
drhf8e632b2007-05-08 14:51:36 +00002867}
drh5b47efa2010-02-12 18:18:39 +00002868
2869/*
drha5907a82017-06-19 11:44:22 +00002870** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2871**
2872** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2873** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2874** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2875** newFlag==(-1) No changes
2876**
2877** This routine acts as a query if newFlag is less than zero
2878**
2879** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2880** freelist leaf pages are not written back to the database. Thus in-page
2881** deleted content is cleared, but freelist deleted content is not.
2882**
2883** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2884** that freelist leaf pages are written back into the database, increasing
2885** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002886*/
2887int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2888 int b;
drhaf034ed2010-02-12 19:46:26 +00002889 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002890 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002891 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2892 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002893 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002894 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2895 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2896 }
2897 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002898 sqlite3BtreeLeave(p);
2899 return b;
2900}
drh90f5ecb2004-07-22 01:19:35 +00002901
2902/*
danielk1977951af802004-11-05 15:45:09 +00002903** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2904** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2905** is disabled. The default value for the auto-vacuum property is
2906** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2907*/
danielk1977aef0bf62005-12-30 16:28:01 +00002908int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002909#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002910 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002911#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002912 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002913 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002914 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002915
2916 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002917 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002918 rc = SQLITE_READONLY;
2919 }else{
drh076d4662009-02-18 20:31:18 +00002920 pBt->autoVacuum = av ?1:0;
2921 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002922 }
drhd677b3d2007-08-20 22:48:41 +00002923 sqlite3BtreeLeave(p);
2924 return rc;
danielk1977951af802004-11-05 15:45:09 +00002925#endif
2926}
2927
2928/*
2929** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2930** enabled 1 is returned. Otherwise 0.
2931*/
danielk1977aef0bf62005-12-30 16:28:01 +00002932int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002933#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002934 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002935#else
drhd677b3d2007-08-20 22:48:41 +00002936 int rc;
2937 sqlite3BtreeEnter(p);
2938 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002939 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2940 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2941 BTREE_AUTOVACUUM_INCR
2942 );
drhd677b3d2007-08-20 22:48:41 +00002943 sqlite3BtreeLeave(p);
2944 return rc;
danielk1977951af802004-11-05 15:45:09 +00002945#endif
2946}
2947
danf5da7db2017-03-16 18:14:39 +00002948/*
2949** If the user has not set the safety-level for this database connection
2950** using "PRAGMA synchronous", and if the safety-level is not already
2951** set to the value passed to this function as the second parameter,
2952** set it so.
2953*/
drh2ed57372017-10-05 20:57:38 +00002954#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2955 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00002956static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2957 sqlite3 *db;
2958 Db *pDb;
2959 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2960 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2961 if( pDb->bSyncSet==0
2962 && pDb->safety_level!=safety_level
2963 && pDb!=&db->aDb[1]
2964 ){
2965 pDb->safety_level = safety_level;
2966 sqlite3PagerSetFlags(pBt->pPager,
2967 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2968 }
2969 }
2970}
2971#else
danfc8f4b62017-03-16 18:54:42 +00002972# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002973#endif
danielk1977951af802004-11-05 15:45:09 +00002974
drh0314cf32018-04-28 01:27:09 +00002975/* Forward declaration */
2976static int newDatabase(BtShared*);
2977
2978
danielk1977951af802004-11-05 15:45:09 +00002979/*
drha34b6762004-05-07 13:30:42 +00002980** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002981** also acquire a readlock on that file.
2982**
2983** SQLITE_OK is returned on success. If the file is not a
2984** well-formed database file, then SQLITE_CORRUPT is returned.
2985** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002986** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002987*/
danielk1977aef0bf62005-12-30 16:28:01 +00002988static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002989 int rc; /* Result code from subfunctions */
2990 MemPage *pPage1; /* Page 1 of the database file */
2991 int nPage; /* Number of pages in the database */
2992 int nPageFile = 0; /* Number of pages in the database file */
2993 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002994
drh1fee73e2007-08-29 04:00:57 +00002995 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002996 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002997 rc = sqlite3PagerSharedLock(pBt->pPager);
2998 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002999 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003000 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003001
3002 /* Do some checking to help insure the file we opened really is
3003 ** a valid database file.
3004 */
drhc2a4bab2010-04-02 12:46:45 +00003005 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00003006 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003007 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003008 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003009 }
drh0314cf32018-04-28 01:27:09 +00003010 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3011 nPage = 0;
3012 }
drh97b59a52010-03-31 02:31:33 +00003013 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003014 u32 pageSize;
3015 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003016 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003017 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003018 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3019 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3020 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003021 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003022 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003023 }
dan5cf53532010-05-01 16:40:20 +00003024
3025#ifdef SQLITE_OMIT_WAL
3026 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003027 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003028 }
3029 if( page1[19]>1 ){
3030 goto page1_init_failed;
3031 }
3032#else
dane04dc882010-04-20 18:53:15 +00003033 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003034 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003035 }
dane04dc882010-04-20 18:53:15 +00003036 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003037 goto page1_init_failed;
3038 }
drhe5ae5732008-06-15 02:51:47 +00003039
dana470aeb2010-04-21 11:43:38 +00003040 /* If the write version is set to 2, this database should be accessed
3041 ** in WAL mode. If the log is not already open, open it now. Then
3042 ** return SQLITE_OK and return without populating BtShared.pPage1.
3043 ** The caller detects this and calls this function again. This is
3044 ** required as the version of page 1 currently in the page1 buffer
3045 ** may not be the latest version - there may be a newer one in the log
3046 ** file.
3047 */
drhc9166342012-01-05 23:32:06 +00003048 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003049 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003050 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003051 if( rc!=SQLITE_OK ){
3052 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003053 }else{
danf5da7db2017-03-16 18:14:39 +00003054 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003055 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003056 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003057 return SQLITE_OK;
3058 }
dane04dc882010-04-20 18:53:15 +00003059 }
dan8b5444b2010-04-27 14:37:47 +00003060 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003061 }else{
3062 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003063 }
dan5cf53532010-05-01 16:40:20 +00003064#endif
dane04dc882010-04-20 18:53:15 +00003065
drh113762a2014-11-19 16:36:25 +00003066 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3067 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3068 **
drhe5ae5732008-06-15 02:51:47 +00003069 ** The original design allowed these amounts to vary, but as of
3070 ** version 3.6.0, we require them to be fixed.
3071 */
3072 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3073 goto page1_init_failed;
3074 }
drh113762a2014-11-19 16:36:25 +00003075 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3076 ** determined by the 2-byte integer located at an offset of 16 bytes from
3077 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003078 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003079 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3080 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003081 if( ((pageSize-1)&pageSize)!=0
3082 || pageSize>SQLITE_MAX_PAGE_SIZE
3083 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003084 ){
drh07d183d2005-05-01 22:52:42 +00003085 goto page1_init_failed;
3086 }
3087 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003088 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3089 ** integer at offset 20 is the number of bytes of space at the end of
3090 ** each page to reserve for extensions.
3091 **
3092 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3093 ** determined by the one-byte unsigned integer found at an offset of 20
3094 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003095 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003096 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003097 /* After reading the first page of the database assuming a page size
3098 ** of BtShared.pageSize, we have discovered that the page-size is
3099 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3100 ** zero and return SQLITE_OK. The caller will call this function
3101 ** again with the correct page-size.
3102 */
drh3908fe92017-09-01 14:50:19 +00003103 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003104 pBt->usableSize = usableSize;
3105 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003106 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003107 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3108 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003109 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003110 }
drh169dd922017-06-26 13:57:49 +00003111 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003112 rc = SQLITE_CORRUPT_BKPT;
3113 goto page1_init_failed;
3114 }
drh113762a2014-11-19 16:36:25 +00003115 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3116 ** be less than 480. In other words, if the page size is 512, then the
3117 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003118 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003119 goto page1_init_failed;
3120 }
drh43b18e12010-08-17 19:40:08 +00003121 pBt->pageSize = pageSize;
3122 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003123#ifndef SQLITE_OMIT_AUTOVACUUM
3124 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003125 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003126#endif
drh306dc212001-05-21 13:45:10 +00003127 }
drhb6f41482004-05-14 01:58:11 +00003128
3129 /* maxLocal is the maximum amount of payload to store locally for
3130 ** a cell. Make sure it is small enough so that at least minFanout
3131 ** cells can will fit on one page. We assume a 10-byte page header.
3132 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003133 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003134 ** 4-byte child pointer
3135 ** 9-byte nKey value
3136 ** 4-byte nData value
3137 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003138 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003139 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3140 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003141 */
shaneh1df2db72010-08-18 02:28:48 +00003142 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3143 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3144 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3145 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003146 if( pBt->maxLocal>127 ){
3147 pBt->max1bytePayload = 127;
3148 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003149 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003150 }
drh2e38c322004-09-03 18:38:44 +00003151 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003152 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003153 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003154 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003155
drh72f82862001-05-24 21:06:34 +00003156page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003157 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003158 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003159 return rc;
drh306dc212001-05-21 13:45:10 +00003160}
3161
drh85ec3b62013-05-14 23:12:06 +00003162#ifndef NDEBUG
3163/*
3164** Return the number of cursors open on pBt. This is for use
3165** in assert() expressions, so it is only compiled if NDEBUG is not
3166** defined.
3167**
3168** Only write cursors are counted if wrOnly is true. If wrOnly is
3169** false then all cursors are counted.
3170**
3171** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003172** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003173** have been tripped into the CURSOR_FAULT state are not counted.
3174*/
3175static int countValidCursors(BtShared *pBt, int wrOnly){
3176 BtCursor *pCur;
3177 int r = 0;
3178 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003179 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3180 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003181 }
3182 return r;
3183}
3184#endif
3185
drh306dc212001-05-21 13:45:10 +00003186/*
drhb8ca3072001-12-05 00:21:20 +00003187** If there are no outstanding cursors and we are not in the middle
3188** of a transaction but there is a read lock on the database, then
3189** this routine unrefs the first page of the database file which
3190** has the effect of releasing the read lock.
3191**
drhb8ca3072001-12-05 00:21:20 +00003192** If there is a transaction in progress, this routine is a no-op.
3193*/
danielk1977aef0bf62005-12-30 16:28:01 +00003194static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003195 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003196 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003197 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003198 MemPage *pPage1 = pBt->pPage1;
3199 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003200 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003201 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003202 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003203 }
3204}
3205
3206/*
drhe39f2f92009-07-23 01:43:59 +00003207** If pBt points to an empty file then convert that empty file
3208** into a new empty database by initializing the first page of
3209** the database.
drh8b2f49b2001-06-08 00:21:52 +00003210*/
danielk1977aef0bf62005-12-30 16:28:01 +00003211static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003212 MemPage *pP1;
3213 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003214 int rc;
drhd677b3d2007-08-20 22:48:41 +00003215
drh1fee73e2007-08-29 04:00:57 +00003216 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003217 if( pBt->nPage>0 ){
3218 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003219 }
drh3aac2dd2004-04-26 14:10:20 +00003220 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003221 assert( pP1!=0 );
3222 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003223 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003224 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003225 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3226 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003227 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3228 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003229 data[18] = 1;
3230 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003231 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3232 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003233 data[21] = 64;
3234 data[22] = 32;
3235 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003236 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003237 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003238 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003239#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003240 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003241 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003242 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003243 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003244#endif
drhdd3cd972010-03-27 17:12:36 +00003245 pBt->nPage = 1;
3246 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003247 return SQLITE_OK;
3248}
3249
3250/*
danb483eba2012-10-13 19:58:11 +00003251** Initialize the first page of the database file (creating a database
3252** consisting of a single page and no schema objects). Return SQLITE_OK
3253** if successful, or an SQLite error code otherwise.
3254*/
3255int sqlite3BtreeNewDb(Btree *p){
3256 int rc;
3257 sqlite3BtreeEnter(p);
3258 p->pBt->nPage = 0;
3259 rc = newDatabase(p->pBt);
3260 sqlite3BtreeLeave(p);
3261 return rc;
3262}
3263
3264/*
danielk1977ee5741e2004-05-31 10:01:34 +00003265** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003266** is started if the second argument is nonzero, otherwise a read-
3267** transaction. If the second argument is 2 or more and exclusive
3268** transaction is started, meaning that no other process is allowed
3269** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003270** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003271** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003272**
danielk1977ee5741e2004-05-31 10:01:34 +00003273** A write-transaction must be started before attempting any
3274** changes to the database. None of the following routines
3275** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003276**
drh23e11ca2004-05-04 17:27:28 +00003277** sqlite3BtreeCreateTable()
3278** sqlite3BtreeCreateIndex()
3279** sqlite3BtreeClearTable()
3280** sqlite3BtreeDropTable()
3281** sqlite3BtreeInsert()
3282** sqlite3BtreeDelete()
3283** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003284**
drhb8ef32c2005-03-14 02:01:49 +00003285** If an initial attempt to acquire the lock fails because of lock contention
3286** and the database was previously unlocked, then invoke the busy handler
3287** if there is one. But if there was previously a read-lock, do not
3288** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3289** returned when there is already a read-lock in order to avoid a deadlock.
3290**
3291** Suppose there are two processes A and B. A has a read lock and B has
3292** a reserved lock. B tries to promote to exclusive but is blocked because
3293** of A's read lock. A tries to promote to reserved but is blocked by B.
3294** One or the other of the two processes must give way or there can be
3295** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3296** when A already has a read lock, we encourage A to give up and let B
3297** proceed.
drha059ad02001-04-17 20:09:11 +00003298*/
danielk1977aef0bf62005-12-30 16:28:01 +00003299int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3300 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003301 int rc = SQLITE_OK;
3302
drhd677b3d2007-08-20 22:48:41 +00003303 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003304 btreeIntegrity(p);
3305
danielk1977ee5741e2004-05-31 10:01:34 +00003306 /* If the btree is already in a write-transaction, or it
3307 ** is already in a read-transaction and a read-transaction
3308 ** is requested, this is a no-op.
3309 */
danielk1977aef0bf62005-12-30 16:28:01 +00003310 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003311 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003312 }
dan56c517a2013-09-26 11:04:33 +00003313 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003314
3315 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003316 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003317 rc = SQLITE_READONLY;
3318 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003319 }
3320
danielk1977404ca072009-03-16 13:19:36 +00003321#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003322 {
3323 sqlite3 *pBlock = 0;
3324 /* If another database handle has already opened a write transaction
3325 ** on this shared-btree structure and a second write transaction is
3326 ** requested, return SQLITE_LOCKED.
3327 */
3328 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3329 || (pBt->btsFlags & BTS_PENDING)!=0
3330 ){
3331 pBlock = pBt->pWriter->db;
3332 }else if( wrflag>1 ){
3333 BtLock *pIter;
3334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3335 if( pIter->pBtree!=p ){
3336 pBlock = pIter->pBtree->db;
3337 break;
3338 }
danielk1977641b0f42007-12-21 04:47:25 +00003339 }
3340 }
drh5a1fb182016-01-08 19:34:39 +00003341 if( pBlock ){
3342 sqlite3ConnectionBlocked(p->db, pBlock);
3343 rc = SQLITE_LOCKED_SHAREDCACHE;
3344 goto trans_begun;
3345 }
danielk1977404ca072009-03-16 13:19:36 +00003346 }
danielk1977641b0f42007-12-21 04:47:25 +00003347#endif
3348
danielk1977602b4662009-07-02 07:47:33 +00003349 /* Any read-only or read-write transaction implies a read-lock on
3350 ** page 1. So if some other shared-cache client already has a write-lock
3351 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003352 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3353 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003354
drhc9166342012-01-05 23:32:06 +00003355 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3356 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003357 do {
danielk1977295dc102009-04-01 19:07:03 +00003358 /* Call lockBtree() until either pBt->pPage1 is populated or
3359 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3360 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3361 ** reading page 1 it discovers that the page-size of the database
3362 ** file is not pBt->pageSize. In this case lockBtree() will update
3363 ** pBt->pageSize to the page-size of the file on disk.
3364 */
3365 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003366
drhb8ef32c2005-03-14 02:01:49 +00003367 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003368 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003369 rc = SQLITE_READONLY;
3370 }else{
danielk1977d8293352009-04-30 09:10:37 +00003371 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003372 if( rc==SQLITE_OK ){
3373 rc = newDatabase(pBt);
3374 }
drhb8ef32c2005-03-14 02:01:49 +00003375 }
3376 }
3377
danielk1977bd434552009-03-18 10:33:00 +00003378 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003379 unlockBtreeIfUnused(pBt);
3380 }
danf9b76712010-06-01 14:12:45 +00003381 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003382 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003383 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003384
3385 if( rc==SQLITE_OK ){
3386 if( p->inTrans==TRANS_NONE ){
3387 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003388#ifndef SQLITE_OMIT_SHARED_CACHE
3389 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003390 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003391 p->lock.eLock = READ_LOCK;
3392 p->lock.pNext = pBt->pLock;
3393 pBt->pLock = &p->lock;
3394 }
3395#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003396 }
3397 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3398 if( p->inTrans>pBt->inTransaction ){
3399 pBt->inTransaction = p->inTrans;
3400 }
danielk1977404ca072009-03-16 13:19:36 +00003401 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003402 MemPage *pPage1 = pBt->pPage1;
3403#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003404 assert( !pBt->pWriter );
3405 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003406 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3407 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003408#endif
dan59257dc2010-08-04 11:34:31 +00003409
3410 /* If the db-size header field is incorrect (as it may be if an old
3411 ** client has been writing the database file), update it now. Doing
3412 ** this sooner rather than later means the database size can safely
3413 ** re-read the database size from page 1 if a savepoint or transaction
3414 ** rollback occurs within the transaction.
3415 */
3416 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3417 rc = sqlite3PagerWrite(pPage1->pDbPage);
3418 if( rc==SQLITE_OK ){
3419 put4byte(&pPage1->aData[28], pBt->nPage);
3420 }
3421 }
3422 }
danielk1977aef0bf62005-12-30 16:28:01 +00003423 }
3424
drhd677b3d2007-08-20 22:48:41 +00003425
3426trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003427 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003428 /* This call makes sure that the pager has the correct number of
3429 ** open savepoints. If the second parameter is greater than 0 and
3430 ** the sub-journal is not already open, then it will be opened here.
3431 */
danielk1977fd7f0452008-12-17 17:30:26 +00003432 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3433 }
danielk197712dd5492008-12-18 15:45:07 +00003434
danielk1977aef0bf62005-12-30 16:28:01 +00003435 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003436 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003437 return rc;
drha059ad02001-04-17 20:09:11 +00003438}
3439
danielk1977687566d2004-11-02 12:56:41 +00003440#ifndef SQLITE_OMIT_AUTOVACUUM
3441
3442/*
3443** Set the pointer-map entries for all children of page pPage. Also, if
3444** pPage contains cells that point to overflow pages, set the pointer
3445** map entries for the overflow pages as well.
3446*/
3447static int setChildPtrmaps(MemPage *pPage){
3448 int i; /* Counter variable */
3449 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003450 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003451 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003452 Pgno pgno = pPage->pgno;
3453
drh1fee73e2007-08-29 04:00:57 +00003454 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003455 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003456 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003457 nCell = pPage->nCell;
3458
3459 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003460 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003461
drh98add2e2009-07-20 17:11:49 +00003462 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003463
danielk1977687566d2004-11-02 12:56:41 +00003464 if( !pPage->leaf ){
3465 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003466 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003467 }
3468 }
3469
3470 if( !pPage->leaf ){
3471 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003472 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003473 }
3474
danielk1977687566d2004-11-02 12:56:41 +00003475 return rc;
3476}
3477
3478/*
drhf3aed592009-07-08 18:12:49 +00003479** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3480** that it points to iTo. Parameter eType describes the type of pointer to
3481** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003482**
3483** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3484** page of pPage.
3485**
3486** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3487** page pointed to by one of the cells on pPage.
3488**
3489** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3490** overflow page in the list.
3491*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003492static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003493 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003494 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003495 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003496 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003497 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003498 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003499 }
danielk1977f78fc082004-11-02 14:40:32 +00003500 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003501 }else{
danielk1977687566d2004-11-02 12:56:41 +00003502 int i;
3503 int nCell;
drha1f75d92015-05-24 10:18:12 +00003504 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003505
drh14e845a2017-05-25 21:35:56 +00003506 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003507 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003508 nCell = pPage->nCell;
3509
danielk1977687566d2004-11-02 12:56:41 +00003510 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003511 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003512 if( eType==PTRMAP_OVERFLOW1 ){
3513 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003514 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003515 if( info.nLocal<info.nPayload ){
3516 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003517 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003518 }
3519 if( iFrom==get4byte(pCell+info.nSize-4) ){
3520 put4byte(pCell+info.nSize-4, iTo);
3521 break;
3522 }
danielk1977687566d2004-11-02 12:56:41 +00003523 }
3524 }else{
3525 if( get4byte(pCell)==iFrom ){
3526 put4byte(pCell, iTo);
3527 break;
3528 }
3529 }
3530 }
3531
3532 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003533 if( eType!=PTRMAP_BTREE ||
3534 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003535 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003536 }
danielk1977687566d2004-11-02 12:56:41 +00003537 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3538 }
danielk1977687566d2004-11-02 12:56:41 +00003539 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003540 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003541}
3542
danielk1977003ba062004-11-04 02:57:33 +00003543
danielk19777701e812005-01-10 12:59:51 +00003544/*
3545** Move the open database page pDbPage to location iFreePage in the
3546** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003547**
3548** The isCommit flag indicates that there is no need to remember that
3549** the journal needs to be sync()ed before database page pDbPage->pgno
3550** can be written to. The caller has already promised not to write to that
3551** page.
danielk19777701e812005-01-10 12:59:51 +00003552*/
danielk1977003ba062004-11-04 02:57:33 +00003553static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003554 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003555 MemPage *pDbPage, /* Open page to move */
3556 u8 eType, /* Pointer map 'type' entry for pDbPage */
3557 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003558 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003559 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003560){
3561 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3562 Pgno iDbPage = pDbPage->pgno;
3563 Pager *pPager = pBt->pPager;
3564 int rc;
3565
danielk1977a0bf2652004-11-04 14:30:04 +00003566 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3567 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003568 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003569 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003570
drh85b623f2007-12-13 21:54:09 +00003571 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003572 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3573 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003574 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003575 if( rc!=SQLITE_OK ){
3576 return rc;
3577 }
3578 pDbPage->pgno = iFreePage;
3579
3580 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3581 ** that point to overflow pages. The pointer map entries for all these
3582 ** pages need to be changed.
3583 **
3584 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3585 ** pointer to a subsequent overflow page. If this is the case, then
3586 ** the pointer map needs to be updated for the subsequent overflow page.
3587 */
danielk1977a0bf2652004-11-04 14:30:04 +00003588 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003589 rc = setChildPtrmaps(pDbPage);
3590 if( rc!=SQLITE_OK ){
3591 return rc;
3592 }
3593 }else{
3594 Pgno nextOvfl = get4byte(pDbPage->aData);
3595 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003596 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003597 if( rc!=SQLITE_OK ){
3598 return rc;
3599 }
3600 }
3601 }
3602
3603 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3604 ** that it points at iFreePage. Also fix the pointer map entry for
3605 ** iPtrPage.
3606 */
danielk1977a0bf2652004-11-04 14:30:04 +00003607 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003608 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003609 if( rc!=SQLITE_OK ){
3610 return rc;
3611 }
danielk19773b8a05f2007-03-19 17:44:26 +00003612 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003613 if( rc!=SQLITE_OK ){
3614 releasePage(pPtrPage);
3615 return rc;
3616 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003617 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003618 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003619 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003620 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003621 }
danielk1977003ba062004-11-04 02:57:33 +00003622 }
danielk1977003ba062004-11-04 02:57:33 +00003623 return rc;
3624}
3625
danielk1977dddbcdc2007-04-26 14:42:34 +00003626/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003627static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003628
3629/*
dan51f0b6d2013-02-22 20:16:34 +00003630** Perform a single step of an incremental-vacuum. If successful, return
3631** SQLITE_OK. If there is no work to do (and therefore no point in
3632** calling this function again), return SQLITE_DONE. Or, if an error
3633** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003634**
peter.d.reid60ec9142014-09-06 16:39:46 +00003635** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003636** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003637**
dan51f0b6d2013-02-22 20:16:34 +00003638** Parameter nFin is the number of pages that this database would contain
3639** were this function called until it returns SQLITE_DONE.
3640**
3641** If the bCommit parameter is non-zero, this function assumes that the
3642** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003643** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003644** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003645*/
dan51f0b6d2013-02-22 20:16:34 +00003646static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003647 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003648 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003649
drh1fee73e2007-08-29 04:00:57 +00003650 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003651 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003652
3653 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003654 u8 eType;
3655 Pgno iPtrPage;
3656
3657 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003658 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003659 return SQLITE_DONE;
3660 }
3661
3662 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3663 if( rc!=SQLITE_OK ){
3664 return rc;
3665 }
3666 if( eType==PTRMAP_ROOTPAGE ){
3667 return SQLITE_CORRUPT_BKPT;
3668 }
3669
3670 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003671 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003672 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003673 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003674 ** truncated to zero after this function returns, so it doesn't
3675 ** matter if it still contains some garbage entries.
3676 */
3677 Pgno iFreePg;
3678 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003679 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003680 if( rc!=SQLITE_OK ){
3681 return rc;
3682 }
3683 assert( iFreePg==iLastPg );
3684 releasePage(pFreePg);
3685 }
3686 } else {
3687 Pgno iFreePg; /* Index of free page to move pLastPg to */
3688 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003689 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3690 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003691
drhb00fc3b2013-08-21 23:42:32 +00003692 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003693 if( rc!=SQLITE_OK ){
3694 return rc;
3695 }
3696
dan51f0b6d2013-02-22 20:16:34 +00003697 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003698 ** is swapped with the first free page pulled off the free list.
3699 **
dan51f0b6d2013-02-22 20:16:34 +00003700 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003701 ** looping until a free-page located within the first nFin pages
3702 ** of the file is found.
3703 */
dan51f0b6d2013-02-22 20:16:34 +00003704 if( bCommit==0 ){
3705 eMode = BTALLOC_LE;
3706 iNear = nFin;
3707 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003708 do {
3709 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003710 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003711 if( rc!=SQLITE_OK ){
3712 releasePage(pLastPg);
3713 return rc;
3714 }
3715 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003716 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003717 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003718
dane1df4e32013-03-05 11:27:04 +00003719 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003720 releasePage(pLastPg);
3721 if( rc!=SQLITE_OK ){
3722 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003723 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003724 }
3725 }
3726
dan51f0b6d2013-02-22 20:16:34 +00003727 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003728 do {
danielk19773460d192008-12-27 15:23:13 +00003729 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003730 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3731 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003732 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003733 }
3734 return SQLITE_OK;
3735}
3736
3737/*
dan51f0b6d2013-02-22 20:16:34 +00003738** The database opened by the first argument is an auto-vacuum database
3739** nOrig pages in size containing nFree free pages. Return the expected
3740** size of the database in pages following an auto-vacuum operation.
3741*/
3742static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3743 int nEntry; /* Number of entries on one ptrmap page */
3744 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3745 Pgno nFin; /* Return value */
3746
3747 nEntry = pBt->usableSize/5;
3748 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3749 nFin = nOrig - nFree - nPtrmap;
3750 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3751 nFin--;
3752 }
3753 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3754 nFin--;
3755 }
dan51f0b6d2013-02-22 20:16:34 +00003756
3757 return nFin;
3758}
3759
3760/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003761** A write-transaction must be opened before calling this function.
3762** It performs a single unit of work towards an incremental vacuum.
3763**
3764** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003765** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003766** SQLITE_OK is returned. Otherwise an SQLite error code.
3767*/
3768int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003769 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003770 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003771
3772 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003773 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3774 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003775 rc = SQLITE_DONE;
3776 }else{
dan51f0b6d2013-02-22 20:16:34 +00003777 Pgno nOrig = btreePagecount(pBt);
3778 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3779 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3780
dan91384712013-02-24 11:50:43 +00003781 if( nOrig<nFin ){
3782 rc = SQLITE_CORRUPT_BKPT;
3783 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003784 rc = saveAllCursors(pBt, 0, 0);
3785 if( rc==SQLITE_OK ){
3786 invalidateAllOverflowCache(pBt);
3787 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3788 }
dan51f0b6d2013-02-22 20:16:34 +00003789 if( rc==SQLITE_OK ){
3790 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3791 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3792 }
3793 }else{
3794 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003795 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003796 }
drhd677b3d2007-08-20 22:48:41 +00003797 sqlite3BtreeLeave(p);
3798 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003799}
3800
3801/*
danielk19773b8a05f2007-03-19 17:44:26 +00003802** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003803** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003804**
3805** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3806** the database file should be truncated to during the commit process.
3807** i.e. the database has been reorganized so that only the first *pnTrunc
3808** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003809*/
danielk19773460d192008-12-27 15:23:13 +00003810static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003811 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003812 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003813 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003814
drh1fee73e2007-08-29 04:00:57 +00003815 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003816 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003817 assert(pBt->autoVacuum);
3818 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003819 Pgno nFin; /* Number of pages in database after autovacuuming */
3820 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003821 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003822 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003823
drhb1299152010-03-30 22:58:33 +00003824 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003825 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3826 /* It is not possible to create a database for which the final page
3827 ** is either a pointer-map page or the pending-byte page. If one
3828 ** is encountered, this indicates corruption.
3829 */
danielk19773460d192008-12-27 15:23:13 +00003830 return SQLITE_CORRUPT_BKPT;
3831 }
danielk1977ef165ce2009-04-06 17:50:03 +00003832
danielk19773460d192008-12-27 15:23:13 +00003833 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003834 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003835 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003836 if( nFin<nOrig ){
3837 rc = saveAllCursors(pBt, 0, 0);
3838 }
danielk19773460d192008-12-27 15:23:13 +00003839 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003840 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003841 }
danielk19773460d192008-12-27 15:23:13 +00003842 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003843 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3844 put4byte(&pBt->pPage1->aData[32], 0);
3845 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003846 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003847 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003848 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003849 }
3850 if( rc!=SQLITE_OK ){
3851 sqlite3PagerRollback(pPager);
3852 }
danielk1977687566d2004-11-02 12:56:41 +00003853 }
3854
dan0aed84d2013-03-26 14:16:20 +00003855 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003856 return rc;
3857}
danielk1977dddbcdc2007-04-26 14:42:34 +00003858
danielk1977a50d9aa2009-06-08 14:49:45 +00003859#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3860# define setChildPtrmaps(x) SQLITE_OK
3861#endif
danielk1977687566d2004-11-02 12:56:41 +00003862
3863/*
drh80e35f42007-03-30 14:06:34 +00003864** This routine does the first phase of a two-phase commit. This routine
3865** causes a rollback journal to be created (if it does not already exist)
3866** and populated with enough information so that if a power loss occurs
3867** the database can be restored to its original state by playing back
3868** the journal. Then the contents of the journal are flushed out to
3869** the disk. After the journal is safely on oxide, the changes to the
3870** database are written into the database file and flushed to oxide.
3871** At the end of this call, the rollback journal still exists on the
3872** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003873** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003874** commit process.
3875**
3876** This call is a no-op if no write-transaction is currently active on pBt.
3877**
3878** Otherwise, sync the database file for the btree pBt. zMaster points to
3879** the name of a master journal file that should be written into the
3880** individual journal file, or is NULL, indicating no master journal file
3881** (single database transaction).
3882**
3883** When this is called, the master journal should already have been
3884** created, populated with this journal pointer and synced to disk.
3885**
3886** Once this is routine has returned, the only thing required to commit
3887** the write-transaction for this database file is to delete the journal.
3888*/
3889int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3890 int rc = SQLITE_OK;
3891 if( p->inTrans==TRANS_WRITE ){
3892 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003893 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003894#ifndef SQLITE_OMIT_AUTOVACUUM
3895 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003896 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003897 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003898 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003899 return rc;
3900 }
3901 }
danbc1a3c62013-02-23 16:40:46 +00003902 if( pBt->bDoTruncate ){
3903 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3904 }
drh80e35f42007-03-30 14:06:34 +00003905#endif
drh49b9d332009-01-02 18:10:42 +00003906 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003907 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003908 }
3909 return rc;
3910}
3911
3912/*
danielk197794b30732009-07-02 17:21:57 +00003913** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3914** at the conclusion of a transaction.
3915*/
3916static void btreeEndTransaction(Btree *p){
3917 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003918 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003919 assert( sqlite3BtreeHoldsMutex(p) );
3920
danbc1a3c62013-02-23 16:40:46 +00003921#ifndef SQLITE_OMIT_AUTOVACUUM
3922 pBt->bDoTruncate = 0;
3923#endif
danc0537fe2013-06-28 19:41:43 +00003924 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003925 /* If there are other active statements that belong to this database
3926 ** handle, downgrade to a read-only transaction. The other statements
3927 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003928 downgradeAllSharedCacheTableLocks(p);
3929 p->inTrans = TRANS_READ;
3930 }else{
3931 /* If the handle had any kind of transaction open, decrement the
3932 ** transaction count of the shared btree. If the transaction count
3933 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3934 ** call below will unlock the pager. */
3935 if( p->inTrans!=TRANS_NONE ){
3936 clearAllSharedCacheTableLocks(p);
3937 pBt->nTransaction--;
3938 if( 0==pBt->nTransaction ){
3939 pBt->inTransaction = TRANS_NONE;
3940 }
3941 }
3942
3943 /* Set the current transaction state to TRANS_NONE and unlock the
3944 ** pager if this call closed the only read or write transaction. */
3945 p->inTrans = TRANS_NONE;
3946 unlockBtreeIfUnused(pBt);
3947 }
3948
3949 btreeIntegrity(p);
3950}
3951
3952/*
drh2aa679f2001-06-25 02:11:07 +00003953** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003954**
drh6e345992007-03-30 11:12:08 +00003955** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003956** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3957** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3958** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003959** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003960** routine has to do is delete or truncate or zero the header in the
3961** the rollback journal (which causes the transaction to commit) and
3962** drop locks.
drh6e345992007-03-30 11:12:08 +00003963**
dan60939d02011-03-29 15:40:55 +00003964** Normally, if an error occurs while the pager layer is attempting to
3965** finalize the underlying journal file, this function returns an error and
3966** the upper layer will attempt a rollback. However, if the second argument
3967** is non-zero then this b-tree transaction is part of a multi-file
3968** transaction. In this case, the transaction has already been committed
3969** (by deleting a master journal file) and the caller will ignore this
3970** functions return code. So, even if an error occurs in the pager layer,
3971** reset the b-tree objects internal state to indicate that the write
3972** transaction has been closed. This is quite safe, as the pager will have
3973** transitioned to the error state.
3974**
drh5e00f6c2001-09-13 13:46:56 +00003975** This will release the write lock on the database file. If there
3976** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003977*/
dan60939d02011-03-29 15:40:55 +00003978int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003979
drh075ed302010-10-14 01:17:30 +00003980 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003981 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003982 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003983
3984 /* If the handle has a write-transaction open, commit the shared-btrees
3985 ** transaction and set the shared state to TRANS_READ.
3986 */
3987 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003988 int rc;
drh075ed302010-10-14 01:17:30 +00003989 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003990 assert( pBt->inTransaction==TRANS_WRITE );
3991 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003992 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003993 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003994 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003995 return rc;
3996 }
drh3da9c042014-12-22 18:41:21 +00003997 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003998 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003999 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004000 }
danielk1977aef0bf62005-12-30 16:28:01 +00004001
danielk197794b30732009-07-02 17:21:57 +00004002 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004003 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004004 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004005}
4006
drh80e35f42007-03-30 14:06:34 +00004007/*
4008** Do both phases of a commit.
4009*/
4010int sqlite3BtreeCommit(Btree *p){
4011 int rc;
drhd677b3d2007-08-20 22:48:41 +00004012 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004013 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4014 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004015 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004016 }
drhd677b3d2007-08-20 22:48:41 +00004017 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004018 return rc;
4019}
4020
drhc39e0002004-05-07 23:50:57 +00004021/*
drhfb982642007-08-30 01:19:59 +00004022** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004023** code to errCode for every cursor on any BtShared that pBtree
4024** references. Or if the writeOnly flag is set to 1, then only
4025** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004026**
drh47b7fc72014-11-11 01:33:57 +00004027** Every cursor is a candidate to be tripped, including cursors
4028** that belong to other database connections that happen to be
4029** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004030**
dan80231042014-11-12 14:56:02 +00004031** This routine gets called when a rollback occurs. If the writeOnly
4032** flag is true, then only write-cursors need be tripped - read-only
4033** cursors save their current positions so that they may continue
4034** following the rollback. Or, if writeOnly is false, all cursors are
4035** tripped. In general, writeOnly is false if the transaction being
4036** rolled back modified the database schema. In this case b-tree root
4037** pages may be moved or deleted from the database altogether, making
4038** it unsafe for read cursors to continue.
4039**
4040** If the writeOnly flag is true and an error is encountered while
4041** saving the current position of a read-only cursor, all cursors,
4042** including all read-cursors are tripped.
4043**
4044** SQLITE_OK is returned if successful, or if an error occurs while
4045** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004046*/
dan80231042014-11-12 14:56:02 +00004047int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004048 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004049 int rc = SQLITE_OK;
4050
drh47b7fc72014-11-11 01:33:57 +00004051 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004052 if( pBtree ){
4053 sqlite3BtreeEnter(pBtree);
4054 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004055 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004056 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004057 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004058 if( rc!=SQLITE_OK ){
4059 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4060 break;
4061 }
4062 }
4063 }else{
4064 sqlite3BtreeClearCursor(p);
4065 p->eState = CURSOR_FAULT;
4066 p->skipNext = errCode;
4067 }
drh85ef6302017-08-02 15:50:09 +00004068 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004069 }
dan80231042014-11-12 14:56:02 +00004070 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004071 }
dan80231042014-11-12 14:56:02 +00004072 return rc;
drhfb982642007-08-30 01:19:59 +00004073}
4074
4075/*
drh47b7fc72014-11-11 01:33:57 +00004076** Rollback the transaction in progress.
4077**
4078** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4079** Only write cursors are tripped if writeOnly is true but all cursors are
4080** tripped if writeOnly is false. Any attempt to use
4081** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004082**
4083** This will release the write lock on the database file. If there
4084** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004085*/
drh47b7fc72014-11-11 01:33:57 +00004086int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004087 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004088 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004089 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004090
drh47b7fc72014-11-11 01:33:57 +00004091 assert( writeOnly==1 || writeOnly==0 );
4092 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004093 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004094 if( tripCode==SQLITE_OK ){
4095 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004096 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004097 }else{
4098 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004099 }
drh0f198a72012-02-13 16:43:16 +00004100 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004101 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4102 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4103 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004104 }
danielk1977aef0bf62005-12-30 16:28:01 +00004105 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004106
4107 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004108 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004109
danielk19778d34dfd2006-01-24 16:37:57 +00004110 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004111 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004112 if( rc2!=SQLITE_OK ){
4113 rc = rc2;
4114 }
4115
drh24cd67e2004-05-10 16:18:47 +00004116 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004117 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004118 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004119 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004120 int nPage = get4byte(28+(u8*)pPage1->aData);
4121 testcase( nPage==0 );
4122 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4123 testcase( pBt->nPage!=nPage );
4124 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004125 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004126 }
drh85ec3b62013-05-14 23:12:06 +00004127 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004128 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004129 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004130 }
danielk1977aef0bf62005-12-30 16:28:01 +00004131
danielk197794b30732009-07-02 17:21:57 +00004132 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004133 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004134 return rc;
4135}
4136
4137/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004138** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004139** back independently of the main transaction. You must start a transaction
4140** before starting a subtransaction. The subtransaction is ended automatically
4141** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004142**
4143** Statement subtransactions are used around individual SQL statements
4144** that are contained within a BEGIN...COMMIT block. If a constraint
4145** error occurs within the statement, the effect of that one statement
4146** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004147**
4148** A statement sub-transaction is implemented as an anonymous savepoint. The
4149** value passed as the second parameter is the total number of savepoints,
4150** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4151** are no active savepoints and no other statement-transactions open,
4152** iStatement is 1. This anonymous savepoint can be released or rolled back
4153** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004154*/
danielk1977bd434552009-03-18 10:33:00 +00004155int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004156 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004157 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004158 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004159 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004160 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004161 assert( iStatement>0 );
4162 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004163 assert( pBt->inTransaction==TRANS_WRITE );
4164 /* At the pager level, a statement transaction is a savepoint with
4165 ** an index greater than all savepoints created explicitly using
4166 ** SQL statements. It is illegal to open, release or rollback any
4167 ** such savepoints while the statement transaction savepoint is active.
4168 */
4169 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004170 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004171 return rc;
4172}
4173
4174/*
danielk1977fd7f0452008-12-17 17:30:26 +00004175** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4176** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004177** savepoint identified by parameter iSavepoint, depending on the value
4178** of op.
4179**
4180** Normally, iSavepoint is greater than or equal to zero. However, if op is
4181** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4182** contents of the entire transaction are rolled back. This is different
4183** from a normal transaction rollback, as no locks are released and the
4184** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004185*/
4186int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4187 int rc = SQLITE_OK;
4188 if( p && p->inTrans==TRANS_WRITE ){
4189 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004190 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4191 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4192 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004193 if( op==SAVEPOINT_ROLLBACK ){
4194 rc = saveAllCursors(pBt, 0, 0);
4195 }
4196 if( rc==SQLITE_OK ){
4197 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4198 }
drh9f0bbf92009-01-02 21:08:09 +00004199 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004200 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4201 pBt->nPage = 0;
4202 }
drh9f0bbf92009-01-02 21:08:09 +00004203 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004204 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004205
4206 /* The database size was written into the offset 28 of the header
4207 ** when the transaction started, so we know that the value at offset
4208 ** 28 is nonzero. */
4209 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004210 }
danielk1977fd7f0452008-12-17 17:30:26 +00004211 sqlite3BtreeLeave(p);
4212 }
4213 return rc;
4214}
4215
4216/*
drh8b2f49b2001-06-08 00:21:52 +00004217** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004218** iTable. If a read-only cursor is requested, it is assumed that
4219** the caller already has at least a read-only transaction open
4220** on the database already. If a write-cursor is requested, then
4221** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004222**
drhe807bdb2016-01-21 17:06:33 +00004223** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4224** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4225** can be used for reading or for writing if other conditions for writing
4226** are also met. These are the conditions that must be met in order
4227** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004228**
drhe807bdb2016-01-21 17:06:33 +00004229** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004230**
drhfe5d71d2007-03-19 11:54:10 +00004231** 2: Other database connections that share the same pager cache
4232** but which are not in the READ_UNCOMMITTED state may not have
4233** cursors open with wrFlag==0 on the same table. Otherwise
4234** the changes made by this write cursor would be visible to
4235** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004236**
4237** 3: The database must be writable (not on read-only media)
4238**
4239** 4: There must be an active transaction.
4240**
drhe807bdb2016-01-21 17:06:33 +00004241** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4242** is set. If FORDELETE is set, that is a hint to the implementation that
4243** this cursor will only be used to seek to and delete entries of an index
4244** as part of a larger DELETE statement. The FORDELETE hint is not used by
4245** this implementation. But in a hypothetical alternative storage engine
4246** in which index entries are automatically deleted when corresponding table
4247** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4248** operations on this cursor can be no-ops and all READ operations can
4249** return a null row (2-bytes: 0x01 0x00).
4250**
drh6446c4d2001-12-15 14:22:18 +00004251** No checking is done to make sure that page iTable really is the
4252** root page of a b-tree. If it is not, then the cursor acquired
4253** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004254**
drhf25a5072009-11-18 23:01:25 +00004255** It is assumed that the sqlite3BtreeCursorZero() has been called
4256** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004257*/
drhd677b3d2007-08-20 22:48:41 +00004258static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004259 Btree *p, /* The btree */
4260 int iTable, /* Root page of table to open */
4261 int wrFlag, /* 1 to write. 0 read-only */
4262 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4263 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004264){
danielk19773e8add92009-07-04 17:16:00 +00004265 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004266 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004267
drh1fee73e2007-08-29 04:00:57 +00004268 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004269 assert( wrFlag==0
4270 || wrFlag==BTREE_WRCSR
4271 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4272 );
danielk197796d48e92009-06-29 06:00:37 +00004273
danielk1977602b4662009-07-02 07:47:33 +00004274 /* The following assert statements verify that if this is a sharable
4275 ** b-tree database, the connection is holding the required table locks,
4276 ** and that no other connection has any open cursor that conflicts with
4277 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004278 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004279 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4280
danielk19773e8add92009-07-04 17:16:00 +00004281 /* Assert that the caller has opened the required transaction. */
4282 assert( p->inTrans>TRANS_NONE );
4283 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4284 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004285 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004286
drh3fbb0222014-09-24 19:47:27 +00004287 if( wrFlag ){
4288 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004289 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004290 }
drhb1299152010-03-30 22:58:33 +00004291 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004292 assert( wrFlag==0 );
4293 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004294 }
danielk1977aef0bf62005-12-30 16:28:01 +00004295
danielk1977aef0bf62005-12-30 16:28:01 +00004296 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004297 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004298 pCur->pgnoRoot = (Pgno)iTable;
4299 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004300 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004301 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004302 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004303 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004304 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004305 /* If there are two or more cursors on the same btree, then all such
4306 ** cursors *must* have the BTCF_Multiple flag set. */
4307 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4308 if( pX->pgnoRoot==(Pgno)iTable ){
4309 pX->curFlags |= BTCF_Multiple;
4310 pCur->curFlags |= BTCF_Multiple;
4311 }
drha059ad02001-04-17 20:09:11 +00004312 }
drh27fb7462015-06-30 02:47:36 +00004313 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004314 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004315 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004316 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004317}
drhd677b3d2007-08-20 22:48:41 +00004318int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004319 Btree *p, /* The btree */
4320 int iTable, /* Root page of table to open */
4321 int wrFlag, /* 1 to write. 0 read-only */
4322 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4323 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004324){
4325 int rc;
dan08f901b2015-05-25 19:24:36 +00004326 if( iTable<1 ){
4327 rc = SQLITE_CORRUPT_BKPT;
4328 }else{
4329 sqlite3BtreeEnter(p);
4330 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4331 sqlite3BtreeLeave(p);
4332 }
drhd677b3d2007-08-20 22:48:41 +00004333 return rc;
4334}
drh7f751222009-03-17 22:33:00 +00004335
4336/*
4337** Return the size of a BtCursor object in bytes.
4338**
4339** This interfaces is needed so that users of cursors can preallocate
4340** sufficient storage to hold a cursor. The BtCursor object is opaque
4341** to users so they cannot do the sizeof() themselves - they must call
4342** this routine.
4343*/
4344int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004345 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004346}
4347
drh7f751222009-03-17 22:33:00 +00004348/*
drhf25a5072009-11-18 23:01:25 +00004349** Initialize memory that will be converted into a BtCursor object.
4350**
4351** The simple approach here would be to memset() the entire object
4352** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4353** do not need to be zeroed and they are large, so we can save a lot
4354** of run-time by skipping the initialization of those elements.
4355*/
4356void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004357 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004358}
4359
4360/*
drh5e00f6c2001-09-13 13:46:56 +00004361** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004362** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004363*/
drh3aac2dd2004-04-26 14:10:20 +00004364int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004365 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004366 if( pBtree ){
4367 BtShared *pBt = pCur->pBt;
4368 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004369 assert( pBt->pCursor!=0 );
4370 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004371 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004372 }else{
4373 BtCursor *pPrev = pBt->pCursor;
4374 do{
4375 if( pPrev->pNext==pCur ){
4376 pPrev->pNext = pCur->pNext;
4377 break;
4378 }
4379 pPrev = pPrev->pNext;
4380 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004381 }
drh352a35a2017-08-15 03:46:47 +00004382 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004383 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004384 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004385 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004386 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004387 }
drh8c42ca92001-06-22 19:15:00 +00004388 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004389}
4390
drh5e2f8b92001-05-28 00:41:15 +00004391/*
drh86057612007-06-26 01:04:48 +00004392** Make sure the BtCursor* given in the argument has a valid
4393** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004394** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004395**
4396** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004397** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004398*/
drh9188b382004-05-14 21:12:22 +00004399#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004400 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4401 if( a->nKey!=b->nKey ) return 0;
4402 if( a->pPayload!=b->pPayload ) return 0;
4403 if( a->nPayload!=b->nPayload ) return 0;
4404 if( a->nLocal!=b->nLocal ) return 0;
4405 if( a->nSize!=b->nSize ) return 0;
4406 return 1;
4407 }
danielk19771cc5ed82007-05-16 17:28:43 +00004408 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004409 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004410 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004411 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004412 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004413 }
danielk19771cc5ed82007-05-16 17:28:43 +00004414#else
4415 #define assertCellInfo(x)
4416#endif
drhc5b41ac2015-06-17 02:11:46 +00004417static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4418 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004419 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004420 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004421 }else{
4422 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004423 }
drhc5b41ac2015-06-17 02:11:46 +00004424}
drh9188b382004-05-14 21:12:22 +00004425
drhea8ffdf2009-07-22 00:35:23 +00004426#ifndef NDEBUG /* The next routine used only within assert() statements */
4427/*
4428** Return true if the given BtCursor is valid. A valid cursor is one
4429** that is currently pointing to a row in a (non-empty) table.
4430** This is a verification routine is used only within assert() statements.
4431*/
4432int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4433 return pCur && pCur->eState==CURSOR_VALID;
4434}
4435#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004436int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4437 assert( pCur!=0 );
4438 return pCur->eState==CURSOR_VALID;
4439}
drhea8ffdf2009-07-22 00:35:23 +00004440
drh9188b382004-05-14 21:12:22 +00004441/*
drha7c90c42016-06-04 20:37:10 +00004442** Return the value of the integer key or "rowid" for a table btree.
4443** This routine is only valid for a cursor that is pointing into a
4444** ordinary table btree. If the cursor points to an index btree or
4445** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004446*/
drha7c90c42016-06-04 20:37:10 +00004447i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004448 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004449 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004450 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004451 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004452 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004453}
drh2af926b2001-05-15 00:39:25 +00004454
drh092457b2017-12-29 15:04:49 +00004455#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004456/*
drh2fc865c2017-12-16 20:20:37 +00004457** Return the offset into the database file for the start of the
4458** payload to which the cursor is pointing.
4459*/
drh092457b2017-12-29 15:04:49 +00004460i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004461 assert( cursorHoldsMutex(pCur) );
4462 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004463 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004464 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004465 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4466}
drh092457b2017-12-29 15:04:49 +00004467#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004468
4469/*
drha7c90c42016-06-04 20:37:10 +00004470** Return the number of bytes of payload for the entry that pCur is
4471** currently pointing to. For table btrees, this will be the amount
4472** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004473**
4474** The caller must guarantee that the cursor is pointing to a non-NULL
4475** valid entry. In other words, the calling procedure must guarantee
4476** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004477*/
drha7c90c42016-06-04 20:37:10 +00004478u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4479 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004480 assert( pCur->eState==CURSOR_VALID );
4481 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004482 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004483}
4484
4485/*
danielk1977d04417962007-05-02 13:16:30 +00004486** Given the page number of an overflow page in the database (parameter
4487** ovfl), this function finds the page number of the next page in the
4488** linked list of overflow pages. If possible, it uses the auto-vacuum
4489** pointer-map data instead of reading the content of page ovfl to do so.
4490**
4491** If an error occurs an SQLite error code is returned. Otherwise:
4492**
danielk1977bea2a942009-01-20 17:06:27 +00004493** The page number of the next overflow page in the linked list is
4494** written to *pPgnoNext. If page ovfl is the last page in its linked
4495** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004496**
danielk1977bea2a942009-01-20 17:06:27 +00004497** If ppPage is not NULL, and a reference to the MemPage object corresponding
4498** to page number pOvfl was obtained, then *ppPage is set to point to that
4499** reference. It is the responsibility of the caller to call releasePage()
4500** on *ppPage to free the reference. In no reference was obtained (because
4501** the pointer-map was used to obtain the value for *pPgnoNext), then
4502** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004503*/
4504static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004505 BtShared *pBt, /* The database file */
4506 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004507 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004508 Pgno *pPgnoNext /* OUT: Next overflow page number */
4509){
4510 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004511 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004512 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004513
drh1fee73e2007-08-29 04:00:57 +00004514 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004515 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004516
4517#ifndef SQLITE_OMIT_AUTOVACUUM
4518 /* Try to find the next page in the overflow list using the
4519 ** autovacuum pointer-map pages. Guess that the next page in
4520 ** the overflow list is page number (ovfl+1). If that guess turns
4521 ** out to be wrong, fall back to loading the data of page
4522 ** number ovfl to determine the next page number.
4523 */
4524 if( pBt->autoVacuum ){
4525 Pgno pgno;
4526 Pgno iGuess = ovfl+1;
4527 u8 eType;
4528
4529 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4530 iGuess++;
4531 }
4532
drhb1299152010-03-30 22:58:33 +00004533 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004534 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004535 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004536 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004537 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004538 }
4539 }
4540 }
4541#endif
4542
danielk1977d8a3f3d2009-07-11 11:45:23 +00004543 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004544 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004545 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004546 assert( rc==SQLITE_OK || pPage==0 );
4547 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004548 next = get4byte(pPage->aData);
4549 }
danielk1977443c0592009-01-16 15:21:05 +00004550 }
danielk197745d68822009-01-16 16:23:38 +00004551
danielk1977bea2a942009-01-20 17:06:27 +00004552 *pPgnoNext = next;
4553 if( ppPage ){
4554 *ppPage = pPage;
4555 }else{
4556 releasePage(pPage);
4557 }
4558 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004559}
4560
danielk1977da107192007-05-04 08:32:13 +00004561/*
4562** Copy data from a buffer to a page, or from a page to a buffer.
4563**
4564** pPayload is a pointer to data stored on database page pDbPage.
4565** If argument eOp is false, then nByte bytes of data are copied
4566** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4567** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4568** of data are copied from the buffer pBuf to pPayload.
4569**
4570** SQLITE_OK is returned on success, otherwise an error code.
4571*/
4572static int copyPayload(
4573 void *pPayload, /* Pointer to page data */
4574 void *pBuf, /* Pointer to buffer */
4575 int nByte, /* Number of bytes to copy */
4576 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4577 DbPage *pDbPage /* Page containing pPayload */
4578){
4579 if( eOp ){
4580 /* Copy data from buffer to page (a write operation) */
4581 int rc = sqlite3PagerWrite(pDbPage);
4582 if( rc!=SQLITE_OK ){
4583 return rc;
4584 }
4585 memcpy(pPayload, pBuf, nByte);
4586 }else{
4587 /* Copy data from page to buffer (a read operation) */
4588 memcpy(pBuf, pPayload, nByte);
4589 }
4590 return SQLITE_OK;
4591}
danielk1977d04417962007-05-02 13:16:30 +00004592
4593/*
danielk19779f8d6402007-05-02 17:48:45 +00004594** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004595** for the entry that the pCur cursor is pointing to. The eOp
4596** argument is interpreted as follows:
4597**
4598** 0: The operation is a read. Populate the overflow cache.
4599** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004600**
4601** A total of "amt" bytes are read or written beginning at "offset".
4602** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004603**
drh3bcdfd22009-07-12 02:32:21 +00004604** The content being read or written might appear on the main page
4605** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004606**
drh42e28f12017-01-27 00:31:59 +00004607** If the current cursor entry uses one or more overflow pages
4608** this function may allocate space for and lazily populate
4609** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004610** Subsequent calls use this cache to make seeking to the supplied offset
4611** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004612**
drh42e28f12017-01-27 00:31:59 +00004613** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004614** invalidated if some other cursor writes to the same table, or if
4615** the cursor is moved to a different row. Additionally, in auto-vacuum
4616** mode, the following events may invalidate an overflow page-list cache.
4617**
4618** * An incremental vacuum,
4619** * A commit in auto_vacuum="full" mode,
4620** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004621*/
danielk19779f8d6402007-05-02 17:48:45 +00004622static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004623 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004624 u32 offset, /* Begin reading this far into payload */
4625 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004626 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004627 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004628){
4629 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004630 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004631 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004632 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004633 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004634#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004635 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004636#endif
drh3aac2dd2004-04-26 14:10:20 +00004637
danielk1977da107192007-05-04 08:32:13 +00004638 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004639 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004640 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004641 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004642 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004643
drh86057612007-06-26 01:04:48 +00004644 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004645 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004646 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004647
drh0b982072016-03-22 14:10:45 +00004648 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004649 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004650 /* Trying to read or write past the end of the data is an error. The
4651 ** conditional above is really:
4652 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4653 ** but is recast into its current form to avoid integer overflow problems
4654 */
daneebf2f52017-11-18 17:30:08 +00004655 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004656 }
danielk1977da107192007-05-04 08:32:13 +00004657
4658 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004659 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004660 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004661 if( a+offset>pCur->info.nLocal ){
4662 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004663 }
drh42e28f12017-01-27 00:31:59 +00004664 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004665 offset = 0;
drha34b6762004-05-07 13:30:42 +00004666 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004667 amt -= a;
drhdd793422001-06-28 01:54:48 +00004668 }else{
drhfa1a98a2004-05-14 19:08:17 +00004669 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004670 }
danielk1977da107192007-05-04 08:32:13 +00004671
dan85753662014-12-11 16:38:18 +00004672
danielk1977da107192007-05-04 08:32:13 +00004673 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004674 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004675 Pgno nextPage;
4676
drhfa1a98a2004-05-14 19:08:17 +00004677 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004678
drha38c9512014-04-01 01:24:34 +00004679 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004680 **
4681 ** The aOverflow[] array is sized at one entry for each overflow page
4682 ** in the overflow chain. The page number of the first overflow page is
4683 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4684 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004685 */
drh42e28f12017-01-27 00:31:59 +00004686 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004687 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004688 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004689 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004690 ){
dan85753662014-12-11 16:38:18 +00004691 Pgno *aNew = (Pgno*)sqlite3Realloc(
4692 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004693 );
4694 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004695 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004696 }else{
dan5a500af2014-03-11 20:33:04 +00004697 pCur->aOverflow = aNew;
4698 }
4699 }
drhcd645532017-01-20 20:43:14 +00004700 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4701 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004702 }else{
4703 /* If the overflow page-list cache has been allocated and the
4704 ** entry for the first required overflow page is valid, skip
4705 ** directly to it.
4706 */
4707 if( pCur->aOverflow[offset/ovflSize] ){
4708 iIdx = (offset/ovflSize);
4709 nextPage = pCur->aOverflow[iIdx];
4710 offset = (offset%ovflSize);
4711 }
danielk19772dec9702007-05-02 16:48:37 +00004712 }
danielk1977da107192007-05-04 08:32:13 +00004713
drhcd645532017-01-20 20:43:14 +00004714 assert( rc==SQLITE_OK && amt>0 );
4715 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004716 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004717 assert( pCur->aOverflow[iIdx]==0
4718 || pCur->aOverflow[iIdx]==nextPage
4719 || CORRUPT_DB );
4720 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004721
danielk1977d04417962007-05-02 13:16:30 +00004722 if( offset>=ovflSize ){
4723 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004724 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004725 ** data is not required. So first try to lookup the overflow
4726 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004727 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004728 */
drha38c9512014-04-01 01:24:34 +00004729 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004730 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004731 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004732 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004733 }else{
danielk1977da107192007-05-04 08:32:13 +00004734 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004735 }
danielk1977da107192007-05-04 08:32:13 +00004736 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004737 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004738 /* Need to read this page properly. It contains some of the
4739 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004740 */
danf4ba1092011-10-08 14:57:07 +00004741#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004742 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004743#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004744 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004745 if( a + offset > ovflSize ){
4746 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004747 }
danf4ba1092011-10-08 14:57:07 +00004748
4749#ifdef SQLITE_DIRECT_OVERFLOW_READ
4750 /* If all the following are true:
4751 **
4752 ** 1) this is a read operation, and
4753 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004754 ** 3) there is no open write-transaction, and
4755 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004756 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004757 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004758 **
4759 ** then data can be read directly from the database file into the
4760 ** output buffer, bypassing the page-cache altogether. This speeds
4761 ** up loading large records that span many overflow pages.
4762 */
drh42e28f12017-01-27 00:31:59 +00004763 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004764 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004765 && pBt->inTransaction==TRANS_READ /* (3) */
4766 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004767 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004768 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004769 ){
4770 u8 aSave[4];
4771 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004772 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004773 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004774 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004775 nextPage = get4byte(aWrite);
4776 memcpy(aWrite, aSave, 4);
4777 }else
4778#endif
4779
4780 {
4781 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004782 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004783 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004784 );
danf4ba1092011-10-08 14:57:07 +00004785 if( rc==SQLITE_OK ){
4786 aPayload = sqlite3PagerGetData(pDbPage);
4787 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004788 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004789 sqlite3PagerUnref(pDbPage);
4790 offset = 0;
4791 }
4792 }
4793 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004794 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004795 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004796 }
drhcd645532017-01-20 20:43:14 +00004797 if( rc ) break;
4798 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004799 }
drh2af926b2001-05-15 00:39:25 +00004800 }
danielk1977cfe9a692004-06-16 12:00:29 +00004801
danielk1977da107192007-05-04 08:32:13 +00004802 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004803 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004804 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004805 }
danielk1977da107192007-05-04 08:32:13 +00004806 return rc;
drh2af926b2001-05-15 00:39:25 +00004807}
4808
drh72f82862001-05-24 21:06:34 +00004809/*
drhcb3cabd2016-11-25 19:18:28 +00004810** Read part of the payload for the row at which that cursor pCur is currently
4811** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004812** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004813**
drhcb3cabd2016-11-25 19:18:28 +00004814** pCur can be pointing to either a table or an index b-tree.
4815** If pointing to a table btree, then the content section is read. If
4816** pCur is pointing to an index b-tree then the key section is read.
4817**
4818** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4819** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4820** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004821**
drh3aac2dd2004-04-26 14:10:20 +00004822** Return SQLITE_OK on success or an error code if anything goes
4823** wrong. An error is returned if "offset+amt" is larger than
4824** the available payload.
drh72f82862001-05-24 21:06:34 +00004825*/
drhcb3cabd2016-11-25 19:18:28 +00004826int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004827 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004828 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004829 assert( pCur->iPage>=0 && pCur->pPage );
4830 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004831 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004832}
drh83ec2762017-01-26 16:54:47 +00004833
4834/*
4835** This variant of sqlite3BtreePayload() works even if the cursor has not
4836** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4837** interface.
4838*/
danielk19773588ceb2008-06-10 17:30:26 +00004839#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004840static SQLITE_NOINLINE int accessPayloadChecked(
4841 BtCursor *pCur,
4842 u32 offset,
4843 u32 amt,
4844 void *pBuf
4845){
drhcb3cabd2016-11-25 19:18:28 +00004846 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004847 if ( pCur->eState==CURSOR_INVALID ){
4848 return SQLITE_ABORT;
4849 }
dan7a2347e2016-01-07 16:43:54 +00004850 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004851 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004852 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4853}
4854int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4855 if( pCur->eState==CURSOR_VALID ){
4856 assert( cursorOwnsBtShared(pCur) );
4857 return accessPayload(pCur, offset, amt, pBuf, 0);
4858 }else{
4859 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004860 }
drh2af926b2001-05-15 00:39:25 +00004861}
drhcb3cabd2016-11-25 19:18:28 +00004862#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004863
drh72f82862001-05-24 21:06:34 +00004864/*
drh0e1c19e2004-05-11 00:58:56 +00004865** Return a pointer to payload information from the entry that the
4866** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004867** the key if index btrees (pPage->intKey==0) and is the data for
4868** table btrees (pPage->intKey==1). The number of bytes of available
4869** key/data is written into *pAmt. If *pAmt==0, then the value
4870** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004871**
4872** This routine is an optimization. It is common for the entire key
4873** and data to fit on the local page and for there to be no overflow
4874** pages. When that is so, this routine can be used to access the
4875** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004876** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004877** the key/data and copy it into a preallocated buffer.
4878**
4879** The pointer returned by this routine looks directly into the cached
4880** page of the database. The data might change or move the next time
4881** any btree routine is called.
4882*/
drh2a8d2262013-12-09 20:43:22 +00004883static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004884 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004885 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004886){
danf2f72a02017-10-19 15:17:38 +00004887 int amt;
drh352a35a2017-08-15 03:46:47 +00004888 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004889 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004890 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004891 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004892 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004893 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004894 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4895 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004896 amt = pCur->info.nLocal;
4897 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4898 /* There is too little space on the page for the expected amount
4899 ** of local content. Database must be corrupt. */
4900 assert( CORRUPT_DB );
4901 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4902 }
4903 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004904 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004905}
4906
4907
4908/*
drhe51c44f2004-05-30 20:46:09 +00004909** For the entry that cursor pCur is point to, return as
4910** many bytes of the key or data as are available on the local
4911** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004912**
4913** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004914** or be destroyed on the next call to any Btree routine,
4915** including calls from other threads against the same cache.
4916** Hence, a mutex on the BtShared should be held prior to calling
4917** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004918**
4919** These routines is used to get quick access to key and data
4920** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004921*/
drha7c90c42016-06-04 20:37:10 +00004922const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004923 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004924}
4925
4926
4927/*
drh8178a752003-01-05 21:41:40 +00004928** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004929** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004930**
4931** This function returns SQLITE_CORRUPT if the page-header flags field of
4932** the new child page does not match the flags field of the parent (i.e.
4933** if an intkey page appears to be the parent of a non-intkey page, or
4934** vice-versa).
drh72f82862001-05-24 21:06:34 +00004935*/
drh3aac2dd2004-04-26 14:10:20 +00004936static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004937 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004938
dan7a2347e2016-01-07 16:43:54 +00004939 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004940 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004941 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004942 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004943 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4944 return SQLITE_CORRUPT_BKPT;
4945 }
drh271efa52004-05-30 19:19:05 +00004946 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004947 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00004948 pCur->aiIdx[pCur->iPage] = pCur->ix;
4949 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00004950 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00004951 pCur->iPage++;
4952 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004953}
4954
drhd879e3e2017-02-13 13:35:55 +00004955#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004956/*
4957** Page pParent is an internal (non-leaf) tree page. This function
4958** asserts that page number iChild is the left-child if the iIdx'th
4959** cell in page pParent. Or, if iIdx is equal to the total number of
4960** cells in pParent, that page number iChild is the right-child of
4961** the page.
4962*/
4963static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004964 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4965 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004966 assert( iIdx<=pParent->nCell );
4967 if( iIdx==pParent->nCell ){
4968 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4969 }else{
4970 assert( get4byte(findCell(pParent, iIdx))==iChild );
4971 }
4972}
4973#else
4974# define assertParentIndex(x,y,z)
4975#endif
4976
drh72f82862001-05-24 21:06:34 +00004977/*
drh5e2f8b92001-05-28 00:41:15 +00004978** Move the cursor up to the parent page.
4979**
4980** pCur->idx is set to the cell index that contains the pointer
4981** to the page we are coming from. If we are coming from the
4982** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004983** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004984*/
danielk197730548662009-07-09 05:07:37 +00004985static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00004986 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00004987 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004988 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004989 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00004990 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00004991 assertParentIndex(
4992 pCur->apPage[pCur->iPage-1],
4993 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00004994 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00004995 );
dan6c2688c2012-01-12 15:05:03 +00004996 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004997 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004998 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004999 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005000 pLeaf = pCur->pPage;
5001 pCur->pPage = pCur->apPage[--pCur->iPage];
5002 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005003}
5004
5005/*
danielk19778f880a82009-07-13 09:41:45 +00005006** Move the cursor to point to the root page of its b-tree structure.
5007**
5008** If the table has a virtual root page, then the cursor is moved to point
5009** to the virtual root page instead of the actual root page. A table has a
5010** virtual root page when the actual root page contains no cells and a
5011** single child page. This can only happen with the table rooted at page 1.
5012**
5013** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005014** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5015** the cursor is set to point to the first cell located on the root
5016** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005017**
5018** If this function returns successfully, it may be assumed that the
5019** page-header flags indicate that the [virtual] root-page is the expected
5020** kind of b-tree page (i.e. if when opening the cursor the caller did not
5021** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5022** indicating a table b-tree, or if the caller did specify a KeyInfo
5023** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5024** b-tree).
drh72f82862001-05-24 21:06:34 +00005025*/
drh5e2f8b92001-05-28 00:41:15 +00005026static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005027 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005028 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005029
dan7a2347e2016-01-07 16:43:54 +00005030 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005031 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5032 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5033 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005034 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005035 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005036
5037 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005038 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005039 releasePageNotNull(pCur->pPage);
5040 while( --pCur->iPage ){
5041 releasePageNotNull(pCur->apPage[pCur->iPage]);
5042 }
5043 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005044 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005045 }
dana205a482011-08-27 18:48:57 +00005046 }else if( pCur->pgnoRoot==0 ){
5047 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005048 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005049 }else{
drh28f58dd2015-06-27 19:45:03 +00005050 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005051 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5052 if( pCur->eState==CURSOR_FAULT ){
5053 assert( pCur->skipNext!=SQLITE_OK );
5054 return pCur->skipNext;
5055 }
5056 sqlite3BtreeClearCursor(pCur);
5057 }
drh352a35a2017-08-15 03:46:47 +00005058 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005059 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005060 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005061 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005062 return rc;
drh777e4c42006-01-13 04:31:58 +00005063 }
danielk1977172114a2009-07-07 15:47:12 +00005064 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005065 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005066 }
drh352a35a2017-08-15 03:46:47 +00005067 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005068 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005069
5070 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5071 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5072 ** NULL, the caller expects a table b-tree. If this is not the case,
5073 ** return an SQLITE_CORRUPT error.
5074 **
5075 ** Earlier versions of SQLite assumed that this test could not fail
5076 ** if the root page was already loaded when this function was called (i.e.
5077 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5078 ** in such a way that page pRoot is linked into a second b-tree table
5079 ** (or the freelist). */
5080 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5081 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005082 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005083 }
danielk19778f880a82009-07-13 09:41:45 +00005084
drh7ad3eb62016-10-24 01:01:09 +00005085skip_init:
drh75e96b32017-04-01 00:20:06 +00005086 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005087 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005088 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005089
drh352a35a2017-08-15 03:46:47 +00005090 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005091 if( pRoot->nCell>0 ){
5092 pCur->eState = CURSOR_VALID;
5093 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005094 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005095 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005096 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005097 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005098 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005099 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005100 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005101 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005102 }
5103 return rc;
drh72f82862001-05-24 21:06:34 +00005104}
drh2af926b2001-05-15 00:39:25 +00005105
drh5e2f8b92001-05-28 00:41:15 +00005106/*
5107** Move the cursor down to the left-most leaf entry beneath the
5108** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005109**
5110** The left-most leaf is the one with the smallest key - the first
5111** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005112*/
5113static int moveToLeftmost(BtCursor *pCur){
5114 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005115 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005116 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005117
dan7a2347e2016-01-07 16:43:54 +00005118 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005119 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005120 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005121 assert( pCur->ix<pPage->nCell );
5122 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005123 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005124 }
drhd677b3d2007-08-20 22:48:41 +00005125 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005126}
5127
drh2dcc9aa2002-12-04 13:40:25 +00005128/*
5129** Move the cursor down to the right-most leaf entry beneath the
5130** page to which it is currently pointing. Notice the difference
5131** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5132** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5133** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005134**
5135** The right-most entry is the one with the largest key - the last
5136** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005137*/
5138static int moveToRightmost(BtCursor *pCur){
5139 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005140 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005141 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005142
dan7a2347e2016-01-07 16:43:54 +00005143 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005144 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005145 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005146 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005147 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005148 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005149 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005150 }
drh75e96b32017-04-01 00:20:06 +00005151 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005152 assert( pCur->info.nSize==0 );
5153 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5154 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005155}
5156
drh5e00f6c2001-09-13 13:46:56 +00005157/* Move the cursor to the first entry in the table. Return SQLITE_OK
5158** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005159** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005160*/
drh3aac2dd2004-04-26 14:10:20 +00005161int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005162 int rc;
drhd677b3d2007-08-20 22:48:41 +00005163
dan7a2347e2016-01-07 16:43:54 +00005164 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005165 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005166 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005167 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005168 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005169 *pRes = 0;
5170 rc = moveToLeftmost(pCur);
5171 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005172 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005173 *pRes = 1;
5174 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005175 }
drh5e00f6c2001-09-13 13:46:56 +00005176 return rc;
5177}
drh5e2f8b92001-05-28 00:41:15 +00005178
drh9562b552002-02-19 15:00:07 +00005179/* Move the cursor to the last entry in the table. Return SQLITE_OK
5180** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005181** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005182*/
drh3aac2dd2004-04-26 14:10:20 +00005183int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005184 int rc;
drhd677b3d2007-08-20 22:48:41 +00005185
dan7a2347e2016-01-07 16:43:54 +00005186 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005187 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005188
5189 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005190 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005191#ifdef SQLITE_DEBUG
5192 /* This block serves to assert() that the cursor really does point
5193 ** to the last entry in the b-tree. */
5194 int ii;
5195 for(ii=0; ii<pCur->iPage; ii++){
5196 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5197 }
drh352a35a2017-08-15 03:46:47 +00005198 assert( pCur->ix==pCur->pPage->nCell-1 );
5199 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005200#endif
5201 return SQLITE_OK;
5202 }
5203
drh9562b552002-02-19 15:00:07 +00005204 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005205 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005206 assert( pCur->eState==CURSOR_VALID );
5207 *pRes = 0;
5208 rc = moveToRightmost(pCur);
5209 if( rc==SQLITE_OK ){
5210 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005211 }else{
drh44548e72017-08-14 18:13:52 +00005212 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005213 }
drh44548e72017-08-14 18:13:52 +00005214 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005215 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005216 *pRes = 1;
5217 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005218 }
drh9562b552002-02-19 15:00:07 +00005219 return rc;
5220}
5221
drhe14006d2008-03-25 17:23:32 +00005222/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005223** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005224**
drhe63d9992008-08-13 19:11:48 +00005225** For INTKEY tables, the intKey parameter is used. pIdxKey
5226** must be NULL. For index tables, pIdxKey is used and intKey
5227** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005228**
drh5e2f8b92001-05-28 00:41:15 +00005229** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005230** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005231** were present. The cursor might point to an entry that comes
5232** before or after the key.
5233**
drh64022502009-01-09 14:11:04 +00005234** An integer is written into *pRes which is the result of
5235** comparing the key with the entry to which the cursor is
5236** pointing. The meaning of the integer written into
5237** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005238**
5239** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005240** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005241** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005242**
5243** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005244** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005245**
5246** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005247** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005248**
drhb1d607d2015-11-05 22:30:54 +00005249** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5250** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005251*/
drhe63d9992008-08-13 19:11:48 +00005252int sqlite3BtreeMovetoUnpacked(
5253 BtCursor *pCur, /* The cursor to be moved */
5254 UnpackedRecord *pIdxKey, /* Unpacked index key */
5255 i64 intKey, /* The table key */
5256 int biasRight, /* If true, bias the search to the high end */
5257 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005258){
drh72f82862001-05-24 21:06:34 +00005259 int rc;
dan3b9330f2014-02-27 20:44:18 +00005260 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005261
dan7a2347e2016-01-07 16:43:54 +00005262 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005263 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005264 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005265 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005266 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005267
5268 /* If the cursor is already positioned at the point we are trying
5269 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005270 if( pIdxKey==0
5271 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005272 ){
drhe63d9992008-08-13 19:11:48 +00005273 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005274 *pRes = 0;
5275 return SQLITE_OK;
5276 }
drh451e76d2017-01-21 16:54:19 +00005277 if( pCur->info.nKey<intKey ){
5278 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5279 *pRes = -1;
5280 return SQLITE_OK;
5281 }
drh7f11afa2017-01-21 21:47:54 +00005282 /* If the requested key is one more than the previous key, then
5283 ** try to get there using sqlite3BtreeNext() rather than a full
5284 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005285 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005286 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5287 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005288 rc = sqlite3BtreeNext(pCur, 0);
5289 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005290 getCellInfo(pCur);
5291 if( pCur->info.nKey==intKey ){
5292 return SQLITE_OK;
5293 }
drh2ab792e2017-05-30 18:34:07 +00005294 }else if( rc==SQLITE_DONE ){
5295 rc = SQLITE_OK;
5296 }else{
5297 return rc;
drh451e76d2017-01-21 16:54:19 +00005298 }
5299 }
drha2c20e42008-03-29 16:01:04 +00005300 }
5301 }
5302
dan1fed5da2014-02-25 21:01:25 +00005303 if( pIdxKey ){
5304 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005305 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005306 assert( pIdxKey->default_rc==1
5307 || pIdxKey->default_rc==0
5308 || pIdxKey->default_rc==-1
5309 );
drh13a747e2014-03-03 21:46:55 +00005310 }else{
drhb6e8fd12014-03-06 01:56:33 +00005311 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005312 }
5313
drh5e2f8b92001-05-28 00:41:15 +00005314 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005315 if( rc ){
drh44548e72017-08-14 18:13:52 +00005316 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005317 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005318 *pRes = -1;
5319 return SQLITE_OK;
5320 }
drhd677b3d2007-08-20 22:48:41 +00005321 return rc;
5322 }
drh352a35a2017-08-15 03:46:47 +00005323 assert( pCur->pPage );
5324 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005325 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005326 assert( pCur->pPage->nCell > 0 );
5327 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005328 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005329 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005330 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005331 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005332 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005333 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005334
5335 /* pPage->nCell must be greater than zero. If this is the root-page
5336 ** the cursor would have been INVALID above and this for(;;) loop
5337 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005338 ** would have already detected db corruption. Similarly, pPage must
5339 ** be the right kind (index or table) of b-tree page. Otherwise
5340 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005341 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005342 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005343 lwr = 0;
5344 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005345 assert( biasRight==0 || biasRight==1 );
5346 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005347 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005348 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005349 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005350 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005351 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005352 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005353 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005354 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005355 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005356 }
drh9b2fc612013-11-25 20:14:13 +00005357 }
drhd172f862006-01-12 15:01:15 +00005358 }
drha2c20e42008-03-29 16:01:04 +00005359 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005360 if( nCellKey<intKey ){
5361 lwr = idx+1;
5362 if( lwr>upr ){ c = -1; break; }
5363 }else if( nCellKey>intKey ){
5364 upr = idx-1;
5365 if( lwr>upr ){ c = +1; break; }
5366 }else{
5367 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005368 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005369 if( !pPage->leaf ){
5370 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005371 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005372 }else{
drhd95ef5c2016-11-11 18:19:05 +00005373 pCur->curFlags |= BTCF_ValidNKey;
5374 pCur->info.nKey = nCellKey;
5375 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005376 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005377 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005378 }
drhd793f442013-11-25 14:10:15 +00005379 }
drhebf10b12013-11-25 17:38:26 +00005380 assert( lwr+upr>=0 );
5381 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005382 }
5383 }else{
5384 for(;;){
drhc6827502015-05-28 15:14:32 +00005385 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005386 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005387
drhb2eced52010-08-12 02:41:12 +00005388 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005389 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005390 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005391 ** varint. This information is used to attempt to avoid parsing
5392 ** the entire cell by checking for the cases where the record is
5393 ** stored entirely within the b-tree page by inspecting the first
5394 ** 2 bytes of the cell.
5395 */
drhec3e6b12013-11-25 02:38:55 +00005396 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005397 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005398 /* This branch runs if the record-size field of the cell is a
5399 ** single byte varint and the record fits entirely on the main
5400 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005401 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005402 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005403 }else if( !(pCell[1] & 0x80)
5404 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5405 ){
5406 /* The record-size field is a 2 byte varint and the record
5407 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005408 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005409 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005410 }else{
danielk197711c327a2009-05-04 19:01:26 +00005411 /* The record flows over onto one or more overflow pages. In
5412 ** this case the whole cell needs to be parsed, a buffer allocated
5413 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005414 ** buffer before VdbeRecordCompare() can be called.
5415 **
5416 ** If the record is corrupt, the xRecordCompare routine may read
5417 ** up to two varints past the end of the buffer. An extra 18
5418 ** bytes of padding is allocated at the end of the buffer in
5419 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005420 void *pCellKey;
5421 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005422 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005423 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005424 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5425 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5426 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5427 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005428 if( nCell<2 ){
daneebf2f52017-11-18 17:30:08 +00005429 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005430 goto moveto_finish;
5431 }
5432 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005433 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005434 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005435 goto moveto_finish;
5436 }
drh75e96b32017-04-01 00:20:06 +00005437 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005438 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5439 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005440 if( rc ){
5441 sqlite3_free(pCellKey);
5442 goto moveto_finish;
5443 }
drh75179de2014-09-16 14:37:35 +00005444 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005445 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005446 }
dan38fdead2014-04-01 10:19:02 +00005447 assert(
5448 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005449 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005450 );
drhbb933ef2013-11-25 15:01:38 +00005451 if( c<0 ){
5452 lwr = idx+1;
5453 }else if( c>0 ){
5454 upr = idx-1;
5455 }else{
5456 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005457 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005458 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005459 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005460 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005461 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005462 }
drhebf10b12013-11-25 17:38:26 +00005463 if( lwr>upr ) break;
5464 assert( lwr+upr>=0 );
5465 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005466 }
drh72f82862001-05-24 21:06:34 +00005467 }
drhb07028f2011-10-14 21:49:18 +00005468 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005469 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005470 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005471 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005472 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005473 *pRes = c;
5474 rc = SQLITE_OK;
5475 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005476 }
5477moveto_next_layer:
5478 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005479 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005480 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005481 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005482 }
drh75e96b32017-04-01 00:20:06 +00005483 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005484 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005485 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005486 }
drh1e968a02008-03-25 00:22:21 +00005487moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005488 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005489 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005490 return rc;
5491}
5492
drhd677b3d2007-08-20 22:48:41 +00005493
drh72f82862001-05-24 21:06:34 +00005494/*
drhc39e0002004-05-07 23:50:57 +00005495** Return TRUE if the cursor is not pointing at an entry of the table.
5496**
5497** TRUE will be returned after a call to sqlite3BtreeNext() moves
5498** past the last entry in the table or sqlite3BtreePrev() moves past
5499** the first entry. TRUE is also returned if the table is empty.
5500*/
5501int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005502 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5503 ** have been deleted? This API will need to change to return an error code
5504 ** as well as the boolean result value.
5505 */
5506 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005507}
5508
5509/*
drh5e98e832017-02-17 19:24:06 +00005510** Return an estimate for the number of rows in the table that pCur is
5511** pointing to. Return a negative number if no estimate is currently
5512** available.
5513*/
5514i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5515 i64 n;
5516 u8 i;
5517
5518 assert( cursorOwnsBtShared(pCur) );
5519 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005520
5521 /* Currently this interface is only called by the OP_IfSmaller
5522 ** opcode, and it that case the cursor will always be valid and
5523 ** will always point to a leaf node. */
5524 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005525 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005526
drh352a35a2017-08-15 03:46:47 +00005527 n = pCur->pPage->nCell;
5528 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005529 n *= pCur->apPage[i]->nCell;
5530 }
5531 return n;
5532}
5533
5534/*
drh2ab792e2017-05-30 18:34:07 +00005535** Advance the cursor to the next entry in the database.
5536** Return value:
5537**
5538** SQLITE_OK success
5539** SQLITE_DONE cursor is already pointing at the last element
5540** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005541**
drhee6438d2014-09-01 13:29:32 +00005542** The main entry point is sqlite3BtreeNext(). That routine is optimized
5543** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5544** to the next cell on the current page. The (slower) btreeNext() helper
5545** routine is called when it is necessary to move to a different page or
5546** to restore the cursor.
5547**
drh89997982017-07-11 18:11:33 +00005548** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5549** cursor corresponds to an SQL index and this routine could have been
5550** skipped if the SQL index had been a unique index. The F argument
5551** is a hint to the implement. SQLite btree implementation does not use
5552** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005553*/
drh89997982017-07-11 18:11:33 +00005554static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005555 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005556 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005557 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005558
dan7a2347e2016-01-07 16:43:54 +00005559 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005560 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005561 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005562 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005563 rc = restoreCursorPosition(pCur);
5564 if( rc!=SQLITE_OK ){
5565 return rc;
5566 }
5567 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005568 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005569 }
drh9b47ee32013-08-20 03:13:51 +00005570 if( pCur->skipNext ){
5571 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5572 pCur->eState = CURSOR_VALID;
5573 if( pCur->skipNext>0 ){
5574 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005575 return SQLITE_OK;
5576 }
drhf66f26a2013-08-19 20:04:10 +00005577 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005578 }
danielk1977da184232006-01-05 11:34:32 +00005579 }
danielk1977da184232006-01-05 11:34:32 +00005580
drh352a35a2017-08-15 03:46:47 +00005581 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005582 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005583 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005584
5585 /* If the database file is corrupt, it is possible for the value of idx
5586 ** to be invalid here. This can only occur if a second cursor modifies
5587 ** the page while cursor pCur is holding a reference to it. Which can
5588 ** only happen if the database is corrupt in such a way as to link the
5589 ** page into more than one b-tree structure. */
5590 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005591
danielk197771d5d2c2008-09-29 11:49:47 +00005592 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005593 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005594 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005595 if( rc ) return rc;
5596 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005597 }
drh5e2f8b92001-05-28 00:41:15 +00005598 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005599 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005600 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005601 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005602 }
danielk197730548662009-07-09 05:07:37 +00005603 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005604 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005605 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005606 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005607 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005608 }else{
drhee6438d2014-09-01 13:29:32 +00005609 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005610 }
drh8178a752003-01-05 21:41:40 +00005611 }
drh3aac2dd2004-04-26 14:10:20 +00005612 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005613 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005614 }else{
5615 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005616 }
drh72f82862001-05-24 21:06:34 +00005617}
drh2ab792e2017-05-30 18:34:07 +00005618int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005619 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005620 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005621 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005622 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005623 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5624 pCur->info.nSize = 0;
5625 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005626 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005627 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005628 if( (++pCur->ix)>=pPage->nCell ){
5629 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005630 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005631 }
5632 if( pPage->leaf ){
5633 return SQLITE_OK;
5634 }else{
5635 return moveToLeftmost(pCur);
5636 }
5637}
drh72f82862001-05-24 21:06:34 +00005638
drh3b7511c2001-05-26 13:15:44 +00005639/*
drh2ab792e2017-05-30 18:34:07 +00005640** Step the cursor to the back to the previous entry in the database.
5641** Return values:
5642**
5643** SQLITE_OK success
5644** SQLITE_DONE the cursor is already on the first element of the table
5645** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005646**
drhee6438d2014-09-01 13:29:32 +00005647** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5648** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005649** to the previous cell on the current page. The (slower) btreePrevious()
5650** helper routine is called when it is necessary to move to a different page
5651** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005652**
drh89997982017-07-11 18:11:33 +00005653** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5654** the cursor corresponds to an SQL index and this routine could have been
5655** skipped if the SQL index had been a unique index. The F argument is a
5656** hint to the implement. The native SQLite btree implementation does not
5657** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005658*/
drh89997982017-07-11 18:11:33 +00005659static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005660 int rc;
drh8178a752003-01-05 21:41:40 +00005661 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005662
dan7a2347e2016-01-07 16:43:54 +00005663 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005664 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005665 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5666 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005667 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005668 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005669 if( rc!=SQLITE_OK ){
5670 return rc;
drhf66f26a2013-08-19 20:04:10 +00005671 }
5672 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005673 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005674 }
drh9b47ee32013-08-20 03:13:51 +00005675 if( pCur->skipNext ){
5676 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5677 pCur->eState = CURSOR_VALID;
5678 if( pCur->skipNext<0 ){
5679 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005680 return SQLITE_OK;
5681 }
drhf66f26a2013-08-19 20:04:10 +00005682 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005683 }
danielk1977da184232006-01-05 11:34:32 +00005684 }
danielk1977da184232006-01-05 11:34:32 +00005685
drh352a35a2017-08-15 03:46:47 +00005686 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005687 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005688 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005689 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005690 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005691 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005692 rc = moveToRightmost(pCur);
5693 }else{
drh75e96b32017-04-01 00:20:06 +00005694 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005695 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005696 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005697 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005698 }
danielk197730548662009-07-09 05:07:37 +00005699 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005700 }
drhee6438d2014-09-01 13:29:32 +00005701 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005702 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005703
drh75e96b32017-04-01 00:20:06 +00005704 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005705 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005706 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005707 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005708 }else{
5709 rc = SQLITE_OK;
5710 }
drh2dcc9aa2002-12-04 13:40:25 +00005711 }
drh2dcc9aa2002-12-04 13:40:25 +00005712 return rc;
5713}
drh2ab792e2017-05-30 18:34:07 +00005714int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005715 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005716 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005717 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005718 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005719 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5720 pCur->info.nSize = 0;
5721 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005722 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005723 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005724 ){
drh89997982017-07-11 18:11:33 +00005725 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005726 }
drh75e96b32017-04-01 00:20:06 +00005727 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005728 return SQLITE_OK;
5729}
drh2dcc9aa2002-12-04 13:40:25 +00005730
5731/*
drh3b7511c2001-05-26 13:15:44 +00005732** Allocate a new page from the database file.
5733**
danielk19773b8a05f2007-03-19 17:44:26 +00005734** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005735** has already been called on the new page.) The new page has also
5736** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005737** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005738**
5739** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005740** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005741**
drh82e647d2013-03-02 03:25:55 +00005742** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005743** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005744** attempt to keep related pages close to each other in the database file,
5745** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005746**
drh82e647d2013-03-02 03:25:55 +00005747** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5748** anywhere on the free-list, then it is guaranteed to be returned. If
5749** eMode is BTALLOC_LT then the page returned will be less than or equal
5750** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5751** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005752*/
drh4f0c5872007-03-26 22:05:01 +00005753static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005754 BtShared *pBt, /* The btree */
5755 MemPage **ppPage, /* Store pointer to the allocated page here */
5756 Pgno *pPgno, /* Store the page number here */
5757 Pgno nearby, /* Search for a page near this one */
5758 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005759){
drh3aac2dd2004-04-26 14:10:20 +00005760 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005761 int rc;
drh35cd6432009-06-05 14:17:21 +00005762 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005763 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005764 MemPage *pTrunk = 0;
5765 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005766 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005767
drh1fee73e2007-08-29 04:00:57 +00005768 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005769 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005770 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005771 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005772 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5773 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005774 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005775 testcase( n==mxPage-1 );
5776 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005777 return SQLITE_CORRUPT_BKPT;
5778 }
drh3aac2dd2004-04-26 14:10:20 +00005779 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005780 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005781 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005782 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005783 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005784
drh82e647d2013-03-02 03:25:55 +00005785 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005786 ** shows that the page 'nearby' is somewhere on the free-list, then
5787 ** the entire-list will be searched for that page.
5788 */
5789#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005790 if( eMode==BTALLOC_EXACT ){
5791 if( nearby<=mxPage ){
5792 u8 eType;
5793 assert( nearby>0 );
5794 assert( pBt->autoVacuum );
5795 rc = ptrmapGet(pBt, nearby, &eType, 0);
5796 if( rc ) return rc;
5797 if( eType==PTRMAP_FREEPAGE ){
5798 searchList = 1;
5799 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005800 }
dan51f0b6d2013-02-22 20:16:34 +00005801 }else if( eMode==BTALLOC_LE ){
5802 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005803 }
5804#endif
5805
5806 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5807 ** first free-list trunk page. iPrevTrunk is initially 1.
5808 */
danielk19773b8a05f2007-03-19 17:44:26 +00005809 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005810 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005811 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005812
5813 /* The code within this loop is run only once if the 'searchList' variable
5814 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005815 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5816 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005817 */
5818 do {
5819 pPrevTrunk = pTrunk;
5820 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005821 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5822 ** is the page number of the next freelist trunk page in the list or
5823 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005824 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005825 }else{
drh113762a2014-11-19 16:36:25 +00005826 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5827 ** stores the page number of the first page of the freelist, or zero if
5828 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005829 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005830 }
drhdf35a082009-07-09 02:24:35 +00005831 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005832 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005833 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005834 }else{
drh7e8c6f12015-05-28 03:28:27 +00005835 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005836 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005837 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005838 pTrunk = 0;
5839 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005840 }
drhb07028f2011-10-14 21:49:18 +00005841 assert( pTrunk!=0 );
5842 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005843 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5844 ** is the number of leaf page pointers to follow. */
5845 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005846 if( k==0 && !searchList ){
5847 /* The trunk has no leaves and the list is not being searched.
5848 ** So extract the trunk page itself and use it as the newly
5849 ** allocated page */
5850 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005851 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005852 if( rc ){
5853 goto end_allocate_page;
5854 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005855 *pPgno = iTrunk;
5856 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5857 *ppPage = pTrunk;
5858 pTrunk = 0;
5859 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005860 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005861 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005862 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005863 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005864#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005865 }else if( searchList
5866 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5867 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005868 /* The list is being searched and this trunk page is the page
5869 ** to allocate, regardless of whether it has leaves.
5870 */
dan51f0b6d2013-02-22 20:16:34 +00005871 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005872 *ppPage = pTrunk;
5873 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005874 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005875 if( rc ){
5876 goto end_allocate_page;
5877 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005878 if( k==0 ){
5879 if( !pPrevTrunk ){
5880 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5881 }else{
danf48c3552010-08-23 15:41:24 +00005882 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5883 if( rc!=SQLITE_OK ){
5884 goto end_allocate_page;
5885 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005886 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5887 }
5888 }else{
5889 /* The trunk page is required by the caller but it contains
5890 ** pointers to free-list leaves. The first leaf becomes a trunk
5891 ** page in this case.
5892 */
5893 MemPage *pNewTrunk;
5894 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005895 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005896 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005897 goto end_allocate_page;
5898 }
drhdf35a082009-07-09 02:24:35 +00005899 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005900 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005901 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005902 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005903 }
danielk19773b8a05f2007-03-19 17:44:26 +00005904 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005905 if( rc!=SQLITE_OK ){
5906 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005907 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005908 }
5909 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5910 put4byte(&pNewTrunk->aData[4], k-1);
5911 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005912 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005913 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005914 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005915 put4byte(&pPage1->aData[32], iNewTrunk);
5916 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005917 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005918 if( rc ){
5919 goto end_allocate_page;
5920 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005921 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5922 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005923 }
5924 pTrunk = 0;
5925 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5926#endif
danielk1977e5765212009-06-17 11:13:28 +00005927 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005928 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005929 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005930 Pgno iPage;
5931 unsigned char *aData = pTrunk->aData;
5932 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005933 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005934 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005935 if( eMode==BTALLOC_LE ){
5936 for(i=0; i<k; i++){
5937 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005938 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005939 closest = i;
5940 break;
5941 }
5942 }
5943 }else{
5944 int dist;
5945 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5946 for(i=1; i<k; i++){
5947 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5948 if( d2<dist ){
5949 closest = i;
5950 dist = d2;
5951 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005952 }
5953 }
5954 }else{
5955 closest = 0;
5956 }
5957
5958 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005959 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005960 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005961 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005962 goto end_allocate_page;
5963 }
drhdf35a082009-07-09 02:24:35 +00005964 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005965 if( !searchList
5966 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5967 ){
danielk1977bea2a942009-01-20 17:06:27 +00005968 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005969 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005970 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5971 ": %d more free pages\n",
5972 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005973 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5974 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005975 if( closest<k-1 ){
5976 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5977 }
5978 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005979 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005980 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005981 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005982 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005983 if( rc!=SQLITE_OK ){
5984 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005985 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005986 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005987 }
5988 searchList = 0;
5989 }
drhee696e22004-08-30 16:52:17 +00005990 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005991 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005992 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005993 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005994 }else{
danbc1a3c62013-02-23 16:40:46 +00005995 /* There are no pages on the freelist, so append a new page to the
5996 ** database image.
5997 **
5998 ** Normally, new pages allocated by this block can be requested from the
5999 ** pager layer with the 'no-content' flag set. This prevents the pager
6000 ** from trying to read the pages content from disk. However, if the
6001 ** current transaction has already run one or more incremental-vacuum
6002 ** steps, then the page we are about to allocate may contain content
6003 ** that is required in the event of a rollback. In this case, do
6004 ** not set the no-content flag. This causes the pager to load and journal
6005 ** the current page content before overwriting it.
6006 **
6007 ** Note that the pager will not actually attempt to load or journal
6008 ** content for any page that really does lie past the end of the database
6009 ** file on disk. So the effects of disabling the no-content optimization
6010 ** here are confined to those pages that lie between the end of the
6011 ** database image and the end of the database file.
6012 */
drh3f387402014-09-24 01:23:00 +00006013 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006014
drhdd3cd972010-03-27 17:12:36 +00006015 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6016 if( rc ) return rc;
6017 pBt->nPage++;
6018 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006019
danielk1977afcdd022004-10-31 16:25:42 +00006020#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006021 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006022 /* If *pPgno refers to a pointer-map page, allocate two new pages
6023 ** at the end of the file instead of one. The first allocated page
6024 ** becomes a new pointer-map page, the second is used by the caller.
6025 */
danielk1977ac861692009-03-28 10:54:22 +00006026 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006027 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6028 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006029 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006030 if( rc==SQLITE_OK ){
6031 rc = sqlite3PagerWrite(pPg->pDbPage);
6032 releasePage(pPg);
6033 }
6034 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006035 pBt->nPage++;
6036 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006037 }
6038#endif
drhdd3cd972010-03-27 17:12:36 +00006039 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6040 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006041
danielk1977599fcba2004-11-08 07:13:13 +00006042 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006043 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006044 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006045 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006046 if( rc!=SQLITE_OK ){
6047 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006048 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006049 }
drh3a4c1412004-05-09 20:40:11 +00006050 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006051 }
danielk1977599fcba2004-11-08 07:13:13 +00006052
6053 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006054
6055end_allocate_page:
6056 releasePage(pTrunk);
6057 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006058 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6059 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006060 return rc;
6061}
6062
6063/*
danielk1977bea2a942009-01-20 17:06:27 +00006064** This function is used to add page iPage to the database file free-list.
6065** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006066**
danielk1977bea2a942009-01-20 17:06:27 +00006067** The value passed as the second argument to this function is optional.
6068** If the caller happens to have a pointer to the MemPage object
6069** corresponding to page iPage handy, it may pass it as the second value.
6070** Otherwise, it may pass NULL.
6071**
6072** If a pointer to a MemPage object is passed as the second argument,
6073** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006074*/
danielk1977bea2a942009-01-20 17:06:27 +00006075static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6076 MemPage *pTrunk = 0; /* Free-list trunk page */
6077 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6078 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6079 MemPage *pPage; /* Page being freed. May be NULL. */
6080 int rc; /* Return Code */
6081 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006082
danielk1977bea2a942009-01-20 17:06:27 +00006083 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006084 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006085 assert( !pMemPage || pMemPage->pgno==iPage );
6086
danfb0246b2015-05-26 12:18:17 +00006087 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006088 if( pMemPage ){
6089 pPage = pMemPage;
6090 sqlite3PagerRef(pPage->pDbPage);
6091 }else{
6092 pPage = btreePageLookup(pBt, iPage);
6093 }
drh3aac2dd2004-04-26 14:10:20 +00006094
drha34b6762004-05-07 13:30:42 +00006095 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006096 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006097 if( rc ) goto freepage_out;
6098 nFree = get4byte(&pPage1->aData[36]);
6099 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006100
drhc9166342012-01-05 23:32:06 +00006101 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006102 /* If the secure_delete option is enabled, then
6103 ** always fully overwrite deleted information with zeros.
6104 */
drhb00fc3b2013-08-21 23:42:32 +00006105 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006106 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006107 ){
6108 goto freepage_out;
6109 }
6110 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006111 }
drhfcce93f2006-02-22 03:08:32 +00006112
danielk1977687566d2004-11-02 12:56:41 +00006113 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006114 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006115 */
danielk197785d90ca2008-07-19 14:25:15 +00006116 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006117 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006118 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006119 }
danielk1977687566d2004-11-02 12:56:41 +00006120
danielk1977bea2a942009-01-20 17:06:27 +00006121 /* Now manipulate the actual database free-list structure. There are two
6122 ** possibilities. If the free-list is currently empty, or if the first
6123 ** trunk page in the free-list is full, then this page will become a
6124 ** new free-list trunk page. Otherwise, it will become a leaf of the
6125 ** first trunk page in the current free-list. This block tests if it
6126 ** is possible to add the page as a new free-list leaf.
6127 */
6128 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006129 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006130
6131 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006132 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006133 if( rc!=SQLITE_OK ){
6134 goto freepage_out;
6135 }
6136
6137 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006138 assert( pBt->usableSize>32 );
6139 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006140 rc = SQLITE_CORRUPT_BKPT;
6141 goto freepage_out;
6142 }
drheeb844a2009-08-08 18:01:07 +00006143 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006144 /* In this case there is room on the trunk page to insert the page
6145 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006146 **
6147 ** Note that the trunk page is not really full until it contains
6148 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6149 ** coded. But due to a coding error in versions of SQLite prior to
6150 ** 3.6.0, databases with freelist trunk pages holding more than
6151 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6152 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006153 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006154 ** for now. At some point in the future (once everyone has upgraded
6155 ** to 3.6.0 or later) we should consider fixing the conditional above
6156 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006157 **
6158 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6159 ** avoid using the last six entries in the freelist trunk page array in
6160 ** order that database files created by newer versions of SQLite can be
6161 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006162 */
danielk19773b8a05f2007-03-19 17:44:26 +00006163 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006164 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006165 put4byte(&pTrunk->aData[4], nLeaf+1);
6166 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006167 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006168 sqlite3PagerDontWrite(pPage->pDbPage);
6169 }
danielk1977bea2a942009-01-20 17:06:27 +00006170 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006171 }
drh3a4c1412004-05-09 20:40:11 +00006172 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006173 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006174 }
drh3b7511c2001-05-26 13:15:44 +00006175 }
danielk1977bea2a942009-01-20 17:06:27 +00006176
6177 /* If control flows to this point, then it was not possible to add the
6178 ** the page being freed as a leaf page of the first trunk in the free-list.
6179 ** Possibly because the free-list is empty, or possibly because the
6180 ** first trunk in the free-list is full. Either way, the page being freed
6181 ** will become the new first trunk page in the free-list.
6182 */
drhb00fc3b2013-08-21 23:42:32 +00006183 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006184 goto freepage_out;
6185 }
6186 rc = sqlite3PagerWrite(pPage->pDbPage);
6187 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006188 goto freepage_out;
6189 }
6190 put4byte(pPage->aData, iTrunk);
6191 put4byte(&pPage->aData[4], 0);
6192 put4byte(&pPage1->aData[32], iPage);
6193 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6194
6195freepage_out:
6196 if( pPage ){
6197 pPage->isInit = 0;
6198 }
6199 releasePage(pPage);
6200 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006201 return rc;
6202}
drhc314dc72009-07-21 11:52:34 +00006203static void freePage(MemPage *pPage, int *pRC){
6204 if( (*pRC)==SQLITE_OK ){
6205 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6206 }
danielk1977bea2a942009-01-20 17:06:27 +00006207}
drh3b7511c2001-05-26 13:15:44 +00006208
6209/*
drh8d7f1632018-01-23 13:30:38 +00006210** Free any overflow pages associated with the given Cell. Store
6211** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006212*/
drh9bfdc252014-09-24 02:05:41 +00006213static int clearCell(
6214 MemPage *pPage, /* The page that contains the Cell */
6215 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006216 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006217){
drh60172a52017-08-02 18:27:50 +00006218 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006219 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006220 int rc;
drh94440812007-03-06 11:42:19 +00006221 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006222 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006223
drh1fee73e2007-08-29 04:00:57 +00006224 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006225 pPage->xParseCell(pPage, pCell, pInfo);
6226 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006227 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006228 }
drh6fcf83a2018-05-05 01:23:28 +00006229 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6230 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6231 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006232 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006233 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006234 }
drh80159da2016-12-09 17:32:51 +00006235 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006236 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006237 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006238 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006239 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006240 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006241 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006242 );
drh72365832007-03-06 15:53:44 +00006243 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006244 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006245 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006246 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006247 /* 0 is not a legal page number and page 1 cannot be an
6248 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6249 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006250 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006251 }
danielk1977bea2a942009-01-20 17:06:27 +00006252 if( nOvfl ){
6253 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6254 if( rc ) return rc;
6255 }
dan887d4b22010-02-25 12:09:16 +00006256
shaneh1da207e2010-03-09 14:41:12 +00006257 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006258 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6259 ){
6260 /* There is no reason any cursor should have an outstanding reference
6261 ** to an overflow page belonging to a cell that is being deleted/updated.
6262 ** So if there exists more than one reference to this page, then it
6263 ** must not really be an overflow page and the database must be corrupt.
6264 ** It is helpful to detect this before calling freePage2(), as
6265 ** freePage2() may zero the page contents if secure-delete mode is
6266 ** enabled. If this 'overflow' page happens to be a page that the
6267 ** caller is iterating through or using in some other way, this
6268 ** can be problematic.
6269 */
6270 rc = SQLITE_CORRUPT_BKPT;
6271 }else{
6272 rc = freePage2(pBt, pOvfl, ovflPgno);
6273 }
6274
danielk1977bea2a942009-01-20 17:06:27 +00006275 if( pOvfl ){
6276 sqlite3PagerUnref(pOvfl->pDbPage);
6277 }
drh3b7511c2001-05-26 13:15:44 +00006278 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006279 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006280 }
drh5e2f8b92001-05-28 00:41:15 +00006281 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006282}
6283
6284/*
drh91025292004-05-03 19:49:32 +00006285** Create the byte sequence used to represent a cell on page pPage
6286** and write that byte sequence into pCell[]. Overflow pages are
6287** allocated and filled in as necessary. The calling procedure
6288** is responsible for making sure sufficient space has been allocated
6289** for pCell[].
6290**
6291** Note that pCell does not necessary need to point to the pPage->aData
6292** area. pCell might point to some temporary storage. The cell will
6293** be constructed in this temporary area then copied into pPage->aData
6294** later.
drh3b7511c2001-05-26 13:15:44 +00006295*/
6296static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006297 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006298 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006299 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006300 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006301){
drh3b7511c2001-05-26 13:15:44 +00006302 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006303 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006304 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006305 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006306 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006307 unsigned char *pPrior;
6308 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006309 BtShared *pBt;
6310 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006311 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006312
drh1fee73e2007-08-29 04:00:57 +00006313 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006314
drhc5053fb2008-11-27 02:22:10 +00006315 /* pPage is not necessarily writeable since pCell might be auxiliary
6316 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006317 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006318 || sqlite3PagerIswriteable(pPage->pDbPage) );
6319
drh91025292004-05-03 19:49:32 +00006320 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006321 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006322 if( pPage->intKey ){
6323 nPayload = pX->nData + pX->nZero;
6324 pSrc = pX->pData;
6325 nSrc = pX->nData;
6326 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006327 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006328 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006329 }else{
drh8eeb4462016-05-21 20:03:42 +00006330 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6331 nSrc = nPayload = (int)pX->nKey;
6332 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006333 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006334 }
drhdfc2daa2016-05-21 23:25:29 +00006335
6336 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006337 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006338 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006339 /* This is the common case where everything fits on the btree page
6340 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006341 n = nHeader + nPayload;
6342 testcase( n==3 );
6343 testcase( n==4 );
6344 if( n<4 ) n = 4;
6345 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006346 assert( nSrc<=nPayload );
6347 testcase( nSrc<nPayload );
6348 memcpy(pPayload, pSrc, nSrc);
6349 memset(pPayload+nSrc, 0, nPayload-nSrc);
6350 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006351 }
drh5e27e1d2017-08-23 14:45:59 +00006352
6353 /* If we reach this point, it means that some of the content will need
6354 ** to spill onto overflow pages.
6355 */
6356 mn = pPage->minLocal;
6357 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6358 testcase( n==pPage->maxLocal );
6359 testcase( n==pPage->maxLocal+1 );
6360 if( n > pPage->maxLocal ) n = mn;
6361 spaceLeft = n;
6362 *pnSize = n + nHeader + 4;
6363 pPrior = &pCell[nHeader+n];
6364 pToRelease = 0;
6365 pgnoOvfl = 0;
6366 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006367
drh6200c882014-09-23 22:36:25 +00006368 /* At this point variables should be set as follows:
6369 **
6370 ** nPayload Total payload size in bytes
6371 ** pPayload Begin writing payload here
6372 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6373 ** that means content must spill into overflow pages.
6374 ** *pnSize Size of the local cell (not counting overflow pages)
6375 ** pPrior Where to write the pgno of the first overflow page
6376 **
6377 ** Use a call to btreeParseCellPtr() to verify that the values above
6378 ** were computed correctly.
6379 */
drhd879e3e2017-02-13 13:35:55 +00006380#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006381 {
6382 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006383 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006384 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006385 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006386 assert( *pnSize == info.nSize );
6387 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006388 }
6389#endif
6390
6391 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006392 while( 1 ){
6393 n = nPayload;
6394 if( n>spaceLeft ) n = spaceLeft;
6395
6396 /* If pToRelease is not zero than pPayload points into the data area
6397 ** of pToRelease. Make sure pToRelease is still writeable. */
6398 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6399
6400 /* If pPayload is part of the data area of pPage, then make sure pPage
6401 ** is still writeable */
6402 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6403 || sqlite3PagerIswriteable(pPage->pDbPage) );
6404
6405 if( nSrc>=n ){
6406 memcpy(pPayload, pSrc, n);
6407 }else if( nSrc>0 ){
6408 n = nSrc;
6409 memcpy(pPayload, pSrc, n);
6410 }else{
6411 memset(pPayload, 0, n);
6412 }
6413 nPayload -= n;
6414 if( nPayload<=0 ) break;
6415 pPayload += n;
6416 pSrc += n;
6417 nSrc -= n;
6418 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006419 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006420 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006421#ifndef SQLITE_OMIT_AUTOVACUUM
6422 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006423 if( pBt->autoVacuum ){
6424 do{
6425 pgnoOvfl++;
6426 } while(
6427 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6428 );
danielk1977b39f70b2007-05-17 18:28:11 +00006429 }
danielk1977afcdd022004-10-31 16:25:42 +00006430#endif
drhf49661a2008-12-10 16:45:50 +00006431 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006432#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006433 /* If the database supports auto-vacuum, and the second or subsequent
6434 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006435 ** for that page now.
6436 **
6437 ** If this is the first overflow page, then write a partial entry
6438 ** to the pointer-map. If we write nothing to this pointer-map slot,
6439 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006440 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006441 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006442 */
danielk19774ef24492007-05-23 09:52:41 +00006443 if( pBt->autoVacuum && rc==SQLITE_OK ){
6444 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006445 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006446 if( rc ){
6447 releasePage(pOvfl);
6448 }
danielk1977afcdd022004-10-31 16:25:42 +00006449 }
6450#endif
drh3b7511c2001-05-26 13:15:44 +00006451 if( rc ){
drh9b171272004-05-08 02:03:22 +00006452 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006453 return rc;
6454 }
drhc5053fb2008-11-27 02:22:10 +00006455
6456 /* If pToRelease is not zero than pPrior points into the data area
6457 ** of pToRelease. Make sure pToRelease is still writeable. */
6458 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6459
6460 /* If pPrior is part of the data area of pPage, then make sure pPage
6461 ** is still writeable */
6462 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6463 || sqlite3PagerIswriteable(pPage->pDbPage) );
6464
drh3aac2dd2004-04-26 14:10:20 +00006465 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006466 releasePage(pToRelease);
6467 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006468 pPrior = pOvfl->aData;
6469 put4byte(pPrior, 0);
6470 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006471 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006472 }
drhdd793422001-06-28 01:54:48 +00006473 }
drh9b171272004-05-08 02:03:22 +00006474 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006475 return SQLITE_OK;
6476}
6477
drh14acc042001-06-10 19:56:58 +00006478/*
6479** Remove the i-th cell from pPage. This routine effects pPage only.
6480** The cell content is not freed or deallocated. It is assumed that
6481** the cell content has been copied someplace else. This routine just
6482** removes the reference to the cell from pPage.
6483**
6484** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006485*/
drh98add2e2009-07-20 17:11:49 +00006486static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006487 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006488 u8 *data; /* pPage->aData */
6489 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006490 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006491 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006492
drh98add2e2009-07-20 17:11:49 +00006493 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006494 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006495 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006496 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006497 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006498 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006499 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006500 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006501 hdr = pPage->hdrOffset;
6502 testcase( pc==get2byte(&data[hdr+5]) );
6503 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006504 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006505 *pRC = SQLITE_CORRUPT_BKPT;
6506 return;
shane0af3f892008-11-12 04:55:34 +00006507 }
shanedcc50b72008-11-13 18:29:50 +00006508 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006509 if( rc ){
6510 *pRC = rc;
6511 return;
shanedcc50b72008-11-13 18:29:50 +00006512 }
drh14acc042001-06-10 19:56:58 +00006513 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006514 if( pPage->nCell==0 ){
6515 memset(&data[hdr+1], 0, 4);
6516 data[hdr+7] = 0;
6517 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6518 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6519 - pPage->childPtrSize - 8;
6520 }else{
6521 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6522 put2byte(&data[hdr+3], pPage->nCell);
6523 pPage->nFree += 2;
6524 }
drh14acc042001-06-10 19:56:58 +00006525}
6526
6527/*
6528** Insert a new cell on pPage at cell index "i". pCell points to the
6529** content of the cell.
6530**
6531** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006532** will not fit, then make a copy of the cell content into pTemp if
6533** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006534** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006535** in pTemp or the original pCell) and also record its index.
6536** Allocating a new entry in pPage->aCell[] implies that
6537** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006538**
6539** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006540*/
drh98add2e2009-07-20 17:11:49 +00006541static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006542 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006543 int i, /* New cell becomes the i-th cell of the page */
6544 u8 *pCell, /* Content of the new cell */
6545 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006546 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006547 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6548 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006549){
drh383d30f2010-02-26 13:07:37 +00006550 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006551 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006552 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006553 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006554
drhcb89f4a2016-05-21 11:23:26 +00006555 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006556 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006557 assert( MX_CELL(pPage->pBt)<=10921 );
6558 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006559 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6560 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006561 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006562 /* The cell should normally be sized correctly. However, when moving a
6563 ** malformed cell from a leaf page to an interior page, if the cell size
6564 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6565 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6566 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006567 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006568 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006569 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006570 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006571 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006572 }
danielk19774dbaa892009-06-16 16:50:22 +00006573 if( iChild ){
6574 put4byte(pCell, iChild);
6575 }
drh43605152004-05-29 21:46:49 +00006576 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006577 /* Comparison against ArraySize-1 since we hold back one extra slot
6578 ** as a contingency. In other words, never need more than 3 overflow
6579 ** slots but 4 are allocated, just to be safe. */
6580 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006581 pPage->apOvfl[j] = pCell;
6582 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006583
6584 /* When multiple overflows occur, they are always sequential and in
6585 ** sorted order. This invariants arise because multiple overflows can
6586 ** only occur when inserting divider cells into the parent page during
6587 ** balancing, and the dividers are adjacent and sorted.
6588 */
6589 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6590 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006591 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006592 int rc = sqlite3PagerWrite(pPage->pDbPage);
6593 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006594 *pRC = rc;
6595 return;
danielk19776e465eb2007-08-21 13:11:00 +00006596 }
6597 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006598 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006599 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006600 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006601 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006602 /* The allocateSpace() routine guarantees the following properties
6603 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006604 assert( idx >= 0 );
6605 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006606 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006607 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006608 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006609 if( iChild ){
6610 put4byte(&data[idx], iChild);
6611 }
drh2c8fb922015-06-25 19:53:48 +00006612 pIns = pPage->aCellIdx + i*2;
6613 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6614 put2byte(pIns, idx);
6615 pPage->nCell++;
6616 /* increment the cell count */
6617 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6618 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006619#ifndef SQLITE_OMIT_AUTOVACUUM
6620 if( pPage->pBt->autoVacuum ){
6621 /* The cell may contain a pointer to an overflow page. If so, write
6622 ** the entry for the overflow page into the pointer map.
6623 */
drh98add2e2009-07-20 17:11:49 +00006624 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006625 }
6626#endif
drh14acc042001-06-10 19:56:58 +00006627 }
6628}
6629
6630/*
drh1ffd2472015-06-23 02:37:30 +00006631** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006632** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006633*/
drh1ffd2472015-06-23 02:37:30 +00006634typedef struct CellArray CellArray;
6635struct CellArray {
6636 int nCell; /* Number of cells in apCell[] */
6637 MemPage *pRef; /* Reference page */
6638 u8 **apCell; /* All cells begin balanced */
6639 u16 *szCell; /* Local size of all cells in apCell[] */
6640};
drhfa1a98a2004-05-14 19:08:17 +00006641
drh1ffd2472015-06-23 02:37:30 +00006642/*
6643** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6644** computed.
6645*/
6646static void populateCellCache(CellArray *p, int idx, int N){
6647 assert( idx>=0 && idx+N<=p->nCell );
6648 while( N>0 ){
6649 assert( p->apCell[idx]!=0 );
6650 if( p->szCell[idx]==0 ){
6651 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6652 }else{
6653 assert( CORRUPT_DB ||
6654 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6655 }
6656 idx++;
6657 N--;
drhfa1a98a2004-05-14 19:08:17 +00006658 }
drh1ffd2472015-06-23 02:37:30 +00006659}
6660
6661/*
6662** Return the size of the Nth element of the cell array
6663*/
6664static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6665 assert( N>=0 && N<p->nCell );
6666 assert( p->szCell[N]==0 );
6667 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6668 return p->szCell[N];
6669}
6670static u16 cachedCellSize(CellArray *p, int N){
6671 assert( N>=0 && N<p->nCell );
6672 if( p->szCell[N] ) return p->szCell[N];
6673 return computeCellSize(p, N);
6674}
6675
6676/*
dan8e9ba0c2014-10-14 17:27:04 +00006677** Array apCell[] contains pointers to nCell b-tree page cells. The
6678** szCell[] array contains the size in bytes of each cell. This function
6679** replaces the current contents of page pPg with the contents of the cell
6680** array.
6681**
6682** Some of the cells in apCell[] may currently be stored in pPg. This
6683** function works around problems caused by this by making a copy of any
6684** such cells before overwriting the page data.
6685**
6686** The MemPage.nFree field is invalidated by this function. It is the
6687** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006688*/
drh658873b2015-06-22 20:02:04 +00006689static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006690 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006691 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006692 u8 **apCell, /* Array of cells */
6693 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006694){
6695 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6696 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6697 const int usableSize = pPg->pBt->usableSize;
6698 u8 * const pEnd = &aData[usableSize];
6699 int i;
6700 u8 *pCellptr = pPg->aCellIdx;
6701 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6702 u8 *pData;
6703
6704 i = get2byte(&aData[hdr+5]);
6705 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006706
dan8e9ba0c2014-10-14 17:27:04 +00006707 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006708 for(i=0; i<nCell; i++){
6709 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006710 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006711 pCell = &pTmp[pCell - aData];
6712 }
6713 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006714 put2byte(pCellptr, (pData - aData));
6715 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006716 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6717 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006718 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006719 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006720 }
6721
dand7b545b2014-10-13 18:03:27 +00006722 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006723 pPg->nCell = nCell;
6724 pPg->nOverflow = 0;
6725
6726 put2byte(&aData[hdr+1], 0);
6727 put2byte(&aData[hdr+3], pPg->nCell);
6728 put2byte(&aData[hdr+5], pData - aData);
6729 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006730 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006731}
6732
dan8e9ba0c2014-10-14 17:27:04 +00006733/*
6734** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6735** contains the size in bytes of each such cell. This function attempts to
6736** add the cells stored in the array to page pPg. If it cannot (because
6737** the page needs to be defragmented before the cells will fit), non-zero
6738** is returned. Otherwise, if the cells are added successfully, zero is
6739** returned.
6740**
6741** Argument pCellptr points to the first entry in the cell-pointer array
6742** (part of page pPg) to populate. After cell apCell[0] is written to the
6743** page body, a 16-bit offset is written to pCellptr. And so on, for each
6744** cell in the array. It is the responsibility of the caller to ensure
6745** that it is safe to overwrite this part of the cell-pointer array.
6746**
6747** When this function is called, *ppData points to the start of the
6748** content area on page pPg. If the size of the content area is extended,
6749** *ppData is updated to point to the new start of the content area
6750** before returning.
6751**
6752** Finally, argument pBegin points to the byte immediately following the
6753** end of the space required by this page for the cell-pointer area (for
6754** all cells - not just those inserted by the current call). If the content
6755** area must be extended to before this point in order to accomodate all
6756** cells in apCell[], then the cells do not fit and non-zero is returned.
6757*/
dand7b545b2014-10-13 18:03:27 +00006758static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006759 MemPage *pPg, /* Page to add cells to */
6760 u8 *pBegin, /* End of cell-pointer array */
6761 u8 **ppData, /* IN/OUT: Page content -area pointer */
6762 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006763 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006764 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006765 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006766){
6767 int i;
6768 u8 *aData = pPg->aData;
6769 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006770 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006771 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006772 for(i=iFirst; i<iEnd; i++){
6773 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006774 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006775 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006776 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006777 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006778 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006779 pSlot = pData;
6780 }
drh48310f82015-10-10 16:41:28 +00006781 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6782 ** database. But they might for a corrupt database. Hence use memmove()
6783 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6784 assert( (pSlot+sz)<=pCArray->apCell[i]
6785 || pSlot>=(pCArray->apCell[i]+sz)
6786 || CORRUPT_DB );
6787 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006788 put2byte(pCellptr, (pSlot - aData));
6789 pCellptr += 2;
6790 }
6791 *ppData = pData;
6792 return 0;
6793}
6794
dan8e9ba0c2014-10-14 17:27:04 +00006795/*
6796** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6797** contains the size in bytes of each such cell. This function adds the
6798** space associated with each cell in the array that is currently stored
6799** within the body of pPg to the pPg free-list. The cell-pointers and other
6800** fields of the page are not updated.
6801**
6802** This function returns the total number of cells added to the free-list.
6803*/
dand7b545b2014-10-13 18:03:27 +00006804static int pageFreeArray(
6805 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006806 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006807 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006808 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006809){
6810 u8 * const aData = pPg->aData;
6811 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006812 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006813 int nRet = 0;
6814 int i;
drhf7838932015-06-23 15:36:34 +00006815 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006816 u8 *pFree = 0;
6817 int szFree = 0;
6818
drhf7838932015-06-23 15:36:34 +00006819 for(i=iFirst; i<iEnd; i++){
6820 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006821 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006822 int sz;
6823 /* No need to use cachedCellSize() here. The sizes of all cells that
6824 ** are to be freed have already been computing while deciding which
6825 ** cells need freeing */
6826 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006827 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006828 if( pFree ){
6829 assert( pFree>aData && (pFree - aData)<65536 );
6830 freeSpace(pPg, (u16)(pFree - aData), szFree);
6831 }
dand7b545b2014-10-13 18:03:27 +00006832 pFree = pCell;
6833 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006834 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006835 }else{
6836 pFree = pCell;
6837 szFree += sz;
6838 }
6839 nRet++;
6840 }
6841 }
drhfefa0942014-11-05 21:21:08 +00006842 if( pFree ){
6843 assert( pFree>aData && (pFree - aData)<65536 );
6844 freeSpace(pPg, (u16)(pFree - aData), szFree);
6845 }
dand7b545b2014-10-13 18:03:27 +00006846 return nRet;
6847}
6848
dand7b545b2014-10-13 18:03:27 +00006849/*
drh5ab63772014-11-27 03:46:04 +00006850** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6851** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6852** with apCell[iOld]. After balancing, this page should hold nNew cells
6853** starting at apCell[iNew].
6854**
6855** This routine makes the necessary adjustments to pPg so that it contains
6856** the correct cells after being balanced.
6857**
dand7b545b2014-10-13 18:03:27 +00006858** The pPg->nFree field is invalid when this function returns. It is the
6859** responsibility of the caller to set it correctly.
6860*/
drh658873b2015-06-22 20:02:04 +00006861static int editPage(
dan09c68402014-10-11 20:00:24 +00006862 MemPage *pPg, /* Edit this page */
6863 int iOld, /* Index of first cell currently on page */
6864 int iNew, /* Index of new first cell on page */
6865 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006866 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006867){
dand7b545b2014-10-13 18:03:27 +00006868 u8 * const aData = pPg->aData;
6869 const int hdr = pPg->hdrOffset;
6870 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6871 int nCell = pPg->nCell; /* Cells stored on pPg */
6872 u8 *pData;
6873 u8 *pCellptr;
6874 int i;
6875 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6876 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006877
6878#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006879 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6880 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006881#endif
6882
dand7b545b2014-10-13 18:03:27 +00006883 /* Remove cells from the start and end of the page */
6884 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006885 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006886 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6887 nCell -= nShift;
6888 }
6889 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006890 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006891 }
dan09c68402014-10-11 20:00:24 +00006892
drh5ab63772014-11-27 03:46:04 +00006893 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006894 if( pData<pBegin ) goto editpage_fail;
6895
6896 /* Add cells to the start of the page */
6897 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006898 int nAdd = MIN(nNew,iOld-iNew);
6899 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006900 pCellptr = pPg->aCellIdx;
6901 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6902 if( pageInsertArray(
6903 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006904 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006905 ) ) goto editpage_fail;
6906 nCell += nAdd;
6907 }
6908
6909 /* Add any overflow cells */
6910 for(i=0; i<pPg->nOverflow; i++){
6911 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6912 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006913 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006914 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6915 nCell++;
6916 if( pageInsertArray(
6917 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006918 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006919 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006920 }
dand7b545b2014-10-13 18:03:27 +00006921 }
dan09c68402014-10-11 20:00:24 +00006922
dand7b545b2014-10-13 18:03:27 +00006923 /* Append cells to the end of the page */
6924 pCellptr = &pPg->aCellIdx[nCell*2];
6925 if( pageInsertArray(
6926 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006927 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006928 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006929
dand7b545b2014-10-13 18:03:27 +00006930 pPg->nCell = nNew;
6931 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006932
dand7b545b2014-10-13 18:03:27 +00006933 put2byte(&aData[hdr+3], pPg->nCell);
6934 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006935
6936#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006937 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006938 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006939 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006940 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006941 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006942 }
drh1ffd2472015-06-23 02:37:30 +00006943 assert( 0==memcmp(pCell, &aData[iOff],
6944 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006945 }
dan09c68402014-10-11 20:00:24 +00006946#endif
6947
drh658873b2015-06-22 20:02:04 +00006948 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006949 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006950 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006951 populateCellCache(pCArray, iNew, nNew);
6952 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006953}
6954
drh14acc042001-06-10 19:56:58 +00006955/*
drhc3b70572003-01-04 19:44:07 +00006956** The following parameters determine how many adjacent pages get involved
6957** in a balancing operation. NN is the number of neighbors on either side
6958** of the page that participate in the balancing operation. NB is the
6959** total number of pages that participate, including the target page and
6960** NN neighbors on either side.
6961**
6962** The minimum value of NN is 1 (of course). Increasing NN above 1
6963** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6964** in exchange for a larger degradation in INSERT and UPDATE performance.
6965** The value of NN appears to give the best results overall.
6966*/
6967#define NN 1 /* Number of neighbors on either side of pPage */
6968#define NB (NN*2+1) /* Total pages involved in the balance */
6969
danielk1977ac245ec2005-01-14 13:50:11 +00006970
drh615ae552005-01-16 23:21:00 +00006971#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006972/*
6973** This version of balance() handles the common special case where
6974** a new entry is being inserted on the extreme right-end of the
6975** tree, in other words, when the new entry will become the largest
6976** entry in the tree.
6977**
drhc314dc72009-07-21 11:52:34 +00006978** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006979** a new page to the right-hand side and put the one new entry in
6980** that page. This leaves the right side of the tree somewhat
6981** unbalanced. But odds are that we will be inserting new entries
6982** at the end soon afterwards so the nearly empty page will quickly
6983** fill up. On average.
6984**
6985** pPage is the leaf page which is the right-most page in the tree.
6986** pParent is its parent. pPage must have a single overflow entry
6987** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006988**
6989** The pSpace buffer is used to store a temporary copy of the divider
6990** cell that will be inserted into pParent. Such a cell consists of a 4
6991** byte page number followed by a variable length integer. In other
6992** words, at most 13 bytes. Hence the pSpace buffer must be at
6993** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006994*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006995static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6996 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006997 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006998 int rc; /* Return Code */
6999 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007000
drh1fee73e2007-08-29 04:00:57 +00007001 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007002 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007003 assert( pPage->nOverflow==1 );
7004
drh5d433ce2010-08-14 16:02:52 +00007005 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00007006 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00007007
danielk1977a50d9aa2009-06-08 14:49:45 +00007008 /* Allocate a new page. This page will become the right-sibling of
7009 ** pPage. Make the parent page writable, so that the new divider cell
7010 ** may be inserted. If both these operations are successful, proceed.
7011 */
drh4f0c5872007-03-26 22:05:01 +00007012 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007013
danielk1977eaa06f62008-09-18 17:34:44 +00007014 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007015
7016 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007017 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007018 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007019 u8 *pStop;
7020
drhc5053fb2008-11-27 02:22:10 +00007021 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007022 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7023 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00007024 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00007025 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00007026 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007027
7028 /* If this is an auto-vacuum database, update the pointer map
7029 ** with entries for the new page, and any pointer from the
7030 ** cell on the page to an overflow page. If either of these
7031 ** operations fails, the return code is set, but the contents
7032 ** of the parent page are still manipulated by thh code below.
7033 ** That is Ok, at this point the parent page is guaranteed to
7034 ** be marked as dirty. Returning an error code will cause a
7035 ** rollback, undoing any changes made to the parent page.
7036 */
7037 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007038 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7039 if( szCell>pNew->minLocal ){
7040 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007041 }
7042 }
danielk1977eaa06f62008-09-18 17:34:44 +00007043
danielk19776f235cc2009-06-04 14:46:08 +00007044 /* Create a divider cell to insert into pParent. The divider cell
7045 ** consists of a 4-byte page number (the page number of pPage) and
7046 ** a variable length key value (which must be the same value as the
7047 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007048 **
danielk19776f235cc2009-06-04 14:46:08 +00007049 ** To find the largest key value on pPage, first find the right-most
7050 ** cell on pPage. The first two fields of this cell are the
7051 ** record-length (a variable length integer at most 32-bits in size)
7052 ** and the key value (a variable length integer, may have any value).
7053 ** The first of the while(...) loops below skips over the record-length
7054 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007055 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007056 */
danielk1977eaa06f62008-09-18 17:34:44 +00007057 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007058 pStop = &pCell[9];
7059 while( (*(pCell++)&0x80) && pCell<pStop );
7060 pStop = &pCell[9];
7061 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7062
danielk19774dbaa892009-06-16 16:50:22 +00007063 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007064 if( rc==SQLITE_OK ){
7065 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7066 0, pPage->pgno, &rc);
7067 }
danielk19776f235cc2009-06-04 14:46:08 +00007068
7069 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007070 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7071
danielk1977e08a3c42008-09-18 18:17:03 +00007072 /* Release the reference to the new page. */
7073 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007074 }
7075
danielk1977eaa06f62008-09-18 17:34:44 +00007076 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007077}
drh615ae552005-01-16 23:21:00 +00007078#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007079
danielk19774dbaa892009-06-16 16:50:22 +00007080#if 0
drhc3b70572003-01-04 19:44:07 +00007081/*
danielk19774dbaa892009-06-16 16:50:22 +00007082** This function does not contribute anything to the operation of SQLite.
7083** it is sometimes activated temporarily while debugging code responsible
7084** for setting pointer-map entries.
7085*/
7086static int ptrmapCheckPages(MemPage **apPage, int nPage){
7087 int i, j;
7088 for(i=0; i<nPage; i++){
7089 Pgno n;
7090 u8 e;
7091 MemPage *pPage = apPage[i];
7092 BtShared *pBt = pPage->pBt;
7093 assert( pPage->isInit );
7094
7095 for(j=0; j<pPage->nCell; j++){
7096 CellInfo info;
7097 u8 *z;
7098
7099 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007100 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007101 if( info.nLocal<info.nPayload ){
7102 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007103 ptrmapGet(pBt, ovfl, &e, &n);
7104 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7105 }
7106 if( !pPage->leaf ){
7107 Pgno child = get4byte(z);
7108 ptrmapGet(pBt, child, &e, &n);
7109 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7110 }
7111 }
7112 if( !pPage->leaf ){
7113 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7114 ptrmapGet(pBt, child, &e, &n);
7115 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7116 }
7117 }
7118 return 1;
7119}
7120#endif
7121
danielk1977cd581a72009-06-23 15:43:39 +00007122/*
7123** This function is used to copy the contents of the b-tree node stored
7124** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7125** the pointer-map entries for each child page are updated so that the
7126** parent page stored in the pointer map is page pTo. If pFrom contained
7127** any cells with overflow page pointers, then the corresponding pointer
7128** map entries are also updated so that the parent page is page pTo.
7129**
7130** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007131** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007132**
danielk197730548662009-07-09 05:07:37 +00007133** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007134**
7135** The performance of this function is not critical. It is only used by
7136** the balance_shallower() and balance_deeper() procedures, neither of
7137** which are called often under normal circumstances.
7138*/
drhc314dc72009-07-21 11:52:34 +00007139static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7140 if( (*pRC)==SQLITE_OK ){
7141 BtShared * const pBt = pFrom->pBt;
7142 u8 * const aFrom = pFrom->aData;
7143 u8 * const aTo = pTo->aData;
7144 int const iFromHdr = pFrom->hdrOffset;
7145 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007146 int rc;
drhc314dc72009-07-21 11:52:34 +00007147 int iData;
7148
7149
7150 assert( pFrom->isInit );
7151 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007152 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007153
7154 /* Copy the b-tree node content from page pFrom to page pTo. */
7155 iData = get2byte(&aFrom[iFromHdr+5]);
7156 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7157 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7158
7159 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007160 ** match the new data. The initialization of pTo can actually fail under
7161 ** fairly obscure circumstances, even though it is a copy of initialized
7162 ** page pFrom.
7163 */
drhc314dc72009-07-21 11:52:34 +00007164 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007165 rc = btreeInitPage(pTo);
7166 if( rc!=SQLITE_OK ){
7167 *pRC = rc;
7168 return;
7169 }
drhc314dc72009-07-21 11:52:34 +00007170
7171 /* If this is an auto-vacuum database, update the pointer-map entries
7172 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7173 */
7174 if( ISAUTOVACUUM ){
7175 *pRC = setChildPtrmaps(pTo);
7176 }
danielk1977cd581a72009-06-23 15:43:39 +00007177 }
danielk1977cd581a72009-06-23 15:43:39 +00007178}
7179
7180/*
danielk19774dbaa892009-06-16 16:50:22 +00007181** This routine redistributes cells on the iParentIdx'th child of pParent
7182** (hereafter "the page") and up to 2 siblings so that all pages have about the
7183** same amount of free space. Usually a single sibling on either side of the
7184** page are used in the balancing, though both siblings might come from one
7185** side if the page is the first or last child of its parent. If the page
7186** has fewer than 2 siblings (something which can only happen if the page
7187** is a root page or a child of a root page) then all available siblings
7188** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007189**
danielk19774dbaa892009-06-16 16:50:22 +00007190** The number of siblings of the page might be increased or decreased by
7191** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007192**
danielk19774dbaa892009-06-16 16:50:22 +00007193** Note that when this routine is called, some of the cells on the page
7194** might not actually be stored in MemPage.aData[]. This can happen
7195** if the page is overfull. This routine ensures that all cells allocated
7196** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007197**
danielk19774dbaa892009-06-16 16:50:22 +00007198** In the course of balancing the page and its siblings, cells may be
7199** inserted into or removed from the parent page (pParent). Doing so
7200** may cause the parent page to become overfull or underfull. If this
7201** happens, it is the responsibility of the caller to invoke the correct
7202** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007203**
drh5e00f6c2001-09-13 13:46:56 +00007204** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007205** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007206** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007207**
7208** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007209** buffer big enough to hold one page. If while inserting cells into the parent
7210** page (pParent) the parent page becomes overfull, this buffer is
7211** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007212** a maximum of four divider cells into the parent page, and the maximum
7213** size of a cell stored within an internal node is always less than 1/4
7214** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7215** enough for all overflow cells.
7216**
7217** If aOvflSpace is set to a null pointer, this function returns
7218** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007219*/
danielk19774dbaa892009-06-16 16:50:22 +00007220static int balance_nonroot(
7221 MemPage *pParent, /* Parent page of siblings being balanced */
7222 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007223 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007224 int isRoot, /* True if pParent is a root-page */
7225 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007226){
drh16a9b832007-05-05 18:39:25 +00007227 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007228 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007229 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007230 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007231 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007232 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007233 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007234 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007235 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007236 int usableSpace; /* Bytes in pPage beyond the header */
7237 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007238 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007239 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007240 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007241 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007242 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007243 u8 *pRight; /* Location in parent of right-sibling pointer */
7244 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007245 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7246 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007247 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007248 u8 *aSpace1; /* Space for copies of dividers cells */
7249 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007250 u8 abDone[NB+2]; /* True after i'th new page is populated */
7251 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007252 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007253 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007254 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007255
dan33ea4862014-10-09 19:35:37 +00007256 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007257 b.nCell = 0;
7258 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007259 pBt = pParent->pBt;
7260 assert( sqlite3_mutex_held(pBt->mutex) );
7261 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007262
danielk1977e5765212009-06-17 11:13:28 +00007263#if 0
drh43605152004-05-29 21:46:49 +00007264 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007265#endif
drh2e38c322004-09-03 18:38:44 +00007266
danielk19774dbaa892009-06-16 16:50:22 +00007267 /* At this point pParent may have at most one overflow cell. And if
7268 ** this overflow cell is present, it must be the cell with
7269 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007270 ** is called (indirectly) from sqlite3BtreeDelete().
7271 */
danielk19774dbaa892009-06-16 16:50:22 +00007272 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007273 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007274
danielk197711a8a862009-06-17 11:49:52 +00007275 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007276 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007277 }
7278
danielk1977a50d9aa2009-06-08 14:49:45 +00007279 /* Find the sibling pages to balance. Also locate the cells in pParent
7280 ** that divide the siblings. An attempt is made to find NN siblings on
7281 ** either side of pPage. More siblings are taken from one side, however,
7282 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007283 ** has NB or fewer children then all children of pParent are taken.
7284 **
7285 ** This loop also drops the divider cells from the parent page. This
7286 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007287 ** overflow cells in the parent page, since if any existed they will
7288 ** have already been removed.
7289 */
danielk19774dbaa892009-06-16 16:50:22 +00007290 i = pParent->nOverflow + pParent->nCell;
7291 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007292 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007293 }else{
dan7d6885a2012-08-08 14:04:56 +00007294 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007295 if( iParentIdx==0 ){
7296 nxDiv = 0;
7297 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007298 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007299 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007300 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007301 }
dan7d6885a2012-08-08 14:04:56 +00007302 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007303 }
dan7d6885a2012-08-08 14:04:56 +00007304 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007305 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7306 pRight = &pParent->aData[pParent->hdrOffset+8];
7307 }else{
7308 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7309 }
7310 pgno = get4byte(pRight);
7311 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007312 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007313 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007314 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007315 goto balance_cleanup;
7316 }
danielk1977634f2982005-03-28 08:44:07 +00007317 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007318 if( (i--)==0 ) break;
7319
drh9cc5b4e2016-12-26 01:41:33 +00007320 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007321 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007322 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007323 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007324 pParent->nOverflow = 0;
7325 }else{
7326 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7327 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007328 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007329
7330 /* Drop the cell from the parent page. apDiv[i] still points to
7331 ** the cell within the parent, even though it has been dropped.
7332 ** This is safe because dropping a cell only overwrites the first
7333 ** four bytes of it, and this function does not need the first
7334 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007335 ** later on.
7336 **
drh8a575d92011-10-12 17:00:28 +00007337 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007338 ** the dropCell() routine will overwrite the entire cell with zeroes.
7339 ** In this case, temporarily copy the cell into the aOvflSpace[]
7340 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7341 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007342 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007343 int iOff;
7344
7345 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007346 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007347 rc = SQLITE_CORRUPT_BKPT;
7348 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7349 goto balance_cleanup;
7350 }else{
7351 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7352 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7353 }
drh5b47efa2010-02-12 18:18:39 +00007354 }
drh98add2e2009-07-20 17:11:49 +00007355 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007356 }
drh8b2f49b2001-06-08 00:21:52 +00007357 }
7358
drha9121e42008-02-19 14:59:35 +00007359 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007360 ** alignment */
drha9121e42008-02-19 14:59:35 +00007361 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007362
drh8b2f49b2001-06-08 00:21:52 +00007363 /*
danielk1977634f2982005-03-28 08:44:07 +00007364 ** Allocate space for memory structures
7365 */
drhfacf0302008-06-17 15:12:00 +00007366 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007367 nMaxCells*sizeof(u8*) /* b.apCell */
7368 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007369 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007370
mistachkin0fbd7352014-12-09 04:26:56 +00007371 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007372 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007373 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007374 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007375 goto balance_cleanup;
7376 }
drh1ffd2472015-06-23 02:37:30 +00007377 b.szCell = (u16*)&b.apCell[nMaxCells];
7378 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007379 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007380
7381 /*
7382 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007383 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007384 ** into space obtained from aSpace1[]. The divider cells have already
7385 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007386 **
7387 ** If the siblings are on leaf pages, then the child pointers of the
7388 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007389 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007390 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007391 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007392 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007393 **
7394 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7395 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007396 */
drh1ffd2472015-06-23 02:37:30 +00007397 b.pRef = apOld[0];
7398 leafCorrection = b.pRef->leaf*4;
7399 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007400 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007401 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007402 int limit = pOld->nCell;
7403 u8 *aData = pOld->aData;
7404 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007405 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007406 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007407
drh73d340a2015-05-28 11:23:11 +00007408 /* Verify that all sibling pages are of the same "type" (table-leaf,
7409 ** table-interior, index-leaf, or index-interior).
7410 */
7411 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7412 rc = SQLITE_CORRUPT_BKPT;
7413 goto balance_cleanup;
7414 }
7415
drhfe647dc2015-06-23 18:24:25 +00007416 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007417 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007418 ** in the correct spot.
7419 **
7420 ** Note that when there are multiple overflow cells, it is always the
7421 ** case that they are sequential and adjacent. This invariant arises
7422 ** because multiple overflows can only occurs when inserting divider
7423 ** cells into a parent on a prior balance, and divider cells are always
7424 ** adjacent and are inserted in order. There is an assert() tagged
7425 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7426 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007427 **
7428 ** This must be done in advance. Once the balance starts, the cell
7429 ** offset section of the btree page will be overwritten and we will no
7430 ** long be able to find the cells if a pointer to each cell is not saved
7431 ** first.
7432 */
drh36b78ee2016-01-20 01:32:00 +00007433 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007434 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007435 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007436 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007437 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007438 piCell += 2;
7439 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007440 }
drhfe647dc2015-06-23 18:24:25 +00007441 for(k=0; k<pOld->nOverflow; k++){
7442 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007443 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007444 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007445 }
drh1ffd2472015-06-23 02:37:30 +00007446 }
drhfe647dc2015-06-23 18:24:25 +00007447 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7448 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007449 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007450 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007451 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007452 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007453 }
7454
drh1ffd2472015-06-23 02:37:30 +00007455 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007456 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007457 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007458 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007459 assert( b.nCell<nMaxCells );
7460 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007461 pTemp = &aSpace1[iSpace1];
7462 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007463 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007464 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007465 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007466 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007467 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007468 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007469 if( !pOld->leaf ){
7470 assert( leafCorrection==0 );
7471 assert( pOld->hdrOffset==0 );
7472 /* The right pointer of the child page pOld becomes the left
7473 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007474 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007475 }else{
7476 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007477 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007478 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7479 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007480 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7481 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007482 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007483 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007484 }
7485 }
drh1ffd2472015-06-23 02:37:30 +00007486 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007487 }
drh8b2f49b2001-06-08 00:21:52 +00007488 }
7489
7490 /*
drh1ffd2472015-06-23 02:37:30 +00007491 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007492 ** Store this number in "k". Also compute szNew[] which is the total
7493 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007494 ** in b.apCell[] of the cell that divides page i from page i+1.
7495 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007496 **
drh96f5b762004-05-16 16:24:36 +00007497 ** Values computed by this block:
7498 **
7499 ** k: The total number of sibling pages
7500 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007501 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007502 ** the right of the i-th sibling page.
7503 ** usableSpace: Number of bytes of space available on each sibling.
7504 **
drh8b2f49b2001-06-08 00:21:52 +00007505 */
drh43605152004-05-29 21:46:49 +00007506 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007507 for(i=0; i<nOld; i++){
7508 MemPage *p = apOld[i];
7509 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007510 for(j=0; j<p->nOverflow; j++){
7511 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7512 }
7513 cntNew[i] = cntOld[i];
7514 }
7515 k = nOld;
7516 for(i=0; i<k; i++){
7517 int sz;
7518 while( szNew[i]>usableSpace ){
7519 if( i+1>=k ){
7520 k = i+2;
7521 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7522 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007523 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007524 }
drh1ffd2472015-06-23 02:37:30 +00007525 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007526 szNew[i] -= sz;
7527 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007528 if( cntNew[i]<b.nCell ){
7529 sz = 2 + cachedCellSize(&b, cntNew[i]);
7530 }else{
7531 sz = 0;
7532 }
drh658873b2015-06-22 20:02:04 +00007533 }
7534 szNew[i+1] += sz;
7535 cntNew[i]--;
7536 }
drh1ffd2472015-06-23 02:37:30 +00007537 while( cntNew[i]<b.nCell ){
7538 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007539 if( szNew[i]+sz>usableSpace ) break;
7540 szNew[i] += sz;
7541 cntNew[i]++;
7542 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007543 if( cntNew[i]<b.nCell ){
7544 sz = 2 + cachedCellSize(&b, cntNew[i]);
7545 }else{
7546 sz = 0;
7547 }
drh658873b2015-06-22 20:02:04 +00007548 }
7549 szNew[i+1] -= sz;
7550 }
drh1ffd2472015-06-23 02:37:30 +00007551 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007552 k = i+1;
drh672073a2015-06-24 12:07:40 +00007553 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007554 rc = SQLITE_CORRUPT_BKPT;
7555 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007556 }
7557 }
drh96f5b762004-05-16 16:24:36 +00007558
7559 /*
7560 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007561 ** on the left side (siblings with smaller keys). The left siblings are
7562 ** always nearly full, while the right-most sibling might be nearly empty.
7563 ** The next block of code attempts to adjust the packing of siblings to
7564 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007565 **
7566 ** This adjustment is more than an optimization. The packing above might
7567 ** be so out of balance as to be illegal. For example, the right-most
7568 ** sibling might be completely empty. This adjustment is not optional.
7569 */
drh6019e162001-07-02 17:51:45 +00007570 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007571 int szRight = szNew[i]; /* Size of sibling on the right */
7572 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7573 int r; /* Index of right-most cell in left sibling */
7574 int d; /* Index of first cell to the left of right sibling */
7575
7576 r = cntNew[i-1] - 1;
7577 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007578 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007579 do{
drh1ffd2472015-06-23 02:37:30 +00007580 assert( d<nMaxCells );
7581 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007582 (void)cachedCellSize(&b, r);
7583 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007584 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007585 break;
7586 }
7587 szRight += b.szCell[d] + 2;
7588 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007589 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007590 r--;
7591 d--;
drh672073a2015-06-24 12:07:40 +00007592 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007593 szNew[i] = szRight;
7594 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007595 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7596 rc = SQLITE_CORRUPT_BKPT;
7597 goto balance_cleanup;
7598 }
drh6019e162001-07-02 17:51:45 +00007599 }
drh09d0deb2005-08-02 17:13:09 +00007600
drh2a0df922014-10-30 23:14:56 +00007601 /* Sanity check: For a non-corrupt database file one of the follwing
7602 ** must be true:
7603 ** (1) We found one or more cells (cntNew[0])>0), or
7604 ** (2) pPage is a virtual root page. A virtual root page is when
7605 ** the real root page is page 1 and we are the only child of
7606 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007607 */
drh2a0df922014-10-30 23:14:56 +00007608 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007609 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7610 apOld[0]->pgno, apOld[0]->nCell,
7611 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7612 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007613 ));
7614
drh8b2f49b2001-06-08 00:21:52 +00007615 /*
drh6b308672002-07-08 02:16:37 +00007616 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007617 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007618 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007619 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007620 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007621 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007622 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007623 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007624 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007625 nNew++;
danielk197728129562005-01-11 10:25:06 +00007626 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007627 }else{
drh7aa8f852006-03-28 00:24:44 +00007628 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007629 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007630 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007631 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007632 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007633 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007634 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007635
7636 /* Set the pointer-map entry for the new sibling page. */
7637 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007638 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007639 if( rc!=SQLITE_OK ){
7640 goto balance_cleanup;
7641 }
7642 }
drh6b308672002-07-08 02:16:37 +00007643 }
drh8b2f49b2001-06-08 00:21:52 +00007644 }
7645
7646 /*
dan33ea4862014-10-09 19:35:37 +00007647 ** Reassign page numbers so that the new pages are in ascending order.
7648 ** This helps to keep entries in the disk file in order so that a scan
7649 ** of the table is closer to a linear scan through the file. That in turn
7650 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007651 **
dan33ea4862014-10-09 19:35:37 +00007652 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7653 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007654 **
dan33ea4862014-10-09 19:35:37 +00007655 ** When NB==3, this one optimization makes the database about 25% faster
7656 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007657 */
dan33ea4862014-10-09 19:35:37 +00007658 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007659 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007660 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007661 for(j=0; j<i; j++){
7662 if( aPgno[j]==aPgno[i] ){
7663 /* This branch is taken if the set of sibling pages somehow contains
7664 ** duplicate entries. This can happen if the database is corrupt.
7665 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007666 ** we do the detection here in order to avoid populating the pager
7667 ** cache with two separate objects associated with the same
7668 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007669 assert( CORRUPT_DB );
7670 rc = SQLITE_CORRUPT_BKPT;
7671 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007672 }
7673 }
dan33ea4862014-10-09 19:35:37 +00007674 }
7675 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007676 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007677 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007678 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007679 }
drh00fe08a2014-10-31 00:05:23 +00007680 pgno = aPgOrder[iBest];
7681 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007682 if( iBest!=i ){
7683 if( iBest>i ){
7684 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7685 }
7686 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7687 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007688 }
7689 }
dan33ea4862014-10-09 19:35:37 +00007690
7691 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7692 "%d(%d nc=%d) %d(%d nc=%d)\n",
7693 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007694 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007695 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007696 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007697 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007698 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007699 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7700 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7701 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7702 ));
danielk19774dbaa892009-06-16 16:50:22 +00007703
7704 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7705 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007706
dan33ea4862014-10-09 19:35:37 +00007707 /* If the sibling pages are not leaves, ensure that the right-child pointer
7708 ** of the right-most new sibling page is set to the value that was
7709 ** originally in the same field of the right-most old sibling page. */
7710 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7711 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7712 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7713 }
danielk1977ac11ee62005-01-15 12:45:51 +00007714
dan33ea4862014-10-09 19:35:37 +00007715 /* Make any required updates to pointer map entries associated with
7716 ** cells stored on sibling pages following the balance operation. Pointer
7717 ** map entries associated with divider cells are set by the insertCell()
7718 ** routine. The associated pointer map entries are:
7719 **
7720 ** a) if the cell contains a reference to an overflow chain, the
7721 ** entry associated with the first page in the overflow chain, and
7722 **
7723 ** b) if the sibling pages are not leaves, the child page associated
7724 ** with the cell.
7725 **
7726 ** If the sibling pages are not leaves, then the pointer map entry
7727 ** associated with the right-child of each sibling may also need to be
7728 ** updated. This happens below, after the sibling pages have been
7729 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007730 */
dan33ea4862014-10-09 19:35:37 +00007731 if( ISAUTOVACUUM ){
7732 MemPage *pNew = apNew[0];
7733 u8 *aOld = pNew->aData;
7734 int cntOldNext = pNew->nCell + pNew->nOverflow;
7735 int usableSize = pBt->usableSize;
7736 int iNew = 0;
7737 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007738
drh1ffd2472015-06-23 02:37:30 +00007739 for(i=0; i<b.nCell; i++){
7740 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007741 if( i==cntOldNext ){
7742 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7743 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7744 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007745 }
dan33ea4862014-10-09 19:35:37 +00007746 if( i==cntNew[iNew] ){
7747 pNew = apNew[++iNew];
7748 if( !leafData ) continue;
7749 }
danielk197785d90ca2008-07-19 14:25:15 +00007750
dan33ea4862014-10-09 19:35:37 +00007751 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007752 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007753 ** or else the divider cell to the left of sibling page iOld. So,
7754 ** if sibling page iOld had the same page number as pNew, and if
7755 ** pCell really was a part of sibling page iOld (not a divider or
7756 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007757 if( iOld>=nNew
7758 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007759 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007760 ){
dan33ea4862014-10-09 19:35:37 +00007761 if( !leafCorrection ){
7762 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7763 }
drh1ffd2472015-06-23 02:37:30 +00007764 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007765 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007766 }
drhea82b372015-06-23 21:35:28 +00007767 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007768 }
drh14acc042001-06-10 19:56:58 +00007769 }
7770 }
dan33ea4862014-10-09 19:35:37 +00007771
7772 /* Insert new divider cells into pParent. */
7773 for(i=0; i<nNew-1; i++){
7774 u8 *pCell;
7775 u8 *pTemp;
7776 int sz;
7777 MemPage *pNew = apNew[i];
7778 j = cntNew[i];
7779
7780 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007781 assert( b.apCell[j]!=0 );
7782 pCell = b.apCell[j];
7783 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007784 pTemp = &aOvflSpace[iOvflSpace];
7785 if( !pNew->leaf ){
7786 memcpy(&pNew->aData[8], pCell, 4);
7787 }else if( leafData ){
7788 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007789 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007790 ** cell consists of the integer key for the right-most cell of
7791 ** the sibling-page assembled above only.
7792 */
7793 CellInfo info;
7794 j--;
drh1ffd2472015-06-23 02:37:30 +00007795 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007796 pCell = pTemp;
7797 sz = 4 + putVarint(&pCell[4], info.nKey);
7798 pTemp = 0;
7799 }else{
7800 pCell -= 4;
7801 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7802 ** previously stored on a leaf node, and its reported size was 4
7803 ** bytes, then it may actually be smaller than this
7804 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7805 ** any cell). But it is important to pass the correct size to
7806 ** insertCell(), so reparse the cell now.
7807 **
drhc1fb2b82016-03-09 03:29:27 +00007808 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7809 ** and WITHOUT ROWID tables with exactly one column which is the
7810 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007811 */
drh1ffd2472015-06-23 02:37:30 +00007812 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007813 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007814 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007815 }
7816 }
7817 iOvflSpace += sz;
7818 assert( sz<=pBt->maxLocal+23 );
7819 assert( iOvflSpace <= (int)pBt->pageSize );
7820 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7821 if( rc!=SQLITE_OK ) goto balance_cleanup;
7822 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7823 }
7824
7825 /* Now update the actual sibling pages. The order in which they are updated
7826 ** is important, as this code needs to avoid disrupting any page from which
7827 ** cells may still to be read. In practice, this means:
7828 **
drhd836d422014-10-31 14:26:36 +00007829 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7830 ** then it is not safe to update page apNew[iPg] until after
7831 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007832 **
drhd836d422014-10-31 14:26:36 +00007833 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7834 ** then it is not safe to update page apNew[iPg] until after
7835 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007836 **
7837 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007838 **
7839 ** The iPg value in the following loop starts at nNew-1 goes down
7840 ** to 0, then back up to nNew-1 again, thus making two passes over
7841 ** the pages. On the initial downward pass, only condition (1) above
7842 ** needs to be tested because (2) will always be true from the previous
7843 ** step. On the upward pass, both conditions are always true, so the
7844 ** upwards pass simply processes pages that were missed on the downward
7845 ** pass.
dan33ea4862014-10-09 19:35:37 +00007846 */
drhbec021b2014-10-31 12:22:00 +00007847 for(i=1-nNew; i<nNew; i++){
7848 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007849 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007850 if( abDone[iPg] ) continue; /* Skip pages already processed */
7851 if( i>=0 /* On the upwards pass, or... */
7852 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007853 ){
dan09c68402014-10-11 20:00:24 +00007854 int iNew;
7855 int iOld;
7856 int nNewCell;
7857
drhd836d422014-10-31 14:26:36 +00007858 /* Verify condition (1): If cells are moving left, update iPg
7859 ** only after iPg-1 has already been updated. */
7860 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7861
7862 /* Verify condition (2): If cells are moving right, update iPg
7863 ** only after iPg+1 has already been updated. */
7864 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7865
dan09c68402014-10-11 20:00:24 +00007866 if( iPg==0 ){
7867 iNew = iOld = 0;
7868 nNewCell = cntNew[0];
7869 }else{
drh1ffd2472015-06-23 02:37:30 +00007870 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007871 iNew = cntNew[iPg-1] + !leafData;
7872 nNewCell = cntNew[iPg] - iNew;
7873 }
7874
drh1ffd2472015-06-23 02:37:30 +00007875 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007876 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007877 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007878 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007879 assert( apNew[iPg]->nOverflow==0 );
7880 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007881 }
7882 }
drhd836d422014-10-31 14:26:36 +00007883
7884 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007885 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7886
drh7aa8f852006-03-28 00:24:44 +00007887 assert( nOld>0 );
7888 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007889
danielk197713bd99f2009-06-24 05:40:34 +00007890 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7891 /* The root page of the b-tree now contains no cells. The only sibling
7892 ** page is the right-child of the parent. Copy the contents of the
7893 ** child page into the parent, decreasing the overall height of the
7894 ** b-tree structure by one. This is described as the "balance-shallower"
7895 ** sub-algorithm in some documentation.
7896 **
7897 ** If this is an auto-vacuum database, the call to copyNodeContent()
7898 ** sets all pointer-map entries corresponding to database image pages
7899 ** for which the pointer is stored within the content being copied.
7900 **
drh768f2902014-10-31 02:51:41 +00007901 ** It is critical that the child page be defragmented before being
7902 ** copied into the parent, because if the parent is page 1 then it will
7903 ** by smaller than the child due to the database header, and so all the
7904 ** free space needs to be up front.
7905 */
drh9b5351d2015-09-30 14:19:08 +00007906 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007907 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007908 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007909 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007910 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7911 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007912 );
drhc314dc72009-07-21 11:52:34 +00007913 copyNodeContent(apNew[0], pParent, &rc);
7914 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007915 }else if( ISAUTOVACUUM && !leafCorrection ){
7916 /* Fix the pointer map entries associated with the right-child of each
7917 ** sibling page. All other pointer map entries have already been taken
7918 ** care of. */
7919 for(i=0; i<nNew; i++){
7920 u32 key = get4byte(&apNew[i]->aData[8]);
7921 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007922 }
dan33ea4862014-10-09 19:35:37 +00007923 }
danielk19774dbaa892009-06-16 16:50:22 +00007924
dan33ea4862014-10-09 19:35:37 +00007925 assert( pParent->isInit );
7926 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007927 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007928
dan33ea4862014-10-09 19:35:37 +00007929 /* Free any old pages that were not reused as new pages.
7930 */
7931 for(i=nNew; i<nOld; i++){
7932 freePage(apOld[i], &rc);
7933 }
danielk19774dbaa892009-06-16 16:50:22 +00007934
7935#if 0
dan33ea4862014-10-09 19:35:37 +00007936 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007937 /* The ptrmapCheckPages() contains assert() statements that verify that
7938 ** all pointer map pages are set correctly. This is helpful while
7939 ** debugging. This is usually disabled because a corrupt database may
7940 ** cause an assert() statement to fail. */
7941 ptrmapCheckPages(apNew, nNew);
7942 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007943 }
dan33ea4862014-10-09 19:35:37 +00007944#endif
danielk1977cd581a72009-06-23 15:43:39 +00007945
drh8b2f49b2001-06-08 00:21:52 +00007946 /*
drh14acc042001-06-10 19:56:58 +00007947 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007948 */
drh14acc042001-06-10 19:56:58 +00007949balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00007950 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007951 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007952 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007953 }
drh14acc042001-06-10 19:56:58 +00007954 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007955 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007956 }
danielk1977eaa06f62008-09-18 17:34:44 +00007957
drh8b2f49b2001-06-08 00:21:52 +00007958 return rc;
7959}
7960
drh43605152004-05-29 21:46:49 +00007961
7962/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007963** This function is called when the root page of a b-tree structure is
7964** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007965**
danielk1977a50d9aa2009-06-08 14:49:45 +00007966** A new child page is allocated and the contents of the current root
7967** page, including overflow cells, are copied into the child. The root
7968** page is then overwritten to make it an empty page with the right-child
7969** pointer pointing to the new page.
7970**
7971** Before returning, all pointer-map entries corresponding to pages
7972** that the new child-page now contains pointers to are updated. The
7973** entry corresponding to the new right-child pointer of the root
7974** page is also updated.
7975**
7976** If successful, *ppChild is set to contain a reference to the child
7977** page and SQLITE_OK is returned. In this case the caller is required
7978** to call releasePage() on *ppChild exactly once. If an error occurs,
7979** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007980*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007981static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7982 int rc; /* Return value from subprocedures */
7983 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007984 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007985 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007986
danielk1977a50d9aa2009-06-08 14:49:45 +00007987 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007988 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007989
danielk1977a50d9aa2009-06-08 14:49:45 +00007990 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7991 ** page that will become the new right-child of pPage. Copy the contents
7992 ** of the node stored on pRoot into the new child page.
7993 */
drh98add2e2009-07-20 17:11:49 +00007994 rc = sqlite3PagerWrite(pRoot->pDbPage);
7995 if( rc==SQLITE_OK ){
7996 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007997 copyNodeContent(pRoot, pChild, &rc);
7998 if( ISAUTOVACUUM ){
7999 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008000 }
8001 }
8002 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008003 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008004 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008005 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008006 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008007 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8008 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8009 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00008010
danielk1977a50d9aa2009-06-08 14:49:45 +00008011 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8012
8013 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008014 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8015 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8016 memcpy(pChild->apOvfl, pRoot->apOvfl,
8017 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008018 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008019
8020 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8021 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8022 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8023
8024 *ppChild = pChild;
8025 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008026}
8027
8028/*
danielk197771d5d2c2008-09-29 11:49:47 +00008029** The page that pCur currently points to has just been modified in
8030** some way. This function figures out if this modification means the
8031** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008032** routine. Balancing routines are:
8033**
8034** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008035** balance_deeper()
8036** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008037*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008038static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008039 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008040 const int nMin = pCur->pBt->usableSize * 2 / 3;
8041 u8 aBalanceQuickSpace[13];
8042 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008043
drhcc5f8a42016-02-06 22:32:06 +00008044 VVA_ONLY( int balance_quick_called = 0 );
8045 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008046
8047 do {
8048 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008049 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008050
8051 if( iPage==0 ){
8052 if( pPage->nOverflow ){
8053 /* The root page of the b-tree is overfull. In this case call the
8054 ** balance_deeper() function to create a new child for the root-page
8055 ** and copy the current contents of the root-page to it. The
8056 ** next iteration of the do-loop will balance the child page.
8057 */
drhcc5f8a42016-02-06 22:32:06 +00008058 assert( balance_deeper_called==0 );
8059 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008060 rc = balance_deeper(pPage, &pCur->apPage[1]);
8061 if( rc==SQLITE_OK ){
8062 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008063 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008064 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008065 pCur->apPage[0] = pPage;
8066 pCur->pPage = pCur->apPage[1];
8067 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008068 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008069 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008070 break;
8071 }
8072 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8073 break;
8074 }else{
8075 MemPage * const pParent = pCur->apPage[iPage-1];
8076 int const iIdx = pCur->aiIdx[iPage-1];
8077
8078 rc = sqlite3PagerWrite(pParent->pDbPage);
8079 if( rc==SQLITE_OK ){
8080#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008081 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008082 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008083 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008084 && pParent->pgno!=1
8085 && pParent->nCell==iIdx
8086 ){
8087 /* Call balance_quick() to create a new sibling of pPage on which
8088 ** to store the overflow cell. balance_quick() inserts a new cell
8089 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008090 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008091 ** use either balance_nonroot() or balance_deeper(). Until this
8092 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8093 ** buffer.
8094 **
8095 ** The purpose of the following assert() is to check that only a
8096 ** single call to balance_quick() is made for each call to this
8097 ** function. If this were not verified, a subtle bug involving reuse
8098 ** of the aBalanceQuickSpace[] might sneak in.
8099 */
drhcc5f8a42016-02-06 22:32:06 +00008100 assert( balance_quick_called==0 );
8101 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008102 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8103 }else
8104#endif
8105 {
8106 /* In this case, call balance_nonroot() to redistribute cells
8107 ** between pPage and up to 2 of its sibling pages. This involves
8108 ** modifying the contents of pParent, which may cause pParent to
8109 ** become overfull or underfull. The next iteration of the do-loop
8110 ** will balance the parent page to correct this.
8111 **
8112 ** If the parent page becomes overfull, the overflow cell or cells
8113 ** are stored in the pSpace buffer allocated immediately below.
8114 ** A subsequent iteration of the do-loop will deal with this by
8115 ** calling balance_nonroot() (balance_deeper() may be called first,
8116 ** but it doesn't deal with overflow cells - just moves them to a
8117 ** different page). Once this subsequent call to balance_nonroot()
8118 ** has completed, it is safe to release the pSpace buffer used by
8119 ** the previous call, as the overflow cell data will have been
8120 ** copied either into the body of a database page or into the new
8121 ** pSpace buffer passed to the latter call to balance_nonroot().
8122 */
8123 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008124 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8125 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008126 if( pFree ){
8127 /* If pFree is not NULL, it points to the pSpace buffer used
8128 ** by a previous call to balance_nonroot(). Its contents are
8129 ** now stored either on real database pages or within the
8130 ** new pSpace buffer, so it may be safely freed here. */
8131 sqlite3PageFree(pFree);
8132 }
8133
danielk19774dbaa892009-06-16 16:50:22 +00008134 /* The pSpace buffer will be freed after the next call to
8135 ** balance_nonroot(), or just before this function returns, whichever
8136 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008137 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008138 }
8139 }
8140
8141 pPage->nOverflow = 0;
8142
8143 /* The next iteration of the do-loop balances the parent page. */
8144 releasePage(pPage);
8145 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008146 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008147 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008148 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008149 }while( rc==SQLITE_OK );
8150
8151 if( pFree ){
8152 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008153 }
8154 return rc;
8155}
8156
drh3de5d162018-05-03 03:59:02 +00008157/* Overwrite content from pX into pDest. Only do the write if the
8158** content is different from what is already there.
8159*/
8160static int btreeOverwriteContent(
8161 MemPage *pPage, /* MemPage on which writing will occur */
8162 u8 *pDest, /* Pointer to the place to start writing */
8163 const BtreePayload *pX, /* Source of data to write */
8164 int iOffset, /* Offset of first byte to write */
8165 int iAmt /* Number of bytes to be written */
8166){
8167 int nData = pX->nData - iOffset;
8168 if( nData<=0 ){
8169 /* Overwritting with zeros */
8170 int i;
8171 for(i=0; i<iAmt && pDest[i]==0; i++){}
8172 if( i<iAmt ){
8173 int rc = sqlite3PagerWrite(pPage->pDbPage);
8174 if( rc ) return rc;
8175 memset(pDest + i, 0, iAmt - i);
8176 }
8177 }else{
8178 if( nData<iAmt ){
8179 /* Mixed read data and zeros at the end. Make a recursive call
8180 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008181 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8182 iAmt-nData);
8183 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008184 iAmt = nData;
8185 }
8186 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8187 int rc = sqlite3PagerWrite(pPage->pDbPage);
8188 if( rc ) return rc;
8189 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8190 }
8191 }
8192 return SQLITE_OK;
8193}
8194
8195/*
8196** Overwrite the cell that cursor pCur is pointing to with fresh content
8197** contained in pX.
8198*/
8199static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8200 int iOffset; /* Next byte of pX->pData to write */
8201 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8202 int rc; /* Return code */
8203 MemPage *pPage = pCur->pPage; /* Page being written */
8204 BtShared *pBt; /* Btree */
8205 Pgno ovflPgno; /* Next overflow page to write */
8206 u32 ovflPageSize; /* Size to write on overflow page */
8207
drh4f84e9c2018-05-03 13:56:23 +00008208 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8209 return SQLITE_CORRUPT_BKPT;
8210 }
drh3de5d162018-05-03 03:59:02 +00008211 /* Overwrite the local portion first */
8212 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8213 0, pCur->info.nLocal);
8214 if( rc ) return rc;
8215 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8216
8217 /* Now overwrite the overflow pages */
8218 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008219 assert( nTotal>=0 );
8220 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008221 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8222 pBt = pPage->pBt;
8223 ovflPageSize = pBt->usableSize - 4;
8224 do{
8225 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8226 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008227 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008228 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008229 }else{
drh30f7a252018-05-07 11:29:59 +00008230 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008231 ovflPgno = get4byte(pPage->aData);
8232 }else{
8233 ovflPageSize = nTotal - iOffset;
8234 }
8235 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8236 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008237 }
drhd5aa9262018-05-03 16:56:06 +00008238 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008239 if( rc ) return rc;
8240 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008241 }while( iOffset<nTotal );
8242 return SQLITE_OK;
8243}
8244
drhf74b8d92002-09-01 23:20:45 +00008245
8246/*
drh8eeb4462016-05-21 20:03:42 +00008247** Insert a new record into the BTree. The content of the new record
8248** is described by the pX object. The pCur cursor is used only to
8249** define what table the record should be inserted into, and is left
8250** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008251**
drh8eeb4462016-05-21 20:03:42 +00008252** For a table btree (used for rowid tables), only the pX.nKey value of
8253** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8254** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8255** hold the content of the row.
8256**
8257** For an index btree (used for indexes and WITHOUT ROWID tables), the
8258** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8259** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008260**
8261** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008262** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8263** been performed. In other words, if seekResult!=0 then the cursor
8264** is currently pointing to a cell that will be adjacent to the cell
8265** to be inserted. If seekResult<0 then pCur points to a cell that is
8266** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8267** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008268**
drheaf6ae22016-11-09 20:14:34 +00008269** If seekResult==0, that means pCur is pointing at some unknown location.
8270** In that case, this routine must seek the cursor to the correct insertion
8271** point for (pKey,nKey) before doing the insertion. For index btrees,
8272** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8273** key values and pX->aMem can be used instead of pX->pKey to avoid having
8274** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008275*/
drh3aac2dd2004-04-26 14:10:20 +00008276int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008277 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008278 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008279 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008280 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008281){
drh3b7511c2001-05-26 13:15:44 +00008282 int rc;
drh3e9ca092009-09-08 01:14:48 +00008283 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008284 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008285 int idx;
drh3b7511c2001-05-26 13:15:44 +00008286 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008287 Btree *p = pCur->pBtree;
8288 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008289 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008290 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008291
danf91c1312017-01-10 20:04:38 +00008292 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8293
drh98add2e2009-07-20 17:11:49 +00008294 if( pCur->eState==CURSOR_FAULT ){
8295 assert( pCur->skipNext!=SQLITE_OK );
8296 return pCur->skipNext;
8297 }
8298
dan7a2347e2016-01-07 16:43:54 +00008299 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008300 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8301 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008302 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008303 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8304
danielk197731d31b82009-07-13 13:18:07 +00008305 /* Assert that the caller has been consistent. If this cursor was opened
8306 ** expecting an index b-tree, then the caller should be inserting blob
8307 ** keys with no associated data. If the cursor was opened expecting an
8308 ** intkey table, the caller should be inserting integer keys with a
8309 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008310 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008311
danielk19779c3acf32009-05-02 07:36:49 +00008312 /* Save the positions of any other cursors open on this table.
8313 **
danielk19773509a652009-07-06 18:56:13 +00008314 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008315 ** example, when inserting data into a table with auto-generated integer
8316 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8317 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008318 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008319 ** that the cursor is already where it needs to be and returns without
8320 ** doing any work. To avoid thwarting these optimizations, it is important
8321 ** not to clear the cursor here.
8322 */
drh27fb7462015-06-30 02:47:36 +00008323 if( pCur->curFlags & BTCF_Multiple ){
8324 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8325 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008326 }
8327
danielk197771d5d2c2008-09-29 11:49:47 +00008328 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008329 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008330 /* If this is an insert into a table b-tree, invalidate any incrblob
8331 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008332 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008333
danf91c1312017-01-10 20:04:38 +00008334 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008335 ** to a row with the same key as the new entry being inserted.
8336 */
8337#ifdef SQLITE_DEBUG
8338 if( flags & BTREE_SAVEPOSITION ){
8339 assert( pCur->curFlags & BTCF_ValidNKey );
8340 assert( pX->nKey==pCur->info.nKey );
8341 assert( pCur->info.nSize!=0 );
8342 assert( loc==0 );
8343 }
8344#endif
danf91c1312017-01-10 20:04:38 +00008345
drhd720d392018-05-07 17:27:04 +00008346 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8347 ** that the cursor is not pointing to a row to be overwritten.
8348 ** So do a complete check.
8349 */
drh7a1c28d2016-11-10 20:42:08 +00008350 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008351 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008352 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008353 assert( pX->nData>=0 && pX->nZero>=0 );
8354 if( pCur->info.nSize!=0
8355 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8356 ){
drhd720d392018-05-07 17:27:04 +00008357 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008358 return btreeOverwriteCell(pCur, pX);
8359 }
drhd720d392018-05-07 17:27:04 +00008360 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008361 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008362 /* The cursor is *not* pointing to the cell to be overwritten, nor
8363 ** to an adjacent cell. Move the cursor so that it is pointing either
8364 ** to the cell to be overwritten or an adjacent cell.
8365 */
danf91c1312017-01-10 20:04:38 +00008366 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008367 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008368 }
drhd720d392018-05-07 17:27:04 +00008369 }else{
8370 /* This is an index or a WITHOUT ROWID table */
8371
8372 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8373 ** to a row with the same key as the new entry being inserted.
8374 */
8375 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8376
8377 /* If the cursor is not already pointing either to the cell to be
8378 ** overwritten, or if a new cell is being inserted, if the cursor is
8379 ** not pointing to an immediately adjacent cell, then move the cursor
8380 ** so that it does.
8381 */
8382 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8383 if( pX->nMem ){
8384 UnpackedRecord r;
8385 r.pKeyInfo = pCur->pKeyInfo;
8386 r.aMem = pX->aMem;
8387 r.nField = pX->nMem;
8388 r.default_rc = 0;
8389 r.errCode = 0;
8390 r.r1 = 0;
8391 r.r2 = 0;
8392 r.eqSeen = 0;
8393 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8394 }else{
8395 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8396 }
8397 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008398 }
drh89ee2292018-05-07 18:41:19 +00008399
8400 /* If the cursor is currently pointing to an entry to be overwritten
8401 ** and the new content is the same as as the old, then use the
8402 ** overwrite optimization.
8403 */
8404 if( loc==0 ){
8405 getCellInfo(pCur);
8406 if( pCur->info.nKey==pX->nKey ){
8407 BtreePayload x2;
8408 x2.pData = pX->pKey;
8409 x2.nData = pX->nKey;
8410 x2.nZero = 0;
8411 return btreeOverwriteCell(pCur, &x2);
8412 }
8413 }
8414
danielk1977da184232006-01-05 11:34:32 +00008415 }
danielk1977b980d2212009-06-22 18:03:51 +00008416 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008417
drh352a35a2017-08-15 03:46:47 +00008418 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008419 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008420 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008421
drh3a4c1412004-05-09 20:40:11 +00008422 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008423 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008424 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008425 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008426 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008427 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008428 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008429 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008430 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008431 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008432 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008433 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008434 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008435 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008436 rc = sqlite3PagerWrite(pPage->pDbPage);
8437 if( rc ){
8438 goto end_insert;
8439 }
danielk197771d5d2c2008-09-29 11:49:47 +00008440 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008441 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008442 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008443 }
drh80159da2016-12-09 17:32:51 +00008444 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008445 if( info.nSize==szNew && info.nLocal==info.nPayload
8446 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8447 ){
drhf9238252016-12-09 18:09:42 +00008448 /* Overwrite the old cell with the new if they are the same size.
8449 ** We could also try to do this if the old cell is smaller, then add
8450 ** the leftover space to the free list. But experiments show that
8451 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008452 ** calling dropCell() and insertCell().
8453 **
8454 ** This optimization cannot be used on an autovacuum database if the
8455 ** new entry uses overflow pages, as the insertCell() call below is
8456 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008457 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008458 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008459 memcpy(oldCell, newCell, szNew);
8460 return SQLITE_OK;
8461 }
8462 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008463 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008464 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008465 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008466 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008467 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008468 }else{
drh4b70f112004-05-02 21:12:19 +00008469 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008470 }
drh98add2e2009-07-20 17:11:49 +00008471 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008472 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008473 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008474
mistachkin48864df2013-03-21 21:20:32 +00008475 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008476 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008477 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008478 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008479 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008480 ** Previous versions of SQLite called moveToRoot() to move the cursor
8481 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008482 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8483 ** set the cursor state to "invalid". This makes common insert operations
8484 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008485 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008486 ** There is a subtle but important optimization here too. When inserting
8487 ** multiple records into an intkey b-tree using a single cursor (as can
8488 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8489 ** is advantageous to leave the cursor pointing to the last entry in
8490 ** the b-tree if possible. If the cursor is left pointing to the last
8491 ** entry in the table, and the next row inserted has an integer key
8492 ** larger than the largest existing key, it is possible to insert the
8493 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008494 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008495 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008496 if( pPage->nOverflow ){
8497 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008498 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008499 rc = balance(pCur);
8500
8501 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008502 ** fails. Internal data structure corruption will result otherwise.
8503 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8504 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008505 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008506 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008507 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008508 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008509 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008510 assert( pCur->pKey==0 );
8511 pCur->pKey = sqlite3Malloc( pX->nKey );
8512 if( pCur->pKey==0 ){
8513 rc = SQLITE_NOMEM;
8514 }else{
8515 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8516 }
8517 }
8518 pCur->eState = CURSOR_REQUIRESEEK;
8519 pCur->nKey = pX->nKey;
8520 }
danielk19773f632d52009-05-02 10:03:09 +00008521 }
drh352a35a2017-08-15 03:46:47 +00008522 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008523
drh2e38c322004-09-03 18:38:44 +00008524end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008525 return rc;
8526}
8527
8528/*
danf0ee1d32015-09-12 19:26:11 +00008529** Delete the entry that the cursor is pointing to.
8530**
drhe807bdb2016-01-21 17:06:33 +00008531** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8532** the cursor is left pointing at an arbitrary location after the delete.
8533** But if that bit is set, then the cursor is left in a state such that
8534** the next call to BtreeNext() or BtreePrev() moves it to the same row
8535** as it would have been on if the call to BtreeDelete() had been omitted.
8536**
drhdef19e32016-01-27 16:26:25 +00008537** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8538** associated with a single table entry and its indexes. Only one of those
8539** deletes is considered the "primary" delete. The primary delete occurs
8540** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8541** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8542** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008543** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008544*/
drhe807bdb2016-01-21 17:06:33 +00008545int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008546 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008547 BtShared *pBt = p->pBt;
8548 int rc; /* Return code */
8549 MemPage *pPage; /* Page to delete cell from */
8550 unsigned char *pCell; /* Pointer to cell to delete */
8551 int iCellIdx; /* Index of cell to delete */
8552 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008553 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008554 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008555 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008556
dan7a2347e2016-01-07 16:43:54 +00008557 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008558 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008559 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008560 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008561 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8562 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008563 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008564 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008565 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008566
danielk19774dbaa892009-06-16 16:50:22 +00008567 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008568 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008569 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008570 pCell = findCell(pPage, iCellIdx);
8571
drhbfc7a8b2016-04-09 17:04:05 +00008572 /* If the bPreserve flag is set to true, then the cursor position must
8573 ** be preserved following this delete operation. If the current delete
8574 ** will cause a b-tree rebalance, then this is done by saving the cursor
8575 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8576 ** returning.
8577 **
8578 ** Or, if the current delete will not cause a rebalance, then the cursor
8579 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8580 ** before or after the deleted entry. In this case set bSkipnext to true. */
8581 if( bPreserve ){
8582 if( !pPage->leaf
8583 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8584 ){
8585 /* A b-tree rebalance will be required after deleting this entry.
8586 ** Save the cursor key. */
8587 rc = saveCursorKey(pCur);
8588 if( rc ) return rc;
8589 }else{
8590 bSkipnext = 1;
8591 }
8592 }
8593
danielk19774dbaa892009-06-16 16:50:22 +00008594 /* If the page containing the entry to delete is not a leaf page, move
8595 ** the cursor to the largest entry in the tree that is smaller than
8596 ** the entry being deleted. This cell will replace the cell being deleted
8597 ** from the internal node. The 'previous' entry is used for this instead
8598 ** of the 'next' entry, as the previous entry is always a part of the
8599 ** sub-tree headed by the child page of the cell being deleted. This makes
8600 ** balancing the tree following the delete operation easier. */
8601 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008602 rc = sqlite3BtreePrevious(pCur, 0);
8603 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008604 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008605 }
8606
8607 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008608 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008609 if( pCur->curFlags & BTCF_Multiple ){
8610 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8611 if( rc ) return rc;
8612 }
drhd60f4f42012-03-23 14:23:52 +00008613
8614 /* If this is a delete operation to remove a row from a table b-tree,
8615 ** invalidate any incrblob cursors open on the row being deleted. */
8616 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008617 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008618 }
8619
danf0ee1d32015-09-12 19:26:11 +00008620 /* Make the page containing the entry to be deleted writable. Then free any
8621 ** overflow pages associated with the entry and finally remove the cell
8622 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008623 rc = sqlite3PagerWrite(pPage->pDbPage);
8624 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008625 rc = clearCell(pPage, pCell, &info);
8626 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008627 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008628
danielk19774dbaa892009-06-16 16:50:22 +00008629 /* If the cell deleted was not located on a leaf page, then the cursor
8630 ** is currently pointing to the largest entry in the sub-tree headed
8631 ** by the child-page of the cell that was just deleted from an internal
8632 ** node. The cell from the leaf node needs to be moved to the internal
8633 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008634 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008635 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008636 int nCell;
drh352a35a2017-08-15 03:46:47 +00008637 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008638 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008639
drh352a35a2017-08-15 03:46:47 +00008640 if( iCellDepth<pCur->iPage-1 ){
8641 n = pCur->apPage[iCellDepth+1]->pgno;
8642 }else{
8643 n = pCur->pPage->pgno;
8644 }
danielk19774dbaa892009-06-16 16:50:22 +00008645 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008646 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008647 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008648 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008649 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008650 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008651 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008652 if( rc==SQLITE_OK ){
8653 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8654 }
drh98add2e2009-07-20 17:11:49 +00008655 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008656 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008657 }
danielk19774dbaa892009-06-16 16:50:22 +00008658
8659 /* Balance the tree. If the entry deleted was located on a leaf page,
8660 ** then the cursor still points to that page. In this case the first
8661 ** call to balance() repairs the tree, and the if(...) condition is
8662 ** never true.
8663 **
8664 ** Otherwise, if the entry deleted was on an internal node page, then
8665 ** pCur is pointing to the leaf page from which a cell was removed to
8666 ** replace the cell deleted from the internal node. This is slightly
8667 ** tricky as the leaf node may be underfull, and the internal node may
8668 ** be either under or overfull. In this case run the balancing algorithm
8669 ** on the leaf node first. If the balance proceeds far enough up the
8670 ** tree that we can be sure that any problem in the internal node has
8671 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8672 ** walk the cursor up the tree to the internal node and balance it as
8673 ** well. */
8674 rc = balance(pCur);
8675 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008676 releasePageNotNull(pCur->pPage);
8677 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008678 while( pCur->iPage>iCellDepth ){
8679 releasePage(pCur->apPage[pCur->iPage--]);
8680 }
drh352a35a2017-08-15 03:46:47 +00008681 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008682 rc = balance(pCur);
8683 }
8684
danielk19776b456a22005-03-21 04:04:02 +00008685 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008686 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008687 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008688 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008689 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008690 pCur->eState = CURSOR_SKIPNEXT;
8691 if( iCellIdx>=pPage->nCell ){
8692 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008693 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008694 }else{
8695 pCur->skipNext = 1;
8696 }
8697 }else{
8698 rc = moveToRoot(pCur);
8699 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008700 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008701 pCur->eState = CURSOR_REQUIRESEEK;
8702 }
drh44548e72017-08-14 18:13:52 +00008703 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008704 }
danielk19776b456a22005-03-21 04:04:02 +00008705 }
drh5e2f8b92001-05-28 00:41:15 +00008706 return rc;
drh3b7511c2001-05-26 13:15:44 +00008707}
drh8b2f49b2001-06-08 00:21:52 +00008708
8709/*
drhc6b52df2002-01-04 03:09:29 +00008710** Create a new BTree table. Write into *piTable the page
8711** number for the root page of the new table.
8712**
drhab01f612004-05-22 02:55:23 +00008713** The type of type is determined by the flags parameter. Only the
8714** following values of flags are currently in use. Other values for
8715** flags might not work:
8716**
8717** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8718** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008719*/
drhd4187c72010-08-30 22:15:45 +00008720static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008721 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008722 MemPage *pRoot;
8723 Pgno pgnoRoot;
8724 int rc;
drhd4187c72010-08-30 22:15:45 +00008725 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008726
drh1fee73e2007-08-29 04:00:57 +00008727 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008728 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008729 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008730
danielk1977003ba062004-11-04 02:57:33 +00008731#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008732 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008733 if( rc ){
8734 return rc;
8735 }
danielk1977003ba062004-11-04 02:57:33 +00008736#else
danielk1977687566d2004-11-02 12:56:41 +00008737 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008738 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8739 MemPage *pPageMove; /* The page to move to. */
8740
danielk197720713f32007-05-03 11:43:33 +00008741 /* Creating a new table may probably require moving an existing database
8742 ** to make room for the new tables root page. In case this page turns
8743 ** out to be an overflow page, delete all overflow page-map caches
8744 ** held by open cursors.
8745 */
danielk197792d4d7a2007-05-04 12:05:56 +00008746 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008747
danielk1977003ba062004-11-04 02:57:33 +00008748 /* Read the value of meta[3] from the database to determine where the
8749 ** root page of the new table should go. meta[3] is the largest root-page
8750 ** created so far, so the new root-page is (meta[3]+1).
8751 */
danielk1977602b4662009-07-02 07:47:33 +00008752 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008753 pgnoRoot++;
8754
danielk1977599fcba2004-11-08 07:13:13 +00008755 /* The new root-page may not be allocated on a pointer-map page, or the
8756 ** PENDING_BYTE page.
8757 */
drh72190432008-01-31 14:54:43 +00008758 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008759 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008760 pgnoRoot++;
8761 }
drh499e15b2015-05-22 12:37:37 +00008762 assert( pgnoRoot>=3 || CORRUPT_DB );
8763 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008764
8765 /* Allocate a page. The page that currently resides at pgnoRoot will
8766 ** be moved to the allocated page (unless the allocated page happens
8767 ** to reside at pgnoRoot).
8768 */
dan51f0b6d2013-02-22 20:16:34 +00008769 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008770 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008771 return rc;
8772 }
danielk1977003ba062004-11-04 02:57:33 +00008773
8774 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008775 /* pgnoRoot is the page that will be used for the root-page of
8776 ** the new table (assuming an error did not occur). But we were
8777 ** allocated pgnoMove. If required (i.e. if it was not allocated
8778 ** by extending the file), the current page at position pgnoMove
8779 ** is already journaled.
8780 */
drheeb844a2009-08-08 18:01:07 +00008781 u8 eType = 0;
8782 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008783
danf7679ad2013-04-03 11:38:36 +00008784 /* Save the positions of any open cursors. This is required in
8785 ** case they are holding a reference to an xFetch reference
8786 ** corresponding to page pgnoRoot. */
8787 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008788 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008789 if( rc!=SQLITE_OK ){
8790 return rc;
8791 }
danielk1977f35843b2007-04-07 15:03:17 +00008792
8793 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008794 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008795 if( rc!=SQLITE_OK ){
8796 return rc;
8797 }
8798 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008799 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8800 rc = SQLITE_CORRUPT_BKPT;
8801 }
8802 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008803 releasePage(pRoot);
8804 return rc;
8805 }
drhccae6022005-02-26 17:31:26 +00008806 assert( eType!=PTRMAP_ROOTPAGE );
8807 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008808 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008809 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008810
8811 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008812 if( rc!=SQLITE_OK ){
8813 return rc;
8814 }
drhb00fc3b2013-08-21 23:42:32 +00008815 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008816 if( rc!=SQLITE_OK ){
8817 return rc;
8818 }
danielk19773b8a05f2007-03-19 17:44:26 +00008819 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008820 if( rc!=SQLITE_OK ){
8821 releasePage(pRoot);
8822 return rc;
8823 }
8824 }else{
8825 pRoot = pPageMove;
8826 }
8827
danielk197742741be2005-01-08 12:42:39 +00008828 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008829 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008830 if( rc ){
8831 releasePage(pRoot);
8832 return rc;
8833 }
drhbf592832010-03-30 15:51:12 +00008834
8835 /* When the new root page was allocated, page 1 was made writable in
8836 ** order either to increase the database filesize, or to decrement the
8837 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8838 */
8839 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008840 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008841 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008842 releasePage(pRoot);
8843 return rc;
8844 }
danielk197742741be2005-01-08 12:42:39 +00008845
danielk1977003ba062004-11-04 02:57:33 +00008846 }else{
drh4f0c5872007-03-26 22:05:01 +00008847 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008848 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008849 }
8850#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008851 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008852 if( createTabFlags & BTREE_INTKEY ){
8853 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8854 }else{
8855 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8856 }
8857 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008858 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008859 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008860 *piTable = (int)pgnoRoot;
8861 return SQLITE_OK;
8862}
drhd677b3d2007-08-20 22:48:41 +00008863int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8864 int rc;
8865 sqlite3BtreeEnter(p);
8866 rc = btreeCreateTable(p, piTable, flags);
8867 sqlite3BtreeLeave(p);
8868 return rc;
8869}
drh8b2f49b2001-06-08 00:21:52 +00008870
8871/*
8872** Erase the given database page and all its children. Return
8873** the page to the freelist.
8874*/
drh4b70f112004-05-02 21:12:19 +00008875static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008876 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008877 Pgno pgno, /* Page number to clear */
8878 int freePageFlag, /* Deallocate page if true */
8879 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008880){
danielk1977146ba992009-07-22 14:08:13 +00008881 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008882 int rc;
drh4b70f112004-05-02 21:12:19 +00008883 unsigned char *pCell;
8884 int i;
dan8ce71842014-01-14 20:14:09 +00008885 int hdr;
drh80159da2016-12-09 17:32:51 +00008886 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008887
drh1fee73e2007-08-29 04:00:57 +00008888 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008889 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008890 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008891 }
drh28f58dd2015-06-27 19:45:03 +00008892 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008893 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008894 if( pPage->bBusy ){
8895 rc = SQLITE_CORRUPT_BKPT;
8896 goto cleardatabasepage_out;
8897 }
8898 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008899 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008900 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008901 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008902 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008903 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008904 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008905 }
drh80159da2016-12-09 17:32:51 +00008906 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008907 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008908 }
drha34b6762004-05-07 13:30:42 +00008909 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008910 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008911 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008912 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008913 assert( pPage->intKey || CORRUPT_DB );
8914 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008915 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008916 }
8917 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008918 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008919 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008920 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008921 }
danielk19776b456a22005-03-21 04:04:02 +00008922
8923cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008924 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008925 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008926 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008927}
8928
8929/*
drhab01f612004-05-22 02:55:23 +00008930** Delete all information from a single table in the database. iTable is
8931** the page number of the root of the table. After this routine returns,
8932** the root page is empty, but still exists.
8933**
8934** This routine will fail with SQLITE_LOCKED if there are any open
8935** read cursors on the table. Open write cursors are moved to the
8936** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008937**
8938** If pnChange is not NULL, then table iTable must be an intkey table. The
8939** integer value pointed to by pnChange is incremented by the number of
8940** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008941*/
danielk1977c7af4842008-10-27 13:59:33 +00008942int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008943 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008944 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008945 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008946 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008947
drhc046e3e2009-07-15 11:26:44 +00008948 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008949
drhc046e3e2009-07-15 11:26:44 +00008950 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008951 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8952 ** is the root of a table b-tree - if it is not, the following call is
8953 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008954 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008955 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008956 }
drhd677b3d2007-08-20 22:48:41 +00008957 sqlite3BtreeLeave(p);
8958 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008959}
8960
8961/*
drh079a3072014-03-19 14:10:55 +00008962** Delete all information from the single table that pCur is open on.
8963**
8964** This routine only work for pCur on an ephemeral table.
8965*/
8966int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8967 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8968}
8969
8970/*
drh8b2f49b2001-06-08 00:21:52 +00008971** Erase all information in a table and add the root of the table to
8972** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008973** page 1) is never added to the freelist.
8974**
8975** This routine will fail with SQLITE_LOCKED if there are any open
8976** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008977**
8978** If AUTOVACUUM is enabled and the page at iTable is not the last
8979** root page in the database file, then the last root page
8980** in the database file is moved into the slot formerly occupied by
8981** iTable and that last slot formerly occupied by the last root page
8982** is added to the freelist instead of iTable. In this say, all
8983** root pages are kept at the beginning of the database file, which
8984** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8985** page number that used to be the last root page in the file before
8986** the move. If no page gets moved, *piMoved is set to 0.
8987** The last root page is recorded in meta[3] and the value of
8988** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008989*/
danielk197789d40042008-11-17 14:20:56 +00008990static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008991 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008992 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008993 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008994
drh1fee73e2007-08-29 04:00:57 +00008995 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008996 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008997 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008998
drhb00fc3b2013-08-21 23:42:32 +00008999 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009000 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009001 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009002 if( rc ){
9003 releasePage(pPage);
9004 return rc;
9005 }
danielk1977a0bf2652004-11-04 14:30:04 +00009006
drh205f48e2004-11-05 00:43:11 +00009007 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009008
danielk1977a0bf2652004-11-04 14:30:04 +00009009#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009010 freePage(pPage, &rc);
9011 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009012#else
drh055f2982016-01-15 15:06:41 +00009013 if( pBt->autoVacuum ){
9014 Pgno maxRootPgno;
9015 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009016
drh055f2982016-01-15 15:06:41 +00009017 if( iTable==maxRootPgno ){
9018 /* If the table being dropped is the table with the largest root-page
9019 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009020 */
drhc314dc72009-07-21 11:52:34 +00009021 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009022 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009023 if( rc!=SQLITE_OK ){
9024 return rc;
9025 }
9026 }else{
9027 /* The table being dropped does not have the largest root-page
9028 ** number in the database. So move the page that does into the
9029 ** gap left by the deleted root-page.
9030 */
9031 MemPage *pMove;
9032 releasePage(pPage);
9033 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9034 if( rc!=SQLITE_OK ){
9035 return rc;
9036 }
9037 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9038 releasePage(pMove);
9039 if( rc!=SQLITE_OK ){
9040 return rc;
9041 }
9042 pMove = 0;
9043 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9044 freePage(pMove, &rc);
9045 releasePage(pMove);
9046 if( rc!=SQLITE_OK ){
9047 return rc;
9048 }
9049 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009050 }
drh055f2982016-01-15 15:06:41 +00009051
9052 /* Set the new 'max-root-page' value in the database header. This
9053 ** is the old value less one, less one more if that happens to
9054 ** be a root-page number, less one again if that is the
9055 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009056 */
drh055f2982016-01-15 15:06:41 +00009057 maxRootPgno--;
9058 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9059 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9060 maxRootPgno--;
9061 }
9062 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9063
9064 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9065 }else{
9066 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009067 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009068 }
drh055f2982016-01-15 15:06:41 +00009069#endif
drh8b2f49b2001-06-08 00:21:52 +00009070 return rc;
9071}
drhd677b3d2007-08-20 22:48:41 +00009072int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9073 int rc;
9074 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009075 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009076 sqlite3BtreeLeave(p);
9077 return rc;
9078}
drh8b2f49b2001-06-08 00:21:52 +00009079
drh001bbcb2003-03-19 03:14:00 +00009080
drh8b2f49b2001-06-08 00:21:52 +00009081/*
danielk1977602b4662009-07-02 07:47:33 +00009082** This function may only be called if the b-tree connection already
9083** has a read or write transaction open on the database.
9084**
drh23e11ca2004-05-04 17:27:28 +00009085** Read the meta-information out of a database file. Meta[0]
9086** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009087** through meta[15] are available for use by higher layers. Meta[0]
9088** is read-only, the others are read/write.
9089**
9090** The schema layer numbers meta values differently. At the schema
9091** layer (and the SetCookie and ReadCookie opcodes) the number of
9092** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009093**
9094** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9095** of reading the value out of the header, it instead loads the "DataVersion"
9096** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9097** database file. It is a number computed by the pager. But its access
9098** pattern is the same as header meta values, and so it is convenient to
9099** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009100*/
danielk1977602b4662009-07-02 07:47:33 +00009101void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009102 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009103
drhd677b3d2007-08-20 22:48:41 +00009104 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009105 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009106 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009107 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009108 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009109
drh91618562014-12-19 19:28:02 +00009110 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009111 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009112 }else{
9113 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9114 }
drhae157872004-08-14 19:20:09 +00009115
danielk1977602b4662009-07-02 07:47:33 +00009116 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9117 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009118#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009119 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9120 pBt->btsFlags |= BTS_READ_ONLY;
9121 }
danielk1977003ba062004-11-04 02:57:33 +00009122#endif
drhae157872004-08-14 19:20:09 +00009123
drhd677b3d2007-08-20 22:48:41 +00009124 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009125}
9126
9127/*
drh23e11ca2004-05-04 17:27:28 +00009128** Write meta-information back into the database. Meta[0] is
9129** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009130*/
danielk1977aef0bf62005-12-30 16:28:01 +00009131int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9132 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009133 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009134 int rc;
drh23e11ca2004-05-04 17:27:28 +00009135 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009136 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009137 assert( p->inTrans==TRANS_WRITE );
9138 assert( pBt->pPage1!=0 );
9139 pP1 = pBt->pPage1->aData;
9140 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9141 if( rc==SQLITE_OK ){
9142 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009143#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009144 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009145 assert( pBt->autoVacuum || iMeta==0 );
9146 assert( iMeta==0 || iMeta==1 );
9147 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009148 }
drh64022502009-01-09 14:11:04 +00009149#endif
drh5df72a52002-06-06 23:16:05 +00009150 }
drhd677b3d2007-08-20 22:48:41 +00009151 sqlite3BtreeLeave(p);
9152 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009153}
drh8c42ca92001-06-22 19:15:00 +00009154
danielk1977a5533162009-02-24 10:01:51 +00009155#ifndef SQLITE_OMIT_BTREECOUNT
9156/*
9157** The first argument, pCur, is a cursor opened on some b-tree. Count the
9158** number of entries in the b-tree and write the result to *pnEntry.
9159**
9160** SQLITE_OK is returned if the operation is successfully executed.
9161** Otherwise, if an error is encountered (i.e. an IO error or database
9162** corruption) an SQLite error code is returned.
9163*/
9164int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9165 i64 nEntry = 0; /* Value to return in *pnEntry */
9166 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009167
drh44548e72017-08-14 18:13:52 +00009168 rc = moveToRoot(pCur);
9169 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009170 *pnEntry = 0;
9171 return SQLITE_OK;
9172 }
danielk1977a5533162009-02-24 10:01:51 +00009173
9174 /* Unless an error occurs, the following loop runs one iteration for each
9175 ** page in the B-Tree structure (not including overflow pages).
9176 */
9177 while( rc==SQLITE_OK ){
9178 int iIdx; /* Index of child node in parent */
9179 MemPage *pPage; /* Current page of the b-tree */
9180
9181 /* If this is a leaf page or the tree is not an int-key tree, then
9182 ** this page contains countable entries. Increment the entry counter
9183 ** accordingly.
9184 */
drh352a35a2017-08-15 03:46:47 +00009185 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009186 if( pPage->leaf || !pPage->intKey ){
9187 nEntry += pPage->nCell;
9188 }
9189
9190 /* pPage is a leaf node. This loop navigates the cursor so that it
9191 ** points to the first interior cell that it points to the parent of
9192 ** the next page in the tree that has not yet been visited. The
9193 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9194 ** of the page, or to the number of cells in the page if the next page
9195 ** to visit is the right-child of its parent.
9196 **
9197 ** If all pages in the tree have been visited, return SQLITE_OK to the
9198 ** caller.
9199 */
9200 if( pPage->leaf ){
9201 do {
9202 if( pCur->iPage==0 ){
9203 /* All pages of the b-tree have been visited. Return successfully. */
9204 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009205 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009206 }
danielk197730548662009-07-09 05:07:37 +00009207 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009208 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009209
drh75e96b32017-04-01 00:20:06 +00009210 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009211 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009212 }
9213
9214 /* Descend to the child node of the cell that the cursor currently
9215 ** points at. This is the right-child if (iIdx==pPage->nCell).
9216 */
drh75e96b32017-04-01 00:20:06 +00009217 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009218 if( iIdx==pPage->nCell ){
9219 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9220 }else{
9221 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9222 }
9223 }
9224
shanebe217792009-03-05 04:20:31 +00009225 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009226 return rc;
9227}
9228#endif
drhdd793422001-06-28 01:54:48 +00009229
drhdd793422001-06-28 01:54:48 +00009230/*
drh5eddca62001-06-30 21:53:53 +00009231** Return the pager associated with a BTree. This routine is used for
9232** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009233*/
danielk1977aef0bf62005-12-30 16:28:01 +00009234Pager *sqlite3BtreePager(Btree *p){
9235 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009236}
drh5eddca62001-06-30 21:53:53 +00009237
drhb7f91642004-10-31 02:22:47 +00009238#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009239/*
9240** Append a message to the error message string.
9241*/
drh2e38c322004-09-03 18:38:44 +00009242static void checkAppendMsg(
9243 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009244 const char *zFormat,
9245 ...
9246){
9247 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009248 if( !pCheck->mxErr ) return;
9249 pCheck->mxErr--;
9250 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009251 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009252 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009253 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009254 }
drh867db832014-09-26 02:41:05 +00009255 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009256 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009257 }
drh0cdbe1a2018-05-09 13:46:26 +00009258 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009259 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009260 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009261 pCheck->mallocFailed = 1;
9262 }
drh5eddca62001-06-30 21:53:53 +00009263}
drhb7f91642004-10-31 02:22:47 +00009264#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009265
drhb7f91642004-10-31 02:22:47 +00009266#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009267
9268/*
9269** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9270** corresponds to page iPg is already set.
9271*/
9272static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9273 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9274 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9275}
9276
9277/*
9278** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9279*/
9280static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9281 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9282 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9283}
9284
9285
drh5eddca62001-06-30 21:53:53 +00009286/*
9287** Add 1 to the reference count for page iPage. If this is the second
9288** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009289** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009290** if this is the first reference to the page.
9291**
9292** Also check that the page number is in bounds.
9293*/
drh867db832014-09-26 02:41:05 +00009294static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009295 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009296 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009297 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009298 return 1;
9299 }
dan1235bb12012-04-03 17:43:28 +00009300 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009301 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009302 return 1;
9303 }
dan1235bb12012-04-03 17:43:28 +00009304 setPageReferenced(pCheck, iPage);
9305 return 0;
drh5eddca62001-06-30 21:53:53 +00009306}
9307
danielk1977afcdd022004-10-31 16:25:42 +00009308#ifndef SQLITE_OMIT_AUTOVACUUM
9309/*
9310** Check that the entry in the pointer-map for page iChild maps to
9311** page iParent, pointer type ptrType. If not, append an error message
9312** to pCheck.
9313*/
9314static void checkPtrmap(
9315 IntegrityCk *pCheck, /* Integrity check context */
9316 Pgno iChild, /* Child page number */
9317 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009318 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009319){
9320 int rc;
9321 u8 ePtrmapType;
9322 Pgno iPtrmapParent;
9323
9324 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9325 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009326 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009327 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009328 return;
9329 }
9330
9331 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009332 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009333 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9334 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9335 }
9336}
9337#endif
9338
drh5eddca62001-06-30 21:53:53 +00009339/*
9340** Check the integrity of the freelist or of an overflow page list.
9341** Verify that the number of pages on the list is N.
9342*/
drh30e58752002-03-02 20:41:57 +00009343static void checkList(
9344 IntegrityCk *pCheck, /* Integrity checking context */
9345 int isFreeList, /* True for a freelist. False for overflow page list */
9346 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009347 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009348){
9349 int i;
drh3a4c1412004-05-09 20:40:11 +00009350 int expected = N;
9351 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009352 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009353 DbPage *pOvflPage;
9354 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009355 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009356 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009357 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009358 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009359 break;
9360 }
drh867db832014-09-26 02:41:05 +00009361 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009362 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009363 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009364 break;
9365 }
danielk19773b8a05f2007-03-19 17:44:26 +00009366 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009367 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009368 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009369#ifndef SQLITE_OMIT_AUTOVACUUM
9370 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009371 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009372 }
9373#endif
drh43b18e12010-08-17 19:40:08 +00009374 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009375 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009376 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009377 N--;
9378 }else{
9379 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009380 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009381#ifndef SQLITE_OMIT_AUTOVACUUM
9382 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009383 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009384 }
9385#endif
drh867db832014-09-26 02:41:05 +00009386 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009387 }
9388 N -= n;
drh30e58752002-03-02 20:41:57 +00009389 }
drh30e58752002-03-02 20:41:57 +00009390 }
danielk1977afcdd022004-10-31 16:25:42 +00009391#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009392 else{
9393 /* If this database supports auto-vacuum and iPage is not the last
9394 ** page in this overflow list, check that the pointer-map entry for
9395 ** the following page matches iPage.
9396 */
9397 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009398 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009399 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009400 }
danielk1977afcdd022004-10-31 16:25:42 +00009401 }
9402#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009403 iPage = get4byte(pOvflData);
9404 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009405
9406 if( isFreeList && N<(iPage!=0) ){
9407 checkAppendMsg(pCheck, "free-page count in header is too small");
9408 }
drh5eddca62001-06-30 21:53:53 +00009409 }
9410}
drhb7f91642004-10-31 02:22:47 +00009411#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009412
drh67731a92015-04-16 11:56:03 +00009413/*
9414** An implementation of a min-heap.
9415**
9416** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009417** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009418** and aHeap[N*2+1].
9419**
9420** The heap property is this: Every node is less than or equal to both
9421** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009422** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009423**
9424** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9425** the heap, preserving the heap property. The btreeHeapPull() routine
9426** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009427** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009428** property.
9429**
9430** This heap is used for cell overlap and coverage testing. Each u32
9431** entry represents the span of a cell or freeblock on a btree page.
9432** The upper 16 bits are the index of the first byte of a range and the
9433** lower 16 bits are the index of the last byte of that range.
9434*/
9435static void btreeHeapInsert(u32 *aHeap, u32 x){
9436 u32 j, i = ++aHeap[0];
9437 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009438 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009439 x = aHeap[j];
9440 aHeap[j] = aHeap[i];
9441 aHeap[i] = x;
9442 i = j;
9443 }
9444}
9445static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9446 u32 j, i, x;
9447 if( (x = aHeap[0])==0 ) return 0;
9448 *pOut = aHeap[1];
9449 aHeap[1] = aHeap[x];
9450 aHeap[x] = 0xffffffff;
9451 aHeap[0]--;
9452 i = 1;
9453 while( (j = i*2)<=aHeap[0] ){
9454 if( aHeap[j]>aHeap[j+1] ) j++;
9455 if( aHeap[i]<aHeap[j] ) break;
9456 x = aHeap[i];
9457 aHeap[i] = aHeap[j];
9458 aHeap[j] = x;
9459 i = j;
9460 }
9461 return 1;
9462}
9463
drhb7f91642004-10-31 02:22:47 +00009464#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009465/*
9466** Do various sanity checks on a single page of a tree. Return
9467** the tree depth. Root pages return 0. Parents of root pages
9468** return 1, and so forth.
9469**
9470** These checks are done:
9471**
9472** 1. Make sure that cells and freeblocks do not overlap
9473** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009474** 2. Make sure integer cell keys are in order.
9475** 3. Check the integrity of overflow pages.
9476** 4. Recursively call checkTreePage on all children.
9477** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009478*/
9479static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009480 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009481 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009482 i64 *piMinKey, /* Write minimum integer primary key here */
9483 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009484){
drhcbc6b712015-07-02 16:17:30 +00009485 MemPage *pPage = 0; /* The page being analyzed */
9486 int i; /* Loop counter */
9487 int rc; /* Result code from subroutine call */
9488 int depth = -1, d2; /* Depth of a subtree */
9489 int pgno; /* Page number */
9490 int nFrag; /* Number of fragmented bytes on the page */
9491 int hdr; /* Offset to the page header */
9492 int cellStart; /* Offset to the start of the cell pointer array */
9493 int nCell; /* Number of cells */
9494 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9495 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9496 ** False if IPK must be strictly less than maxKey */
9497 u8 *data; /* Page content */
9498 u8 *pCell; /* Cell content */
9499 u8 *pCellIdx; /* Next element of the cell pointer array */
9500 BtShared *pBt; /* The BtShared object that owns pPage */
9501 u32 pc; /* Address of a cell */
9502 u32 usableSize; /* Usable size of the page */
9503 u32 contentOffset; /* Offset to the start of the cell content area */
9504 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009505 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009506 const char *saved_zPfx = pCheck->zPfx;
9507 int saved_v1 = pCheck->v1;
9508 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009509 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009510
drh5eddca62001-06-30 21:53:53 +00009511 /* Check that the page exists
9512 */
drhd9cb6ac2005-10-20 07:28:17 +00009513 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009514 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009515 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009516 if( checkRef(pCheck, iPage) ) return 0;
9517 pCheck->zPfx = "Page %d: ";
9518 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009519 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009520 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009521 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009522 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009523 }
danielk197793caf5a2009-07-11 06:55:33 +00009524
9525 /* Clear MemPage.isInit to make sure the corruption detection code in
9526 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009527 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009528 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009529 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009530 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009531 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009532 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009533 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009534 }
drhcbc6b712015-07-02 16:17:30 +00009535 data = pPage->aData;
9536 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009537
drhcbc6b712015-07-02 16:17:30 +00009538 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009539 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009540 contentOffset = get2byteNotZero(&data[hdr+5]);
9541 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9542
9543 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9544 ** number of cells on the page. */
9545 nCell = get2byte(&data[hdr+3]);
9546 assert( pPage->nCell==nCell );
9547
9548 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9549 ** immediately follows the b-tree page header. */
9550 cellStart = hdr + 12 - 4*pPage->leaf;
9551 assert( pPage->aCellIdx==&data[cellStart] );
9552 pCellIdx = &data[cellStart + 2*(nCell-1)];
9553
9554 if( !pPage->leaf ){
9555 /* Analyze the right-child page of internal pages */
9556 pgno = get4byte(&data[hdr+8]);
9557#ifndef SQLITE_OMIT_AUTOVACUUM
9558 if( pBt->autoVacuum ){
9559 pCheck->zPfx = "On page %d at right child: ";
9560 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9561 }
9562#endif
9563 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9564 keyCanBeEqual = 0;
9565 }else{
9566 /* For leaf pages, the coverage check will occur in the same loop
9567 ** as the other cell checks, so initialize the heap. */
9568 heap = pCheck->heap;
9569 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009570 }
9571
drhcbc6b712015-07-02 16:17:30 +00009572 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9573 ** integer offsets to the cell contents. */
9574 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009575 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009576
drhcbc6b712015-07-02 16:17:30 +00009577 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009578 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009579 assert( pCellIdx==&data[cellStart + i*2] );
9580 pc = get2byteAligned(pCellIdx);
9581 pCellIdx -= 2;
9582 if( pc<contentOffset || pc>usableSize-4 ){
9583 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9584 pc, contentOffset, usableSize-4);
9585 doCoverageCheck = 0;
9586 continue;
shaneh195475d2010-02-19 04:28:08 +00009587 }
drhcbc6b712015-07-02 16:17:30 +00009588 pCell = &data[pc];
9589 pPage->xParseCell(pPage, pCell, &info);
9590 if( pc+info.nSize>usableSize ){
9591 checkAppendMsg(pCheck, "Extends off end of page");
9592 doCoverageCheck = 0;
9593 continue;
drh5eddca62001-06-30 21:53:53 +00009594 }
9595
drhcbc6b712015-07-02 16:17:30 +00009596 /* Check for integer primary key out of range */
9597 if( pPage->intKey ){
9598 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9599 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9600 }
9601 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009602 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009603 }
9604
9605 /* Check the content overflow list */
9606 if( info.nPayload>info.nLocal ){
9607 int nPage; /* Number of pages on the overflow chain */
9608 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009609 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009610 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009611 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009612#ifndef SQLITE_OMIT_AUTOVACUUM
9613 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009614 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009615 }
9616#endif
drh867db832014-09-26 02:41:05 +00009617 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009618 }
9619
drh5eddca62001-06-30 21:53:53 +00009620 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009621 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009622 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009623#ifndef SQLITE_OMIT_AUTOVACUUM
9624 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009625 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009626 }
9627#endif
drhcbc6b712015-07-02 16:17:30 +00009628 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9629 keyCanBeEqual = 0;
9630 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009631 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009632 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009633 }
drhcbc6b712015-07-02 16:17:30 +00009634 }else{
9635 /* Populate the coverage-checking heap for leaf pages */
9636 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009637 }
9638 }
drhcbc6b712015-07-02 16:17:30 +00009639 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009640
drh5eddca62001-06-30 21:53:53 +00009641 /* Check for complete coverage of the page
9642 */
drh867db832014-09-26 02:41:05 +00009643 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009644 if( doCoverageCheck && pCheck->mxErr>0 ){
9645 /* For leaf pages, the min-heap has already been initialized and the
9646 ** cells have already been inserted. But for internal pages, that has
9647 ** not yet been done, so do it now */
9648 if( !pPage->leaf ){
9649 heap = pCheck->heap;
9650 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009651 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009652 u32 size;
9653 pc = get2byteAligned(&data[cellStart+i*2]);
9654 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009655 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009656 }
drh2e38c322004-09-03 18:38:44 +00009657 }
drhcbc6b712015-07-02 16:17:30 +00009658 /* Add the freeblocks to the min-heap
9659 **
9660 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009661 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009662 ** freeblocks on the page.
9663 */
drh8c2bbb62009-07-10 02:52:20 +00009664 i = get2byte(&data[hdr+1]);
9665 while( i>0 ){
9666 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009667 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009668 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009669 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009670 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009671 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9672 ** big-endian integer which is the offset in the b-tree page of the next
9673 ** freeblock in the chain, or zero if the freeblock is the last on the
9674 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009675 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009676 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9677 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009678 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009679 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009680 i = j;
drh2e38c322004-09-03 18:38:44 +00009681 }
drhcbc6b712015-07-02 16:17:30 +00009682 /* Analyze the min-heap looking for overlap between cells and/or
9683 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009684 **
9685 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9686 ** There is an implied first entry the covers the page header, the cell
9687 ** pointer index, and the gap between the cell pointer index and the start
9688 ** of cell content.
9689 **
9690 ** The loop below pulls entries from the min-heap in order and compares
9691 ** the start_address against the previous end_address. If there is an
9692 ** overlap, that means bytes are used multiple times. If there is a gap,
9693 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009694 */
9695 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009696 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009697 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009698 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009699 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009700 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009701 break;
drh67731a92015-04-16 11:56:03 +00009702 }else{
drhcbc6b712015-07-02 16:17:30 +00009703 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009704 prev = x;
drh2e38c322004-09-03 18:38:44 +00009705 }
9706 }
drhcbc6b712015-07-02 16:17:30 +00009707 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009708 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9709 ** is stored in the fifth field of the b-tree page header.
9710 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9711 ** number of fragmented free bytes within the cell content area.
9712 */
drhcbc6b712015-07-02 16:17:30 +00009713 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009714 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009715 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009716 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009717 }
9718 }
drh867db832014-09-26 02:41:05 +00009719
9720end_of_check:
drh72e191e2015-07-04 11:14:20 +00009721 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009722 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009723 pCheck->zPfx = saved_zPfx;
9724 pCheck->v1 = saved_v1;
9725 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009726 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009727}
drhb7f91642004-10-31 02:22:47 +00009728#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009729
drhb7f91642004-10-31 02:22:47 +00009730#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009731/*
9732** This routine does a complete check of the given BTree file. aRoot[] is
9733** an array of pages numbers were each page number is the root page of
9734** a table. nRoot is the number of entries in aRoot.
9735**
danielk19773509a652009-07-06 18:56:13 +00009736** A read-only or read-write transaction must be opened before calling
9737** this function.
9738**
drhc890fec2008-08-01 20:10:08 +00009739** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009740** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009741** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009742** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009743*/
drh1dcdbc02007-01-27 02:24:54 +00009744char *sqlite3BtreeIntegrityCheck(
9745 Btree *p, /* The btree to be checked */
9746 int *aRoot, /* An array of root pages numbers for individual trees */
9747 int nRoot, /* Number of entries in aRoot[] */
9748 int mxErr, /* Stop reporting errors after this many */
9749 int *pnErr /* Write number of errors seen to this variable */
9750){
danielk197789d40042008-11-17 14:20:56 +00009751 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009752 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009753 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009754 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009755 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009756 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009757
drhd677b3d2007-08-20 22:48:41 +00009758 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009759 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009760 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9761 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009762 sCheck.pBt = pBt;
9763 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009764 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009765 sCheck.mxErr = mxErr;
9766 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009767 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009768 sCheck.zPfx = 0;
9769 sCheck.v1 = 0;
9770 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009771 sCheck.aPgRef = 0;
9772 sCheck.heap = 0;
9773 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009774 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009775 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009776 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009777 }
dan1235bb12012-04-03 17:43:28 +00009778
9779 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9780 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009781 sCheck.mallocFailed = 1;
9782 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009783 }
drhe05b3f82015-07-01 17:53:49 +00009784 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9785 if( sCheck.heap==0 ){
9786 sCheck.mallocFailed = 1;
9787 goto integrity_ck_cleanup;
9788 }
9789
drh42cac6d2004-11-20 20:31:11 +00009790 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009791 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009792
9793 /* Check the integrity of the freelist
9794 */
drh867db832014-09-26 02:41:05 +00009795 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009796 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009797 get4byte(&pBt->pPage1->aData[36]));
9798 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009799
9800 /* Check all the tables.
9801 */
drhcbc6b712015-07-02 16:17:30 +00009802 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9803 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009804 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009805 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009806 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009807#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009808 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009809 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009810 }
9811#endif
drhcbc6b712015-07-02 16:17:30 +00009812 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009813 }
drhcbc6b712015-07-02 16:17:30 +00009814 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009815
9816 /* Make sure every page in the file is referenced
9817 */
drh1dcdbc02007-01-27 02:24:54 +00009818 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009819#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009820 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009821 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009822 }
danielk1977afcdd022004-10-31 16:25:42 +00009823#else
9824 /* If the database supports auto-vacuum, make sure no tables contain
9825 ** references to pointer-map pages.
9826 */
dan1235bb12012-04-03 17:43:28 +00009827 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009828 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009829 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009830 }
dan1235bb12012-04-03 17:43:28 +00009831 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009832 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009833 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009834 }
9835#endif
drh5eddca62001-06-30 21:53:53 +00009836 }
9837
drh5eddca62001-06-30 21:53:53 +00009838 /* Clean up and report errors.
9839 */
drhe05b3f82015-07-01 17:53:49 +00009840integrity_ck_cleanup:
9841 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009842 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009843 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +00009844 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009845 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009846 }
drh1dcdbc02007-01-27 02:24:54 +00009847 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +00009848 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009849 /* Make sure this analysis did not leave any unref() pages. */
9850 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9851 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009852 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009853}
drhb7f91642004-10-31 02:22:47 +00009854#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009855
drh73509ee2003-04-06 20:44:45 +00009856/*
drhd4e0bb02012-05-27 01:19:04 +00009857** Return the full pathname of the underlying database file. Return
9858** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009859**
9860** The pager filename is invariant as long as the pager is
9861** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009862*/
danielk1977aef0bf62005-12-30 16:28:01 +00009863const char *sqlite3BtreeGetFilename(Btree *p){
9864 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009865 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009866}
9867
9868/*
danielk19775865e3d2004-06-14 06:03:57 +00009869** Return the pathname of the journal file for this database. The return
9870** value of this routine is the same regardless of whether the journal file
9871** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009872**
9873** The pager journal filename is invariant as long as the pager is
9874** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009875*/
danielk1977aef0bf62005-12-30 16:28:01 +00009876const char *sqlite3BtreeGetJournalname(Btree *p){
9877 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009878 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009879}
9880
danielk19771d850a72004-05-31 08:26:49 +00009881/*
9882** Return non-zero if a transaction is active.
9883*/
danielk1977aef0bf62005-12-30 16:28:01 +00009884int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009885 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009886 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009887}
9888
dana550f2d2010-08-02 10:47:05 +00009889#ifndef SQLITE_OMIT_WAL
9890/*
9891** Run a checkpoint on the Btree passed as the first argument.
9892**
9893** Return SQLITE_LOCKED if this or any other connection has an open
9894** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009895**
dancdc1f042010-11-18 12:11:05 +00009896** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009897*/
dancdc1f042010-11-18 12:11:05 +00009898int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009899 int rc = SQLITE_OK;
9900 if( p ){
9901 BtShared *pBt = p->pBt;
9902 sqlite3BtreeEnter(p);
9903 if( pBt->inTransaction!=TRANS_NONE ){
9904 rc = SQLITE_LOCKED;
9905 }else{
dan7fb89902016-08-12 16:21:15 +00009906 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009907 }
9908 sqlite3BtreeLeave(p);
9909 }
9910 return rc;
9911}
9912#endif
9913
danielk19771d850a72004-05-31 08:26:49 +00009914/*
danielk19772372c2b2006-06-27 16:34:56 +00009915** Return non-zero if a read (or write) transaction is active.
9916*/
9917int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009918 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009919 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009920 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009921}
9922
danielk197704103022009-02-03 16:51:24 +00009923int sqlite3BtreeIsInBackup(Btree *p){
9924 assert( p );
9925 assert( sqlite3_mutex_held(p->db->mutex) );
9926 return p->nBackup!=0;
9927}
9928
danielk19772372c2b2006-06-27 16:34:56 +00009929/*
danielk1977da184232006-01-05 11:34:32 +00009930** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009931** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009932** purposes (for example, to store a high-level schema associated with
9933** the shared-btree). The btree layer manages reference counting issues.
9934**
9935** The first time this is called on a shared-btree, nBytes bytes of memory
9936** are allocated, zeroed, and returned to the caller. For each subsequent
9937** call the nBytes parameter is ignored and a pointer to the same blob
9938** of memory returned.
9939**
danielk1977171bfed2008-06-23 09:50:50 +00009940** If the nBytes parameter is 0 and the blob of memory has not yet been
9941** allocated, a null pointer is returned. If the blob has already been
9942** allocated, it is returned as normal.
9943**
danielk1977da184232006-01-05 11:34:32 +00009944** Just before the shared-btree is closed, the function passed as the
9945** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009946** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009947** on the memory, the btree layer does that.
9948*/
9949void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9950 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009951 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009952 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009953 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009954 pBt->xFreeSchema = xFree;
9955 }
drh27641702007-08-22 02:56:42 +00009956 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009957 return pBt->pSchema;
9958}
9959
danielk1977c87d34d2006-01-06 13:00:28 +00009960/*
danielk1977404ca072009-03-16 13:19:36 +00009961** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9962** btree as the argument handle holds an exclusive lock on the
9963** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009964*/
9965int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009966 int rc;
drhe5fe6902007-12-07 18:55:28 +00009967 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009968 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009969 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9970 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009971 sqlite3BtreeLeave(p);
9972 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009973}
9974
drha154dcd2006-03-22 22:10:07 +00009975
9976#ifndef SQLITE_OMIT_SHARED_CACHE
9977/*
9978** Obtain a lock on the table whose root page is iTab. The
9979** lock is a write lock if isWritelock is true or a read lock
9980** if it is false.
9981*/
danielk1977c00da102006-01-07 13:21:04 +00009982int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009983 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009984 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009985 if( p->sharable ){
9986 u8 lockType = READ_LOCK + isWriteLock;
9987 assert( READ_LOCK+1==WRITE_LOCK );
9988 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009989
drh6a9ad3d2008-04-02 16:29:30 +00009990 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009991 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009992 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009993 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009994 }
9995 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009996 }
9997 return rc;
9998}
drha154dcd2006-03-22 22:10:07 +00009999#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010000
danielk1977b4e9af92007-05-01 17:49:49 +000010001#ifndef SQLITE_OMIT_INCRBLOB
10002/*
10003** Argument pCsr must be a cursor opened for writing on an
10004** INTKEY table currently pointing at a valid table entry.
10005** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010006**
10007** Only the data content may only be modified, it is not possible to
10008** change the length of the data stored. If this function is called with
10009** parameters that attempt to write past the end of the existing data,
10010** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010011*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010012int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010013 int rc;
dan7a2347e2016-01-07 16:43:54 +000010014 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010015 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010016 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010017
danielk1977c9000e62009-07-08 13:55:28 +000010018 rc = restoreCursorPosition(pCsr);
10019 if( rc!=SQLITE_OK ){
10020 return rc;
10021 }
danielk19773588ceb2008-06-10 17:30:26 +000010022 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10023 if( pCsr->eState!=CURSOR_VALID ){
10024 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010025 }
10026
dan227a1c42013-04-03 11:17:39 +000010027 /* Save the positions of all other cursors open on this table. This is
10028 ** required in case any of them are holding references to an xFetch
10029 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010030 **
drh3f387402014-09-24 01:23:00 +000010031 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010032 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10033 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010034 */
drh370c9f42013-04-03 20:04:04 +000010035 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10036 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010037
danielk1977c9000e62009-07-08 13:55:28 +000010038 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010039 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010040 ** (b) there is a read/write transaction open,
10041 ** (c) the connection holds a write-lock on the table (if required),
10042 ** (d) there are no conflicting read-locks, and
10043 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010044 */
drh036dbec2014-03-11 23:40:44 +000010045 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010046 return SQLITE_READONLY;
10047 }
drhc9166342012-01-05 23:32:06 +000010048 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10049 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010050 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10051 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010052 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010053
drhfb192682009-07-11 18:26:28 +000010054 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010055}
danielk19772dec9702007-05-02 16:48:37 +000010056
10057/*
dan5a500af2014-03-11 20:33:04 +000010058** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010059*/
dan5a500af2014-03-11 20:33:04 +000010060void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010061 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010062 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010063}
danielk1977b4e9af92007-05-01 17:49:49 +000010064#endif
dane04dc882010-04-20 18:53:15 +000010065
10066/*
10067** Set both the "read version" (single byte at byte offset 18) and
10068** "write version" (single byte at byte offset 19) fields in the database
10069** header to iVersion.
10070*/
10071int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10072 BtShared *pBt = pBtree->pBt;
10073 int rc; /* Return code */
10074
dane04dc882010-04-20 18:53:15 +000010075 assert( iVersion==1 || iVersion==2 );
10076
danb9780022010-04-21 18:37:57 +000010077 /* If setting the version fields to 1, do not automatically open the
10078 ** WAL connection, even if the version fields are currently set to 2.
10079 */
drhc9166342012-01-05 23:32:06 +000010080 pBt->btsFlags &= ~BTS_NO_WAL;
10081 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010082
10083 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +000010084 if( rc==SQLITE_OK ){
10085 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010086 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +000010087 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +000010088 if( rc==SQLITE_OK ){
10089 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10090 if( rc==SQLITE_OK ){
10091 aData[18] = (u8)iVersion;
10092 aData[19] = (u8)iVersion;
10093 }
10094 }
10095 }
dane04dc882010-04-20 18:53:15 +000010096 }
10097
drhc9166342012-01-05 23:32:06 +000010098 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010099 return rc;
10100}
dan428c2182012-08-06 18:50:11 +000010101
drhe0997b32015-03-20 14:57:50 +000010102/*
10103** Return true if the cursor has a hint specified. This routine is
10104** only used from within assert() statements
10105*/
10106int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10107 return (pCsr->hints & mask)!=0;
10108}
drhe0997b32015-03-20 14:57:50 +000010109
drh781597f2014-05-21 08:21:07 +000010110/*
10111** Return true if the given Btree is read-only.
10112*/
10113int sqlite3BtreeIsReadonly(Btree *p){
10114 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10115}
drhdef68892014-11-04 12:11:23 +000010116
10117/*
10118** Return the size of the header added to each page by this module.
10119*/
drh37c057b2014-12-30 00:57:29 +000010120int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010121
drh5a1fb182016-01-08 19:34:39 +000010122#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010123/*
10124** Return true if the Btree passed as the only argument is sharable.
10125*/
10126int sqlite3BtreeSharable(Btree *p){
10127 return p->sharable;
10128}
dan272989b2016-07-06 10:12:02 +000010129
10130/*
10131** Return the number of connections to the BtShared object accessed by
10132** the Btree handle passed as the only argument. For private caches
10133** this is always 1. For shared caches it may be 1 or greater.
10134*/
10135int sqlite3BtreeConnectionCount(Btree *p){
10136 testcase( p->sharable );
10137 return p->pBt->nRef;
10138}
drh5a1fb182016-01-08 19:34:39 +000010139#endif