blob: 3a4e30f299d866d23d35a76462c89729b4e9228d [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
adam2e4491d2011-06-24 20:47:06 +000090#if defined(__APPLE__) && !defined(SQLITE_TEST) && !defined(TH3_COMPATIBILITY)
91 /* Enable global shared cache function for debugging and unit tests,
92 ** but not for release */
93 return SQLITE_MISUSE;
94#else
danielk1977502b4e02008-09-02 14:07:24 +000095 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000096 return SQLITE_OK;
adam2e4491d2011-06-24 20:47:06 +000097#endif
drhe53831d2007-08-17 01:14:38 +000098}
99#endif
100
drhd677b3d2007-08-20 22:48:41 +0000101
danielk1977aef0bf62005-12-30 16:28:01 +0000102
103#ifdef SQLITE_OMIT_SHARED_CACHE
104 /*
drhc25eabe2009-02-24 18:57:31 +0000105 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
106 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000107 ** manipulate entries in the BtShared.pLock linked list used to store
108 ** shared-cache table level locks. If the library is compiled with the
109 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000110 ** of each BtShared structure and so this locking is not necessary.
111 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000112 */
drhc25eabe2009-02-24 18:57:31 +0000113 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
114 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
115 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000116 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000117 #define hasSharedCacheTableLock(a,b,c,d) 1
118 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000119#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000120
daneebf2f52017-11-18 17:30:08 +0000121/*
122** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
123** (MemPage*) as an argument. The (MemPage*) must not be NULL.
124**
125** If SQLITE_DEBUG is not defined, then this macro is equivalent to
126** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
127** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
128** with the page number and filename associated with the (MemPage*).
129*/
130#ifdef SQLITE_DEBUG
131int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000132 char *zMsg;
133 sqlite3BeginBenignMalloc();
134 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000135 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
136 );
drh8bfe66a2018-01-22 15:45:12 +0000137 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000138 if( zMsg ){
139 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
140 }
141 sqlite3_free(zMsg);
142 return SQLITE_CORRUPT_BKPT;
143}
144# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
145#else
146# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
147#endif
148
drhe53831d2007-08-17 01:14:38 +0000149#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000150
151#ifdef SQLITE_DEBUG
152/*
drh0ee3dbe2009-10-16 15:05:18 +0000153**** This function is only used as part of an assert() statement. ***
154**
155** Check to see if pBtree holds the required locks to read or write to the
156** table with root page iRoot. Return 1 if it does and 0 if not.
157**
158** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000159** Btree connection pBtree:
160**
161** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
162**
drh0ee3dbe2009-10-16 15:05:18 +0000163** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000164** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000165** the corresponding table. This makes things a bit more complicated,
166** as this module treats each table as a separate structure. To determine
167** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000168** function has to search through the database schema.
169**
drh0ee3dbe2009-10-16 15:05:18 +0000170** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000171** hold a write-lock on the schema table (root page 1). This is also
172** acceptable.
173*/
174static int hasSharedCacheTableLock(
175 Btree *pBtree, /* Handle that must hold lock */
176 Pgno iRoot, /* Root page of b-tree */
177 int isIndex, /* True if iRoot is the root of an index b-tree */
178 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
179){
180 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
181 Pgno iTab = 0;
182 BtLock *pLock;
183
drh0ee3dbe2009-10-16 15:05:18 +0000184 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000185 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000186 ** Return true immediately.
187 */
danielk197796d48e92009-06-29 06:00:37 +0000188 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000189 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000190 ){
191 return 1;
192 }
193
drh0ee3dbe2009-10-16 15:05:18 +0000194 /* If the client is reading or writing an index and the schema is
195 ** not loaded, then it is too difficult to actually check to see if
196 ** the correct locks are held. So do not bother - just return true.
197 ** This case does not come up very often anyhow.
198 */
drh2c5e35f2014-08-05 11:04:21 +0000199 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000200 return 1;
201 }
202
danielk197796d48e92009-06-29 06:00:37 +0000203 /* Figure out the root-page that the lock should be held on. For table
204 ** b-trees, this is just the root page of the b-tree being read or
205 ** written. For index b-trees, it is the root page of the associated
206 ** table. */
207 if( isIndex ){
208 HashElem *p;
209 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
210 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000211 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000212 if( iTab ){
213 /* Two or more indexes share the same root page. There must
214 ** be imposter tables. So just return true. The assert is not
215 ** useful in that case. */
216 return 1;
217 }
shane5eff7cf2009-08-10 03:57:58 +0000218 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000219 }
220 }
221 }else{
222 iTab = iRoot;
223 }
224
225 /* Search for the required lock. Either a write-lock on root-page iTab, a
226 ** write-lock on the schema table, or (if the client is reading) a
227 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
228 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
229 if( pLock->pBtree==pBtree
230 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
231 && pLock->eLock>=eLockType
232 ){
233 return 1;
234 }
235 }
236
237 /* Failed to find the required lock. */
238 return 0;
239}
drh0ee3dbe2009-10-16 15:05:18 +0000240#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000241
drh0ee3dbe2009-10-16 15:05:18 +0000242#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000243/*
drh0ee3dbe2009-10-16 15:05:18 +0000244**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000245**
drh0ee3dbe2009-10-16 15:05:18 +0000246** Return true if it would be illegal for pBtree to write into the
247** table or index rooted at iRoot because other shared connections are
248** simultaneously reading that same table or index.
249**
250** It is illegal for pBtree to write if some other Btree object that
251** shares the same BtShared object is currently reading or writing
252** the iRoot table. Except, if the other Btree object has the
253** read-uncommitted flag set, then it is OK for the other object to
254** have a read cursor.
255**
256** For example, before writing to any part of the table or index
257** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000258**
259** assert( !hasReadConflicts(pBtree, iRoot) );
260*/
261static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
262 BtCursor *p;
263 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
264 if( p->pgnoRoot==iRoot
265 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000266 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000267 ){
268 return 1;
269 }
270 }
271 return 0;
272}
273#endif /* #ifdef SQLITE_DEBUG */
274
danielk1977da184232006-01-05 11:34:32 +0000275/*
drh0ee3dbe2009-10-16 15:05:18 +0000276** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000277** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000278** SQLITE_OK if the lock may be obtained (by calling
279** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000280*/
drhc25eabe2009-02-24 18:57:31 +0000281static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000282 BtShared *pBt = p->pBt;
283 BtLock *pIter;
284
drh1fee73e2007-08-29 04:00:57 +0000285 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000286 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
287 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000288 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000289
danielk19775b413d72009-04-01 09:41:54 +0000290 /* If requesting a write-lock, then the Btree must have an open write
291 ** transaction on this file. And, obviously, for this to be so there
292 ** must be an open write transaction on the file itself.
293 */
294 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
295 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
296
drh0ee3dbe2009-10-16 15:05:18 +0000297 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000298 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000299 return SQLITE_OK;
300 }
301
danielk1977641b0f42007-12-21 04:47:25 +0000302 /* If some other connection is holding an exclusive lock, the
303 ** requested lock may not be obtained.
304 */
drhc9166342012-01-05 23:32:06 +0000305 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000306 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
307 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000308 }
309
danielk1977e0d9e6f2009-07-03 16:25:06 +0000310 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
311 /* The condition (pIter->eLock!=eLock) in the following if(...)
312 ** statement is a simplification of:
313 **
314 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
315 **
316 ** since we know that if eLock==WRITE_LOCK, then no other connection
317 ** may hold a WRITE_LOCK on any table in this file (since there can
318 ** only be a single writer).
319 */
320 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
321 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
322 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
323 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
324 if( eLock==WRITE_LOCK ){
325 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000326 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000327 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000329 }
330 }
331 return SQLITE_OK;
332}
drhe53831d2007-08-17 01:14:38 +0000333#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000334
drhe53831d2007-08-17 01:14:38 +0000335#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000336/*
337** Add a lock on the table with root-page iTable to the shared-btree used
338** by Btree handle p. Parameter eLock must be either READ_LOCK or
339** WRITE_LOCK.
340**
danielk19779d104862009-07-09 08:27:14 +0000341** This function assumes the following:
342**
drh0ee3dbe2009-10-16 15:05:18 +0000343** (a) The specified Btree object p is connected to a sharable
344** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000345**
drh0ee3dbe2009-10-16 15:05:18 +0000346** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000347** with the requested lock (i.e. querySharedCacheTableLock() has
348** already been called and returned SQLITE_OK).
349**
350** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
351** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000352*/
drhc25eabe2009-02-24 18:57:31 +0000353static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000354 BtShared *pBt = p->pBt;
355 BtLock *pLock = 0;
356 BtLock *pIter;
357
drh1fee73e2007-08-29 04:00:57 +0000358 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000359 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
360 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000361
danielk1977e0d9e6f2009-07-03 16:25:06 +0000362 /* A connection with the read-uncommitted flag set will never try to
363 ** obtain a read-lock using this function. The only read-lock obtained
364 ** by a connection in read-uncommitted mode is on the sqlite_master
365 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000366 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000367
danielk19779d104862009-07-09 08:27:14 +0000368 /* This function should only be called on a sharable b-tree after it
369 ** has been determined that no other b-tree holds a conflicting lock. */
370 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000371 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000372
373 /* First search the list for an existing lock on this table. */
374 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
375 if( pIter->iTable==iTable && pIter->pBtree==p ){
376 pLock = pIter;
377 break;
378 }
379 }
380
381 /* If the above search did not find a BtLock struct associating Btree p
382 ** with table iTable, allocate one and link it into the list.
383 */
384 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000385 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000386 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000387 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000388 }
389 pLock->iTable = iTable;
390 pLock->pBtree = p;
391 pLock->pNext = pBt->pLock;
392 pBt->pLock = pLock;
393 }
394
395 /* Set the BtLock.eLock variable to the maximum of the current lock
396 ** and the requested lock. This means if a write-lock was already held
397 ** and a read-lock requested, we don't incorrectly downgrade the lock.
398 */
399 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000400 if( eLock>pLock->eLock ){
401 pLock->eLock = eLock;
402 }
danielk1977aef0bf62005-12-30 16:28:01 +0000403
404 return SQLITE_OK;
405}
drhe53831d2007-08-17 01:14:38 +0000406#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000407
drhe53831d2007-08-17 01:14:38 +0000408#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000409/*
drhc25eabe2009-02-24 18:57:31 +0000410** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000411** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000412**
drh0ee3dbe2009-10-16 15:05:18 +0000413** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000414** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000415** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000416*/
drhc25eabe2009-02-24 18:57:31 +0000417static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000418 BtShared *pBt = p->pBt;
419 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000420
drh1fee73e2007-08-29 04:00:57 +0000421 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000422 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000423 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000424
danielk1977aef0bf62005-12-30 16:28:01 +0000425 while( *ppIter ){
426 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000427 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000428 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000429 if( pLock->pBtree==p ){
430 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000431 assert( pLock->iTable!=1 || pLock==&p->lock );
432 if( pLock->iTable!=1 ){
433 sqlite3_free(pLock);
434 }
danielk1977aef0bf62005-12-30 16:28:01 +0000435 }else{
436 ppIter = &pLock->pNext;
437 }
438 }
danielk1977641b0f42007-12-21 04:47:25 +0000439
drhc9166342012-01-05 23:32:06 +0000440 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000441 if( pBt->pWriter==p ){
442 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000443 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000444 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000445 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000446 ** transaction. If there currently exists a writer, and p is not
447 ** that writer, then the number of locks held by connections other
448 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000449 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000450 **
drhc9166342012-01-05 23:32:06 +0000451 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000452 ** be zero already. So this next line is harmless in that case.
453 */
drhc9166342012-01-05 23:32:06 +0000454 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000455 }
danielk1977aef0bf62005-12-30 16:28:01 +0000456}
danielk197794b30732009-07-02 17:21:57 +0000457
danielk1977e0d9e6f2009-07-03 16:25:06 +0000458/*
drh0ee3dbe2009-10-16 15:05:18 +0000459** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000460*/
danielk197794b30732009-07-02 17:21:57 +0000461static void downgradeAllSharedCacheTableLocks(Btree *p){
462 BtShared *pBt = p->pBt;
463 if( pBt->pWriter==p ){
464 BtLock *pLock;
465 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000466 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000467 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
468 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
469 pLock->eLock = READ_LOCK;
470 }
471 }
472}
473
danielk1977aef0bf62005-12-30 16:28:01 +0000474#endif /* SQLITE_OMIT_SHARED_CACHE */
475
drh3908fe92017-09-01 14:50:19 +0000476static void releasePage(MemPage *pPage); /* Forward reference */
477static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000478static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000479
drh1fee73e2007-08-29 04:00:57 +0000480/*
drh0ee3dbe2009-10-16 15:05:18 +0000481***** This routine is used inside of assert() only ****
482**
483** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000484*/
drh0ee3dbe2009-10-16 15:05:18 +0000485#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000486static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000487 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000488}
drh5e08d0f2016-06-04 21:05:54 +0000489
490/* Verify that the cursor and the BtShared agree about what is the current
491** database connetion. This is important in shared-cache mode. If the database
492** connection pointers get out-of-sync, it is possible for routines like
493** btreeInitPage() to reference an stale connection pointer that references a
494** a connection that has already closed. This routine is used inside assert()
495** statements only and for the purpose of double-checking that the btree code
496** does keep the database connection pointers up-to-date.
497*/
dan7a2347e2016-01-07 16:43:54 +0000498static int cursorOwnsBtShared(BtCursor *p){
499 assert( cursorHoldsMutex(p) );
500 return (p->pBtree->db==p->pBt->db);
501}
drh1fee73e2007-08-29 04:00:57 +0000502#endif
503
danielk197792d4d7a2007-05-04 12:05:56 +0000504/*
dan5a500af2014-03-11 20:33:04 +0000505** Invalidate the overflow cache of the cursor passed as the first argument.
506** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000507*/
drh036dbec2014-03-11 23:40:44 +0000508#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000509
510/*
511** Invalidate the overflow page-list cache for all cursors opened
512** on the shared btree structure pBt.
513*/
514static void invalidateAllOverflowCache(BtShared *pBt){
515 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000516 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000517 for(p=pBt->pCursor; p; p=p->pNext){
518 invalidateOverflowCache(p);
519 }
520}
danielk197796d48e92009-06-29 06:00:37 +0000521
dan5a500af2014-03-11 20:33:04 +0000522#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000523/*
524** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000525** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000526** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000527**
528** If argument isClearTable is true, then the entire contents of the
529** table is about to be deleted. In this case invalidate all incrblob
530** cursors open on any row within the table with root-page pgnoRoot.
531**
532** Otherwise, if argument isClearTable is false, then the row with
533** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000534** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000535*/
536static void invalidateIncrblobCursors(
537 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000538 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000539 i64 iRow, /* The rowid that might be changing */
540 int isClearTable /* True if all rows are being deleted */
541){
542 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000543 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000544 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000545 pBtree->hasIncrblobCur = 0;
546 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
547 if( (p->curFlags & BTCF_Incrblob)!=0 ){
548 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000549 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000550 p->eState = CURSOR_INVALID;
551 }
danielk197796d48e92009-06-29 06:00:37 +0000552 }
553 }
554}
555
danielk197792d4d7a2007-05-04 12:05:56 +0000556#else
dan5a500af2014-03-11 20:33:04 +0000557 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000558 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000559#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000560
drh980b1a72006-08-16 16:42:48 +0000561/*
danielk1977bea2a942009-01-20 17:06:27 +0000562** Set bit pgno of the BtShared.pHasContent bitvec. This is called
563** when a page that previously contained data becomes a free-list leaf
564** page.
565**
566** The BtShared.pHasContent bitvec exists to work around an obscure
567** bug caused by the interaction of two useful IO optimizations surrounding
568** free-list leaf pages:
569**
570** 1) When all data is deleted from a page and the page becomes
571** a free-list leaf page, the page is not written to the database
572** (as free-list leaf pages contain no meaningful data). Sometimes
573** such a page is not even journalled (as it will not be modified,
574** why bother journalling it?).
575**
576** 2) When a free-list leaf page is reused, its content is not read
577** from the database or written to the journal file (why should it
578** be, if it is not at all meaningful?).
579**
580** By themselves, these optimizations work fine and provide a handy
581** performance boost to bulk delete or insert operations. However, if
582** a page is moved to the free-list and then reused within the same
583** transaction, a problem comes up. If the page is not journalled when
584** it is moved to the free-list and it is also not journalled when it
585** is extracted from the free-list and reused, then the original data
586** may be lost. In the event of a rollback, it may not be possible
587** to restore the database to its original configuration.
588**
589** The solution is the BtShared.pHasContent bitvec. Whenever a page is
590** moved to become a free-list leaf page, the corresponding bit is
591** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000592** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000593** set in BtShared.pHasContent. The contents of the bitvec are cleared
594** at the end of every transaction.
595*/
596static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
597 int rc = SQLITE_OK;
598 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000599 assert( pgno<=pBt->nPage );
600 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000601 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000602 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000603 }
604 }
605 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
606 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
607 }
608 return rc;
609}
610
611/*
612** Query the BtShared.pHasContent vector.
613**
614** This function is called when a free-list leaf page is removed from the
615** free-list for reuse. It returns false if it is safe to retrieve the
616** page from the pager layer with the 'no-content' flag set. True otherwise.
617*/
618static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
619 Bitvec *p = pBt->pHasContent;
620 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
621}
622
623/*
624** Clear (destroy) the BtShared.pHasContent bitvec. This should be
625** invoked at the conclusion of each write-transaction.
626*/
627static void btreeClearHasContent(BtShared *pBt){
628 sqlite3BitvecDestroy(pBt->pHasContent);
629 pBt->pHasContent = 0;
630}
631
632/*
drh138eeeb2013-03-27 03:15:23 +0000633** Release all of the apPage[] pages for a cursor.
634*/
635static void btreeReleaseAllCursorPages(BtCursor *pCur){
636 int i;
drh352a35a2017-08-15 03:46:47 +0000637 if( pCur->iPage>=0 ){
638 for(i=0; i<pCur->iPage; i++){
639 releasePageNotNull(pCur->apPage[i]);
640 }
641 releasePageNotNull(pCur->pPage);
642 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000643 }
drh138eeeb2013-03-27 03:15:23 +0000644}
645
danf0ee1d32015-09-12 19:26:11 +0000646/*
647** The cursor passed as the only argument must point to a valid entry
648** when this function is called (i.e. have eState==CURSOR_VALID). This
649** function saves the current cursor key in variables pCur->nKey and
650** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
651** code otherwise.
652**
653** If the cursor is open on an intkey table, then the integer key
654** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
655** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
656** set to point to a malloced buffer pCur->nKey bytes in size containing
657** the key.
658*/
659static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000660 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000661 assert( CURSOR_VALID==pCur->eState );
662 assert( 0==pCur->pKey );
663 assert( cursorHoldsMutex(pCur) );
664
drha7c90c42016-06-04 20:37:10 +0000665 if( pCur->curIntKey ){
666 /* Only the rowid is required for a table btree */
667 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
668 }else{
669 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000670 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000671 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000672 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000673 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000674 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000675 if( rc==SQLITE_OK ){
676 pCur->pKey = pKey;
677 }else{
678 sqlite3_free(pKey);
679 }
680 }else{
mistachkinfad30392016-02-13 23:43:46 +0000681 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000682 }
683 }
684 assert( !pCur->curIntKey || !pCur->pKey );
685 return rc;
686}
drh138eeeb2013-03-27 03:15:23 +0000687
688/*
drh980b1a72006-08-16 16:42:48 +0000689** Save the current cursor position in the variables BtCursor.nKey
690** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000691**
692** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
693** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000694*/
695static int saveCursorPosition(BtCursor *pCur){
696 int rc;
697
drhd2f83132015-03-25 17:35:01 +0000698 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000699 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000700 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000701
drhd2f83132015-03-25 17:35:01 +0000702 if( pCur->eState==CURSOR_SKIPNEXT ){
703 pCur->eState = CURSOR_VALID;
704 }else{
705 pCur->skipNext = 0;
706 }
drh980b1a72006-08-16 16:42:48 +0000707
danf0ee1d32015-09-12 19:26:11 +0000708 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000709 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000710 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000711 pCur->eState = CURSOR_REQUIRESEEK;
712 }
713
dane755e102015-09-30 12:59:12 +0000714 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000715 return rc;
716}
717
drh637f3d82014-08-22 22:26:07 +0000718/* Forward reference */
719static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
720
drh980b1a72006-08-16 16:42:48 +0000721/*
drh0ee3dbe2009-10-16 15:05:18 +0000722** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000723** the table with root-page iRoot. "Saving the cursor position" means that
724** the location in the btree is remembered in such a way that it can be
725** moved back to the same spot after the btree has been modified. This
726** routine is called just before cursor pExcept is used to modify the
727** table, for example in BtreeDelete() or BtreeInsert().
728**
drh27fb7462015-06-30 02:47:36 +0000729** If there are two or more cursors on the same btree, then all such
730** cursors should have their BTCF_Multiple flag set. The btreeCursor()
731** routine enforces that rule. This routine only needs to be called in
732** the uncommon case when pExpect has the BTCF_Multiple flag set.
733**
734** If pExpect!=NULL and if no other cursors are found on the same root-page,
735** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
736** pointless call to this routine.
737**
drh637f3d82014-08-22 22:26:07 +0000738** Implementation note: This routine merely checks to see if any cursors
739** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
740** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000741*/
742static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
743 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000744 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000745 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000746 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000747 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
748 }
drh27fb7462015-06-30 02:47:36 +0000749 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
750 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
751 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000752}
753
754/* This helper routine to saveAllCursors does the actual work of saving
755** the cursors if and when a cursor is found that actually requires saving.
756** The common case is that no cursors need to be saved, so this routine is
757** broken out from its caller to avoid unnecessary stack pointer movement.
758*/
759static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000760 BtCursor *p, /* The first cursor that needs saving */
761 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
762 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000763){
764 do{
drh138eeeb2013-03-27 03:15:23 +0000765 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000766 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000767 int rc = saveCursorPosition(p);
768 if( SQLITE_OK!=rc ){
769 return rc;
770 }
771 }else{
drh85ef6302017-08-02 15:50:09 +0000772 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000773 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000774 }
775 }
drh637f3d82014-08-22 22:26:07 +0000776 p = p->pNext;
777 }while( p );
drh980b1a72006-08-16 16:42:48 +0000778 return SQLITE_OK;
779}
780
781/*
drhbf700f32007-03-31 02:36:44 +0000782** Clear the current cursor position.
783*/
danielk1977be51a652008-10-08 17:58:48 +0000784void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000785 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000786 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000787 pCur->pKey = 0;
788 pCur->eState = CURSOR_INVALID;
789}
790
791/*
danielk19773509a652009-07-06 18:56:13 +0000792** In this version of BtreeMoveto, pKey is a packed index record
793** such as is generated by the OP_MakeRecord opcode. Unpack the
794** record and then call BtreeMovetoUnpacked() to do the work.
795*/
796static int btreeMoveto(
797 BtCursor *pCur, /* Cursor open on the btree to be searched */
798 const void *pKey, /* Packed key if the btree is an index */
799 i64 nKey, /* Integer key for tables. Size of pKey for indices */
800 int bias, /* Bias search to the high end */
801 int *pRes /* Write search results here */
802){
803 int rc; /* Status code */
804 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000805
806 if( pKey ){
807 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000808 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000809 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000810 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000811 if( pIdxKey->nField==0 ){
mistachkin88a79732017-09-04 19:31:54 +0000812 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000813 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000814 }
danielk19773509a652009-07-06 18:56:13 +0000815 }else{
816 pIdxKey = 0;
817 }
818 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000819moveto_done:
820 if( pIdxKey ){
821 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000822 }
823 return rc;
824}
825
826/*
drh980b1a72006-08-16 16:42:48 +0000827** Restore the cursor to the position it was in (or as close to as possible)
828** when saveCursorPosition() was called. Note that this call deletes the
829** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000830** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000831** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000832*/
danielk197730548662009-07-09 05:07:37 +0000833static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000834 int rc;
drhd2f83132015-03-25 17:35:01 +0000835 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000836 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000837 assert( pCur->eState>=CURSOR_REQUIRESEEK );
838 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000839 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000840 }
drh980b1a72006-08-16 16:42:48 +0000841 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000842 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000843 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000844 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000845 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000846 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000847 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000848 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
849 pCur->eState = CURSOR_SKIPNEXT;
850 }
drh980b1a72006-08-16 16:42:48 +0000851 }
852 return rc;
853}
854
drha3460582008-07-11 21:02:53 +0000855#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000856 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000857 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000858 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000859
drha3460582008-07-11 21:02:53 +0000860/*
drh6848dad2014-08-22 23:33:03 +0000861** Determine whether or not a cursor has moved from the position where
862** it was last placed, or has been invalidated for any other reason.
863** Cursors can move when the row they are pointing at is deleted out
864** from under them, for example. Cursor might also move if a btree
865** is rebalanced.
drha3460582008-07-11 21:02:53 +0000866**
drh6848dad2014-08-22 23:33:03 +0000867** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000868**
drh6848dad2014-08-22 23:33:03 +0000869** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
870** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000871*/
drh6848dad2014-08-22 23:33:03 +0000872int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000873 assert( EIGHT_BYTE_ALIGNMENT(pCur)
874 || pCur==sqlite3BtreeFakeValidCursor() );
875 assert( offsetof(BtCursor, eState)==0 );
876 assert( sizeof(pCur->eState)==1 );
877 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000878}
879
880/*
drhfe0cf7a2017-08-16 19:20:20 +0000881** Return a pointer to a fake BtCursor object that will always answer
882** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
883** cursor returned must not be used with any other Btree interface.
884*/
885BtCursor *sqlite3BtreeFakeValidCursor(void){
886 static u8 fakeCursor = CURSOR_VALID;
887 assert( offsetof(BtCursor, eState)==0 );
888 return (BtCursor*)&fakeCursor;
889}
890
891/*
drh6848dad2014-08-22 23:33:03 +0000892** This routine restores a cursor back to its original position after it
893** has been moved by some outside activity (such as a btree rebalance or
894** a row having been deleted out from under the cursor).
895**
896** On success, the *pDifferentRow parameter is false if the cursor is left
897** pointing at exactly the same row. *pDifferntRow is the row the cursor
898** was pointing to has been deleted, forcing the cursor to point to some
899** nearby row.
900**
901** This routine should only be called for a cursor that just returned
902** TRUE from sqlite3BtreeCursorHasMoved().
903*/
904int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000905 int rc;
906
drh6848dad2014-08-22 23:33:03 +0000907 assert( pCur!=0 );
908 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000909 rc = restoreCursorPosition(pCur);
910 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000911 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000912 return rc;
913 }
drh606a3572015-03-25 18:29:10 +0000914 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000915 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000916 }else{
drh606a3572015-03-25 18:29:10 +0000917 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000918 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000919 }
920 return SQLITE_OK;
921}
922
drhf7854c72015-10-27 13:24:37 +0000923#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000924/*
drh0df57012015-08-14 15:05:55 +0000925** Provide hints to the cursor. The particular hint given (and the type
926** and number of the varargs parameters) is determined by the eHintType
927** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000928*/
drh0df57012015-08-14 15:05:55 +0000929void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000930 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000931}
drhf7854c72015-10-27 13:24:37 +0000932#endif
933
934/*
935** Provide flag hints to the cursor.
936*/
937void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
938 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
939 pCur->hints = x;
940}
941
drh28935362013-12-07 20:39:19 +0000942
danielk1977599fcba2004-11-08 07:13:13 +0000943#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000944/*
drha3152892007-05-05 11:48:52 +0000945** Given a page number of a regular database page, return the page
946** number for the pointer-map page that contains the entry for the
947** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000948**
949** Return 0 (not a valid page) for pgno==1 since there is
950** no pointer map associated with page 1. The integrity_check logic
951** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000952*/
danielk1977266664d2006-02-10 08:24:21 +0000953static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000954 int nPagesPerMapPage;
955 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000956 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000957 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000958 nPagesPerMapPage = (pBt->usableSize/5)+1;
959 iPtrMap = (pgno-2)/nPagesPerMapPage;
960 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000961 if( ret==PENDING_BYTE_PAGE(pBt) ){
962 ret++;
963 }
964 return ret;
965}
danielk1977a19df672004-11-03 11:37:07 +0000966
danielk1977afcdd022004-10-31 16:25:42 +0000967/*
danielk1977afcdd022004-10-31 16:25:42 +0000968** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000969**
970** This routine updates the pointer map entry for page number 'key'
971** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000972**
973** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
974** a no-op. If an error occurs, the appropriate error code is written
975** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000976*/
drh98add2e2009-07-20 17:11:49 +0000977static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000978 DbPage *pDbPage; /* The pointer map page */
979 u8 *pPtrmap; /* The pointer map data */
980 Pgno iPtrmap; /* The pointer map page number */
981 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000982 int rc; /* Return code from subfunctions */
983
984 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000985
drh1fee73e2007-08-29 04:00:57 +0000986 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000987 /* The master-journal page number must never be used as a pointer map page */
988 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
989
danielk1977ac11ee62005-01-15 12:45:51 +0000990 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000991 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000992 *pRC = SQLITE_CORRUPT_BKPT;
993 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000994 }
danielk1977266664d2006-02-10 08:24:21 +0000995 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000996 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000997 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000998 *pRC = rc;
999 return;
danielk1977afcdd022004-10-31 16:25:42 +00001000 }
danielk19778c666b12008-07-18 09:34:57 +00001001 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001002 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001003 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001004 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001005 }
drhfc243732011-05-17 15:21:56 +00001006 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001007 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001008
drh615ae552005-01-16 23:21:00 +00001009 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1010 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001011 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001012 if( rc==SQLITE_OK ){
1013 pPtrmap[offset] = eType;
1014 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001015 }
danielk1977afcdd022004-10-31 16:25:42 +00001016 }
1017
drh4925a552009-07-07 11:39:58 +00001018ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001019 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001020}
1021
1022/*
1023** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001024**
1025** This routine retrieves the pointer map entry for page 'key', writing
1026** the type and parent page number to *pEType and *pPgno respectively.
1027** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001028*/
danielk1977aef0bf62005-12-30 16:28:01 +00001029static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001030 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001031 int iPtrmap; /* Pointer map page index */
1032 u8 *pPtrmap; /* Pointer map page data */
1033 int offset; /* Offset of entry in pointer map */
1034 int rc;
1035
drh1fee73e2007-08-29 04:00:57 +00001036 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001037
danielk1977266664d2006-02-10 08:24:21 +00001038 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001039 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001040 if( rc!=0 ){
1041 return rc;
1042 }
danielk19773b8a05f2007-03-19 17:44:26 +00001043 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001044
danielk19778c666b12008-07-18 09:34:57 +00001045 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001046 if( offset<0 ){
1047 sqlite3PagerUnref(pDbPage);
1048 return SQLITE_CORRUPT_BKPT;
1049 }
1050 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001051 assert( pEType!=0 );
1052 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001053 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001054
danielk19773b8a05f2007-03-19 17:44:26 +00001055 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001056 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001057 return SQLITE_OK;
1058}
1059
danielk197785d90ca2008-07-19 14:25:15 +00001060#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001061 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001062 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001063 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001064#endif
danielk1977afcdd022004-10-31 16:25:42 +00001065
drh0d316a42002-08-11 20:10:47 +00001066/*
drh271efa52004-05-30 19:19:05 +00001067** Given a btree page and a cell index (0 means the first cell on
1068** the page, 1 means the second cell, and so forth) return a pointer
1069** to the cell content.
1070**
drhf44890a2015-06-27 03:58:15 +00001071** findCellPastPtr() does the same except it skips past the initial
1072** 4-byte child pointer found on interior pages, if there is one.
1073**
drh271efa52004-05-30 19:19:05 +00001074** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001075*/
drh1688c862008-07-18 02:44:17 +00001076#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001077 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001078#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001079 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001080
drh43605152004-05-29 21:46:49 +00001081
1082/*
drh5fa60512015-06-19 17:19:34 +00001083** This is common tail processing for btreeParseCellPtr() and
1084** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1085** on a single B-tree page. Make necessary adjustments to the CellInfo
1086** structure.
drh43605152004-05-29 21:46:49 +00001087*/
drh5fa60512015-06-19 17:19:34 +00001088static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1089 MemPage *pPage, /* Page containing the cell */
1090 u8 *pCell, /* Pointer to the cell text. */
1091 CellInfo *pInfo /* Fill in this structure */
1092){
1093 /* If the payload will not fit completely on the local page, we have
1094 ** to decide how much to store locally and how much to spill onto
1095 ** overflow pages. The strategy is to minimize the amount of unused
1096 ** space on overflow pages while keeping the amount of local storage
1097 ** in between minLocal and maxLocal.
1098 **
1099 ** Warning: changing the way overflow payload is distributed in any
1100 ** way will result in an incompatible file format.
1101 */
1102 int minLocal; /* Minimum amount of payload held locally */
1103 int maxLocal; /* Maximum amount of payload held locally */
1104 int surplus; /* Overflow payload available for local storage */
1105
1106 minLocal = pPage->minLocal;
1107 maxLocal = pPage->maxLocal;
1108 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1109 testcase( surplus==maxLocal );
1110 testcase( surplus==maxLocal+1 );
1111 if( surplus <= maxLocal ){
1112 pInfo->nLocal = (u16)surplus;
1113 }else{
1114 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001115 }
drh45ac1c72015-12-18 03:59:16 +00001116 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001117}
1118
1119/*
drh5fa60512015-06-19 17:19:34 +00001120** The following routines are implementations of the MemPage.xParseCell()
1121** method.
1122**
1123** Parse a cell content block and fill in the CellInfo structure.
1124**
1125** btreeParseCellPtr() => table btree leaf nodes
1126** btreeParseCellNoPayload() => table btree internal nodes
1127** btreeParseCellPtrIndex() => index btree nodes
1128**
1129** There is also a wrapper function btreeParseCell() that works for
1130** all MemPage types and that references the cell by index rather than
1131** by pointer.
drh43605152004-05-29 21:46:49 +00001132*/
drh5fa60512015-06-19 17:19:34 +00001133static void btreeParseCellPtrNoPayload(
1134 MemPage *pPage, /* Page containing the cell */
1135 u8 *pCell, /* Pointer to the cell text. */
1136 CellInfo *pInfo /* Fill in this structure */
1137){
1138 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1139 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001140 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001141#ifndef SQLITE_DEBUG
1142 UNUSED_PARAMETER(pPage);
1143#endif
drh5fa60512015-06-19 17:19:34 +00001144 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1145 pInfo->nPayload = 0;
1146 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001147 pInfo->pPayload = 0;
1148 return;
1149}
danielk197730548662009-07-09 05:07:37 +00001150static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001151 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001152 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001153 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001154){
drh3e28ff52014-09-24 00:59:08 +00001155 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001156 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001157 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001158
drh1fee73e2007-08-29 04:00:57 +00001159 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001160 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001161 assert( pPage->intKeyLeaf );
1162 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001163 pIter = pCell;
1164
1165 /* The next block of code is equivalent to:
1166 **
1167 ** pIter += getVarint32(pIter, nPayload);
1168 **
1169 ** The code is inlined to avoid a function call.
1170 */
1171 nPayload = *pIter;
1172 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001173 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001174 nPayload &= 0x7f;
1175 do{
1176 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1177 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001178 }
drh56cb04e2015-06-19 18:24:37 +00001179 pIter++;
1180
1181 /* The next block of code is equivalent to:
1182 **
1183 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1184 **
1185 ** The code is inlined to avoid a function call.
1186 */
1187 iKey = *pIter;
1188 if( iKey>=0x80 ){
1189 u8 *pEnd = &pIter[7];
1190 iKey &= 0x7f;
1191 while(1){
1192 iKey = (iKey<<7) | (*++pIter & 0x7f);
1193 if( (*pIter)<0x80 ) break;
1194 if( pIter>=pEnd ){
1195 iKey = (iKey<<8) | *++pIter;
1196 break;
1197 }
1198 }
1199 }
1200 pIter++;
1201
1202 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001203 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001204 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001205 testcase( nPayload==pPage->maxLocal );
1206 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001207 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001208 /* This is the (easy) common case where the entire payload fits
1209 ** on the local page. No overflow is required.
1210 */
drhab1cc582014-09-23 21:25:19 +00001211 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1212 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001213 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001214 }else{
drh5fa60512015-06-19 17:19:34 +00001215 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1216 }
1217}
1218static void btreeParseCellPtrIndex(
1219 MemPage *pPage, /* Page containing the cell */
1220 u8 *pCell, /* Pointer to the cell text. */
1221 CellInfo *pInfo /* Fill in this structure */
1222){
1223 u8 *pIter; /* For scanning through pCell */
1224 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001225
drh5fa60512015-06-19 17:19:34 +00001226 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1227 assert( pPage->leaf==0 || pPage->leaf==1 );
1228 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001229 pIter = pCell + pPage->childPtrSize;
1230 nPayload = *pIter;
1231 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001232 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001233 nPayload &= 0x7f;
1234 do{
1235 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1236 }while( *(pIter)>=0x80 && pIter<pEnd );
1237 }
1238 pIter++;
1239 pInfo->nKey = nPayload;
1240 pInfo->nPayload = nPayload;
1241 pInfo->pPayload = pIter;
1242 testcase( nPayload==pPage->maxLocal );
1243 testcase( nPayload==pPage->maxLocal+1 );
1244 if( nPayload<=pPage->maxLocal ){
1245 /* This is the (easy) common case where the entire payload fits
1246 ** on the local page. No overflow is required.
1247 */
1248 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1249 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1250 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001251 }else{
1252 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001253 }
drh3aac2dd2004-04-26 14:10:20 +00001254}
danielk197730548662009-07-09 05:07:37 +00001255static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001256 MemPage *pPage, /* Page containing the cell */
1257 int iCell, /* The cell index. First cell is 0 */
1258 CellInfo *pInfo /* Fill in this structure */
1259){
drh5fa60512015-06-19 17:19:34 +00001260 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001261}
drh3aac2dd2004-04-26 14:10:20 +00001262
1263/*
drh5fa60512015-06-19 17:19:34 +00001264** The following routines are implementations of the MemPage.xCellSize
1265** method.
1266**
drh43605152004-05-29 21:46:49 +00001267** Compute the total number of bytes that a Cell needs in the cell
1268** data area of the btree-page. The return number includes the cell
1269** data header and the local payload, but not any overflow page or
1270** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001271**
drh5fa60512015-06-19 17:19:34 +00001272** cellSizePtrNoPayload() => table internal nodes
1273** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001274*/
danielk1977ae5558b2009-04-29 11:31:47 +00001275static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001276 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1277 u8 *pEnd; /* End mark for a varint */
1278 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001279
1280#ifdef SQLITE_DEBUG
1281 /* The value returned by this function should always be the same as
1282 ** the (CellInfo.nSize) value found by doing a full parse of the
1283 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1284 ** this function verifies that this invariant is not violated. */
1285 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001286 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001287#endif
1288
drh3e28ff52014-09-24 00:59:08 +00001289 nSize = *pIter;
1290 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001291 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001292 nSize &= 0x7f;
1293 do{
1294 nSize = (nSize<<7) | (*++pIter & 0x7f);
1295 }while( *(pIter)>=0x80 && pIter<pEnd );
1296 }
1297 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001298 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001299 /* pIter now points at the 64-bit integer key value, a variable length
1300 ** integer. The following block moves pIter to point at the first byte
1301 ** past the end of the key value. */
1302 pEnd = &pIter[9];
1303 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001304 }
drh0a45c272009-07-08 01:49:11 +00001305 testcase( nSize==pPage->maxLocal );
1306 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001307 if( nSize<=pPage->maxLocal ){
1308 nSize += (u32)(pIter - pCell);
1309 if( nSize<4 ) nSize = 4;
1310 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001311 int minLocal = pPage->minLocal;
1312 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001313 testcase( nSize==pPage->maxLocal );
1314 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001315 if( nSize>pPage->maxLocal ){
1316 nSize = minLocal;
1317 }
drh3e28ff52014-09-24 00:59:08 +00001318 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001319 }
drhdc41d602014-09-22 19:51:35 +00001320 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001321 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001322}
drh25ada072015-06-19 15:07:14 +00001323static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1324 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1325 u8 *pEnd; /* End mark for a varint */
1326
1327#ifdef SQLITE_DEBUG
1328 /* The value returned by this function should always be the same as
1329 ** the (CellInfo.nSize) value found by doing a full parse of the
1330 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1331 ** this function verifies that this invariant is not violated. */
1332 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001333 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001334#else
1335 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001336#endif
1337
1338 assert( pPage->childPtrSize==4 );
1339 pEnd = pIter + 9;
1340 while( (*pIter++)&0x80 && pIter<pEnd );
1341 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1342 return (u16)(pIter - pCell);
1343}
1344
drh0ee3dbe2009-10-16 15:05:18 +00001345
1346#ifdef SQLITE_DEBUG
1347/* This variation on cellSizePtr() is used inside of assert() statements
1348** only. */
drha9121e42008-02-19 14:59:35 +00001349static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001350 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001351}
danielk1977bc6ada42004-06-30 08:20:16 +00001352#endif
drh3b7511c2001-05-26 13:15:44 +00001353
danielk197779a40da2005-01-16 08:00:01 +00001354#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001355/*
danielk197726836652005-01-17 01:33:13 +00001356** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001357** to an overflow page, insert an entry into the pointer-map
1358** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001359*/
drh98add2e2009-07-20 17:11:49 +00001360static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001361 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001362 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001363 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001364 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001365 if( info.nLocal<info.nPayload ){
1366 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001367 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001368 }
danielk1977ac11ee62005-01-15 12:45:51 +00001369}
danielk197779a40da2005-01-16 08:00:01 +00001370#endif
1371
danielk1977ac11ee62005-01-15 12:45:51 +00001372
drhda200cc2004-05-09 11:51:38 +00001373/*
dane6d065a2017-02-24 19:58:22 +00001374** Defragment the page given. This routine reorganizes cells within the
1375** page so that there are no free-blocks on the free-block list.
1376**
1377** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1378** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001379**
1380** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1381** b-tree page so that there are no freeblocks or fragment bytes, all
1382** unused bytes are contained in the unallocated space region, and all
1383** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001384*/
dane6d065a2017-02-24 19:58:22 +00001385static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001386 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001387 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001388 int hdr; /* Offset to the page header */
1389 int size; /* Size of a cell */
1390 int usableSize; /* Number of usable bytes on a page */
1391 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001392 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001393 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001394 unsigned char *data; /* The page data */
1395 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001396 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001397 int iCellFirst; /* First allowable cell index */
1398 int iCellLast; /* Last possible cell index */
1399
danielk19773b8a05f2007-03-19 17:44:26 +00001400 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001401 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001402 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001403 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001404 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001405 temp = 0;
1406 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001407 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001408 cellOffset = pPage->cellOffset;
1409 nCell = pPage->nCell;
1410 assert( nCell==get2byte(&data[hdr+3]) );
drh17146622009-07-07 17:38:38 +00001411 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001412 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001413
1414 /* This block handles pages with two or fewer free blocks and nMaxFrag
1415 ** or fewer fragmented bytes. In this case it is faster to move the
1416 ** two (or one) blocks of cells using memmove() and add the required
1417 ** offsets to each pointer in the cell-pointer array than it is to
1418 ** reconstruct the entire page. */
1419 if( (int)data[hdr+7]<=nMaxFrag ){
1420 int iFree = get2byte(&data[hdr+1]);
1421 if( iFree ){
1422 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001423
1424 /* pageFindSlot() has already verified that free blocks are sorted
1425 ** in order of offset within the page, and that no block extends
1426 ** past the end of the page. Provided the two free slots do not
1427 ** overlap, this guarantees that the memmove() calls below will not
1428 ** overwrite the usableSize byte buffer, even if the database page
1429 ** is corrupt. */
1430 assert( iFree2==0 || iFree2>iFree );
1431 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1432 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1433
dane6d065a2017-02-24 19:58:22 +00001434 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1435 u8 *pEnd = &data[cellOffset + nCell*2];
1436 u8 *pAddr;
1437 int sz2 = 0;
1438 int sz = get2byte(&data[iFree+2]);
1439 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001440 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001441 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001442 }
dane6d065a2017-02-24 19:58:22 +00001443 if( iFree2 ){
drh60348462017-08-25 13:02:48 +00001444 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
dane6d065a2017-02-24 19:58:22 +00001445 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001446 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001447 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1448 sz += sz2;
1449 }
1450 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001451 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001452 memmove(&data[cbrk], &data[top], iFree-top);
1453 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1454 pc = get2byte(pAddr);
1455 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1456 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1457 }
1458 goto defragment_out;
1459 }
1460 }
1461 }
1462
drh281b21d2008-08-22 12:57:08 +00001463 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001464 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001465 for(i=0; i<nCell; i++){
1466 u8 *pAddr; /* The i-th cell pointer */
1467 pAddr = &data[cellOffset + i*2];
1468 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001469 testcase( pc==iCellFirst );
1470 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001471 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001472 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001473 */
1474 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001475 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001476 }
drh17146622009-07-07 17:38:38 +00001477 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001478 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001479 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001480 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001481 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001482 }
drh7157e1d2009-07-09 13:25:32 +00001483 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001484 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001485 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001486 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001487 if( temp==0 ){
1488 int x;
1489 if( cbrk==pc ) continue;
1490 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1491 x = get2byte(&data[hdr+5]);
1492 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1493 src = temp;
1494 }
1495 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001496 }
dane6d065a2017-02-24 19:58:22 +00001497 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001498
1499 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001500 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001501 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001502 }
drh17146622009-07-07 17:38:38 +00001503 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001504 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001505 data[hdr+1] = 0;
1506 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001507 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001508 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001509 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001510}
1511
drha059ad02001-04-17 20:09:11 +00001512/*
dan8e9ba0c2014-10-14 17:27:04 +00001513** Search the free-list on page pPg for space to store a cell nByte bytes in
1514** size. If one can be found, return a pointer to the space and remove it
1515** from the free-list.
1516**
1517** If no suitable space can be found on the free-list, return NULL.
1518**
drhba0f9992014-10-30 20:48:44 +00001519** This function may detect corruption within pPg. If corruption is
1520** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001521**
drhb7580e82015-06-25 18:36:13 +00001522** Slots on the free list that are between 1 and 3 bytes larger than nByte
1523** will be ignored if adding the extra space to the fragmentation count
1524** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001525*/
drhb7580e82015-06-25 18:36:13 +00001526static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001527 const int hdr = pPg->hdrOffset;
1528 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001529 int iAddr = hdr + 1;
1530 int pc = get2byte(&aData[iAddr]);
1531 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001532 int usableSize = pPg->pBt->usableSize;
drh87d63c92017-08-23 23:09:03 +00001533 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001534
drhb7580e82015-06-25 18:36:13 +00001535 assert( pc>0 );
drh87d63c92017-08-23 23:09:03 +00001536 while( pc<=usableSize-4 ){
drh113762a2014-11-19 16:36:25 +00001537 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1538 ** freeblock form a big-endian integer which is the size of the freeblock
1539 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001540 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001541 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001542 testcase( x==4 );
1543 testcase( x==3 );
drh5e398e42017-08-23 20:36:06 +00001544 if( size+pc > usableSize ){
daneebf2f52017-11-18 17:30:08 +00001545 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh24dee9d2015-06-02 19:36:29 +00001546 return 0;
1547 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001548 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1549 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001550 if( aData[hdr+7]>57 ) return 0;
1551
dan8e9ba0c2014-10-14 17:27:04 +00001552 /* Remove the slot from the free-list. Update the number of
1553 ** fragmented bytes within the page. */
1554 memcpy(&aData[iAddr], &aData[pc], 2);
1555 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001556 }else{
1557 /* The slot remains on the free-list. Reduce its size to account
1558 ** for the portion used by the new allocation. */
1559 put2byte(&aData[pc+2], x);
1560 }
1561 return &aData[pc + x];
1562 }
drhb7580e82015-06-25 18:36:13 +00001563 iAddr = pc;
1564 pc = get2byte(&aData[pc]);
drh87d63c92017-08-23 23:09:03 +00001565 if( pc<iAddr+size ) break;
1566 }
1567 if( pc ){
daneebf2f52017-11-18 17:30:08 +00001568 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001569 }
dan8e9ba0c2014-10-14 17:27:04 +00001570
1571 return 0;
1572}
1573
1574/*
danielk19776011a752009-04-01 16:25:32 +00001575** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001576** as the first argument. Write into *pIdx the index into pPage->aData[]
1577** of the first byte of allocated space. Return either SQLITE_OK or
1578** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001579**
drh0a45c272009-07-08 01:49:11 +00001580** The caller guarantees that there is sufficient space to make the
1581** allocation. This routine might need to defragment in order to bring
1582** all the space together, however. This routine will avoid using
1583** the first two bytes past the cell pointer area since presumably this
1584** allocation is being made in order to insert a new cell, so we will
1585** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001586*/
drh0a45c272009-07-08 01:49:11 +00001587static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001588 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1589 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001590 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001591 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001592 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001593
danielk19773b8a05f2007-03-19 17:44:26 +00001594 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001595 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001596 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001597 assert( nByte>=0 ); /* Minimum cell size is 4 */
1598 assert( pPage->nFree>=nByte );
1599 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001600 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001601
drh0a45c272009-07-08 01:49:11 +00001602 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1603 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001604 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001605 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1606 ** and the reserved space is zero (the usual value for reserved space)
1607 ** then the cell content offset of an empty page wants to be 65536.
1608 ** However, that integer is too large to be stored in a 2-byte unsigned
1609 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001610 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001611 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001612 if( gap>top ){
1613 if( top==0 && pPage->pBt->usableSize==65536 ){
1614 top = 65536;
1615 }else{
daneebf2f52017-11-18 17:30:08 +00001616 return SQLITE_CORRUPT_PAGE(pPage);
drhded340e2015-06-25 15:04:56 +00001617 }
drhe7266222015-05-29 17:51:16 +00001618 }
drh4c04f3c2014-08-20 11:56:14 +00001619
1620 /* If there is enough space between gap and top for one more cell pointer
1621 ** array entry offset, and if the freelist is not empty, then search the
1622 ** freelist looking for a free slot big enough to satisfy the request.
1623 */
drh0a45c272009-07-08 01:49:11 +00001624 testcase( gap+2==top );
1625 testcase( gap+1==top );
1626 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001627 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001628 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001629 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001630 assert( pSpace>=data && (pSpace - data)<65536 );
1631 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001632 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001633 }else if( rc ){
1634 return rc;
drh9e572e62004-04-23 23:43:10 +00001635 }
1636 }
drh43605152004-05-29 21:46:49 +00001637
drh4c04f3c2014-08-20 11:56:14 +00001638 /* The request could not be fulfilled using a freelist slot. Check
1639 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001640 */
1641 testcase( gap+2+nByte==top );
1642 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001643 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001644 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001645 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001646 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001647 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001648 }
1649
1650
drh43605152004-05-29 21:46:49 +00001651 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001652 ** and the cell content area. The btreeInitPage() call has already
1653 ** validated the freelist. Given that the freelist is valid, there
1654 ** is no way that the allocation can extend off the end of the page.
1655 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001656 */
drh0a45c272009-07-08 01:49:11 +00001657 top -= nByte;
drh43605152004-05-29 21:46:49 +00001658 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001659 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001660 *pIdx = top;
1661 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001662}
1663
1664/*
drh9e572e62004-04-23 23:43:10 +00001665** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001666** The first byte of the new free block is pPage->aData[iStart]
1667** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001668**
drh5f5c7532014-08-20 17:56:27 +00001669** Adjacent freeblocks are coalesced.
1670**
1671** Note that even though the freeblock list was checked by btreeInitPage(),
1672** that routine will not detect overlap between cells or freeblocks. Nor
1673** does it detect cells or freeblocks that encrouch into the reserved bytes
1674** at the end of the page. So do additional corruption checks inside this
1675** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001676*/
drh5f5c7532014-08-20 17:56:27 +00001677static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001678 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001679 u16 iFreeBlk; /* Address of the next freeblock */
1680 u8 hdr; /* Page header size. 0 or 100 */
1681 u8 nFrag = 0; /* Reduction in fragmentation */
1682 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001683 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001684 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001685 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001686
drh9e572e62004-04-23 23:43:10 +00001687 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001688 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001689 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001690 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001691 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001692 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001693 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001694
drh5f5c7532014-08-20 17:56:27 +00001695 /* The list of freeblocks must be in ascending order. Find the
1696 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001697 */
drh43605152004-05-29 21:46:49 +00001698 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001699 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001700 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1701 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1702 }else{
drh85f071b2016-09-17 19:34:32 +00001703 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1704 if( iFreeBlk<iPtr+4 ){
1705 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001706 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001707 }
drh7bc4c452014-08-20 18:43:44 +00001708 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001709 }
drh5e398e42017-08-23 20:36:06 +00001710 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001711 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001712 }
drh7bc4c452014-08-20 18:43:44 +00001713 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1714
1715 /* At this point:
1716 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001717 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001718 **
1719 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1720 */
1721 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1722 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001723 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001724 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001725 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001726 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001727 }
drh7bc4c452014-08-20 18:43:44 +00001728 iSize = iEnd - iStart;
1729 iFreeBlk = get2byte(&data[iFreeBlk]);
1730 }
1731
drh3f387402014-09-24 01:23:00 +00001732 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1733 ** pointer in the page header) then check to see if iStart should be
1734 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001735 */
1736 if( iPtr>hdr+1 ){
1737 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1738 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001739 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001740 nFrag += iStart - iPtrEnd;
1741 iSize = iEnd - iPtr;
1742 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001743 }
drh9e572e62004-04-23 23:43:10 +00001744 }
daneebf2f52017-11-18 17:30:08 +00001745 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001746 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001747 }
drh5e398e42017-08-23 20:36:06 +00001748 x = get2byte(&data[hdr+5]);
1749 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001750 /* The new freeblock is at the beginning of the cell content area,
1751 ** so just extend the cell content area rather than create another
1752 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001753 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001754 put2byte(&data[hdr+1], iFreeBlk);
1755 put2byte(&data[hdr+5], iEnd);
1756 }else{
1757 /* Insert the new freeblock into the freelist */
1758 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001759 }
drh5e398e42017-08-23 20:36:06 +00001760 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1761 /* Overwrite deleted information with zeros when the secure_delete
1762 ** option is enabled */
1763 memset(&data[iStart], 0, iSize);
1764 }
1765 put2byte(&data[iStart], iFreeBlk);
1766 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001767 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001768 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001769}
1770
1771/*
drh271efa52004-05-30 19:19:05 +00001772** Decode the flags byte (the first byte of the header) for a page
1773** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001774**
1775** Only the following combinations are supported. Anything different
1776** indicates a corrupt database files:
1777**
1778** PTF_ZERODATA
1779** PTF_ZERODATA | PTF_LEAF
1780** PTF_LEAFDATA | PTF_INTKEY
1781** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001782*/
drh44845222008-07-17 18:39:57 +00001783static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001784 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001785
1786 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001787 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001788 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001789 flagByte &= ~PTF_LEAF;
1790 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001791 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001792 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001793 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001794 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1795 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001796 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001797 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1798 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001799 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001800 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001801 if( pPage->leaf ){
1802 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001803 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001804 }else{
1805 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001806 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001807 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001808 }
drh271efa52004-05-30 19:19:05 +00001809 pPage->maxLocal = pBt->maxLeaf;
1810 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001811 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001812 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1813 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001814 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001815 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1816 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001817 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001818 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001819 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001820 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001821 pPage->maxLocal = pBt->maxLocal;
1822 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001823 }else{
drhfdab0262014-11-20 15:30:50 +00001824 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1825 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001826 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001827 }
drhc9166342012-01-05 23:32:06 +00001828 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001829 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001830}
1831
1832/*
drh7e3b0a02001-04-28 16:52:40 +00001833** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001834**
1835** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001836** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001837** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1838** guarantee that the page is well-formed. It only shows that
1839** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001840*/
danielk197730548662009-07-09 05:07:37 +00001841static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001842 int pc; /* Address of a freeblock within pPage->aData[] */
1843 u8 hdr; /* Offset to beginning of page header */
1844 u8 *data; /* Equal to pPage->aData */
1845 BtShared *pBt; /* The main btree structure */
1846 int usableSize; /* Amount of usable space on each page */
1847 u16 cellOffset; /* Offset from start of page to first cell pointer */
1848 int nFree; /* Number of unused bytes on the page */
1849 int top; /* First byte of the cell content area */
1850 int iCellFirst; /* First allowable cell or freeblock offset */
1851 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001852
danielk197771d5d2c2008-09-29 11:49:47 +00001853 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001854 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001855 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001856 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001857 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1858 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001859 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001860
drh14e845a2017-05-25 21:35:56 +00001861 pBt = pPage->pBt;
1862 hdr = pPage->hdrOffset;
1863 data = pPage->aData;
1864 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1865 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001866 if( decodeFlags(pPage, data[hdr]) ){
daneebf2f52017-11-18 17:30:08 +00001867 return SQLITE_CORRUPT_PAGE(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001868 }
drh14e845a2017-05-25 21:35:56 +00001869 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1870 pPage->maskPage = (u16)(pBt->pageSize - 1);
1871 pPage->nOverflow = 0;
1872 usableSize = pBt->usableSize;
1873 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1874 pPage->aDataEnd = &data[usableSize];
1875 pPage->aCellIdx = &data[cellOffset];
1876 pPage->aDataOfst = &data[pPage->childPtrSize];
1877 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1878 ** the start of the cell content area. A zero value for this integer is
1879 ** interpreted as 65536. */
1880 top = get2byteNotZero(&data[hdr+5]);
1881 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1882 ** number of cells on the page. */
1883 pPage->nCell = get2byte(&data[hdr+3]);
1884 if( pPage->nCell>MX_CELL(pBt) ){
1885 /* To many cells for a single page. The page must be corrupt */
daneebf2f52017-11-18 17:30:08 +00001886 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001887 }
1888 testcase( pPage->nCell==MX_CELL(pBt) );
1889 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1890 ** possible for a root page of a table that contains no rows) then the
1891 ** offset to the cell content area will equal the page size minus the
1892 ** bytes of reserved space. */
1893 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk1977eaa06f62008-09-18 17:34:44 +00001894
drh14e845a2017-05-25 21:35:56 +00001895 /* A malformed database page might cause us to read past the end
1896 ** of page when parsing a cell.
1897 **
1898 ** The following block of code checks early to see if a cell extends
1899 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1900 ** returned if it does.
1901 */
1902 iCellFirst = cellOffset + 2*pPage->nCell;
1903 iCellLast = usableSize - 4;
1904 if( pBt->db->flags & SQLITE_CellSizeCk ){
1905 int i; /* Index into the cell pointer array */
1906 int sz; /* Size of a cell */
danielk1977eaa06f62008-09-18 17:34:44 +00001907
drh14e845a2017-05-25 21:35:56 +00001908 if( !pPage->leaf ) iCellLast--;
1909 for(i=0; i<pPage->nCell; i++){
1910 pc = get2byteAligned(&data[cellOffset+i*2]);
1911 testcase( pc==iCellFirst );
1912 testcase( pc==iCellLast );
1913 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001914 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977eaa06f62008-09-18 17:34:44 +00001915 }
drh14e845a2017-05-25 21:35:56 +00001916 sz = pPage->xCellSize(pPage, &data[pc]);
1917 testcase( pc+sz==usableSize );
1918 if( pc+sz>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001919 return SQLITE_CORRUPT_PAGE(pPage);
drh77dc0ed2016-12-12 01:30:01 +00001920 }
drh1688c862008-07-18 02:44:17 +00001921 }
drh14e845a2017-05-25 21:35:56 +00001922 if( !pPage->leaf ) iCellLast++;
1923 }
drh1688c862008-07-18 02:44:17 +00001924
drh14e845a2017-05-25 21:35:56 +00001925 /* Compute the total free space on the page
1926 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1927 ** start of the first freeblock on the page, or is zero if there are no
1928 ** freeblocks. */
1929 pc = get2byte(&data[hdr+1]);
1930 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1931 if( pc>0 ){
1932 u32 next, size;
1933 if( pc<iCellFirst ){
1934 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1935 ** always be at least one cell before the first freeblock.
1936 */
daneebf2f52017-11-18 17:30:08 +00001937 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977e16535f2008-06-11 18:15:29 +00001938 }
drh14e845a2017-05-25 21:35:56 +00001939 while( 1 ){
1940 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001941 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001942 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001943 }
1944 next = get2byte(&data[pc]);
1945 size = get2byte(&data[pc+2]);
1946 nFree = nFree + size;
1947 if( next<=pc+size+3 ) break;
1948 pc = next;
1949 }
1950 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001951 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001952 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001953 }
1954 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001955 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001956 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001957 }
danielk1977eaa06f62008-09-18 17:34:44 +00001958 }
drh14e845a2017-05-25 21:35:56 +00001959
1960 /* At this point, nFree contains the sum of the offset to the start
1961 ** of the cell-content area plus the number of free bytes within
1962 ** the cell-content area. If this is greater than the usable-size
1963 ** of the page, then the page must be corrupted. This check also
1964 ** serves to verify that the offset to the start of the cell-content
1965 ** area, according to the page header, lies within the page.
1966 */
1967 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001968 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001969 }
1970 pPage->nFree = (u16)(nFree - iCellFirst);
1971 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001972 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001973}
1974
1975/*
drh8b2f49b2001-06-08 00:21:52 +00001976** Set up a raw page so that it looks like a database page holding
1977** no entries.
drhbd03cae2001-06-02 02:40:57 +00001978*/
drh9e572e62004-04-23 23:43:10 +00001979static void zeroPage(MemPage *pPage, int flags){
1980 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001981 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001982 u8 hdr = pPage->hdrOffset;
1983 u16 first;
drh9e572e62004-04-23 23:43:10 +00001984
danielk19773b8a05f2007-03-19 17:44:26 +00001985 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001986 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1987 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001988 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001989 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001990 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001991 memset(&data[hdr], 0, pBt->usableSize - hdr);
1992 }
drh1bd10f82008-12-10 21:19:56 +00001993 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001994 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001995 memset(&data[hdr+1], 0, 4);
1996 data[hdr+7] = 0;
1997 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001998 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001999 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002000 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002001 pPage->aDataEnd = &data[pBt->usableSize];
2002 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002003 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002004 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002005 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2006 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002007 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002008 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002009}
2010
drh897a8202008-09-18 01:08:15 +00002011
2012/*
2013** Convert a DbPage obtained from the pager into a MemPage used by
2014** the btree layer.
2015*/
2016static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2017 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002018 if( pgno!=pPage->pgno ){
2019 pPage->aData = sqlite3PagerGetData(pDbPage);
2020 pPage->pDbPage = pDbPage;
2021 pPage->pBt = pBt;
2022 pPage->pgno = pgno;
2023 pPage->hdrOffset = pgno==1 ? 100 : 0;
2024 }
2025 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002026 return pPage;
2027}
2028
drhbd03cae2001-06-02 02:40:57 +00002029/*
drh3aac2dd2004-04-26 14:10:20 +00002030** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002031** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002032**
drh7e8c6f12015-05-28 03:28:27 +00002033** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2034** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002035** to fetch the content. Just fill in the content with zeros for now.
2036** If in the future we call sqlite3PagerWrite() on this page, that
2037** means we have started to be concerned about content and the disk
2038** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002039*/
danielk197730548662009-07-09 05:07:37 +00002040static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002041 BtShared *pBt, /* The btree */
2042 Pgno pgno, /* Number of the page to fetch */
2043 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002044 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002045){
drh3aac2dd2004-04-26 14:10:20 +00002046 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002047 DbPage *pDbPage;
2048
drhb00fc3b2013-08-21 23:42:32 +00002049 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002050 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002051 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002052 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002053 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002054 return SQLITE_OK;
2055}
2056
2057/*
danielk1977bea2a942009-01-20 17:06:27 +00002058** Retrieve a page from the pager cache. If the requested page is not
2059** already in the pager cache return NULL. Initialize the MemPage.pBt and
2060** MemPage.aData elements if needed.
2061*/
2062static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2063 DbPage *pDbPage;
2064 assert( sqlite3_mutex_held(pBt->mutex) );
2065 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2066 if( pDbPage ){
2067 return btreePageFromDbPage(pDbPage, pgno, pBt);
2068 }
2069 return 0;
2070}
2071
2072/*
danielk197789d40042008-11-17 14:20:56 +00002073** Return the size of the database file in pages. If there is any kind of
2074** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002075*/
drhb1299152010-03-30 22:58:33 +00002076static Pgno btreePagecount(BtShared *pBt){
2077 return pBt->nPage;
2078}
2079u32 sqlite3BtreeLastPage(Btree *p){
2080 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002081 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002082 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002083}
2084
2085/*
drh28f58dd2015-06-27 19:45:03 +00002086** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002087**
drh15a00212015-06-27 20:55:00 +00002088** If pCur!=0 then the page is being fetched as part of a moveToChild()
2089** call. Do additional sanity checking on the page in this case.
2090** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002091**
2092** The page is fetched as read-write unless pCur is not NULL and is
2093** a read-only cursor.
2094**
2095** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002096** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002097*/
2098static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002099 BtShared *pBt, /* The database file */
2100 Pgno pgno, /* Number of the page to get */
2101 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002102 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2103 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002104){
2105 int rc;
drh28f58dd2015-06-27 19:45:03 +00002106 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002107 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002108 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002109 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002110 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002111
danba3cbf32010-06-30 04:29:03 +00002112 if( pgno>btreePagecount(pBt) ){
2113 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002114 goto getAndInitPage_error;
2115 }
drh9584f582015-11-04 20:22:37 +00002116 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002117 if( rc ){
2118 goto getAndInitPage_error;
2119 }
drh8dd1c252015-11-04 22:31:02 +00002120 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002121 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002122 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002123 rc = btreeInitPage(*ppPage);
2124 if( rc!=SQLITE_OK ){
2125 releasePage(*ppPage);
2126 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002127 }
drhee696e22004-08-30 16:52:17 +00002128 }
drh8dd1c252015-11-04 22:31:02 +00002129 assert( (*ppPage)->pgno==pgno );
2130 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002131
drh15a00212015-06-27 20:55:00 +00002132 /* If obtaining a child page for a cursor, we must verify that the page is
2133 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002134 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002135 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002136 releasePage(*ppPage);
2137 goto getAndInitPage_error;
2138 }
drh28f58dd2015-06-27 19:45:03 +00002139 return SQLITE_OK;
2140
2141getAndInitPage_error:
drh352a35a2017-08-15 03:46:47 +00002142 if( pCur ){
2143 pCur->iPage--;
2144 pCur->pPage = pCur->apPage[pCur->iPage];
2145 }
danba3cbf32010-06-30 04:29:03 +00002146 testcase( pgno==0 );
2147 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002148 return rc;
2149}
2150
2151/*
drh3aac2dd2004-04-26 14:10:20 +00002152** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002153** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002154**
2155** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002156*/
drhbbf0f862015-06-27 14:59:26 +00002157static void releasePageNotNull(MemPage *pPage){
2158 assert( pPage->aData );
2159 assert( pPage->pBt );
2160 assert( pPage->pDbPage!=0 );
2161 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2162 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2164 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002165}
drh3aac2dd2004-04-26 14:10:20 +00002166static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002167 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002168}
drh3908fe92017-09-01 14:50:19 +00002169static void releasePageOne(MemPage *pPage){
2170 assert( pPage!=0 );
2171 assert( pPage->aData );
2172 assert( pPage->pBt );
2173 assert( pPage->pDbPage!=0 );
2174 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2175 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2176 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2177 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2178}
drh3aac2dd2004-04-26 14:10:20 +00002179
2180/*
drh7e8c6f12015-05-28 03:28:27 +00002181** Get an unused page.
2182**
2183** This works just like btreeGetPage() with the addition:
2184**
2185** * If the page is already in use for some other purpose, immediately
2186** release it and return an SQLITE_CURRUPT error.
2187** * Make sure the isInit flag is clear
2188*/
2189static int btreeGetUnusedPage(
2190 BtShared *pBt, /* The btree */
2191 Pgno pgno, /* Number of the page to fetch */
2192 MemPage **ppPage, /* Return the page in this parameter */
2193 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2194){
2195 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2196 if( rc==SQLITE_OK ){
2197 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2198 releasePage(*ppPage);
2199 *ppPage = 0;
2200 return SQLITE_CORRUPT_BKPT;
2201 }
2202 (*ppPage)->isInit = 0;
2203 }else{
2204 *ppPage = 0;
2205 }
2206 return rc;
2207}
2208
drha059ad02001-04-17 20:09:11 +00002209
2210/*
drha6abd042004-06-09 17:37:22 +00002211** During a rollback, when the pager reloads information into the cache
2212** so that the cache is restored to its original state at the start of
2213** the transaction, for each page restored this routine is called.
2214**
2215** This routine needs to reset the extra data section at the end of the
2216** page to agree with the restored data.
2217*/
danielk1977eaa06f62008-09-18 17:34:44 +00002218static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002219 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002220 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002221 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002222 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002223 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002224 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002225 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002226 /* pPage might not be a btree page; it might be an overflow page
2227 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002228 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002229 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002230 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002231 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002232 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002233 }
drha6abd042004-06-09 17:37:22 +00002234 }
2235}
2236
2237/*
drhe5fe6902007-12-07 18:55:28 +00002238** Invoke the busy handler for a btree.
2239*/
danielk19771ceedd32008-11-19 10:22:33 +00002240static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002241 BtShared *pBt = (BtShared*)pArg;
2242 assert( pBt->db );
2243 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002244 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2245 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002246}
2247
2248/*
drhad3e0102004-09-03 23:32:18 +00002249** Open a database file.
2250**
drh382c0242001-10-06 16:33:02 +00002251** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002252** then an ephemeral database is created. The ephemeral database might
2253** be exclusively in memory, or it might use a disk-based memory cache.
2254** Either way, the ephemeral database will be automatically deleted
2255** when sqlite3BtreeClose() is called.
2256**
drhe53831d2007-08-17 01:14:38 +00002257** If zFilename is ":memory:" then an in-memory database is created
2258** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002259**
drh33f111d2012-01-17 15:29:14 +00002260** The "flags" parameter is a bitmask that might contain bits like
2261** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002262**
drhc47fd8e2009-04-30 13:30:32 +00002263** If the database is already opened in the same database connection
2264** and we are in shared cache mode, then the open will fail with an
2265** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2266** objects in the same database connection since doing so will lead
2267** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002268*/
drh23e11ca2004-05-04 17:27:28 +00002269int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002270 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002271 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002272 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002273 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002274 int flags, /* Options */
2275 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002276){
drh7555d8e2009-03-20 13:15:30 +00002277 BtShared *pBt = 0; /* Shared part of btree structure */
2278 Btree *p; /* Handle to return */
2279 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2280 int rc = SQLITE_OK; /* Result code from this function */
2281 u8 nReserve; /* Byte of unused space on each page */
2282 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002283
drh75c014c2010-08-30 15:02:28 +00002284 /* True if opening an ephemeral, temporary database */
2285 const int isTempDb = zFilename==0 || zFilename[0]==0;
2286
danielk1977aef0bf62005-12-30 16:28:01 +00002287 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002288 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002289 */
drhb0a7c9c2010-12-06 21:09:59 +00002290#ifdef SQLITE_OMIT_MEMORYDB
2291 const int isMemdb = 0;
2292#else
2293 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002294 || (isTempDb && sqlite3TempInMemory(db))
2295 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002296#endif
2297
drhe5fe6902007-12-07 18:55:28 +00002298 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002299 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002300 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002301 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2302
2303 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2304 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2305
2306 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2307 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002308
drh75c014c2010-08-30 15:02:28 +00002309 if( isMemdb ){
2310 flags |= BTREE_MEMORY;
2311 }
2312 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2313 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2314 }
drh17435752007-08-16 04:30:38 +00002315 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002316 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002317 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002318 }
2319 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002320 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002321#ifndef SQLITE_OMIT_SHARED_CACHE
2322 p->lock.pBtree = p;
2323 p->lock.iTable = 1;
2324#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002325
drh198bf392006-01-06 21:52:49 +00002326#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002327 /*
2328 ** If this Btree is a candidate for shared cache, try to find an
2329 ** existing BtShared object that we can share with
2330 */
drh4ab9d252012-05-26 20:08:49 +00002331 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002332 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002333 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002334 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002335 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002336 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002337
drhff0587c2007-08-29 17:43:19 +00002338 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002339 if( !zFullPathname ){
2340 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002341 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002342 }
drhafc8b7f2012-05-26 18:06:38 +00002343 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002344 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002345 }else{
2346 rc = sqlite3OsFullPathname(pVfs, zFilename,
2347 nFullPathname, zFullPathname);
2348 if( rc ){
2349 sqlite3_free(zFullPathname);
2350 sqlite3_free(p);
2351 return rc;
2352 }
drh070ad6b2011-11-17 11:43:19 +00002353 }
drh30ddce62011-10-15 00:16:30 +00002354#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002355 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2356 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002357 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002358 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002359#endif
drh78f82d12008-09-02 00:52:52 +00002360 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002361 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002362 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002363 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002364 int iDb;
2365 for(iDb=db->nDb-1; iDb>=0; iDb--){
2366 Btree *pExisting = db->aDb[iDb].pBt;
2367 if( pExisting && pExisting->pBt==pBt ){
2368 sqlite3_mutex_leave(mutexShared);
2369 sqlite3_mutex_leave(mutexOpen);
2370 sqlite3_free(zFullPathname);
2371 sqlite3_free(p);
2372 return SQLITE_CONSTRAINT;
2373 }
2374 }
drhff0587c2007-08-29 17:43:19 +00002375 p->pBt = pBt;
2376 pBt->nRef++;
2377 break;
2378 }
2379 }
2380 sqlite3_mutex_leave(mutexShared);
2381 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002382 }
drhff0587c2007-08-29 17:43:19 +00002383#ifdef SQLITE_DEBUG
2384 else{
2385 /* In debug mode, we mark all persistent databases as sharable
2386 ** even when they are not. This exercises the locking code and
2387 ** gives more opportunity for asserts(sqlite3_mutex_held())
2388 ** statements to find locking problems.
2389 */
2390 p->sharable = 1;
2391 }
2392#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002393 }
2394#endif
drha059ad02001-04-17 20:09:11 +00002395 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002396 /*
2397 ** The following asserts make sure that structures used by the btree are
2398 ** the right size. This is to guard against size changes that result
2399 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002400 */
drh062cf272015-03-23 19:03:51 +00002401 assert( sizeof(i64)==8 );
2402 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002403 assert( sizeof(u32)==4 );
2404 assert( sizeof(u16)==2 );
2405 assert( sizeof(Pgno)==4 );
2406
2407 pBt = sqlite3MallocZero( sizeof(*pBt) );
2408 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002409 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002410 goto btree_open_out;
2411 }
danielk197771d5d2c2008-09-29 11:49:47 +00002412 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002413 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002414 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002415 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002416 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2417 }
2418 if( rc!=SQLITE_OK ){
2419 goto btree_open_out;
2420 }
shanehbd2aaf92010-09-01 02:38:21 +00002421 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002422 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002423 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002424 p->pBt = pBt;
2425
drhe53831d2007-08-17 01:14:38 +00002426 pBt->pCursor = 0;
2427 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002428 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002429#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002430 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002431#elif defined(SQLITE_FAST_SECURE_DELETE)
2432 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002433#endif
drh113762a2014-11-19 16:36:25 +00002434 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2435 ** determined by the 2-byte integer located at an offset of 16 bytes from
2436 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002437 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002438 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2439 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002440 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002441#ifndef SQLITE_OMIT_AUTOVACUUM
2442 /* If the magic name ":memory:" will create an in-memory database, then
2443 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2444 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2445 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2446 ** regular file-name. In this case the auto-vacuum applies as per normal.
2447 */
2448 if( zFilename && !isMemdb ){
2449 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2450 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2451 }
2452#endif
2453 nReserve = 0;
2454 }else{
drh113762a2014-11-19 16:36:25 +00002455 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2456 ** determined by the one-byte unsigned integer found at an offset of 20
2457 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002458 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002459 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002460#ifndef SQLITE_OMIT_AUTOVACUUM
2461 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2462 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2463#endif
2464 }
drhfa9601a2009-06-18 17:22:39 +00002465 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002466 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002467 pBt->usableSize = pBt->pageSize - nReserve;
2468 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002469
2470#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2471 /* Add the new BtShared object to the linked list sharable BtShareds.
2472 */
dan272989b2016-07-06 10:12:02 +00002473 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002474 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002475 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002476 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002477 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002478 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002479 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002480 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002481 goto btree_open_out;
2482 }
drhff0587c2007-08-29 17:43:19 +00002483 }
drhe53831d2007-08-17 01:14:38 +00002484 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002485 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2486 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002487 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002488 }
drheee46cf2004-11-06 00:02:48 +00002489#endif
drh90f5ecb2004-07-22 01:19:35 +00002490 }
danielk1977aef0bf62005-12-30 16:28:01 +00002491
drhcfed7bc2006-03-13 14:28:05 +00002492#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002493 /* If the new Btree uses a sharable pBtShared, then link the new
2494 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002495 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002496 */
drhe53831d2007-08-17 01:14:38 +00002497 if( p->sharable ){
2498 int i;
2499 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002500 for(i=0; i<db->nDb; i++){
2501 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002502 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002503 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002504 p->pNext = pSib;
2505 p->pPrev = 0;
2506 pSib->pPrev = p;
2507 }else{
drh3bfa7e82016-03-22 14:37:59 +00002508 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002509 pSib = pSib->pNext;
2510 }
2511 p->pNext = pSib->pNext;
2512 p->pPrev = pSib;
2513 if( p->pNext ){
2514 p->pNext->pPrev = p;
2515 }
2516 pSib->pNext = p;
2517 }
2518 break;
2519 }
2520 }
danielk1977aef0bf62005-12-30 16:28:01 +00002521 }
danielk1977aef0bf62005-12-30 16:28:01 +00002522#endif
2523 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002524
2525btree_open_out:
2526 if( rc!=SQLITE_OK ){
2527 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002528 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002529 }
drh17435752007-08-16 04:30:38 +00002530 sqlite3_free(pBt);
2531 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002532 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002533 }else{
dan0f5a1862016-08-13 14:30:23 +00002534 sqlite3_file *pFile;
2535
drh75c014c2010-08-30 15:02:28 +00002536 /* If the B-Tree was successfully opened, set the pager-cache size to the
2537 ** default value. Except, when opening on an existing shared pager-cache,
2538 ** do not change the pager-cache size.
2539 */
2540 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2541 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2542 }
dan0f5a1862016-08-13 14:30:23 +00002543
2544 pFile = sqlite3PagerFile(pBt->pPager);
2545 if( pFile->pMethods ){
2546 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2547 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002548 }
drh7555d8e2009-03-20 13:15:30 +00002549 if( mutexOpen ){
2550 assert( sqlite3_mutex_held(mutexOpen) );
2551 sqlite3_mutex_leave(mutexOpen);
2552 }
dan272989b2016-07-06 10:12:02 +00002553 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002554 return rc;
drha059ad02001-04-17 20:09:11 +00002555}
2556
2557/*
drhe53831d2007-08-17 01:14:38 +00002558** Decrement the BtShared.nRef counter. When it reaches zero,
2559** remove the BtShared structure from the sharing list. Return
2560** true if the BtShared.nRef counter reaches zero and return
2561** false if it is still positive.
2562*/
2563static int removeFromSharingList(BtShared *pBt){
2564#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002565 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002566 BtShared *pList;
2567 int removed = 0;
2568
drhd677b3d2007-08-20 22:48:41 +00002569 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002570 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002571 sqlite3_mutex_enter(pMaster);
2572 pBt->nRef--;
2573 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002574 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2575 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002576 }else{
drh78f82d12008-09-02 00:52:52 +00002577 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002578 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002579 pList=pList->pNext;
2580 }
drh34004ce2008-07-11 16:15:17 +00002581 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002582 pList->pNext = pBt->pNext;
2583 }
2584 }
drh3285db22007-09-03 22:00:39 +00002585 if( SQLITE_THREADSAFE ){
2586 sqlite3_mutex_free(pBt->mutex);
2587 }
drhe53831d2007-08-17 01:14:38 +00002588 removed = 1;
2589 }
2590 sqlite3_mutex_leave(pMaster);
2591 return removed;
2592#else
2593 return 1;
2594#endif
2595}
2596
2597/*
drhf7141992008-06-19 00:16:08 +00002598** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002599** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2600** pointer.
drhf7141992008-06-19 00:16:08 +00002601*/
2602static void allocateTempSpace(BtShared *pBt){
2603 if( !pBt->pTmpSpace ){
2604 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002605
2606 /* One of the uses of pBt->pTmpSpace is to format cells before
2607 ** inserting them into a leaf page (function fillInCell()). If
2608 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2609 ** by the various routines that manipulate binary cells. Which
2610 ** can mean that fillInCell() only initializes the first 2 or 3
2611 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2612 ** it into a database page. This is not actually a problem, but it
2613 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2614 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002615 ** zero the first 4 bytes of temp space here.
2616 **
2617 ** Also: Provide four bytes of initialized space before the
2618 ** beginning of pTmpSpace as an area available to prepend the
2619 ** left-child pointer to the beginning of a cell.
2620 */
2621 if( pBt->pTmpSpace ){
2622 memset(pBt->pTmpSpace, 0, 8);
2623 pBt->pTmpSpace += 4;
2624 }
drhf7141992008-06-19 00:16:08 +00002625 }
2626}
2627
2628/*
2629** Free the pBt->pTmpSpace allocation
2630*/
2631static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002632 if( pBt->pTmpSpace ){
2633 pBt->pTmpSpace -= 4;
2634 sqlite3PageFree(pBt->pTmpSpace);
2635 pBt->pTmpSpace = 0;
2636 }
drhf7141992008-06-19 00:16:08 +00002637}
2638
2639/*
drha059ad02001-04-17 20:09:11 +00002640** Close an open database and invalidate all cursors.
2641*/
danielk1977aef0bf62005-12-30 16:28:01 +00002642int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002643 BtShared *pBt = p->pBt;
2644 BtCursor *pCur;
2645
danielk1977aef0bf62005-12-30 16:28:01 +00002646 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002647 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002648 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002649 pCur = pBt->pCursor;
2650 while( pCur ){
2651 BtCursor *pTmp = pCur;
2652 pCur = pCur->pNext;
2653 if( pTmp->pBtree==p ){
2654 sqlite3BtreeCloseCursor(pTmp);
2655 }
drha059ad02001-04-17 20:09:11 +00002656 }
danielk1977aef0bf62005-12-30 16:28:01 +00002657
danielk19778d34dfd2006-01-24 16:37:57 +00002658 /* Rollback any active transaction and free the handle structure.
2659 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2660 ** this handle.
2661 */
drh47b7fc72014-11-11 01:33:57 +00002662 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002663 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002664
danielk1977aef0bf62005-12-30 16:28:01 +00002665 /* If there are still other outstanding references to the shared-btree
2666 ** structure, return now. The remainder of this procedure cleans
2667 ** up the shared-btree.
2668 */
drhe53831d2007-08-17 01:14:38 +00002669 assert( p->wantToLock==0 && p->locked==0 );
2670 if( !p->sharable || removeFromSharingList(pBt) ){
2671 /* The pBt is no longer on the sharing list, so we can access
2672 ** it without having to hold the mutex.
2673 **
2674 ** Clean out and delete the BtShared object.
2675 */
2676 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002677 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002678 if( pBt->xFreeSchema && pBt->pSchema ){
2679 pBt->xFreeSchema(pBt->pSchema);
2680 }
drhb9755982010-07-24 16:34:37 +00002681 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002682 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002683 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002684 }
2685
drhe53831d2007-08-17 01:14:38 +00002686#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002687 assert( p->wantToLock==0 );
2688 assert( p->locked==0 );
2689 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2690 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002691#endif
2692
drhe53831d2007-08-17 01:14:38 +00002693 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002694 return SQLITE_OK;
2695}
2696
2697/*
drh9b0cf342015-11-12 14:57:19 +00002698** Change the "soft" limit on the number of pages in the cache.
2699** Unused and unmodified pages will be recycled when the number of
2700** pages in the cache exceeds this soft limit. But the size of the
2701** cache is allowed to grow larger than this limit if it contains
2702** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002703*/
danielk1977aef0bf62005-12-30 16:28:01 +00002704int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2705 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002706 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002707 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002708 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002709 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002710 return SQLITE_OK;
2711}
2712
drh9b0cf342015-11-12 14:57:19 +00002713/*
2714** Change the "spill" limit on the number of pages in the cache.
2715** If the number of pages exceeds this limit during a write transaction,
2716** the pager might attempt to "spill" pages to the journal early in
2717** order to free up memory.
2718**
2719** The value returned is the current spill size. If zero is passed
2720** as an argument, no changes are made to the spill size setting, so
2721** using mxPage of 0 is a way to query the current spill size.
2722*/
2723int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2724 BtShared *pBt = p->pBt;
2725 int res;
2726 assert( sqlite3_mutex_held(p->db->mutex) );
2727 sqlite3BtreeEnter(p);
2728 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2729 sqlite3BtreeLeave(p);
2730 return res;
2731}
2732
drh18c7e402014-03-14 11:46:10 +00002733#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002734/*
dan5d8a1372013-03-19 19:28:06 +00002735** Change the limit on the amount of the database file that may be
2736** memory mapped.
2737*/
drh9b4c59f2013-04-15 17:03:42 +00002738int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002739 BtShared *pBt = p->pBt;
2740 assert( sqlite3_mutex_held(p->db->mutex) );
2741 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002742 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002743 sqlite3BtreeLeave(p);
2744 return SQLITE_OK;
2745}
drh18c7e402014-03-14 11:46:10 +00002746#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002747
drh306dc212001-05-21 13:45:10 +00002748/*
drh973b6e32003-02-12 14:09:42 +00002749** Change the way data is synced to disk in order to increase or decrease
2750** how well the database resists damage due to OS crashes and power
2751** failures. Level 1 is the same as asynchronous (no syncs() occur and
2752** there is a high probability of damage) Level 2 is the default. There
2753** is a very low but non-zero probability of damage. Level 3 reduces the
2754** probability of damage to near zero but with a write performance reduction.
2755*/
danielk197793758c82005-01-21 08:13:14 +00002756#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002757int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002758 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002759 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002760){
danielk1977aef0bf62005-12-30 16:28:01 +00002761 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002762 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002763 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002764 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002765 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002766 return SQLITE_OK;
2767}
danielk197793758c82005-01-21 08:13:14 +00002768#endif
drh973b6e32003-02-12 14:09:42 +00002769
drh2c8997b2005-08-27 16:36:48 +00002770/*
drh90f5ecb2004-07-22 01:19:35 +00002771** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002772** Or, if the page size has already been fixed, return SQLITE_READONLY
2773** without changing anything.
drh06f50212004-11-02 14:24:33 +00002774**
2775** The page size must be a power of 2 between 512 and 65536. If the page
2776** size supplied does not meet this constraint then the page size is not
2777** changed.
2778**
2779** Page sizes are constrained to be a power of two so that the region
2780** of the database file used for locking (beginning at PENDING_BYTE,
2781** the first byte past the 1GB boundary, 0x40000000) needs to occur
2782** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002783**
2784** If parameter nReserve is less than zero, then the number of reserved
2785** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002786**
drhc9166342012-01-05 23:32:06 +00002787** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002788** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002789*/
drhce4869f2009-04-02 20:16:58 +00002790int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002791 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002792 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002793 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002794 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002795#if SQLITE_HAS_CODEC
2796 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2797#endif
drhc9166342012-01-05 23:32:06 +00002798 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002799 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002800 return SQLITE_READONLY;
2801 }
2802 if( nReserve<0 ){
2803 nReserve = pBt->pageSize - pBt->usableSize;
2804 }
drhf49661a2008-12-10 16:45:50 +00002805 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002806 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2807 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002808 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002809 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002810 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002811 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002812 }
drhfa9601a2009-06-18 17:22:39 +00002813 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002814 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002815 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002816 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002817 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002818}
2819
2820/*
2821** Return the currently defined page size
2822*/
danielk1977aef0bf62005-12-30 16:28:01 +00002823int sqlite3BtreeGetPageSize(Btree *p){
2824 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002825}
drh7f751222009-03-17 22:33:00 +00002826
dan0094f372012-09-28 20:23:42 +00002827/*
2828** This function is similar to sqlite3BtreeGetReserve(), except that it
2829** may only be called if it is guaranteed that the b-tree mutex is already
2830** held.
2831**
2832** This is useful in one special case in the backup API code where it is
2833** known that the shared b-tree mutex is held, but the mutex on the
2834** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2835** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002836** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002837*/
2838int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002839 int n;
dan0094f372012-09-28 20:23:42 +00002840 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002841 n = p->pBt->pageSize - p->pBt->usableSize;
2842 return n;
dan0094f372012-09-28 20:23:42 +00002843}
2844
drh7f751222009-03-17 22:33:00 +00002845/*
2846** Return the number of bytes of space at the end of every page that
2847** are intentually left unused. This is the "reserved" space that is
2848** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002849**
2850** If SQLITE_HAS_MUTEX is defined then the number returned is the
2851** greater of the current reserved space and the maximum requested
2852** reserve space.
drh7f751222009-03-17 22:33:00 +00002853*/
drhad0961b2015-02-21 00:19:25 +00002854int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002855 int n;
2856 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002857 n = sqlite3BtreeGetReserveNoMutex(p);
2858#ifdef SQLITE_HAS_CODEC
2859 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2860#endif
drhd677b3d2007-08-20 22:48:41 +00002861 sqlite3BtreeLeave(p);
2862 return n;
drh2011d5f2004-07-22 02:40:37 +00002863}
drhf8e632b2007-05-08 14:51:36 +00002864
drhad0961b2015-02-21 00:19:25 +00002865
drhf8e632b2007-05-08 14:51:36 +00002866/*
2867** Set the maximum page count for a database if mxPage is positive.
2868** No changes are made if mxPage is 0 or negative.
2869** Regardless of the value of mxPage, return the maximum page count.
2870*/
2871int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002872 int n;
2873 sqlite3BtreeEnter(p);
2874 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2875 sqlite3BtreeLeave(p);
2876 return n;
drhf8e632b2007-05-08 14:51:36 +00002877}
drh5b47efa2010-02-12 18:18:39 +00002878
2879/*
drha5907a82017-06-19 11:44:22 +00002880** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2881**
2882** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2883** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2884** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2885** newFlag==(-1) No changes
2886**
2887** This routine acts as a query if newFlag is less than zero
2888**
2889** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2890** freelist leaf pages are not written back to the database. Thus in-page
2891** deleted content is cleared, but freelist deleted content is not.
2892**
2893** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2894** that freelist leaf pages are written back into the database, increasing
2895** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002896*/
2897int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2898 int b;
drhaf034ed2010-02-12 19:46:26 +00002899 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002900 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002901 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2902 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002903 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002904 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2905 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2906 }
2907 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002908 sqlite3BtreeLeave(p);
2909 return b;
2910}
drh90f5ecb2004-07-22 01:19:35 +00002911
2912/*
danielk1977951af802004-11-05 15:45:09 +00002913** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2914** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2915** is disabled. The default value for the auto-vacuum property is
2916** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2917*/
danielk1977aef0bf62005-12-30 16:28:01 +00002918int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002919#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002920 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002921#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002922 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002923 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002924 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002925
2926 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002927 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002928 rc = SQLITE_READONLY;
2929 }else{
drh076d4662009-02-18 20:31:18 +00002930 pBt->autoVacuum = av ?1:0;
2931 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002932 }
drhd677b3d2007-08-20 22:48:41 +00002933 sqlite3BtreeLeave(p);
2934 return rc;
danielk1977951af802004-11-05 15:45:09 +00002935#endif
2936}
2937
2938/*
2939** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2940** enabled 1 is returned. Otherwise 0.
2941*/
danielk1977aef0bf62005-12-30 16:28:01 +00002942int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002943#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002944 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002945#else
drhd677b3d2007-08-20 22:48:41 +00002946 int rc;
2947 sqlite3BtreeEnter(p);
2948 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002949 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2950 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2951 BTREE_AUTOVACUUM_INCR
2952 );
drhd677b3d2007-08-20 22:48:41 +00002953 sqlite3BtreeLeave(p);
2954 return rc;
danielk1977951af802004-11-05 15:45:09 +00002955#endif
2956}
2957
danf5da7db2017-03-16 18:14:39 +00002958/*
2959** If the user has not set the safety-level for this database connection
2960** using "PRAGMA synchronous", and if the safety-level is not already
2961** set to the value passed to this function as the second parameter,
2962** set it so.
2963*/
drh2ed57372017-10-05 20:57:38 +00002964#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2965 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00002966static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2967 sqlite3 *db;
2968 Db *pDb;
2969 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2970 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2971 if( pDb->bSyncSet==0
2972 && pDb->safety_level!=safety_level
2973 && pDb!=&db->aDb[1]
2974 ){
2975 pDb->safety_level = safety_level;
2976 sqlite3PagerSetFlags(pBt->pPager,
2977 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2978 }
2979 }
2980}
2981#else
danfc8f4b62017-03-16 18:54:42 +00002982# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002983#endif
danielk1977951af802004-11-05 15:45:09 +00002984
drh0314cf32018-04-28 01:27:09 +00002985/* Forward declaration */
2986static int newDatabase(BtShared*);
2987
2988
danielk1977951af802004-11-05 15:45:09 +00002989/*
drha34b6762004-05-07 13:30:42 +00002990** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002991** also acquire a readlock on that file.
2992**
2993** SQLITE_OK is returned on success. If the file is not a
2994** well-formed database file, then SQLITE_CORRUPT is returned.
2995** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002996** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002997*/
danielk1977aef0bf62005-12-30 16:28:01 +00002998static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002999 int rc; /* Result code from subfunctions */
3000 MemPage *pPage1; /* Page 1 of the database file */
3001 int nPage; /* Number of pages in the database */
3002 int nPageFile = 0; /* Number of pages in the database file */
3003 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003004
drh1fee73e2007-08-29 04:00:57 +00003005 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003006 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003007 rc = sqlite3PagerSharedLock(pBt->pPager);
3008 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00003009 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003010 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003011
3012 /* Do some checking to help insure the file we opened really is
3013 ** a valid database file.
3014 */
drhc2a4bab2010-04-02 12:46:45 +00003015 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00003016 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003017 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003018 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003019 }
drh0314cf32018-04-28 01:27:09 +00003020 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3021 nPage = 0;
3022 }
drh97b59a52010-03-31 02:31:33 +00003023 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003024 u32 pageSize;
3025 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003026 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003027 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003028 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3029 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3030 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003031 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003032 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003033 }
dan5cf53532010-05-01 16:40:20 +00003034
3035#ifdef SQLITE_OMIT_WAL
3036 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003037 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003038 }
3039 if( page1[19]>1 ){
3040 goto page1_init_failed;
3041 }
3042#else
dane04dc882010-04-20 18:53:15 +00003043 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003044 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003045 }
dane04dc882010-04-20 18:53:15 +00003046 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003047 goto page1_init_failed;
3048 }
drhe5ae5732008-06-15 02:51:47 +00003049
dana470aeb2010-04-21 11:43:38 +00003050 /* If the write version is set to 2, this database should be accessed
3051 ** in WAL mode. If the log is not already open, open it now. Then
3052 ** return SQLITE_OK and return without populating BtShared.pPage1.
3053 ** The caller detects this and calls this function again. This is
3054 ** required as the version of page 1 currently in the page1 buffer
3055 ** may not be the latest version - there may be a newer one in the log
3056 ** file.
3057 */
drhc9166342012-01-05 23:32:06 +00003058 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003059 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003060 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003061 if( rc!=SQLITE_OK ){
3062 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003063 }else{
danf5da7db2017-03-16 18:14:39 +00003064 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003065 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003066 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003067 return SQLITE_OK;
3068 }
dane04dc882010-04-20 18:53:15 +00003069 }
dan8b5444b2010-04-27 14:37:47 +00003070 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003071 }else{
3072 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003073 }
dan5cf53532010-05-01 16:40:20 +00003074#endif
dane04dc882010-04-20 18:53:15 +00003075
drh113762a2014-11-19 16:36:25 +00003076 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3077 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3078 **
drhe5ae5732008-06-15 02:51:47 +00003079 ** The original design allowed these amounts to vary, but as of
3080 ** version 3.6.0, we require them to be fixed.
3081 */
3082 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3083 goto page1_init_failed;
3084 }
drh113762a2014-11-19 16:36:25 +00003085 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3086 ** determined by the 2-byte integer located at an offset of 16 bytes from
3087 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003088 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003089 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3090 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003091 if( ((pageSize-1)&pageSize)!=0
3092 || pageSize>SQLITE_MAX_PAGE_SIZE
3093 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003094 ){
drh07d183d2005-05-01 22:52:42 +00003095 goto page1_init_failed;
3096 }
3097 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003098 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3099 ** integer at offset 20 is the number of bytes of space at the end of
3100 ** each page to reserve for extensions.
3101 **
3102 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3103 ** determined by the one-byte unsigned integer found at an offset of 20
3104 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003105 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003106 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003107 /* After reading the first page of the database assuming a page size
3108 ** of BtShared.pageSize, we have discovered that the page-size is
3109 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3110 ** zero and return SQLITE_OK. The caller will call this function
3111 ** again with the correct page-size.
3112 */
drh3908fe92017-09-01 14:50:19 +00003113 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003114 pBt->usableSize = usableSize;
3115 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003116 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003117 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3118 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003119 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003120 }
drh169dd922017-06-26 13:57:49 +00003121 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003122 rc = SQLITE_CORRUPT_BKPT;
3123 goto page1_init_failed;
3124 }
drh113762a2014-11-19 16:36:25 +00003125 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3126 ** be less than 480. In other words, if the page size is 512, then the
3127 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003128 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003129 goto page1_init_failed;
3130 }
drh43b18e12010-08-17 19:40:08 +00003131 pBt->pageSize = pageSize;
3132 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003133#ifndef SQLITE_OMIT_AUTOVACUUM
3134 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003135 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003136#endif
drh306dc212001-05-21 13:45:10 +00003137 }
drhb6f41482004-05-14 01:58:11 +00003138
3139 /* maxLocal is the maximum amount of payload to store locally for
3140 ** a cell. Make sure it is small enough so that at least minFanout
3141 ** cells can will fit on one page. We assume a 10-byte page header.
3142 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003143 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003144 ** 4-byte child pointer
3145 ** 9-byte nKey value
3146 ** 4-byte nData value
3147 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003148 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003149 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3150 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003151 */
shaneh1df2db72010-08-18 02:28:48 +00003152 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3153 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3154 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3155 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003156 if( pBt->maxLocal>127 ){
3157 pBt->max1bytePayload = 127;
3158 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003159 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003160 }
drh2e38c322004-09-03 18:38:44 +00003161 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003162 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003163 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003164 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003165
drh72f82862001-05-24 21:06:34 +00003166page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003167 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003168 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003169 return rc;
drh306dc212001-05-21 13:45:10 +00003170}
3171
drh85ec3b62013-05-14 23:12:06 +00003172#ifndef NDEBUG
3173/*
3174** Return the number of cursors open on pBt. This is for use
3175** in assert() expressions, so it is only compiled if NDEBUG is not
3176** defined.
3177**
3178** Only write cursors are counted if wrOnly is true. If wrOnly is
3179** false then all cursors are counted.
3180**
3181** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003182** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003183** have been tripped into the CURSOR_FAULT state are not counted.
3184*/
3185static int countValidCursors(BtShared *pBt, int wrOnly){
3186 BtCursor *pCur;
3187 int r = 0;
3188 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003189 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3190 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003191 }
3192 return r;
3193}
3194#endif
3195
drh306dc212001-05-21 13:45:10 +00003196/*
drhb8ca3072001-12-05 00:21:20 +00003197** If there are no outstanding cursors and we are not in the middle
3198** of a transaction but there is a read lock on the database, then
3199** this routine unrefs the first page of the database file which
3200** has the effect of releasing the read lock.
3201**
drhb8ca3072001-12-05 00:21:20 +00003202** If there is a transaction in progress, this routine is a no-op.
3203*/
danielk1977aef0bf62005-12-30 16:28:01 +00003204static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003205 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003206 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003207 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003208 MemPage *pPage1 = pBt->pPage1;
3209 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003210 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003211 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003212 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003213 }
3214}
3215
3216/*
drhe39f2f92009-07-23 01:43:59 +00003217** If pBt points to an empty file then convert that empty file
3218** into a new empty database by initializing the first page of
3219** the database.
drh8b2f49b2001-06-08 00:21:52 +00003220*/
danielk1977aef0bf62005-12-30 16:28:01 +00003221static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003222 MemPage *pP1;
3223 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003224 int rc;
drhd677b3d2007-08-20 22:48:41 +00003225
drh1fee73e2007-08-29 04:00:57 +00003226 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003227 if( pBt->nPage>0 ){
3228 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003229 }
drh3aac2dd2004-04-26 14:10:20 +00003230 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003231 assert( pP1!=0 );
3232 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003233 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003234 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003235 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3236 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003237 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3238 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003239 data[18] = 1;
3240 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003241 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3242 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003243 data[21] = 64;
3244 data[22] = 32;
3245 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003246 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003247 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003248 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003249#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003250 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003251 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003252 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003253 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003254#endif
drhdd3cd972010-03-27 17:12:36 +00003255 pBt->nPage = 1;
3256 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003257 return SQLITE_OK;
3258}
3259
3260/*
danb483eba2012-10-13 19:58:11 +00003261** Initialize the first page of the database file (creating a database
3262** consisting of a single page and no schema objects). Return SQLITE_OK
3263** if successful, or an SQLite error code otherwise.
3264*/
3265int sqlite3BtreeNewDb(Btree *p){
3266 int rc;
3267 sqlite3BtreeEnter(p);
3268 p->pBt->nPage = 0;
3269 rc = newDatabase(p->pBt);
3270 sqlite3BtreeLeave(p);
3271 return rc;
3272}
3273
3274/*
danielk1977ee5741e2004-05-31 10:01:34 +00003275** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003276** is started if the second argument is nonzero, otherwise a read-
3277** transaction. If the second argument is 2 or more and exclusive
3278** transaction is started, meaning that no other process is allowed
3279** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003280** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003281** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003282**
danielk1977ee5741e2004-05-31 10:01:34 +00003283** A write-transaction must be started before attempting any
3284** changes to the database. None of the following routines
3285** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003286**
drh23e11ca2004-05-04 17:27:28 +00003287** sqlite3BtreeCreateTable()
3288** sqlite3BtreeCreateIndex()
3289** sqlite3BtreeClearTable()
3290** sqlite3BtreeDropTable()
3291** sqlite3BtreeInsert()
3292** sqlite3BtreeDelete()
3293** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003294**
drhb8ef32c2005-03-14 02:01:49 +00003295** If an initial attempt to acquire the lock fails because of lock contention
3296** and the database was previously unlocked, then invoke the busy handler
3297** if there is one. But if there was previously a read-lock, do not
3298** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3299** returned when there is already a read-lock in order to avoid a deadlock.
3300**
3301** Suppose there are two processes A and B. A has a read lock and B has
3302** a reserved lock. B tries to promote to exclusive but is blocked because
3303** of A's read lock. A tries to promote to reserved but is blocked by B.
3304** One or the other of the two processes must give way or there can be
3305** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3306** when A already has a read lock, we encourage A to give up and let B
3307** proceed.
drha059ad02001-04-17 20:09:11 +00003308*/
danielk1977aef0bf62005-12-30 16:28:01 +00003309int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3310 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003311 int rc = SQLITE_OK;
3312
drhd677b3d2007-08-20 22:48:41 +00003313 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003314 btreeIntegrity(p);
3315
danielk1977ee5741e2004-05-31 10:01:34 +00003316 /* If the btree is already in a write-transaction, or it
3317 ** is already in a read-transaction and a read-transaction
3318 ** is requested, this is a no-op.
3319 */
danielk1977aef0bf62005-12-30 16:28:01 +00003320 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003321 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003322 }
dan56c517a2013-09-26 11:04:33 +00003323 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003324
3325 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003326 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003327 rc = SQLITE_READONLY;
3328 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003329 }
3330
danielk1977404ca072009-03-16 13:19:36 +00003331#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003332 {
3333 sqlite3 *pBlock = 0;
3334 /* If another database handle has already opened a write transaction
3335 ** on this shared-btree structure and a second write transaction is
3336 ** requested, return SQLITE_LOCKED.
3337 */
3338 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3339 || (pBt->btsFlags & BTS_PENDING)!=0
3340 ){
3341 pBlock = pBt->pWriter->db;
3342 }else if( wrflag>1 ){
3343 BtLock *pIter;
3344 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3345 if( pIter->pBtree!=p ){
3346 pBlock = pIter->pBtree->db;
3347 break;
3348 }
danielk1977641b0f42007-12-21 04:47:25 +00003349 }
3350 }
drh5a1fb182016-01-08 19:34:39 +00003351 if( pBlock ){
3352 sqlite3ConnectionBlocked(p->db, pBlock);
3353 rc = SQLITE_LOCKED_SHAREDCACHE;
3354 goto trans_begun;
3355 }
danielk1977404ca072009-03-16 13:19:36 +00003356 }
danielk1977641b0f42007-12-21 04:47:25 +00003357#endif
3358
danielk1977602b4662009-07-02 07:47:33 +00003359 /* Any read-only or read-write transaction implies a read-lock on
3360 ** page 1. So if some other shared-cache client already has a write-lock
3361 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003362 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3363 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003364
drhc9166342012-01-05 23:32:06 +00003365 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3366 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003367 do {
danielk1977295dc102009-04-01 19:07:03 +00003368 /* Call lockBtree() until either pBt->pPage1 is populated or
3369 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3370 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3371 ** reading page 1 it discovers that the page-size of the database
3372 ** file is not pBt->pageSize. In this case lockBtree() will update
3373 ** pBt->pageSize to the page-size of the file on disk.
3374 */
3375 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003376
drhb8ef32c2005-03-14 02:01:49 +00003377 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003378 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003379 rc = SQLITE_READONLY;
3380 }else{
danielk1977d8293352009-04-30 09:10:37 +00003381 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003382 if( rc==SQLITE_OK ){
3383 rc = newDatabase(pBt);
3384 }
drhb8ef32c2005-03-14 02:01:49 +00003385 }
3386 }
3387
danielk1977bd434552009-03-18 10:33:00 +00003388 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003389 unlockBtreeIfUnused(pBt);
3390 }
danf9b76712010-06-01 14:12:45 +00003391 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003392 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003393 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003394
3395 if( rc==SQLITE_OK ){
3396 if( p->inTrans==TRANS_NONE ){
3397 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003398#ifndef SQLITE_OMIT_SHARED_CACHE
3399 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003400 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003401 p->lock.eLock = READ_LOCK;
3402 p->lock.pNext = pBt->pLock;
3403 pBt->pLock = &p->lock;
3404 }
3405#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003406 }
3407 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3408 if( p->inTrans>pBt->inTransaction ){
3409 pBt->inTransaction = p->inTrans;
3410 }
danielk1977404ca072009-03-16 13:19:36 +00003411 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003412 MemPage *pPage1 = pBt->pPage1;
3413#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003414 assert( !pBt->pWriter );
3415 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003416 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3417 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003418#endif
dan59257dc2010-08-04 11:34:31 +00003419
3420 /* If the db-size header field is incorrect (as it may be if an old
3421 ** client has been writing the database file), update it now. Doing
3422 ** this sooner rather than later means the database size can safely
3423 ** re-read the database size from page 1 if a savepoint or transaction
3424 ** rollback occurs within the transaction.
3425 */
3426 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3427 rc = sqlite3PagerWrite(pPage1->pDbPage);
3428 if( rc==SQLITE_OK ){
3429 put4byte(&pPage1->aData[28], pBt->nPage);
3430 }
3431 }
3432 }
danielk1977aef0bf62005-12-30 16:28:01 +00003433 }
3434
drhd677b3d2007-08-20 22:48:41 +00003435
3436trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003437 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003438 /* This call makes sure that the pager has the correct number of
3439 ** open savepoints. If the second parameter is greater than 0 and
3440 ** the sub-journal is not already open, then it will be opened here.
3441 */
danielk1977fd7f0452008-12-17 17:30:26 +00003442 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3443 }
danielk197712dd5492008-12-18 15:45:07 +00003444
danielk1977aef0bf62005-12-30 16:28:01 +00003445 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003446 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003447 return rc;
drha059ad02001-04-17 20:09:11 +00003448}
3449
danielk1977687566d2004-11-02 12:56:41 +00003450#ifndef SQLITE_OMIT_AUTOVACUUM
3451
3452/*
3453** Set the pointer-map entries for all children of page pPage. Also, if
3454** pPage contains cells that point to overflow pages, set the pointer
3455** map entries for the overflow pages as well.
3456*/
3457static int setChildPtrmaps(MemPage *pPage){
3458 int i; /* Counter variable */
3459 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003460 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003461 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003462 Pgno pgno = pPage->pgno;
3463
drh1fee73e2007-08-29 04:00:57 +00003464 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003465 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003466 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003467 nCell = pPage->nCell;
3468
3469 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003470 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003471
drh98add2e2009-07-20 17:11:49 +00003472 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003473
danielk1977687566d2004-11-02 12:56:41 +00003474 if( !pPage->leaf ){
3475 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003476 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003477 }
3478 }
3479
3480 if( !pPage->leaf ){
3481 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003482 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003483 }
3484
danielk1977687566d2004-11-02 12:56:41 +00003485 return rc;
3486}
3487
3488/*
drhf3aed592009-07-08 18:12:49 +00003489** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3490** that it points to iTo. Parameter eType describes the type of pointer to
3491** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003492**
3493** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3494** page of pPage.
3495**
3496** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3497** page pointed to by one of the cells on pPage.
3498**
3499** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3500** overflow page in the list.
3501*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003502static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003503 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003504 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003505 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003506 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003507 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003508 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003509 }
danielk1977f78fc082004-11-02 14:40:32 +00003510 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003511 }else{
danielk1977687566d2004-11-02 12:56:41 +00003512 int i;
3513 int nCell;
drha1f75d92015-05-24 10:18:12 +00003514 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003515
drh14e845a2017-05-25 21:35:56 +00003516 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003517 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003518 nCell = pPage->nCell;
3519
danielk1977687566d2004-11-02 12:56:41 +00003520 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003521 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003522 if( eType==PTRMAP_OVERFLOW1 ){
3523 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003524 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003525 if( info.nLocal<info.nPayload ){
3526 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003527 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003528 }
3529 if( iFrom==get4byte(pCell+info.nSize-4) ){
3530 put4byte(pCell+info.nSize-4, iTo);
3531 break;
3532 }
danielk1977687566d2004-11-02 12:56:41 +00003533 }
3534 }else{
3535 if( get4byte(pCell)==iFrom ){
3536 put4byte(pCell, iTo);
3537 break;
3538 }
3539 }
3540 }
3541
3542 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003543 if( eType!=PTRMAP_BTREE ||
3544 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003545 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003546 }
danielk1977687566d2004-11-02 12:56:41 +00003547 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3548 }
danielk1977687566d2004-11-02 12:56:41 +00003549 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003550 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003551}
3552
danielk1977003ba062004-11-04 02:57:33 +00003553
danielk19777701e812005-01-10 12:59:51 +00003554/*
3555** Move the open database page pDbPage to location iFreePage in the
3556** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003557**
3558** The isCommit flag indicates that there is no need to remember that
3559** the journal needs to be sync()ed before database page pDbPage->pgno
3560** can be written to. The caller has already promised not to write to that
3561** page.
danielk19777701e812005-01-10 12:59:51 +00003562*/
danielk1977003ba062004-11-04 02:57:33 +00003563static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003564 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003565 MemPage *pDbPage, /* Open page to move */
3566 u8 eType, /* Pointer map 'type' entry for pDbPage */
3567 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003568 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003569 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003570){
3571 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3572 Pgno iDbPage = pDbPage->pgno;
3573 Pager *pPager = pBt->pPager;
3574 int rc;
3575
danielk1977a0bf2652004-11-04 14:30:04 +00003576 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3577 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003578 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003579 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003580
drh85b623f2007-12-13 21:54:09 +00003581 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003582 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3583 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003584 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003585 if( rc!=SQLITE_OK ){
3586 return rc;
3587 }
3588 pDbPage->pgno = iFreePage;
3589
3590 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3591 ** that point to overflow pages. The pointer map entries for all these
3592 ** pages need to be changed.
3593 **
3594 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3595 ** pointer to a subsequent overflow page. If this is the case, then
3596 ** the pointer map needs to be updated for the subsequent overflow page.
3597 */
danielk1977a0bf2652004-11-04 14:30:04 +00003598 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003599 rc = setChildPtrmaps(pDbPage);
3600 if( rc!=SQLITE_OK ){
3601 return rc;
3602 }
3603 }else{
3604 Pgno nextOvfl = get4byte(pDbPage->aData);
3605 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003606 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003607 if( rc!=SQLITE_OK ){
3608 return rc;
3609 }
3610 }
3611 }
3612
3613 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3614 ** that it points at iFreePage. Also fix the pointer map entry for
3615 ** iPtrPage.
3616 */
danielk1977a0bf2652004-11-04 14:30:04 +00003617 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00003618 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003619 if( rc!=SQLITE_OK ){
3620 return rc;
3621 }
danielk19773b8a05f2007-03-19 17:44:26 +00003622 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003623 if( rc!=SQLITE_OK ){
3624 releasePage(pPtrPage);
3625 return rc;
3626 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003627 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003628 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003629 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003630 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003631 }
danielk1977003ba062004-11-04 02:57:33 +00003632 }
danielk1977003ba062004-11-04 02:57:33 +00003633 return rc;
3634}
3635
danielk1977dddbcdc2007-04-26 14:42:34 +00003636/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003637static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003638
3639/*
dan51f0b6d2013-02-22 20:16:34 +00003640** Perform a single step of an incremental-vacuum. If successful, return
3641** SQLITE_OK. If there is no work to do (and therefore no point in
3642** calling this function again), return SQLITE_DONE. Or, if an error
3643** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003644**
peter.d.reid60ec9142014-09-06 16:39:46 +00003645** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003646** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003647**
dan51f0b6d2013-02-22 20:16:34 +00003648** Parameter nFin is the number of pages that this database would contain
3649** were this function called until it returns SQLITE_DONE.
3650**
3651** If the bCommit parameter is non-zero, this function assumes that the
3652** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003653** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003654** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003655*/
dan51f0b6d2013-02-22 20:16:34 +00003656static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003657 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003658 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003659
drh1fee73e2007-08-29 04:00:57 +00003660 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003661 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003662
3663 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003664 u8 eType;
3665 Pgno iPtrPage;
3666
3667 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003668 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003669 return SQLITE_DONE;
3670 }
3671
3672 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3673 if( rc!=SQLITE_OK ){
3674 return rc;
3675 }
3676 if( eType==PTRMAP_ROOTPAGE ){
3677 return SQLITE_CORRUPT_BKPT;
3678 }
3679
3680 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003681 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003682 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003683 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003684 ** truncated to zero after this function returns, so it doesn't
3685 ** matter if it still contains some garbage entries.
3686 */
3687 Pgno iFreePg;
3688 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003689 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003690 if( rc!=SQLITE_OK ){
3691 return rc;
3692 }
3693 assert( iFreePg==iLastPg );
3694 releasePage(pFreePg);
3695 }
3696 } else {
3697 Pgno iFreePg; /* Index of free page to move pLastPg to */
3698 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003699 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3700 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003701
danielk197730548662009-07-09 05:07:37 +00003702 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003703 if( rc!=SQLITE_OK ){
3704 return rc;
3705 }
3706
dan51f0b6d2013-02-22 20:16:34 +00003707 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003708 ** is swapped with the first free page pulled off the free list.
3709 **
dan51f0b6d2013-02-22 20:16:34 +00003710 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003711 ** looping until a free-page located within the first nFin pages
3712 ** of the file is found.
3713 */
dan51f0b6d2013-02-22 20:16:34 +00003714 if( bCommit==0 ){
3715 eMode = BTALLOC_LE;
3716 iNear = nFin;
3717 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003718 do {
3719 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003720 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003721 if( rc!=SQLITE_OK ){
3722 releasePage(pLastPg);
3723 return rc;
3724 }
3725 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003726 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003727 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003728
dane1df4e32013-03-05 11:27:04 +00003729 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003730 releasePage(pLastPg);
3731 if( rc!=SQLITE_OK ){
3732 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003733 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003734 }
3735 }
3736
dan51f0b6d2013-02-22 20:16:34 +00003737 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003738 do {
danielk19773460d192008-12-27 15:23:13 +00003739 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003740 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3741 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003742 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003743 }
3744 return SQLITE_OK;
3745}
3746
3747/*
dan51f0b6d2013-02-22 20:16:34 +00003748** The database opened by the first argument is an auto-vacuum database
3749** nOrig pages in size containing nFree free pages. Return the expected
3750** size of the database in pages following an auto-vacuum operation.
3751*/
3752static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3753 int nEntry; /* Number of entries on one ptrmap page */
3754 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3755 Pgno nFin; /* Return value */
3756
3757 nEntry = pBt->usableSize/5;
3758 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3759 nFin = nOrig - nFree - nPtrmap;
3760 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3761 nFin--;
3762 }
3763 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3764 nFin--;
3765 }
dan51f0b6d2013-02-22 20:16:34 +00003766
3767 return nFin;
3768}
3769
3770/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003771** A write-transaction must be opened before calling this function.
3772** It performs a single unit of work towards an incremental vacuum.
3773**
3774** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003775** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003776** SQLITE_OK is returned. Otherwise an SQLite error code.
3777*/
3778int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003779 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003780 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003781
3782 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003783 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3784 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003785 rc = SQLITE_DONE;
3786 }else{
dan51f0b6d2013-02-22 20:16:34 +00003787 Pgno nOrig = btreePagecount(pBt);
3788 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3789 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3790
dan91384712013-02-24 11:50:43 +00003791 if( nOrig<nFin ){
3792 rc = SQLITE_CORRUPT_BKPT;
3793 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003794 rc = saveAllCursors(pBt, 0, 0);
3795 if( rc==SQLITE_OK ){
3796 invalidateAllOverflowCache(pBt);
3797 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3798 }
dan51f0b6d2013-02-22 20:16:34 +00003799 if( rc==SQLITE_OK ){
3800 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3801 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3802 }
3803 }else{
3804 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003805 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003806 }
drhd677b3d2007-08-20 22:48:41 +00003807 sqlite3BtreeLeave(p);
3808 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003809}
3810
3811/*
danielk19773b8a05f2007-03-19 17:44:26 +00003812** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003813** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003814**
3815** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3816** the database file should be truncated to during the commit process.
3817** i.e. the database has been reorganized so that only the first *pnTrunc
3818** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003819*/
danielk19773460d192008-12-27 15:23:13 +00003820static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003821 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003822 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003823 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003824
drh1fee73e2007-08-29 04:00:57 +00003825 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003826 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003827 assert(pBt->autoVacuum);
3828 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003829 Pgno nFin; /* Number of pages in database after autovacuuming */
3830 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003831 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003832 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003833
drhb1299152010-03-30 22:58:33 +00003834 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003835 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3836 /* It is not possible to create a database for which the final page
3837 ** is either a pointer-map page or the pending-byte page. If one
3838 ** is encountered, this indicates corruption.
3839 */
danielk19773460d192008-12-27 15:23:13 +00003840 return SQLITE_CORRUPT_BKPT;
3841 }
danielk1977ef165ce2009-04-06 17:50:03 +00003842
danielk19773460d192008-12-27 15:23:13 +00003843 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003844 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003845 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003846 if( nFin<nOrig ){
3847 rc = saveAllCursors(pBt, 0, 0);
3848 }
danielk19773460d192008-12-27 15:23:13 +00003849 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003850 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003851 }
danielk19773460d192008-12-27 15:23:13 +00003852 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003853 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3854 put4byte(&pBt->pPage1->aData[32], 0);
3855 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003856 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003857 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003858 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003859 }
3860 if( rc!=SQLITE_OK ){
3861 sqlite3PagerRollback(pPager);
3862 }
danielk1977687566d2004-11-02 12:56:41 +00003863 }
3864
dan0aed84d2013-03-26 14:16:20 +00003865 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003866 return rc;
3867}
danielk1977dddbcdc2007-04-26 14:42:34 +00003868
danielk1977a50d9aa2009-06-08 14:49:45 +00003869#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3870# define setChildPtrmaps(x) SQLITE_OK
3871#endif
danielk1977687566d2004-11-02 12:56:41 +00003872
3873/*
drh80e35f42007-03-30 14:06:34 +00003874** This routine does the first phase of a two-phase commit. This routine
3875** causes a rollback journal to be created (if it does not already exist)
3876** and populated with enough information so that if a power loss occurs
3877** the database can be restored to its original state by playing back
3878** the journal. Then the contents of the journal are flushed out to
3879** the disk. After the journal is safely on oxide, the changes to the
3880** database are written into the database file and flushed to oxide.
3881** At the end of this call, the rollback journal still exists on the
3882** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003883** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003884** commit process.
3885**
3886** This call is a no-op if no write-transaction is currently active on pBt.
3887**
3888** Otherwise, sync the database file for the btree pBt. zMaster points to
3889** the name of a master journal file that should be written into the
3890** individual journal file, or is NULL, indicating no master journal file
3891** (single database transaction).
3892**
3893** When this is called, the master journal should already have been
3894** created, populated with this journal pointer and synced to disk.
3895**
3896** Once this is routine has returned, the only thing required to commit
3897** the write-transaction for this database file is to delete the journal.
3898*/
3899int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3900 int rc = SQLITE_OK;
3901 if( p->inTrans==TRANS_WRITE ){
3902 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003903 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003904#ifndef SQLITE_OMIT_AUTOVACUUM
3905 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003906 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003907 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003908 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003909 return rc;
3910 }
3911 }
danbc1a3c62013-02-23 16:40:46 +00003912 if( pBt->bDoTruncate ){
3913 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3914 }
drh80e35f42007-03-30 14:06:34 +00003915#endif
drh49b9d332009-01-02 18:10:42 +00003916 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003917 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003918 }
3919 return rc;
3920}
3921
3922/*
danielk197794b30732009-07-02 17:21:57 +00003923** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3924** at the conclusion of a transaction.
3925*/
3926static void btreeEndTransaction(Btree *p){
3927 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003928 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003929 assert( sqlite3BtreeHoldsMutex(p) );
3930
danbc1a3c62013-02-23 16:40:46 +00003931#ifndef SQLITE_OMIT_AUTOVACUUM
3932 pBt->bDoTruncate = 0;
3933#endif
danc0537fe2013-06-28 19:41:43 +00003934 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003935 /* If there are other active statements that belong to this database
3936 ** handle, downgrade to a read-only transaction. The other statements
3937 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003938 downgradeAllSharedCacheTableLocks(p);
3939 p->inTrans = TRANS_READ;
3940 }else{
3941 /* If the handle had any kind of transaction open, decrement the
3942 ** transaction count of the shared btree. If the transaction count
3943 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3944 ** call below will unlock the pager. */
3945 if( p->inTrans!=TRANS_NONE ){
3946 clearAllSharedCacheTableLocks(p);
3947 pBt->nTransaction--;
3948 if( 0==pBt->nTransaction ){
3949 pBt->inTransaction = TRANS_NONE;
3950 }
3951 }
3952
3953 /* Set the current transaction state to TRANS_NONE and unlock the
3954 ** pager if this call closed the only read or write transaction. */
3955 p->inTrans = TRANS_NONE;
3956 unlockBtreeIfUnused(pBt);
3957 }
3958
3959 btreeIntegrity(p);
3960}
3961
3962/*
drh2aa679f2001-06-25 02:11:07 +00003963** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003964**
drh6e345992007-03-30 11:12:08 +00003965** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003966** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3967** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3968** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003969** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003970** routine has to do is delete or truncate or zero the header in the
3971** the rollback journal (which causes the transaction to commit) and
3972** drop locks.
drh6e345992007-03-30 11:12:08 +00003973**
dan60939d02011-03-29 15:40:55 +00003974** Normally, if an error occurs while the pager layer is attempting to
3975** finalize the underlying journal file, this function returns an error and
3976** the upper layer will attempt a rollback. However, if the second argument
3977** is non-zero then this b-tree transaction is part of a multi-file
3978** transaction. In this case, the transaction has already been committed
3979** (by deleting a master journal file) and the caller will ignore this
3980** functions return code. So, even if an error occurs in the pager layer,
3981** reset the b-tree objects internal state to indicate that the write
3982** transaction has been closed. This is quite safe, as the pager will have
3983** transitioned to the error state.
3984**
drh5e00f6c2001-09-13 13:46:56 +00003985** This will release the write lock on the database file. If there
3986** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003987*/
dan60939d02011-03-29 15:40:55 +00003988int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003989
drh075ed302010-10-14 01:17:30 +00003990 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003991 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003992 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003993
3994 /* If the handle has a write-transaction open, commit the shared-btrees
3995 ** transaction and set the shared state to TRANS_READ.
3996 */
3997 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003998 int rc;
drh075ed302010-10-14 01:17:30 +00003999 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004000 assert( pBt->inTransaction==TRANS_WRITE );
4001 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004002 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004003 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004004 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004005 return rc;
4006 }
drh3da9c042014-12-22 18:41:21 +00004007 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004008 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004009 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004010 }
danielk1977aef0bf62005-12-30 16:28:01 +00004011
danielk197794b30732009-07-02 17:21:57 +00004012 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004013 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004014 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004015}
4016
drh80e35f42007-03-30 14:06:34 +00004017/*
4018** Do both phases of a commit.
4019*/
4020int sqlite3BtreeCommit(Btree *p){
4021 int rc;
drhd677b3d2007-08-20 22:48:41 +00004022 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004023 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4024 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004025 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004026 }
drhd677b3d2007-08-20 22:48:41 +00004027 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004028 return rc;
4029}
4030
drhc39e0002004-05-07 23:50:57 +00004031/*
drhfb982642007-08-30 01:19:59 +00004032** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004033** code to errCode for every cursor on any BtShared that pBtree
4034** references. Or if the writeOnly flag is set to 1, then only
4035** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004036**
drh47b7fc72014-11-11 01:33:57 +00004037** Every cursor is a candidate to be tripped, including cursors
4038** that belong to other database connections that happen to be
4039** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004040**
dan80231042014-11-12 14:56:02 +00004041** This routine gets called when a rollback occurs. If the writeOnly
4042** flag is true, then only write-cursors need be tripped - read-only
4043** cursors save their current positions so that they may continue
4044** following the rollback. Or, if writeOnly is false, all cursors are
4045** tripped. In general, writeOnly is false if the transaction being
4046** rolled back modified the database schema. In this case b-tree root
4047** pages may be moved or deleted from the database altogether, making
4048** it unsafe for read cursors to continue.
4049**
4050** If the writeOnly flag is true and an error is encountered while
4051** saving the current position of a read-only cursor, all cursors,
4052** including all read-cursors are tripped.
4053**
4054** SQLITE_OK is returned if successful, or if an error occurs while
4055** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004056*/
dan80231042014-11-12 14:56:02 +00004057int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004058 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004059 int rc = SQLITE_OK;
4060
drh47b7fc72014-11-11 01:33:57 +00004061 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004062 if( pBtree ){
4063 sqlite3BtreeEnter(pBtree);
4064 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004065 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004066 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004067 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004068 if( rc!=SQLITE_OK ){
4069 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4070 break;
4071 }
4072 }
4073 }else{
4074 sqlite3BtreeClearCursor(p);
4075 p->eState = CURSOR_FAULT;
4076 p->skipNext = errCode;
4077 }
drh85ef6302017-08-02 15:50:09 +00004078 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004079 }
dan80231042014-11-12 14:56:02 +00004080 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004081 }
dan80231042014-11-12 14:56:02 +00004082 return rc;
drhfb982642007-08-30 01:19:59 +00004083}
4084
4085/*
drh47b7fc72014-11-11 01:33:57 +00004086** Rollback the transaction in progress.
4087**
4088** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4089** Only write cursors are tripped if writeOnly is true but all cursors are
4090** tripped if writeOnly is false. Any attempt to use
4091** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004092**
4093** This will release the write lock on the database file. If there
4094** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004095*/
drh47b7fc72014-11-11 01:33:57 +00004096int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004097 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004098 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004099 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004100
drh47b7fc72014-11-11 01:33:57 +00004101 assert( writeOnly==1 || writeOnly==0 );
4102 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004103 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004104 if( tripCode==SQLITE_OK ){
4105 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004106 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004107 }else{
4108 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004109 }
drh0f198a72012-02-13 16:43:16 +00004110 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004111 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4112 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4113 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004114 }
danielk1977aef0bf62005-12-30 16:28:01 +00004115 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004116
4117 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004118 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004119
danielk19778d34dfd2006-01-24 16:37:57 +00004120 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004121 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004122 if( rc2!=SQLITE_OK ){
4123 rc = rc2;
4124 }
4125
drh24cd67e2004-05-10 16:18:47 +00004126 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004127 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004128 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00004129 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004130 int nPage = get4byte(28+(u8*)pPage1->aData);
4131 testcase( nPage==0 );
4132 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4133 testcase( pBt->nPage!=nPage );
4134 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004135 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004136 }
drh85ec3b62013-05-14 23:12:06 +00004137 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004138 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004139 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004140 }
danielk1977aef0bf62005-12-30 16:28:01 +00004141
danielk197794b30732009-07-02 17:21:57 +00004142 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004143 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004144 return rc;
4145}
4146
4147/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004148** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004149** back independently of the main transaction. You must start a transaction
4150** before starting a subtransaction. The subtransaction is ended automatically
4151** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004152**
4153** Statement subtransactions are used around individual SQL statements
4154** that are contained within a BEGIN...COMMIT block. If a constraint
4155** error occurs within the statement, the effect of that one statement
4156** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004157**
4158** A statement sub-transaction is implemented as an anonymous savepoint. The
4159** value passed as the second parameter is the total number of savepoints,
4160** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4161** are no active savepoints and no other statement-transactions open,
4162** iStatement is 1. This anonymous savepoint can be released or rolled back
4163** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004164*/
danielk1977bd434552009-03-18 10:33:00 +00004165int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004166 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004167 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004168 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004169 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004170 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004171 assert( iStatement>0 );
4172 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004173 assert( pBt->inTransaction==TRANS_WRITE );
4174 /* At the pager level, a statement transaction is a savepoint with
4175 ** an index greater than all savepoints created explicitly using
4176 ** SQL statements. It is illegal to open, release or rollback any
4177 ** such savepoints while the statement transaction savepoint is active.
4178 */
4179 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004180 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004181 return rc;
4182}
4183
4184/*
danielk1977fd7f0452008-12-17 17:30:26 +00004185** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4186** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004187** savepoint identified by parameter iSavepoint, depending on the value
4188** of op.
4189**
4190** Normally, iSavepoint is greater than or equal to zero. However, if op is
4191** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4192** contents of the entire transaction are rolled back. This is different
4193** from a normal transaction rollback, as no locks are released and the
4194** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004195*/
4196int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4197 int rc = SQLITE_OK;
4198 if( p && p->inTrans==TRANS_WRITE ){
4199 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004200 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4201 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4202 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004203 if( op==SAVEPOINT_ROLLBACK ){
4204 rc = saveAllCursors(pBt, 0, 0);
4205 }
4206 if( rc==SQLITE_OK ){
4207 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4208 }
drh9f0bbf92009-01-02 21:08:09 +00004209 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004210 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4211 pBt->nPage = 0;
4212 }
drh9f0bbf92009-01-02 21:08:09 +00004213 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004214 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004215
4216 /* The database size was written into the offset 28 of the header
4217 ** when the transaction started, so we know that the value at offset
4218 ** 28 is nonzero. */
4219 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004220 }
danielk1977fd7f0452008-12-17 17:30:26 +00004221 sqlite3BtreeLeave(p);
4222 }
4223 return rc;
4224}
4225
4226/*
drh8b2f49b2001-06-08 00:21:52 +00004227** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004228** iTable. If a read-only cursor is requested, it is assumed that
4229** the caller already has at least a read-only transaction open
4230** on the database already. If a write-cursor is requested, then
4231** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004232**
drhe807bdb2016-01-21 17:06:33 +00004233** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4234** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4235** can be used for reading or for writing if other conditions for writing
4236** are also met. These are the conditions that must be met in order
4237** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004238**
drhe807bdb2016-01-21 17:06:33 +00004239** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004240**
drhfe5d71d2007-03-19 11:54:10 +00004241** 2: Other database connections that share the same pager cache
4242** but which are not in the READ_UNCOMMITTED state may not have
4243** cursors open with wrFlag==0 on the same table. Otherwise
4244** the changes made by this write cursor would be visible to
4245** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004246**
4247** 3: The database must be writable (not on read-only media)
4248**
4249** 4: There must be an active transaction.
4250**
drhe807bdb2016-01-21 17:06:33 +00004251** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4252** is set. If FORDELETE is set, that is a hint to the implementation that
4253** this cursor will only be used to seek to and delete entries of an index
4254** as part of a larger DELETE statement. The FORDELETE hint is not used by
4255** this implementation. But in a hypothetical alternative storage engine
4256** in which index entries are automatically deleted when corresponding table
4257** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4258** operations on this cursor can be no-ops and all READ operations can
4259** return a null row (2-bytes: 0x01 0x00).
4260**
drh6446c4d2001-12-15 14:22:18 +00004261** No checking is done to make sure that page iTable really is the
4262** root page of a b-tree. If it is not, then the cursor acquired
4263** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004264**
drhf25a5072009-11-18 23:01:25 +00004265** It is assumed that the sqlite3BtreeCursorZero() has been called
4266** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004267*/
drhd677b3d2007-08-20 22:48:41 +00004268static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004269 Btree *p, /* The btree */
4270 int iTable, /* Root page of table to open */
4271 int wrFlag, /* 1 to write. 0 read-only */
4272 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4273 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004274){
danielk19773e8add92009-07-04 17:16:00 +00004275 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004276 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004277
drh1fee73e2007-08-29 04:00:57 +00004278 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004279 assert( wrFlag==0
4280 || wrFlag==BTREE_WRCSR
4281 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4282 );
danielk197796d48e92009-06-29 06:00:37 +00004283
danielk1977602b4662009-07-02 07:47:33 +00004284 /* The following assert statements verify that if this is a sharable
4285 ** b-tree database, the connection is holding the required table locks,
4286 ** and that no other connection has any open cursor that conflicts with
4287 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004288 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004289 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4290
danielk19773e8add92009-07-04 17:16:00 +00004291 /* Assert that the caller has opened the required transaction. */
4292 assert( p->inTrans>TRANS_NONE );
4293 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4294 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004295 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004296
drh3fbb0222014-09-24 19:47:27 +00004297 if( wrFlag ){
4298 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004299 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drh3fbb0222014-09-24 19:47:27 +00004300 }
drhb1299152010-03-30 22:58:33 +00004301 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004302 assert( wrFlag==0 );
4303 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004304 }
danielk1977aef0bf62005-12-30 16:28:01 +00004305
danielk1977aef0bf62005-12-30 16:28:01 +00004306 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004307 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004308 pCur->pgnoRoot = (Pgno)iTable;
4309 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004310 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004311 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004312 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004313 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004314 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004315 /* If there are two or more cursors on the same btree, then all such
4316 ** cursors *must* have the BTCF_Multiple flag set. */
4317 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4318 if( pX->pgnoRoot==(Pgno)iTable ){
4319 pX->curFlags |= BTCF_Multiple;
4320 pCur->curFlags |= BTCF_Multiple;
4321 }
drha059ad02001-04-17 20:09:11 +00004322 }
drh27fb7462015-06-30 02:47:36 +00004323 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004324 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004325 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004326 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004327}
drhd677b3d2007-08-20 22:48:41 +00004328int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004329 Btree *p, /* The btree */
4330 int iTable, /* Root page of table to open */
4331 int wrFlag, /* 1 to write. 0 read-only */
4332 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4333 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004334){
4335 int rc;
dan08f901b2015-05-25 19:24:36 +00004336 if( iTable<1 ){
4337 rc = SQLITE_CORRUPT_BKPT;
4338 }else{
4339 sqlite3BtreeEnter(p);
4340 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4341 sqlite3BtreeLeave(p);
4342 }
drhd677b3d2007-08-20 22:48:41 +00004343 return rc;
4344}
drh7f751222009-03-17 22:33:00 +00004345
4346/*
4347** Return the size of a BtCursor object in bytes.
4348**
4349** This interfaces is needed so that users of cursors can preallocate
4350** sufficient storage to hold a cursor. The BtCursor object is opaque
4351** to users so they cannot do the sizeof() themselves - they must call
4352** this routine.
4353*/
4354int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004355 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004356}
4357
drh7f751222009-03-17 22:33:00 +00004358/*
drhf25a5072009-11-18 23:01:25 +00004359** Initialize memory that will be converted into a BtCursor object.
4360**
4361** The simple approach here would be to memset() the entire object
4362** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4363** do not need to be zeroed and they are large, so we can save a lot
4364** of run-time by skipping the initialization of those elements.
4365*/
4366void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004367 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004368}
4369
4370/*
drh5e00f6c2001-09-13 13:46:56 +00004371** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004372** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004373*/
drh3aac2dd2004-04-26 14:10:20 +00004374int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004375 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004376 if( pBtree ){
4377 BtShared *pBt = pCur->pBt;
4378 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004379 assert( pBt->pCursor!=0 );
4380 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004381 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004382 }else{
4383 BtCursor *pPrev = pBt->pCursor;
4384 do{
4385 if( pPrev->pNext==pCur ){
4386 pPrev->pNext = pCur->pNext;
4387 break;
4388 }
4389 pPrev = pPrev->pNext;
4390 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004391 }
drh352a35a2017-08-15 03:46:47 +00004392 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004393 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004394 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004395 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004396 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004397 }
drh8c42ca92001-06-22 19:15:00 +00004398 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004399}
4400
drh5e2f8b92001-05-28 00:41:15 +00004401/*
drh86057612007-06-26 01:04:48 +00004402** Make sure the BtCursor* given in the argument has a valid
4403** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004404** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004405**
4406** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004407** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004408*/
drh9188b382004-05-14 21:12:22 +00004409#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004410 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4411 if( a->nKey!=b->nKey ) return 0;
4412 if( a->pPayload!=b->pPayload ) return 0;
4413 if( a->nPayload!=b->nPayload ) return 0;
4414 if( a->nLocal!=b->nLocal ) return 0;
4415 if( a->nSize!=b->nSize ) return 0;
4416 return 1;
4417 }
danielk19771cc5ed82007-05-16 17:28:43 +00004418 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004419 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004420 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004421 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004422 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004423 }
danielk19771cc5ed82007-05-16 17:28:43 +00004424#else
4425 #define assertCellInfo(x)
4426#endif
drhc5b41ac2015-06-17 02:11:46 +00004427static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4428 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004429 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004430 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004431 }else{
4432 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004433 }
drhc5b41ac2015-06-17 02:11:46 +00004434}
drh9188b382004-05-14 21:12:22 +00004435
drhea8ffdf2009-07-22 00:35:23 +00004436#ifndef NDEBUG /* The next routine used only within assert() statements */
4437/*
4438** Return true if the given BtCursor is valid. A valid cursor is one
4439** that is currently pointing to a row in a (non-empty) table.
4440** This is a verification routine is used only within assert() statements.
4441*/
4442int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4443 return pCur && pCur->eState==CURSOR_VALID;
4444}
4445#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004446int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4447 assert( pCur!=0 );
4448 return pCur->eState==CURSOR_VALID;
4449}
drhea8ffdf2009-07-22 00:35:23 +00004450
drh9188b382004-05-14 21:12:22 +00004451/*
drha7c90c42016-06-04 20:37:10 +00004452** Return the value of the integer key or "rowid" for a table btree.
4453** This routine is only valid for a cursor that is pointing into a
4454** ordinary table btree. If the cursor points to an index btree or
4455** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004456*/
drha7c90c42016-06-04 20:37:10 +00004457i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004458 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004459 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004460 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004461 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004462 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004463}
drh2af926b2001-05-15 00:39:25 +00004464
drh092457b2017-12-29 15:04:49 +00004465#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004466/*
drh2fc865c2017-12-16 20:20:37 +00004467** Return the offset into the database file for the start of the
4468** payload to which the cursor is pointing.
4469*/
drh092457b2017-12-29 15:04:49 +00004470i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004471 assert( cursorHoldsMutex(pCur) );
4472 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004473 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004474 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004475 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4476}
drh092457b2017-12-29 15:04:49 +00004477#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004478
drh72f82862001-05-24 21:06:34 +00004479/*
drha7c90c42016-06-04 20:37:10 +00004480** Return the number of bytes of payload for the entry that pCur is
4481** currently pointing to. For table btrees, this will be the amount
4482** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004483**
4484** The caller must guarantee that the cursor is pointing to a non-NULL
4485** valid entry. In other words, the calling procedure must guarantee
4486** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004487*/
drha7c90c42016-06-04 20:37:10 +00004488u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4489 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004490 assert( pCur->eState==CURSOR_VALID );
4491 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004492 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004493}
4494
4495/*
danielk1977d04417962007-05-02 13:16:30 +00004496** Given the page number of an overflow page in the database (parameter
4497** ovfl), this function finds the page number of the next page in the
4498** linked list of overflow pages. If possible, it uses the auto-vacuum
4499** pointer-map data instead of reading the content of page ovfl to do so.
4500**
4501** If an error occurs an SQLite error code is returned. Otherwise:
4502**
danielk1977bea2a942009-01-20 17:06:27 +00004503** The page number of the next overflow page in the linked list is
4504** written to *pPgnoNext. If page ovfl is the last page in its linked
4505** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004506**
danielk1977bea2a942009-01-20 17:06:27 +00004507** If ppPage is not NULL, and a reference to the MemPage object corresponding
4508** to page number pOvfl was obtained, then *ppPage is set to point to that
4509** reference. It is the responsibility of the caller to call releasePage()
4510** on *ppPage to free the reference. In no reference was obtained (because
4511** the pointer-map was used to obtain the value for *pPgnoNext), then
4512** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004513*/
4514static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004515 BtShared *pBt, /* The database file */
4516 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004517 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004518 Pgno *pPgnoNext /* OUT: Next overflow page number */
4519){
4520 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004521 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004522 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004523
drh1fee73e2007-08-29 04:00:57 +00004524 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004525 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004526
4527#ifndef SQLITE_OMIT_AUTOVACUUM
4528 /* Try to find the next page in the overflow list using the
4529 ** autovacuum pointer-map pages. Guess that the next page in
4530 ** the overflow list is page number (ovfl+1). If that guess turns
4531 ** out to be wrong, fall back to loading the data of page
4532 ** number ovfl to determine the next page number.
4533 */
4534 if( pBt->autoVacuum ){
4535 Pgno pgno;
4536 Pgno iGuess = ovfl+1;
4537 u8 eType;
4538
4539 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4540 iGuess++;
4541 }
4542
drhb1299152010-03-30 22:58:33 +00004543 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004544 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004545 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004546 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004547 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004548 }
4549 }
4550 }
4551#endif
4552
danielk1977d8a3f3d2009-07-11 11:45:23 +00004553 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004554 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004555 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004556 assert( rc==SQLITE_OK || pPage==0 );
4557 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004558 next = get4byte(pPage->aData);
4559 }
danielk1977443c0592009-01-16 15:21:05 +00004560 }
danielk197745d68822009-01-16 16:23:38 +00004561
danielk1977bea2a942009-01-20 17:06:27 +00004562 *pPgnoNext = next;
4563 if( ppPage ){
4564 *ppPage = pPage;
4565 }else{
4566 releasePage(pPage);
4567 }
4568 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004569}
4570
danielk1977da107192007-05-04 08:32:13 +00004571/*
4572** Copy data from a buffer to a page, or from a page to a buffer.
4573**
4574** pPayload is a pointer to data stored on database page pDbPage.
4575** If argument eOp is false, then nByte bytes of data are copied
4576** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4577** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4578** of data are copied from the buffer pBuf to pPayload.
4579**
4580** SQLITE_OK is returned on success, otherwise an error code.
4581*/
4582static int copyPayload(
4583 void *pPayload, /* Pointer to page data */
4584 void *pBuf, /* Pointer to buffer */
4585 int nByte, /* Number of bytes to copy */
4586 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4587 DbPage *pDbPage /* Page containing pPayload */
4588){
4589 if( eOp ){
4590 /* Copy data from buffer to page (a write operation) */
4591 int rc = sqlite3PagerWrite(pDbPage);
4592 if( rc!=SQLITE_OK ){
4593 return rc;
4594 }
4595 memcpy(pPayload, pBuf, nByte);
4596 }else{
4597 /* Copy data from page to buffer (a read operation) */
4598 memcpy(pBuf, pPayload, nByte);
4599 }
4600 return SQLITE_OK;
4601}
danielk1977d04417962007-05-02 13:16:30 +00004602
4603/*
danielk19779f8d6402007-05-02 17:48:45 +00004604** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004605** for the entry that the pCur cursor is pointing to. The eOp
4606** argument is interpreted as follows:
4607**
4608** 0: The operation is a read. Populate the overflow cache.
4609** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004610**
4611** A total of "amt" bytes are read or written beginning at "offset".
4612** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004613**
drh3bcdfd22009-07-12 02:32:21 +00004614** The content being read or written might appear on the main page
4615** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004616**
drh42e28f12017-01-27 00:31:59 +00004617** If the current cursor entry uses one or more overflow pages
4618** this function may allocate space for and lazily populate
4619** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004620** Subsequent calls use this cache to make seeking to the supplied offset
4621** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004622**
drh42e28f12017-01-27 00:31:59 +00004623** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004624** invalidated if some other cursor writes to the same table, or if
4625** the cursor is moved to a different row. Additionally, in auto-vacuum
4626** mode, the following events may invalidate an overflow page-list cache.
4627**
4628** * An incremental vacuum,
4629** * A commit in auto_vacuum="full" mode,
4630** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004631*/
danielk19779f8d6402007-05-02 17:48:45 +00004632static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004633 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004634 u32 offset, /* Begin reading this far into payload */
4635 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004636 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004637 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004638){
4639 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004640 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004641 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004642 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004643 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004644#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004645 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004646#endif
drh3aac2dd2004-04-26 14:10:20 +00004647
danielk1977da107192007-05-04 08:32:13 +00004648 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004649 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004650 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004651 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004652 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004653
drh86057612007-06-26 01:04:48 +00004654 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004655 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004656 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004657
drh0b982072016-03-22 14:10:45 +00004658 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004659 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004660 /* Trying to read or write past the end of the data is an error. The
4661 ** conditional above is really:
4662 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4663 ** but is recast into its current form to avoid integer overflow problems
4664 */
daneebf2f52017-11-18 17:30:08 +00004665 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004666 }
danielk1977da107192007-05-04 08:32:13 +00004667
4668 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004669 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004670 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004671 if( a+offset>pCur->info.nLocal ){
4672 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004673 }
drh42e28f12017-01-27 00:31:59 +00004674 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004675 offset = 0;
drha34b6762004-05-07 13:30:42 +00004676 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004677 amt -= a;
drhdd793422001-06-28 01:54:48 +00004678 }else{
drhfa1a98a2004-05-14 19:08:17 +00004679 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004680 }
danielk1977da107192007-05-04 08:32:13 +00004681
dan85753662014-12-11 16:38:18 +00004682
danielk1977da107192007-05-04 08:32:13 +00004683 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004684 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004685 Pgno nextPage;
4686
drhfa1a98a2004-05-14 19:08:17 +00004687 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004688
drha38c9512014-04-01 01:24:34 +00004689 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004690 **
4691 ** The aOverflow[] array is sized at one entry for each overflow page
4692 ** in the overflow chain. The page number of the first overflow page is
4693 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4694 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004695 */
drh42e28f12017-01-27 00:31:59 +00004696 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004697 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004698 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004699 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004700 ){
dan85753662014-12-11 16:38:18 +00004701 Pgno *aNew = (Pgno*)sqlite3Realloc(
4702 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004703 );
4704 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004705 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004706 }else{
dan5a500af2014-03-11 20:33:04 +00004707 pCur->aOverflow = aNew;
4708 }
4709 }
drhcd645532017-01-20 20:43:14 +00004710 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4711 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004712 }else{
4713 /* If the overflow page-list cache has been allocated and the
4714 ** entry for the first required overflow page is valid, skip
4715 ** directly to it.
4716 */
4717 if( pCur->aOverflow[offset/ovflSize] ){
4718 iIdx = (offset/ovflSize);
4719 nextPage = pCur->aOverflow[iIdx];
4720 offset = (offset%ovflSize);
danielk19772dec9702007-05-02 16:48:37 +00004721 }
4722 }
danielk1977da107192007-05-04 08:32:13 +00004723
drhcd645532017-01-20 20:43:14 +00004724 assert( rc==SQLITE_OK && amt>0 );
4725 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004726 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004727 assert( pCur->aOverflow[iIdx]==0
4728 || pCur->aOverflow[iIdx]==nextPage
4729 || CORRUPT_DB );
4730 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004731
danielk1977d04417962007-05-02 13:16:30 +00004732 if( offset>=ovflSize ){
4733 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004734 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004735 ** data is not required. So first try to lookup the overflow
4736 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004737 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004738 */
drha38c9512014-04-01 01:24:34 +00004739 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004740 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004741 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004742 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004743 }else{
danielk1977da107192007-05-04 08:32:13 +00004744 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004745 }
danielk1977da107192007-05-04 08:32:13 +00004746 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004747 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004748 /* Need to read this page properly. It contains some of the
4749 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004750 */
danf4ba1092011-10-08 14:57:07 +00004751#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004752 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004753#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004754 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004755 if( a + offset > ovflSize ){
4756 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004757 }
danf4ba1092011-10-08 14:57:07 +00004758
4759#ifdef SQLITE_DIRECT_OVERFLOW_READ
4760 /* If all the following are true:
4761 **
4762 ** 1) this is a read operation, and
4763 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004764 ** 3) there is no open write-transaction, and
4765 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004766 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004767 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004768 **
4769 ** then data can be read directly from the database file into the
4770 ** output buffer, bypassing the page-cache altogether. This speeds
4771 ** up loading large records that span many overflow pages.
4772 */
drh42e28f12017-01-27 00:31:59 +00004773 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004774 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004775 && pBt->inTransaction==TRANS_READ /* (3) */
4776 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004777 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004778 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004779 ){
4780 u8 aSave[4];
4781 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004782 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004783 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004784 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004785 nextPage = get4byte(aWrite);
4786 memcpy(aWrite, aSave, 4);
4787 }else
4788#endif
4789
4790 {
4791 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004792 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004793 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004794 );
danf4ba1092011-10-08 14:57:07 +00004795 if( rc==SQLITE_OK ){
4796 aPayload = sqlite3PagerGetData(pDbPage);
4797 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004798 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004799 sqlite3PagerUnref(pDbPage);
4800 offset = 0;
4801 }
4802 }
4803 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004804 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004805 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004806 }
drhcd645532017-01-20 20:43:14 +00004807 if( rc ) break;
4808 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004809 }
drh2af926b2001-05-15 00:39:25 +00004810 }
danielk1977cfe9a692004-06-16 12:00:29 +00004811
danielk1977da107192007-05-04 08:32:13 +00004812 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004813 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004814 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004815 }
danielk1977da107192007-05-04 08:32:13 +00004816 return rc;
drh2af926b2001-05-15 00:39:25 +00004817}
4818
drh72f82862001-05-24 21:06:34 +00004819/*
drhcb3cabd2016-11-25 19:18:28 +00004820** Read part of the payload for the row at which that cursor pCur is currently
4821** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004822** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004823**
drhcb3cabd2016-11-25 19:18:28 +00004824** pCur can be pointing to either a table or an index b-tree.
4825** If pointing to a table btree, then the content section is read. If
4826** pCur is pointing to an index b-tree then the key section is read.
4827**
4828** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4829** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4830** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004831**
drh3aac2dd2004-04-26 14:10:20 +00004832** Return SQLITE_OK on success or an error code if anything goes
4833** wrong. An error is returned if "offset+amt" is larger than
4834** the available payload.
drh72f82862001-05-24 21:06:34 +00004835*/
drhcb3cabd2016-11-25 19:18:28 +00004836int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004837 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004838 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004839 assert( pCur->iPage>=0 && pCur->pPage );
4840 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004841 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004842}
drh83ec2762017-01-26 16:54:47 +00004843
4844/*
4845** This variant of sqlite3BtreePayload() works even if the cursor has not
4846** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4847** interface.
4848*/
danielk19773588ceb2008-06-10 17:30:26 +00004849#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004850static SQLITE_NOINLINE int accessPayloadChecked(
4851 BtCursor *pCur,
4852 u32 offset,
4853 u32 amt,
4854 void *pBuf
4855){
drhcb3cabd2016-11-25 19:18:28 +00004856 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004857 if ( pCur->eState==CURSOR_INVALID ){
4858 return SQLITE_ABORT;
4859 }
dan7a2347e2016-01-07 16:43:54 +00004860 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004861 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004862 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4863}
4864int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4865 if( pCur->eState==CURSOR_VALID ){
4866 assert( cursorOwnsBtShared(pCur) );
4867 return accessPayload(pCur, offset, amt, pBuf, 0);
4868 }else{
4869 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004870 }
drh2af926b2001-05-15 00:39:25 +00004871}
drhcb3cabd2016-11-25 19:18:28 +00004872#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004873
drh72f82862001-05-24 21:06:34 +00004874/*
drh0e1c19e2004-05-11 00:58:56 +00004875** Return a pointer to payload information from the entry that the
4876** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004877** the key if index btrees (pPage->intKey==0) and is the data for
4878** table btrees (pPage->intKey==1). The number of bytes of available
4879** key/data is written into *pAmt. If *pAmt==0, then the value
4880** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004881**
4882** This routine is an optimization. It is common for the entire key
4883** and data to fit on the local page and for there to be no overflow
4884** pages. When that is so, this routine can be used to access the
4885** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004886** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004887** the key/data and copy it into a preallocated buffer.
4888**
4889** The pointer returned by this routine looks directly into the cached
4890** page of the database. The data might change or move the next time
4891** any btree routine is called.
4892*/
drh2a8d2262013-12-09 20:43:22 +00004893static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004894 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004895 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004896){
danf2f72a02017-10-19 15:17:38 +00004897 int amt;
drh352a35a2017-08-15 03:46:47 +00004898 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004899 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004900 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004901 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004902 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004903 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004904 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4905 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004906 amt = pCur->info.nLocal;
4907 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4908 /* There is too little space on the page for the expected amount
4909 ** of local content. Database must be corrupt. */
4910 assert( CORRUPT_DB );
4911 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4912 }
4913 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004914 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004915}
4916
4917
4918/*
drhe51c44f2004-05-30 20:46:09 +00004919** For the entry that cursor pCur is point to, return as
4920** many bytes of the key or data as are available on the local
4921** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004922**
4923** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004924** or be destroyed on the next call to any Btree routine,
4925** including calls from other threads against the same cache.
4926** Hence, a mutex on the BtShared should be held prior to calling
4927** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004928**
4929** These routines is used to get quick access to key and data
4930** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004931*/
drha7c90c42016-06-04 20:37:10 +00004932const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004933 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004934}
4935
4936
4937/*
drh8178a752003-01-05 21:41:40 +00004938** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004939** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004940**
4941** This function returns SQLITE_CORRUPT if the page-header flags field of
4942** the new child page does not match the flags field of the parent (i.e.
4943** if an intkey page appears to be the parent of a non-intkey page, or
4944** vice-versa).
drh72f82862001-05-24 21:06:34 +00004945*/
drh3aac2dd2004-04-26 14:10:20 +00004946static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004947 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004948
dan7a2347e2016-01-07 16:43:54 +00004949 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004950 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004951 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004952 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004953 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4954 return SQLITE_CORRUPT_BKPT;
4955 }
drh271efa52004-05-30 19:19:05 +00004956 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004957 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00004958 pCur->aiIdx[pCur->iPage] = pCur->ix;
4959 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00004960 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00004961 pCur->iPage++;
4962 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004963}
4964
drhd879e3e2017-02-13 13:35:55 +00004965#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004966/*
4967** Page pParent is an internal (non-leaf) tree page. This function
4968** asserts that page number iChild is the left-child if the iIdx'th
4969** cell in page pParent. Or, if iIdx is equal to the total number of
4970** cells in pParent, that page number iChild is the right-child of
4971** the page.
4972*/
4973static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004974 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4975 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004976 assert( iIdx<=pParent->nCell );
4977 if( iIdx==pParent->nCell ){
4978 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4979 }else{
4980 assert( get4byte(findCell(pParent, iIdx))==iChild );
4981 }
4982}
4983#else
4984# define assertParentIndex(x,y,z)
4985#endif
4986
drh72f82862001-05-24 21:06:34 +00004987/*
drh5e2f8b92001-05-28 00:41:15 +00004988** Move the cursor up to the parent page.
4989**
4990** pCur->idx is set to the cell index that contains the pointer
4991** to the page we are coming from. If we are coming from the
4992** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004993** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004994*/
danielk197730548662009-07-09 05:07:37 +00004995static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00004996 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00004997 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004998 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004999 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005000 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005001 assertParentIndex(
5002 pCur->apPage[pCur->iPage-1],
5003 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005004 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005005 );
dan6c2688c2012-01-12 15:05:03 +00005006 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005007 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005008 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005009 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005010 pLeaf = pCur->pPage;
5011 pCur->pPage = pCur->apPage[--pCur->iPage];
5012 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005013}
5014
5015/*
danielk19778f880a82009-07-13 09:41:45 +00005016** Move the cursor to point to the root page of its b-tree structure.
5017**
5018** If the table has a virtual root page, then the cursor is moved to point
5019** to the virtual root page instead of the actual root page. A table has a
5020** virtual root page when the actual root page contains no cells and a
5021** single child page. This can only happen with the table rooted at page 1.
5022**
5023** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005024** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5025** the cursor is set to point to the first cell located on the root
5026** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005027**
5028** If this function returns successfully, it may be assumed that the
5029** page-header flags indicate that the [virtual] root-page is the expected
5030** kind of b-tree page (i.e. if when opening the cursor the caller did not
5031** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5032** indicating a table b-tree, or if the caller did specify a KeyInfo
5033** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5034** b-tree).
drh72f82862001-05-24 21:06:34 +00005035*/
drh5e2f8b92001-05-28 00:41:15 +00005036static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005037 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005038 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005039
dan7a2347e2016-01-07 16:43:54 +00005040 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005041 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5042 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5043 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005044 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005045 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005046
5047 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005048 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005049 releasePageNotNull(pCur->pPage);
5050 while( --pCur->iPage ){
5051 releasePageNotNull(pCur->apPage[pCur->iPage]);
5052 }
5053 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005054 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005055 }
dana205a482011-08-27 18:48:57 +00005056 }else if( pCur->pgnoRoot==0 ){
5057 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005058 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005059 }else{
drh28f58dd2015-06-27 19:45:03 +00005060 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005061 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5062 if( pCur->eState==CURSOR_FAULT ){
5063 assert( pCur->skipNext!=SQLITE_OK );
5064 return pCur->skipNext;
5065 }
5066 sqlite3BtreeClearCursor(pCur);
5067 }
drh352a35a2017-08-15 03:46:47 +00005068 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005069 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005070 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005071 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005072 return rc;
drh777e4c42006-01-13 04:31:58 +00005073 }
danielk1977172114a2009-07-07 15:47:12 +00005074 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005075 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005076 }
drh352a35a2017-08-15 03:46:47 +00005077 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005078 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005079
5080 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5081 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5082 ** NULL, the caller expects a table b-tree. If this is not the case,
5083 ** return an SQLITE_CORRUPT error.
5084 **
5085 ** Earlier versions of SQLite assumed that this test could not fail
5086 ** if the root page was already loaded when this function was called (i.e.
5087 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5088 ** in such a way that page pRoot is linked into a second b-tree table
5089 ** (or the freelist). */
5090 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5091 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005092 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005093 }
danielk19778f880a82009-07-13 09:41:45 +00005094
drh7ad3eb62016-10-24 01:01:09 +00005095skip_init:
drh75e96b32017-04-01 00:20:06 +00005096 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005097 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005098 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005099
drh352a35a2017-08-15 03:46:47 +00005100 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005101 if( pRoot->nCell>0 ){
5102 pCur->eState = CURSOR_VALID;
5103 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005104 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005105 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005106 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005107 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005108 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005109 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005110 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005111 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005112 }
5113 return rc;
drh72f82862001-05-24 21:06:34 +00005114}
drh2af926b2001-05-15 00:39:25 +00005115
drh5e2f8b92001-05-28 00:41:15 +00005116/*
5117** Move the cursor down to the left-most leaf entry beneath the
5118** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005119**
5120** The left-most leaf is the one with the smallest key - the first
5121** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005122*/
5123static int moveToLeftmost(BtCursor *pCur){
5124 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005125 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005126 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005127
dan7a2347e2016-01-07 16:43:54 +00005128 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005129 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005130 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005131 assert( pCur->ix<pPage->nCell );
5132 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005133 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005134 }
drhd677b3d2007-08-20 22:48:41 +00005135 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005136}
5137
drh2dcc9aa2002-12-04 13:40:25 +00005138/*
5139** Move the cursor down to the right-most leaf entry beneath the
5140** page to which it is currently pointing. Notice the difference
5141** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5142** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5143** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005144**
5145** The right-most entry is the one with the largest key - the last
5146** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005147*/
5148static int moveToRightmost(BtCursor *pCur){
5149 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005150 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005151 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005152
dan7a2347e2016-01-07 16:43:54 +00005153 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005154 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005155 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005156 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005157 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005158 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005159 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005160 }
drh75e96b32017-04-01 00:20:06 +00005161 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005162 assert( pCur->info.nSize==0 );
5163 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5164 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005165}
5166
drh5e00f6c2001-09-13 13:46:56 +00005167/* Move the cursor to the first entry in the table. Return SQLITE_OK
5168** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005169** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005170*/
drh3aac2dd2004-04-26 14:10:20 +00005171int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005172 int rc;
drhd677b3d2007-08-20 22:48:41 +00005173
dan7a2347e2016-01-07 16:43:54 +00005174 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005175 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005176 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005177 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005178 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005179 *pRes = 0;
5180 rc = moveToLeftmost(pCur);
5181 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005182 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005183 *pRes = 1;
5184 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005185 }
drh5e00f6c2001-09-13 13:46:56 +00005186 return rc;
5187}
drh5e2f8b92001-05-28 00:41:15 +00005188
drh9562b552002-02-19 15:00:07 +00005189/* Move the cursor to the last entry in the table. Return SQLITE_OK
5190** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005191** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005192*/
drh3aac2dd2004-04-26 14:10:20 +00005193int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005194 int rc;
drhd677b3d2007-08-20 22:48:41 +00005195
dan7a2347e2016-01-07 16:43:54 +00005196 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005197 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005198
5199 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005200 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005201#ifdef SQLITE_DEBUG
5202 /* This block serves to assert() that the cursor really does point
5203 ** to the last entry in the b-tree. */
5204 int ii;
5205 for(ii=0; ii<pCur->iPage; ii++){
5206 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5207 }
drh352a35a2017-08-15 03:46:47 +00005208 assert( pCur->ix==pCur->pPage->nCell-1 );
5209 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005210#endif
5211 return SQLITE_OK;
5212 }
5213
drh9562b552002-02-19 15:00:07 +00005214 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005215 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005216 assert( pCur->eState==CURSOR_VALID );
5217 *pRes = 0;
5218 rc = moveToRightmost(pCur);
5219 if( rc==SQLITE_OK ){
5220 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005221 }else{
drh44548e72017-08-14 18:13:52 +00005222 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005223 }
drh44548e72017-08-14 18:13:52 +00005224 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005225 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005226 *pRes = 1;
5227 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005228 }
drh9562b552002-02-19 15:00:07 +00005229 return rc;
5230}
5231
drhe14006d2008-03-25 17:23:32 +00005232/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005233** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005234**
drhe63d9992008-08-13 19:11:48 +00005235** For INTKEY tables, the intKey parameter is used. pIdxKey
5236** must be NULL. For index tables, pIdxKey is used and intKey
5237** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005238**
drh5e2f8b92001-05-28 00:41:15 +00005239** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005240** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005241** were present. The cursor might point to an entry that comes
5242** before or after the key.
5243**
drh64022502009-01-09 14:11:04 +00005244** An integer is written into *pRes which is the result of
5245** comparing the key with the entry to which the cursor is
5246** pointing. The meaning of the integer written into
5247** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005248**
5249** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005250** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005251** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005252**
5253** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005254** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005255**
5256** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005257** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005258**
drhb1d607d2015-11-05 22:30:54 +00005259** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5260** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005261*/
drhe63d9992008-08-13 19:11:48 +00005262int sqlite3BtreeMovetoUnpacked(
5263 BtCursor *pCur, /* The cursor to be moved */
5264 UnpackedRecord *pIdxKey, /* Unpacked index key */
5265 i64 intKey, /* The table key */
5266 int biasRight, /* If true, bias the search to the high end */
5267 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005268){
drh72f82862001-05-24 21:06:34 +00005269 int rc;
dan3b9330f2014-02-27 20:44:18 +00005270 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005271
dan7a2347e2016-01-07 16:43:54 +00005272 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005273 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005274 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005275 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005276 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005277
5278 /* If the cursor is already positioned at the point we are trying
5279 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005280 if( pIdxKey==0
5281 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005282 ){
drhe63d9992008-08-13 19:11:48 +00005283 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005284 *pRes = 0;
5285 return SQLITE_OK;
5286 }
drh451e76d2017-01-21 16:54:19 +00005287 if( pCur->info.nKey<intKey ){
5288 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5289 *pRes = -1;
5290 return SQLITE_OK;
5291 }
drh7f11afa2017-01-21 21:47:54 +00005292 /* If the requested key is one more than the previous key, then
5293 ** try to get there using sqlite3BtreeNext() rather than a full
5294 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005295 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005296 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5297 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005298 rc = sqlite3BtreeNext(pCur, 0);
5299 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005300 getCellInfo(pCur);
5301 if( pCur->info.nKey==intKey ){
5302 return SQLITE_OK;
5303 }
drh2ab792e2017-05-30 18:34:07 +00005304 }else if( rc==SQLITE_DONE ){
5305 rc = SQLITE_OK;
5306 }else{
5307 return rc;
drh451e76d2017-01-21 16:54:19 +00005308 }
5309 }
drha2c20e42008-03-29 16:01:04 +00005310 }
5311 }
5312
dan1fed5da2014-02-25 21:01:25 +00005313 if( pIdxKey ){
5314 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005315 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005316 assert( pIdxKey->default_rc==1
5317 || pIdxKey->default_rc==0
5318 || pIdxKey->default_rc==-1
5319 );
drh13a747e2014-03-03 21:46:55 +00005320 }else{
drhb6e8fd12014-03-06 01:56:33 +00005321 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005322 }
5323
drh5e2f8b92001-05-28 00:41:15 +00005324 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005325 if( rc ){
drh44548e72017-08-14 18:13:52 +00005326 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005327 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005328 *pRes = -1;
5329 return SQLITE_OK;
5330 }
drhd677b3d2007-08-20 22:48:41 +00005331 return rc;
5332 }
drh352a35a2017-08-15 03:46:47 +00005333 assert( pCur->pPage );
5334 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005335 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005336 assert( pCur->pPage->nCell > 0 );
5337 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005338 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005339 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005340 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005341 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005342 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005343 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005344
5345 /* pPage->nCell must be greater than zero. If this is the root-page
5346 ** the cursor would have been INVALID above and this for(;;) loop
5347 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005348 ** would have already detected db corruption. Similarly, pPage must
5349 ** be the right kind (index or table) of b-tree page. Otherwise
5350 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005351 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005352 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005353 lwr = 0;
5354 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005355 assert( biasRight==0 || biasRight==1 );
5356 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005357 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005358 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005359 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005360 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005361 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005362 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005363 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005364 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005365 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005366 }
drh9b2fc612013-11-25 20:14:13 +00005367 }
drhd172f862006-01-12 15:01:15 +00005368 }
drha2c20e42008-03-29 16:01:04 +00005369 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005370 if( nCellKey<intKey ){
5371 lwr = idx+1;
5372 if( lwr>upr ){ c = -1; break; }
5373 }else if( nCellKey>intKey ){
5374 upr = idx-1;
5375 if( lwr>upr ){ c = +1; break; }
drh41eb9e92008-04-02 18:33:07 +00005376 }else{
drhbb933ef2013-11-25 15:01:38 +00005377 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005378 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005379 if( !pPage->leaf ){
5380 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005381 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005382 }else{
drhd95ef5c2016-11-11 18:19:05 +00005383 pCur->curFlags |= BTCF_ValidNKey;
5384 pCur->info.nKey = nCellKey;
5385 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005386 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005387 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005388 }
drh3aac2dd2004-04-26 14:10:20 +00005389 }
drhebf10b12013-11-25 17:38:26 +00005390 assert( lwr+upr>=0 );
5391 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005392 }
5393 }else{
5394 for(;;){
drhc6827502015-05-28 15:14:32 +00005395 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005396 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005397
drhb2eced52010-08-12 02:41:12 +00005398 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005399 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005400 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005401 ** varint. This information is used to attempt to avoid parsing
5402 ** the entire cell by checking for the cases where the record is
5403 ** stored entirely within the b-tree page by inspecting the first
5404 ** 2 bytes of the cell.
5405 */
drhec3e6b12013-11-25 02:38:55 +00005406 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005407 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005408 /* This branch runs if the record-size field of the cell is a
5409 ** single byte varint and the record fits entirely on the main
5410 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005411 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005412 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005413 }else if( !(pCell[1] & 0x80)
5414 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5415 ){
5416 /* The record-size field is a 2 byte varint and the record
5417 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005418 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005419 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005420 }else{
danielk197711c327a2009-05-04 19:01:26 +00005421 /* The record flows over onto one or more overflow pages. In
5422 ** this case the whole cell needs to be parsed, a buffer allocated
5423 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005424 ** buffer before VdbeRecordCompare() can be called.
5425 **
5426 ** If the record is corrupt, the xRecordCompare routine may read
5427 ** up to two varints past the end of the buffer. An extra 18
5428 ** bytes of padding is allocated at the end of the buffer in
5429 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005430 void *pCellKey;
5431 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005432 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005433 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005434 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5435 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5436 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5437 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005438 if( nCell<2 ){
daneebf2f52017-11-18 17:30:08 +00005439 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005440 goto moveto_finish;
5441 }
5442 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005443 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005444 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005445 goto moveto_finish;
5446 }
drh75e96b32017-04-01 00:20:06 +00005447 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005448 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5449 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005450 if( rc ){
5451 sqlite3_free(pCellKey);
5452 goto moveto_finish;
5453 }
drh75179de2014-09-16 14:37:35 +00005454 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005455 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005456 }
dan38fdead2014-04-01 10:19:02 +00005457 assert(
5458 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005459 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005460 );
drhbb933ef2013-11-25 15:01:38 +00005461 if( c<0 ){
5462 lwr = idx+1;
5463 }else if( c>0 ){
5464 upr = idx-1;
drh8b18dd42004-05-12 19:18:15 +00005465 }else{
drhbb933ef2013-11-25 15:01:38 +00005466 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005467 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005468 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005469 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005470 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005471 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005472 }
drhebf10b12013-11-25 17:38:26 +00005473 if( lwr>upr ) break;
5474 assert( lwr+upr>=0 );
5475 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005476 }
drh72f82862001-05-24 21:06:34 +00005477 }
drhb07028f2011-10-14 21:49:18 +00005478 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005479 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005480 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005481 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005482 pCur->ix = (u16)idx;
danielk19775cb09632009-07-09 11:36:01 +00005483 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00005484 rc = SQLITE_OK;
5485 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00005486 }
drhebf10b12013-11-25 17:38:26 +00005487moveto_next_layer:
5488 if( lwr>=pPage->nCell ){
drh72f82862001-05-24 21:06:34 +00005489 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5490 }else{
5491 chldPg = get4byte(findCell(pPage, lwr));
5492 }
drh75e96b32017-04-01 00:20:06 +00005493 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005494 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005495 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005496 }
drh1e968a02008-03-25 00:22:21 +00005497moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005498 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005499 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005500 return rc;
5501}
5502
drhd677b3d2007-08-20 22:48:41 +00005503
drh72f82862001-05-24 21:06:34 +00005504/*
drhc39e0002004-05-07 23:50:57 +00005505** Return TRUE if the cursor is not pointing at an entry of the table.
5506**
5507** TRUE will be returned after a call to sqlite3BtreeNext() moves
5508** past the last entry in the table or sqlite3BtreePrev() moves past
5509** the first entry. TRUE is also returned if the table is empty.
5510*/
5511int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005512 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5513 ** have been deleted? This API will need to change to return an error code
5514 ** as well as the boolean result value.
5515 */
5516 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005517}
5518
5519/*
drh5e98e832017-02-17 19:24:06 +00005520** Return an estimate for the number of rows in the table that pCur is
5521** pointing to. Return a negative number if no estimate is currently
5522** available.
5523*/
5524i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5525 i64 n;
5526 u8 i;
5527
5528 assert( cursorOwnsBtShared(pCur) );
5529 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005530
5531 /* Currently this interface is only called by the OP_IfSmaller
5532 ** opcode, and it that case the cursor will always be valid and
5533 ** will always point to a leaf node. */
5534 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005535 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005536
drh352a35a2017-08-15 03:46:47 +00005537 n = pCur->pPage->nCell;
5538 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005539 n *= pCur->apPage[i]->nCell;
5540 }
5541 return n;
5542}
5543
5544/*
drh2ab792e2017-05-30 18:34:07 +00005545** Advance the cursor to the next entry in the database.
5546** Return value:
5547**
5548** SQLITE_OK success
5549** SQLITE_DONE cursor is already pointing at the last element
5550** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005551**
drhee6438d2014-09-01 13:29:32 +00005552** The main entry point is sqlite3BtreeNext(). That routine is optimized
5553** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5554** to the next cell on the current page. The (slower) btreeNext() helper
5555** routine is called when it is necessary to move to a different page or
5556** to restore the cursor.
5557**
drh89997982017-07-11 18:11:33 +00005558** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5559** cursor corresponds to an SQL index and this routine could have been
5560** skipped if the SQL index had been a unique index. The F argument
5561** is a hint to the implement. SQLite btree implementation does not use
5562** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005563*/
drh89997982017-07-11 18:11:33 +00005564static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005565 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005566 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005567 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005568
dan7a2347e2016-01-07 16:43:54 +00005569 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005570 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005571 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005572 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005573 rc = restoreCursorPosition(pCur);
5574 if( rc!=SQLITE_OK ){
5575 return rc;
5576 }
5577 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005578 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005579 }
drh9b47ee32013-08-20 03:13:51 +00005580 if( pCur->skipNext ){
5581 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5582 pCur->eState = CURSOR_VALID;
5583 if( pCur->skipNext>0 ){
5584 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005585 return SQLITE_OK;
5586 }
drhf66f26a2013-08-19 20:04:10 +00005587 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005588 }
drh8c4d3a62007-04-06 01:03:32 +00005589 }
danielk1977da184232006-01-05 11:34:32 +00005590
drh352a35a2017-08-15 03:46:47 +00005591 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005592 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005593 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005594
5595 /* If the database file is corrupt, it is possible for the value of idx
5596 ** to be invalid here. This can only occur if a second cursor modifies
5597 ** the page while cursor pCur is holding a reference to it. Which can
5598 ** only happen if the database is corrupt in such a way as to link the
5599 ** page into more than one b-tree structure. */
5600 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005601
danielk197771d5d2c2008-09-29 11:49:47 +00005602 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005603 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005604 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005605 if( rc ) return rc;
5606 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005607 }
drh5e2f8b92001-05-28 00:41:15 +00005608 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005609 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005610 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005611 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005612 }
danielk197730548662009-07-09 05:07:37 +00005613 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005614 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005615 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005616 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005617 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005618 }else{
drhee6438d2014-09-01 13:29:32 +00005619 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005620 }
drh8178a752003-01-05 21:41:40 +00005621 }
drh3aac2dd2004-04-26 14:10:20 +00005622 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005623 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005624 }else{
5625 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005626 }
drh72f82862001-05-24 21:06:34 +00005627}
drh2ab792e2017-05-30 18:34:07 +00005628int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005629 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005630 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005631 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005632 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005633 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5634 pCur->info.nSize = 0;
5635 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005636 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005637 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005638 if( (++pCur->ix)>=pPage->nCell ){
5639 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005640 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005641 }
5642 if( pPage->leaf ){
5643 return SQLITE_OK;
5644 }else{
5645 return moveToLeftmost(pCur);
5646 }
5647}
drh72f82862001-05-24 21:06:34 +00005648
drh3b7511c2001-05-26 13:15:44 +00005649/*
drh2ab792e2017-05-30 18:34:07 +00005650** Step the cursor to the back to the previous entry in the database.
5651** Return values:
5652**
5653** SQLITE_OK success
5654** SQLITE_DONE the cursor is already on the first element of the table
5655** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005656**
drhee6438d2014-09-01 13:29:32 +00005657** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5658** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005659** to the previous cell on the current page. The (slower) btreePrevious()
5660** helper routine is called when it is necessary to move to a different page
5661** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005662**
drh89997982017-07-11 18:11:33 +00005663** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5664** the cursor corresponds to an SQL index and this routine could have been
5665** skipped if the SQL index had been a unique index. The F argument is a
5666** hint to the implement. The native SQLite btree implementation does not
5667** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005668*/
drh89997982017-07-11 18:11:33 +00005669static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005670 int rc;
drh8178a752003-01-05 21:41:40 +00005671 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005672
dan7a2347e2016-01-07 16:43:54 +00005673 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005674 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005675 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5676 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005677 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005678 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005679 if( rc!=SQLITE_OK ){
5680 return rc;
drhf66f26a2013-08-19 20:04:10 +00005681 }
5682 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005683 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005684 }
drh9b47ee32013-08-20 03:13:51 +00005685 if( pCur->skipNext ){
5686 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5687 pCur->eState = CURSOR_VALID;
5688 if( pCur->skipNext<0 ){
5689 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005690 return SQLITE_OK;
5691 }
drhf66f26a2013-08-19 20:04:10 +00005692 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005693 }
danielk1977da184232006-01-05 11:34:32 +00005694 }
danielk1977da184232006-01-05 11:34:32 +00005695
drh352a35a2017-08-15 03:46:47 +00005696 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005697 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005698 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005699 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005700 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005701 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005702 rc = moveToRightmost(pCur);
5703 }else{
drh75e96b32017-04-01 00:20:06 +00005704 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005705 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005706 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005707 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005708 }
danielk197730548662009-07-09 05:07:37 +00005709 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005710 }
drhee6438d2014-09-01 13:29:32 +00005711 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005712 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005713
drh75e96b32017-04-01 00:20:06 +00005714 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005715 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005716 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005717 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005718 }else{
5719 rc = SQLITE_OK;
5720 }
drh2dcc9aa2002-12-04 13:40:25 +00005721 }
drh2dcc9aa2002-12-04 13:40:25 +00005722 return rc;
5723}
drh2ab792e2017-05-30 18:34:07 +00005724int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005725 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005726 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005727 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005728 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005729 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5730 pCur->info.nSize = 0;
5731 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005732 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005733 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005734 ){
drh89997982017-07-11 18:11:33 +00005735 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005736 }
drh75e96b32017-04-01 00:20:06 +00005737 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005738 return SQLITE_OK;
5739}
drh2dcc9aa2002-12-04 13:40:25 +00005740
5741/*
drh3b7511c2001-05-26 13:15:44 +00005742** Allocate a new page from the database file.
5743**
danielk19773b8a05f2007-03-19 17:44:26 +00005744** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005745** has already been called on the new page.) The new page has also
5746** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005747** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005748**
5749** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005750** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005751**
drh82e647d2013-03-02 03:25:55 +00005752** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005753** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005754** attempt to keep related pages close to each other in the database file,
5755** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005756**
drh82e647d2013-03-02 03:25:55 +00005757** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5758** anywhere on the free-list, then it is guaranteed to be returned. If
5759** eMode is BTALLOC_LT then the page returned will be less than or equal
5760** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5761** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005762*/
drh4f0c5872007-03-26 22:05:01 +00005763static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005764 BtShared *pBt, /* The btree */
5765 MemPage **ppPage, /* Store pointer to the allocated page here */
5766 Pgno *pPgno, /* Store the page number here */
5767 Pgno nearby, /* Search for a page near this one */
5768 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005769){
drh3aac2dd2004-04-26 14:10:20 +00005770 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005771 int rc;
drh35cd6432009-06-05 14:17:21 +00005772 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005773 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005774 MemPage *pTrunk = 0;
5775 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005776 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005777
drh1fee73e2007-08-29 04:00:57 +00005778 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005779 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005780 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005781 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005782 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5783 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005784 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005785 testcase( n==mxPage-1 );
5786 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005787 return SQLITE_CORRUPT_BKPT;
5788 }
drh3aac2dd2004-04-26 14:10:20 +00005789 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005790 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005791 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005792 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005793 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005794
drh82e647d2013-03-02 03:25:55 +00005795 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005796 ** shows that the page 'nearby' is somewhere on the free-list, then
5797 ** the entire-list will be searched for that page.
5798 */
5799#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005800 if( eMode==BTALLOC_EXACT ){
5801 if( nearby<=mxPage ){
5802 u8 eType;
5803 assert( nearby>0 );
5804 assert( pBt->autoVacuum );
5805 rc = ptrmapGet(pBt, nearby, &eType, 0);
5806 if( rc ) return rc;
5807 if( eType==PTRMAP_FREEPAGE ){
5808 searchList = 1;
5809 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005810 }
dan51f0b6d2013-02-22 20:16:34 +00005811 }else if( eMode==BTALLOC_LE ){
5812 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005813 }
5814#endif
5815
5816 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5817 ** first free-list trunk page. iPrevTrunk is initially 1.
5818 */
danielk19773b8a05f2007-03-19 17:44:26 +00005819 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005820 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005821 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005822
5823 /* The code within this loop is run only once if the 'searchList' variable
5824 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005825 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5826 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005827 */
5828 do {
5829 pPrevTrunk = pTrunk;
5830 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005831 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5832 ** is the page number of the next freelist trunk page in the list or
5833 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005834 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005835 }else{
drh113762a2014-11-19 16:36:25 +00005836 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5837 ** stores the page number of the first page of the freelist, or zero if
5838 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005839 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005840 }
drhdf35a082009-07-09 02:24:35 +00005841 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005842 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005843 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005844 }else{
drh7e8c6f12015-05-28 03:28:27 +00005845 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005846 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005847 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005848 pTrunk = 0;
5849 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005850 }
drhb07028f2011-10-14 21:49:18 +00005851 assert( pTrunk!=0 );
5852 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005853 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5854 ** is the number of leaf page pointers to follow. */
5855 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005856 if( k==0 && !searchList ){
5857 /* The trunk has no leaves and the list is not being searched.
5858 ** So extract the trunk page itself and use it as the newly
5859 ** allocated page */
5860 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005861 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005862 if( rc ){
5863 goto end_allocate_page;
5864 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005865 *pPgno = iTrunk;
5866 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5867 *ppPage = pTrunk;
5868 pTrunk = 0;
5869 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005870 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005871 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005872 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005873 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005874#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005875 }else if( searchList
5876 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5877 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005878 /* The list is being searched and this trunk page is the page
5879 ** to allocate, regardless of whether it has leaves.
5880 */
dan51f0b6d2013-02-22 20:16:34 +00005881 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005882 *ppPage = pTrunk;
5883 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005884 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005885 if( rc ){
5886 goto end_allocate_page;
5887 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005888 if( k==0 ){
5889 if( !pPrevTrunk ){
5890 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5891 }else{
danf48c3552010-08-23 15:41:24 +00005892 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5893 if( rc!=SQLITE_OK ){
5894 goto end_allocate_page;
5895 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005896 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5897 }
5898 }else{
5899 /* The trunk page is required by the caller but it contains
5900 ** pointers to free-list leaves. The first leaf becomes a trunk
5901 ** page in this case.
5902 */
5903 MemPage *pNewTrunk;
5904 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005905 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005906 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005907 goto end_allocate_page;
5908 }
drhdf35a082009-07-09 02:24:35 +00005909 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005910 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005911 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005912 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005913 }
danielk19773b8a05f2007-03-19 17:44:26 +00005914 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005915 if( rc!=SQLITE_OK ){
5916 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005917 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005918 }
5919 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5920 put4byte(&pNewTrunk->aData[4], k-1);
5921 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005922 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005923 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005924 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005925 put4byte(&pPage1->aData[32], iNewTrunk);
5926 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005927 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005928 if( rc ){
5929 goto end_allocate_page;
5930 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005931 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5932 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005933 }
5934 pTrunk = 0;
5935 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5936#endif
danielk1977e5765212009-06-17 11:13:28 +00005937 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005938 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005939 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005940 Pgno iPage;
5941 unsigned char *aData = pTrunk->aData;
5942 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005943 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005944 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005945 if( eMode==BTALLOC_LE ){
5946 for(i=0; i<k; i++){
5947 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005948 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005949 closest = i;
5950 break;
5951 }
5952 }
5953 }else{
5954 int dist;
5955 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5956 for(i=1; i<k; i++){
5957 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5958 if( d2<dist ){
5959 closest = i;
5960 dist = d2;
5961 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005962 }
5963 }
5964 }else{
5965 closest = 0;
5966 }
5967
5968 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005969 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005970 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005971 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005972 goto end_allocate_page;
5973 }
drhdf35a082009-07-09 02:24:35 +00005974 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005975 if( !searchList
5976 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5977 ){
danielk1977bea2a942009-01-20 17:06:27 +00005978 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005979 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005980 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5981 ": %d more free pages\n",
5982 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005983 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5984 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005985 if( closest<k-1 ){
5986 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5987 }
5988 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005989 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005990 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005991 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005992 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005993 if( rc!=SQLITE_OK ){
5994 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005995 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005996 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005997 }
5998 searchList = 0;
5999 }
drhee696e22004-08-30 16:52:17 +00006000 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006001 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006002 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006003 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006004 }else{
danbc1a3c62013-02-23 16:40:46 +00006005 /* There are no pages on the freelist, so append a new page to the
6006 ** database image.
6007 **
6008 ** Normally, new pages allocated by this block can be requested from the
6009 ** pager layer with the 'no-content' flag set. This prevents the pager
6010 ** from trying to read the pages content from disk. However, if the
6011 ** current transaction has already run one or more incremental-vacuum
6012 ** steps, then the page we are about to allocate may contain content
6013 ** that is required in the event of a rollback. In this case, do
6014 ** not set the no-content flag. This causes the pager to load and journal
6015 ** the current page content before overwriting it.
6016 **
6017 ** Note that the pager will not actually attempt to load or journal
6018 ** content for any page that really does lie past the end of the database
6019 ** file on disk. So the effects of disabling the no-content optimization
6020 ** here are confined to those pages that lie between the end of the
6021 ** database image and the end of the database file.
6022 */
drh3f387402014-09-24 01:23:00 +00006023 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006024
drhdd3cd972010-03-27 17:12:36 +00006025 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6026 if( rc ) return rc;
6027 pBt->nPage++;
6028 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006029
danielk1977afcdd022004-10-31 16:25:42 +00006030#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006031 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006032 /* If *pPgno refers to a pointer-map page, allocate two new pages
6033 ** at the end of the file instead of one. The first allocated page
6034 ** becomes a new pointer-map page, the second is used by the caller.
6035 */
danielk1977ac861692009-03-28 10:54:22 +00006036 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006037 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6038 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006039 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006040 if( rc==SQLITE_OK ){
6041 rc = sqlite3PagerWrite(pPg->pDbPage);
6042 releasePage(pPg);
6043 }
6044 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006045 pBt->nPage++;
6046 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006047 }
6048#endif
drhdd3cd972010-03-27 17:12:36 +00006049 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6050 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006051
danielk1977599fcba2004-11-08 07:13:13 +00006052 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006053 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006054 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006055 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006056 if( rc!=SQLITE_OK ){
6057 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006058 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006059 }
drh3a4c1412004-05-09 20:40:11 +00006060 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006061 }
danielk1977599fcba2004-11-08 07:13:13 +00006062
6063 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006064
6065end_allocate_page:
6066 releasePage(pTrunk);
6067 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006068 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6069 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006070 return rc;
6071}
6072
6073/*
danielk1977bea2a942009-01-20 17:06:27 +00006074** This function is used to add page iPage to the database file free-list.
6075** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006076**
danielk1977bea2a942009-01-20 17:06:27 +00006077** The value passed as the second argument to this function is optional.
6078** If the caller happens to have a pointer to the MemPage object
6079** corresponding to page iPage handy, it may pass it as the second value.
6080** Otherwise, it may pass NULL.
6081**
6082** If a pointer to a MemPage object is passed as the second argument,
6083** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006084*/
danielk1977bea2a942009-01-20 17:06:27 +00006085static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6086 MemPage *pTrunk = 0; /* Free-list trunk page */
6087 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6088 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6089 MemPage *pPage; /* Page being freed. May be NULL. */
6090 int rc; /* Return Code */
6091 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006092
danielk1977bea2a942009-01-20 17:06:27 +00006093 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006094 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006095 assert( !pMemPage || pMemPage->pgno==iPage );
6096
danfb0246b2015-05-26 12:18:17 +00006097 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006098 if( pMemPage ){
6099 pPage = pMemPage;
6100 sqlite3PagerRef(pPage->pDbPage);
6101 }else{
6102 pPage = btreePageLookup(pBt, iPage);
6103 }
drh3aac2dd2004-04-26 14:10:20 +00006104
drha34b6762004-05-07 13:30:42 +00006105 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006106 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006107 if( rc ) goto freepage_out;
6108 nFree = get4byte(&pPage1->aData[36]);
6109 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006110
drhc9166342012-01-05 23:32:06 +00006111 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006112 /* If the secure_delete option is enabled, then
6113 ** always fully overwrite deleted information with zeros.
6114 */
shaneh84f4b2f2010-02-26 01:46:54 +00006115 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6116 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006117 ){
6118 goto freepage_out;
6119 }
6120 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006121 }
drhfcce93f2006-02-22 03:08:32 +00006122
danielk1977687566d2004-11-02 12:56:41 +00006123 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006124 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006125 */
danielk197785d90ca2008-07-19 14:25:15 +00006126 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006127 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006128 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006129 }
danielk1977687566d2004-11-02 12:56:41 +00006130
danielk1977bea2a942009-01-20 17:06:27 +00006131 /* Now manipulate the actual database free-list structure. There are two
6132 ** possibilities. If the free-list is currently empty, or if the first
6133 ** trunk page in the free-list is full, then this page will become a
6134 ** new free-list trunk page. Otherwise, it will become a leaf of the
6135 ** first trunk page in the current free-list. This block tests if it
6136 ** is possible to add the page as a new free-list leaf.
6137 */
6138 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006139 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006140
6141 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00006142 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006143 if( rc!=SQLITE_OK ){
6144 goto freepage_out;
6145 }
6146
6147 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006148 assert( pBt->usableSize>32 );
6149 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006150 rc = SQLITE_CORRUPT_BKPT;
6151 goto freepage_out;
6152 }
drheeb844a2009-08-08 18:01:07 +00006153 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006154 /* In this case there is room on the trunk page to insert the page
6155 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006156 **
6157 ** Note that the trunk page is not really full until it contains
6158 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6159 ** coded. But due to a coding error in versions of SQLite prior to
6160 ** 3.6.0, databases with freelist trunk pages holding more than
6161 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6162 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006163 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006164 ** for now. At some point in the future (once everyone has upgraded
6165 ** to 3.6.0 or later) we should consider fixing the conditional above
6166 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006167 **
6168 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6169 ** avoid using the last six entries in the freelist trunk page array in
6170 ** order that database files created by newer versions of SQLite can be
6171 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006172 */
danielk19773b8a05f2007-03-19 17:44:26 +00006173 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006174 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006175 put4byte(&pTrunk->aData[4], nLeaf+1);
6176 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006177 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006178 sqlite3PagerDontWrite(pPage->pDbPage);
6179 }
danielk1977bea2a942009-01-20 17:06:27 +00006180 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006181 }
drh3a4c1412004-05-09 20:40:11 +00006182 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006183 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006184 }
drh3b7511c2001-05-26 13:15:44 +00006185 }
danielk1977bea2a942009-01-20 17:06:27 +00006186
6187 /* If control flows to this point, then it was not possible to add the
6188 ** the page being freed as a leaf page of the first trunk in the free-list.
6189 ** Possibly because the free-list is empty, or possibly because the
6190 ** first trunk in the free-list is full. Either way, the page being freed
6191 ** will become the new first trunk page in the free-list.
6192 */
drhc046e3e2009-07-15 11:26:44 +00006193 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6194 goto freepage_out;
6195 }
6196 rc = sqlite3PagerWrite(pPage->pDbPage);
6197 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006198 goto freepage_out;
6199 }
6200 put4byte(pPage->aData, iTrunk);
6201 put4byte(&pPage->aData[4], 0);
6202 put4byte(&pPage1->aData[32], iPage);
6203 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6204
6205freepage_out:
6206 if( pPage ){
6207 pPage->isInit = 0;
6208 }
6209 releasePage(pPage);
6210 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006211 return rc;
6212}
drhc314dc72009-07-21 11:52:34 +00006213static void freePage(MemPage *pPage, int *pRC){
6214 if( (*pRC)==SQLITE_OK ){
6215 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6216 }
danielk1977bea2a942009-01-20 17:06:27 +00006217}
drh3b7511c2001-05-26 13:15:44 +00006218
6219/*
drh8d7f1632018-01-23 13:30:38 +00006220** Free any overflow pages associated with the given Cell. Store
6221** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006222*/
drh9bfdc252014-09-24 02:05:41 +00006223static int clearCell(
6224 MemPage *pPage, /* The page that contains the Cell */
6225 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006226 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006227){
drh60172a52017-08-02 18:27:50 +00006228 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006229 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006230 int rc;
drh94440812007-03-06 11:42:19 +00006231 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006232 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006233
drh1fee73e2007-08-29 04:00:57 +00006234 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006235 pPage->xParseCell(pPage, pCell, pInfo);
6236 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006237 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006238 }
drh6fcf83a2018-05-05 01:23:28 +00006239 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6240 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6241 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006242 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006243 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006244 }
drh80159da2016-12-09 17:32:51 +00006245 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006246 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006247 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006248 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006249 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006250 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006251 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006252 );
drh72365832007-03-06 15:53:44 +00006253 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006254 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006255 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006256 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006257 /* 0 is not a legal page number and page 1 cannot be an
6258 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6259 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006260 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006261 }
danielk1977bea2a942009-01-20 17:06:27 +00006262 if( nOvfl ){
6263 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6264 if( rc ) return rc;
6265 }
dan887d4b22010-02-25 12:09:16 +00006266
shaneh1da207e2010-03-09 14:41:12 +00006267 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006268 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6269 ){
6270 /* There is no reason any cursor should have an outstanding reference
6271 ** to an overflow page belonging to a cell that is being deleted/updated.
6272 ** So if there exists more than one reference to this page, then it
6273 ** must not really be an overflow page and the database must be corrupt.
6274 ** It is helpful to detect this before calling freePage2(), as
6275 ** freePage2() may zero the page contents if secure-delete mode is
6276 ** enabled. If this 'overflow' page happens to be a page that the
6277 ** caller is iterating through or using in some other way, this
6278 ** can be problematic.
6279 */
6280 rc = SQLITE_CORRUPT_BKPT;
6281 }else{
6282 rc = freePage2(pBt, pOvfl, ovflPgno);
6283 }
6284
danielk1977bea2a942009-01-20 17:06:27 +00006285 if( pOvfl ){
6286 sqlite3PagerUnref(pOvfl->pDbPage);
6287 }
drh3b7511c2001-05-26 13:15:44 +00006288 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006289 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006290 }
drh5e2f8b92001-05-28 00:41:15 +00006291 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006292}
6293
6294/*
drh91025292004-05-03 19:49:32 +00006295** Create the byte sequence used to represent a cell on page pPage
6296** and write that byte sequence into pCell[]. Overflow pages are
6297** allocated and filled in as necessary. The calling procedure
6298** is responsible for making sure sufficient space has been allocated
6299** for pCell[].
6300**
6301** Note that pCell does not necessary need to point to the pPage->aData
6302** area. pCell might point to some temporary storage. The cell will
6303** be constructed in this temporary area then copied into pPage->aData
6304** later.
drh3b7511c2001-05-26 13:15:44 +00006305*/
6306static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006307 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006308 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006309 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006310 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006311){
drh3b7511c2001-05-26 13:15:44 +00006312 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006313 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006314 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006315 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006316 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006317 unsigned char *pPrior;
6318 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006319 BtShared *pBt;
6320 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006321 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006322
drh1fee73e2007-08-29 04:00:57 +00006323 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006324
drhc5053fb2008-11-27 02:22:10 +00006325 /* pPage is not necessarily writeable since pCell might be auxiliary
6326 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006327 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006328 || sqlite3PagerIswriteable(pPage->pDbPage) );
6329
drh91025292004-05-03 19:49:32 +00006330 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006331 nHeader = pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00006332 if( pPage->intKey ){
drhdfc2daa2016-05-21 23:25:29 +00006333 nPayload = pX->nData + pX->nZero;
6334 pSrc = pX->pData;
6335 nSrc = pX->nData;
6336 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006337 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006338 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh3b7511c2001-05-26 13:15:44 +00006339 }else{
drh8eeb4462016-05-21 20:03:42 +00006340 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6341 nSrc = nPayload = (int)pX->nKey;
6342 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006343 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006344 }
drhdfc2daa2016-05-21 23:25:29 +00006345
6346 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006347 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006348 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006349 /* This is the common case where everything fits on the btree page
6350 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006351 n = nHeader + nPayload;
6352 testcase( n==3 );
6353 testcase( n==4 );
6354 if( n<4 ) n = 4;
6355 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006356 assert( nSrc<=nPayload );
6357 testcase( nSrc<nPayload );
6358 memcpy(pPayload, pSrc, nSrc);
6359 memset(pPayload+nSrc, 0, nPayload-nSrc);
6360 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006361 }
drh5e27e1d2017-08-23 14:45:59 +00006362
6363 /* If we reach this point, it means that some of the content will need
6364 ** to spill onto overflow pages.
6365 */
6366 mn = pPage->minLocal;
6367 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6368 testcase( n==pPage->maxLocal );
6369 testcase( n==pPage->maxLocal+1 );
6370 if( n > pPage->maxLocal ) n = mn;
6371 spaceLeft = n;
6372 *pnSize = n + nHeader + 4;
6373 pPrior = &pCell[nHeader+n];
6374 pToRelease = 0;
6375 pgnoOvfl = 0;
6376 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006377
drh6200c882014-09-23 22:36:25 +00006378 /* At this point variables should be set as follows:
6379 **
6380 ** nPayload Total payload size in bytes
6381 ** pPayload Begin writing payload here
6382 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6383 ** that means content must spill into overflow pages.
6384 ** *pnSize Size of the local cell (not counting overflow pages)
6385 ** pPrior Where to write the pgno of the first overflow page
6386 **
6387 ** Use a call to btreeParseCellPtr() to verify that the values above
6388 ** were computed correctly.
6389 */
drhd879e3e2017-02-13 13:35:55 +00006390#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006391 {
6392 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006393 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006394 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006395 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006396 assert( *pnSize == info.nSize );
6397 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006398 }
6399#endif
6400
6401 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006402 while( 1 ){
6403 n = nPayload;
6404 if( n>spaceLeft ) n = spaceLeft;
6405
6406 /* If pToRelease is not zero than pPayload points into the data area
6407 ** of pToRelease. Make sure pToRelease is still writeable. */
6408 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6409
6410 /* If pPayload is part of the data area of pPage, then make sure pPage
6411 ** is still writeable */
6412 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6413 || sqlite3PagerIswriteable(pPage->pDbPage) );
6414
6415 if( nSrc>=n ){
6416 memcpy(pPayload, pSrc, n);
6417 }else if( nSrc>0 ){
6418 n = nSrc;
6419 memcpy(pPayload, pSrc, n);
6420 }else{
6421 memset(pPayload, 0, n);
6422 }
6423 nPayload -= n;
6424 if( nPayload<=0 ) break;
6425 pPayload += n;
6426 pSrc += n;
6427 nSrc -= n;
6428 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006429 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006430 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006431#ifndef SQLITE_OMIT_AUTOVACUUM
6432 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006433 if( pBt->autoVacuum ){
6434 do{
6435 pgnoOvfl++;
6436 } while(
6437 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6438 );
danielk1977b39f70b2007-05-17 18:28:11 +00006439 }
danielk1977afcdd022004-10-31 16:25:42 +00006440#endif
drhf49661a2008-12-10 16:45:50 +00006441 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006442#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006443 /* If the database supports auto-vacuum, and the second or subsequent
6444 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006445 ** for that page now.
6446 **
6447 ** If this is the first overflow page, then write a partial entry
6448 ** to the pointer-map. If we write nothing to this pointer-map slot,
6449 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006450 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006451 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006452 */
danielk19774ef24492007-05-23 09:52:41 +00006453 if( pBt->autoVacuum && rc==SQLITE_OK ){
6454 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006455 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006456 if( rc ){
6457 releasePage(pOvfl);
6458 }
danielk1977afcdd022004-10-31 16:25:42 +00006459 }
6460#endif
drh3b7511c2001-05-26 13:15:44 +00006461 if( rc ){
drh9b171272004-05-08 02:03:22 +00006462 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006463 return rc;
6464 }
drhc5053fb2008-11-27 02:22:10 +00006465
6466 /* If pToRelease is not zero than pPrior points into the data area
6467 ** of pToRelease. Make sure pToRelease is still writeable. */
6468 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6469
6470 /* If pPrior is part of the data area of pPage, then make sure pPage
6471 ** is still writeable */
6472 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6473 || sqlite3PagerIswriteable(pPage->pDbPage) );
6474
drh3aac2dd2004-04-26 14:10:20 +00006475 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006476 releasePage(pToRelease);
6477 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006478 pPrior = pOvfl->aData;
6479 put4byte(pPrior, 0);
6480 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006481 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006482 }
drhdd793422001-06-28 01:54:48 +00006483 }
drh9b171272004-05-08 02:03:22 +00006484 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006485 return SQLITE_OK;
6486}
6487
drh14acc042001-06-10 19:56:58 +00006488/*
6489** Remove the i-th cell from pPage. This routine effects pPage only.
6490** The cell content is not freed or deallocated. It is assumed that
6491** the cell content has been copied someplace else. This routine just
6492** removes the reference to the cell from pPage.
6493**
6494** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006495*/
drh98add2e2009-07-20 17:11:49 +00006496static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006497 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006498 u8 *data; /* pPage->aData */
6499 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006500 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006501 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006502
drh98add2e2009-07-20 17:11:49 +00006503 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006504 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006505 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006506 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006507 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006508 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006509 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006510 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006511 hdr = pPage->hdrOffset;
6512 testcase( pc==get2byte(&data[hdr+5]) );
6513 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006514 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006515 *pRC = SQLITE_CORRUPT_BKPT;
6516 return;
shane0af3f892008-11-12 04:55:34 +00006517 }
shanedcc50b72008-11-13 18:29:50 +00006518 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006519 if( rc ){
6520 *pRC = rc;
6521 return;
shanedcc50b72008-11-13 18:29:50 +00006522 }
drh14acc042001-06-10 19:56:58 +00006523 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006524 if( pPage->nCell==0 ){
6525 memset(&data[hdr+1], 0, 4);
6526 data[hdr+7] = 0;
6527 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6528 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6529 - pPage->childPtrSize - 8;
6530 }else{
6531 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6532 put2byte(&data[hdr+3], pPage->nCell);
6533 pPage->nFree += 2;
6534 }
drh14acc042001-06-10 19:56:58 +00006535}
6536
6537/*
6538** Insert a new cell on pPage at cell index "i". pCell points to the
6539** content of the cell.
6540**
6541** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006542** will not fit, then make a copy of the cell content into pTemp if
6543** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006544** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006545** in pTemp or the original pCell) and also record its index.
6546** Allocating a new entry in pPage->aCell[] implies that
6547** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006548**
6549** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006550*/
drh98add2e2009-07-20 17:11:49 +00006551static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006552 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006553 int i, /* New cell becomes the i-th cell of the page */
6554 u8 *pCell, /* Content of the new cell */
6555 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006556 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006557 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6558 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006559){
drh383d30f2010-02-26 13:07:37 +00006560 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006561 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006562 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006563 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006564
drhcb89f4a2016-05-21 11:23:26 +00006565 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006566 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006567 assert( MX_CELL(pPage->pBt)<=10921 );
6568 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006569 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6570 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006571 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006572 /* The cell should normally be sized correctly. However, when moving a
6573 ** malformed cell from a leaf page to an interior page, if the cell size
6574 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6575 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6576 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006577 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006578 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006579 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006580 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006581 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006582 }
danielk19774dbaa892009-06-16 16:50:22 +00006583 if( iChild ){
6584 put4byte(pCell, iChild);
6585 }
drh43605152004-05-29 21:46:49 +00006586 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006587 /* Comparison against ArraySize-1 since we hold back one extra slot
6588 ** as a contingency. In other words, never need more than 3 overflow
6589 ** slots but 4 are allocated, just to be safe. */
6590 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006591 pPage->apOvfl[j] = pCell;
6592 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006593
6594 /* When multiple overflows occur, they are always sequential and in
6595 ** sorted order. This invariants arise because multiple overflows can
6596 ** only occur when inserting divider cells into the parent page during
6597 ** balancing, and the dividers are adjacent and sorted.
6598 */
6599 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6600 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006601 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006602 int rc = sqlite3PagerWrite(pPage->pDbPage);
6603 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006604 *pRC = rc;
6605 return;
danielk19776e465eb2007-08-21 13:11:00 +00006606 }
6607 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006608 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006609 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006610 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006611 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006612 /* The allocateSpace() routine guarantees the following properties
6613 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006614 assert( idx >= 0 );
6615 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006616 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006617 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006618 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006619 if( iChild ){
6620 put4byte(&data[idx], iChild);
6621 }
drh2c8fb922015-06-25 19:53:48 +00006622 pIns = pPage->aCellIdx + i*2;
6623 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6624 put2byte(pIns, idx);
6625 pPage->nCell++;
6626 /* increment the cell count */
6627 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6628 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006629#ifndef SQLITE_OMIT_AUTOVACUUM
6630 if( pPage->pBt->autoVacuum ){
6631 /* The cell may contain a pointer to an overflow page. If so, write
6632 ** the entry for the overflow page into the pointer map.
6633 */
drh98add2e2009-07-20 17:11:49 +00006634 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006635 }
6636#endif
drh14acc042001-06-10 19:56:58 +00006637 }
6638}
6639
6640/*
drh1ffd2472015-06-23 02:37:30 +00006641** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006642** consecutive sequence of cells that might be held on multiple pages.
drh1ffd2472015-06-23 02:37:30 +00006643*/
6644typedef struct CellArray CellArray;
6645struct CellArray {
6646 int nCell; /* Number of cells in apCell[] */
6647 MemPage *pRef; /* Reference page */
6648 u8 **apCell; /* All cells begin balanced */
6649 u16 *szCell; /* Local size of all cells in apCell[] */
6650};
6651
6652/*
6653** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6654** computed.
6655*/
6656static void populateCellCache(CellArray *p, int idx, int N){
6657 assert( idx>=0 && idx+N<=p->nCell );
6658 while( N>0 ){
6659 assert( p->apCell[idx]!=0 );
6660 if( p->szCell[idx]==0 ){
6661 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6662 }else{
6663 assert( CORRUPT_DB ||
6664 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6665 }
6666 idx++;
6667 N--;
6668 }
6669}
6670
6671/*
6672** Return the size of the Nth element of the cell array
6673*/
6674static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6675 assert( N>=0 && N<p->nCell );
6676 assert( p->szCell[N]==0 );
6677 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6678 return p->szCell[N];
6679}
6680static u16 cachedCellSize(CellArray *p, int N){
6681 assert( N>=0 && N<p->nCell );
6682 if( p->szCell[N] ) return p->szCell[N];
6683 return computeCellSize(p, N);
6684}
6685
6686/*
dan8e9ba0c2014-10-14 17:27:04 +00006687** Array apCell[] contains pointers to nCell b-tree page cells. The
6688** szCell[] array contains the size in bytes of each cell. This function
6689** replaces the current contents of page pPg with the contents of the cell
6690** array.
6691**
6692** Some of the cells in apCell[] may currently be stored in pPg. This
6693** function works around problems caused by this by making a copy of any
6694** such cells before overwriting the page data.
6695**
6696** The MemPage.nFree field is invalidated by this function. It is the
6697** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006698*/
drh658873b2015-06-22 20:02:04 +00006699static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006700 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006701 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006702 u8 **apCell, /* Array of cells */
6703 u16 *szCell /* Array of cell sizes */
drhfa1a98a2004-05-14 19:08:17 +00006704){
dan33ea4862014-10-09 19:35:37 +00006705 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6706 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6707 const int usableSize = pPg->pBt->usableSize;
6708 u8 * const pEnd = &aData[usableSize];
6709 int i;
6710 u8 *pCellptr = pPg->aCellIdx;
6711 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6712 u8 *pData;
drhfa1a98a2004-05-14 19:08:17 +00006713
dan33ea4862014-10-09 19:35:37 +00006714 i = get2byte(&aData[hdr+5]);
6715 memcpy(&pTmp[i], &aData[i], usableSize - i);
danielk1977fad91942009-04-29 17:49:59 +00006716
dan8e9ba0c2014-10-14 17:27:04 +00006717 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006718 for(i=0; i<nCell; i++){
6719 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006720 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006721 pCell = &pTmp[pCell - aData];
6722 }
6723 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006724 put2byte(pCellptr, (pData - aData));
6725 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006726 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6727 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006728 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006729 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
drhfa1a98a2004-05-14 19:08:17 +00006730 }
dan33ea4862014-10-09 19:35:37 +00006731
dand7b545b2014-10-13 18:03:27 +00006732 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006733 pPg->nCell = nCell;
6734 pPg->nOverflow = 0;
6735
6736 put2byte(&aData[hdr+1], 0);
6737 put2byte(&aData[hdr+3], pPg->nCell);
6738 put2byte(&aData[hdr+5], pData - aData);
6739 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006740 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006741}
6742
dan8e9ba0c2014-10-14 17:27:04 +00006743/*
6744** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6745** contains the size in bytes of each such cell. This function attempts to
6746** add the cells stored in the array to page pPg. If it cannot (because
6747** the page needs to be defragmented before the cells will fit), non-zero
6748** is returned. Otherwise, if the cells are added successfully, zero is
6749** returned.
6750**
6751** Argument pCellptr points to the first entry in the cell-pointer array
6752** (part of page pPg) to populate. After cell apCell[0] is written to the
6753** page body, a 16-bit offset is written to pCellptr. And so on, for each
6754** cell in the array. It is the responsibility of the caller to ensure
6755** that it is safe to overwrite this part of the cell-pointer array.
6756**
6757** When this function is called, *ppData points to the start of the
6758** content area on page pPg. If the size of the content area is extended,
6759** *ppData is updated to point to the new start of the content area
6760** before returning.
6761**
6762** Finally, argument pBegin points to the byte immediately following the
6763** end of the space required by this page for the cell-pointer area (for
6764** all cells - not just those inserted by the current call). If the content
6765** area must be extended to before this point in order to accomodate all
6766** cells in apCell[], then the cells do not fit and non-zero is returned.
6767*/
dand7b545b2014-10-13 18:03:27 +00006768static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006769 MemPage *pPg, /* Page to add cells to */
6770 u8 *pBegin, /* End of cell-pointer array */
6771 u8 **ppData, /* IN/OUT: Page content -area pointer */
6772 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006773 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006774 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006775 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006776){
6777 int i;
6778 u8 *aData = pPg->aData;
6779 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006780 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006781 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006782 for(i=iFirst; i<iEnd; i++){
6783 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006784 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006785 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006786 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006787 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006788 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006789 pSlot = pData;
6790 }
drh48310f82015-10-10 16:41:28 +00006791 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6792 ** database. But they might for a corrupt database. Hence use memmove()
6793 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6794 assert( (pSlot+sz)<=pCArray->apCell[i]
6795 || pSlot>=(pCArray->apCell[i]+sz)
6796 || CORRUPT_DB );
6797 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006798 put2byte(pCellptr, (pSlot - aData));
6799 pCellptr += 2;
6800 }
6801 *ppData = pData;
6802 return 0;
6803}
6804
dan8e9ba0c2014-10-14 17:27:04 +00006805/*
6806** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6807** contains the size in bytes of each such cell. This function adds the
6808** space associated with each cell in the array that is currently stored
6809** within the body of pPg to the pPg free-list. The cell-pointers and other
6810** fields of the page are not updated.
6811**
6812** This function returns the total number of cells added to the free-list.
6813*/
dand7b545b2014-10-13 18:03:27 +00006814static int pageFreeArray(
6815 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006816 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006817 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006818 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006819){
6820 u8 * const aData = pPg->aData;
6821 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006822 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006823 int nRet = 0;
6824 int i;
drhf7838932015-06-23 15:36:34 +00006825 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006826 u8 *pFree = 0;
6827 int szFree = 0;
6828
drhf7838932015-06-23 15:36:34 +00006829 for(i=iFirst; i<iEnd; i++){
6830 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006831 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006832 int sz;
6833 /* No need to use cachedCellSize() here. The sizes of all cells that
6834 ** are to be freed have already been computing while deciding which
6835 ** cells need freeing */
6836 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006837 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006838 if( pFree ){
6839 assert( pFree>aData && (pFree - aData)<65536 );
6840 freeSpace(pPg, (u16)(pFree - aData), szFree);
6841 }
dand7b545b2014-10-13 18:03:27 +00006842 pFree = pCell;
6843 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006844 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006845 }else{
6846 pFree = pCell;
6847 szFree += sz;
6848 }
6849 nRet++;
6850 }
6851 }
drhfefa0942014-11-05 21:21:08 +00006852 if( pFree ){
6853 assert( pFree>aData && (pFree - aData)<65536 );
6854 freeSpace(pPg, (u16)(pFree - aData), szFree);
6855 }
dand7b545b2014-10-13 18:03:27 +00006856 return nRet;
6857}
6858
dand7b545b2014-10-13 18:03:27 +00006859/*
drh5ab63772014-11-27 03:46:04 +00006860** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6861** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6862** with apCell[iOld]. After balancing, this page should hold nNew cells
6863** starting at apCell[iNew].
6864**
6865** This routine makes the necessary adjustments to pPg so that it contains
6866** the correct cells after being balanced.
6867**
dand7b545b2014-10-13 18:03:27 +00006868** The pPg->nFree field is invalid when this function returns. It is the
6869** responsibility of the caller to set it correctly.
6870*/
drh658873b2015-06-22 20:02:04 +00006871static int editPage(
dan09c68402014-10-11 20:00:24 +00006872 MemPage *pPg, /* Edit this page */
6873 int iOld, /* Index of first cell currently on page */
6874 int iNew, /* Index of new first cell on page */
6875 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006876 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006877){
dand7b545b2014-10-13 18:03:27 +00006878 u8 * const aData = pPg->aData;
6879 const int hdr = pPg->hdrOffset;
6880 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6881 int nCell = pPg->nCell; /* Cells stored on pPg */
6882 u8 *pData;
6883 u8 *pCellptr;
6884 int i;
6885 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6886 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006887
6888#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006889 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6890 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006891#endif
6892
dand7b545b2014-10-13 18:03:27 +00006893 /* Remove cells from the start and end of the page */
6894 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006895 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006896 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6897 nCell -= nShift;
6898 }
6899 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006900 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006901 }
dan09c68402014-10-11 20:00:24 +00006902
drh5ab63772014-11-27 03:46:04 +00006903 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006904 if( pData<pBegin ) goto editpage_fail;
6905
6906 /* Add cells to the start of the page */
6907 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006908 int nAdd = MIN(nNew,iOld-iNew);
6909 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006910 pCellptr = pPg->aCellIdx;
6911 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6912 if( pageInsertArray(
6913 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006914 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006915 ) ) goto editpage_fail;
6916 nCell += nAdd;
6917 }
6918
6919 /* Add any overflow cells */
6920 for(i=0; i<pPg->nOverflow; i++){
6921 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6922 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006923 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006924 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6925 nCell++;
6926 if( pageInsertArray(
6927 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006928 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006929 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006930 }
dand7b545b2014-10-13 18:03:27 +00006931 }
dan09c68402014-10-11 20:00:24 +00006932
dand7b545b2014-10-13 18:03:27 +00006933 /* Append cells to the end of the page */
6934 pCellptr = &pPg->aCellIdx[nCell*2];
6935 if( pageInsertArray(
6936 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006937 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006938 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006939
dand7b545b2014-10-13 18:03:27 +00006940 pPg->nCell = nNew;
6941 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006942
dand7b545b2014-10-13 18:03:27 +00006943 put2byte(&aData[hdr+3], pPg->nCell);
6944 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006945
6946#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006947 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006948 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006949 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006950 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006951 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006952 }
drh1ffd2472015-06-23 02:37:30 +00006953 assert( 0==memcmp(pCell, &aData[iOff],
6954 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006955 }
dan09c68402014-10-11 20:00:24 +00006956#endif
6957
drh658873b2015-06-22 20:02:04 +00006958 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006959 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006960 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006961 populateCellCache(pCArray, iNew, nNew);
6962 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006963}
6964
drh14acc042001-06-10 19:56:58 +00006965/*
drhc3b70572003-01-04 19:44:07 +00006966** The following parameters determine how many adjacent pages get involved
6967** in a balancing operation. NN is the number of neighbors on either side
6968** of the page that participate in the balancing operation. NB is the
6969** total number of pages that participate, including the target page and
6970** NN neighbors on either side.
6971**
6972** The minimum value of NN is 1 (of course). Increasing NN above 1
6973** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6974** in exchange for a larger degradation in INSERT and UPDATE performance.
6975** The value of NN appears to give the best results overall.
6976*/
6977#define NN 1 /* Number of neighbors on either side of pPage */
6978#define NB (NN*2+1) /* Total pages involved in the balance */
6979
danielk1977ac245ec2005-01-14 13:50:11 +00006980
drh615ae552005-01-16 23:21:00 +00006981#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006982/*
6983** This version of balance() handles the common special case where
6984** a new entry is being inserted on the extreme right-end of the
6985** tree, in other words, when the new entry will become the largest
6986** entry in the tree.
6987**
drhc314dc72009-07-21 11:52:34 +00006988** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006989** a new page to the right-hand side and put the one new entry in
6990** that page. This leaves the right side of the tree somewhat
6991** unbalanced. But odds are that we will be inserting new entries
6992** at the end soon afterwards so the nearly empty page will quickly
6993** fill up. On average.
6994**
6995** pPage is the leaf page which is the right-most page in the tree.
6996** pParent is its parent. pPage must have a single overflow entry
6997** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006998**
6999** The pSpace buffer is used to store a temporary copy of the divider
7000** cell that will be inserted into pParent. Such a cell consists of a 4
7001** byte page number followed by a variable length integer. In other
7002** words, at most 13 bytes. Hence the pSpace buffer must be at
7003** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007004*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007005static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7006 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007007 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007008 int rc; /* Return Code */
7009 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007010
drh1fee73e2007-08-29 04:00:57 +00007011 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007012 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007013 assert( pPage->nOverflow==1 );
7014
drh5d433ce2010-08-14 16:02:52 +00007015 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00007016 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00007017
danielk1977a50d9aa2009-06-08 14:49:45 +00007018 /* Allocate a new page. This page will become the right-sibling of
7019 ** pPage. Make the parent page writable, so that the new divider cell
7020 ** may be inserted. If both these operations are successful, proceed.
7021 */
drh4f0c5872007-03-26 22:05:01 +00007022 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007023
danielk1977eaa06f62008-09-18 17:34:44 +00007024 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007025
7026 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007027 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007028 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007029 u8 *pStop;
7030
drhc5053fb2008-11-27 02:22:10 +00007031 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007032 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7033 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00007034 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00007035 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00007036 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007037
7038 /* If this is an auto-vacuum database, update the pointer map
7039 ** with entries for the new page, and any pointer from the
7040 ** cell on the page to an overflow page. If either of these
7041 ** operations fails, the return code is set, but the contents
7042 ** of the parent page are still manipulated by thh code below.
7043 ** That is Ok, at this point the parent page is guaranteed to
7044 ** be marked as dirty. Returning an error code will cause a
7045 ** rollback, undoing any changes made to the parent page.
7046 */
7047 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007048 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7049 if( szCell>pNew->minLocal ){
7050 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007051 }
7052 }
danielk1977eaa06f62008-09-18 17:34:44 +00007053
danielk19776f235cc2009-06-04 14:46:08 +00007054 /* Create a divider cell to insert into pParent. The divider cell
7055 ** consists of a 4-byte page number (the page number of pPage) and
7056 ** a variable length key value (which must be the same value as the
7057 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007058 **
danielk19776f235cc2009-06-04 14:46:08 +00007059 ** To find the largest key value on pPage, first find the right-most
7060 ** cell on pPage. The first two fields of this cell are the
7061 ** record-length (a variable length integer at most 32-bits in size)
7062 ** and the key value (a variable length integer, may have any value).
7063 ** The first of the while(...) loops below skips over the record-length
7064 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007065 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007066 */
danielk1977eaa06f62008-09-18 17:34:44 +00007067 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007068 pStop = &pCell[9];
7069 while( (*(pCell++)&0x80) && pCell<pStop );
7070 pStop = &pCell[9];
7071 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7072
danielk19774dbaa892009-06-16 16:50:22 +00007073 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007074 if( rc==SQLITE_OK ){
7075 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7076 0, pPage->pgno, &rc);
7077 }
danielk19776f235cc2009-06-04 14:46:08 +00007078
7079 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007080 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7081
danielk1977e08a3c42008-09-18 18:17:03 +00007082 /* Release the reference to the new page. */
7083 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007084 }
7085
danielk1977eaa06f62008-09-18 17:34:44 +00007086 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007087}
drh615ae552005-01-16 23:21:00 +00007088#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007089
danielk19774dbaa892009-06-16 16:50:22 +00007090#if 0
drhc3b70572003-01-04 19:44:07 +00007091/*
danielk19774dbaa892009-06-16 16:50:22 +00007092** This function does not contribute anything to the operation of SQLite.
7093** it is sometimes activated temporarily while debugging code responsible
7094** for setting pointer-map entries.
7095*/
7096static int ptrmapCheckPages(MemPage **apPage, int nPage){
7097 int i, j;
7098 for(i=0; i<nPage; i++){
7099 Pgno n;
7100 u8 e;
7101 MemPage *pPage = apPage[i];
7102 BtShared *pBt = pPage->pBt;
7103 assert( pPage->isInit );
7104
7105 for(j=0; j<pPage->nCell; j++){
7106 CellInfo info;
7107 u8 *z;
7108
7109 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007110 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007111 if( info.nLocal<info.nPayload ){
7112 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007113 ptrmapGet(pBt, ovfl, &e, &n);
7114 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7115 }
7116 if( !pPage->leaf ){
7117 Pgno child = get4byte(z);
7118 ptrmapGet(pBt, child, &e, &n);
7119 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7120 }
7121 }
7122 if( !pPage->leaf ){
7123 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7124 ptrmapGet(pBt, child, &e, &n);
7125 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7126 }
7127 }
7128 return 1;
7129}
7130#endif
7131
danielk1977cd581a72009-06-23 15:43:39 +00007132/*
7133** This function is used to copy the contents of the b-tree node stored
7134** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7135** the pointer-map entries for each child page are updated so that the
7136** parent page stored in the pointer map is page pTo. If pFrom contained
7137** any cells with overflow page pointers, then the corresponding pointer
7138** map entries are also updated so that the parent page is page pTo.
7139**
7140** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007141** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007142**
danielk197730548662009-07-09 05:07:37 +00007143** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007144**
7145** The performance of this function is not critical. It is only used by
7146** the balance_shallower() and balance_deeper() procedures, neither of
7147** which are called often under normal circumstances.
7148*/
drhc314dc72009-07-21 11:52:34 +00007149static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7150 if( (*pRC)==SQLITE_OK ){
7151 BtShared * const pBt = pFrom->pBt;
7152 u8 * const aFrom = pFrom->aData;
7153 u8 * const aTo = pTo->aData;
7154 int const iFromHdr = pFrom->hdrOffset;
7155 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007156 int rc;
drhc314dc72009-07-21 11:52:34 +00007157 int iData;
7158
7159
7160 assert( pFrom->isInit );
7161 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007162 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007163
7164 /* Copy the b-tree node content from page pFrom to page pTo. */
7165 iData = get2byte(&aFrom[iFromHdr+5]);
7166 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7167 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7168
7169 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007170 ** match the new data. The initialization of pTo can actually fail under
7171 ** fairly obscure circumstances, even though it is a copy of initialized
7172 ** page pFrom.
7173 */
drhc314dc72009-07-21 11:52:34 +00007174 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007175 rc = btreeInitPage(pTo);
7176 if( rc!=SQLITE_OK ){
7177 *pRC = rc;
7178 return;
7179 }
drhc314dc72009-07-21 11:52:34 +00007180
7181 /* If this is an auto-vacuum database, update the pointer-map entries
7182 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7183 */
7184 if( ISAUTOVACUUM ){
7185 *pRC = setChildPtrmaps(pTo);
7186 }
danielk1977cd581a72009-06-23 15:43:39 +00007187 }
danielk1977cd581a72009-06-23 15:43:39 +00007188}
7189
7190/*
danielk19774dbaa892009-06-16 16:50:22 +00007191** This routine redistributes cells on the iParentIdx'th child of pParent
7192** (hereafter "the page") and up to 2 siblings so that all pages have about the
7193** same amount of free space. Usually a single sibling on either side of the
7194** page are used in the balancing, though both siblings might come from one
7195** side if the page is the first or last child of its parent. If the page
7196** has fewer than 2 siblings (something which can only happen if the page
7197** is a root page or a child of a root page) then all available siblings
7198** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007199**
danielk19774dbaa892009-06-16 16:50:22 +00007200** The number of siblings of the page might be increased or decreased by
7201** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007202**
danielk19774dbaa892009-06-16 16:50:22 +00007203** Note that when this routine is called, some of the cells on the page
7204** might not actually be stored in MemPage.aData[]. This can happen
7205** if the page is overfull. This routine ensures that all cells allocated
7206** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007207**
danielk19774dbaa892009-06-16 16:50:22 +00007208** In the course of balancing the page and its siblings, cells may be
7209** inserted into or removed from the parent page (pParent). Doing so
7210** may cause the parent page to become overfull or underfull. If this
7211** happens, it is the responsibility of the caller to invoke the correct
7212** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007213**
drh5e00f6c2001-09-13 13:46:56 +00007214** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007215** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007216** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007217**
7218** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007219** buffer big enough to hold one page. If while inserting cells into the parent
7220** page (pParent) the parent page becomes overfull, this buffer is
7221** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007222** a maximum of four divider cells into the parent page, and the maximum
7223** size of a cell stored within an internal node is always less than 1/4
7224** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7225** enough for all overflow cells.
7226**
7227** If aOvflSpace is set to a null pointer, this function returns
7228** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007229*/
danielk19774dbaa892009-06-16 16:50:22 +00007230static int balance_nonroot(
7231 MemPage *pParent, /* Parent page of siblings being balanced */
7232 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007233 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007234 int isRoot, /* True if pParent is a root-page */
7235 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007236){
drh16a9b832007-05-05 18:39:25 +00007237 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007238 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007239 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007240 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007241 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007242 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007243 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007244 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007245 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007246 int usableSpace; /* Bytes in pPage beyond the header */
7247 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007248 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007249 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007250 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007251 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007252 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007253 u8 *pRight; /* Location in parent of right-sibling pointer */
7254 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007255 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7256 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007257 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007258 u8 *aSpace1; /* Space for copies of dividers cells */
7259 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007260 u8 abDone[NB+2]; /* True after i'th new page is populated */
7261 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007262 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007263 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007264 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007265
dan33ea4862014-10-09 19:35:37 +00007266 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007267 b.nCell = 0;
7268 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007269 pBt = pParent->pBt;
7270 assert( sqlite3_mutex_held(pBt->mutex) );
7271 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007272
danielk1977e5765212009-06-17 11:13:28 +00007273#if 0
drh43605152004-05-29 21:46:49 +00007274 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007275#endif
drh2e38c322004-09-03 18:38:44 +00007276
danielk19774dbaa892009-06-16 16:50:22 +00007277 /* At this point pParent may have at most one overflow cell. And if
7278 ** this overflow cell is present, it must be the cell with
7279 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007280 ** is called (indirectly) from sqlite3BtreeDelete().
7281 */
danielk19774dbaa892009-06-16 16:50:22 +00007282 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007283 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007284
danielk197711a8a862009-06-17 11:49:52 +00007285 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007286 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007287 }
7288
danielk1977a50d9aa2009-06-08 14:49:45 +00007289 /* Find the sibling pages to balance. Also locate the cells in pParent
7290 ** that divide the siblings. An attempt is made to find NN siblings on
7291 ** either side of pPage. More siblings are taken from one side, however,
7292 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007293 ** has NB or fewer children then all children of pParent are taken.
7294 **
7295 ** This loop also drops the divider cells from the parent page. This
7296 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007297 ** overflow cells in the parent page, since if any existed they will
7298 ** have already been removed.
7299 */
danielk19774dbaa892009-06-16 16:50:22 +00007300 i = pParent->nOverflow + pParent->nCell;
7301 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007302 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007303 }else{
dan7d6885a2012-08-08 14:04:56 +00007304 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007305 if( iParentIdx==0 ){
7306 nxDiv = 0;
7307 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007308 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007309 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007310 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007311 }
dan7d6885a2012-08-08 14:04:56 +00007312 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007313 }
dan7d6885a2012-08-08 14:04:56 +00007314 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007315 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7316 pRight = &pParent->aData[pParent->hdrOffset+8];
7317 }else{
7318 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7319 }
7320 pgno = get4byte(pRight);
7321 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007322 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007323 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007324 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007325 goto balance_cleanup;
7326 }
danielk1977634f2982005-03-28 08:44:07 +00007327 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007328 if( (i--)==0 ) break;
7329
drh9cc5b4e2016-12-26 01:41:33 +00007330 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007331 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007332 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007333 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007334 pParent->nOverflow = 0;
7335 }else{
7336 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7337 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007338 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007339
7340 /* Drop the cell from the parent page. apDiv[i] still points to
7341 ** the cell within the parent, even though it has been dropped.
7342 ** This is safe because dropping a cell only overwrites the first
7343 ** four bytes of it, and this function does not need the first
7344 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007345 ** later on.
7346 **
drh8a575d92011-10-12 17:00:28 +00007347 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007348 ** the dropCell() routine will overwrite the entire cell with zeroes.
7349 ** In this case, temporarily copy the cell into the aOvflSpace[]
7350 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7351 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007352 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007353 int iOff;
7354
7355 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007356 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007357 rc = SQLITE_CORRUPT_BKPT;
7358 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7359 goto balance_cleanup;
7360 }else{
7361 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7362 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7363 }
drh5b47efa2010-02-12 18:18:39 +00007364 }
drh98add2e2009-07-20 17:11:49 +00007365 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007366 }
drh8b2f49b2001-06-08 00:21:52 +00007367 }
7368
drha9121e42008-02-19 14:59:35 +00007369 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007370 ** alignment */
drha9121e42008-02-19 14:59:35 +00007371 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007372
drh8b2f49b2001-06-08 00:21:52 +00007373 /*
danielk1977634f2982005-03-28 08:44:07 +00007374 ** Allocate space for memory structures
7375 */
drhfacf0302008-06-17 15:12:00 +00007376 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007377 nMaxCells*sizeof(u8*) /* b.apCell */
7378 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007379 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007380
mistachkin0fbd7352014-12-09 04:26:56 +00007381 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007382 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007383 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007384 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007385 goto balance_cleanup;
7386 }
drh1ffd2472015-06-23 02:37:30 +00007387 b.szCell = (u16*)&b.apCell[nMaxCells];
7388 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007389 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007390
7391 /*
7392 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007393 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007394 ** into space obtained from aSpace1[]. The divider cells have already
7395 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007396 **
7397 ** If the siblings are on leaf pages, then the child pointers of the
7398 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007399 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007400 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007401 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007402 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007403 **
7404 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7405 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007406 */
drh1ffd2472015-06-23 02:37:30 +00007407 b.pRef = apOld[0];
7408 leafCorrection = b.pRef->leaf*4;
7409 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007410 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007411 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007412 int limit = pOld->nCell;
7413 u8 *aData = pOld->aData;
7414 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007415 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007416 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007417
drh73d340a2015-05-28 11:23:11 +00007418 /* Verify that all sibling pages are of the same "type" (table-leaf,
7419 ** table-interior, index-leaf, or index-interior).
7420 */
7421 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7422 rc = SQLITE_CORRUPT_BKPT;
7423 goto balance_cleanup;
7424 }
7425
drhfe647dc2015-06-23 18:24:25 +00007426 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007427 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007428 ** in the correct spot.
7429 **
7430 ** Note that when there are multiple overflow cells, it is always the
7431 ** case that they are sequential and adjacent. This invariant arises
7432 ** because multiple overflows can only occurs when inserting divider
7433 ** cells into a parent on a prior balance, and divider cells are always
7434 ** adjacent and are inserted in order. There is an assert() tagged
7435 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7436 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007437 **
7438 ** This must be done in advance. Once the balance starts, the cell
7439 ** offset section of the btree page will be overwritten and we will no
7440 ** long be able to find the cells if a pointer to each cell is not saved
7441 ** first.
7442 */
drh36b78ee2016-01-20 01:32:00 +00007443 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007444 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007445 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007446 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007447 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007448 piCell += 2;
7449 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007450 }
drhfe647dc2015-06-23 18:24:25 +00007451 for(k=0; k<pOld->nOverflow; k++){
7452 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007453 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007454 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007455 }
drh1ffd2472015-06-23 02:37:30 +00007456 }
drhfe647dc2015-06-23 18:24:25 +00007457 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7458 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007459 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007460 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007461 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007462 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007463 }
7464
drh1ffd2472015-06-23 02:37:30 +00007465 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007466 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007467 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007468 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007469 assert( b.nCell<nMaxCells );
7470 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007471 pTemp = &aSpace1[iSpace1];
7472 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007473 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007474 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007475 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007476 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007477 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007478 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007479 if( !pOld->leaf ){
7480 assert( leafCorrection==0 );
7481 assert( pOld->hdrOffset==0 );
7482 /* The right pointer of the child page pOld becomes the left
7483 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007484 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007485 }else{
7486 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007487 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007488 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7489 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007490 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7491 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007492 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007493 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007494 }
7495 }
drh1ffd2472015-06-23 02:37:30 +00007496 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007497 }
drh8b2f49b2001-06-08 00:21:52 +00007498 }
7499
7500 /*
drh1ffd2472015-06-23 02:37:30 +00007501 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007502 ** Store this number in "k". Also compute szNew[] which is the total
7503 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007504 ** in b.apCell[] of the cell that divides page i from page i+1.
7505 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007506 **
drh96f5b762004-05-16 16:24:36 +00007507 ** Values computed by this block:
7508 **
7509 ** k: The total number of sibling pages
7510 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007511 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007512 ** the right of the i-th sibling page.
7513 ** usableSpace: Number of bytes of space available on each sibling.
7514 **
drh8b2f49b2001-06-08 00:21:52 +00007515 */
drh43605152004-05-29 21:46:49 +00007516 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007517 for(i=0; i<nOld; i++){
7518 MemPage *p = apOld[i];
7519 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007520 for(j=0; j<p->nOverflow; j++){
7521 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7522 }
7523 cntNew[i] = cntOld[i];
7524 }
7525 k = nOld;
7526 for(i=0; i<k; i++){
7527 int sz;
7528 while( szNew[i]>usableSpace ){
7529 if( i+1>=k ){
7530 k = i+2;
7531 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7532 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007533 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007534 }
drh1ffd2472015-06-23 02:37:30 +00007535 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007536 szNew[i] -= sz;
7537 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007538 if( cntNew[i]<b.nCell ){
7539 sz = 2 + cachedCellSize(&b, cntNew[i]);
7540 }else{
7541 sz = 0;
7542 }
drh658873b2015-06-22 20:02:04 +00007543 }
7544 szNew[i+1] += sz;
7545 cntNew[i]--;
7546 }
drh1ffd2472015-06-23 02:37:30 +00007547 while( cntNew[i]<b.nCell ){
7548 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007549 if( szNew[i]+sz>usableSpace ) break;
7550 szNew[i] += sz;
7551 cntNew[i]++;
7552 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007553 if( cntNew[i]<b.nCell ){
7554 sz = 2 + cachedCellSize(&b, cntNew[i]);
7555 }else{
7556 sz = 0;
7557 }
drh658873b2015-06-22 20:02:04 +00007558 }
7559 szNew[i+1] -= sz;
7560 }
drh1ffd2472015-06-23 02:37:30 +00007561 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007562 k = i+1;
drh672073a2015-06-24 12:07:40 +00007563 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007564 rc = SQLITE_CORRUPT_BKPT;
7565 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007566 }
7567 }
drh96f5b762004-05-16 16:24:36 +00007568
7569 /*
7570 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007571 ** on the left side (siblings with smaller keys). The left siblings are
7572 ** always nearly full, while the right-most sibling might be nearly empty.
7573 ** The next block of code attempts to adjust the packing of siblings to
7574 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007575 **
7576 ** This adjustment is more than an optimization. The packing above might
7577 ** be so out of balance as to be illegal. For example, the right-most
7578 ** sibling might be completely empty. This adjustment is not optional.
7579 */
drh6019e162001-07-02 17:51:45 +00007580 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007581 int szRight = szNew[i]; /* Size of sibling on the right */
7582 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7583 int r; /* Index of right-most cell in left sibling */
7584 int d; /* Index of first cell to the left of right sibling */
7585
7586 r = cntNew[i-1] - 1;
7587 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007588 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007589 do{
drh1ffd2472015-06-23 02:37:30 +00007590 assert( d<nMaxCells );
7591 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007592 (void)cachedCellSize(&b, r);
7593 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007594 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007595 break;
7596 }
7597 szRight += b.szCell[d] + 2;
7598 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007599 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007600 r--;
7601 d--;
drh672073a2015-06-24 12:07:40 +00007602 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007603 szNew[i] = szRight;
7604 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007605 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7606 rc = SQLITE_CORRUPT_BKPT;
7607 goto balance_cleanup;
7608 }
drh6019e162001-07-02 17:51:45 +00007609 }
drh09d0deb2005-08-02 17:13:09 +00007610
drh2a0df922014-10-30 23:14:56 +00007611 /* Sanity check: For a non-corrupt database file one of the follwing
7612 ** must be true:
7613 ** (1) We found one or more cells (cntNew[0])>0), or
7614 ** (2) pPage is a virtual root page. A virtual root page is when
7615 ** the real root page is page 1 and we are the only child of
7616 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007617 */
drh2a0df922014-10-30 23:14:56 +00007618 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007619 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7620 apOld[0]->pgno, apOld[0]->nCell,
7621 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7622 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007623 ));
7624
drh8b2f49b2001-06-08 00:21:52 +00007625 /*
drh6b308672002-07-08 02:16:37 +00007626 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007627 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007628 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007629 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007630 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007631 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007632 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007633 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007634 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007635 nNew++;
danielk197728129562005-01-11 10:25:06 +00007636 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007637 }else{
drh7aa8f852006-03-28 00:24:44 +00007638 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007639 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007640 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007641 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007642 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007643 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007644 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007645
7646 /* Set the pointer-map entry for the new sibling page. */
7647 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007648 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007649 if( rc!=SQLITE_OK ){
7650 goto balance_cleanup;
7651 }
7652 }
drh6b308672002-07-08 02:16:37 +00007653 }
drh8b2f49b2001-06-08 00:21:52 +00007654 }
7655
7656 /*
dan33ea4862014-10-09 19:35:37 +00007657 ** Reassign page numbers so that the new pages are in ascending order.
7658 ** This helps to keep entries in the disk file in order so that a scan
7659 ** of the table is closer to a linear scan through the file. That in turn
7660 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007661 **
dan33ea4862014-10-09 19:35:37 +00007662 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7663 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007664 **
dan33ea4862014-10-09 19:35:37 +00007665 ** When NB==3, this one optimization makes the database about 25% faster
7666 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007667 */
dan33ea4862014-10-09 19:35:37 +00007668 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007669 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007670 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007671 for(j=0; j<i; j++){
7672 if( aPgno[j]==aPgno[i] ){
7673 /* This branch is taken if the set of sibling pages somehow contains
7674 ** duplicate entries. This can happen if the database is corrupt.
7675 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007676 ** we do the detection here in order to avoid populating the pager
7677 ** cache with two separate objects associated with the same
7678 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007679 assert( CORRUPT_DB );
7680 rc = SQLITE_CORRUPT_BKPT;
7681 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007682 }
7683 }
dan33ea4862014-10-09 19:35:37 +00007684 }
7685 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007686 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007687 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007688 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007689 }
drh00fe08a2014-10-31 00:05:23 +00007690 pgno = aPgOrder[iBest];
7691 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007692 if( iBest!=i ){
7693 if( iBest>i ){
7694 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7695 }
7696 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7697 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007698 }
7699 }
dan33ea4862014-10-09 19:35:37 +00007700
7701 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7702 "%d(%d nc=%d) %d(%d nc=%d)\n",
7703 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007704 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007705 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007706 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007707 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007708 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007709 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7710 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7711 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7712 ));
danielk19774dbaa892009-06-16 16:50:22 +00007713
7714 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7715 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007716
dan33ea4862014-10-09 19:35:37 +00007717 /* If the sibling pages are not leaves, ensure that the right-child pointer
7718 ** of the right-most new sibling page is set to the value that was
7719 ** originally in the same field of the right-most old sibling page. */
7720 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7721 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7722 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7723 }
danielk1977ac11ee62005-01-15 12:45:51 +00007724
dan33ea4862014-10-09 19:35:37 +00007725 /* Make any required updates to pointer map entries associated with
7726 ** cells stored on sibling pages following the balance operation. Pointer
7727 ** map entries associated with divider cells are set by the insertCell()
7728 ** routine. The associated pointer map entries are:
7729 **
7730 ** a) if the cell contains a reference to an overflow chain, the
7731 ** entry associated with the first page in the overflow chain, and
7732 **
7733 ** b) if the sibling pages are not leaves, the child page associated
7734 ** with the cell.
7735 **
7736 ** If the sibling pages are not leaves, then the pointer map entry
7737 ** associated with the right-child of each sibling may also need to be
7738 ** updated. This happens below, after the sibling pages have been
7739 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007740 */
dan33ea4862014-10-09 19:35:37 +00007741 if( ISAUTOVACUUM ){
7742 MemPage *pNew = apNew[0];
7743 u8 *aOld = pNew->aData;
7744 int cntOldNext = pNew->nCell + pNew->nOverflow;
7745 int usableSize = pBt->usableSize;
7746 int iNew = 0;
7747 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007748
drh1ffd2472015-06-23 02:37:30 +00007749 for(i=0; i<b.nCell; i++){
7750 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007751 if( i==cntOldNext ){
7752 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7753 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7754 aOld = pOld->aData;
7755 }
7756 if( i==cntNew[iNew] ){
7757 pNew = apNew[++iNew];
7758 if( !leafData ) continue;
7759 }
danielk1977ac11ee62005-01-15 12:45:51 +00007760
dan33ea4862014-10-09 19:35:37 +00007761 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007762 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007763 ** or else the divider cell to the left of sibling page iOld. So,
7764 ** if sibling page iOld had the same page number as pNew, and if
7765 ** pCell really was a part of sibling page iOld (not a divider or
7766 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007767 if( iOld>=nNew
7768 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007769 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007770 ){
dan33ea4862014-10-09 19:35:37 +00007771 if( !leafCorrection ){
7772 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7773 }
drh1ffd2472015-06-23 02:37:30 +00007774 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007775 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007776 }
drhea82b372015-06-23 21:35:28 +00007777 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007778 }
drh14acc042001-06-10 19:56:58 +00007779 }
7780 }
dan33ea4862014-10-09 19:35:37 +00007781
7782 /* Insert new divider cells into pParent. */
7783 for(i=0; i<nNew-1; i++){
7784 u8 *pCell;
7785 u8 *pTemp;
7786 int sz;
7787 MemPage *pNew = apNew[i];
7788 j = cntNew[i];
7789
7790 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007791 assert( b.apCell[j]!=0 );
7792 pCell = b.apCell[j];
7793 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007794 pTemp = &aOvflSpace[iOvflSpace];
7795 if( !pNew->leaf ){
7796 memcpy(&pNew->aData[8], pCell, 4);
7797 }else if( leafData ){
7798 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007799 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007800 ** cell consists of the integer key for the right-most cell of
7801 ** the sibling-page assembled above only.
7802 */
7803 CellInfo info;
7804 j--;
drh1ffd2472015-06-23 02:37:30 +00007805 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007806 pCell = pTemp;
7807 sz = 4 + putVarint(&pCell[4], info.nKey);
7808 pTemp = 0;
7809 }else{
7810 pCell -= 4;
7811 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7812 ** previously stored on a leaf node, and its reported size was 4
7813 ** bytes, then it may actually be smaller than this
7814 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7815 ** any cell). But it is important to pass the correct size to
7816 ** insertCell(), so reparse the cell now.
7817 **
drhc1fb2b82016-03-09 03:29:27 +00007818 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7819 ** and WITHOUT ROWID tables with exactly one column which is the
7820 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007821 */
drh1ffd2472015-06-23 02:37:30 +00007822 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007823 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007824 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007825 }
7826 }
7827 iOvflSpace += sz;
7828 assert( sz<=pBt->maxLocal+23 );
7829 assert( iOvflSpace <= (int)pBt->pageSize );
7830 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7831 if( rc!=SQLITE_OK ) goto balance_cleanup;
7832 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7833 }
7834
7835 /* Now update the actual sibling pages. The order in which they are updated
7836 ** is important, as this code needs to avoid disrupting any page from which
7837 ** cells may still to be read. In practice, this means:
7838 **
drhd836d422014-10-31 14:26:36 +00007839 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7840 ** then it is not safe to update page apNew[iPg] until after
7841 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007842 **
drhd836d422014-10-31 14:26:36 +00007843 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7844 ** then it is not safe to update page apNew[iPg] until after
7845 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007846 **
7847 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007848 **
7849 ** The iPg value in the following loop starts at nNew-1 goes down
7850 ** to 0, then back up to nNew-1 again, thus making two passes over
7851 ** the pages. On the initial downward pass, only condition (1) above
7852 ** needs to be tested because (2) will always be true from the previous
7853 ** step. On the upward pass, both conditions are always true, so the
7854 ** upwards pass simply processes pages that were missed on the downward
7855 ** pass.
dan33ea4862014-10-09 19:35:37 +00007856 */
drhbec021b2014-10-31 12:22:00 +00007857 for(i=1-nNew; i<nNew; i++){
7858 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007859 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007860 if( abDone[iPg] ) continue; /* Skip pages already processed */
7861 if( i>=0 /* On the upwards pass, or... */
7862 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007863 ){
dan09c68402014-10-11 20:00:24 +00007864 int iNew;
7865 int iOld;
7866 int nNewCell;
7867
drhd836d422014-10-31 14:26:36 +00007868 /* Verify condition (1): If cells are moving left, update iPg
7869 ** only after iPg-1 has already been updated. */
7870 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7871
7872 /* Verify condition (2): If cells are moving right, update iPg
7873 ** only after iPg+1 has already been updated. */
7874 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7875
dan09c68402014-10-11 20:00:24 +00007876 if( iPg==0 ){
7877 iNew = iOld = 0;
7878 nNewCell = cntNew[0];
7879 }else{
drh1ffd2472015-06-23 02:37:30 +00007880 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007881 iNew = cntNew[iPg-1] + !leafData;
7882 nNewCell = cntNew[iPg] - iNew;
7883 }
7884
drh1ffd2472015-06-23 02:37:30 +00007885 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007886 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007887 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007888 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007889 assert( apNew[iPg]->nOverflow==0 );
7890 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007891 }
7892 }
drhd836d422014-10-31 14:26:36 +00007893
7894 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007895 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7896
drh7aa8f852006-03-28 00:24:44 +00007897 assert( nOld>0 );
7898 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007899
danielk197713bd99f2009-06-24 05:40:34 +00007900 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7901 /* The root page of the b-tree now contains no cells. The only sibling
7902 ** page is the right-child of the parent. Copy the contents of the
7903 ** child page into the parent, decreasing the overall height of the
7904 ** b-tree structure by one. This is described as the "balance-shallower"
7905 ** sub-algorithm in some documentation.
7906 **
7907 ** If this is an auto-vacuum database, the call to copyNodeContent()
7908 ** sets all pointer-map entries corresponding to database image pages
7909 ** for which the pointer is stored within the content being copied.
7910 **
drh768f2902014-10-31 02:51:41 +00007911 ** It is critical that the child page be defragmented before being
7912 ** copied into the parent, because if the parent is page 1 then it will
7913 ** by smaller than the child due to the database header, and so all the
7914 ** free space needs to be up front.
7915 */
drh9b5351d2015-09-30 14:19:08 +00007916 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007917 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007918 testcase( rc!=SQLITE_OK );
7919 assert( apNew[0]->nFree ==
7920 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7921 || rc!=SQLITE_OK
7922 );
7923 copyNodeContent(apNew[0], pParent, &rc);
7924 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007925 }else if( ISAUTOVACUUM && !leafCorrection ){
7926 /* Fix the pointer map entries associated with the right-child of each
7927 ** sibling page. All other pointer map entries have already been taken
7928 ** care of. */
7929 for(i=0; i<nNew; i++){
7930 u32 key = get4byte(&apNew[i]->aData[8]);
7931 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007932 }
dan33ea4862014-10-09 19:35:37 +00007933 }
danielk19774dbaa892009-06-16 16:50:22 +00007934
dan33ea4862014-10-09 19:35:37 +00007935 assert( pParent->isInit );
7936 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007937 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007938
dan33ea4862014-10-09 19:35:37 +00007939 /* Free any old pages that were not reused as new pages.
7940 */
7941 for(i=nNew; i<nOld; i++){
7942 freePage(apOld[i], &rc);
7943 }
danielk19774dbaa892009-06-16 16:50:22 +00007944
7945#if 0
dan33ea4862014-10-09 19:35:37 +00007946 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007947 /* The ptrmapCheckPages() contains assert() statements that verify that
7948 ** all pointer map pages are set correctly. This is helpful while
7949 ** debugging. This is usually disabled because a corrupt database may
7950 ** cause an assert() statement to fail. */
7951 ptrmapCheckPages(apNew, nNew);
7952 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007953 }
dan33ea4862014-10-09 19:35:37 +00007954#endif
danielk1977cd581a72009-06-23 15:43:39 +00007955
drh8b2f49b2001-06-08 00:21:52 +00007956 /*
drh14acc042001-06-10 19:56:58 +00007957 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007958 */
drh14acc042001-06-10 19:56:58 +00007959balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00007960 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007961 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007962 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007963 }
drh14acc042001-06-10 19:56:58 +00007964 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007965 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007966 }
danielk1977eaa06f62008-09-18 17:34:44 +00007967
drh8b2f49b2001-06-08 00:21:52 +00007968 return rc;
7969}
7970
drh43605152004-05-29 21:46:49 +00007971
7972/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007973** This function is called when the root page of a b-tree structure is
7974** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007975**
danielk1977a50d9aa2009-06-08 14:49:45 +00007976** A new child page is allocated and the contents of the current root
7977** page, including overflow cells, are copied into the child. The root
7978** page is then overwritten to make it an empty page with the right-child
7979** pointer pointing to the new page.
7980**
7981** Before returning, all pointer-map entries corresponding to pages
7982** that the new child-page now contains pointers to are updated. The
7983** entry corresponding to the new right-child pointer of the root
7984** page is also updated.
7985**
7986** If successful, *ppChild is set to contain a reference to the child
7987** page and SQLITE_OK is returned. In this case the caller is required
7988** to call releasePage() on *ppChild exactly once. If an error occurs,
7989** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007990*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007991static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7992 int rc; /* Return value from subprocedures */
7993 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007994 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007995 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007996
danielk1977a50d9aa2009-06-08 14:49:45 +00007997 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007998 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007999
danielk1977a50d9aa2009-06-08 14:49:45 +00008000 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8001 ** page that will become the new right-child of pPage. Copy the contents
8002 ** of the node stored on pRoot into the new child page.
8003 */
drh98add2e2009-07-20 17:11:49 +00008004 rc = sqlite3PagerWrite(pRoot->pDbPage);
8005 if( rc==SQLITE_OK ){
8006 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008007 copyNodeContent(pRoot, pChild, &rc);
8008 if( ISAUTOVACUUM ){
8009 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008010 }
8011 }
8012 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008013 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008014 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008015 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008016 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008017 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8018 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8019 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00008020
danielk1977a50d9aa2009-06-08 14:49:45 +00008021 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8022
8023 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008024 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8025 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8026 memcpy(pChild->apOvfl, pRoot->apOvfl,
8027 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008028 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008029
8030 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8031 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8032 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8033
8034 *ppChild = pChild;
8035 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008036}
8037
8038/*
danielk197771d5d2c2008-09-29 11:49:47 +00008039** The page that pCur currently points to has just been modified in
8040** some way. This function figures out if this modification means the
8041** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008042** routine. Balancing routines are:
8043**
8044** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008045** balance_deeper()
8046** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008047*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008048static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008049 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008050 const int nMin = pCur->pBt->usableSize * 2 / 3;
8051 u8 aBalanceQuickSpace[13];
8052 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008053
drhcc5f8a42016-02-06 22:32:06 +00008054 VVA_ONLY( int balance_quick_called = 0 );
8055 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008056
8057 do {
8058 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008059 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008060
8061 if( iPage==0 ){
8062 if( pPage->nOverflow ){
8063 /* The root page of the b-tree is overfull. In this case call the
8064 ** balance_deeper() function to create a new child for the root-page
8065 ** and copy the current contents of the root-page to it. The
8066 ** next iteration of the do-loop will balance the child page.
8067 */
drhcc5f8a42016-02-06 22:32:06 +00008068 assert( balance_deeper_called==0 );
8069 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008070 rc = balance_deeper(pPage, &pCur->apPage[1]);
8071 if( rc==SQLITE_OK ){
8072 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008073 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008074 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008075 pCur->apPage[0] = pPage;
8076 pCur->pPage = pCur->apPage[1];
8077 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008078 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008079 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008080 break;
8081 }
8082 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8083 break;
8084 }else{
8085 MemPage * const pParent = pCur->apPage[iPage-1];
8086 int const iIdx = pCur->aiIdx[iPage-1];
8087
8088 rc = sqlite3PagerWrite(pParent->pDbPage);
8089 if( rc==SQLITE_OK ){
8090#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008091 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008092 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008093 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008094 && pParent->pgno!=1
8095 && pParent->nCell==iIdx
8096 ){
8097 /* Call balance_quick() to create a new sibling of pPage on which
8098 ** to store the overflow cell. balance_quick() inserts a new cell
8099 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008100 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008101 ** use either balance_nonroot() or balance_deeper(). Until this
8102 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8103 ** buffer.
8104 **
8105 ** The purpose of the following assert() is to check that only a
8106 ** single call to balance_quick() is made for each call to this
8107 ** function. If this were not verified, a subtle bug involving reuse
8108 ** of the aBalanceQuickSpace[] might sneak in.
8109 */
drhcc5f8a42016-02-06 22:32:06 +00008110 assert( balance_quick_called==0 );
8111 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008112 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8113 }else
8114#endif
8115 {
8116 /* In this case, call balance_nonroot() to redistribute cells
8117 ** between pPage and up to 2 of its sibling pages. This involves
8118 ** modifying the contents of pParent, which may cause pParent to
8119 ** become overfull or underfull. The next iteration of the do-loop
8120 ** will balance the parent page to correct this.
8121 **
8122 ** If the parent page becomes overfull, the overflow cell or cells
8123 ** are stored in the pSpace buffer allocated immediately below.
8124 ** A subsequent iteration of the do-loop will deal with this by
8125 ** calling balance_nonroot() (balance_deeper() may be called first,
8126 ** but it doesn't deal with overflow cells - just moves them to a
8127 ** different page). Once this subsequent call to balance_nonroot()
8128 ** has completed, it is safe to release the pSpace buffer used by
8129 ** the previous call, as the overflow cell data will have been
8130 ** copied either into the body of a database page or into the new
8131 ** pSpace buffer passed to the latter call to balance_nonroot().
8132 */
8133 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008134 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8135 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008136 if( pFree ){
8137 /* If pFree is not NULL, it points to the pSpace buffer used
8138 ** by a previous call to balance_nonroot(). Its contents are
8139 ** now stored either on real database pages or within the
8140 ** new pSpace buffer, so it may be safely freed here. */
8141 sqlite3PageFree(pFree);
8142 }
8143
danielk19774dbaa892009-06-16 16:50:22 +00008144 /* The pSpace buffer will be freed after the next call to
8145 ** balance_nonroot(), or just before this function returns, whichever
8146 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008147 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008148 }
8149 }
8150
8151 pPage->nOverflow = 0;
8152
8153 /* The next iteration of the do-loop balances the parent page. */
8154 releasePage(pPage);
8155 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008156 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008157 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008158 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008159 }while( rc==SQLITE_OK );
8160
8161 if( pFree ){
8162 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008163 }
8164 return rc;
8165}
8166
drh3de5d162018-05-03 03:59:02 +00008167/* Overwrite content from pX into pDest. Only do the write if the
8168** content is different from what is already there.
8169*/
8170static int btreeOverwriteContent(
8171 MemPage *pPage, /* MemPage on which writing will occur */
8172 u8 *pDest, /* Pointer to the place to start writing */
8173 const BtreePayload *pX, /* Source of data to write */
8174 int iOffset, /* Offset of first byte to write */
8175 int iAmt /* Number of bytes to be written */
8176){
8177 int nData = pX->nData - iOffset;
8178 if( nData<=0 ){
8179 /* Overwritting with zeros */
8180 int i;
8181 for(i=0; i<iAmt && pDest[i]==0; i++){}
8182 if( i<iAmt ){
8183 int rc = sqlite3PagerWrite(pPage->pDbPage);
8184 if( rc ) return rc;
8185 memset(pDest + i, 0, iAmt - i);
8186 }
8187 }else{
8188 if( nData<iAmt ){
8189 /* Mixed read data and zeros at the end. Make a recursive call
8190 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008191 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8192 iAmt-nData);
8193 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008194 iAmt = nData;
8195 }
8196 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8197 int rc = sqlite3PagerWrite(pPage->pDbPage);
8198 if( rc ) return rc;
8199 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8200 }
8201 }
8202 return SQLITE_OK;
8203}
8204
8205/*
8206** Overwrite the cell that cursor pCur is pointing to with fresh content
8207** contained in pX.
8208*/
8209static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8210 int iOffset; /* Next byte of pX->pData to write */
8211 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8212 int rc; /* Return code */
8213 MemPage *pPage = pCur->pPage; /* Page being written */
8214 BtShared *pBt; /* Btree */
8215 Pgno ovflPgno; /* Next overflow page to write */
8216 u32 ovflPageSize; /* Size to write on overflow page */
8217
drh4f84e9c2018-05-03 13:56:23 +00008218 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8219 return SQLITE_CORRUPT_BKPT;
8220 }
drh3de5d162018-05-03 03:59:02 +00008221 /* Overwrite the local portion first */
8222 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8223 0, pCur->info.nLocal);
8224 if( rc ) return rc;
8225 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8226
8227 /* Now overwrite the overflow pages */
8228 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008229 assert( nTotal>=0 );
8230 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008231 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8232 pBt = pPage->pBt;
8233 ovflPageSize = pBt->usableSize - 4;
8234 do{
8235 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8236 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008237 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008238 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008239 }else{
drh30f7a252018-05-07 11:29:59 +00008240 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008241 ovflPgno = get4byte(pPage->aData);
8242 }else{
8243 ovflPageSize = nTotal - iOffset;
8244 }
8245 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8246 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008247 }
drhd5aa9262018-05-03 16:56:06 +00008248 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008249 if( rc ) return rc;
8250 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008251 }while( iOffset<nTotal );
8252 return SQLITE_OK;
8253}
8254
drhf74b8d92002-09-01 23:20:45 +00008255
8256/*
drh8eeb4462016-05-21 20:03:42 +00008257** Insert a new record into the BTree. The content of the new record
8258** is described by the pX object. The pCur cursor is used only to
8259** define what table the record should be inserted into, and is left
8260** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008261**
drh8eeb4462016-05-21 20:03:42 +00008262** For a table btree (used for rowid tables), only the pX.nKey value of
8263** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8264** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8265** hold the content of the row.
8266**
8267** For an index btree (used for indexes and WITHOUT ROWID tables), the
8268** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8269** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008270**
8271** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008272** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8273** been performed. In other words, if seekResult!=0 then the cursor
8274** is currently pointing to a cell that will be adjacent to the cell
8275** to be inserted. If seekResult<0 then pCur points to a cell that is
8276** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8277** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008278**
drheaf6ae22016-11-09 20:14:34 +00008279** If seekResult==0, that means pCur is pointing at some unknown location.
8280** In that case, this routine must seek the cursor to the correct insertion
8281** point for (pKey,nKey) before doing the insertion. For index btrees,
8282** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8283** key values and pX->aMem can be used instead of pX->pKey to avoid having
8284** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008285*/
drh3aac2dd2004-04-26 14:10:20 +00008286int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008287 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008288 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008289 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008290 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008291){
drh3b7511c2001-05-26 13:15:44 +00008292 int rc;
drh3e9ca092009-09-08 01:14:48 +00008293 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008294 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008295 int idx;
drh3b7511c2001-05-26 13:15:44 +00008296 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008297 Btree *p = pCur->pBtree;
8298 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008299 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008300 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008301
danf91c1312017-01-10 20:04:38 +00008302 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8303
drh98add2e2009-07-20 17:11:49 +00008304 if( pCur->eState==CURSOR_FAULT ){
8305 assert( pCur->skipNext!=SQLITE_OK );
8306 return pCur->skipNext;
8307 }
8308
dan7a2347e2016-01-07 16:43:54 +00008309 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008310 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8311 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008312 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008313 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8314
danielk197731d31b82009-07-13 13:18:07 +00008315 /* Assert that the caller has been consistent. If this cursor was opened
8316 ** expecting an index b-tree, then the caller should be inserting blob
8317 ** keys with no associated data. If the cursor was opened expecting an
8318 ** intkey table, the caller should be inserting integer keys with a
8319 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008320 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008321
danielk19779c3acf32009-05-02 07:36:49 +00008322 /* Save the positions of any other cursors open on this table.
8323 **
danielk19773509a652009-07-06 18:56:13 +00008324 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008325 ** example, when inserting data into a table with auto-generated integer
8326 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8327 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008328 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008329 ** that the cursor is already where it needs to be and returns without
8330 ** doing any work. To avoid thwarting these optimizations, it is important
8331 ** not to clear the cursor here.
8332 */
drh27fb7462015-06-30 02:47:36 +00008333 if( pCur->curFlags & BTCF_Multiple ){
8334 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8335 if( rc ) return rc;
8336 }
drhd60f4f42012-03-23 14:23:52 +00008337
drhd60f4f42012-03-23 14:23:52 +00008338 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008339 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008340 /* If this is an insert into a table b-tree, invalidate any incrblob
8341 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008342 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008343
danf91c1312017-01-10 20:04:38 +00008344 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008345 ** to a row with the same key as the new entry being inserted.
8346 */
8347#ifdef SQLITE_DEBUG
8348 if( flags & BTREE_SAVEPOSITION ){
8349 assert( pCur->curFlags & BTCF_ValidNKey );
8350 assert( pX->nKey==pCur->info.nKey );
8351 assert( pCur->info.nSize!=0 );
8352 assert( loc==0 );
8353 }
8354#endif
danf91c1312017-01-10 20:04:38 +00008355
drhd720d392018-05-07 17:27:04 +00008356 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8357 ** that the cursor is not pointing to a row to be overwritten.
8358 ** So do a complete check.
8359 */
drh7a1c28d2016-11-10 20:42:08 +00008360 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008361 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008362 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008363 assert( pX->nData>=0 && pX->nZero>=0 );
8364 if( pCur->info.nSize!=0
8365 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8366 ){
drhd720d392018-05-07 17:27:04 +00008367 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008368 return btreeOverwriteCell(pCur, pX);
8369 }
drhd720d392018-05-07 17:27:04 +00008370 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008371 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008372 /* The cursor is *not* pointing to the cell to be overwritten, nor
8373 ** to an adjacent cell. Move the cursor so that it is pointing either
8374 ** to the cell to be overwritten or an adjacent cell.
8375 */
danf91c1312017-01-10 20:04:38 +00008376 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008377 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008378 }
drhd720d392018-05-07 17:27:04 +00008379 }else{
8380 /* This is an index or a WITHOUT ROWID table */
8381
8382 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8383 ** to a row with the same key as the new entry being inserted.
8384 */
8385 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8386
8387 /* If the cursor is not already pointing either to the cell to be
8388 ** overwritten, or if a new cell is being inserted, if the cursor is
8389 ** not pointing to an immediately adjacent cell, then move the cursor
8390 ** so that it does.
8391 */
8392 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8393 if( pX->nMem ){
8394 UnpackedRecord r;
8395 r.pKeyInfo = pCur->pKeyInfo;
8396 r.aMem = pX->aMem;
8397 r.nField = pX->nMem;
8398 r.default_rc = 0;
8399 r.errCode = 0;
8400 r.r1 = 0;
8401 r.r2 = 0;
8402 r.eqSeen = 0;
8403 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8404 }else{
8405 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8406 }
8407 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008408 }
drh89ee2292018-05-07 18:41:19 +00008409
8410 /* If the cursor is currently pointing to an entry to be overwritten
8411 ** and the new content is the same as as the old, then use the
8412 ** overwrite optimization.
8413 */
8414 if( loc==0 ){
8415 getCellInfo(pCur);
8416 if( pCur->info.nKey==pX->nKey ){
8417 BtreePayload x2;
8418 x2.pData = pX->pKey;
8419 x2.nData = pX->nKey;
8420 x2.nZero = 0;
8421 return btreeOverwriteCell(pCur, &x2);
8422 }
8423 }
8424
danielk1977da184232006-01-05 11:34:32 +00008425 }
danielk1977b980d2212009-06-22 18:03:51 +00008426 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008427
drh352a35a2017-08-15 03:46:47 +00008428 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008429 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008430 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008431
drh3a4c1412004-05-09 20:40:11 +00008432 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008433 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008434 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008435 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008436 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008437 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008438 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008439 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008440 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008441 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008442 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008443 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008444 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008445 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008446 rc = sqlite3PagerWrite(pPage->pDbPage);
8447 if( rc ){
8448 goto end_insert;
8449 }
danielk197771d5d2c2008-09-29 11:49:47 +00008450 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008451 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008452 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008453 }
drh80159da2016-12-09 17:32:51 +00008454 rc = clearCell(pPage, oldCell, &info);
drh50179f92017-06-08 11:26:13 +00008455 if( info.nSize==szNew && info.nLocal==info.nPayload
8456 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8457 ){
drhf9238252016-12-09 18:09:42 +00008458 /* Overwrite the old cell with the new if they are the same size.
8459 ** We could also try to do this if the old cell is smaller, then add
8460 ** the leftover space to the free list. But experiments show that
8461 ** doing that is no faster then skipping this optimization and just
drh50179f92017-06-08 11:26:13 +00008462 ** calling dropCell() and insertCell().
8463 **
8464 ** This optimization cannot be used on an autovacuum database if the
8465 ** new entry uses overflow pages, as the insertCell() call below is
8466 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008467 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008468 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008469 memcpy(oldCell, newCell, szNew);
8470 return SQLITE_OK;
8471 }
8472 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008473 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008474 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008475 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008476 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008477 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008478 }else{
drh4b70f112004-05-02 21:12:19 +00008479 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008480 }
drh98add2e2009-07-20 17:11:49 +00008481 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008482 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008483 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008484
mistachkin48864df2013-03-21 21:20:32 +00008485 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008486 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008487 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008488 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008489 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008490 ** Previous versions of SQLite called moveToRoot() to move the cursor
8491 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008492 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8493 ** set the cursor state to "invalid". This makes common insert operations
8494 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008495 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008496 ** There is a subtle but important optimization here too. When inserting
8497 ** multiple records into an intkey b-tree using a single cursor (as can
8498 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8499 ** is advantageous to leave the cursor pointing to the last entry in
8500 ** the b-tree if possible. If the cursor is left pointing to the last
8501 ** entry in the table, and the next row inserted has an integer key
8502 ** larger than the largest existing key, it is possible to insert the
8503 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008504 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008505 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008506 if( pPage->nOverflow ){
8507 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008508 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008509 rc = balance(pCur);
8510
8511 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008512 ** fails. Internal data structure corruption will result otherwise.
8513 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8514 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008515 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008516 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008517 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008518 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008519 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008520 assert( pCur->pKey==0 );
8521 pCur->pKey = sqlite3Malloc( pX->nKey );
8522 if( pCur->pKey==0 ){
8523 rc = SQLITE_NOMEM;
8524 }else{
8525 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8526 }
8527 }
8528 pCur->eState = CURSOR_REQUIRESEEK;
8529 pCur->nKey = pX->nKey;
8530 }
danielk19773f632d52009-05-02 10:03:09 +00008531 }
drh352a35a2017-08-15 03:46:47 +00008532 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008533
drh2e38c322004-09-03 18:38:44 +00008534end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008535 return rc;
8536}
8537
8538/*
danf0ee1d32015-09-12 19:26:11 +00008539** Delete the entry that the cursor is pointing to.
8540**
drhe807bdb2016-01-21 17:06:33 +00008541** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8542** the cursor is left pointing at an arbitrary location after the delete.
8543** But if that bit is set, then the cursor is left in a state such that
8544** the next call to BtreeNext() or BtreePrev() moves it to the same row
8545** as it would have been on if the call to BtreeDelete() had been omitted.
8546**
drhdef19e32016-01-27 16:26:25 +00008547** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8548** associated with a single table entry and its indexes. Only one of those
8549** deletes is considered the "primary" delete. The primary delete occurs
8550** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8551** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8552** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008553** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008554*/
drhe807bdb2016-01-21 17:06:33 +00008555int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008556 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008557 BtShared *pBt = p->pBt;
8558 int rc; /* Return code */
8559 MemPage *pPage; /* Page to delete cell from */
8560 unsigned char *pCell; /* Pointer to cell to delete */
8561 int iCellIdx; /* Index of cell to delete */
8562 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008563 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008564 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008565 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008566
dan7a2347e2016-01-07 16:43:54 +00008567 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008568 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008569 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008570 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008571 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8572 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008573 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008574 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008575 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008576
danielk19774dbaa892009-06-16 16:50:22 +00008577 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008578 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008579 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008580 pCell = findCell(pPage, iCellIdx);
8581
drhbfc7a8b2016-04-09 17:04:05 +00008582 /* If the bPreserve flag is set to true, then the cursor position must
8583 ** be preserved following this delete operation. If the current delete
8584 ** will cause a b-tree rebalance, then this is done by saving the cursor
8585 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8586 ** returning.
8587 **
8588 ** Or, if the current delete will not cause a rebalance, then the cursor
8589 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8590 ** before or after the deleted entry. In this case set bSkipnext to true. */
8591 if( bPreserve ){
8592 if( !pPage->leaf
8593 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8594 ){
8595 /* A b-tree rebalance will be required after deleting this entry.
8596 ** Save the cursor key. */
8597 rc = saveCursorKey(pCur);
8598 if( rc ) return rc;
8599 }else{
8600 bSkipnext = 1;
8601 }
8602 }
8603
danielk19774dbaa892009-06-16 16:50:22 +00008604 /* If the page containing the entry to delete is not a leaf page, move
8605 ** the cursor to the largest entry in the tree that is smaller than
8606 ** the entry being deleted. This cell will replace the cell being deleted
8607 ** from the internal node. The 'previous' entry is used for this instead
8608 ** of the 'next' entry, as the previous entry is always a part of the
8609 ** sub-tree headed by the child page of the cell being deleted. This makes
8610 ** balancing the tree following the delete operation easier. */
8611 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008612 rc = sqlite3BtreePrevious(pCur, 0);
8613 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008614 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008615 }
8616
8617 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008618 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008619 if( pCur->curFlags & BTCF_Multiple ){
8620 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8621 if( rc ) return rc;
8622 }
drhd60f4f42012-03-23 14:23:52 +00008623
8624 /* If this is a delete operation to remove a row from a table b-tree,
8625 ** invalidate any incrblob cursors open on the row being deleted. */
8626 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008627 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008628 }
8629
danf0ee1d32015-09-12 19:26:11 +00008630 /* Make the page containing the entry to be deleted writable. Then free any
8631 ** overflow pages associated with the entry and finally remove the cell
8632 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008633 rc = sqlite3PagerWrite(pPage->pDbPage);
8634 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008635 rc = clearCell(pPage, pCell, &info);
8636 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008637 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008638
danielk19774dbaa892009-06-16 16:50:22 +00008639 /* If the cell deleted was not located on a leaf page, then the cursor
8640 ** is currently pointing to the largest entry in the sub-tree headed
8641 ** by the child-page of the cell that was just deleted from an internal
8642 ** node. The cell from the leaf node needs to be moved to the internal
8643 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008644 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008645 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008646 int nCell;
drh352a35a2017-08-15 03:46:47 +00008647 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008648 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008649
drh352a35a2017-08-15 03:46:47 +00008650 if( iCellDepth<pCur->iPage-1 ){
8651 n = pCur->apPage[iCellDepth+1]->pgno;
8652 }else{
8653 n = pCur->pPage->pgno;
8654 }
danielk19774dbaa892009-06-16 16:50:22 +00008655 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008656 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008657 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008658 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008659 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008660 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008661 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008662 if( rc==SQLITE_OK ){
8663 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8664 }
drh98add2e2009-07-20 17:11:49 +00008665 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008666 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008667 }
danielk19774dbaa892009-06-16 16:50:22 +00008668
8669 /* Balance the tree. If the entry deleted was located on a leaf page,
8670 ** then the cursor still points to that page. In this case the first
8671 ** call to balance() repairs the tree, and the if(...) condition is
8672 ** never true.
8673 **
8674 ** Otherwise, if the entry deleted was on an internal node page, then
8675 ** pCur is pointing to the leaf page from which a cell was removed to
8676 ** replace the cell deleted from the internal node. This is slightly
8677 ** tricky as the leaf node may be underfull, and the internal node may
8678 ** be either under or overfull. In this case run the balancing algorithm
8679 ** on the leaf node first. If the balance proceeds far enough up the
8680 ** tree that we can be sure that any problem in the internal node has
8681 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8682 ** walk the cursor up the tree to the internal node and balance it as
8683 ** well. */
8684 rc = balance(pCur);
8685 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008686 releasePageNotNull(pCur->pPage);
8687 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008688 while( pCur->iPage>iCellDepth ){
8689 releasePage(pCur->apPage[pCur->iPage--]);
8690 }
drh352a35a2017-08-15 03:46:47 +00008691 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008692 rc = balance(pCur);
8693 }
8694
danielk19776b456a22005-03-21 04:04:02 +00008695 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008696 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008697 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008698 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008699 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008700 pCur->eState = CURSOR_SKIPNEXT;
8701 if( iCellIdx>=pPage->nCell ){
8702 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008703 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008704 }else{
8705 pCur->skipNext = 1;
8706 }
8707 }else{
8708 rc = moveToRoot(pCur);
8709 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008710 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008711 pCur->eState = CURSOR_REQUIRESEEK;
8712 }
drh44548e72017-08-14 18:13:52 +00008713 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008714 }
danielk19776b456a22005-03-21 04:04:02 +00008715 }
drh5e2f8b92001-05-28 00:41:15 +00008716 return rc;
drh3b7511c2001-05-26 13:15:44 +00008717}
drh8b2f49b2001-06-08 00:21:52 +00008718
8719/*
drhc6b52df2002-01-04 03:09:29 +00008720** Create a new BTree table. Write into *piTable the page
8721** number for the root page of the new table.
8722**
drhab01f612004-05-22 02:55:23 +00008723** The type of type is determined by the flags parameter. Only the
8724** following values of flags are currently in use. Other values for
8725** flags might not work:
8726**
8727** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8728** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008729*/
drhd4187c72010-08-30 22:15:45 +00008730static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008731 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008732 MemPage *pRoot;
8733 Pgno pgnoRoot;
8734 int rc;
drhd4187c72010-08-30 22:15:45 +00008735 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008736
drh1fee73e2007-08-29 04:00:57 +00008737 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008738 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008739 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008740
danielk1977003ba062004-11-04 02:57:33 +00008741#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008742 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008743 if( rc ){
8744 return rc;
8745 }
danielk1977003ba062004-11-04 02:57:33 +00008746#else
danielk1977687566d2004-11-02 12:56:41 +00008747 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008748 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8749 MemPage *pPageMove; /* The page to move to. */
8750
danielk197720713f32007-05-03 11:43:33 +00008751 /* Creating a new table may probably require moving an existing database
8752 ** to make room for the new tables root page. In case this page turns
8753 ** out to be an overflow page, delete all overflow page-map caches
8754 ** held by open cursors.
8755 */
danielk197792d4d7a2007-05-04 12:05:56 +00008756 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008757
danielk1977003ba062004-11-04 02:57:33 +00008758 /* Read the value of meta[3] from the database to determine where the
8759 ** root page of the new table should go. meta[3] is the largest root-page
8760 ** created so far, so the new root-page is (meta[3]+1).
8761 */
danielk1977602b4662009-07-02 07:47:33 +00008762 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008763 pgnoRoot++;
8764
danielk1977599fcba2004-11-08 07:13:13 +00008765 /* The new root-page may not be allocated on a pointer-map page, or the
8766 ** PENDING_BYTE page.
8767 */
drh72190432008-01-31 14:54:43 +00008768 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008769 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008770 pgnoRoot++;
8771 }
drh499e15b2015-05-22 12:37:37 +00008772 assert( pgnoRoot>=3 || CORRUPT_DB );
8773 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008774
8775 /* Allocate a page. The page that currently resides at pgnoRoot will
8776 ** be moved to the allocated page (unless the allocated page happens
8777 ** to reside at pgnoRoot).
8778 */
dan51f0b6d2013-02-22 20:16:34 +00008779 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008780 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008781 return rc;
8782 }
danielk1977003ba062004-11-04 02:57:33 +00008783
8784 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008785 /* pgnoRoot is the page that will be used for the root-page of
8786 ** the new table (assuming an error did not occur). But we were
8787 ** allocated pgnoMove. If required (i.e. if it was not allocated
8788 ** by extending the file), the current page at position pgnoMove
8789 ** is already journaled.
8790 */
drheeb844a2009-08-08 18:01:07 +00008791 u8 eType = 0;
8792 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008793
danf7679ad2013-04-03 11:38:36 +00008794 /* Save the positions of any open cursors. This is required in
8795 ** case they are holding a reference to an xFetch reference
8796 ** corresponding to page pgnoRoot. */
8797 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008798 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008799 if( rc!=SQLITE_OK ){
8800 return rc;
8801 }
danielk1977f35843b2007-04-07 15:03:17 +00008802
8803 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00008804 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008805 if( rc!=SQLITE_OK ){
8806 return rc;
8807 }
8808 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008809 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8810 rc = SQLITE_CORRUPT_BKPT;
8811 }
8812 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008813 releasePage(pRoot);
8814 return rc;
8815 }
drhccae6022005-02-26 17:31:26 +00008816 assert( eType!=PTRMAP_ROOTPAGE );
8817 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008818 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008819 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008820
8821 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008822 if( rc!=SQLITE_OK ){
8823 return rc;
8824 }
danielk197730548662009-07-09 05:07:37 +00008825 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008826 if( rc!=SQLITE_OK ){
8827 return rc;
8828 }
danielk19773b8a05f2007-03-19 17:44:26 +00008829 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008830 if( rc!=SQLITE_OK ){
8831 releasePage(pRoot);
8832 return rc;
8833 }
8834 }else{
8835 pRoot = pPageMove;
8836 }
8837
danielk197742741be2005-01-08 12:42:39 +00008838 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008839 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008840 if( rc ){
8841 releasePage(pRoot);
8842 return rc;
8843 }
drhbf592832010-03-30 15:51:12 +00008844
8845 /* When the new root page was allocated, page 1 was made writable in
8846 ** order either to increase the database filesize, or to decrement the
8847 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8848 */
8849 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008850 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008851 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008852 releasePage(pRoot);
8853 return rc;
8854 }
danielk197742741be2005-01-08 12:42:39 +00008855
danielk1977003ba062004-11-04 02:57:33 +00008856 }else{
drh4f0c5872007-03-26 22:05:01 +00008857 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008858 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008859 }
8860#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008861 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008862 if( createTabFlags & BTREE_INTKEY ){
8863 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8864 }else{
8865 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8866 }
8867 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008868 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008869 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008870 *piTable = (int)pgnoRoot;
8871 return SQLITE_OK;
8872}
drhd677b3d2007-08-20 22:48:41 +00008873int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8874 int rc;
8875 sqlite3BtreeEnter(p);
8876 rc = btreeCreateTable(p, piTable, flags);
8877 sqlite3BtreeLeave(p);
8878 return rc;
8879}
drh8b2f49b2001-06-08 00:21:52 +00008880
8881/*
8882** Erase the given database page and all its children. Return
8883** the page to the freelist.
8884*/
drh4b70f112004-05-02 21:12:19 +00008885static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008886 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008887 Pgno pgno, /* Page number to clear */
8888 int freePageFlag, /* Deallocate page if true */
8889 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008890){
danielk1977146ba992009-07-22 14:08:13 +00008891 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008892 int rc;
drh4b70f112004-05-02 21:12:19 +00008893 unsigned char *pCell;
8894 int i;
dan8ce71842014-01-14 20:14:09 +00008895 int hdr;
drh80159da2016-12-09 17:32:51 +00008896 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008897
drh1fee73e2007-08-29 04:00:57 +00008898 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008899 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008900 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008901 }
drh28f58dd2015-06-27 19:45:03 +00008902 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008903 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008904 if( pPage->bBusy ){
8905 rc = SQLITE_CORRUPT_BKPT;
8906 goto cleardatabasepage_out;
8907 }
8908 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008909 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008910 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008911 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008912 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008913 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008914 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008915 }
drh80159da2016-12-09 17:32:51 +00008916 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008917 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008918 }
drhccf46d02015-04-01 13:21:33 +00008919 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008920 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008921 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008922 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008923 assert( pPage->intKey || CORRUPT_DB );
8924 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008925 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008926 }
8927 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008928 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008929 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008930 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008931 }
danielk19776b456a22005-03-21 04:04:02 +00008932
8933cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008934 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008935 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008936 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008937}
8938
8939/*
drhab01f612004-05-22 02:55:23 +00008940** Delete all information from a single table in the database. iTable is
8941** the page number of the root of the table. After this routine returns,
8942** the root page is empty, but still exists.
8943**
8944** This routine will fail with SQLITE_LOCKED if there are any open
8945** read cursors on the table. Open write cursors are moved to the
8946** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008947**
8948** If pnChange is not NULL, then table iTable must be an intkey table. The
8949** integer value pointed to by pnChange is incremented by the number of
8950** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008951*/
danielk1977c7af4842008-10-27 13:59:33 +00008952int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008953 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008954 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008955 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008956 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008957
drhc046e3e2009-07-15 11:26:44 +00008958 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008959
drhc046e3e2009-07-15 11:26:44 +00008960 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008961 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8962 ** is the root of a table b-tree - if it is not, the following call is
8963 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008964 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008965 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008966 }
drhd677b3d2007-08-20 22:48:41 +00008967 sqlite3BtreeLeave(p);
8968 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008969}
8970
8971/*
drh079a3072014-03-19 14:10:55 +00008972** Delete all information from the single table that pCur is open on.
8973**
8974** This routine only work for pCur on an ephemeral table.
8975*/
8976int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8977 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8978}
8979
8980/*
drh8b2f49b2001-06-08 00:21:52 +00008981** Erase all information in a table and add the root of the table to
8982** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008983** page 1) is never added to the freelist.
8984**
8985** This routine will fail with SQLITE_LOCKED if there are any open
8986** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008987**
8988** If AUTOVACUUM is enabled and the page at iTable is not the last
8989** root page in the database file, then the last root page
8990** in the database file is moved into the slot formerly occupied by
8991** iTable and that last slot formerly occupied by the last root page
8992** is added to the freelist instead of iTable. In this say, all
8993** root pages are kept at the beginning of the database file, which
8994** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8995** page number that used to be the last root page in the file before
8996** the move. If no page gets moved, *piMoved is set to 0.
8997** The last root page is recorded in meta[3] and the value of
8998** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008999*/
danielk197789d40042008-11-17 14:20:56 +00009000static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009001 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009002 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009003 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009004
drh1fee73e2007-08-29 04:00:57 +00009005 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009006 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009007 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00009008
danielk197730548662009-07-09 05:07:37 +00009009 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009010 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009011 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009012 if( rc ){
9013 releasePage(pPage);
9014 return rc;
9015 }
danielk1977a0bf2652004-11-04 14:30:04 +00009016
drh205f48e2004-11-05 00:43:11 +00009017 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009018
danielk1977a0bf2652004-11-04 14:30:04 +00009019#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009020 freePage(pPage, &rc);
9021 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009022#else
drh055f2982016-01-15 15:06:41 +00009023 if( pBt->autoVacuum ){
9024 Pgno maxRootPgno;
9025 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009026
drh055f2982016-01-15 15:06:41 +00009027 if( iTable==maxRootPgno ){
9028 /* If the table being dropped is the table with the largest root-page
9029 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009030 */
drhc314dc72009-07-21 11:52:34 +00009031 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009032 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009033 if( rc!=SQLITE_OK ){
9034 return rc;
9035 }
9036 }else{
9037 /* The table being dropped does not have the largest root-page
9038 ** number in the database. So move the page that does into the
9039 ** gap left by the deleted root-page.
9040 */
9041 MemPage *pMove;
9042 releasePage(pPage);
9043 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9044 if( rc!=SQLITE_OK ){
9045 return rc;
9046 }
9047 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9048 releasePage(pMove);
9049 if( rc!=SQLITE_OK ){
9050 return rc;
9051 }
9052 pMove = 0;
9053 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9054 freePage(pMove, &rc);
9055 releasePage(pMove);
9056 if( rc!=SQLITE_OK ){
9057 return rc;
9058 }
9059 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009060 }
drh055f2982016-01-15 15:06:41 +00009061
9062 /* Set the new 'max-root-page' value in the database header. This
9063 ** is the old value less one, less one more if that happens to
9064 ** be a root-page number, less one again if that is the
9065 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009066 */
drh055f2982016-01-15 15:06:41 +00009067 maxRootPgno--;
9068 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9069 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9070 maxRootPgno--;
9071 }
9072 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9073
9074 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9075 }else{
9076 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009077 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009078 }
drh055f2982016-01-15 15:06:41 +00009079#endif
drh8b2f49b2001-06-08 00:21:52 +00009080 return rc;
9081}
drhd677b3d2007-08-20 22:48:41 +00009082int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9083 int rc;
9084 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009085 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009086 sqlite3BtreeLeave(p);
9087 return rc;
9088}
drh8b2f49b2001-06-08 00:21:52 +00009089
drh001bbcb2003-03-19 03:14:00 +00009090
drh8b2f49b2001-06-08 00:21:52 +00009091/*
danielk1977602b4662009-07-02 07:47:33 +00009092** This function may only be called if the b-tree connection already
9093** has a read or write transaction open on the database.
9094**
drh23e11ca2004-05-04 17:27:28 +00009095** Read the meta-information out of a database file. Meta[0]
9096** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009097** through meta[15] are available for use by higher layers. Meta[0]
9098** is read-only, the others are read/write.
9099**
9100** The schema layer numbers meta values differently. At the schema
9101** layer (and the SetCookie and ReadCookie opcodes) the number of
9102** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009103**
9104** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9105** of reading the value out of the header, it instead loads the "DataVersion"
9106** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9107** database file. It is a number computed by the pager. But its access
9108** pattern is the same as header meta values, and so it is convenient to
9109** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009110*/
danielk1977602b4662009-07-02 07:47:33 +00009111void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009112 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009113
drhd677b3d2007-08-20 22:48:41 +00009114 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009115 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009116 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009117 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009118 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009119
drh91618562014-12-19 19:28:02 +00009120 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009121 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009122 }else{
9123 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9124 }
drhae157872004-08-14 19:20:09 +00009125
danielk1977602b4662009-07-02 07:47:33 +00009126 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9127 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009128#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009129 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9130 pBt->btsFlags |= BTS_READ_ONLY;
9131 }
danielk1977003ba062004-11-04 02:57:33 +00009132#endif
drhae157872004-08-14 19:20:09 +00009133
drhd677b3d2007-08-20 22:48:41 +00009134 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009135}
9136
9137/*
drh23e11ca2004-05-04 17:27:28 +00009138** Write meta-information back into the database. Meta[0] is
9139** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009140*/
danielk1977aef0bf62005-12-30 16:28:01 +00009141int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9142 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009143 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009144 int rc;
drh23e11ca2004-05-04 17:27:28 +00009145 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009146 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009147 assert( p->inTrans==TRANS_WRITE );
9148 assert( pBt->pPage1!=0 );
9149 pP1 = pBt->pPage1->aData;
9150 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9151 if( rc==SQLITE_OK ){
9152 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009153#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009154 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009155 assert( pBt->autoVacuum || iMeta==0 );
9156 assert( iMeta==0 || iMeta==1 );
9157 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009158 }
drh64022502009-01-09 14:11:04 +00009159#endif
drh5df72a52002-06-06 23:16:05 +00009160 }
drhd677b3d2007-08-20 22:48:41 +00009161 sqlite3BtreeLeave(p);
9162 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009163}
drh8c42ca92001-06-22 19:15:00 +00009164
danielk1977a5533162009-02-24 10:01:51 +00009165#ifndef SQLITE_OMIT_BTREECOUNT
9166/*
9167** The first argument, pCur, is a cursor opened on some b-tree. Count the
9168** number of entries in the b-tree and write the result to *pnEntry.
9169**
9170** SQLITE_OK is returned if the operation is successfully executed.
9171** Otherwise, if an error is encountered (i.e. an IO error or database
9172** corruption) an SQLite error code is returned.
9173*/
9174int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9175 i64 nEntry = 0; /* Value to return in *pnEntry */
9176 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009177
drh44548e72017-08-14 18:13:52 +00009178 rc = moveToRoot(pCur);
9179 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009180 *pnEntry = 0;
9181 return SQLITE_OK;
9182 }
danielk1977a5533162009-02-24 10:01:51 +00009183
9184 /* Unless an error occurs, the following loop runs one iteration for each
9185 ** page in the B-Tree structure (not including overflow pages).
9186 */
9187 while( rc==SQLITE_OK ){
9188 int iIdx; /* Index of child node in parent */
9189 MemPage *pPage; /* Current page of the b-tree */
9190
9191 /* If this is a leaf page or the tree is not an int-key tree, then
9192 ** this page contains countable entries. Increment the entry counter
9193 ** accordingly.
9194 */
drh352a35a2017-08-15 03:46:47 +00009195 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009196 if( pPage->leaf || !pPage->intKey ){
9197 nEntry += pPage->nCell;
9198 }
9199
9200 /* pPage is a leaf node. This loop navigates the cursor so that it
9201 ** points to the first interior cell that it points to the parent of
9202 ** the next page in the tree that has not yet been visited. The
9203 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9204 ** of the page, or to the number of cells in the page if the next page
9205 ** to visit is the right-child of its parent.
9206 **
9207 ** If all pages in the tree have been visited, return SQLITE_OK to the
9208 ** caller.
9209 */
9210 if( pPage->leaf ){
9211 do {
9212 if( pCur->iPage==0 ){
9213 /* All pages of the b-tree have been visited. Return successfully. */
9214 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009215 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009216 }
danielk197730548662009-07-09 05:07:37 +00009217 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009218 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009219
drh75e96b32017-04-01 00:20:06 +00009220 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009221 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009222 }
9223
9224 /* Descend to the child node of the cell that the cursor currently
9225 ** points at. This is the right-child if (iIdx==pPage->nCell).
9226 */
drh75e96b32017-04-01 00:20:06 +00009227 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009228 if( iIdx==pPage->nCell ){
9229 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9230 }else{
9231 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9232 }
9233 }
9234
shanebe217792009-03-05 04:20:31 +00009235 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009236 return rc;
9237}
9238#endif
drhdd793422001-06-28 01:54:48 +00009239
drhdd793422001-06-28 01:54:48 +00009240/*
drh5eddca62001-06-30 21:53:53 +00009241** Return the pager associated with a BTree. This routine is used for
9242** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009243*/
danielk1977aef0bf62005-12-30 16:28:01 +00009244Pager *sqlite3BtreePager(Btree *p){
9245 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009246}
drh5eddca62001-06-30 21:53:53 +00009247
drhb7f91642004-10-31 02:22:47 +00009248#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009249/*
9250** Append a message to the error message string.
9251*/
drh2e38c322004-09-03 18:38:44 +00009252static void checkAppendMsg(
9253 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009254 const char *zFormat,
9255 ...
9256){
9257 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009258 if( !pCheck->mxErr ) return;
9259 pCheck->mxErr--;
9260 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009261 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009262 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009263 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009264 }
drh867db832014-09-26 02:41:05 +00009265 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009266 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009267 }
drh0cdbe1a2018-05-09 13:46:26 +00009268 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009269 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009270 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009271 pCheck->mallocFailed = 1;
9272 }
drh5eddca62001-06-30 21:53:53 +00009273}
drhb7f91642004-10-31 02:22:47 +00009274#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009275
drhb7f91642004-10-31 02:22:47 +00009276#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009277
9278/*
9279** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9280** corresponds to page iPg is already set.
9281*/
9282static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9283 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9284 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9285}
9286
9287/*
9288** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9289*/
9290static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9291 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9292 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9293}
9294
9295
drh5eddca62001-06-30 21:53:53 +00009296/*
9297** Add 1 to the reference count for page iPage. If this is the second
9298** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009299** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009300** if this is the first reference to the page.
9301**
9302** Also check that the page number is in bounds.
9303*/
drh867db832014-09-26 02:41:05 +00009304static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009305 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009306 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009307 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009308 return 1;
9309 }
dan1235bb12012-04-03 17:43:28 +00009310 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009311 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009312 return 1;
9313 }
dan1235bb12012-04-03 17:43:28 +00009314 setPageReferenced(pCheck, iPage);
9315 return 0;
drh5eddca62001-06-30 21:53:53 +00009316}
9317
danielk1977afcdd022004-10-31 16:25:42 +00009318#ifndef SQLITE_OMIT_AUTOVACUUM
9319/*
9320** Check that the entry in the pointer-map for page iChild maps to
9321** page iParent, pointer type ptrType. If not, append an error message
9322** to pCheck.
9323*/
9324static void checkPtrmap(
9325 IntegrityCk *pCheck, /* Integrity check context */
9326 Pgno iChild, /* Child page number */
9327 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009328 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009329){
9330 int rc;
9331 u8 ePtrmapType;
9332 Pgno iPtrmapParent;
9333
9334 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9335 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009336 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009337 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009338 return;
9339 }
9340
9341 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009342 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009343 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9344 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9345 }
9346}
9347#endif
9348
drh5eddca62001-06-30 21:53:53 +00009349/*
9350** Check the integrity of the freelist or of an overflow page list.
9351** Verify that the number of pages on the list is N.
9352*/
drh30e58752002-03-02 20:41:57 +00009353static void checkList(
9354 IntegrityCk *pCheck, /* Integrity checking context */
9355 int isFreeList, /* True for a freelist. False for overflow page list */
9356 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009357 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009358){
9359 int i;
drh3a4c1412004-05-09 20:40:11 +00009360 int expected = N;
9361 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009362 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009363 DbPage *pOvflPage;
9364 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009365 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009366 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009367 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009368 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009369 break;
9370 }
drh867db832014-09-26 02:41:05 +00009371 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009372 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009373 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009374 break;
9375 }
danielk19773b8a05f2007-03-19 17:44:26 +00009376 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009377 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009378 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009379#ifndef SQLITE_OMIT_AUTOVACUUM
9380 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009381 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009382 }
9383#endif
drh43b18e12010-08-17 19:40:08 +00009384 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009385 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009386 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009387 N--;
9388 }else{
9389 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009390 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009391#ifndef SQLITE_OMIT_AUTOVACUUM
9392 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009393 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009394 }
9395#endif
drh867db832014-09-26 02:41:05 +00009396 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009397 }
9398 N -= n;
drh30e58752002-03-02 20:41:57 +00009399 }
drh30e58752002-03-02 20:41:57 +00009400 }
danielk1977afcdd022004-10-31 16:25:42 +00009401#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009402 else{
9403 /* If this database supports auto-vacuum and iPage is not the last
9404 ** page in this overflow list, check that the pointer-map entry for
9405 ** the following page matches iPage.
9406 */
9407 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009408 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009409 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009410 }
danielk1977afcdd022004-10-31 16:25:42 +00009411 }
9412#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009413 iPage = get4byte(pOvflData);
9414 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009415
9416 if( isFreeList && N<(iPage!=0) ){
9417 checkAppendMsg(pCheck, "free-page count in header is too small");
9418 }
drh5eddca62001-06-30 21:53:53 +00009419 }
9420}
drhb7f91642004-10-31 02:22:47 +00009421#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009422
drh67731a92015-04-16 11:56:03 +00009423/*
9424** An implementation of a min-heap.
9425**
9426** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009427** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009428** and aHeap[N*2+1].
9429**
9430** The heap property is this: Every node is less than or equal to both
9431** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009432** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009433**
9434** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9435** the heap, preserving the heap property. The btreeHeapPull() routine
9436** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009437** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009438** property.
9439**
9440** This heap is used for cell overlap and coverage testing. Each u32
9441** entry represents the span of a cell or freeblock on a btree page.
9442** The upper 16 bits are the index of the first byte of a range and the
9443** lower 16 bits are the index of the last byte of that range.
9444*/
9445static void btreeHeapInsert(u32 *aHeap, u32 x){
9446 u32 j, i = ++aHeap[0];
9447 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009448 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009449 x = aHeap[j];
9450 aHeap[j] = aHeap[i];
9451 aHeap[i] = x;
9452 i = j;
9453 }
9454}
9455static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9456 u32 j, i, x;
9457 if( (x = aHeap[0])==0 ) return 0;
9458 *pOut = aHeap[1];
9459 aHeap[1] = aHeap[x];
9460 aHeap[x] = 0xffffffff;
9461 aHeap[0]--;
9462 i = 1;
9463 while( (j = i*2)<=aHeap[0] ){
9464 if( aHeap[j]>aHeap[j+1] ) j++;
9465 if( aHeap[i]<aHeap[j] ) break;
9466 x = aHeap[i];
9467 aHeap[i] = aHeap[j];
9468 aHeap[j] = x;
9469 i = j;
9470 }
9471 return 1;
9472}
9473
drhb7f91642004-10-31 02:22:47 +00009474#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009475/*
9476** Do various sanity checks on a single page of a tree. Return
9477** the tree depth. Root pages return 0. Parents of root pages
9478** return 1, and so forth.
9479**
9480** These checks are done:
9481**
9482** 1. Make sure that cells and freeblocks do not overlap
9483** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009484** 2. Make sure integer cell keys are in order.
9485** 3. Check the integrity of overflow pages.
9486** 4. Recursively call checkTreePage on all children.
9487** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009488*/
9489static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009490 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009491 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009492 i64 *piMinKey, /* Write minimum integer primary key here */
9493 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009494){
drhcbc6b712015-07-02 16:17:30 +00009495 MemPage *pPage = 0; /* The page being analyzed */
9496 int i; /* Loop counter */
9497 int rc; /* Result code from subroutine call */
9498 int depth = -1, d2; /* Depth of a subtree */
9499 int pgno; /* Page number */
9500 int nFrag; /* Number of fragmented bytes on the page */
9501 int hdr; /* Offset to the page header */
9502 int cellStart; /* Offset to the start of the cell pointer array */
9503 int nCell; /* Number of cells */
9504 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9505 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9506 ** False if IPK must be strictly less than maxKey */
9507 u8 *data; /* Page content */
9508 u8 *pCell; /* Cell content */
9509 u8 *pCellIdx; /* Next element of the cell pointer array */
9510 BtShared *pBt; /* The BtShared object that owns pPage */
9511 u32 pc; /* Address of a cell */
9512 u32 usableSize; /* Usable size of the page */
9513 u32 contentOffset; /* Offset to the start of the cell content area */
9514 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009515 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009516 const char *saved_zPfx = pCheck->zPfx;
9517 int saved_v1 = pCheck->v1;
9518 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009519 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009520
drh5eddca62001-06-30 21:53:53 +00009521 /* Check that the page exists
9522 */
drhd9cb6ac2005-10-20 07:28:17 +00009523 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009524 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009525 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009526 if( checkRef(pCheck, iPage) ) return 0;
9527 pCheck->zPfx = "Page %d: ";
9528 pCheck->v1 = iPage;
danielk197730548662009-07-09 05:07:37 +00009529 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009530 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009531 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009532 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009533 }
danielk197793caf5a2009-07-11 06:55:33 +00009534
9535 /* Clear MemPage.isInit to make sure the corruption detection code in
9536 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009537 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009538 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009539 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009540 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009541 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009542 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009543 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009544 }
drhcbc6b712015-07-02 16:17:30 +00009545 data = pPage->aData;
9546 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009547
drhcbc6b712015-07-02 16:17:30 +00009548 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009549 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009550 contentOffset = get2byteNotZero(&data[hdr+5]);
9551 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9552
9553 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9554 ** number of cells on the page. */
9555 nCell = get2byte(&data[hdr+3]);
9556 assert( pPage->nCell==nCell );
9557
9558 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9559 ** immediately follows the b-tree page header. */
9560 cellStart = hdr + 12 - 4*pPage->leaf;
9561 assert( pPage->aCellIdx==&data[cellStart] );
9562 pCellIdx = &data[cellStart + 2*(nCell-1)];
9563
9564 if( !pPage->leaf ){
9565 /* Analyze the right-child page of internal pages */
9566 pgno = get4byte(&data[hdr+8]);
9567#ifndef SQLITE_OMIT_AUTOVACUUM
9568 if( pBt->autoVacuum ){
9569 pCheck->zPfx = "On page %d at right child: ";
9570 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9571 }
9572#endif
9573 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9574 keyCanBeEqual = 0;
9575 }else{
9576 /* For leaf pages, the coverage check will occur in the same loop
9577 ** as the other cell checks, so initialize the heap. */
9578 heap = pCheck->heap;
9579 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009580 }
9581
9582 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9583 ** integer offsets to the cell contents. */
9584 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009585 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009586
drhcbc6b712015-07-02 16:17:30 +00009587 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009588 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009589 assert( pCellIdx==&data[cellStart + i*2] );
9590 pc = get2byteAligned(pCellIdx);
9591 pCellIdx -= 2;
9592 if( pc<contentOffset || pc>usableSize-4 ){
9593 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9594 pc, contentOffset, usableSize-4);
9595 doCoverageCheck = 0;
9596 continue;
shaneh195475d2010-02-19 04:28:08 +00009597 }
drhcbc6b712015-07-02 16:17:30 +00009598 pCell = &data[pc];
9599 pPage->xParseCell(pPage, pCell, &info);
9600 if( pc+info.nSize>usableSize ){
9601 checkAppendMsg(pCheck, "Extends off end of page");
9602 doCoverageCheck = 0;
9603 continue;
9604 }
9605
9606 /* Check for integer primary key out of range */
9607 if( pPage->intKey ){
9608 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9609 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9610 }
9611 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009612 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009613 }
9614
9615 /* Check the content overflow list */
9616 if( info.nPayload>info.nLocal ){
9617 int nPage; /* Number of pages on the overflow chain */
9618 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009619 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009620 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009621 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
danielk1977afcdd022004-10-31 16:25:42 +00009622#ifndef SQLITE_OMIT_AUTOVACUUM
9623 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009624 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009625 }
9626#endif
drh867db832014-09-26 02:41:05 +00009627 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009628 }
9629
drhda200cc2004-05-09 11:51:38 +00009630 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009631 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009632 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009633#ifndef SQLITE_OMIT_AUTOVACUUM
9634 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009635 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009636 }
9637#endif
drhcbc6b712015-07-02 16:17:30 +00009638 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9639 keyCanBeEqual = 0;
9640 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009641 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009642 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009643 }
drhcbc6b712015-07-02 16:17:30 +00009644 }else{
9645 /* Populate the coverage-checking heap for leaf pages */
9646 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009647 }
drh5eddca62001-06-30 21:53:53 +00009648 }
drhcbc6b712015-07-02 16:17:30 +00009649 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009650
drh5eddca62001-06-30 21:53:53 +00009651 /* Check for complete coverage of the page
9652 */
drh867db832014-09-26 02:41:05 +00009653 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009654 if( doCoverageCheck && pCheck->mxErr>0 ){
9655 /* For leaf pages, the min-heap has already been initialized and the
9656 ** cells have already been inserted. But for internal pages, that has
9657 ** not yet been done, so do it now */
9658 if( !pPage->leaf ){
9659 heap = pCheck->heap;
9660 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009661 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009662 u32 size;
9663 pc = get2byteAligned(&data[cellStart+i*2]);
9664 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009665 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009666 }
drh2e38c322004-09-03 18:38:44 +00009667 }
drhcbc6b712015-07-02 16:17:30 +00009668 /* Add the freeblocks to the min-heap
9669 **
9670 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009671 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009672 ** freeblocks on the page.
9673 */
drh8c2bbb62009-07-10 02:52:20 +00009674 i = get2byte(&data[hdr+1]);
9675 while( i>0 ){
9676 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009677 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009678 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009679 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009680 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009681 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9682 ** big-endian integer which is the offset in the b-tree page of the next
9683 ** freeblock in the chain, or zero if the freeblock is the last on the
9684 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009685 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009686 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9687 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009688 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009689 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009690 i = j;
drh2e38c322004-09-03 18:38:44 +00009691 }
drhcbc6b712015-07-02 16:17:30 +00009692 /* Analyze the min-heap looking for overlap between cells and/or
9693 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009694 **
9695 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9696 ** There is an implied first entry the covers the page header, the cell
9697 ** pointer index, and the gap between the cell pointer index and the start
9698 ** of cell content.
9699 **
9700 ** The loop below pulls entries from the min-heap in order and compares
9701 ** the start_address against the previous end_address. If there is an
9702 ** overlap, that means bytes are used multiple times. If there is a gap,
9703 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009704 */
9705 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009706 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009707 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009708 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009709 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009710 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009711 break;
drh67731a92015-04-16 11:56:03 +00009712 }else{
drhcbc6b712015-07-02 16:17:30 +00009713 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009714 prev = x;
drh2e38c322004-09-03 18:38:44 +00009715 }
9716 }
drhcbc6b712015-07-02 16:17:30 +00009717 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009718 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9719 ** is stored in the fifth field of the b-tree page header.
9720 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9721 ** number of fragmented free bytes within the cell content area.
9722 */
drhcbc6b712015-07-02 16:17:30 +00009723 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009724 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009725 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009726 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009727 }
9728 }
drh867db832014-09-26 02:41:05 +00009729
9730end_of_check:
drh72e191e2015-07-04 11:14:20 +00009731 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009732 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009733 pCheck->zPfx = saved_zPfx;
9734 pCheck->v1 = saved_v1;
9735 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009736 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009737}
drhb7f91642004-10-31 02:22:47 +00009738#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009739
drhb7f91642004-10-31 02:22:47 +00009740#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009741/*
9742** This routine does a complete check of the given BTree file. aRoot[] is
9743** an array of pages numbers were each page number is the root page of
9744** a table. nRoot is the number of entries in aRoot.
9745**
danielk19773509a652009-07-06 18:56:13 +00009746** A read-only or read-write transaction must be opened before calling
9747** this function.
9748**
drhc890fec2008-08-01 20:10:08 +00009749** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009750** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009751** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009752** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009753*/
drh1dcdbc02007-01-27 02:24:54 +00009754char *sqlite3BtreeIntegrityCheck(
9755 Btree *p, /* The btree to be checked */
9756 int *aRoot, /* An array of root pages numbers for individual trees */
9757 int nRoot, /* Number of entries in aRoot[] */
9758 int mxErr, /* Stop reporting errors after this many */
9759 int *pnErr /* Write number of errors seen to this variable */
9760){
danielk197789d40042008-11-17 14:20:56 +00009761 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009762 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009763 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009764 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009765 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009766 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009767
drhd677b3d2007-08-20 22:48:41 +00009768 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009769 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009770 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9771 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009772 sCheck.pBt = pBt;
9773 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009774 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009775 sCheck.mxErr = mxErr;
9776 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009777 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009778 sCheck.zPfx = 0;
9779 sCheck.v1 = 0;
9780 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009781 sCheck.aPgRef = 0;
9782 sCheck.heap = 0;
9783 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009784 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009785 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009786 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009787 }
dan1235bb12012-04-03 17:43:28 +00009788
9789 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9790 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009791 sCheck.mallocFailed = 1;
9792 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009793 }
drhe05b3f82015-07-01 17:53:49 +00009794 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9795 if( sCheck.heap==0 ){
9796 sCheck.mallocFailed = 1;
9797 goto integrity_ck_cleanup;
9798 }
9799
drh42cac6d2004-11-20 20:31:11 +00009800 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009801 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009802
9803 /* Check the integrity of the freelist
9804 */
drh867db832014-09-26 02:41:05 +00009805 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009806 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009807 get4byte(&pBt->pPage1->aData[36]));
9808 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009809
9810 /* Check all the tables.
9811 */
drhcbc6b712015-07-02 16:17:30 +00009812 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9813 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009814 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009815 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009816 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009817#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009818 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009819 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009820 }
9821#endif
drhcbc6b712015-07-02 16:17:30 +00009822 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009823 }
drhcbc6b712015-07-02 16:17:30 +00009824 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009825
9826 /* Make sure every page in the file is referenced
9827 */
drh1dcdbc02007-01-27 02:24:54 +00009828 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009829#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009830 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009831 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009832 }
danielk1977afcdd022004-10-31 16:25:42 +00009833#else
9834 /* If the database supports auto-vacuum, make sure no tables contain
9835 ** references to pointer-map pages.
9836 */
dan1235bb12012-04-03 17:43:28 +00009837 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009838 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009839 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009840 }
dan1235bb12012-04-03 17:43:28 +00009841 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009842 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009843 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009844 }
9845#endif
drh5eddca62001-06-30 21:53:53 +00009846 }
9847
drh5eddca62001-06-30 21:53:53 +00009848 /* Clean up and report errors.
9849 */
drhe05b3f82015-07-01 17:53:49 +00009850integrity_ck_cleanup:
9851 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009852 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009853 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +00009854 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009855 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009856 }
drh1dcdbc02007-01-27 02:24:54 +00009857 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +00009858 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009859 /* Make sure this analysis did not leave any unref() pages. */
9860 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9861 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009862 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009863}
drhb7f91642004-10-31 02:22:47 +00009864#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009865
drh73509ee2003-04-06 20:44:45 +00009866/*
drhd4e0bb02012-05-27 01:19:04 +00009867** Return the full pathname of the underlying database file. Return
9868** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009869**
9870** The pager filename is invariant as long as the pager is
9871** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009872*/
danielk1977aef0bf62005-12-30 16:28:01 +00009873const char *sqlite3BtreeGetFilename(Btree *p){
9874 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009875 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009876}
9877
9878/*
danielk19775865e3d2004-06-14 06:03:57 +00009879** Return the pathname of the journal file for this database. The return
9880** value of this routine is the same regardless of whether the journal file
9881** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009882**
9883** The pager journal filename is invariant as long as the pager is
9884** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009885*/
danielk1977aef0bf62005-12-30 16:28:01 +00009886const char *sqlite3BtreeGetJournalname(Btree *p){
9887 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009888 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009889}
9890
danielk19771d850a72004-05-31 08:26:49 +00009891/*
9892** Return non-zero if a transaction is active.
9893*/
danielk1977aef0bf62005-12-30 16:28:01 +00009894int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009895 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009896 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009897}
9898
dana550f2d2010-08-02 10:47:05 +00009899#ifndef SQLITE_OMIT_WAL
9900/*
9901** Run a checkpoint on the Btree passed as the first argument.
9902**
9903** Return SQLITE_LOCKED if this or any other connection has an open
9904** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009905**
dancdc1f042010-11-18 12:11:05 +00009906** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009907*/
dancdc1f042010-11-18 12:11:05 +00009908int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009909 int rc = SQLITE_OK;
9910 if( p ){
9911 BtShared *pBt = p->pBt;
9912 sqlite3BtreeEnter(p);
9913 if( pBt->inTransaction!=TRANS_NONE ){
9914 rc = SQLITE_LOCKED;
9915 }else{
dan7fb89902016-08-12 16:21:15 +00009916 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009917 }
9918 sqlite3BtreeLeave(p);
9919 }
9920 return rc;
9921}
9922#endif
9923
danielk19771d850a72004-05-31 08:26:49 +00009924/*
danielk19772372c2b2006-06-27 16:34:56 +00009925** Return non-zero if a read (or write) transaction is active.
9926*/
9927int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009928 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009929 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009930 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009931}
9932
danielk197704103022009-02-03 16:51:24 +00009933int sqlite3BtreeIsInBackup(Btree *p){
9934 assert( p );
9935 assert( sqlite3_mutex_held(p->db->mutex) );
9936 return p->nBackup!=0;
9937}
9938
danielk19772372c2b2006-06-27 16:34:56 +00009939/*
danielk1977da184232006-01-05 11:34:32 +00009940** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009941** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009942** purposes (for example, to store a high-level schema associated with
9943** the shared-btree). The btree layer manages reference counting issues.
9944**
9945** The first time this is called on a shared-btree, nBytes bytes of memory
9946** are allocated, zeroed, and returned to the caller. For each subsequent
9947** call the nBytes parameter is ignored and a pointer to the same blob
9948** of memory returned.
9949**
danielk1977171bfed2008-06-23 09:50:50 +00009950** If the nBytes parameter is 0 and the blob of memory has not yet been
9951** allocated, a null pointer is returned. If the blob has already been
9952** allocated, it is returned as normal.
9953**
danielk1977da184232006-01-05 11:34:32 +00009954** Just before the shared-btree is closed, the function passed as the
9955** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009956** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009957** on the memory, the btree layer does that.
9958*/
9959void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9960 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009961 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009962 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009963 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009964 pBt->xFreeSchema = xFree;
9965 }
drh27641702007-08-22 02:56:42 +00009966 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009967 return pBt->pSchema;
9968}
9969
danielk1977c87d34d2006-01-06 13:00:28 +00009970/*
danielk1977404ca072009-03-16 13:19:36 +00009971** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9972** btree as the argument handle holds an exclusive lock on the
9973** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009974*/
9975int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009976 int rc;
drhe5fe6902007-12-07 18:55:28 +00009977 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009978 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009979 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9980 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009981 sqlite3BtreeLeave(p);
9982 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009983}
9984
drha154dcd2006-03-22 22:10:07 +00009985
9986#ifndef SQLITE_OMIT_SHARED_CACHE
9987/*
9988** Obtain a lock on the table whose root page is iTab. The
9989** lock is a write lock if isWritelock is true or a read lock
9990** if it is false.
9991*/
danielk1977c00da102006-01-07 13:21:04 +00009992int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009993 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009994 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009995 if( p->sharable ){
9996 u8 lockType = READ_LOCK + isWriteLock;
9997 assert( READ_LOCK+1==WRITE_LOCK );
9998 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009999
drh6a9ad3d2008-04-02 16:29:30 +000010000 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010001 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010002 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010003 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010004 }
10005 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010006 }
10007 return rc;
10008}
drha154dcd2006-03-22 22:10:07 +000010009#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010010
danielk1977b4e9af92007-05-01 17:49:49 +000010011#ifndef SQLITE_OMIT_INCRBLOB
10012/*
10013** Argument pCsr must be a cursor opened for writing on an
10014** INTKEY table currently pointing at a valid table entry.
10015** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010016**
10017** Only the data content may only be modified, it is not possible to
10018** change the length of the data stored. If this function is called with
10019** parameters that attempt to write past the end of the existing data,
10020** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010021*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010022int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010023 int rc;
dan7a2347e2016-01-07 16:43:54 +000010024 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010025 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010026 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010027
danielk1977c9000e62009-07-08 13:55:28 +000010028 rc = restoreCursorPosition(pCsr);
10029 if( rc!=SQLITE_OK ){
10030 return rc;
10031 }
danielk19773588ceb2008-06-10 17:30:26 +000010032 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10033 if( pCsr->eState!=CURSOR_VALID ){
10034 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010035 }
10036
dan227a1c42013-04-03 11:17:39 +000010037 /* Save the positions of all other cursors open on this table. This is
10038 ** required in case any of them are holding references to an xFetch
10039 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010040 **
drh3f387402014-09-24 01:23:00 +000010041 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010042 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10043 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010044 */
drh370c9f42013-04-03 20:04:04 +000010045 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10046 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010047
danielk1977c9000e62009-07-08 13:55:28 +000010048 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010049 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010050 ** (b) there is a read/write transaction open,
10051 ** (c) the connection holds a write-lock on the table (if required),
10052 ** (d) there are no conflicting read-locks, and
10053 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010054 */
drh036dbec2014-03-11 23:40:44 +000010055 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010056 return SQLITE_READONLY;
10057 }
drhc9166342012-01-05 23:32:06 +000010058 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10059 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010060 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10061 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010062 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010063
drhfb192682009-07-11 18:26:28 +000010064 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010065}
danielk19772dec9702007-05-02 16:48:37 +000010066
10067/*
dan5a500af2014-03-11 20:33:04 +000010068** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010069*/
dan5a500af2014-03-11 20:33:04 +000010070void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010071 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010072 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010073}
danielk1977b4e9af92007-05-01 17:49:49 +000010074#endif
dane04dc882010-04-20 18:53:15 +000010075
10076/*
10077** Set both the "read version" (single byte at byte offset 18) and
10078** "write version" (single byte at byte offset 19) fields in the database
10079** header to iVersion.
10080*/
10081int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10082 BtShared *pBt = pBtree->pBt;
10083 int rc; /* Return code */
10084
dane04dc882010-04-20 18:53:15 +000010085 assert( iVersion==1 || iVersion==2 );
10086
danb9780022010-04-21 18:37:57 +000010087 /* If setting the version fields to 1, do not automatically open the
10088 ** WAL connection, even if the version fields are currently set to 2.
10089 */
drhc9166342012-01-05 23:32:06 +000010090 pBt->btsFlags &= ~BTS_NO_WAL;
10091 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010092
10093 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +000010094 if( rc==SQLITE_OK ){
10095 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010096 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +000010097 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +000010098 if( rc==SQLITE_OK ){
10099 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10100 if( rc==SQLITE_OK ){
10101 aData[18] = (u8)iVersion;
10102 aData[19] = (u8)iVersion;
10103 }
10104 }
10105 }
dane04dc882010-04-20 18:53:15 +000010106 }
10107
drhc9166342012-01-05 23:32:06 +000010108 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010109 return rc;
10110}
dan428c2182012-08-06 18:50:11 +000010111
drhe0997b32015-03-20 14:57:50 +000010112/*
10113** Return true if the cursor has a hint specified. This routine is
10114** only used from within assert() statements
10115*/
10116int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10117 return (pCsr->hints & mask)!=0;
10118}
drhe0997b32015-03-20 14:57:50 +000010119
drh781597f2014-05-21 08:21:07 +000010120/*
10121** Return true if the given Btree is read-only.
10122*/
10123int sqlite3BtreeIsReadonly(Btree *p){
10124 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10125}
drhdef68892014-11-04 12:11:23 +000010126
10127/*
10128** Return the size of the header added to each page by this module.
10129*/
drh37c057b2014-12-30 00:57:29 +000010130int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010131
drh5a1fb182016-01-08 19:34:39 +000010132#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010133/*
10134** Return true if the Btree passed as the only argument is sharable.
10135*/
10136int sqlite3BtreeSharable(Btree *p){
10137 return p->sharable;
10138}
dan272989b2016-07-06 10:12:02 +000010139
10140/*
10141** Return the number of connections to the BtShared object accessed by
10142** the Btree handle passed as the only argument. For private caches
10143** this is always 1. For shared caches it may be 1 or greater.
10144*/
10145int sqlite3BtreeConnectionCount(Btree *p){
10146 testcase( p->sharable );
10147 return p->pBt->nRef;
10148}
drh5a1fb182016-01-08 19:34:39 +000010149#endif