blob: 5488d2010e387bbf5b2c712a5f7e775dda1411cb [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
danf0ee1d32015-09-12 19:26:11 +0000594/*
595** The cursor passed as the only argument must point to a valid entry
596** when this function is called (i.e. have eState==CURSOR_VALID). This
597** function saves the current cursor key in variables pCur->nKey and
598** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
599** code otherwise.
600**
601** If the cursor is open on an intkey table, then the integer key
602** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
603** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
604** set to point to a malloced buffer pCur->nKey bytes in size containing
605** the key.
606*/
607static int saveCursorKey(BtCursor *pCur){
608 int rc;
609 assert( CURSOR_VALID==pCur->eState );
610 assert( 0==pCur->pKey );
611 assert( cursorHoldsMutex(pCur) );
612
613 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
614 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
615
616 /* If this is an intKey table, then the above call to BtreeKeySize()
617 ** stores the integer key in pCur->nKey. In this case this value is
618 ** all that is required. Otherwise, if pCur is not open on an intKey
619 ** table, then malloc space for and store the pCur->nKey bytes of key
620 ** data. */
621 if( 0==pCur->curIntKey ){
622 void *pKey = sqlite3Malloc( pCur->nKey );
623 if( pKey ){
624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
628 sqlite3_free(pKey);
629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
634 assert( !pCur->curIntKey || !pCur->pKey );
635 return rc;
636}
drh138eeeb2013-03-27 03:15:23 +0000637
638/*
drh980b1a72006-08-16 16:42:48 +0000639** Save the current cursor position in the variables BtCursor.nKey
640** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000641**
642** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
643** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000644*/
645static int saveCursorPosition(BtCursor *pCur){
646 int rc;
647
drhd2f83132015-03-25 17:35:01 +0000648 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000649 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000650 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000651
drhd2f83132015-03-25 17:35:01 +0000652 if( pCur->eState==CURSOR_SKIPNEXT ){
653 pCur->eState = CURSOR_VALID;
654 }else{
655 pCur->skipNext = 0;
656 }
drh980b1a72006-08-16 16:42:48 +0000657
danf0ee1d32015-09-12 19:26:11 +0000658 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000659 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000660 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000661 pCur->eState = CURSOR_REQUIRESEEK;
662 }
663
dane755e102015-09-30 12:59:12 +0000664 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000665 return rc;
666}
667
drh637f3d82014-08-22 22:26:07 +0000668/* Forward reference */
669static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
670
drh980b1a72006-08-16 16:42:48 +0000671/*
drh0ee3dbe2009-10-16 15:05:18 +0000672** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000673** the table with root-page iRoot. "Saving the cursor position" means that
674** the location in the btree is remembered in such a way that it can be
675** moved back to the same spot after the btree has been modified. This
676** routine is called just before cursor pExcept is used to modify the
677** table, for example in BtreeDelete() or BtreeInsert().
678**
drh27fb7462015-06-30 02:47:36 +0000679** If there are two or more cursors on the same btree, then all such
680** cursors should have their BTCF_Multiple flag set. The btreeCursor()
681** routine enforces that rule. This routine only needs to be called in
682** the uncommon case when pExpect has the BTCF_Multiple flag set.
683**
684** If pExpect!=NULL and if no other cursors are found on the same root-page,
685** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
686** pointless call to this routine.
687**
drh637f3d82014-08-22 22:26:07 +0000688** Implementation note: This routine merely checks to see if any cursors
689** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
690** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000691*/
692static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
693 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000694 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000695 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000696 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000697 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
698 }
drh27fb7462015-06-30 02:47:36 +0000699 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
700 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
701 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000702}
703
704/* This helper routine to saveAllCursors does the actual work of saving
705** the cursors if and when a cursor is found that actually requires saving.
706** The common case is that no cursors need to be saved, so this routine is
707** broken out from its caller to avoid unnecessary stack pointer movement.
708*/
709static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000710 BtCursor *p, /* The first cursor that needs saving */
711 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
712 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000713){
714 do{
drh138eeeb2013-03-27 03:15:23 +0000715 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000716 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000717 int rc = saveCursorPosition(p);
718 if( SQLITE_OK!=rc ){
719 return rc;
720 }
721 }else{
722 testcase( p->iPage>0 );
723 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000724 }
725 }
drh637f3d82014-08-22 22:26:07 +0000726 p = p->pNext;
727 }while( p );
drh980b1a72006-08-16 16:42:48 +0000728 return SQLITE_OK;
729}
730
731/*
drhbf700f32007-03-31 02:36:44 +0000732** Clear the current cursor position.
733*/
danielk1977be51a652008-10-08 17:58:48 +0000734void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000735 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000736 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000737 pCur->pKey = 0;
738 pCur->eState = CURSOR_INVALID;
739}
740
741/*
danielk19773509a652009-07-06 18:56:13 +0000742** In this version of BtreeMoveto, pKey is a packed index record
743** such as is generated by the OP_MakeRecord opcode. Unpack the
744** record and then call BtreeMovetoUnpacked() to do the work.
745*/
746static int btreeMoveto(
747 BtCursor *pCur, /* Cursor open on the btree to be searched */
748 const void *pKey, /* Packed key if the btree is an index */
749 i64 nKey, /* Integer key for tables. Size of pKey for indices */
750 int bias, /* Bias search to the high end */
751 int *pRes /* Write search results here */
752){
753 int rc; /* Status code */
754 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000755 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000756 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000757
758 if( pKey ){
759 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000760 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
761 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
762 );
danielk19773509a652009-07-06 18:56:13 +0000763 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000764 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000765 if( pIdxKey->nField==0 ){
766 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
767 return SQLITE_CORRUPT_BKPT;
768 }
danielk19773509a652009-07-06 18:56:13 +0000769 }else{
770 pIdxKey = 0;
771 }
772 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000773 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000774 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000775 }
776 return rc;
777}
778
779/*
drh980b1a72006-08-16 16:42:48 +0000780** Restore the cursor to the position it was in (or as close to as possible)
781** when saveCursorPosition() was called. Note that this call deletes the
782** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000783** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000784** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000785*/
danielk197730548662009-07-09 05:07:37 +0000786static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000787 int rc;
drhd2f83132015-03-25 17:35:01 +0000788 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000789 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000790 assert( pCur->eState>=CURSOR_REQUIRESEEK );
791 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000792 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000793 }
drh980b1a72006-08-16 16:42:48 +0000794 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000795 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000796 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000797 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000798 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000799 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000800 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000801 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
802 pCur->eState = CURSOR_SKIPNEXT;
803 }
drh980b1a72006-08-16 16:42:48 +0000804 }
805 return rc;
806}
807
drha3460582008-07-11 21:02:53 +0000808#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000809 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000810 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000811 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000812
drha3460582008-07-11 21:02:53 +0000813/*
drh6848dad2014-08-22 23:33:03 +0000814** Determine whether or not a cursor has moved from the position where
815** it was last placed, or has been invalidated for any other reason.
816** Cursors can move when the row they are pointing at is deleted out
817** from under them, for example. Cursor might also move if a btree
818** is rebalanced.
drha3460582008-07-11 21:02:53 +0000819**
drh6848dad2014-08-22 23:33:03 +0000820** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000821**
drh6848dad2014-08-22 23:33:03 +0000822** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
823** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000824*/
drh6848dad2014-08-22 23:33:03 +0000825int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000826 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000827}
828
829/*
830** This routine restores a cursor back to its original position after it
831** has been moved by some outside activity (such as a btree rebalance or
832** a row having been deleted out from under the cursor).
833**
834** On success, the *pDifferentRow parameter is false if the cursor is left
835** pointing at exactly the same row. *pDifferntRow is the row the cursor
836** was pointing to has been deleted, forcing the cursor to point to some
837** nearby row.
838**
839** This routine should only be called for a cursor that just returned
840** TRUE from sqlite3BtreeCursorHasMoved().
841*/
842int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000843 int rc;
844
drh6848dad2014-08-22 23:33:03 +0000845 assert( pCur!=0 );
846 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000847 rc = restoreCursorPosition(pCur);
848 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000849 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000850 return rc;
851 }
drh606a3572015-03-25 18:29:10 +0000852 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 }else{
drh606a3572015-03-25 18:29:10 +0000855 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000856 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000857 }
858 return SQLITE_OK;
859}
860
drhf7854c72015-10-27 13:24:37 +0000861#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000862/*
drh0df57012015-08-14 15:05:55 +0000863** Provide hints to the cursor. The particular hint given (and the type
864** and number of the varargs parameters) is determined by the eHintType
865** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000866*/
drh0df57012015-08-14 15:05:55 +0000867void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000868 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000869}
drhf7854c72015-10-27 13:24:37 +0000870#endif
871
872/*
873** Provide flag hints to the cursor.
874*/
875void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
876 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
877 pCur->hints = x;
878}
879
drh28935362013-12-07 20:39:19 +0000880
danielk1977599fcba2004-11-08 07:13:13 +0000881#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000882/*
drha3152892007-05-05 11:48:52 +0000883** Given a page number of a regular database page, return the page
884** number for the pointer-map page that contains the entry for the
885** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000886**
887** Return 0 (not a valid page) for pgno==1 since there is
888** no pointer map associated with page 1. The integrity_check logic
889** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000890*/
danielk1977266664d2006-02-10 08:24:21 +0000891static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000892 int nPagesPerMapPage;
893 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000894 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000895 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000896 nPagesPerMapPage = (pBt->usableSize/5)+1;
897 iPtrMap = (pgno-2)/nPagesPerMapPage;
898 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000899 if( ret==PENDING_BYTE_PAGE(pBt) ){
900 ret++;
901 }
902 return ret;
903}
danielk1977a19df672004-11-03 11:37:07 +0000904
danielk1977afcdd022004-10-31 16:25:42 +0000905/*
danielk1977afcdd022004-10-31 16:25:42 +0000906** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000907**
908** This routine updates the pointer map entry for page number 'key'
909** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000910**
911** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
912** a no-op. If an error occurs, the appropriate error code is written
913** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000914*/
drh98add2e2009-07-20 17:11:49 +0000915static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000916 DbPage *pDbPage; /* The pointer map page */
917 u8 *pPtrmap; /* The pointer map data */
918 Pgno iPtrmap; /* The pointer map page number */
919 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000920 int rc; /* Return code from subfunctions */
921
922 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000923
drh1fee73e2007-08-29 04:00:57 +0000924 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000925 /* The master-journal page number must never be used as a pointer map page */
926 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
927
danielk1977ac11ee62005-01-15 12:45:51 +0000928 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000929 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000930 *pRC = SQLITE_CORRUPT_BKPT;
931 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000932 }
danielk1977266664d2006-02-10 08:24:21 +0000933 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000934 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000935 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000936 *pRC = rc;
937 return;
danielk1977afcdd022004-10-31 16:25:42 +0000938 }
danielk19778c666b12008-07-18 09:34:57 +0000939 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000940 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000941 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000942 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000943 }
drhfc243732011-05-17 15:21:56 +0000944 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000945 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000946
drh615ae552005-01-16 23:21:00 +0000947 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
948 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000949 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000950 if( rc==SQLITE_OK ){
951 pPtrmap[offset] = eType;
952 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000953 }
danielk1977afcdd022004-10-31 16:25:42 +0000954 }
955
drh4925a552009-07-07 11:39:58 +0000956ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000957 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000958}
959
960/*
961** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000962**
963** This routine retrieves the pointer map entry for page 'key', writing
964** the type and parent page number to *pEType and *pPgno respectively.
965** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000966*/
danielk1977aef0bf62005-12-30 16:28:01 +0000967static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000968 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000969 int iPtrmap; /* Pointer map page index */
970 u8 *pPtrmap; /* Pointer map page data */
971 int offset; /* Offset of entry in pointer map */
972 int rc;
973
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000975
danielk1977266664d2006-02-10 08:24:21 +0000976 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000977 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000978 if( rc!=0 ){
979 return rc;
980 }
danielk19773b8a05f2007-03-19 17:44:26 +0000981 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000982
danielk19778c666b12008-07-18 09:34:57 +0000983 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000984 if( offset<0 ){
985 sqlite3PagerUnref(pDbPage);
986 return SQLITE_CORRUPT_BKPT;
987 }
988 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000989 assert( pEType!=0 );
990 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000991 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000992
danielk19773b8a05f2007-03-19 17:44:26 +0000993 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000994 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000995 return SQLITE_OK;
996}
997
danielk197785d90ca2008-07-19 14:25:15 +0000998#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000999 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001000 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001001 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001002#endif
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh0d316a42002-08-11 20:10:47 +00001004/*
drh271efa52004-05-30 19:19:05 +00001005** Given a btree page and a cell index (0 means the first cell on
1006** the page, 1 means the second cell, and so forth) return a pointer
1007** to the cell content.
1008**
drhf44890a2015-06-27 03:58:15 +00001009** findCellPastPtr() does the same except it skips past the initial
1010** 4-byte child pointer found on interior pages, if there is one.
1011**
drh271efa52004-05-30 19:19:05 +00001012** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001013*/
drh1688c862008-07-18 02:44:17 +00001014#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001015 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001016#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001017 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001018
drh43605152004-05-29 21:46:49 +00001019
1020/*
drh5fa60512015-06-19 17:19:34 +00001021** This is common tail processing for btreeParseCellPtr() and
1022** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1023** on a single B-tree page. Make necessary adjustments to the CellInfo
1024** structure.
drh43605152004-05-29 21:46:49 +00001025*/
drh5fa60512015-06-19 17:19:34 +00001026static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1027 MemPage *pPage, /* Page containing the cell */
1028 u8 *pCell, /* Pointer to the cell text. */
1029 CellInfo *pInfo /* Fill in this structure */
1030){
1031 /* If the payload will not fit completely on the local page, we have
1032 ** to decide how much to store locally and how much to spill onto
1033 ** overflow pages. The strategy is to minimize the amount of unused
1034 ** space on overflow pages while keeping the amount of local storage
1035 ** in between minLocal and maxLocal.
1036 **
1037 ** Warning: changing the way overflow payload is distributed in any
1038 ** way will result in an incompatible file format.
1039 */
1040 int minLocal; /* Minimum amount of payload held locally */
1041 int maxLocal; /* Maximum amount of payload held locally */
1042 int surplus; /* Overflow payload available for local storage */
1043
1044 minLocal = pPage->minLocal;
1045 maxLocal = pPage->maxLocal;
1046 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1047 testcase( surplus==maxLocal );
1048 testcase( surplus==maxLocal+1 );
1049 if( surplus <= maxLocal ){
1050 pInfo->nLocal = (u16)surplus;
1051 }else{
1052 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001053 }
drh5fa60512015-06-19 17:19:34 +00001054 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1055 pInfo->nSize = pInfo->iOverflow + 4;
drh43605152004-05-29 21:46:49 +00001056}
1057
1058/*
drh5fa60512015-06-19 17:19:34 +00001059** The following routines are implementations of the MemPage.xParseCell()
1060** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001061**
drh5fa60512015-06-19 17:19:34 +00001062** Parse a cell content block and fill in the CellInfo structure.
1063**
1064** btreeParseCellPtr() => table btree leaf nodes
1065** btreeParseCellNoPayload() => table btree internal nodes
1066** btreeParseCellPtrIndex() => index btree nodes
1067**
1068** There is also a wrapper function btreeParseCell() that works for
1069** all MemPage types and that references the cell by index rather than
1070** by pointer.
drh43605152004-05-29 21:46:49 +00001071*/
drh5fa60512015-06-19 17:19:34 +00001072static void btreeParseCellPtrNoPayload(
1073 MemPage *pPage, /* Page containing the cell */
1074 u8 *pCell, /* Pointer to the cell text. */
1075 CellInfo *pInfo /* Fill in this structure */
1076){
1077 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1078 assert( pPage->leaf==0 );
1079 assert( pPage->noPayload );
1080 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001081#ifndef SQLITE_DEBUG
1082 UNUSED_PARAMETER(pPage);
1083#endif
drh5fa60512015-06-19 17:19:34 +00001084 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1085 pInfo->nPayload = 0;
1086 pInfo->nLocal = 0;
1087 pInfo->iOverflow = 0;
1088 pInfo->pPayload = 0;
1089 return;
1090}
danielk197730548662009-07-09 05:07:37 +00001091static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001092 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001093 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001094 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001095){
drh3e28ff52014-09-24 00:59:08 +00001096 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001097 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001098 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001099
drh1fee73e2007-08-29 04:00:57 +00001100 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001101 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001102 assert( pPage->intKeyLeaf || pPage->noPayload );
1103 assert( pPage->noPayload==0 );
1104 assert( pPage->intKeyLeaf );
1105 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001106 pIter = pCell;
1107
1108 /* The next block of code is equivalent to:
1109 **
1110 ** pIter += getVarint32(pIter, nPayload);
1111 **
1112 ** The code is inlined to avoid a function call.
1113 */
1114 nPayload = *pIter;
1115 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001116 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001117 nPayload &= 0x7f;
1118 do{
1119 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1120 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001121 }
drh56cb04e2015-06-19 18:24:37 +00001122 pIter++;
1123
1124 /* The next block of code is equivalent to:
1125 **
1126 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1127 **
1128 ** The code is inlined to avoid a function call.
1129 */
1130 iKey = *pIter;
1131 if( iKey>=0x80 ){
1132 u8 *pEnd = &pIter[7];
1133 iKey &= 0x7f;
1134 while(1){
1135 iKey = (iKey<<7) | (*++pIter & 0x7f);
1136 if( (*pIter)<0x80 ) break;
1137 if( pIter>=pEnd ){
1138 iKey = (iKey<<8) | *++pIter;
1139 break;
1140 }
1141 }
1142 }
1143 pIter++;
1144
1145 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001146 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001147 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001148 testcase( nPayload==pPage->maxLocal );
1149 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001150 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001151 /* This is the (easy) common case where the entire payload fits
1152 ** on the local page. No overflow is required.
1153 */
drhab1cc582014-09-23 21:25:19 +00001154 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1155 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001156 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001157 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001158 }else{
drh5fa60512015-06-19 17:19:34 +00001159 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001160 }
drh3aac2dd2004-04-26 14:10:20 +00001161}
drh5fa60512015-06-19 17:19:34 +00001162static void btreeParseCellPtrIndex(
1163 MemPage *pPage, /* Page containing the cell */
1164 u8 *pCell, /* Pointer to the cell text. */
1165 CellInfo *pInfo /* Fill in this structure */
1166){
1167 u8 *pIter; /* For scanning through pCell */
1168 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001169
drh5fa60512015-06-19 17:19:34 +00001170 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1171 assert( pPage->leaf==0 || pPage->leaf==1 );
1172 assert( pPage->intKeyLeaf==0 );
1173 assert( pPage->noPayload==0 );
1174 pIter = pCell + pPage->childPtrSize;
1175 nPayload = *pIter;
1176 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001177 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001178 nPayload &= 0x7f;
1179 do{
1180 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1181 }while( *(pIter)>=0x80 && pIter<pEnd );
1182 }
1183 pIter++;
1184 pInfo->nKey = nPayload;
1185 pInfo->nPayload = nPayload;
1186 pInfo->pPayload = pIter;
1187 testcase( nPayload==pPage->maxLocal );
1188 testcase( nPayload==pPage->maxLocal+1 );
1189 if( nPayload<=pPage->maxLocal ){
1190 /* This is the (easy) common case where the entire payload fits
1191 ** on the local page. No overflow is required.
1192 */
1193 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1194 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1195 pInfo->nLocal = (u16)nPayload;
1196 pInfo->iOverflow = 0;
1197 }else{
1198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001199 }
1200}
danielk197730548662009-07-09 05:07:37 +00001201static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001202 MemPage *pPage, /* Page containing the cell */
1203 int iCell, /* The cell index. First cell is 0 */
1204 CellInfo *pInfo /* Fill in this structure */
1205){
drh5fa60512015-06-19 17:19:34 +00001206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001207}
drh3aac2dd2004-04-26 14:10:20 +00001208
1209/*
drh5fa60512015-06-19 17:19:34 +00001210** The following routines are implementations of the MemPage.xCellSize
1211** method.
1212**
drh43605152004-05-29 21:46:49 +00001213** Compute the total number of bytes that a Cell needs in the cell
1214** data area of the btree-page. The return number includes the cell
1215** data header and the local payload, but not any overflow page or
1216** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001217**
drh5fa60512015-06-19 17:19:34 +00001218** cellSizePtrNoPayload() => table internal nodes
1219** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001220*/
danielk1977ae5558b2009-04-29 11:31:47 +00001221static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1223 u8 *pEnd; /* End mark for a varint */
1224 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001225
1226#ifdef SQLITE_DEBUG
1227 /* The value returned by this function should always be the same as
1228 ** the (CellInfo.nSize) value found by doing a full parse of the
1229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1230 ** this function verifies that this invariant is not violated. */
1231 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001232 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001233#endif
1234
drh25ada072015-06-19 15:07:14 +00001235 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001236 nSize = *pIter;
1237 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001238 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001239 nSize &= 0x7f;
1240 do{
1241 nSize = (nSize<<7) | (*++pIter & 0x7f);
1242 }while( *(pIter)>=0x80 && pIter<pEnd );
1243 }
1244 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001245 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001246 /* pIter now points at the 64-bit integer key value, a variable length
1247 ** integer. The following block moves pIter to point at the first byte
1248 ** past the end of the key value. */
1249 pEnd = &pIter[9];
1250 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001251 }
drh0a45c272009-07-08 01:49:11 +00001252 testcase( nSize==pPage->maxLocal );
1253 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001254 if( nSize<=pPage->maxLocal ){
1255 nSize += (u32)(pIter - pCell);
1256 if( nSize<4 ) nSize = 4;
1257 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001258 int minLocal = pPage->minLocal;
1259 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001260 testcase( nSize==pPage->maxLocal );
1261 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001262 if( nSize>pPage->maxLocal ){
1263 nSize = minLocal;
1264 }
drh3e28ff52014-09-24 00:59:08 +00001265 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001266 }
drhdc41d602014-09-22 19:51:35 +00001267 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001268 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001269}
drh25ada072015-06-19 15:07:14 +00001270static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1271 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1272 u8 *pEnd; /* End mark for a varint */
1273
1274#ifdef SQLITE_DEBUG
1275 /* The value returned by this function should always be the same as
1276 ** the (CellInfo.nSize) value found by doing a full parse of the
1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278 ** this function verifies that this invariant is not violated. */
1279 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001280 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001281#else
1282 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001283#endif
1284
1285 assert( pPage->childPtrSize==4 );
1286 pEnd = pIter + 9;
1287 while( (*pIter++)&0x80 && pIter<pEnd );
1288 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1289 return (u16)(pIter - pCell);
1290}
1291
drh0ee3dbe2009-10-16 15:05:18 +00001292
1293#ifdef SQLITE_DEBUG
1294/* This variation on cellSizePtr() is used inside of assert() statements
1295** only. */
drha9121e42008-02-19 14:59:35 +00001296static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001297 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001298}
danielk1977bc6ada42004-06-30 08:20:16 +00001299#endif
drh3b7511c2001-05-26 13:15:44 +00001300
danielk197779a40da2005-01-16 08:00:01 +00001301#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001302/*
danielk197726836652005-01-17 01:33:13 +00001303** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001304** to an overflow page, insert an entry into the pointer-map
1305** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001306*/
drh98add2e2009-07-20 17:11:49 +00001307static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001308 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001309 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001310 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001311 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001312 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001313 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001314 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001315 }
danielk1977ac11ee62005-01-15 12:45:51 +00001316}
danielk197779a40da2005-01-16 08:00:01 +00001317#endif
1318
danielk1977ac11ee62005-01-15 12:45:51 +00001319
drhda200cc2004-05-09 11:51:38 +00001320/*
drh72f82862001-05-24 21:06:34 +00001321** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001322** end of the page and all free space is collected into one
1323** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001324** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001325**
1326** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1327** b-tree page so that there are no freeblocks or fragment bytes, all
1328** unused bytes are contained in the unallocated space region, and all
1329** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001330*/
shane0af3f892008-11-12 04:55:34 +00001331static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001332 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001333 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001334 int hdr; /* Offset to the page header */
1335 int size; /* Size of a cell */
1336 int usableSize; /* Number of usable bytes on a page */
1337 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001338 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001339 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001340 unsigned char *data; /* The page data */
1341 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001342 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001343 int iCellFirst; /* First allowable cell index */
1344 int iCellLast; /* Last possible cell index */
1345
drh2af926b2001-05-15 00:39:25 +00001346
danielk19773b8a05f2007-03-19 17:44:26 +00001347 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001348 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001349 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001350 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001351 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001352 temp = 0;
1353 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001354 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001355 cellOffset = pPage->cellOffset;
1356 nCell = pPage->nCell;
1357 assert( nCell==get2byte(&data[hdr+3]) );
1358 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001359 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001360 iCellFirst = cellOffset + 2*nCell;
1361 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001362 for(i=0; i<nCell; i++){
1363 u8 *pAddr; /* The i-th cell pointer */
1364 pAddr = &data[cellOffset + i*2];
1365 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001366 testcase( pc==iCellFirst );
1367 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001368 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001369 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001370 */
1371 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001372 return SQLITE_CORRUPT_BKPT;
1373 }
drh17146622009-07-07 17:38:38 +00001374 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001375 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001376 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001377 if( cbrk<iCellFirst || pc+size>usableSize ){
1378 return SQLITE_CORRUPT_BKPT;
1379 }
drh7157e1d2009-07-09 13:25:32 +00001380 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001381 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001382 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001383 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001384 if( temp==0 ){
1385 int x;
1386 if( cbrk==pc ) continue;
1387 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1388 x = get2byte(&data[hdr+5]);
1389 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1390 src = temp;
1391 }
1392 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001393 }
drh17146622009-07-07 17:38:38 +00001394 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001395 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001396 data[hdr+1] = 0;
1397 data[hdr+2] = 0;
1398 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001399 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001400 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001401 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001402 return SQLITE_CORRUPT_BKPT;
1403 }
shane0af3f892008-11-12 04:55:34 +00001404 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001405}
1406
drha059ad02001-04-17 20:09:11 +00001407/*
dan8e9ba0c2014-10-14 17:27:04 +00001408** Search the free-list on page pPg for space to store a cell nByte bytes in
1409** size. If one can be found, return a pointer to the space and remove it
1410** from the free-list.
1411**
1412** If no suitable space can be found on the free-list, return NULL.
1413**
drhba0f9992014-10-30 20:48:44 +00001414** This function may detect corruption within pPg. If corruption is
1415** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001416**
drhb7580e82015-06-25 18:36:13 +00001417** Slots on the free list that are between 1 and 3 bytes larger than nByte
1418** will be ignored if adding the extra space to the fragmentation count
1419** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001420*/
drhb7580e82015-06-25 18:36:13 +00001421static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001422 const int hdr = pPg->hdrOffset;
1423 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001424 int iAddr = hdr + 1;
1425 int pc = get2byte(&aData[iAddr]);
1426 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001427 int usableSize = pPg->pBt->usableSize;
1428
drhb7580e82015-06-25 18:36:13 +00001429 assert( pc>0 );
1430 do{
dan8e9ba0c2014-10-14 17:27:04 +00001431 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001432 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1433 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001434 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001435 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001436 return 0;
1437 }
drh113762a2014-11-19 16:36:25 +00001438 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1439 ** freeblock form a big-endian integer which is the size of the freeblock
1440 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001441 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001442 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001443 testcase( x==4 );
1444 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001445 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1446 *pRc = SQLITE_CORRUPT_BKPT;
1447 return 0;
1448 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001449 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1450 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001451 if( aData[hdr+7]>57 ) return 0;
1452
dan8e9ba0c2014-10-14 17:27:04 +00001453 /* Remove the slot from the free-list. Update the number of
1454 ** fragmented bytes within the page. */
1455 memcpy(&aData[iAddr], &aData[pc], 2);
1456 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001457 }else{
1458 /* The slot remains on the free-list. Reduce its size to account
1459 ** for the portion used by the new allocation. */
1460 put2byte(&aData[pc+2], x);
1461 }
1462 return &aData[pc + x];
1463 }
drhb7580e82015-06-25 18:36:13 +00001464 iAddr = pc;
1465 pc = get2byte(&aData[pc]);
1466 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001467
1468 return 0;
1469}
1470
1471/*
danielk19776011a752009-04-01 16:25:32 +00001472** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001473** as the first argument. Write into *pIdx the index into pPage->aData[]
1474** of the first byte of allocated space. Return either SQLITE_OK or
1475** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001476**
drh0a45c272009-07-08 01:49:11 +00001477** The caller guarantees that there is sufficient space to make the
1478** allocation. This routine might need to defragment in order to bring
1479** all the space together, however. This routine will avoid using
1480** the first two bytes past the cell pointer area since presumably this
1481** allocation is being made in order to insert a new cell, so we will
1482** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001483*/
drh0a45c272009-07-08 01:49:11 +00001484static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001485 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1486 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001487 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001488 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001489 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001490
danielk19773b8a05f2007-03-19 17:44:26 +00001491 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001492 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001493 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001494 assert( nByte>=0 ); /* Minimum cell size is 4 */
1495 assert( pPage->nFree>=nByte );
1496 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001497 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001498
drh0a45c272009-07-08 01:49:11 +00001499 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1500 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001501 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001502 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1503 ** and the reserved space is zero (the usual value for reserved space)
1504 ** then the cell content offset of an empty page wants to be 65536.
1505 ** However, that integer is too large to be stored in a 2-byte unsigned
1506 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001507 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001508 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001509 if( gap>top ){
1510 if( top==0 && pPage->pBt->usableSize==65536 ){
1511 top = 65536;
1512 }else{
1513 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001514 }
1515 }
drh43605152004-05-29 21:46:49 +00001516
drh4c04f3c2014-08-20 11:56:14 +00001517 /* If there is enough space between gap and top for one more cell pointer
1518 ** array entry offset, and if the freelist is not empty, then search the
1519 ** freelist looking for a free slot big enough to satisfy the request.
1520 */
drh5e2f8b92001-05-28 00:41:15 +00001521 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001522 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001523 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001524 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001525 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001526 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001527 assert( pSpace>=data && (pSpace - data)<65536 );
1528 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001529 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001530 }else if( rc ){
1531 return rc;
drh9e572e62004-04-23 23:43:10 +00001532 }
1533 }
drh43605152004-05-29 21:46:49 +00001534
drh4c04f3c2014-08-20 11:56:14 +00001535 /* The request could not be fulfilled using a freelist slot. Check
1536 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001537 */
1538 testcase( gap+2+nByte==top );
1539 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001540 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001541 rc = defragmentPage(pPage);
1542 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001543 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001544 assert( gap+nByte<=top );
1545 }
1546
1547
drh43605152004-05-29 21:46:49 +00001548 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001549 ** and the cell content area. The btreeInitPage() call has already
1550 ** validated the freelist. Given that the freelist is valid, there
1551 ** is no way that the allocation can extend off the end of the page.
1552 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001553 */
drh0a45c272009-07-08 01:49:11 +00001554 top -= nByte;
drh43605152004-05-29 21:46:49 +00001555 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001556 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001557 *pIdx = top;
1558 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001559}
1560
1561/*
drh9e572e62004-04-23 23:43:10 +00001562** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001563** The first byte of the new free block is pPage->aData[iStart]
1564** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001565**
drh5f5c7532014-08-20 17:56:27 +00001566** Adjacent freeblocks are coalesced.
1567**
1568** Note that even though the freeblock list was checked by btreeInitPage(),
1569** that routine will not detect overlap between cells or freeblocks. Nor
1570** does it detect cells or freeblocks that encrouch into the reserved bytes
1571** at the end of the page. So do additional corruption checks inside this
1572** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001573*/
drh5f5c7532014-08-20 17:56:27 +00001574static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001575 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001576 u16 iFreeBlk; /* Address of the next freeblock */
1577 u8 hdr; /* Page header size. 0 or 100 */
1578 u8 nFrag = 0; /* Reduction in fragmentation */
1579 u16 iOrigSize = iSize; /* Original value of iSize */
1580 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1581 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001582 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001583
drh9e572e62004-04-23 23:43:10 +00001584 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001585 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001586 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001587 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001588 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001589 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001590 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001591
drh5f5c7532014-08-20 17:56:27 +00001592 /* Overwrite deleted information with zeros when the secure_delete
1593 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001594 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001595 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001596 }
drhfcce93f2006-02-22 03:08:32 +00001597
drh5f5c7532014-08-20 17:56:27 +00001598 /* The list of freeblocks must be in ascending order. Find the
1599 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001600 */
drh43605152004-05-29 21:46:49 +00001601 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001602 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001603 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1604 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1605 }else{
1606 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1607 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1608 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001609 }
drh7bc4c452014-08-20 18:43:44 +00001610 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1611 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1612
1613 /* At this point:
1614 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001615 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001616 **
1617 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1618 */
1619 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1620 nFrag = iFreeBlk - iEnd;
1621 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1622 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001623 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001624 iSize = iEnd - iStart;
1625 iFreeBlk = get2byte(&data[iFreeBlk]);
1626 }
1627
drh3f387402014-09-24 01:23:00 +00001628 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1629 ** pointer in the page header) then check to see if iStart should be
1630 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001631 */
1632 if( iPtr>hdr+1 ){
1633 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1634 if( iPtrEnd+3>=iStart ){
1635 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1636 nFrag += iStart - iPtrEnd;
1637 iSize = iEnd - iPtr;
1638 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001639 }
drh9e572e62004-04-23 23:43:10 +00001640 }
drh7bc4c452014-08-20 18:43:44 +00001641 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1642 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001643 }
drh7bc4c452014-08-20 18:43:44 +00001644 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001645 /* The new freeblock is at the beginning of the cell content area,
1646 ** so just extend the cell content area rather than create another
1647 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001648 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001649 put2byte(&data[hdr+1], iFreeBlk);
1650 put2byte(&data[hdr+5], iEnd);
1651 }else{
1652 /* Insert the new freeblock into the freelist */
1653 put2byte(&data[iPtr], iStart);
1654 put2byte(&data[iStart], iFreeBlk);
1655 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001656 }
drh5f5c7532014-08-20 17:56:27 +00001657 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001658 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001659}
1660
1661/*
drh271efa52004-05-30 19:19:05 +00001662** Decode the flags byte (the first byte of the header) for a page
1663** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001664**
1665** Only the following combinations are supported. Anything different
1666** indicates a corrupt database files:
1667**
1668** PTF_ZERODATA
1669** PTF_ZERODATA | PTF_LEAF
1670** PTF_LEAFDATA | PTF_INTKEY
1671** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001672*/
drh44845222008-07-17 18:39:57 +00001673static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001674 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001675
1676 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001678 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001679 flagByte &= ~PTF_LEAF;
1680 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001681 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001682 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001683 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001684 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1685 ** table b-tree page. */
1686 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1687 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1688 ** table b-tree page. */
1689 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001690 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001691 if( pPage->leaf ){
1692 pPage->intKeyLeaf = 1;
1693 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001694 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001695 }else{
1696 pPage->intKeyLeaf = 0;
1697 pPage->noPayload = 1;
1698 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001699 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001700 }
drh271efa52004-05-30 19:19:05 +00001701 pPage->maxLocal = pBt->maxLeaf;
1702 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001703 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001704 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1705 ** index b-tree page. */
1706 assert( (PTF_ZERODATA)==2 );
1707 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1708 ** index b-tree page. */
1709 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001710 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001711 pPage->intKeyLeaf = 0;
1712 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001713 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001714 pPage->maxLocal = pBt->maxLocal;
1715 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001716 }else{
drhfdab0262014-11-20 15:30:50 +00001717 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1718 ** an error. */
drh44845222008-07-17 18:39:57 +00001719 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001720 }
drhc9166342012-01-05 23:32:06 +00001721 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001722 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001723}
1724
1725/*
drh7e3b0a02001-04-28 16:52:40 +00001726** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001727**
1728** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001729** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001730** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1731** guarantee that the page is well-formed. It only shows that
1732** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001733*/
danielk197730548662009-07-09 05:07:37 +00001734static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001735
danielk197771d5d2c2008-09-29 11:49:47 +00001736 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001737 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001738 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001739 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001740 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1741 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001742
1743 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001744 u16 pc; /* Address of a freeblock within pPage->aData[] */
1745 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001746 u8 *data; /* Equal to pPage->aData */
1747 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001748 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001749 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001750 int nFree; /* Number of unused bytes on the page */
1751 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001752 int iCellFirst; /* First allowable cell or freeblock offset */
1753 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001754
1755 pBt = pPage->pBt;
1756
danielk1977eaa06f62008-09-18 17:34:44 +00001757 hdr = pPage->hdrOffset;
1758 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001759 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1760 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001761 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001762 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1763 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001764 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001765 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001766 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001767 pPage->aDataEnd = &data[usableSize];
1768 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001769 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001770 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1771 ** the start of the cell content area. A zero value for this integer is
1772 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001773 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001774 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1775 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001776 pPage->nCell = get2byte(&data[hdr+3]);
1777 if( pPage->nCell>MX_CELL(pBt) ){
1778 /* To many cells for a single page. The page must be corrupt */
1779 return SQLITE_CORRUPT_BKPT;
1780 }
drhb908d762009-07-08 16:54:40 +00001781 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001782 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1783 ** possible for a root page of a table that contains no rows) then the
1784 ** offset to the cell content area will equal the page size minus the
1785 ** bytes of reserved space. */
1786 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001787
shane5eff7cf2009-08-10 03:57:58 +00001788 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001789 ** of page when parsing a cell.
1790 **
1791 ** The following block of code checks early to see if a cell extends
1792 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1793 ** returned if it does.
1794 */
drh0a45c272009-07-08 01:49:11 +00001795 iCellFirst = cellOffset + 2*pPage->nCell;
1796 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001797 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001798 int i; /* Index into the cell pointer array */
1799 int sz; /* Size of a cell */
1800
drh69e931e2009-06-03 21:04:35 +00001801 if( !pPage->leaf ) iCellLast--;
1802 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001803 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001804 testcase( pc==iCellFirst );
1805 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001806 if( pc<iCellFirst || pc>iCellLast ){
1807 return SQLITE_CORRUPT_BKPT;
1808 }
drh25ada072015-06-19 15:07:14 +00001809 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001810 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001811 if( pc+sz>usableSize ){
1812 return SQLITE_CORRUPT_BKPT;
1813 }
1814 }
drh0a45c272009-07-08 01:49:11 +00001815 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001816 }
drh69e931e2009-06-03 21:04:35 +00001817
drhfdab0262014-11-20 15:30:50 +00001818 /* Compute the total free space on the page
1819 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1820 ** start of the first freeblock on the page, or is zero if there are no
1821 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001822 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001823 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001825 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001826 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001827 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1828 ** always be at least one cell before the first freeblock.
1829 **
1830 ** Or, the freeblock is off the end of the page
1831 */
danielk1977eaa06f62008-09-18 17:34:44 +00001832 return SQLITE_CORRUPT_BKPT;
1833 }
1834 next = get2byte(&data[pc]);
1835 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001836 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1837 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001838 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001839 return SQLITE_CORRUPT_BKPT;
1840 }
shane85095702009-06-15 16:27:08 +00001841 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001842 pc = next;
1843 }
danielk197793c829c2009-06-03 17:26:17 +00001844
1845 /* At this point, nFree contains the sum of the offset to the start
1846 ** of the cell-content area plus the number of free bytes within
1847 ** the cell-content area. If this is greater than the usable-size
1848 ** of the page, then the page must be corrupted. This check also
1849 ** serves to verify that the offset to the start of the cell-content
1850 ** area, according to the page header, lies within the page.
1851 */
1852 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001853 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001854 }
shane5eff7cf2009-08-10 03:57:58 +00001855 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001856 pPage->isInit = 1;
1857 }
drh9e572e62004-04-23 23:43:10 +00001858 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001859}
1860
1861/*
drh8b2f49b2001-06-08 00:21:52 +00001862** Set up a raw page so that it looks like a database page holding
1863** no entries.
drhbd03cae2001-06-02 02:40:57 +00001864*/
drh9e572e62004-04-23 23:43:10 +00001865static void zeroPage(MemPage *pPage, int flags){
1866 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001867 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001868 u8 hdr = pPage->hdrOffset;
1869 u16 first;
drh9e572e62004-04-23 23:43:10 +00001870
danielk19773b8a05f2007-03-19 17:44:26 +00001871 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001872 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1873 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001874 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001875 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001876 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001877 memset(&data[hdr], 0, pBt->usableSize - hdr);
1878 }
drh1bd10f82008-12-10 21:19:56 +00001879 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001880 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001881 memset(&data[hdr+1], 0, 4);
1882 data[hdr+7] = 0;
1883 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001884 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001885 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001886 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001887 pPage->aDataEnd = &data[pBt->usableSize];
1888 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001889 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001890 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001891 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1892 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001893 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001894 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001895}
1896
drh897a8202008-09-18 01:08:15 +00001897
1898/*
1899** Convert a DbPage obtained from the pager into a MemPage used by
1900** the btree layer.
1901*/
1902static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1903 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001904 if( pgno!=pPage->pgno ){
1905 pPage->aData = sqlite3PagerGetData(pDbPage);
1906 pPage->pDbPage = pDbPage;
1907 pPage->pBt = pBt;
1908 pPage->pgno = pgno;
1909 pPage->hdrOffset = pgno==1 ? 100 : 0;
1910 }
1911 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001912 return pPage;
1913}
1914
drhbd03cae2001-06-02 02:40:57 +00001915/*
drh3aac2dd2004-04-26 14:10:20 +00001916** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001917** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001918**
drh7e8c6f12015-05-28 03:28:27 +00001919** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1920** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001921** to fetch the content. Just fill in the content with zeros for now.
1922** If in the future we call sqlite3PagerWrite() on this page, that
1923** means we have started to be concerned about content and the disk
1924** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001925*/
danielk197730548662009-07-09 05:07:37 +00001926static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001927 BtShared *pBt, /* The btree */
1928 Pgno pgno, /* Number of the page to fetch */
1929 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001930 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001931){
drh3aac2dd2004-04-26 14:10:20 +00001932 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001933 DbPage *pDbPage;
1934
drhb00fc3b2013-08-21 23:42:32 +00001935 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001936 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001937 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001938 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001939 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001940 return SQLITE_OK;
1941}
1942
1943/*
danielk1977bea2a942009-01-20 17:06:27 +00001944** Retrieve a page from the pager cache. If the requested page is not
1945** already in the pager cache return NULL. Initialize the MemPage.pBt and
1946** MemPage.aData elements if needed.
1947*/
1948static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1949 DbPage *pDbPage;
1950 assert( sqlite3_mutex_held(pBt->mutex) );
1951 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1952 if( pDbPage ){
1953 return btreePageFromDbPage(pDbPage, pgno, pBt);
1954 }
1955 return 0;
1956}
1957
1958/*
danielk197789d40042008-11-17 14:20:56 +00001959** Return the size of the database file in pages. If there is any kind of
1960** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001961*/
drhb1299152010-03-30 22:58:33 +00001962static Pgno btreePagecount(BtShared *pBt){
1963 return pBt->nPage;
1964}
1965u32 sqlite3BtreeLastPage(Btree *p){
1966 assert( sqlite3BtreeHoldsMutex(p) );
1967 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001968 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001969}
1970
1971/*
drh28f58dd2015-06-27 19:45:03 +00001972** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001973**
drh15a00212015-06-27 20:55:00 +00001974** If pCur!=0 then the page is being fetched as part of a moveToChild()
1975** call. Do additional sanity checking on the page in this case.
1976** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001977**
1978** The page is fetched as read-write unless pCur is not NULL and is
1979** a read-only cursor.
1980**
1981** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001982** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001983*/
1984static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001985 BtShared *pBt, /* The database file */
1986 Pgno pgno, /* Number of the page to get */
1987 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001988 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1989 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001990){
1991 int rc;
drh28f58dd2015-06-27 19:45:03 +00001992 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001993 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001994 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1995 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001996 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001997
danba3cbf32010-06-30 04:29:03 +00001998 if( pgno>btreePagecount(pBt) ){
1999 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002000 goto getAndInitPage_error;
2001 }
drh9584f582015-11-04 20:22:37 +00002002 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002003 if( rc ){
2004 goto getAndInitPage_error;
2005 }
drh8dd1c252015-11-04 22:31:02 +00002006 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002007 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002008 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002009 rc = btreeInitPage(*ppPage);
2010 if( rc!=SQLITE_OK ){
2011 releasePage(*ppPage);
2012 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002013 }
drhee696e22004-08-30 16:52:17 +00002014 }
drh8dd1c252015-11-04 22:31:02 +00002015 assert( (*ppPage)->pgno==pgno );
2016 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002017
drh15a00212015-06-27 20:55:00 +00002018 /* If obtaining a child page for a cursor, we must verify that the page is
2019 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002020 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002021 rc = SQLITE_CORRUPT_BKPT;
2022 releasePage(*ppPage);
2023 goto getAndInitPage_error;
2024 }
drh28f58dd2015-06-27 19:45:03 +00002025 return SQLITE_OK;
2026
2027getAndInitPage_error:
2028 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002029 testcase( pgno==0 );
2030 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002031 return rc;
2032}
2033
2034/*
drh3aac2dd2004-04-26 14:10:20 +00002035** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002036** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002037*/
drhbbf0f862015-06-27 14:59:26 +00002038static void releasePageNotNull(MemPage *pPage){
2039 assert( pPage->aData );
2040 assert( pPage->pBt );
2041 assert( pPage->pDbPage!=0 );
2042 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2043 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2044 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2045 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002046}
drh3aac2dd2004-04-26 14:10:20 +00002047static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002048 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002049}
2050
2051/*
drh7e8c6f12015-05-28 03:28:27 +00002052** Get an unused page.
2053**
2054** This works just like btreeGetPage() with the addition:
2055**
2056** * If the page is already in use for some other purpose, immediately
2057** release it and return an SQLITE_CURRUPT error.
2058** * Make sure the isInit flag is clear
2059*/
2060static int btreeGetUnusedPage(
2061 BtShared *pBt, /* The btree */
2062 Pgno pgno, /* Number of the page to fetch */
2063 MemPage **ppPage, /* Return the page in this parameter */
2064 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2065){
2066 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2067 if( rc==SQLITE_OK ){
2068 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2069 releasePage(*ppPage);
2070 *ppPage = 0;
2071 return SQLITE_CORRUPT_BKPT;
2072 }
2073 (*ppPage)->isInit = 0;
2074 }else{
2075 *ppPage = 0;
2076 }
2077 return rc;
2078}
2079
drha059ad02001-04-17 20:09:11 +00002080
2081/*
drha6abd042004-06-09 17:37:22 +00002082** During a rollback, when the pager reloads information into the cache
2083** so that the cache is restored to its original state at the start of
2084** the transaction, for each page restored this routine is called.
2085**
2086** This routine needs to reset the extra data section at the end of the
2087** page to agree with the restored data.
2088*/
danielk1977eaa06f62008-09-18 17:34:44 +00002089static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002090 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002091 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002092 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002093 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002094 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002095 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002096 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002097 /* pPage might not be a btree page; it might be an overflow page
2098 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002099 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002100 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002101 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002102 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002103 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002104 }
drha6abd042004-06-09 17:37:22 +00002105 }
2106}
2107
2108/*
drhe5fe6902007-12-07 18:55:28 +00002109** Invoke the busy handler for a btree.
2110*/
danielk19771ceedd32008-11-19 10:22:33 +00002111static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002112 BtShared *pBt = (BtShared*)pArg;
2113 assert( pBt->db );
2114 assert( sqlite3_mutex_held(pBt->db->mutex) );
2115 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2116}
2117
2118/*
drhad3e0102004-09-03 23:32:18 +00002119** Open a database file.
2120**
drh382c0242001-10-06 16:33:02 +00002121** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002122** then an ephemeral database is created. The ephemeral database might
2123** be exclusively in memory, or it might use a disk-based memory cache.
2124** Either way, the ephemeral database will be automatically deleted
2125** when sqlite3BtreeClose() is called.
2126**
drhe53831d2007-08-17 01:14:38 +00002127** If zFilename is ":memory:" then an in-memory database is created
2128** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002129**
drh33f111d2012-01-17 15:29:14 +00002130** The "flags" parameter is a bitmask that might contain bits like
2131** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002132**
drhc47fd8e2009-04-30 13:30:32 +00002133** If the database is already opened in the same database connection
2134** and we are in shared cache mode, then the open will fail with an
2135** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2136** objects in the same database connection since doing so will lead
2137** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002138*/
drh23e11ca2004-05-04 17:27:28 +00002139int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002140 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002141 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002142 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002143 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002144 int flags, /* Options */
2145 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002146){
drh7555d8e2009-03-20 13:15:30 +00002147 BtShared *pBt = 0; /* Shared part of btree structure */
2148 Btree *p; /* Handle to return */
2149 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2150 int rc = SQLITE_OK; /* Result code from this function */
2151 u8 nReserve; /* Byte of unused space on each page */
2152 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002153
drh75c014c2010-08-30 15:02:28 +00002154 /* True if opening an ephemeral, temporary database */
2155 const int isTempDb = zFilename==0 || zFilename[0]==0;
2156
danielk1977aef0bf62005-12-30 16:28:01 +00002157 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002158 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002159 */
drhb0a7c9c2010-12-06 21:09:59 +00002160#ifdef SQLITE_OMIT_MEMORYDB
2161 const int isMemdb = 0;
2162#else
2163 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002164 || (isTempDb && sqlite3TempInMemory(db))
2165 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002166#endif
2167
drhe5fe6902007-12-07 18:55:28 +00002168 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002169 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002170 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002171 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2172
2173 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2174 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2175
2176 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2177 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002178
drh75c014c2010-08-30 15:02:28 +00002179 if( isMemdb ){
2180 flags |= BTREE_MEMORY;
2181 }
2182 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2183 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2184 }
drh17435752007-08-16 04:30:38 +00002185 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002186 if( !p ){
2187 return SQLITE_NOMEM;
2188 }
2189 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002190 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002191#ifndef SQLITE_OMIT_SHARED_CACHE
2192 p->lock.pBtree = p;
2193 p->lock.iTable = 1;
2194#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002195
drh198bf392006-01-06 21:52:49 +00002196#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002197 /*
2198 ** If this Btree is a candidate for shared cache, try to find an
2199 ** existing BtShared object that we can share with
2200 */
drh4ab9d252012-05-26 20:08:49 +00002201 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002202 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002203 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002204 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002205 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002206 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002207
drhff0587c2007-08-29 17:43:19 +00002208 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002209 if( !zFullPathname ){
2210 sqlite3_free(p);
2211 return SQLITE_NOMEM;
2212 }
drhafc8b7f2012-05-26 18:06:38 +00002213 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002214 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002215 }else{
2216 rc = sqlite3OsFullPathname(pVfs, zFilename,
2217 nFullPathname, zFullPathname);
2218 if( rc ){
2219 sqlite3_free(zFullPathname);
2220 sqlite3_free(p);
2221 return rc;
2222 }
drh070ad6b2011-11-17 11:43:19 +00002223 }
drh30ddce62011-10-15 00:16:30 +00002224#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002225 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2226 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002227 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002228 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002229#endif
drh78f82d12008-09-02 00:52:52 +00002230 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002231 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002232 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002233 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002234 int iDb;
2235 for(iDb=db->nDb-1; iDb>=0; iDb--){
2236 Btree *pExisting = db->aDb[iDb].pBt;
2237 if( pExisting && pExisting->pBt==pBt ){
2238 sqlite3_mutex_leave(mutexShared);
2239 sqlite3_mutex_leave(mutexOpen);
2240 sqlite3_free(zFullPathname);
2241 sqlite3_free(p);
2242 return SQLITE_CONSTRAINT;
2243 }
2244 }
drhff0587c2007-08-29 17:43:19 +00002245 p->pBt = pBt;
2246 pBt->nRef++;
2247 break;
2248 }
2249 }
2250 sqlite3_mutex_leave(mutexShared);
2251 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002252 }
drhff0587c2007-08-29 17:43:19 +00002253#ifdef SQLITE_DEBUG
2254 else{
2255 /* In debug mode, we mark all persistent databases as sharable
2256 ** even when they are not. This exercises the locking code and
2257 ** gives more opportunity for asserts(sqlite3_mutex_held())
2258 ** statements to find locking problems.
2259 */
2260 p->sharable = 1;
2261 }
2262#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002263 }
2264#endif
drha059ad02001-04-17 20:09:11 +00002265 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002266 /*
2267 ** The following asserts make sure that structures used by the btree are
2268 ** the right size. This is to guard against size changes that result
2269 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002270 */
drh062cf272015-03-23 19:03:51 +00002271 assert( sizeof(i64)==8 );
2272 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002273 assert( sizeof(u32)==4 );
2274 assert( sizeof(u16)==2 );
2275 assert( sizeof(Pgno)==4 );
2276
2277 pBt = sqlite3MallocZero( sizeof(*pBt) );
2278 if( pBt==0 ){
2279 rc = SQLITE_NOMEM;
2280 goto btree_open_out;
2281 }
danielk197771d5d2c2008-09-29 11:49:47 +00002282 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002283 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002284 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002285 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002286 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2287 }
2288 if( rc!=SQLITE_OK ){
2289 goto btree_open_out;
2290 }
shanehbd2aaf92010-09-01 02:38:21 +00002291 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002292 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002293 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002294 p->pBt = pBt;
2295
drhe53831d2007-08-17 01:14:38 +00002296 pBt->pCursor = 0;
2297 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002298 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002299#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002300 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002301#endif
drh113762a2014-11-19 16:36:25 +00002302 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2303 ** determined by the 2-byte integer located at an offset of 16 bytes from
2304 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002305 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002306 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2307 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002308 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002309#ifndef SQLITE_OMIT_AUTOVACUUM
2310 /* If the magic name ":memory:" will create an in-memory database, then
2311 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2312 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2313 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2314 ** regular file-name. In this case the auto-vacuum applies as per normal.
2315 */
2316 if( zFilename && !isMemdb ){
2317 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2318 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2319 }
2320#endif
2321 nReserve = 0;
2322 }else{
drh113762a2014-11-19 16:36:25 +00002323 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2324 ** determined by the one-byte unsigned integer found at an offset of 20
2325 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002326 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002327 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002328#ifndef SQLITE_OMIT_AUTOVACUUM
2329 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2330 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2331#endif
2332 }
drhfa9601a2009-06-18 17:22:39 +00002333 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002334 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002335 pBt->usableSize = pBt->pageSize - nReserve;
2336 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002337
2338#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2339 /* Add the new BtShared object to the linked list sharable BtShareds.
2340 */
2341 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002342 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002343 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002344 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002345 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002346 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002347 if( pBt->mutex==0 ){
2348 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002349 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002350 goto btree_open_out;
2351 }
drhff0587c2007-08-29 17:43:19 +00002352 }
drhe53831d2007-08-17 01:14:38 +00002353 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002354 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2355 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002356 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002357 }
drheee46cf2004-11-06 00:02:48 +00002358#endif
drh90f5ecb2004-07-22 01:19:35 +00002359 }
danielk1977aef0bf62005-12-30 16:28:01 +00002360
drhcfed7bc2006-03-13 14:28:05 +00002361#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002362 /* If the new Btree uses a sharable pBtShared, then link the new
2363 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002364 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002365 */
drhe53831d2007-08-17 01:14:38 +00002366 if( p->sharable ){
2367 int i;
2368 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002369 for(i=0; i<db->nDb; i++){
2370 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002371 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2372 if( p->pBt<pSib->pBt ){
2373 p->pNext = pSib;
2374 p->pPrev = 0;
2375 pSib->pPrev = p;
2376 }else{
drhabddb0c2007-08-20 13:14:28 +00002377 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002378 pSib = pSib->pNext;
2379 }
2380 p->pNext = pSib->pNext;
2381 p->pPrev = pSib;
2382 if( p->pNext ){
2383 p->pNext->pPrev = p;
2384 }
2385 pSib->pNext = p;
2386 }
2387 break;
2388 }
2389 }
danielk1977aef0bf62005-12-30 16:28:01 +00002390 }
danielk1977aef0bf62005-12-30 16:28:01 +00002391#endif
2392 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002393
2394btree_open_out:
2395 if( rc!=SQLITE_OK ){
2396 if( pBt && pBt->pPager ){
2397 sqlite3PagerClose(pBt->pPager);
2398 }
drh17435752007-08-16 04:30:38 +00002399 sqlite3_free(pBt);
2400 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002402 }else{
2403 /* If the B-Tree was successfully opened, set the pager-cache size to the
2404 ** default value. Except, when opening on an existing shared pager-cache,
2405 ** do not change the pager-cache size.
2406 */
2407 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2408 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2409 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002410 }
drh7555d8e2009-03-20 13:15:30 +00002411 if( mutexOpen ){
2412 assert( sqlite3_mutex_held(mutexOpen) );
2413 sqlite3_mutex_leave(mutexOpen);
2414 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002415 return rc;
drha059ad02001-04-17 20:09:11 +00002416}
2417
2418/*
drhe53831d2007-08-17 01:14:38 +00002419** Decrement the BtShared.nRef counter. When it reaches zero,
2420** remove the BtShared structure from the sharing list. Return
2421** true if the BtShared.nRef counter reaches zero and return
2422** false if it is still positive.
2423*/
2424static int removeFromSharingList(BtShared *pBt){
2425#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002426 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002427 BtShared *pList;
2428 int removed = 0;
2429
drhd677b3d2007-08-20 22:48:41 +00002430 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002431 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002432 sqlite3_mutex_enter(pMaster);
2433 pBt->nRef--;
2434 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002435 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2436 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002437 }else{
drh78f82d12008-09-02 00:52:52 +00002438 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002439 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002440 pList=pList->pNext;
2441 }
drh34004ce2008-07-11 16:15:17 +00002442 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002443 pList->pNext = pBt->pNext;
2444 }
2445 }
drh3285db22007-09-03 22:00:39 +00002446 if( SQLITE_THREADSAFE ){
2447 sqlite3_mutex_free(pBt->mutex);
2448 }
drhe53831d2007-08-17 01:14:38 +00002449 removed = 1;
2450 }
2451 sqlite3_mutex_leave(pMaster);
2452 return removed;
2453#else
2454 return 1;
2455#endif
2456}
2457
2458/*
drhf7141992008-06-19 00:16:08 +00002459** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002460** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2461** pointer.
drhf7141992008-06-19 00:16:08 +00002462*/
2463static void allocateTempSpace(BtShared *pBt){
2464 if( !pBt->pTmpSpace ){
2465 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002466
2467 /* One of the uses of pBt->pTmpSpace is to format cells before
2468 ** inserting them into a leaf page (function fillInCell()). If
2469 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2470 ** by the various routines that manipulate binary cells. Which
2471 ** can mean that fillInCell() only initializes the first 2 or 3
2472 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2473 ** it into a database page. This is not actually a problem, but it
2474 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2475 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002476 ** zero the first 4 bytes of temp space here.
2477 **
2478 ** Also: Provide four bytes of initialized space before the
2479 ** beginning of pTmpSpace as an area available to prepend the
2480 ** left-child pointer to the beginning of a cell.
2481 */
2482 if( pBt->pTmpSpace ){
2483 memset(pBt->pTmpSpace, 0, 8);
2484 pBt->pTmpSpace += 4;
2485 }
drhf7141992008-06-19 00:16:08 +00002486 }
2487}
2488
2489/*
2490** Free the pBt->pTmpSpace allocation
2491*/
2492static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002493 if( pBt->pTmpSpace ){
2494 pBt->pTmpSpace -= 4;
2495 sqlite3PageFree(pBt->pTmpSpace);
2496 pBt->pTmpSpace = 0;
2497 }
drhf7141992008-06-19 00:16:08 +00002498}
2499
2500/*
drha059ad02001-04-17 20:09:11 +00002501** Close an open database and invalidate all cursors.
2502*/
danielk1977aef0bf62005-12-30 16:28:01 +00002503int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002504 BtShared *pBt = p->pBt;
2505 BtCursor *pCur;
2506
danielk1977aef0bf62005-12-30 16:28:01 +00002507 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002508 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002509 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002510 pCur = pBt->pCursor;
2511 while( pCur ){
2512 BtCursor *pTmp = pCur;
2513 pCur = pCur->pNext;
2514 if( pTmp->pBtree==p ){
2515 sqlite3BtreeCloseCursor(pTmp);
2516 }
drha059ad02001-04-17 20:09:11 +00002517 }
danielk1977aef0bf62005-12-30 16:28:01 +00002518
danielk19778d34dfd2006-01-24 16:37:57 +00002519 /* Rollback any active transaction and free the handle structure.
2520 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2521 ** this handle.
2522 */
drh47b7fc72014-11-11 01:33:57 +00002523 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002524 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002525
danielk1977aef0bf62005-12-30 16:28:01 +00002526 /* If there are still other outstanding references to the shared-btree
2527 ** structure, return now. The remainder of this procedure cleans
2528 ** up the shared-btree.
2529 */
drhe53831d2007-08-17 01:14:38 +00002530 assert( p->wantToLock==0 && p->locked==0 );
2531 if( !p->sharable || removeFromSharingList(pBt) ){
2532 /* The pBt is no longer on the sharing list, so we can access
2533 ** it without having to hold the mutex.
2534 **
2535 ** Clean out and delete the BtShared object.
2536 */
2537 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002538 sqlite3PagerClose(pBt->pPager);
2539 if( pBt->xFreeSchema && pBt->pSchema ){
2540 pBt->xFreeSchema(pBt->pSchema);
2541 }
drhb9755982010-07-24 16:34:37 +00002542 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002543 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002544 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002545 }
2546
drhe53831d2007-08-17 01:14:38 +00002547#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002548 assert( p->wantToLock==0 );
2549 assert( p->locked==0 );
2550 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2551 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002552#endif
2553
drhe53831d2007-08-17 01:14:38 +00002554 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002555 return SQLITE_OK;
2556}
2557
2558/*
drhda47d772002-12-02 04:25:19 +00002559** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002560**
2561** The maximum number of cache pages is set to the absolute
2562** value of mxPage. If mxPage is negative, the pager will
2563** operate asynchronously - it will not stop to do fsync()s
2564** to insure data is written to the disk surface before
2565** continuing. Transactions still work if synchronous is off,
2566** and the database cannot be corrupted if this program
2567** crashes. But if the operating system crashes or there is
2568** an abrupt power failure when synchronous is off, the database
2569** could be left in an inconsistent and unrecoverable state.
2570** Synchronous is on by default so database corruption is not
2571** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002572*/
danielk1977aef0bf62005-12-30 16:28:01 +00002573int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2574 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002575 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002576 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002577 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002578 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002579 return SQLITE_OK;
2580}
2581
drh18c7e402014-03-14 11:46:10 +00002582#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002583/*
dan5d8a1372013-03-19 19:28:06 +00002584** Change the limit on the amount of the database file that may be
2585** memory mapped.
2586*/
drh9b4c59f2013-04-15 17:03:42 +00002587int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002588 BtShared *pBt = p->pBt;
2589 assert( sqlite3_mutex_held(p->db->mutex) );
2590 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002591 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002592 sqlite3BtreeLeave(p);
2593 return SQLITE_OK;
2594}
drh18c7e402014-03-14 11:46:10 +00002595#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002596
2597/*
drh973b6e32003-02-12 14:09:42 +00002598** Change the way data is synced to disk in order to increase or decrease
2599** how well the database resists damage due to OS crashes and power
2600** failures. Level 1 is the same as asynchronous (no syncs() occur and
2601** there is a high probability of damage) Level 2 is the default. There
2602** is a very low but non-zero probability of damage. Level 3 reduces the
2603** probability of damage to near zero but with a write performance reduction.
2604*/
danielk197793758c82005-01-21 08:13:14 +00002605#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002606int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002607 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002608 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002609){
danielk1977aef0bf62005-12-30 16:28:01 +00002610 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002611 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002612 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002613 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002614 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002615 return SQLITE_OK;
2616}
danielk197793758c82005-01-21 08:13:14 +00002617#endif
drh973b6e32003-02-12 14:09:42 +00002618
drh2c8997b2005-08-27 16:36:48 +00002619/*
2620** Return TRUE if the given btree is set to safety level 1. In other
2621** words, return TRUE if no sync() occurs on the disk files.
2622*/
danielk1977aef0bf62005-12-30 16:28:01 +00002623int sqlite3BtreeSyncDisabled(Btree *p){
2624 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002625 int rc;
drhe5fe6902007-12-07 18:55:28 +00002626 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002627 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002628 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002629 rc = sqlite3PagerNosync(pBt->pPager);
2630 sqlite3BtreeLeave(p);
2631 return rc;
drh2c8997b2005-08-27 16:36:48 +00002632}
2633
drh973b6e32003-02-12 14:09:42 +00002634/*
drh90f5ecb2004-07-22 01:19:35 +00002635** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002636** Or, if the page size has already been fixed, return SQLITE_READONLY
2637** without changing anything.
drh06f50212004-11-02 14:24:33 +00002638**
2639** The page size must be a power of 2 between 512 and 65536. If the page
2640** size supplied does not meet this constraint then the page size is not
2641** changed.
2642**
2643** Page sizes are constrained to be a power of two so that the region
2644** of the database file used for locking (beginning at PENDING_BYTE,
2645** the first byte past the 1GB boundary, 0x40000000) needs to occur
2646** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002647**
2648** If parameter nReserve is less than zero, then the number of reserved
2649** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002650**
drhc9166342012-01-05 23:32:06 +00002651** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002652** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002653*/
drhce4869f2009-04-02 20:16:58 +00002654int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002655 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002656 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002657 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002658 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002659#if SQLITE_HAS_CODEC
2660 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2661#endif
drhc9166342012-01-05 23:32:06 +00002662 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002663 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002664 return SQLITE_READONLY;
2665 }
2666 if( nReserve<0 ){
2667 nReserve = pBt->pageSize - pBt->usableSize;
2668 }
drhf49661a2008-12-10 16:45:50 +00002669 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002670 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2671 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002672 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002673 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002674 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002675 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002676 }
drhfa9601a2009-06-18 17:22:39 +00002677 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002678 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002679 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002680 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002681 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002682}
2683
2684/*
2685** Return the currently defined page size
2686*/
danielk1977aef0bf62005-12-30 16:28:01 +00002687int sqlite3BtreeGetPageSize(Btree *p){
2688 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002689}
drh7f751222009-03-17 22:33:00 +00002690
dan0094f372012-09-28 20:23:42 +00002691/*
2692** This function is similar to sqlite3BtreeGetReserve(), except that it
2693** may only be called if it is guaranteed that the b-tree mutex is already
2694** held.
2695**
2696** This is useful in one special case in the backup API code where it is
2697** known that the shared b-tree mutex is held, but the mutex on the
2698** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2699** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002700** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002701*/
2702int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002703 int n;
dan0094f372012-09-28 20:23:42 +00002704 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002705 n = p->pBt->pageSize - p->pBt->usableSize;
2706 return n;
dan0094f372012-09-28 20:23:42 +00002707}
2708
drh7f751222009-03-17 22:33:00 +00002709/*
2710** Return the number of bytes of space at the end of every page that
2711** are intentually left unused. This is the "reserved" space that is
2712** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002713**
2714** If SQLITE_HAS_MUTEX is defined then the number returned is the
2715** greater of the current reserved space and the maximum requested
2716** reserve space.
drh7f751222009-03-17 22:33:00 +00002717*/
drhad0961b2015-02-21 00:19:25 +00002718int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002719 int n;
2720 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002721 n = sqlite3BtreeGetReserveNoMutex(p);
2722#ifdef SQLITE_HAS_CODEC
2723 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2724#endif
drhd677b3d2007-08-20 22:48:41 +00002725 sqlite3BtreeLeave(p);
2726 return n;
drh2011d5f2004-07-22 02:40:37 +00002727}
drhf8e632b2007-05-08 14:51:36 +00002728
drhad0961b2015-02-21 00:19:25 +00002729
drhf8e632b2007-05-08 14:51:36 +00002730/*
2731** Set the maximum page count for a database if mxPage is positive.
2732** No changes are made if mxPage is 0 or negative.
2733** Regardless of the value of mxPage, return the maximum page count.
2734*/
2735int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002736 int n;
2737 sqlite3BtreeEnter(p);
2738 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2739 sqlite3BtreeLeave(p);
2740 return n;
drhf8e632b2007-05-08 14:51:36 +00002741}
drh5b47efa2010-02-12 18:18:39 +00002742
2743/*
drhc9166342012-01-05 23:32:06 +00002744** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2745** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002746** setting after the change.
2747*/
2748int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2749 int b;
drhaf034ed2010-02-12 19:46:26 +00002750 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002751 sqlite3BtreeEnter(p);
2752 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002753 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2754 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002755 }
drhc9166342012-01-05 23:32:06 +00002756 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002757 sqlite3BtreeLeave(p);
2758 return b;
2759}
drh90f5ecb2004-07-22 01:19:35 +00002760
2761/*
danielk1977951af802004-11-05 15:45:09 +00002762** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2763** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2764** is disabled. The default value for the auto-vacuum property is
2765** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2766*/
danielk1977aef0bf62005-12-30 16:28:01 +00002767int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002768#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002769 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002770#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002771 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002772 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002773 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002774
2775 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002776 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002777 rc = SQLITE_READONLY;
2778 }else{
drh076d4662009-02-18 20:31:18 +00002779 pBt->autoVacuum = av ?1:0;
2780 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002781 }
drhd677b3d2007-08-20 22:48:41 +00002782 sqlite3BtreeLeave(p);
2783 return rc;
danielk1977951af802004-11-05 15:45:09 +00002784#endif
2785}
2786
2787/*
2788** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2789** enabled 1 is returned. Otherwise 0.
2790*/
danielk1977aef0bf62005-12-30 16:28:01 +00002791int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002792#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002793 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002794#else
drhd677b3d2007-08-20 22:48:41 +00002795 int rc;
2796 sqlite3BtreeEnter(p);
2797 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002798 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2799 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2800 BTREE_AUTOVACUUM_INCR
2801 );
drhd677b3d2007-08-20 22:48:41 +00002802 sqlite3BtreeLeave(p);
2803 return rc;
danielk1977951af802004-11-05 15:45:09 +00002804#endif
2805}
2806
2807
2808/*
drha34b6762004-05-07 13:30:42 +00002809** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002810** also acquire a readlock on that file.
2811**
2812** SQLITE_OK is returned on success. If the file is not a
2813** well-formed database file, then SQLITE_CORRUPT is returned.
2814** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002815** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002816*/
danielk1977aef0bf62005-12-30 16:28:01 +00002817static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002818 int rc; /* Result code from subfunctions */
2819 MemPage *pPage1; /* Page 1 of the database file */
2820 int nPage; /* Number of pages in the database */
2821 int nPageFile = 0; /* Number of pages in the database file */
2822 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002823
drh1fee73e2007-08-29 04:00:57 +00002824 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002825 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002826 rc = sqlite3PagerSharedLock(pBt->pPager);
2827 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002828 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002829 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002830
2831 /* Do some checking to help insure the file we opened really is
2832 ** a valid database file.
2833 */
drhc2a4bab2010-04-02 12:46:45 +00002834 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002835 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002836 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002837 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002838 }
2839 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002840 u32 pageSize;
2841 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002842 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002843 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002844 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2845 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2846 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002847 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002848 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002849 }
dan5cf53532010-05-01 16:40:20 +00002850
2851#ifdef SQLITE_OMIT_WAL
2852 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002853 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002854 }
2855 if( page1[19]>1 ){
2856 goto page1_init_failed;
2857 }
2858#else
dane04dc882010-04-20 18:53:15 +00002859 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002860 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002861 }
dane04dc882010-04-20 18:53:15 +00002862 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002863 goto page1_init_failed;
2864 }
drhe5ae5732008-06-15 02:51:47 +00002865
dana470aeb2010-04-21 11:43:38 +00002866 /* If the write version is set to 2, this database should be accessed
2867 ** in WAL mode. If the log is not already open, open it now. Then
2868 ** return SQLITE_OK and return without populating BtShared.pPage1.
2869 ** The caller detects this and calls this function again. This is
2870 ** required as the version of page 1 currently in the page1 buffer
2871 ** may not be the latest version - there may be a newer one in the log
2872 ** file.
2873 */
drhc9166342012-01-05 23:32:06 +00002874 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002875 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002876 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002877 if( rc!=SQLITE_OK ){
2878 goto page1_init_failed;
2879 }else if( isOpen==0 ){
2880 releasePage(pPage1);
2881 return SQLITE_OK;
2882 }
dan8b5444b2010-04-27 14:37:47 +00002883 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002884 }
dan5cf53532010-05-01 16:40:20 +00002885#endif
dane04dc882010-04-20 18:53:15 +00002886
drh113762a2014-11-19 16:36:25 +00002887 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2888 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2889 **
drhe5ae5732008-06-15 02:51:47 +00002890 ** The original design allowed these amounts to vary, but as of
2891 ** version 3.6.0, we require them to be fixed.
2892 */
2893 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2894 goto page1_init_failed;
2895 }
drh113762a2014-11-19 16:36:25 +00002896 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2897 ** determined by the 2-byte integer located at an offset of 16 bytes from
2898 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002899 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002900 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2901 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002902 if( ((pageSize-1)&pageSize)!=0
2903 || pageSize>SQLITE_MAX_PAGE_SIZE
2904 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002905 ){
drh07d183d2005-05-01 22:52:42 +00002906 goto page1_init_failed;
2907 }
2908 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002909 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2910 ** integer at offset 20 is the number of bytes of space at the end of
2911 ** each page to reserve for extensions.
2912 **
2913 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2914 ** determined by the one-byte unsigned integer found at an offset of 20
2915 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002916 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002917 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002918 /* After reading the first page of the database assuming a page size
2919 ** of BtShared.pageSize, we have discovered that the page-size is
2920 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2921 ** zero and return SQLITE_OK. The caller will call this function
2922 ** again with the correct page-size.
2923 */
2924 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002925 pBt->usableSize = usableSize;
2926 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002927 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002928 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2929 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002930 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002931 }
danecac6702011-02-09 18:19:20 +00002932 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002933 rc = SQLITE_CORRUPT_BKPT;
2934 goto page1_init_failed;
2935 }
drh113762a2014-11-19 16:36:25 +00002936 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2937 ** be less than 480. In other words, if the page size is 512, then the
2938 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002939 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002940 goto page1_init_failed;
2941 }
drh43b18e12010-08-17 19:40:08 +00002942 pBt->pageSize = pageSize;
2943 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002944#ifndef SQLITE_OMIT_AUTOVACUUM
2945 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002946 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002947#endif
drh306dc212001-05-21 13:45:10 +00002948 }
drhb6f41482004-05-14 01:58:11 +00002949
2950 /* maxLocal is the maximum amount of payload to store locally for
2951 ** a cell. Make sure it is small enough so that at least minFanout
2952 ** cells can will fit on one page. We assume a 10-byte page header.
2953 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002954 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002955 ** 4-byte child pointer
2956 ** 9-byte nKey value
2957 ** 4-byte nData value
2958 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002959 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002960 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2961 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002962 */
shaneh1df2db72010-08-18 02:28:48 +00002963 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2964 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2965 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2966 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002967 if( pBt->maxLocal>127 ){
2968 pBt->max1bytePayload = 127;
2969 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002970 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002971 }
drh2e38c322004-09-03 18:38:44 +00002972 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002973 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002974 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002975 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002976
drh72f82862001-05-24 21:06:34 +00002977page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002978 releasePage(pPage1);
2979 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002980 return rc;
drh306dc212001-05-21 13:45:10 +00002981}
2982
drh85ec3b62013-05-14 23:12:06 +00002983#ifndef NDEBUG
2984/*
2985** Return the number of cursors open on pBt. This is for use
2986** in assert() expressions, so it is only compiled if NDEBUG is not
2987** defined.
2988**
2989** Only write cursors are counted if wrOnly is true. If wrOnly is
2990** false then all cursors are counted.
2991**
2992** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002993** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002994** have been tripped into the CURSOR_FAULT state are not counted.
2995*/
2996static int countValidCursors(BtShared *pBt, int wrOnly){
2997 BtCursor *pCur;
2998 int r = 0;
2999 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003000 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3001 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003002 }
3003 return r;
3004}
3005#endif
3006
drh306dc212001-05-21 13:45:10 +00003007/*
drhb8ca3072001-12-05 00:21:20 +00003008** If there are no outstanding cursors and we are not in the middle
3009** of a transaction but there is a read lock on the database, then
3010** this routine unrefs the first page of the database file which
3011** has the effect of releasing the read lock.
3012**
drhb8ca3072001-12-05 00:21:20 +00003013** If there is a transaction in progress, this routine is a no-op.
3014*/
danielk1977aef0bf62005-12-30 16:28:01 +00003015static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003016 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003017 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003018 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003019 MemPage *pPage1 = pBt->pPage1;
3020 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003021 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003022 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003023 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003024 }
3025}
3026
3027/*
drhe39f2f92009-07-23 01:43:59 +00003028** If pBt points to an empty file then convert that empty file
3029** into a new empty database by initializing the first page of
3030** the database.
drh8b2f49b2001-06-08 00:21:52 +00003031*/
danielk1977aef0bf62005-12-30 16:28:01 +00003032static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003033 MemPage *pP1;
3034 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003035 int rc;
drhd677b3d2007-08-20 22:48:41 +00003036
drh1fee73e2007-08-29 04:00:57 +00003037 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003038 if( pBt->nPage>0 ){
3039 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003040 }
drh3aac2dd2004-04-26 14:10:20 +00003041 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003042 assert( pP1!=0 );
3043 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003044 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003045 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003046 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3047 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003048 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3049 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003050 data[18] = 1;
3051 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003052 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3053 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003054 data[21] = 64;
3055 data[22] = 32;
3056 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003057 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003058 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003059 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003060#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003061 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003062 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003063 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003064 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003065#endif
drhdd3cd972010-03-27 17:12:36 +00003066 pBt->nPage = 1;
3067 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003068 return SQLITE_OK;
3069}
3070
3071/*
danb483eba2012-10-13 19:58:11 +00003072** Initialize the first page of the database file (creating a database
3073** consisting of a single page and no schema objects). Return SQLITE_OK
3074** if successful, or an SQLite error code otherwise.
3075*/
3076int sqlite3BtreeNewDb(Btree *p){
3077 int rc;
3078 sqlite3BtreeEnter(p);
3079 p->pBt->nPage = 0;
3080 rc = newDatabase(p->pBt);
3081 sqlite3BtreeLeave(p);
3082 return rc;
3083}
3084
3085/*
danielk1977ee5741e2004-05-31 10:01:34 +00003086** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003087** is started if the second argument is nonzero, otherwise a read-
3088** transaction. If the second argument is 2 or more and exclusive
3089** transaction is started, meaning that no other process is allowed
3090** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003091** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003092** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003093**
danielk1977ee5741e2004-05-31 10:01:34 +00003094** A write-transaction must be started before attempting any
3095** changes to the database. None of the following routines
3096** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003097**
drh23e11ca2004-05-04 17:27:28 +00003098** sqlite3BtreeCreateTable()
3099** sqlite3BtreeCreateIndex()
3100** sqlite3BtreeClearTable()
3101** sqlite3BtreeDropTable()
3102** sqlite3BtreeInsert()
3103** sqlite3BtreeDelete()
3104** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003105**
drhb8ef32c2005-03-14 02:01:49 +00003106** If an initial attempt to acquire the lock fails because of lock contention
3107** and the database was previously unlocked, then invoke the busy handler
3108** if there is one. But if there was previously a read-lock, do not
3109** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3110** returned when there is already a read-lock in order to avoid a deadlock.
3111**
3112** Suppose there are two processes A and B. A has a read lock and B has
3113** a reserved lock. B tries to promote to exclusive but is blocked because
3114** of A's read lock. A tries to promote to reserved but is blocked by B.
3115** One or the other of the two processes must give way or there can be
3116** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3117** when A already has a read lock, we encourage A to give up and let B
3118** proceed.
drha059ad02001-04-17 20:09:11 +00003119*/
danielk1977aef0bf62005-12-30 16:28:01 +00003120int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003121 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003122 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003123 int rc = SQLITE_OK;
3124
drhd677b3d2007-08-20 22:48:41 +00003125 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003126 btreeIntegrity(p);
3127
danielk1977ee5741e2004-05-31 10:01:34 +00003128 /* If the btree is already in a write-transaction, or it
3129 ** is already in a read-transaction and a read-transaction
3130 ** is requested, this is a no-op.
3131 */
danielk1977aef0bf62005-12-30 16:28:01 +00003132 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003133 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003134 }
dan56c517a2013-09-26 11:04:33 +00003135 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003136
3137 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003138 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003139 rc = SQLITE_READONLY;
3140 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003141 }
3142
danielk1977404ca072009-03-16 13:19:36 +00003143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003144 /* If another database handle has already opened a write transaction
3145 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003146 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003147 */
drhc9166342012-01-05 23:32:06 +00003148 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3149 || (pBt->btsFlags & BTS_PENDING)!=0
3150 ){
danielk1977404ca072009-03-16 13:19:36 +00003151 pBlock = pBt->pWriter->db;
3152 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003153 BtLock *pIter;
3154 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3155 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003156 pBlock = pIter->pBtree->db;
3157 break;
danielk1977641b0f42007-12-21 04:47:25 +00003158 }
3159 }
3160 }
danielk1977404ca072009-03-16 13:19:36 +00003161 if( pBlock ){
3162 sqlite3ConnectionBlocked(p->db, pBlock);
3163 rc = SQLITE_LOCKED_SHAREDCACHE;
3164 goto trans_begun;
3165 }
danielk1977641b0f42007-12-21 04:47:25 +00003166#endif
3167
danielk1977602b4662009-07-02 07:47:33 +00003168 /* Any read-only or read-write transaction implies a read-lock on
3169 ** page 1. So if some other shared-cache client already has a write-lock
3170 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003171 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3172 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003173
drhc9166342012-01-05 23:32:06 +00003174 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3175 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003176 do {
danielk1977295dc102009-04-01 19:07:03 +00003177 /* Call lockBtree() until either pBt->pPage1 is populated or
3178 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3179 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3180 ** reading page 1 it discovers that the page-size of the database
3181 ** file is not pBt->pageSize. In this case lockBtree() will update
3182 ** pBt->pageSize to the page-size of the file on disk.
3183 */
3184 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003185
drhb8ef32c2005-03-14 02:01:49 +00003186 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003187 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003188 rc = SQLITE_READONLY;
3189 }else{
danielk1977d8293352009-04-30 09:10:37 +00003190 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003191 if( rc==SQLITE_OK ){
3192 rc = newDatabase(pBt);
3193 }
drhb8ef32c2005-03-14 02:01:49 +00003194 }
3195 }
3196
danielk1977bd434552009-03-18 10:33:00 +00003197 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003198 unlockBtreeIfUnused(pBt);
3199 }
danf9b76712010-06-01 14:12:45 +00003200 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003201 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003202
3203 if( rc==SQLITE_OK ){
3204 if( p->inTrans==TRANS_NONE ){
3205 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003206#ifndef SQLITE_OMIT_SHARED_CACHE
3207 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003208 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003209 p->lock.eLock = READ_LOCK;
3210 p->lock.pNext = pBt->pLock;
3211 pBt->pLock = &p->lock;
3212 }
3213#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003214 }
3215 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3216 if( p->inTrans>pBt->inTransaction ){
3217 pBt->inTransaction = p->inTrans;
3218 }
danielk1977404ca072009-03-16 13:19:36 +00003219 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003220 MemPage *pPage1 = pBt->pPage1;
3221#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003222 assert( !pBt->pWriter );
3223 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003224 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3225 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003226#endif
dan59257dc2010-08-04 11:34:31 +00003227
3228 /* If the db-size header field is incorrect (as it may be if an old
3229 ** client has been writing the database file), update it now. Doing
3230 ** this sooner rather than later means the database size can safely
3231 ** re-read the database size from page 1 if a savepoint or transaction
3232 ** rollback occurs within the transaction.
3233 */
3234 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3235 rc = sqlite3PagerWrite(pPage1->pDbPage);
3236 if( rc==SQLITE_OK ){
3237 put4byte(&pPage1->aData[28], pBt->nPage);
3238 }
3239 }
3240 }
danielk1977aef0bf62005-12-30 16:28:01 +00003241 }
3242
drhd677b3d2007-08-20 22:48:41 +00003243
3244trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003245 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003246 /* This call makes sure that the pager has the correct number of
3247 ** open savepoints. If the second parameter is greater than 0 and
3248 ** the sub-journal is not already open, then it will be opened here.
3249 */
danielk1977fd7f0452008-12-17 17:30:26 +00003250 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3251 }
danielk197712dd5492008-12-18 15:45:07 +00003252
danielk1977aef0bf62005-12-30 16:28:01 +00003253 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003254 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003255 return rc;
drha059ad02001-04-17 20:09:11 +00003256}
3257
danielk1977687566d2004-11-02 12:56:41 +00003258#ifndef SQLITE_OMIT_AUTOVACUUM
3259
3260/*
3261** Set the pointer-map entries for all children of page pPage. Also, if
3262** pPage contains cells that point to overflow pages, set the pointer
3263** map entries for the overflow pages as well.
3264*/
3265static int setChildPtrmaps(MemPage *pPage){
3266 int i; /* Counter variable */
3267 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003268 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003269 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003270 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003271 Pgno pgno = pPage->pgno;
3272
drh1fee73e2007-08-29 04:00:57 +00003273 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003274 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003275 if( rc!=SQLITE_OK ){
3276 goto set_child_ptrmaps_out;
3277 }
danielk1977687566d2004-11-02 12:56:41 +00003278 nCell = pPage->nCell;
3279
3280 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003281 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003282
drh98add2e2009-07-20 17:11:49 +00003283 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003284
danielk1977687566d2004-11-02 12:56:41 +00003285 if( !pPage->leaf ){
3286 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003287 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003288 }
3289 }
3290
3291 if( !pPage->leaf ){
3292 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003293 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003294 }
3295
3296set_child_ptrmaps_out:
3297 pPage->isInit = isInitOrig;
3298 return rc;
3299}
3300
3301/*
drhf3aed592009-07-08 18:12:49 +00003302** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3303** that it points to iTo. Parameter eType describes the type of pointer to
3304** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003305**
3306** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3307** page of pPage.
3308**
3309** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3310** page pointed to by one of the cells on pPage.
3311**
3312** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3313** overflow page in the list.
3314*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003315static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003316 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003317 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003318 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003319 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003320 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003321 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003322 }
danielk1977f78fc082004-11-02 14:40:32 +00003323 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003324 }else{
drhf49661a2008-12-10 16:45:50 +00003325 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003326 int i;
3327 int nCell;
drha1f75d92015-05-24 10:18:12 +00003328 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003329
drha1f75d92015-05-24 10:18:12 +00003330 rc = btreeInitPage(pPage);
3331 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003332 nCell = pPage->nCell;
3333
danielk1977687566d2004-11-02 12:56:41 +00003334 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003335 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003336 if( eType==PTRMAP_OVERFLOW1 ){
3337 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003338 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003339 if( info.iOverflow
3340 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3341 && iFrom==get4byte(&pCell[info.iOverflow])
3342 ){
3343 put4byte(&pCell[info.iOverflow], iTo);
3344 break;
danielk1977687566d2004-11-02 12:56:41 +00003345 }
3346 }else{
3347 if( get4byte(pCell)==iFrom ){
3348 put4byte(pCell, iTo);
3349 break;
3350 }
3351 }
3352 }
3353
3354 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003355 if( eType!=PTRMAP_BTREE ||
3356 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003357 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003358 }
danielk1977687566d2004-11-02 12:56:41 +00003359 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3360 }
3361
3362 pPage->isInit = isInitOrig;
3363 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003364 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003365}
3366
danielk1977003ba062004-11-04 02:57:33 +00003367
danielk19777701e812005-01-10 12:59:51 +00003368/*
3369** Move the open database page pDbPage to location iFreePage in the
3370** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003371**
3372** The isCommit flag indicates that there is no need to remember that
3373** the journal needs to be sync()ed before database page pDbPage->pgno
3374** can be written to. The caller has already promised not to write to that
3375** page.
danielk19777701e812005-01-10 12:59:51 +00003376*/
danielk1977003ba062004-11-04 02:57:33 +00003377static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003378 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003379 MemPage *pDbPage, /* Open page to move */
3380 u8 eType, /* Pointer map 'type' entry for pDbPage */
3381 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003382 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003383 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003384){
3385 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3386 Pgno iDbPage = pDbPage->pgno;
3387 Pager *pPager = pBt->pPager;
3388 int rc;
3389
danielk1977a0bf2652004-11-04 14:30:04 +00003390 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3391 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003392 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003393 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003394
drh85b623f2007-12-13 21:54:09 +00003395 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003396 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3397 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003398 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003399 if( rc!=SQLITE_OK ){
3400 return rc;
3401 }
3402 pDbPage->pgno = iFreePage;
3403
3404 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3405 ** that point to overflow pages. The pointer map entries for all these
3406 ** pages need to be changed.
3407 **
3408 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3409 ** pointer to a subsequent overflow page. If this is the case, then
3410 ** the pointer map needs to be updated for the subsequent overflow page.
3411 */
danielk1977a0bf2652004-11-04 14:30:04 +00003412 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003413 rc = setChildPtrmaps(pDbPage);
3414 if( rc!=SQLITE_OK ){
3415 return rc;
3416 }
3417 }else{
3418 Pgno nextOvfl = get4byte(pDbPage->aData);
3419 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003420 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003421 if( rc!=SQLITE_OK ){
3422 return rc;
3423 }
3424 }
3425 }
3426
3427 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3428 ** that it points at iFreePage. Also fix the pointer map entry for
3429 ** iPtrPage.
3430 */
danielk1977a0bf2652004-11-04 14:30:04 +00003431 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003432 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003433 if( rc!=SQLITE_OK ){
3434 return rc;
3435 }
danielk19773b8a05f2007-03-19 17:44:26 +00003436 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003437 if( rc!=SQLITE_OK ){
3438 releasePage(pPtrPage);
3439 return rc;
3440 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003441 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003442 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003443 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003444 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003445 }
danielk1977003ba062004-11-04 02:57:33 +00003446 }
danielk1977003ba062004-11-04 02:57:33 +00003447 return rc;
3448}
3449
danielk1977dddbcdc2007-04-26 14:42:34 +00003450/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003451static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003452
3453/*
dan51f0b6d2013-02-22 20:16:34 +00003454** Perform a single step of an incremental-vacuum. If successful, return
3455** SQLITE_OK. If there is no work to do (and therefore no point in
3456** calling this function again), return SQLITE_DONE. Or, if an error
3457** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003458**
peter.d.reid60ec9142014-09-06 16:39:46 +00003459** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003460** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003461**
dan51f0b6d2013-02-22 20:16:34 +00003462** Parameter nFin is the number of pages that this database would contain
3463** were this function called until it returns SQLITE_DONE.
3464**
3465** If the bCommit parameter is non-zero, this function assumes that the
3466** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003467** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003468** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003469*/
dan51f0b6d2013-02-22 20:16:34 +00003470static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003471 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003472 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003473
drh1fee73e2007-08-29 04:00:57 +00003474 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003475 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003476
3477 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003478 u8 eType;
3479 Pgno iPtrPage;
3480
3481 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003482 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003483 return SQLITE_DONE;
3484 }
3485
3486 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3487 if( rc!=SQLITE_OK ){
3488 return rc;
3489 }
3490 if( eType==PTRMAP_ROOTPAGE ){
3491 return SQLITE_CORRUPT_BKPT;
3492 }
3493
3494 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003495 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003496 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003497 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003498 ** truncated to zero after this function returns, so it doesn't
3499 ** matter if it still contains some garbage entries.
3500 */
3501 Pgno iFreePg;
3502 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003503 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003504 if( rc!=SQLITE_OK ){
3505 return rc;
3506 }
3507 assert( iFreePg==iLastPg );
3508 releasePage(pFreePg);
3509 }
3510 } else {
3511 Pgno iFreePg; /* Index of free page to move pLastPg to */
3512 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003513 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3514 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003515
drhb00fc3b2013-08-21 23:42:32 +00003516 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003517 if( rc!=SQLITE_OK ){
3518 return rc;
3519 }
3520
dan51f0b6d2013-02-22 20:16:34 +00003521 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003522 ** is swapped with the first free page pulled off the free list.
3523 **
dan51f0b6d2013-02-22 20:16:34 +00003524 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003525 ** looping until a free-page located within the first nFin pages
3526 ** of the file is found.
3527 */
dan51f0b6d2013-02-22 20:16:34 +00003528 if( bCommit==0 ){
3529 eMode = BTALLOC_LE;
3530 iNear = nFin;
3531 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003532 do {
3533 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003534 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003535 if( rc!=SQLITE_OK ){
3536 releasePage(pLastPg);
3537 return rc;
3538 }
3539 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003540 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003541 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003542
dane1df4e32013-03-05 11:27:04 +00003543 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003544 releasePage(pLastPg);
3545 if( rc!=SQLITE_OK ){
3546 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003547 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003548 }
3549 }
3550
dan51f0b6d2013-02-22 20:16:34 +00003551 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003552 do {
danielk19773460d192008-12-27 15:23:13 +00003553 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003554 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3555 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003556 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003557 }
3558 return SQLITE_OK;
3559}
3560
3561/*
dan51f0b6d2013-02-22 20:16:34 +00003562** The database opened by the first argument is an auto-vacuum database
3563** nOrig pages in size containing nFree free pages. Return the expected
3564** size of the database in pages following an auto-vacuum operation.
3565*/
3566static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3567 int nEntry; /* Number of entries on one ptrmap page */
3568 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3569 Pgno nFin; /* Return value */
3570
3571 nEntry = pBt->usableSize/5;
3572 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3573 nFin = nOrig - nFree - nPtrmap;
3574 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3575 nFin--;
3576 }
3577 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3578 nFin--;
3579 }
dan51f0b6d2013-02-22 20:16:34 +00003580
3581 return nFin;
3582}
3583
3584/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003585** A write-transaction must be opened before calling this function.
3586** It performs a single unit of work towards an incremental vacuum.
3587**
3588** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003589** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003590** SQLITE_OK is returned. Otherwise an SQLite error code.
3591*/
3592int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003593 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003594 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003595
3596 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003597 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3598 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003599 rc = SQLITE_DONE;
3600 }else{
dan51f0b6d2013-02-22 20:16:34 +00003601 Pgno nOrig = btreePagecount(pBt);
3602 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3603 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3604
dan91384712013-02-24 11:50:43 +00003605 if( nOrig<nFin ){
3606 rc = SQLITE_CORRUPT_BKPT;
3607 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003608 rc = saveAllCursors(pBt, 0, 0);
3609 if( rc==SQLITE_OK ){
3610 invalidateAllOverflowCache(pBt);
3611 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3612 }
dan51f0b6d2013-02-22 20:16:34 +00003613 if( rc==SQLITE_OK ){
3614 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3615 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3616 }
3617 }else{
3618 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003619 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003620 }
drhd677b3d2007-08-20 22:48:41 +00003621 sqlite3BtreeLeave(p);
3622 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003623}
3624
3625/*
danielk19773b8a05f2007-03-19 17:44:26 +00003626** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003627** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003628**
3629** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3630** the database file should be truncated to during the commit process.
3631** i.e. the database has been reorganized so that only the first *pnTrunc
3632** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003633*/
danielk19773460d192008-12-27 15:23:13 +00003634static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003635 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003636 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003637 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003638
drh1fee73e2007-08-29 04:00:57 +00003639 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003640 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003641 assert(pBt->autoVacuum);
3642 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003643 Pgno nFin; /* Number of pages in database after autovacuuming */
3644 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003645 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003646 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003647
drhb1299152010-03-30 22:58:33 +00003648 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003649 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3650 /* It is not possible to create a database for which the final page
3651 ** is either a pointer-map page or the pending-byte page. If one
3652 ** is encountered, this indicates corruption.
3653 */
danielk19773460d192008-12-27 15:23:13 +00003654 return SQLITE_CORRUPT_BKPT;
3655 }
danielk1977ef165ce2009-04-06 17:50:03 +00003656
danielk19773460d192008-12-27 15:23:13 +00003657 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003658 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003659 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003660 if( nFin<nOrig ){
3661 rc = saveAllCursors(pBt, 0, 0);
3662 }
danielk19773460d192008-12-27 15:23:13 +00003663 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003664 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003665 }
danielk19773460d192008-12-27 15:23:13 +00003666 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003667 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3668 put4byte(&pBt->pPage1->aData[32], 0);
3669 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003670 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003671 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003672 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003673 }
3674 if( rc!=SQLITE_OK ){
3675 sqlite3PagerRollback(pPager);
3676 }
danielk1977687566d2004-11-02 12:56:41 +00003677 }
3678
dan0aed84d2013-03-26 14:16:20 +00003679 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003680 return rc;
3681}
danielk1977dddbcdc2007-04-26 14:42:34 +00003682
danielk1977a50d9aa2009-06-08 14:49:45 +00003683#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3684# define setChildPtrmaps(x) SQLITE_OK
3685#endif
danielk1977687566d2004-11-02 12:56:41 +00003686
3687/*
drh80e35f42007-03-30 14:06:34 +00003688** This routine does the first phase of a two-phase commit. This routine
3689** causes a rollback journal to be created (if it does not already exist)
3690** and populated with enough information so that if a power loss occurs
3691** the database can be restored to its original state by playing back
3692** the journal. Then the contents of the journal are flushed out to
3693** the disk. After the journal is safely on oxide, the changes to the
3694** database are written into the database file and flushed to oxide.
3695** At the end of this call, the rollback journal still exists on the
3696** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003697** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003698** commit process.
3699**
3700** This call is a no-op if no write-transaction is currently active on pBt.
3701**
3702** Otherwise, sync the database file for the btree pBt. zMaster points to
3703** the name of a master journal file that should be written into the
3704** individual journal file, or is NULL, indicating no master journal file
3705** (single database transaction).
3706**
3707** When this is called, the master journal should already have been
3708** created, populated with this journal pointer and synced to disk.
3709**
3710** Once this is routine has returned, the only thing required to commit
3711** the write-transaction for this database file is to delete the journal.
3712*/
3713int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3714 int rc = SQLITE_OK;
3715 if( p->inTrans==TRANS_WRITE ){
3716 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003717 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003718#ifndef SQLITE_OMIT_AUTOVACUUM
3719 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003720 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003721 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003722 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003723 return rc;
3724 }
3725 }
danbc1a3c62013-02-23 16:40:46 +00003726 if( pBt->bDoTruncate ){
3727 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3728 }
drh80e35f42007-03-30 14:06:34 +00003729#endif
drh49b9d332009-01-02 18:10:42 +00003730 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003731 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003732 }
3733 return rc;
3734}
3735
3736/*
danielk197794b30732009-07-02 17:21:57 +00003737** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3738** at the conclusion of a transaction.
3739*/
3740static void btreeEndTransaction(Btree *p){
3741 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003742 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003743 assert( sqlite3BtreeHoldsMutex(p) );
3744
danbc1a3c62013-02-23 16:40:46 +00003745#ifndef SQLITE_OMIT_AUTOVACUUM
3746 pBt->bDoTruncate = 0;
3747#endif
danc0537fe2013-06-28 19:41:43 +00003748 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003749 /* If there are other active statements that belong to this database
3750 ** handle, downgrade to a read-only transaction. The other statements
3751 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003752 downgradeAllSharedCacheTableLocks(p);
3753 p->inTrans = TRANS_READ;
3754 }else{
3755 /* If the handle had any kind of transaction open, decrement the
3756 ** transaction count of the shared btree. If the transaction count
3757 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3758 ** call below will unlock the pager. */
3759 if( p->inTrans!=TRANS_NONE ){
3760 clearAllSharedCacheTableLocks(p);
3761 pBt->nTransaction--;
3762 if( 0==pBt->nTransaction ){
3763 pBt->inTransaction = TRANS_NONE;
3764 }
3765 }
3766
3767 /* Set the current transaction state to TRANS_NONE and unlock the
3768 ** pager if this call closed the only read or write transaction. */
3769 p->inTrans = TRANS_NONE;
3770 unlockBtreeIfUnused(pBt);
3771 }
3772
3773 btreeIntegrity(p);
3774}
3775
3776/*
drh2aa679f2001-06-25 02:11:07 +00003777** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003778**
drh6e345992007-03-30 11:12:08 +00003779** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003780** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3781** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3782** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003783** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003784** routine has to do is delete or truncate or zero the header in the
3785** the rollback journal (which causes the transaction to commit) and
3786** drop locks.
drh6e345992007-03-30 11:12:08 +00003787**
dan60939d02011-03-29 15:40:55 +00003788** Normally, if an error occurs while the pager layer is attempting to
3789** finalize the underlying journal file, this function returns an error and
3790** the upper layer will attempt a rollback. However, if the second argument
3791** is non-zero then this b-tree transaction is part of a multi-file
3792** transaction. In this case, the transaction has already been committed
3793** (by deleting a master journal file) and the caller will ignore this
3794** functions return code. So, even if an error occurs in the pager layer,
3795** reset the b-tree objects internal state to indicate that the write
3796** transaction has been closed. This is quite safe, as the pager will have
3797** transitioned to the error state.
3798**
drh5e00f6c2001-09-13 13:46:56 +00003799** This will release the write lock on the database file. If there
3800** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003801*/
dan60939d02011-03-29 15:40:55 +00003802int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003803
drh075ed302010-10-14 01:17:30 +00003804 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003805 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003806 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003807
3808 /* If the handle has a write-transaction open, commit the shared-btrees
3809 ** transaction and set the shared state to TRANS_READ.
3810 */
3811 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003812 int rc;
drh075ed302010-10-14 01:17:30 +00003813 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003814 assert( pBt->inTransaction==TRANS_WRITE );
3815 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003816 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003817 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003818 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003819 return rc;
3820 }
drh3da9c042014-12-22 18:41:21 +00003821 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003822 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003823 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003824 }
danielk1977aef0bf62005-12-30 16:28:01 +00003825
danielk197794b30732009-07-02 17:21:57 +00003826 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003827 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003828 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003829}
3830
drh80e35f42007-03-30 14:06:34 +00003831/*
3832** Do both phases of a commit.
3833*/
3834int sqlite3BtreeCommit(Btree *p){
3835 int rc;
drhd677b3d2007-08-20 22:48:41 +00003836 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003837 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3838 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003839 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003840 }
drhd677b3d2007-08-20 22:48:41 +00003841 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003842 return rc;
3843}
3844
drhc39e0002004-05-07 23:50:57 +00003845/*
drhfb982642007-08-30 01:19:59 +00003846** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003847** code to errCode for every cursor on any BtShared that pBtree
3848** references. Or if the writeOnly flag is set to 1, then only
3849** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003850**
drh47b7fc72014-11-11 01:33:57 +00003851** Every cursor is a candidate to be tripped, including cursors
3852** that belong to other database connections that happen to be
3853** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003854**
dan80231042014-11-12 14:56:02 +00003855** This routine gets called when a rollback occurs. If the writeOnly
3856** flag is true, then only write-cursors need be tripped - read-only
3857** cursors save their current positions so that they may continue
3858** following the rollback. Or, if writeOnly is false, all cursors are
3859** tripped. In general, writeOnly is false if the transaction being
3860** rolled back modified the database schema. In this case b-tree root
3861** pages may be moved or deleted from the database altogether, making
3862** it unsafe for read cursors to continue.
3863**
3864** If the writeOnly flag is true and an error is encountered while
3865** saving the current position of a read-only cursor, all cursors,
3866** including all read-cursors are tripped.
3867**
3868** SQLITE_OK is returned if successful, or if an error occurs while
3869** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003870*/
dan80231042014-11-12 14:56:02 +00003871int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003872 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003873 int rc = SQLITE_OK;
3874
drh47b7fc72014-11-11 01:33:57 +00003875 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003876 if( pBtree ){
3877 sqlite3BtreeEnter(pBtree);
3878 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3879 int i;
3880 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003881 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003882 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003883 if( rc!=SQLITE_OK ){
3884 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3885 break;
3886 }
3887 }
3888 }else{
3889 sqlite3BtreeClearCursor(p);
3890 p->eState = CURSOR_FAULT;
3891 p->skipNext = errCode;
3892 }
3893 for(i=0; i<=p->iPage; i++){
3894 releasePage(p->apPage[i]);
3895 p->apPage[i] = 0;
3896 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003897 }
dan80231042014-11-12 14:56:02 +00003898 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003899 }
dan80231042014-11-12 14:56:02 +00003900 return rc;
drhfb982642007-08-30 01:19:59 +00003901}
3902
3903/*
drh47b7fc72014-11-11 01:33:57 +00003904** Rollback the transaction in progress.
3905**
3906** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3907** Only write cursors are tripped if writeOnly is true but all cursors are
3908** tripped if writeOnly is false. Any attempt to use
3909** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003910**
3911** This will release the write lock on the database file. If there
3912** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003913*/
drh47b7fc72014-11-11 01:33:57 +00003914int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003915 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003916 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003917 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003918
drh47b7fc72014-11-11 01:33:57 +00003919 assert( writeOnly==1 || writeOnly==0 );
3920 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003921 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003922 if( tripCode==SQLITE_OK ){
3923 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003924 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003925 }else{
3926 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003927 }
drh0f198a72012-02-13 16:43:16 +00003928 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003929 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3930 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3931 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003932 }
danielk1977aef0bf62005-12-30 16:28:01 +00003933 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003934
3935 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003936 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003937
danielk19778d34dfd2006-01-24 16:37:57 +00003938 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003939 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003940 if( rc2!=SQLITE_OK ){
3941 rc = rc2;
3942 }
3943
drh24cd67e2004-05-10 16:18:47 +00003944 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003945 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003946 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003947 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003948 int nPage = get4byte(28+(u8*)pPage1->aData);
3949 testcase( nPage==0 );
3950 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3951 testcase( pBt->nPage!=nPage );
3952 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003953 releasePage(pPage1);
3954 }
drh85ec3b62013-05-14 23:12:06 +00003955 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003956 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003957 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003958 }
danielk1977aef0bf62005-12-30 16:28:01 +00003959
danielk197794b30732009-07-02 17:21:57 +00003960 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003961 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003962 return rc;
3963}
3964
3965/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003966** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003967** back independently of the main transaction. You must start a transaction
3968** before starting a subtransaction. The subtransaction is ended automatically
3969** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003970**
3971** Statement subtransactions are used around individual SQL statements
3972** that are contained within a BEGIN...COMMIT block. If a constraint
3973** error occurs within the statement, the effect of that one statement
3974** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003975**
3976** A statement sub-transaction is implemented as an anonymous savepoint. The
3977** value passed as the second parameter is the total number of savepoints,
3978** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3979** are no active savepoints and no other statement-transactions open,
3980** iStatement is 1. This anonymous savepoint can be released or rolled back
3981** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003982*/
danielk1977bd434552009-03-18 10:33:00 +00003983int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003984 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003985 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003986 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003987 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003988 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003989 assert( iStatement>0 );
3990 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003991 assert( pBt->inTransaction==TRANS_WRITE );
3992 /* At the pager level, a statement transaction is a savepoint with
3993 ** an index greater than all savepoints created explicitly using
3994 ** SQL statements. It is illegal to open, release or rollback any
3995 ** such savepoints while the statement transaction savepoint is active.
3996 */
3997 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003998 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003999 return rc;
4000}
4001
4002/*
danielk1977fd7f0452008-12-17 17:30:26 +00004003** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4004** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004005** savepoint identified by parameter iSavepoint, depending on the value
4006** of op.
4007**
4008** Normally, iSavepoint is greater than or equal to zero. However, if op is
4009** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4010** contents of the entire transaction are rolled back. This is different
4011** from a normal transaction rollback, as no locks are released and the
4012** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004013*/
4014int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4015 int rc = SQLITE_OK;
4016 if( p && p->inTrans==TRANS_WRITE ){
4017 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004018 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4019 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4020 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004021 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004022 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004023 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4024 pBt->nPage = 0;
4025 }
drh9f0bbf92009-01-02 21:08:09 +00004026 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004027 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004028
4029 /* The database size was written into the offset 28 of the header
4030 ** when the transaction started, so we know that the value at offset
4031 ** 28 is nonzero. */
4032 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004033 }
danielk1977fd7f0452008-12-17 17:30:26 +00004034 sqlite3BtreeLeave(p);
4035 }
4036 return rc;
4037}
4038
4039/*
drh8b2f49b2001-06-08 00:21:52 +00004040** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004041** iTable. If a read-only cursor is requested, it is assumed that
4042** the caller already has at least a read-only transaction open
4043** on the database already. If a write-cursor is requested, then
4044** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004045**
4046** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004047** If wrFlag==1, then the cursor can be used for reading or for
4048** writing if other conditions for writing are also met. These
4049** are the conditions that must be met in order for writing to
4050** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004051**
drhf74b8d92002-09-01 23:20:45 +00004052** 1: The cursor must have been opened with wrFlag==1
4053**
drhfe5d71d2007-03-19 11:54:10 +00004054** 2: Other database connections that share the same pager cache
4055** but which are not in the READ_UNCOMMITTED state may not have
4056** cursors open with wrFlag==0 on the same table. Otherwise
4057** the changes made by this write cursor would be visible to
4058** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004059**
4060** 3: The database must be writable (not on read-only media)
4061**
4062** 4: There must be an active transaction.
4063**
drh6446c4d2001-12-15 14:22:18 +00004064** No checking is done to make sure that page iTable really is the
4065** root page of a b-tree. If it is not, then the cursor acquired
4066** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004067**
drhf25a5072009-11-18 23:01:25 +00004068** It is assumed that the sqlite3BtreeCursorZero() has been called
4069** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004070*/
drhd677b3d2007-08-20 22:48:41 +00004071static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004072 Btree *p, /* The btree */
4073 int iTable, /* Root page of table to open */
4074 int wrFlag, /* 1 to write. 0 read-only */
4075 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4076 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004077){
danielk19773e8add92009-07-04 17:16:00 +00004078 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004079 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004080
drh1fee73e2007-08-29 04:00:57 +00004081 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004082 assert( wrFlag==0
4083 || wrFlag==BTREE_WRCSR
4084 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4085 );
danielk197796d48e92009-06-29 06:00:37 +00004086
danielk1977602b4662009-07-02 07:47:33 +00004087 /* The following assert statements verify that if this is a sharable
4088 ** b-tree database, the connection is holding the required table locks,
4089 ** and that no other connection has any open cursor that conflicts with
4090 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004091 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004092 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4093
danielk19773e8add92009-07-04 17:16:00 +00004094 /* Assert that the caller has opened the required transaction. */
4095 assert( p->inTrans>TRANS_NONE );
4096 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4097 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004098 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004099
drh3fbb0222014-09-24 19:47:27 +00004100 if( wrFlag ){
4101 allocateTempSpace(pBt);
4102 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
drha0c9a112004-03-10 13:42:37 +00004103 }
drhb1299152010-03-30 22:58:33 +00004104 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004105 assert( wrFlag==0 );
4106 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004107 }
danielk1977aef0bf62005-12-30 16:28:01 +00004108
danielk1977aef0bf62005-12-30 16:28:01 +00004109 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004110 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004111 pCur->pgnoRoot = (Pgno)iTable;
4112 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004113 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004114 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004115 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004116 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004117 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004118 /* If there are two or more cursors on the same btree, then all such
4119 ** cursors *must* have the BTCF_Multiple flag set. */
4120 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4121 if( pX->pgnoRoot==(Pgno)iTable ){
4122 pX->curFlags |= BTCF_Multiple;
4123 pCur->curFlags |= BTCF_Multiple;
4124 }
drha059ad02001-04-17 20:09:11 +00004125 }
drh27fb7462015-06-30 02:47:36 +00004126 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004127 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004128 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004129 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004130}
drhd677b3d2007-08-20 22:48:41 +00004131int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004132 Btree *p, /* The btree */
4133 int iTable, /* Root page of table to open */
4134 int wrFlag, /* 1 to write. 0 read-only */
4135 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4136 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004137){
4138 int rc;
dan08f901b2015-05-25 19:24:36 +00004139 if( iTable<1 ){
4140 rc = SQLITE_CORRUPT_BKPT;
4141 }else{
4142 sqlite3BtreeEnter(p);
4143 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4144 sqlite3BtreeLeave(p);
4145 }
drhd677b3d2007-08-20 22:48:41 +00004146 return rc;
4147}
drh7f751222009-03-17 22:33:00 +00004148
4149/*
4150** Return the size of a BtCursor object in bytes.
4151**
4152** This interfaces is needed so that users of cursors can preallocate
4153** sufficient storage to hold a cursor. The BtCursor object is opaque
4154** to users so they cannot do the sizeof() themselves - they must call
4155** this routine.
4156*/
4157int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004158 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004159}
4160
drh7f751222009-03-17 22:33:00 +00004161/*
drhf25a5072009-11-18 23:01:25 +00004162** Initialize memory that will be converted into a BtCursor object.
4163**
4164** The simple approach here would be to memset() the entire object
4165** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4166** do not need to be zeroed and they are large, so we can save a lot
4167** of run-time by skipping the initialization of those elements.
4168*/
4169void sqlite3BtreeCursorZero(BtCursor *p){
4170 memset(p, 0, offsetof(BtCursor, iPage));
4171}
4172
4173/*
drh5e00f6c2001-09-13 13:46:56 +00004174** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004175** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004176*/
drh3aac2dd2004-04-26 14:10:20 +00004177int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004178 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004179 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004180 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004181 BtShared *pBt = pCur->pBt;
4182 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004183 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004184 assert( pBt->pCursor!=0 );
4185 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004186 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004187 }else{
4188 BtCursor *pPrev = pBt->pCursor;
4189 do{
4190 if( pPrev->pNext==pCur ){
4191 pPrev->pNext = pCur->pNext;
4192 break;
4193 }
4194 pPrev = pPrev->pNext;
4195 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004196 }
danielk197771d5d2c2008-09-29 11:49:47 +00004197 for(i=0; i<=pCur->iPage; i++){
4198 releasePage(pCur->apPage[i]);
4199 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004200 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004201 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004202 /* sqlite3_free(pCur); */
4203 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004204 }
drh8c42ca92001-06-22 19:15:00 +00004205 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004206}
4207
drh5e2f8b92001-05-28 00:41:15 +00004208/*
drh86057612007-06-26 01:04:48 +00004209** Make sure the BtCursor* given in the argument has a valid
4210** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004211** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004212**
4213** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004214** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004215*/
drh9188b382004-05-14 21:12:22 +00004216#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004217 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004218 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004219 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004220 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004221 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004222 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004223 }
danielk19771cc5ed82007-05-16 17:28:43 +00004224#else
4225 #define assertCellInfo(x)
4226#endif
drhc5b41ac2015-06-17 02:11:46 +00004227static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4228 if( pCur->info.nSize==0 ){
4229 int iPage = pCur->iPage;
4230 pCur->curFlags |= BTCF_ValidNKey;
4231 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4232 }else{
4233 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004234 }
drhc5b41ac2015-06-17 02:11:46 +00004235}
drh9188b382004-05-14 21:12:22 +00004236
drhea8ffdf2009-07-22 00:35:23 +00004237#ifndef NDEBUG /* The next routine used only within assert() statements */
4238/*
4239** Return true if the given BtCursor is valid. A valid cursor is one
4240** that is currently pointing to a row in a (non-empty) table.
4241** This is a verification routine is used only within assert() statements.
4242*/
4243int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4244 return pCur && pCur->eState==CURSOR_VALID;
4245}
4246#endif /* NDEBUG */
4247
drh9188b382004-05-14 21:12:22 +00004248/*
drh3aac2dd2004-04-26 14:10:20 +00004249** Set *pSize to the size of the buffer needed to hold the value of
4250** the key for the current entry. If the cursor is not pointing
4251** to a valid entry, *pSize is set to 0.
4252**
drh4b70f112004-05-02 21:12:19 +00004253** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004254** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004255**
4256** The caller must position the cursor prior to invoking this routine.
4257**
4258** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004259*/
drh4a1c3802004-05-12 15:15:47 +00004260int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004261 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004262 assert( pCur->eState==CURSOR_VALID );
4263 getCellInfo(pCur);
4264 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004265 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004266}
drh2af926b2001-05-15 00:39:25 +00004267
drh72f82862001-05-24 21:06:34 +00004268/*
drh0e1c19e2004-05-11 00:58:56 +00004269** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004270** cursor currently points to.
4271**
4272** The caller must guarantee that the cursor is pointing to a non-NULL
4273** valid entry. In other words, the calling procedure must guarantee
4274** that the cursor has Cursor.eState==CURSOR_VALID.
4275**
4276** Failure is not possible. This function always returns SQLITE_OK.
4277** It might just as well be a procedure (returning void) but we continue
4278** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004279*/
4280int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004281 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004282 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004283 assert( pCur->iPage>=0 );
4284 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004285 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004286 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004287 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004288 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004289}
4290
4291/*
danielk1977d04417962007-05-02 13:16:30 +00004292** Given the page number of an overflow page in the database (parameter
4293** ovfl), this function finds the page number of the next page in the
4294** linked list of overflow pages. If possible, it uses the auto-vacuum
4295** pointer-map data instead of reading the content of page ovfl to do so.
4296**
4297** If an error occurs an SQLite error code is returned. Otherwise:
4298**
danielk1977bea2a942009-01-20 17:06:27 +00004299** The page number of the next overflow page in the linked list is
4300** written to *pPgnoNext. If page ovfl is the last page in its linked
4301** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004302**
danielk1977bea2a942009-01-20 17:06:27 +00004303** If ppPage is not NULL, and a reference to the MemPage object corresponding
4304** to page number pOvfl was obtained, then *ppPage is set to point to that
4305** reference. It is the responsibility of the caller to call releasePage()
4306** on *ppPage to free the reference. In no reference was obtained (because
4307** the pointer-map was used to obtain the value for *pPgnoNext), then
4308** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004309*/
4310static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004311 BtShared *pBt, /* The database file */
4312 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004313 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004314 Pgno *pPgnoNext /* OUT: Next overflow page number */
4315){
4316 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004317 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004318 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004319
drh1fee73e2007-08-29 04:00:57 +00004320 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004321 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004322
4323#ifndef SQLITE_OMIT_AUTOVACUUM
4324 /* Try to find the next page in the overflow list using the
4325 ** autovacuum pointer-map pages. Guess that the next page in
4326 ** the overflow list is page number (ovfl+1). If that guess turns
4327 ** out to be wrong, fall back to loading the data of page
4328 ** number ovfl to determine the next page number.
4329 */
4330 if( pBt->autoVacuum ){
4331 Pgno pgno;
4332 Pgno iGuess = ovfl+1;
4333 u8 eType;
4334
4335 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4336 iGuess++;
4337 }
4338
drhb1299152010-03-30 22:58:33 +00004339 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004340 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004341 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004342 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004343 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004344 }
4345 }
4346 }
4347#endif
4348
danielk1977d8a3f3d2009-07-11 11:45:23 +00004349 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004350 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004351 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004352 assert( rc==SQLITE_OK || pPage==0 );
4353 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004354 next = get4byte(pPage->aData);
4355 }
danielk1977443c0592009-01-16 15:21:05 +00004356 }
danielk197745d68822009-01-16 16:23:38 +00004357
danielk1977bea2a942009-01-20 17:06:27 +00004358 *pPgnoNext = next;
4359 if( ppPage ){
4360 *ppPage = pPage;
4361 }else{
4362 releasePage(pPage);
4363 }
4364 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004365}
4366
danielk1977da107192007-05-04 08:32:13 +00004367/*
4368** Copy data from a buffer to a page, or from a page to a buffer.
4369**
4370** pPayload is a pointer to data stored on database page pDbPage.
4371** If argument eOp is false, then nByte bytes of data are copied
4372** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4373** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4374** of data are copied from the buffer pBuf to pPayload.
4375**
4376** SQLITE_OK is returned on success, otherwise an error code.
4377*/
4378static int copyPayload(
4379 void *pPayload, /* Pointer to page data */
4380 void *pBuf, /* Pointer to buffer */
4381 int nByte, /* Number of bytes to copy */
4382 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4383 DbPage *pDbPage /* Page containing pPayload */
4384){
4385 if( eOp ){
4386 /* Copy data from buffer to page (a write operation) */
4387 int rc = sqlite3PagerWrite(pDbPage);
4388 if( rc!=SQLITE_OK ){
4389 return rc;
4390 }
4391 memcpy(pPayload, pBuf, nByte);
4392 }else{
4393 /* Copy data from page to buffer (a read operation) */
4394 memcpy(pBuf, pPayload, nByte);
4395 }
4396 return SQLITE_OK;
4397}
danielk1977d04417962007-05-02 13:16:30 +00004398
4399/*
danielk19779f8d6402007-05-02 17:48:45 +00004400** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004401** for the entry that the pCur cursor is pointing to. The eOp
4402** argument is interpreted as follows:
4403**
4404** 0: The operation is a read. Populate the overflow cache.
4405** 1: The operation is a write. Populate the overflow cache.
4406** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004407**
4408** A total of "amt" bytes are read or written beginning at "offset".
4409** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004410**
drh3bcdfd22009-07-12 02:32:21 +00004411** The content being read or written might appear on the main page
4412** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004413**
dan5a500af2014-03-11 20:33:04 +00004414** If the current cursor entry uses one or more overflow pages and the
4415** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004416** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004417** Subsequent calls use this cache to make seeking to the supplied offset
4418** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004419**
4420** Once an overflow page-list cache has been allocated, it may be
4421** invalidated if some other cursor writes to the same table, or if
4422** the cursor is moved to a different row. Additionally, in auto-vacuum
4423** mode, the following events may invalidate an overflow page-list cache.
4424**
4425** * An incremental vacuum,
4426** * A commit in auto_vacuum="full" mode,
4427** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004428*/
danielk19779f8d6402007-05-02 17:48:45 +00004429static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004430 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004431 u32 offset, /* Begin reading this far into payload */
4432 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004433 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004434 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004435){
4436 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004437 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004438 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004439 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004440 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004441#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004442 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004443 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004444#endif
drh3aac2dd2004-04-26 14:10:20 +00004445
danielk1977da107192007-05-04 08:32:13 +00004446 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004447 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004448 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004449 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004450 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004451
drh86057612007-06-26 01:04:48 +00004452 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004453 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004454#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004455 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004456#endif
drhab1cc582014-09-23 21:25:19 +00004457 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004458
drhab1cc582014-09-23 21:25:19 +00004459 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004460 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004461 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004462 }
danielk1977da107192007-05-04 08:32:13 +00004463
4464 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004465 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004466 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004467 if( a+offset>pCur->info.nLocal ){
4468 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004469 }
dan5a500af2014-03-11 20:33:04 +00004470 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004471 offset = 0;
drha34b6762004-05-07 13:30:42 +00004472 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004473 amt -= a;
drhdd793422001-06-28 01:54:48 +00004474 }else{
drhfa1a98a2004-05-14 19:08:17 +00004475 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004476 }
danielk1977da107192007-05-04 08:32:13 +00004477
dan85753662014-12-11 16:38:18 +00004478
danielk1977da107192007-05-04 08:32:13 +00004479 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004480 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004481 Pgno nextPage;
4482
drhfa1a98a2004-05-14 19:08:17 +00004483 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004484
drha38c9512014-04-01 01:24:34 +00004485 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4486 ** Except, do not allocate aOverflow[] for eOp==2.
4487 **
4488 ** The aOverflow[] array is sized at one entry for each overflow page
4489 ** in the overflow chain. The page number of the first overflow page is
4490 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4491 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004492 */
drh036dbec2014-03-11 23:40:44 +00004493 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004494 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004495 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004496 Pgno *aNew = (Pgno*)sqlite3Realloc(
4497 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004498 );
4499 if( aNew==0 ){
4500 rc = SQLITE_NOMEM;
4501 }else{
4502 pCur->nOvflAlloc = nOvfl*2;
4503 pCur->aOverflow = aNew;
4504 }
4505 }
4506 if( rc==SQLITE_OK ){
4507 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004508 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004509 }
4510 }
danielk1977da107192007-05-04 08:32:13 +00004511
4512 /* If the overflow page-list cache has been allocated and the
4513 ** entry for the first required overflow page is valid, skip
4514 ** directly to it.
4515 */
drh3f387402014-09-24 01:23:00 +00004516 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4517 && pCur->aOverflow[offset/ovflSize]
4518 ){
danielk19772dec9702007-05-02 16:48:37 +00004519 iIdx = (offset/ovflSize);
4520 nextPage = pCur->aOverflow[iIdx];
4521 offset = (offset%ovflSize);
4522 }
danielk1977da107192007-05-04 08:32:13 +00004523
4524 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4525
danielk1977da107192007-05-04 08:32:13 +00004526 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004527 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004528 assert( pCur->aOverflow[iIdx]==0
4529 || pCur->aOverflow[iIdx]==nextPage
4530 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004531 pCur->aOverflow[iIdx] = nextPage;
4532 }
danielk1977da107192007-05-04 08:32:13 +00004533
danielk1977d04417962007-05-02 13:16:30 +00004534 if( offset>=ovflSize ){
4535 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004536 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004537 ** data is not required. So first try to lookup the overflow
4538 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004539 ** function.
drha38c9512014-04-01 01:24:34 +00004540 **
4541 ** Note that the aOverflow[] array must be allocated because eOp!=2
4542 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004543 */
drha38c9512014-04-01 01:24:34 +00004544 assert( eOp!=2 );
4545 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004546 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004547 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004548 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004549 }else{
danielk1977da107192007-05-04 08:32:13 +00004550 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004551 }
danielk1977da107192007-05-04 08:32:13 +00004552 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004553 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004554 /* Need to read this page properly. It contains some of the
4555 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004556 */
danf4ba1092011-10-08 14:57:07 +00004557#ifdef SQLITE_DIRECT_OVERFLOW_READ
4558 sqlite3_file *fd;
4559#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004560 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004561 if( a + offset > ovflSize ){
4562 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004563 }
danf4ba1092011-10-08 14:57:07 +00004564
4565#ifdef SQLITE_DIRECT_OVERFLOW_READ
4566 /* If all the following are true:
4567 **
4568 ** 1) this is a read operation, and
4569 ** 2) data is required from the start of this overflow page, and
4570 ** 3) the database is file-backed, and
4571 ** 4) there is no open write-transaction, and
4572 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004573 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004574 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004575 **
4576 ** then data can be read directly from the database file into the
4577 ** output buffer, bypassing the page-cache altogether. This speeds
4578 ** up loading large records that span many overflow pages.
4579 */
dan5a500af2014-03-11 20:33:04 +00004580 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004581 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004582 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004583 && pBt->inTransaction==TRANS_READ /* (4) */
4584 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4585 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004586 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004587 ){
4588 u8 aSave[4];
4589 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004590 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004591 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004592 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004593 nextPage = get4byte(aWrite);
4594 memcpy(aWrite, aSave, 4);
4595 }else
4596#endif
4597
4598 {
4599 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004600 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004601 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004602 );
danf4ba1092011-10-08 14:57:07 +00004603 if( rc==SQLITE_OK ){
4604 aPayload = sqlite3PagerGetData(pDbPage);
4605 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004606 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004607 sqlite3PagerUnref(pDbPage);
4608 offset = 0;
4609 }
4610 }
4611 amt -= a;
4612 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004613 }
drh2af926b2001-05-15 00:39:25 +00004614 }
drh2af926b2001-05-15 00:39:25 +00004615 }
danielk1977cfe9a692004-06-16 12:00:29 +00004616
danielk1977da107192007-05-04 08:32:13 +00004617 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004618 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004619 }
danielk1977da107192007-05-04 08:32:13 +00004620 return rc;
drh2af926b2001-05-15 00:39:25 +00004621}
4622
drh72f82862001-05-24 21:06:34 +00004623/*
drh3aac2dd2004-04-26 14:10:20 +00004624** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004625** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004626** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004627**
drh5d1a8722009-07-22 18:07:40 +00004628** The caller must ensure that pCur is pointing to a valid row
4629** in the table.
4630**
drh3aac2dd2004-04-26 14:10:20 +00004631** Return SQLITE_OK on success or an error code if anything goes
4632** wrong. An error is returned if "offset+amt" is larger than
4633** the available payload.
drh72f82862001-05-24 21:06:34 +00004634*/
drha34b6762004-05-07 13:30:42 +00004635int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004636 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004637 assert( pCur->eState==CURSOR_VALID );
4638 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4639 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4640 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004641}
4642
4643/*
drh3aac2dd2004-04-26 14:10:20 +00004644** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004645** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004646** begins at "offset".
4647**
4648** Return SQLITE_OK on success or an error code if anything goes
4649** wrong. An error is returned if "offset+amt" is larger than
4650** the available payload.
drh72f82862001-05-24 21:06:34 +00004651*/
drh3aac2dd2004-04-26 14:10:20 +00004652int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004653 int rc;
4654
danielk19773588ceb2008-06-10 17:30:26 +00004655#ifndef SQLITE_OMIT_INCRBLOB
4656 if ( pCur->eState==CURSOR_INVALID ){
4657 return SQLITE_ABORT;
4658 }
4659#endif
4660
drh1fee73e2007-08-29 04:00:57 +00004661 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004662 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004663 if( rc==SQLITE_OK ){
4664 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004665 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4666 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004667 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004668 }
4669 return rc;
drh2af926b2001-05-15 00:39:25 +00004670}
4671
drh72f82862001-05-24 21:06:34 +00004672/*
drh0e1c19e2004-05-11 00:58:56 +00004673** Return a pointer to payload information from the entry that the
4674** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004675** the key if index btrees (pPage->intKey==0) and is the data for
4676** table btrees (pPage->intKey==1). The number of bytes of available
4677** key/data is written into *pAmt. If *pAmt==0, then the value
4678** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004679**
4680** This routine is an optimization. It is common for the entire key
4681** and data to fit on the local page and for there to be no overflow
4682** pages. When that is so, this routine can be used to access the
4683** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004684** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004685** the key/data and copy it into a preallocated buffer.
4686**
4687** The pointer returned by this routine looks directly into the cached
4688** page of the database. The data might change or move the next time
4689** any btree routine is called.
4690*/
drh2a8d2262013-12-09 20:43:22 +00004691static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004692 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004693 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004694){
drhf3392e32015-04-15 17:26:55 +00004695 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004696 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004697 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004698 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004699 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004700 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004701 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004702 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4703 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4704 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4705 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4706 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004707 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004708}
4709
4710
4711/*
drhe51c44f2004-05-30 20:46:09 +00004712** For the entry that cursor pCur is point to, return as
4713** many bytes of the key or data as are available on the local
4714** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004715**
4716** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004717** or be destroyed on the next call to any Btree routine,
4718** including calls from other threads against the same cache.
4719** Hence, a mutex on the BtShared should be held prior to calling
4720** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004721**
4722** These routines is used to get quick access to key and data
4723** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004724*/
drh501932c2013-11-21 21:59:53 +00004725const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004726 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004727}
drh501932c2013-11-21 21:59:53 +00004728const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004729 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004730}
4731
4732
4733/*
drh8178a752003-01-05 21:41:40 +00004734** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004735** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004736**
4737** This function returns SQLITE_CORRUPT if the page-header flags field of
4738** the new child page does not match the flags field of the parent (i.e.
4739** if an intkey page appears to be the parent of a non-intkey page, or
4740** vice-versa).
drh72f82862001-05-24 21:06:34 +00004741*/
drh3aac2dd2004-04-26 14:10:20 +00004742static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004743 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004744
drh1fee73e2007-08-29 04:00:57 +00004745 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004746 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004747 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004748 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004749 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4750 return SQLITE_CORRUPT_BKPT;
4751 }
drh271efa52004-05-30 19:19:05 +00004752 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004753 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004754 pCur->iPage++;
4755 pCur->aiIdx[pCur->iPage] = 0;
4756 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4757 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004758}
4759
drhcbd33492015-03-25 13:06:54 +00004760#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004761/*
4762** Page pParent is an internal (non-leaf) tree page. This function
4763** asserts that page number iChild is the left-child if the iIdx'th
4764** cell in page pParent. Or, if iIdx is equal to the total number of
4765** cells in pParent, that page number iChild is the right-child of
4766** the page.
4767*/
4768static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004769 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4770 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004771 assert( iIdx<=pParent->nCell );
4772 if( iIdx==pParent->nCell ){
4773 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4774 }else{
4775 assert( get4byte(findCell(pParent, iIdx))==iChild );
4776 }
4777}
4778#else
4779# define assertParentIndex(x,y,z)
4780#endif
4781
drh72f82862001-05-24 21:06:34 +00004782/*
drh5e2f8b92001-05-28 00:41:15 +00004783** Move the cursor up to the parent page.
4784**
4785** pCur->idx is set to the cell index that contains the pointer
4786** to the page we are coming from. If we are coming from the
4787** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004788** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004789*/
danielk197730548662009-07-09 05:07:37 +00004790static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004791 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004792 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004793 assert( pCur->iPage>0 );
4794 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004795 assertParentIndex(
4796 pCur->apPage[pCur->iPage-1],
4797 pCur->aiIdx[pCur->iPage-1],
4798 pCur->apPage[pCur->iPage]->pgno
4799 );
dan6c2688c2012-01-12 15:05:03 +00004800 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004801 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004802 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004803 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004804}
4805
4806/*
danielk19778f880a82009-07-13 09:41:45 +00004807** Move the cursor to point to the root page of its b-tree structure.
4808**
4809** If the table has a virtual root page, then the cursor is moved to point
4810** to the virtual root page instead of the actual root page. A table has a
4811** virtual root page when the actual root page contains no cells and a
4812** single child page. This can only happen with the table rooted at page 1.
4813**
4814** If the b-tree structure is empty, the cursor state is set to
4815** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4816** cell located on the root (or virtual root) page and the cursor state
4817** is set to CURSOR_VALID.
4818**
4819** If this function returns successfully, it may be assumed that the
4820** page-header flags indicate that the [virtual] root-page is the expected
4821** kind of b-tree page (i.e. if when opening the cursor the caller did not
4822** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4823** indicating a table b-tree, or if the caller did specify a KeyInfo
4824** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4825** b-tree).
drh72f82862001-05-24 21:06:34 +00004826*/
drh5e2f8b92001-05-28 00:41:15 +00004827static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004828 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004829 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004830
drh1fee73e2007-08-29 04:00:57 +00004831 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004832 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4833 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4834 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4835 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4836 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004837 assert( pCur->skipNext!=SQLITE_OK );
4838 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004839 }
danielk1977be51a652008-10-08 17:58:48 +00004840 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004841 }
danielk197771d5d2c2008-09-29 11:49:47 +00004842
4843 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004844 while( pCur->iPage ){
4845 assert( pCur->apPage[pCur->iPage]!=0 );
4846 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4847 }
dana205a482011-08-27 18:48:57 +00004848 }else if( pCur->pgnoRoot==0 ){
4849 pCur->eState = CURSOR_INVALID;
4850 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004851 }else{
drh28f58dd2015-06-27 19:45:03 +00004852 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004853 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004854 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004855 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004856 pCur->eState = CURSOR_INVALID;
4857 return rc;
4858 }
danielk1977172114a2009-07-07 15:47:12 +00004859 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004860 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004861 }
danielk197771d5d2c2008-09-29 11:49:47 +00004862 pRoot = pCur->apPage[0];
4863 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004864
4865 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4866 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4867 ** NULL, the caller expects a table b-tree. If this is not the case,
4868 ** return an SQLITE_CORRUPT error.
4869 **
4870 ** Earlier versions of SQLite assumed that this test could not fail
4871 ** if the root page was already loaded when this function was called (i.e.
4872 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4873 ** in such a way that page pRoot is linked into a second b-tree table
4874 ** (or the freelist). */
4875 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4876 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4877 return SQLITE_CORRUPT_BKPT;
4878 }
danielk19778f880a82009-07-13 09:41:45 +00004879
danielk197771d5d2c2008-09-29 11:49:47 +00004880 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004881 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004882 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004883
drh4e8fe3f2013-12-06 23:25:27 +00004884 if( pRoot->nCell>0 ){
4885 pCur->eState = CURSOR_VALID;
4886 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004887 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004888 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004889 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004890 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004891 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004892 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004893 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004894 }
4895 return rc;
drh72f82862001-05-24 21:06:34 +00004896}
drh2af926b2001-05-15 00:39:25 +00004897
drh5e2f8b92001-05-28 00:41:15 +00004898/*
4899** Move the cursor down to the left-most leaf entry beneath the
4900** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004901**
4902** The left-most leaf is the one with the smallest key - the first
4903** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004904*/
4905static int moveToLeftmost(BtCursor *pCur){
4906 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004907 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004908 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004909
drh1fee73e2007-08-29 04:00:57 +00004910 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004911 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004912 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4913 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4914 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004915 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004916 }
drhd677b3d2007-08-20 22:48:41 +00004917 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004918}
4919
drh2dcc9aa2002-12-04 13:40:25 +00004920/*
4921** Move the cursor down to the right-most leaf entry beneath the
4922** page to which it is currently pointing. Notice the difference
4923** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4924** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4925** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004926**
4927** The right-most entry is the one with the largest key - the last
4928** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004929*/
4930static int moveToRightmost(BtCursor *pCur){
4931 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004932 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004933 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004934
drh1fee73e2007-08-29 04:00:57 +00004935 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004936 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004937 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004938 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004939 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004940 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004941 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004942 }
drhee6438d2014-09-01 13:29:32 +00004943 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4944 assert( pCur->info.nSize==0 );
4945 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4946 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004947}
4948
drh5e00f6c2001-09-13 13:46:56 +00004949/* Move the cursor to the first entry in the table. Return SQLITE_OK
4950** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004951** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004952*/
drh3aac2dd2004-04-26 14:10:20 +00004953int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004954 int rc;
drhd677b3d2007-08-20 22:48:41 +00004955
drh1fee73e2007-08-29 04:00:57 +00004956 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004957 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004958 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004959 if( rc==SQLITE_OK ){
4960 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004961 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004962 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004963 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004964 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004965 *pRes = 0;
4966 rc = moveToLeftmost(pCur);
4967 }
drh5e00f6c2001-09-13 13:46:56 +00004968 }
drh5e00f6c2001-09-13 13:46:56 +00004969 return rc;
4970}
drh5e2f8b92001-05-28 00:41:15 +00004971
drh9562b552002-02-19 15:00:07 +00004972/* Move the cursor to the last entry in the table. Return SQLITE_OK
4973** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004974** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004975*/
drh3aac2dd2004-04-26 14:10:20 +00004976int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004977 int rc;
drhd677b3d2007-08-20 22:48:41 +00004978
drh1fee73e2007-08-29 04:00:57 +00004979 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004980 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004981
4982 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004983 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004984#ifdef SQLITE_DEBUG
4985 /* This block serves to assert() that the cursor really does point
4986 ** to the last entry in the b-tree. */
4987 int ii;
4988 for(ii=0; ii<pCur->iPage; ii++){
4989 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4990 }
4991 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4992 assert( pCur->apPage[pCur->iPage]->leaf );
4993#endif
4994 return SQLITE_OK;
4995 }
4996
drh9562b552002-02-19 15:00:07 +00004997 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004998 if( rc==SQLITE_OK ){
4999 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005000 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005001 *pRes = 1;
5002 }else{
5003 assert( pCur->eState==CURSOR_VALID );
5004 *pRes = 0;
5005 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005006 if( rc==SQLITE_OK ){
5007 pCur->curFlags |= BTCF_AtLast;
5008 }else{
5009 pCur->curFlags &= ~BTCF_AtLast;
5010 }
5011
drhd677b3d2007-08-20 22:48:41 +00005012 }
drh9562b552002-02-19 15:00:07 +00005013 }
drh9562b552002-02-19 15:00:07 +00005014 return rc;
5015}
5016
drhe14006d2008-03-25 17:23:32 +00005017/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005018** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005019**
drhe63d9992008-08-13 19:11:48 +00005020** For INTKEY tables, the intKey parameter is used. pIdxKey
5021** must be NULL. For index tables, pIdxKey is used and intKey
5022** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005023**
drh5e2f8b92001-05-28 00:41:15 +00005024** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005025** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005026** were present. The cursor might point to an entry that comes
5027** before or after the key.
5028**
drh64022502009-01-09 14:11:04 +00005029** An integer is written into *pRes which is the result of
5030** comparing the key with the entry to which the cursor is
5031** pointing. The meaning of the integer written into
5032** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005033**
5034** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005035** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005036** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005037**
5038** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005039** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005040**
5041** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005042** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005043**
drha059ad02001-04-17 20:09:11 +00005044*/
drhe63d9992008-08-13 19:11:48 +00005045int sqlite3BtreeMovetoUnpacked(
5046 BtCursor *pCur, /* The cursor to be moved */
5047 UnpackedRecord *pIdxKey, /* Unpacked index key */
5048 i64 intKey, /* The table key */
5049 int biasRight, /* If true, bias the search to the high end */
5050 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005051){
drh72f82862001-05-24 21:06:34 +00005052 int rc;
dan3b9330f2014-02-27 20:44:18 +00005053 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005054
drh1fee73e2007-08-29 04:00:57 +00005055 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005056 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005057 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005058 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005059
5060 /* If the cursor is already positioned at the point we are trying
5061 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005062 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005063 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005064 ){
drhe63d9992008-08-13 19:11:48 +00005065 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005066 *pRes = 0;
5067 return SQLITE_OK;
5068 }
drh036dbec2014-03-11 23:40:44 +00005069 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005070 *pRes = -1;
5071 return SQLITE_OK;
5072 }
5073 }
5074
dan1fed5da2014-02-25 21:01:25 +00005075 if( pIdxKey ){
5076 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005077 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005078 assert( pIdxKey->default_rc==1
5079 || pIdxKey->default_rc==0
5080 || pIdxKey->default_rc==-1
5081 );
drh13a747e2014-03-03 21:46:55 +00005082 }else{
drhb6e8fd12014-03-06 01:56:33 +00005083 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005084 }
5085
drh5e2f8b92001-05-28 00:41:15 +00005086 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005087 if( rc ){
5088 return rc;
5089 }
dana205a482011-08-27 18:48:57 +00005090 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5091 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5092 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005093 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005094 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005095 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005096 return SQLITE_OK;
5097 }
drhc75d8862015-06-27 23:55:20 +00005098 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5099 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005100 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005101 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005102 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005103 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005104 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005105
5106 /* pPage->nCell must be greater than zero. If this is the root-page
5107 ** the cursor would have been INVALID above and this for(;;) loop
5108 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005109 ** would have already detected db corruption. Similarly, pPage must
5110 ** be the right kind (index or table) of b-tree page. Otherwise
5111 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005112 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005113 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005114 lwr = 0;
5115 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005116 assert( biasRight==0 || biasRight==1 );
5117 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005118 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005119 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005120 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005121 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005122 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005123 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005124 while( 0x80 <= *(pCell++) ){
5125 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5126 }
drhd172f862006-01-12 15:01:15 +00005127 }
drha2c20e42008-03-29 16:01:04 +00005128 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005129 if( nCellKey<intKey ){
5130 lwr = idx+1;
5131 if( lwr>upr ){ c = -1; break; }
5132 }else if( nCellKey>intKey ){
5133 upr = idx-1;
5134 if( lwr>upr ){ c = +1; break; }
5135 }else{
5136 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005137 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005138 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005139 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005140 if( !pPage->leaf ){
5141 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005142 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005143 }else{
5144 *pRes = 0;
5145 rc = SQLITE_OK;
5146 goto moveto_finish;
5147 }
drhd793f442013-11-25 14:10:15 +00005148 }
drhebf10b12013-11-25 17:38:26 +00005149 assert( lwr+upr>=0 );
5150 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005151 }
5152 }else{
5153 for(;;){
drhc6827502015-05-28 15:14:32 +00005154 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005155 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005156
drhb2eced52010-08-12 02:41:12 +00005157 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005158 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005159 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005160 ** varint. This information is used to attempt to avoid parsing
5161 ** the entire cell by checking for the cases where the record is
5162 ** stored entirely within the b-tree page by inspecting the first
5163 ** 2 bytes of the cell.
5164 */
drhec3e6b12013-11-25 02:38:55 +00005165 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005166 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005167 /* This branch runs if the record-size field of the cell is a
5168 ** single byte varint and the record fits entirely on the main
5169 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005170 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005171 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005172 }else if( !(pCell[1] & 0x80)
5173 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5174 ){
5175 /* The record-size field is a 2 byte varint and the record
5176 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005177 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005178 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005179 }else{
danielk197711c327a2009-05-04 19:01:26 +00005180 /* The record flows over onto one or more overflow pages. In
5181 ** this case the whole cell needs to be parsed, a buffer allocated
5182 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005183 ** buffer before VdbeRecordCompare() can be called.
5184 **
5185 ** If the record is corrupt, the xRecordCompare routine may read
5186 ** up to two varints past the end of the buffer. An extra 18
5187 ** bytes of padding is allocated at the end of the buffer in
5188 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005189 void *pCellKey;
5190 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005191 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005192 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005193 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5194 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5195 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5196 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005197 if( nCell<2 ){
5198 rc = SQLITE_CORRUPT_BKPT;
5199 goto moveto_finish;
5200 }
5201 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005202 if( pCellKey==0 ){
5203 rc = SQLITE_NOMEM;
5204 goto moveto_finish;
5205 }
drhd793f442013-11-25 14:10:15 +00005206 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005207 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005208 if( rc ){
5209 sqlite3_free(pCellKey);
5210 goto moveto_finish;
5211 }
drh75179de2014-09-16 14:37:35 +00005212 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005213 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005214 }
dan38fdead2014-04-01 10:19:02 +00005215 assert(
5216 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005217 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005218 );
drhbb933ef2013-11-25 15:01:38 +00005219 if( c<0 ){
5220 lwr = idx+1;
5221 }else if( c>0 ){
5222 upr = idx-1;
5223 }else{
5224 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005225 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005226 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005227 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005228 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005229 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005230 }
drhebf10b12013-11-25 17:38:26 +00005231 if( lwr>upr ) break;
5232 assert( lwr+upr>=0 );
5233 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005234 }
drh72f82862001-05-24 21:06:34 +00005235 }
drhb07028f2011-10-14 21:49:18 +00005236 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005237 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005238 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005239 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005240 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005241 *pRes = c;
5242 rc = SQLITE_OK;
5243 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005244 }
5245moveto_next_layer:
5246 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005247 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005248 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005249 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005250 }
drhf49661a2008-12-10 16:45:50 +00005251 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005252 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005253 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005254 }
drh1e968a02008-03-25 00:22:21 +00005255moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005256 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005257 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005258 return rc;
5259}
5260
drhd677b3d2007-08-20 22:48:41 +00005261
drh72f82862001-05-24 21:06:34 +00005262/*
drhc39e0002004-05-07 23:50:57 +00005263** Return TRUE if the cursor is not pointing at an entry of the table.
5264**
5265** TRUE will be returned after a call to sqlite3BtreeNext() moves
5266** past the last entry in the table or sqlite3BtreePrev() moves past
5267** the first entry. TRUE is also returned if the table is empty.
5268*/
5269int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005270 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5271 ** have been deleted? This API will need to change to return an error code
5272 ** as well as the boolean result value.
5273 */
5274 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005275}
5276
5277/*
drhbd03cae2001-06-02 02:40:57 +00005278** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005279** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005280** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005281** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005282**
drhee6438d2014-09-01 13:29:32 +00005283** The main entry point is sqlite3BtreeNext(). That routine is optimized
5284** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5285** to the next cell on the current page. The (slower) btreeNext() helper
5286** routine is called when it is necessary to move to a different page or
5287** to restore the cursor.
5288**
drhe39a7322014-02-03 14:04:11 +00005289** The calling function will set *pRes to 0 or 1. The initial *pRes value
5290** will be 1 if the cursor being stepped corresponds to an SQL index and
5291** if this routine could have been skipped if that SQL index had been
5292** a unique index. Otherwise the caller will have set *pRes to zero.
5293** Zero is the common case. The btree implementation is free to use the
5294** initial *pRes value as a hint to improve performance, but the current
5295** SQLite btree implementation does not. (Note that the comdb2 btree
5296** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005297*/
drhee6438d2014-09-01 13:29:32 +00005298static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005299 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005300 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005301 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005302
drh1fee73e2007-08-29 04:00:57 +00005303 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005304 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005305 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005306 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005307 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005308 rc = restoreCursorPosition(pCur);
5309 if( rc!=SQLITE_OK ){
5310 return rc;
5311 }
5312 if( CURSOR_INVALID==pCur->eState ){
5313 *pRes = 1;
5314 return SQLITE_OK;
5315 }
drh9b47ee32013-08-20 03:13:51 +00005316 if( pCur->skipNext ){
5317 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5318 pCur->eState = CURSOR_VALID;
5319 if( pCur->skipNext>0 ){
5320 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005321 return SQLITE_OK;
5322 }
drhf66f26a2013-08-19 20:04:10 +00005323 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005324 }
danielk1977da184232006-01-05 11:34:32 +00005325 }
danielk1977da184232006-01-05 11:34:32 +00005326
danielk197771d5d2c2008-09-29 11:49:47 +00005327 pPage = pCur->apPage[pCur->iPage];
5328 idx = ++pCur->aiIdx[pCur->iPage];
5329 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005330
5331 /* If the database file is corrupt, it is possible for the value of idx
5332 ** to be invalid here. This can only occur if a second cursor modifies
5333 ** the page while cursor pCur is holding a reference to it. Which can
5334 ** only happen if the database is corrupt in such a way as to link the
5335 ** page into more than one b-tree structure. */
5336 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005337
danielk197771d5d2c2008-09-29 11:49:47 +00005338 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005339 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005340 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005341 if( rc ) return rc;
5342 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005343 }
drh5e2f8b92001-05-28 00:41:15 +00005344 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005345 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005346 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005347 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005348 return SQLITE_OK;
5349 }
danielk197730548662009-07-09 05:07:37 +00005350 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005351 pPage = pCur->apPage[pCur->iPage];
5352 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005353 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005354 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005355 }else{
drhee6438d2014-09-01 13:29:32 +00005356 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005357 }
drh8178a752003-01-05 21:41:40 +00005358 }
drh3aac2dd2004-04-26 14:10:20 +00005359 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005360 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005361 }else{
5362 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005363 }
drh72f82862001-05-24 21:06:34 +00005364}
drhee6438d2014-09-01 13:29:32 +00005365int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5366 MemPage *pPage;
5367 assert( cursorHoldsMutex(pCur) );
5368 assert( pRes!=0 );
5369 assert( *pRes==0 || *pRes==1 );
5370 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5371 pCur->info.nSize = 0;
5372 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5373 *pRes = 0;
5374 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5375 pPage = pCur->apPage[pCur->iPage];
5376 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5377 pCur->aiIdx[pCur->iPage]--;
5378 return btreeNext(pCur, pRes);
5379 }
5380 if( pPage->leaf ){
5381 return SQLITE_OK;
5382 }else{
5383 return moveToLeftmost(pCur);
5384 }
5385}
drh72f82862001-05-24 21:06:34 +00005386
drh3b7511c2001-05-26 13:15:44 +00005387/*
drh2dcc9aa2002-12-04 13:40:25 +00005388** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005389** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005390** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005391** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005392**
drhee6438d2014-09-01 13:29:32 +00005393** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5394** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005395** to the previous cell on the current page. The (slower) btreePrevious()
5396** helper routine is called when it is necessary to move to a different page
5397** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005398**
drhe39a7322014-02-03 14:04:11 +00005399** The calling function will set *pRes to 0 or 1. The initial *pRes value
5400** will be 1 if the cursor being stepped corresponds to an SQL index and
5401** if this routine could have been skipped if that SQL index had been
5402** a unique index. Otherwise the caller will have set *pRes to zero.
5403** Zero is the common case. The btree implementation is free to use the
5404** initial *pRes value as a hint to improve performance, but the current
5405** SQLite btree implementation does not. (Note that the comdb2 btree
5406** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005407*/
drhee6438d2014-09-01 13:29:32 +00005408static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005409 int rc;
drh8178a752003-01-05 21:41:40 +00005410 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005411
drh1fee73e2007-08-29 04:00:57 +00005412 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005413 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005414 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005415 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005416 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5417 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005418 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005419 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005420 if( rc!=SQLITE_OK ){
5421 return rc;
drhf66f26a2013-08-19 20:04:10 +00005422 }
5423 if( CURSOR_INVALID==pCur->eState ){
5424 *pRes = 1;
5425 return SQLITE_OK;
5426 }
drh9b47ee32013-08-20 03:13:51 +00005427 if( pCur->skipNext ){
5428 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5429 pCur->eState = CURSOR_VALID;
5430 if( pCur->skipNext<0 ){
5431 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005432 return SQLITE_OK;
5433 }
drhf66f26a2013-08-19 20:04:10 +00005434 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005435 }
danielk1977da184232006-01-05 11:34:32 +00005436 }
danielk1977da184232006-01-05 11:34:32 +00005437
danielk197771d5d2c2008-09-29 11:49:47 +00005438 pPage = pCur->apPage[pCur->iPage];
5439 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005440 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005441 int idx = pCur->aiIdx[pCur->iPage];
5442 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005443 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005444 rc = moveToRightmost(pCur);
5445 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005446 while( pCur->aiIdx[pCur->iPage]==0 ){
5447 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005448 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005449 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005450 return SQLITE_OK;
5451 }
danielk197730548662009-07-09 05:07:37 +00005452 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005453 }
drhee6438d2014-09-01 13:29:32 +00005454 assert( pCur->info.nSize==0 );
5455 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005456
5457 pCur->aiIdx[pCur->iPage]--;
5458 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005459 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005460 rc = sqlite3BtreePrevious(pCur, pRes);
5461 }else{
5462 rc = SQLITE_OK;
5463 }
drh2dcc9aa2002-12-04 13:40:25 +00005464 }
drh2dcc9aa2002-12-04 13:40:25 +00005465 return rc;
5466}
drhee6438d2014-09-01 13:29:32 +00005467int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5468 assert( cursorHoldsMutex(pCur) );
5469 assert( pRes!=0 );
5470 assert( *pRes==0 || *pRes==1 );
5471 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5472 *pRes = 0;
5473 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5474 pCur->info.nSize = 0;
5475 if( pCur->eState!=CURSOR_VALID
5476 || pCur->aiIdx[pCur->iPage]==0
5477 || pCur->apPage[pCur->iPage]->leaf==0
5478 ){
5479 return btreePrevious(pCur, pRes);
5480 }
5481 pCur->aiIdx[pCur->iPage]--;
5482 return SQLITE_OK;
5483}
drh2dcc9aa2002-12-04 13:40:25 +00005484
5485/*
drh3b7511c2001-05-26 13:15:44 +00005486** Allocate a new page from the database file.
5487**
danielk19773b8a05f2007-03-19 17:44:26 +00005488** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005489** has already been called on the new page.) The new page has also
5490** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005491** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005492**
5493** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005494** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005495**
drh82e647d2013-03-02 03:25:55 +00005496** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005497** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005498** attempt to keep related pages close to each other in the database file,
5499** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005500**
drh82e647d2013-03-02 03:25:55 +00005501** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5502** anywhere on the free-list, then it is guaranteed to be returned. If
5503** eMode is BTALLOC_LT then the page returned will be less than or equal
5504** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5505** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005506*/
drh4f0c5872007-03-26 22:05:01 +00005507static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005508 BtShared *pBt, /* The btree */
5509 MemPage **ppPage, /* Store pointer to the allocated page here */
5510 Pgno *pPgno, /* Store the page number here */
5511 Pgno nearby, /* Search for a page near this one */
5512 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005513){
drh3aac2dd2004-04-26 14:10:20 +00005514 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005515 int rc;
drh35cd6432009-06-05 14:17:21 +00005516 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005517 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005518 MemPage *pTrunk = 0;
5519 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005520 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005521
drh1fee73e2007-08-29 04:00:57 +00005522 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005523 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005524 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005525 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005526 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5527 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005528 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005529 testcase( n==mxPage-1 );
5530 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005531 return SQLITE_CORRUPT_BKPT;
5532 }
drh3aac2dd2004-04-26 14:10:20 +00005533 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005534 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005535 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005536 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005537 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005538
drh82e647d2013-03-02 03:25:55 +00005539 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005540 ** shows that the page 'nearby' is somewhere on the free-list, then
5541 ** the entire-list will be searched for that page.
5542 */
5543#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005544 if( eMode==BTALLOC_EXACT ){
5545 if( nearby<=mxPage ){
5546 u8 eType;
5547 assert( nearby>0 );
5548 assert( pBt->autoVacuum );
5549 rc = ptrmapGet(pBt, nearby, &eType, 0);
5550 if( rc ) return rc;
5551 if( eType==PTRMAP_FREEPAGE ){
5552 searchList = 1;
5553 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005554 }
dan51f0b6d2013-02-22 20:16:34 +00005555 }else if( eMode==BTALLOC_LE ){
5556 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005557 }
5558#endif
5559
5560 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5561 ** first free-list trunk page. iPrevTrunk is initially 1.
5562 */
danielk19773b8a05f2007-03-19 17:44:26 +00005563 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005564 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005565 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005566
5567 /* The code within this loop is run only once if the 'searchList' variable
5568 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005569 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5570 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005571 */
5572 do {
5573 pPrevTrunk = pTrunk;
5574 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005575 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5576 ** is the page number of the next freelist trunk page in the list or
5577 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005578 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005579 }else{
drh113762a2014-11-19 16:36:25 +00005580 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5581 ** stores the page number of the first page of the freelist, or zero if
5582 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005583 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005584 }
drhdf35a082009-07-09 02:24:35 +00005585 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005586 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005587 rc = SQLITE_CORRUPT_BKPT;
5588 }else{
drh7e8c6f12015-05-28 03:28:27 +00005589 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005590 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005591 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005592 pTrunk = 0;
5593 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005594 }
drhb07028f2011-10-14 21:49:18 +00005595 assert( pTrunk!=0 );
5596 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005597 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5598 ** is the number of leaf page pointers to follow. */
5599 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005600 if( k==0 && !searchList ){
5601 /* The trunk has no leaves and the list is not being searched.
5602 ** So extract the trunk page itself and use it as the newly
5603 ** allocated page */
5604 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005605 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005606 if( rc ){
5607 goto end_allocate_page;
5608 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005609 *pPgno = iTrunk;
5610 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5611 *ppPage = pTrunk;
5612 pTrunk = 0;
5613 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005614 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005615 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005616 rc = SQLITE_CORRUPT_BKPT;
5617 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005618#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005619 }else if( searchList
5620 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5621 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005622 /* The list is being searched and this trunk page is the page
5623 ** to allocate, regardless of whether it has leaves.
5624 */
dan51f0b6d2013-02-22 20:16:34 +00005625 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005626 *ppPage = pTrunk;
5627 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005628 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005629 if( rc ){
5630 goto end_allocate_page;
5631 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632 if( k==0 ){
5633 if( !pPrevTrunk ){
5634 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5635 }else{
danf48c3552010-08-23 15:41:24 +00005636 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5637 if( rc!=SQLITE_OK ){
5638 goto end_allocate_page;
5639 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5641 }
5642 }else{
5643 /* The trunk page is required by the caller but it contains
5644 ** pointers to free-list leaves. The first leaf becomes a trunk
5645 ** page in this case.
5646 */
5647 MemPage *pNewTrunk;
5648 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005649 if( iNewTrunk>mxPage ){
5650 rc = SQLITE_CORRUPT_BKPT;
5651 goto end_allocate_page;
5652 }
drhdf35a082009-07-09 02:24:35 +00005653 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005654 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005655 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005656 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005657 }
danielk19773b8a05f2007-03-19 17:44:26 +00005658 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005659 if( rc!=SQLITE_OK ){
5660 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005661 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005662 }
5663 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5664 put4byte(&pNewTrunk->aData[4], k-1);
5665 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005666 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005667 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005668 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005669 put4byte(&pPage1->aData[32], iNewTrunk);
5670 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005671 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005672 if( rc ){
5673 goto end_allocate_page;
5674 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005675 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5676 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005677 }
5678 pTrunk = 0;
5679 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5680#endif
danielk1977e5765212009-06-17 11:13:28 +00005681 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005682 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005683 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005684 Pgno iPage;
5685 unsigned char *aData = pTrunk->aData;
5686 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005687 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005688 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005689 if( eMode==BTALLOC_LE ){
5690 for(i=0; i<k; i++){
5691 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005692 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005693 closest = i;
5694 break;
5695 }
5696 }
5697 }else{
5698 int dist;
5699 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5700 for(i=1; i<k; i++){
5701 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5702 if( d2<dist ){
5703 closest = i;
5704 dist = d2;
5705 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005706 }
5707 }
5708 }else{
5709 closest = 0;
5710 }
5711
5712 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005713 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005714 if( iPage>mxPage ){
5715 rc = SQLITE_CORRUPT_BKPT;
5716 goto end_allocate_page;
5717 }
drhdf35a082009-07-09 02:24:35 +00005718 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005719 if( !searchList
5720 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5721 ){
danielk1977bea2a942009-01-20 17:06:27 +00005722 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005723 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005724 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5725 ": %d more free pages\n",
5726 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005727 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5728 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005729 if( closest<k-1 ){
5730 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5731 }
5732 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005733 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005734 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005735 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005736 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005737 if( rc!=SQLITE_OK ){
5738 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005739 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 }
5742 searchList = 0;
5743 }
drhee696e22004-08-30 16:52:17 +00005744 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005745 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005746 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005747 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005748 }else{
danbc1a3c62013-02-23 16:40:46 +00005749 /* There are no pages on the freelist, so append a new page to the
5750 ** database image.
5751 **
5752 ** Normally, new pages allocated by this block can be requested from the
5753 ** pager layer with the 'no-content' flag set. This prevents the pager
5754 ** from trying to read the pages content from disk. However, if the
5755 ** current transaction has already run one or more incremental-vacuum
5756 ** steps, then the page we are about to allocate may contain content
5757 ** that is required in the event of a rollback. In this case, do
5758 ** not set the no-content flag. This causes the pager to load and journal
5759 ** the current page content before overwriting it.
5760 **
5761 ** Note that the pager will not actually attempt to load or journal
5762 ** content for any page that really does lie past the end of the database
5763 ** file on disk. So the effects of disabling the no-content optimization
5764 ** here are confined to those pages that lie between the end of the
5765 ** database image and the end of the database file.
5766 */
drh3f387402014-09-24 01:23:00 +00005767 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005768
drhdd3cd972010-03-27 17:12:36 +00005769 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5770 if( rc ) return rc;
5771 pBt->nPage++;
5772 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005773
danielk1977afcdd022004-10-31 16:25:42 +00005774#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005775 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005776 /* If *pPgno refers to a pointer-map page, allocate two new pages
5777 ** at the end of the file instead of one. The first allocated page
5778 ** becomes a new pointer-map page, the second is used by the caller.
5779 */
danielk1977ac861692009-03-28 10:54:22 +00005780 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005781 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5782 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005783 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005784 if( rc==SQLITE_OK ){
5785 rc = sqlite3PagerWrite(pPg->pDbPage);
5786 releasePage(pPg);
5787 }
5788 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005789 pBt->nPage++;
5790 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005791 }
5792#endif
drhdd3cd972010-03-27 17:12:36 +00005793 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5794 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005795
danielk1977599fcba2004-11-08 07:13:13 +00005796 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005797 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005798 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005799 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005800 if( rc!=SQLITE_OK ){
5801 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005802 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005803 }
drh3a4c1412004-05-09 20:40:11 +00005804 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005805 }
danielk1977599fcba2004-11-08 07:13:13 +00005806
5807 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005808
5809end_allocate_page:
5810 releasePage(pTrunk);
5811 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005812 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5813 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005814 return rc;
5815}
5816
5817/*
danielk1977bea2a942009-01-20 17:06:27 +00005818** This function is used to add page iPage to the database file free-list.
5819** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005820**
danielk1977bea2a942009-01-20 17:06:27 +00005821** The value passed as the second argument to this function is optional.
5822** If the caller happens to have a pointer to the MemPage object
5823** corresponding to page iPage handy, it may pass it as the second value.
5824** Otherwise, it may pass NULL.
5825**
5826** If a pointer to a MemPage object is passed as the second argument,
5827** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005828*/
danielk1977bea2a942009-01-20 17:06:27 +00005829static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5830 MemPage *pTrunk = 0; /* Free-list trunk page */
5831 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5832 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5833 MemPage *pPage; /* Page being freed. May be NULL. */
5834 int rc; /* Return Code */
5835 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005836
danielk1977bea2a942009-01-20 17:06:27 +00005837 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005838 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005839 assert( !pMemPage || pMemPage->pgno==iPage );
5840
danfb0246b2015-05-26 12:18:17 +00005841 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005842 if( pMemPage ){
5843 pPage = pMemPage;
5844 sqlite3PagerRef(pPage->pDbPage);
5845 }else{
5846 pPage = btreePageLookup(pBt, iPage);
5847 }
drh3aac2dd2004-04-26 14:10:20 +00005848
drha34b6762004-05-07 13:30:42 +00005849 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005850 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005851 if( rc ) goto freepage_out;
5852 nFree = get4byte(&pPage1->aData[36]);
5853 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005854
drhc9166342012-01-05 23:32:06 +00005855 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005856 /* If the secure_delete option is enabled, then
5857 ** always fully overwrite deleted information with zeros.
5858 */
drhb00fc3b2013-08-21 23:42:32 +00005859 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005860 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005861 ){
5862 goto freepage_out;
5863 }
5864 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005865 }
drhfcce93f2006-02-22 03:08:32 +00005866
danielk1977687566d2004-11-02 12:56:41 +00005867 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005868 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005869 */
danielk197785d90ca2008-07-19 14:25:15 +00005870 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005871 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005872 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005873 }
danielk1977687566d2004-11-02 12:56:41 +00005874
danielk1977bea2a942009-01-20 17:06:27 +00005875 /* Now manipulate the actual database free-list structure. There are two
5876 ** possibilities. If the free-list is currently empty, or if the first
5877 ** trunk page in the free-list is full, then this page will become a
5878 ** new free-list trunk page. Otherwise, it will become a leaf of the
5879 ** first trunk page in the current free-list. This block tests if it
5880 ** is possible to add the page as a new free-list leaf.
5881 */
5882 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005883 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005884
5885 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005886 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005887 if( rc!=SQLITE_OK ){
5888 goto freepage_out;
5889 }
5890
5891 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005892 assert( pBt->usableSize>32 );
5893 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005894 rc = SQLITE_CORRUPT_BKPT;
5895 goto freepage_out;
5896 }
drheeb844a2009-08-08 18:01:07 +00005897 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005898 /* In this case there is room on the trunk page to insert the page
5899 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005900 **
5901 ** Note that the trunk page is not really full until it contains
5902 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5903 ** coded. But due to a coding error in versions of SQLite prior to
5904 ** 3.6.0, databases with freelist trunk pages holding more than
5905 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5906 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005907 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005908 ** for now. At some point in the future (once everyone has upgraded
5909 ** to 3.6.0 or later) we should consider fixing the conditional above
5910 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005911 **
5912 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5913 ** avoid using the last six entries in the freelist trunk page array in
5914 ** order that database files created by newer versions of SQLite can be
5915 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005916 */
danielk19773b8a05f2007-03-19 17:44:26 +00005917 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005918 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005919 put4byte(&pTrunk->aData[4], nLeaf+1);
5920 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005921 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005922 sqlite3PagerDontWrite(pPage->pDbPage);
5923 }
danielk1977bea2a942009-01-20 17:06:27 +00005924 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005925 }
drh3a4c1412004-05-09 20:40:11 +00005926 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005927 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005928 }
drh3b7511c2001-05-26 13:15:44 +00005929 }
danielk1977bea2a942009-01-20 17:06:27 +00005930
5931 /* If control flows to this point, then it was not possible to add the
5932 ** the page being freed as a leaf page of the first trunk in the free-list.
5933 ** Possibly because the free-list is empty, or possibly because the
5934 ** first trunk in the free-list is full. Either way, the page being freed
5935 ** will become the new first trunk page in the free-list.
5936 */
drhb00fc3b2013-08-21 23:42:32 +00005937 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005938 goto freepage_out;
5939 }
5940 rc = sqlite3PagerWrite(pPage->pDbPage);
5941 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005942 goto freepage_out;
5943 }
5944 put4byte(pPage->aData, iTrunk);
5945 put4byte(&pPage->aData[4], 0);
5946 put4byte(&pPage1->aData[32], iPage);
5947 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5948
5949freepage_out:
5950 if( pPage ){
5951 pPage->isInit = 0;
5952 }
5953 releasePage(pPage);
5954 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005955 return rc;
5956}
drhc314dc72009-07-21 11:52:34 +00005957static void freePage(MemPage *pPage, int *pRC){
5958 if( (*pRC)==SQLITE_OK ){
5959 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5960 }
danielk1977bea2a942009-01-20 17:06:27 +00005961}
drh3b7511c2001-05-26 13:15:44 +00005962
5963/*
drh9bfdc252014-09-24 02:05:41 +00005964** Free any overflow pages associated with the given Cell. Write the
5965** local Cell size (the number of bytes on the original page, omitting
5966** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005967*/
drh9bfdc252014-09-24 02:05:41 +00005968static int clearCell(
5969 MemPage *pPage, /* The page that contains the Cell */
5970 unsigned char *pCell, /* First byte of the Cell */
5971 u16 *pnSize /* Write the size of the Cell here */
5972){
danielk1977aef0bf62005-12-30 16:28:01 +00005973 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005974 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005975 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005976 int rc;
drh94440812007-03-06 11:42:19 +00005977 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005978 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005979
drh1fee73e2007-08-29 04:00:57 +00005980 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005981 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005982 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005983 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005984 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005985 }
drhe42a9b42011-08-31 13:27:19 +00005986 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005987 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005988 }
drh6f11bef2004-05-13 01:12:56 +00005989 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005990 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005991 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005992 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005993 assert( nOvfl>0 ||
5994 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5995 );
drh72365832007-03-06 15:53:44 +00005996 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005997 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005998 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005999 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006000 /* 0 is not a legal page number and page 1 cannot be an
6001 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6002 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006003 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006004 }
danielk1977bea2a942009-01-20 17:06:27 +00006005 if( nOvfl ){
6006 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6007 if( rc ) return rc;
6008 }
dan887d4b22010-02-25 12:09:16 +00006009
shaneh1da207e2010-03-09 14:41:12 +00006010 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006011 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6012 ){
6013 /* There is no reason any cursor should have an outstanding reference
6014 ** to an overflow page belonging to a cell that is being deleted/updated.
6015 ** So if there exists more than one reference to this page, then it
6016 ** must not really be an overflow page and the database must be corrupt.
6017 ** It is helpful to detect this before calling freePage2(), as
6018 ** freePage2() may zero the page contents if secure-delete mode is
6019 ** enabled. If this 'overflow' page happens to be a page that the
6020 ** caller is iterating through or using in some other way, this
6021 ** can be problematic.
6022 */
6023 rc = SQLITE_CORRUPT_BKPT;
6024 }else{
6025 rc = freePage2(pBt, pOvfl, ovflPgno);
6026 }
6027
danielk1977bea2a942009-01-20 17:06:27 +00006028 if( pOvfl ){
6029 sqlite3PagerUnref(pOvfl->pDbPage);
6030 }
drh3b7511c2001-05-26 13:15:44 +00006031 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006032 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006033 }
drh5e2f8b92001-05-28 00:41:15 +00006034 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006035}
6036
6037/*
drh91025292004-05-03 19:49:32 +00006038** Create the byte sequence used to represent a cell on page pPage
6039** and write that byte sequence into pCell[]. Overflow pages are
6040** allocated and filled in as necessary. The calling procedure
6041** is responsible for making sure sufficient space has been allocated
6042** for pCell[].
6043**
6044** Note that pCell does not necessary need to point to the pPage->aData
6045** area. pCell might point to some temporary storage. The cell will
6046** be constructed in this temporary area then copied into pPage->aData
6047** later.
drh3b7511c2001-05-26 13:15:44 +00006048*/
6049static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006050 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006051 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006052 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006053 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006054 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006055 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006056){
drh3b7511c2001-05-26 13:15:44 +00006057 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006058 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006059 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006060 int spaceLeft;
6061 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006062 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006063 unsigned char *pPrior;
6064 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006065 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006066 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006067 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006068
drh1fee73e2007-08-29 04:00:57 +00006069 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006070
drhc5053fb2008-11-27 02:22:10 +00006071 /* pPage is not necessarily writeable since pCell might be auxiliary
6072 ** buffer space that is separate from the pPage buffer area */
6073 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6074 || sqlite3PagerIswriteable(pPage->pDbPage) );
6075
drh91025292004-05-03 19:49:32 +00006076 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006077 nHeader = pPage->childPtrSize;
6078 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006079 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006080 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006081 }else{
drh6200c882014-09-23 22:36:25 +00006082 assert( nData==0 );
6083 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006084 }
drh6f11bef2004-05-13 01:12:56 +00006085 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006086
drh6200c882014-09-23 22:36:25 +00006087 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006088 if( pPage->intKey ){
6089 pSrc = pData;
6090 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006091 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006092 }else{
drh98ef0f62015-06-30 01:25:52 +00006093 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006094 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006095 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006096 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006097 }
drh6200c882014-09-23 22:36:25 +00006098 if( nPayload<=pPage->maxLocal ){
6099 n = nHeader + nPayload;
6100 testcase( n==3 );
6101 testcase( n==4 );
6102 if( n<4 ) n = 4;
6103 *pnSize = n;
6104 spaceLeft = nPayload;
6105 pPrior = pCell;
6106 }else{
6107 int mn = pPage->minLocal;
6108 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6109 testcase( n==pPage->maxLocal );
6110 testcase( n==pPage->maxLocal+1 );
6111 if( n > pPage->maxLocal ) n = mn;
6112 spaceLeft = n;
6113 *pnSize = n + nHeader + 4;
6114 pPrior = &pCell[nHeader+n];
6115 }
drh3aac2dd2004-04-26 14:10:20 +00006116 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006117
drh6200c882014-09-23 22:36:25 +00006118 /* At this point variables should be set as follows:
6119 **
6120 ** nPayload Total payload size in bytes
6121 ** pPayload Begin writing payload here
6122 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6123 ** that means content must spill into overflow pages.
6124 ** *pnSize Size of the local cell (not counting overflow pages)
6125 ** pPrior Where to write the pgno of the first overflow page
6126 **
6127 ** Use a call to btreeParseCellPtr() to verify that the values above
6128 ** were computed correctly.
6129 */
6130#if SQLITE_DEBUG
6131 {
6132 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006133 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006134 assert( nHeader=(int)(info.pPayload - pCell) );
6135 assert( info.nKey==nKey );
6136 assert( *pnSize == info.nSize );
6137 assert( spaceLeft == info.nLocal );
6138 assert( pPrior == &pCell[info.iOverflow] );
6139 }
6140#endif
6141
6142 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006143 while( nPayload>0 ){
6144 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006145#ifndef SQLITE_OMIT_AUTOVACUUM
6146 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006147 if( pBt->autoVacuum ){
6148 do{
6149 pgnoOvfl++;
6150 } while(
6151 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6152 );
danielk1977b39f70b2007-05-17 18:28:11 +00006153 }
danielk1977afcdd022004-10-31 16:25:42 +00006154#endif
drhf49661a2008-12-10 16:45:50 +00006155 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006156#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006157 /* If the database supports auto-vacuum, and the second or subsequent
6158 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006159 ** for that page now.
6160 **
6161 ** If this is the first overflow page, then write a partial entry
6162 ** to the pointer-map. If we write nothing to this pointer-map slot,
6163 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006164 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006165 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006166 */
danielk19774ef24492007-05-23 09:52:41 +00006167 if( pBt->autoVacuum && rc==SQLITE_OK ){
6168 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006169 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006170 if( rc ){
6171 releasePage(pOvfl);
6172 }
danielk1977afcdd022004-10-31 16:25:42 +00006173 }
6174#endif
drh3b7511c2001-05-26 13:15:44 +00006175 if( rc ){
drh9b171272004-05-08 02:03:22 +00006176 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006177 return rc;
6178 }
drhc5053fb2008-11-27 02:22:10 +00006179
6180 /* If pToRelease is not zero than pPrior points into the data area
6181 ** of pToRelease. Make sure pToRelease is still writeable. */
6182 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6183
6184 /* If pPrior is part of the data area of pPage, then make sure pPage
6185 ** is still writeable */
6186 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6187 || sqlite3PagerIswriteable(pPage->pDbPage) );
6188
drh3aac2dd2004-04-26 14:10:20 +00006189 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006190 releasePage(pToRelease);
6191 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006192 pPrior = pOvfl->aData;
6193 put4byte(pPrior, 0);
6194 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006195 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006196 }
6197 n = nPayload;
6198 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006199
6200 /* If pToRelease is not zero than pPayload points into the data area
6201 ** of pToRelease. Make sure pToRelease is still writeable. */
6202 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6203
6204 /* If pPayload is part of the data area of pPage, then make sure pPage
6205 ** is still writeable */
6206 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6207 || sqlite3PagerIswriteable(pPage->pDbPage) );
6208
drhb026e052007-05-02 01:34:31 +00006209 if( nSrc>0 ){
6210 if( n>nSrc ) n = nSrc;
6211 assert( pSrc );
6212 memcpy(pPayload, pSrc, n);
6213 }else{
6214 memset(pPayload, 0, n);
6215 }
drh3b7511c2001-05-26 13:15:44 +00006216 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006217 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006218 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006219 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006220 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006221 if( nSrc==0 ){
6222 nSrc = nData;
6223 pSrc = pData;
6224 }
drhdd793422001-06-28 01:54:48 +00006225 }
drh9b171272004-05-08 02:03:22 +00006226 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006227 return SQLITE_OK;
6228}
6229
drh14acc042001-06-10 19:56:58 +00006230/*
6231** Remove the i-th cell from pPage. This routine effects pPage only.
6232** The cell content is not freed or deallocated. It is assumed that
6233** the cell content has been copied someplace else. This routine just
6234** removes the reference to the cell from pPage.
6235**
6236** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006237*/
drh98add2e2009-07-20 17:11:49 +00006238static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006239 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006240 u8 *data; /* pPage->aData */
6241 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006242 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006243 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006244
drh98add2e2009-07-20 17:11:49 +00006245 if( *pRC ) return;
6246
drh8c42ca92001-06-22 19:15:00 +00006247 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006248 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006249 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006250 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006251 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006252 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006253 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006254 hdr = pPage->hdrOffset;
6255 testcase( pc==get2byte(&data[hdr+5]) );
6256 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006257 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006258 *pRC = SQLITE_CORRUPT_BKPT;
6259 return;
shane0af3f892008-11-12 04:55:34 +00006260 }
shanedcc50b72008-11-13 18:29:50 +00006261 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006262 if( rc ){
6263 *pRC = rc;
6264 return;
shanedcc50b72008-11-13 18:29:50 +00006265 }
drh14acc042001-06-10 19:56:58 +00006266 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006267 if( pPage->nCell==0 ){
6268 memset(&data[hdr+1], 0, 4);
6269 data[hdr+7] = 0;
6270 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6271 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6272 - pPage->childPtrSize - 8;
6273 }else{
6274 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6275 put2byte(&data[hdr+3], pPage->nCell);
6276 pPage->nFree += 2;
6277 }
drh14acc042001-06-10 19:56:58 +00006278}
6279
6280/*
6281** Insert a new cell on pPage at cell index "i". pCell points to the
6282** content of the cell.
6283**
6284** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006285** will not fit, then make a copy of the cell content into pTemp if
6286** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006287** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006288** in pTemp or the original pCell) and also record its index.
6289** Allocating a new entry in pPage->aCell[] implies that
6290** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006291*/
drh98add2e2009-07-20 17:11:49 +00006292static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006293 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006294 int i, /* New cell becomes the i-th cell of the page */
6295 u8 *pCell, /* Content of the new cell */
6296 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006297 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006298 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6299 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006300){
drh383d30f2010-02-26 13:07:37 +00006301 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006302 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006303 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006304 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006305
drh98add2e2009-07-20 17:11:49 +00006306 if( *pRC ) return;
6307
drh43605152004-05-29 21:46:49 +00006308 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006309 assert( MX_CELL(pPage->pBt)<=10921 );
6310 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006311 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6312 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006313 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006314 /* The cell should normally be sized correctly. However, when moving a
6315 ** malformed cell from a leaf page to an interior page, if the cell size
6316 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6317 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6318 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006319 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006320 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006321 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006322 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006323 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006324 }
danielk19774dbaa892009-06-16 16:50:22 +00006325 if( iChild ){
6326 put4byte(pCell, iChild);
6327 }
drh43605152004-05-29 21:46:49 +00006328 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006329 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6330 pPage->apOvfl[j] = pCell;
6331 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006332
6333 /* When multiple overflows occur, they are always sequential and in
6334 ** sorted order. This invariants arise because multiple overflows can
6335 ** only occur when inserting divider cells into the parent page during
6336 ** balancing, and the dividers are adjacent and sorted.
6337 */
6338 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6339 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006340 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006341 int rc = sqlite3PagerWrite(pPage->pDbPage);
6342 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006343 *pRC = rc;
6344 return;
danielk19776e465eb2007-08-21 13:11:00 +00006345 }
6346 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006347 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006348 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006349 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006350 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006351 /* The allocateSpace() routine guarantees the following properties
6352 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006353 assert( idx >= 0 );
6354 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006355 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006356 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006357 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006358 if( iChild ){
6359 put4byte(&data[idx], iChild);
6360 }
drh2c8fb922015-06-25 19:53:48 +00006361 pIns = pPage->aCellIdx + i*2;
6362 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6363 put2byte(pIns, idx);
6364 pPage->nCell++;
6365 /* increment the cell count */
6366 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6367 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006368#ifndef SQLITE_OMIT_AUTOVACUUM
6369 if( pPage->pBt->autoVacuum ){
6370 /* The cell may contain a pointer to an overflow page. If so, write
6371 ** the entry for the overflow page into the pointer map.
6372 */
drh98add2e2009-07-20 17:11:49 +00006373 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006374 }
6375#endif
drh14acc042001-06-10 19:56:58 +00006376 }
6377}
6378
6379/*
drh1ffd2472015-06-23 02:37:30 +00006380** A CellArray object contains a cache of pointers and sizes for a
6381** consecutive sequence of cells that might be held multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006382*/
drh1ffd2472015-06-23 02:37:30 +00006383typedef struct CellArray CellArray;
6384struct CellArray {
6385 int nCell; /* Number of cells in apCell[] */
6386 MemPage *pRef; /* Reference page */
6387 u8 **apCell; /* All cells begin balanced */
6388 u16 *szCell; /* Local size of all cells in apCell[] */
6389};
drhfa1a98a2004-05-14 19:08:17 +00006390
drh1ffd2472015-06-23 02:37:30 +00006391/*
6392** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6393** computed.
6394*/
6395static void populateCellCache(CellArray *p, int idx, int N){
6396 assert( idx>=0 && idx+N<=p->nCell );
6397 while( N>0 ){
6398 assert( p->apCell[idx]!=0 );
6399 if( p->szCell[idx]==0 ){
6400 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6401 }else{
6402 assert( CORRUPT_DB ||
6403 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6404 }
6405 idx++;
6406 N--;
drhfa1a98a2004-05-14 19:08:17 +00006407 }
drh1ffd2472015-06-23 02:37:30 +00006408}
6409
6410/*
6411** Return the size of the Nth element of the cell array
6412*/
6413static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6414 assert( N>=0 && N<p->nCell );
6415 assert( p->szCell[N]==0 );
6416 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6417 return p->szCell[N];
6418}
6419static u16 cachedCellSize(CellArray *p, int N){
6420 assert( N>=0 && N<p->nCell );
6421 if( p->szCell[N] ) return p->szCell[N];
6422 return computeCellSize(p, N);
6423}
6424
6425/*
dan8e9ba0c2014-10-14 17:27:04 +00006426** Array apCell[] contains pointers to nCell b-tree page cells. The
6427** szCell[] array contains the size in bytes of each cell. This function
6428** replaces the current contents of page pPg with the contents of the cell
6429** array.
6430**
6431** Some of the cells in apCell[] may currently be stored in pPg. This
6432** function works around problems caused by this by making a copy of any
6433** such cells before overwriting the page data.
6434**
6435** The MemPage.nFree field is invalidated by this function. It is the
6436** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006437*/
drh658873b2015-06-22 20:02:04 +00006438static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006439 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006440 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006441 u8 **apCell, /* Array of cells */
6442 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006443){
6444 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6445 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6446 const int usableSize = pPg->pBt->usableSize;
6447 u8 * const pEnd = &aData[usableSize];
6448 int i;
6449 u8 *pCellptr = pPg->aCellIdx;
6450 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6451 u8 *pData;
6452
6453 i = get2byte(&aData[hdr+5]);
6454 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006455
dan8e9ba0c2014-10-14 17:27:04 +00006456 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006457 for(i=0; i<nCell; i++){
6458 u8 *pCell = apCell[i];
6459 if( pCell>aData && pCell<pEnd ){
6460 pCell = &pTmp[pCell - aData];
6461 }
6462 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006463 put2byte(pCellptr, (pData - aData));
6464 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006465 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6466 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006467 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006468 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006469 }
6470
dand7b545b2014-10-13 18:03:27 +00006471 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006472 pPg->nCell = nCell;
6473 pPg->nOverflow = 0;
6474
6475 put2byte(&aData[hdr+1], 0);
6476 put2byte(&aData[hdr+3], pPg->nCell);
6477 put2byte(&aData[hdr+5], pData - aData);
6478 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006479 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006480}
6481
dan8e9ba0c2014-10-14 17:27:04 +00006482/*
6483** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6484** contains the size in bytes of each such cell. This function attempts to
6485** add the cells stored in the array to page pPg. If it cannot (because
6486** the page needs to be defragmented before the cells will fit), non-zero
6487** is returned. Otherwise, if the cells are added successfully, zero is
6488** returned.
6489**
6490** Argument pCellptr points to the first entry in the cell-pointer array
6491** (part of page pPg) to populate. After cell apCell[0] is written to the
6492** page body, a 16-bit offset is written to pCellptr. And so on, for each
6493** cell in the array. It is the responsibility of the caller to ensure
6494** that it is safe to overwrite this part of the cell-pointer array.
6495**
6496** When this function is called, *ppData points to the start of the
6497** content area on page pPg. If the size of the content area is extended,
6498** *ppData is updated to point to the new start of the content area
6499** before returning.
6500**
6501** Finally, argument pBegin points to the byte immediately following the
6502** end of the space required by this page for the cell-pointer area (for
6503** all cells - not just those inserted by the current call). If the content
6504** area must be extended to before this point in order to accomodate all
6505** cells in apCell[], then the cells do not fit and non-zero is returned.
6506*/
dand7b545b2014-10-13 18:03:27 +00006507static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006508 MemPage *pPg, /* Page to add cells to */
6509 u8 *pBegin, /* End of cell-pointer array */
6510 u8 **ppData, /* IN/OUT: Page content -area pointer */
6511 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006512 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006513 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006514 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006515){
6516 int i;
6517 u8 *aData = pPg->aData;
6518 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006519 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006520 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006521 for(i=iFirst; i<iEnd; i++){
6522 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006523 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006524 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006525 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006526 pData -= sz;
6527 if( pData<pBegin ) return 1;
6528 pSlot = pData;
6529 }
drh48310f82015-10-10 16:41:28 +00006530 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6531 ** database. But they might for a corrupt database. Hence use memmove()
6532 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6533 assert( (pSlot+sz)<=pCArray->apCell[i]
6534 || pSlot>=(pCArray->apCell[i]+sz)
6535 || CORRUPT_DB );
6536 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006537 put2byte(pCellptr, (pSlot - aData));
6538 pCellptr += 2;
6539 }
6540 *ppData = pData;
6541 return 0;
6542}
6543
dan8e9ba0c2014-10-14 17:27:04 +00006544/*
6545** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6546** contains the size in bytes of each such cell. This function adds the
6547** space associated with each cell in the array that is currently stored
6548** within the body of pPg to the pPg free-list. The cell-pointers and other
6549** fields of the page are not updated.
6550**
6551** This function returns the total number of cells added to the free-list.
6552*/
dand7b545b2014-10-13 18:03:27 +00006553static int pageFreeArray(
6554 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006555 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006556 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006557 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006558){
6559 u8 * const aData = pPg->aData;
6560 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006561 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006562 int nRet = 0;
6563 int i;
drhf7838932015-06-23 15:36:34 +00006564 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006565 u8 *pFree = 0;
6566 int szFree = 0;
6567
drhf7838932015-06-23 15:36:34 +00006568 for(i=iFirst; i<iEnd; i++){
6569 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006570 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006571 int sz;
6572 /* No need to use cachedCellSize() here. The sizes of all cells that
6573 ** are to be freed have already been computing while deciding which
6574 ** cells need freeing */
6575 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006576 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006577 if( pFree ){
6578 assert( pFree>aData && (pFree - aData)<65536 );
6579 freeSpace(pPg, (u16)(pFree - aData), szFree);
6580 }
dand7b545b2014-10-13 18:03:27 +00006581 pFree = pCell;
6582 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006583 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006584 }else{
6585 pFree = pCell;
6586 szFree += sz;
6587 }
6588 nRet++;
6589 }
6590 }
drhfefa0942014-11-05 21:21:08 +00006591 if( pFree ){
6592 assert( pFree>aData && (pFree - aData)<65536 );
6593 freeSpace(pPg, (u16)(pFree - aData), szFree);
6594 }
dand7b545b2014-10-13 18:03:27 +00006595 return nRet;
6596}
6597
dand7b545b2014-10-13 18:03:27 +00006598/*
drh5ab63772014-11-27 03:46:04 +00006599** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6600** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6601** with apCell[iOld]. After balancing, this page should hold nNew cells
6602** starting at apCell[iNew].
6603**
6604** This routine makes the necessary adjustments to pPg so that it contains
6605** the correct cells after being balanced.
6606**
dand7b545b2014-10-13 18:03:27 +00006607** The pPg->nFree field is invalid when this function returns. It is the
6608** responsibility of the caller to set it correctly.
6609*/
drh658873b2015-06-22 20:02:04 +00006610static int editPage(
dan09c68402014-10-11 20:00:24 +00006611 MemPage *pPg, /* Edit this page */
6612 int iOld, /* Index of first cell currently on page */
6613 int iNew, /* Index of new first cell on page */
6614 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006615 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006616){
dand7b545b2014-10-13 18:03:27 +00006617 u8 * const aData = pPg->aData;
6618 const int hdr = pPg->hdrOffset;
6619 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6620 int nCell = pPg->nCell; /* Cells stored on pPg */
6621 u8 *pData;
6622 u8 *pCellptr;
6623 int i;
6624 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6625 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006626
6627#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006628 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6629 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006630#endif
6631
dand7b545b2014-10-13 18:03:27 +00006632 /* Remove cells from the start and end of the page */
6633 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006634 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006635 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6636 nCell -= nShift;
6637 }
6638 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006639 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006640 }
dan09c68402014-10-11 20:00:24 +00006641
drh5ab63772014-11-27 03:46:04 +00006642 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006643 if( pData<pBegin ) goto editpage_fail;
6644
6645 /* Add cells to the start of the page */
6646 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006647 int nAdd = MIN(nNew,iOld-iNew);
6648 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006649 pCellptr = pPg->aCellIdx;
6650 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6651 if( pageInsertArray(
6652 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006653 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006654 ) ) goto editpage_fail;
6655 nCell += nAdd;
6656 }
6657
6658 /* Add any overflow cells */
6659 for(i=0; i<pPg->nOverflow; i++){
6660 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6661 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006662 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006663 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6664 nCell++;
6665 if( pageInsertArray(
6666 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006667 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006668 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006669 }
dand7b545b2014-10-13 18:03:27 +00006670 }
dan09c68402014-10-11 20:00:24 +00006671
dand7b545b2014-10-13 18:03:27 +00006672 /* Append cells to the end of the page */
6673 pCellptr = &pPg->aCellIdx[nCell*2];
6674 if( pageInsertArray(
6675 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006676 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006677 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006678
dand7b545b2014-10-13 18:03:27 +00006679 pPg->nCell = nNew;
6680 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006681
dand7b545b2014-10-13 18:03:27 +00006682 put2byte(&aData[hdr+3], pPg->nCell);
6683 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006684
6685#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006686 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006687 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006688 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006689 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6690 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006691 }
drh1ffd2472015-06-23 02:37:30 +00006692 assert( 0==memcmp(pCell, &aData[iOff],
6693 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006694 }
dan09c68402014-10-11 20:00:24 +00006695#endif
6696
drh658873b2015-06-22 20:02:04 +00006697 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006698 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006699 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006700 populateCellCache(pCArray, iNew, nNew);
6701 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006702}
6703
drh14acc042001-06-10 19:56:58 +00006704/*
drhc3b70572003-01-04 19:44:07 +00006705** The following parameters determine how many adjacent pages get involved
6706** in a balancing operation. NN is the number of neighbors on either side
6707** of the page that participate in the balancing operation. NB is the
6708** total number of pages that participate, including the target page and
6709** NN neighbors on either side.
6710**
6711** The minimum value of NN is 1 (of course). Increasing NN above 1
6712** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6713** in exchange for a larger degradation in INSERT and UPDATE performance.
6714** The value of NN appears to give the best results overall.
6715*/
6716#define NN 1 /* Number of neighbors on either side of pPage */
6717#define NB (NN*2+1) /* Total pages involved in the balance */
6718
danielk1977ac245ec2005-01-14 13:50:11 +00006719
drh615ae552005-01-16 23:21:00 +00006720#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006721/*
6722** This version of balance() handles the common special case where
6723** a new entry is being inserted on the extreme right-end of the
6724** tree, in other words, when the new entry will become the largest
6725** entry in the tree.
6726**
drhc314dc72009-07-21 11:52:34 +00006727** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006728** a new page to the right-hand side and put the one new entry in
6729** that page. This leaves the right side of the tree somewhat
6730** unbalanced. But odds are that we will be inserting new entries
6731** at the end soon afterwards so the nearly empty page will quickly
6732** fill up. On average.
6733**
6734** pPage is the leaf page which is the right-most page in the tree.
6735** pParent is its parent. pPage must have a single overflow entry
6736** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006737**
6738** The pSpace buffer is used to store a temporary copy of the divider
6739** cell that will be inserted into pParent. Such a cell consists of a 4
6740** byte page number followed by a variable length integer. In other
6741** words, at most 13 bytes. Hence the pSpace buffer must be at
6742** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006743*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006744static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6745 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006746 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006747 int rc; /* Return Code */
6748 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006749
drh1fee73e2007-08-29 04:00:57 +00006750 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006751 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006752 assert( pPage->nOverflow==1 );
6753
drh5d433ce2010-08-14 16:02:52 +00006754 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006755 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006756
danielk1977a50d9aa2009-06-08 14:49:45 +00006757 /* Allocate a new page. This page will become the right-sibling of
6758 ** pPage. Make the parent page writable, so that the new divider cell
6759 ** may be inserted. If both these operations are successful, proceed.
6760 */
drh4f0c5872007-03-26 22:05:01 +00006761 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006762
danielk1977eaa06f62008-09-18 17:34:44 +00006763 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006764
6765 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006766 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006767 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006768 u8 *pStop;
6769
drhc5053fb2008-11-27 02:22:10 +00006770 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006771 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6772 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006773 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006774 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006775 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006776
6777 /* If this is an auto-vacuum database, update the pointer map
6778 ** with entries for the new page, and any pointer from the
6779 ** cell on the page to an overflow page. If either of these
6780 ** operations fails, the return code is set, but the contents
6781 ** of the parent page are still manipulated by thh code below.
6782 ** That is Ok, at this point the parent page is guaranteed to
6783 ** be marked as dirty. Returning an error code will cause a
6784 ** rollback, undoing any changes made to the parent page.
6785 */
6786 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006787 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6788 if( szCell>pNew->minLocal ){
6789 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006790 }
6791 }
danielk1977eaa06f62008-09-18 17:34:44 +00006792
danielk19776f235cc2009-06-04 14:46:08 +00006793 /* Create a divider cell to insert into pParent. The divider cell
6794 ** consists of a 4-byte page number (the page number of pPage) and
6795 ** a variable length key value (which must be the same value as the
6796 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006797 **
danielk19776f235cc2009-06-04 14:46:08 +00006798 ** To find the largest key value on pPage, first find the right-most
6799 ** cell on pPage. The first two fields of this cell are the
6800 ** record-length (a variable length integer at most 32-bits in size)
6801 ** and the key value (a variable length integer, may have any value).
6802 ** The first of the while(...) loops below skips over the record-length
6803 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006804 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006805 */
danielk1977eaa06f62008-09-18 17:34:44 +00006806 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006807 pStop = &pCell[9];
6808 while( (*(pCell++)&0x80) && pCell<pStop );
6809 pStop = &pCell[9];
6810 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6811
danielk19774dbaa892009-06-16 16:50:22 +00006812 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006813 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6814 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006815
6816 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006817 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6818
danielk1977e08a3c42008-09-18 18:17:03 +00006819 /* Release the reference to the new page. */
6820 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006821 }
6822
danielk1977eaa06f62008-09-18 17:34:44 +00006823 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006824}
drh615ae552005-01-16 23:21:00 +00006825#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006826
danielk19774dbaa892009-06-16 16:50:22 +00006827#if 0
drhc3b70572003-01-04 19:44:07 +00006828/*
danielk19774dbaa892009-06-16 16:50:22 +00006829** This function does not contribute anything to the operation of SQLite.
6830** it is sometimes activated temporarily while debugging code responsible
6831** for setting pointer-map entries.
6832*/
6833static int ptrmapCheckPages(MemPage **apPage, int nPage){
6834 int i, j;
6835 for(i=0; i<nPage; i++){
6836 Pgno n;
6837 u8 e;
6838 MemPage *pPage = apPage[i];
6839 BtShared *pBt = pPage->pBt;
6840 assert( pPage->isInit );
6841
6842 for(j=0; j<pPage->nCell; j++){
6843 CellInfo info;
6844 u8 *z;
6845
6846 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006847 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006848 if( info.iOverflow ){
6849 Pgno ovfl = get4byte(&z[info.iOverflow]);
6850 ptrmapGet(pBt, ovfl, &e, &n);
6851 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6852 }
6853 if( !pPage->leaf ){
6854 Pgno child = get4byte(z);
6855 ptrmapGet(pBt, child, &e, &n);
6856 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6857 }
6858 }
6859 if( !pPage->leaf ){
6860 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6861 ptrmapGet(pBt, child, &e, &n);
6862 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6863 }
6864 }
6865 return 1;
6866}
6867#endif
6868
danielk1977cd581a72009-06-23 15:43:39 +00006869/*
6870** This function is used to copy the contents of the b-tree node stored
6871** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6872** the pointer-map entries for each child page are updated so that the
6873** parent page stored in the pointer map is page pTo. If pFrom contained
6874** any cells with overflow page pointers, then the corresponding pointer
6875** map entries are also updated so that the parent page is page pTo.
6876**
6877** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006878** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006879**
danielk197730548662009-07-09 05:07:37 +00006880** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006881**
6882** The performance of this function is not critical. It is only used by
6883** the balance_shallower() and balance_deeper() procedures, neither of
6884** which are called often under normal circumstances.
6885*/
drhc314dc72009-07-21 11:52:34 +00006886static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6887 if( (*pRC)==SQLITE_OK ){
6888 BtShared * const pBt = pFrom->pBt;
6889 u8 * const aFrom = pFrom->aData;
6890 u8 * const aTo = pTo->aData;
6891 int const iFromHdr = pFrom->hdrOffset;
6892 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006893 int rc;
drhc314dc72009-07-21 11:52:34 +00006894 int iData;
6895
6896
6897 assert( pFrom->isInit );
6898 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006899 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006900
6901 /* Copy the b-tree node content from page pFrom to page pTo. */
6902 iData = get2byte(&aFrom[iFromHdr+5]);
6903 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6904 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6905
6906 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006907 ** match the new data. The initialization of pTo can actually fail under
6908 ** fairly obscure circumstances, even though it is a copy of initialized
6909 ** page pFrom.
6910 */
drhc314dc72009-07-21 11:52:34 +00006911 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006912 rc = btreeInitPage(pTo);
6913 if( rc!=SQLITE_OK ){
6914 *pRC = rc;
6915 return;
6916 }
drhc314dc72009-07-21 11:52:34 +00006917
6918 /* If this is an auto-vacuum database, update the pointer-map entries
6919 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6920 */
6921 if( ISAUTOVACUUM ){
6922 *pRC = setChildPtrmaps(pTo);
6923 }
danielk1977cd581a72009-06-23 15:43:39 +00006924 }
danielk1977cd581a72009-06-23 15:43:39 +00006925}
6926
6927/*
danielk19774dbaa892009-06-16 16:50:22 +00006928** This routine redistributes cells on the iParentIdx'th child of pParent
6929** (hereafter "the page") and up to 2 siblings so that all pages have about the
6930** same amount of free space. Usually a single sibling on either side of the
6931** page are used in the balancing, though both siblings might come from one
6932** side if the page is the first or last child of its parent. If the page
6933** has fewer than 2 siblings (something which can only happen if the page
6934** is a root page or a child of a root page) then all available siblings
6935** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006936**
danielk19774dbaa892009-06-16 16:50:22 +00006937** The number of siblings of the page might be increased or decreased by
6938** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006939**
danielk19774dbaa892009-06-16 16:50:22 +00006940** Note that when this routine is called, some of the cells on the page
6941** might not actually be stored in MemPage.aData[]. This can happen
6942** if the page is overfull. This routine ensures that all cells allocated
6943** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006944**
danielk19774dbaa892009-06-16 16:50:22 +00006945** In the course of balancing the page and its siblings, cells may be
6946** inserted into or removed from the parent page (pParent). Doing so
6947** may cause the parent page to become overfull or underfull. If this
6948** happens, it is the responsibility of the caller to invoke the correct
6949** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006950**
drh5e00f6c2001-09-13 13:46:56 +00006951** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006952** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006953** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006954**
6955** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006956** buffer big enough to hold one page. If while inserting cells into the parent
6957** page (pParent) the parent page becomes overfull, this buffer is
6958** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006959** a maximum of four divider cells into the parent page, and the maximum
6960** size of a cell stored within an internal node is always less than 1/4
6961** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6962** enough for all overflow cells.
6963**
6964** If aOvflSpace is set to a null pointer, this function returns
6965** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006966*/
danielk19774dbaa892009-06-16 16:50:22 +00006967static int balance_nonroot(
6968 MemPage *pParent, /* Parent page of siblings being balanced */
6969 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006970 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006971 int isRoot, /* True if pParent is a root-page */
6972 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006973){
drh16a9b832007-05-05 18:39:25 +00006974 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006975 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006976 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006977 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006978 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006979 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006980 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006981 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006982 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006983 int usableSpace; /* Bytes in pPage beyond the header */
6984 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006985 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006986 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006987 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006988 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006989 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006990 u8 *pRight; /* Location in parent of right-sibling pointer */
6991 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006992 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6993 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006994 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006995 u8 *aSpace1; /* Space for copies of dividers cells */
6996 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006997 u8 abDone[NB+2]; /* True after i'th new page is populated */
6998 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006999 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007000 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007001 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007002
dan33ea4862014-10-09 19:35:37 +00007003 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007004 b.nCell = 0;
7005 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007006 pBt = pParent->pBt;
7007 assert( sqlite3_mutex_held(pBt->mutex) );
7008 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007009
danielk1977e5765212009-06-17 11:13:28 +00007010#if 0
drh43605152004-05-29 21:46:49 +00007011 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007012#endif
drh2e38c322004-09-03 18:38:44 +00007013
danielk19774dbaa892009-06-16 16:50:22 +00007014 /* At this point pParent may have at most one overflow cell. And if
7015 ** this overflow cell is present, it must be the cell with
7016 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007017 ** is called (indirectly) from sqlite3BtreeDelete().
7018 */
danielk19774dbaa892009-06-16 16:50:22 +00007019 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007020 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007021
danielk197711a8a862009-06-17 11:49:52 +00007022 if( !aOvflSpace ){
7023 return SQLITE_NOMEM;
7024 }
7025
danielk1977a50d9aa2009-06-08 14:49:45 +00007026 /* Find the sibling pages to balance. Also locate the cells in pParent
7027 ** that divide the siblings. An attempt is made to find NN siblings on
7028 ** either side of pPage. More siblings are taken from one side, however,
7029 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007030 ** has NB or fewer children then all children of pParent are taken.
7031 **
7032 ** This loop also drops the divider cells from the parent page. This
7033 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007034 ** overflow cells in the parent page, since if any existed they will
7035 ** have already been removed.
7036 */
danielk19774dbaa892009-06-16 16:50:22 +00007037 i = pParent->nOverflow + pParent->nCell;
7038 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007039 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007040 }else{
dan7d6885a2012-08-08 14:04:56 +00007041 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007042 if( iParentIdx==0 ){
7043 nxDiv = 0;
7044 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007045 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007046 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007047 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007048 }
dan7d6885a2012-08-08 14:04:56 +00007049 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007050 }
dan7d6885a2012-08-08 14:04:56 +00007051 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007052 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7053 pRight = &pParent->aData[pParent->hdrOffset+8];
7054 }else{
7055 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7056 }
7057 pgno = get4byte(pRight);
7058 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007059 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007060 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007061 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007062 goto balance_cleanup;
7063 }
danielk1977634f2982005-03-28 08:44:07 +00007064 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007065 if( (i--)==0 ) break;
7066
drh2cbd78b2012-02-02 19:37:18 +00007067 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7068 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007069 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007070 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007071 pParent->nOverflow = 0;
7072 }else{
7073 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7074 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007075 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007076
7077 /* Drop the cell from the parent page. apDiv[i] still points to
7078 ** the cell within the parent, even though it has been dropped.
7079 ** This is safe because dropping a cell only overwrites the first
7080 ** four bytes of it, and this function does not need the first
7081 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007082 ** later on.
7083 **
drh8a575d92011-10-12 17:00:28 +00007084 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007085 ** the dropCell() routine will overwrite the entire cell with zeroes.
7086 ** In this case, temporarily copy the cell into the aOvflSpace[]
7087 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7088 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007089 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007090 int iOff;
7091
7092 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007093 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007094 rc = SQLITE_CORRUPT_BKPT;
7095 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7096 goto balance_cleanup;
7097 }else{
7098 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7099 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7100 }
drh5b47efa2010-02-12 18:18:39 +00007101 }
drh98add2e2009-07-20 17:11:49 +00007102 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007103 }
drh8b2f49b2001-06-08 00:21:52 +00007104 }
7105
drha9121e42008-02-19 14:59:35 +00007106 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007107 ** alignment */
drha9121e42008-02-19 14:59:35 +00007108 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007109
drh8b2f49b2001-06-08 00:21:52 +00007110 /*
danielk1977634f2982005-03-28 08:44:07 +00007111 ** Allocate space for memory structures
7112 */
drhfacf0302008-06-17 15:12:00 +00007113 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007114 nMaxCells*sizeof(u8*) /* b.apCell */
7115 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007116 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007117
drhcbd55b02014-11-04 14:22:27 +00007118 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7119 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007120 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007121 b.apCell = sqlite3ScratchMalloc( szScratch );
7122 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007123 rc = SQLITE_NOMEM;
7124 goto balance_cleanup;
7125 }
drh1ffd2472015-06-23 02:37:30 +00007126 b.szCell = (u16*)&b.apCell[nMaxCells];
7127 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007128 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007129
7130 /*
7131 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007132 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007133 ** into space obtained from aSpace1[]. The divider cells have already
7134 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007135 **
7136 ** If the siblings are on leaf pages, then the child pointers of the
7137 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007138 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007139 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007140 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007141 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007142 **
7143 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7144 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007145 */
drh1ffd2472015-06-23 02:37:30 +00007146 b.pRef = apOld[0];
7147 leafCorrection = b.pRef->leaf*4;
7148 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007149 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007150 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007151 int limit = pOld->nCell;
7152 u8 *aData = pOld->aData;
7153 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007154 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007155 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007156
drh73d340a2015-05-28 11:23:11 +00007157 /* Verify that all sibling pages are of the same "type" (table-leaf,
7158 ** table-interior, index-leaf, or index-interior).
7159 */
7160 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7161 rc = SQLITE_CORRUPT_BKPT;
7162 goto balance_cleanup;
7163 }
7164
drhfe647dc2015-06-23 18:24:25 +00007165 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7166 ** constains overflow cells, include them in the b.apCell[] array
7167 ** in the correct spot.
7168 **
7169 ** Note that when there are multiple overflow cells, it is always the
7170 ** case that they are sequential and adjacent. This invariant arises
7171 ** because multiple overflows can only occurs when inserting divider
7172 ** cells into a parent on a prior balance, and divider cells are always
7173 ** adjacent and are inserted in order. There is an assert() tagged
7174 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7175 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007176 **
7177 ** This must be done in advance. Once the balance starts, the cell
7178 ** offset section of the btree page will be overwritten and we will no
7179 ** long be able to find the cells if a pointer to each cell is not saved
7180 ** first.
7181 */
drh1ffd2472015-06-23 02:37:30 +00007182 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007183 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007184 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007185 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007186 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007187 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007188 piCell += 2;
7189 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007190 }
drhfe647dc2015-06-23 18:24:25 +00007191 for(k=0; k<pOld->nOverflow; k++){
7192 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007193 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007194 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007195 }
drh1ffd2472015-06-23 02:37:30 +00007196 }
drhfe647dc2015-06-23 18:24:25 +00007197 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7198 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007199 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007200 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007201 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007202 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007203 }
7204
drh1ffd2472015-06-23 02:37:30 +00007205 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007206 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007207 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007208 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007209 assert( b.nCell<nMaxCells );
7210 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007211 pTemp = &aSpace1[iSpace1];
7212 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007213 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007214 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007215 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007216 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007217 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007218 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007219 if( !pOld->leaf ){
7220 assert( leafCorrection==0 );
7221 assert( pOld->hdrOffset==0 );
7222 /* The right pointer of the child page pOld becomes the left
7223 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007224 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007225 }else{
7226 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007227 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007228 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7229 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007230 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7231 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007232 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007233 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007234 }
7235 }
drh1ffd2472015-06-23 02:37:30 +00007236 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007237 }
drh8b2f49b2001-06-08 00:21:52 +00007238 }
7239
7240 /*
drh1ffd2472015-06-23 02:37:30 +00007241 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007242 ** Store this number in "k". Also compute szNew[] which is the total
7243 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007244 ** in b.apCell[] of the cell that divides page i from page i+1.
7245 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007246 **
drh96f5b762004-05-16 16:24:36 +00007247 ** Values computed by this block:
7248 **
7249 ** k: The total number of sibling pages
7250 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007251 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007252 ** the right of the i-th sibling page.
7253 ** usableSpace: Number of bytes of space available on each sibling.
7254 **
drh8b2f49b2001-06-08 00:21:52 +00007255 */
drh43605152004-05-29 21:46:49 +00007256 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007257 for(i=0; i<nOld; i++){
7258 MemPage *p = apOld[i];
7259 szNew[i] = usableSpace - p->nFree;
7260 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7261 for(j=0; j<p->nOverflow; j++){
7262 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7263 }
7264 cntNew[i] = cntOld[i];
7265 }
7266 k = nOld;
7267 for(i=0; i<k; i++){
7268 int sz;
7269 while( szNew[i]>usableSpace ){
7270 if( i+1>=k ){
7271 k = i+2;
7272 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7273 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007274 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007275 }
drh1ffd2472015-06-23 02:37:30 +00007276 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007277 szNew[i] -= sz;
7278 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007279 if( cntNew[i]<b.nCell ){
7280 sz = 2 + cachedCellSize(&b, cntNew[i]);
7281 }else{
7282 sz = 0;
7283 }
drh658873b2015-06-22 20:02:04 +00007284 }
7285 szNew[i+1] += sz;
7286 cntNew[i]--;
7287 }
drh1ffd2472015-06-23 02:37:30 +00007288 while( cntNew[i]<b.nCell ){
7289 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007290 if( szNew[i]+sz>usableSpace ) break;
7291 szNew[i] += sz;
7292 cntNew[i]++;
7293 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007294 if( cntNew[i]<b.nCell ){
7295 sz = 2 + cachedCellSize(&b, cntNew[i]);
7296 }else{
7297 sz = 0;
7298 }
drh658873b2015-06-22 20:02:04 +00007299 }
7300 szNew[i+1] -= sz;
7301 }
drh1ffd2472015-06-23 02:37:30 +00007302 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007303 k = i+1;
drh672073a2015-06-24 12:07:40 +00007304 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007305 rc = SQLITE_CORRUPT_BKPT;
7306 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007307 }
7308 }
drh96f5b762004-05-16 16:24:36 +00007309
7310 /*
7311 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007312 ** on the left side (siblings with smaller keys). The left siblings are
7313 ** always nearly full, while the right-most sibling might be nearly empty.
7314 ** The next block of code attempts to adjust the packing of siblings to
7315 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007316 **
7317 ** This adjustment is more than an optimization. The packing above might
7318 ** be so out of balance as to be illegal. For example, the right-most
7319 ** sibling might be completely empty. This adjustment is not optional.
7320 */
drh6019e162001-07-02 17:51:45 +00007321 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007322 int szRight = szNew[i]; /* Size of sibling on the right */
7323 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7324 int r; /* Index of right-most cell in left sibling */
7325 int d; /* Index of first cell to the left of right sibling */
7326
7327 r = cntNew[i-1] - 1;
7328 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007329 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007330 do{
drh1ffd2472015-06-23 02:37:30 +00007331 assert( d<nMaxCells );
7332 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007333 (void)cachedCellSize(&b, r);
7334 if( szRight!=0
7335 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7336 break;
7337 }
7338 szRight += b.szCell[d] + 2;
7339 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007340 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007341 r--;
7342 d--;
drh672073a2015-06-24 12:07:40 +00007343 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007344 szNew[i] = szRight;
7345 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007346 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7347 rc = SQLITE_CORRUPT_BKPT;
7348 goto balance_cleanup;
7349 }
drh6019e162001-07-02 17:51:45 +00007350 }
drh09d0deb2005-08-02 17:13:09 +00007351
drh2a0df922014-10-30 23:14:56 +00007352 /* Sanity check: For a non-corrupt database file one of the follwing
7353 ** must be true:
7354 ** (1) We found one or more cells (cntNew[0])>0), or
7355 ** (2) pPage is a virtual root page. A virtual root page is when
7356 ** the real root page is page 1 and we are the only child of
7357 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007358 */
drh2a0df922014-10-30 23:14:56 +00007359 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007360 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7361 apOld[0]->pgno, apOld[0]->nCell,
7362 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7363 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007364 ));
7365
drh8b2f49b2001-06-08 00:21:52 +00007366 /*
drh6b308672002-07-08 02:16:37 +00007367 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007368 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007369 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007370 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007371 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007372 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007373 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007374 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007375 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007376 nNew++;
danielk197728129562005-01-11 10:25:06 +00007377 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007378 }else{
drh7aa8f852006-03-28 00:24:44 +00007379 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007380 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007381 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007382 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007383 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007384 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007385 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007386
7387 /* Set the pointer-map entry for the new sibling page. */
7388 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007389 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007390 if( rc!=SQLITE_OK ){
7391 goto balance_cleanup;
7392 }
7393 }
drh6b308672002-07-08 02:16:37 +00007394 }
drh8b2f49b2001-06-08 00:21:52 +00007395 }
7396
7397 /*
dan33ea4862014-10-09 19:35:37 +00007398 ** Reassign page numbers so that the new pages are in ascending order.
7399 ** This helps to keep entries in the disk file in order so that a scan
7400 ** of the table is closer to a linear scan through the file. That in turn
7401 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007402 **
dan33ea4862014-10-09 19:35:37 +00007403 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7404 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007405 **
dan33ea4862014-10-09 19:35:37 +00007406 ** When NB==3, this one optimization makes the database about 25% faster
7407 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007408 */
dan33ea4862014-10-09 19:35:37 +00007409 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007410 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007411 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007412 for(j=0; j<i; j++){
7413 if( aPgno[j]==aPgno[i] ){
7414 /* This branch is taken if the set of sibling pages somehow contains
7415 ** duplicate entries. This can happen if the database is corrupt.
7416 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007417 ** we do the detection here in order to avoid populating the pager
7418 ** cache with two separate objects associated with the same
7419 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007420 assert( CORRUPT_DB );
7421 rc = SQLITE_CORRUPT_BKPT;
7422 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007423 }
7424 }
dan33ea4862014-10-09 19:35:37 +00007425 }
7426 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007427 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007428 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007429 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007430 }
drh00fe08a2014-10-31 00:05:23 +00007431 pgno = aPgOrder[iBest];
7432 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007433 if( iBest!=i ){
7434 if( iBest>i ){
7435 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7436 }
7437 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7438 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007439 }
7440 }
dan33ea4862014-10-09 19:35:37 +00007441
7442 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7443 "%d(%d nc=%d) %d(%d nc=%d)\n",
7444 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007445 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007446 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007447 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007448 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007449 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007450 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7451 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7452 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7453 ));
danielk19774dbaa892009-06-16 16:50:22 +00007454
7455 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7456 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007457
dan33ea4862014-10-09 19:35:37 +00007458 /* If the sibling pages are not leaves, ensure that the right-child pointer
7459 ** of the right-most new sibling page is set to the value that was
7460 ** originally in the same field of the right-most old sibling page. */
7461 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7462 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7463 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7464 }
danielk1977ac11ee62005-01-15 12:45:51 +00007465
dan33ea4862014-10-09 19:35:37 +00007466 /* Make any required updates to pointer map entries associated with
7467 ** cells stored on sibling pages following the balance operation. Pointer
7468 ** map entries associated with divider cells are set by the insertCell()
7469 ** routine. The associated pointer map entries are:
7470 **
7471 ** a) if the cell contains a reference to an overflow chain, the
7472 ** entry associated with the first page in the overflow chain, and
7473 **
7474 ** b) if the sibling pages are not leaves, the child page associated
7475 ** with the cell.
7476 **
7477 ** If the sibling pages are not leaves, then the pointer map entry
7478 ** associated with the right-child of each sibling may also need to be
7479 ** updated. This happens below, after the sibling pages have been
7480 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007481 */
dan33ea4862014-10-09 19:35:37 +00007482 if( ISAUTOVACUUM ){
7483 MemPage *pNew = apNew[0];
7484 u8 *aOld = pNew->aData;
7485 int cntOldNext = pNew->nCell + pNew->nOverflow;
7486 int usableSize = pBt->usableSize;
7487 int iNew = 0;
7488 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007489
drh1ffd2472015-06-23 02:37:30 +00007490 for(i=0; i<b.nCell; i++){
7491 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007492 if( i==cntOldNext ){
7493 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7494 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7495 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007496 }
dan33ea4862014-10-09 19:35:37 +00007497 if( i==cntNew[iNew] ){
7498 pNew = apNew[++iNew];
7499 if( !leafData ) continue;
7500 }
danielk197785d90ca2008-07-19 14:25:15 +00007501
dan33ea4862014-10-09 19:35:37 +00007502 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007503 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007504 ** or else the divider cell to the left of sibling page iOld. So,
7505 ** if sibling page iOld had the same page number as pNew, and if
7506 ** pCell really was a part of sibling page iOld (not a divider or
7507 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007508 if( iOld>=nNew
7509 || pNew->pgno!=aPgno[iOld]
7510 || pCell<aOld
7511 || pCell>=&aOld[usableSize]
7512 ){
dan33ea4862014-10-09 19:35:37 +00007513 if( !leafCorrection ){
7514 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7515 }
drh1ffd2472015-06-23 02:37:30 +00007516 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007517 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007518 }
drhea82b372015-06-23 21:35:28 +00007519 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007520 }
drh14acc042001-06-10 19:56:58 +00007521 }
7522 }
dan33ea4862014-10-09 19:35:37 +00007523
7524 /* Insert new divider cells into pParent. */
7525 for(i=0; i<nNew-1; i++){
7526 u8 *pCell;
7527 u8 *pTemp;
7528 int sz;
7529 MemPage *pNew = apNew[i];
7530 j = cntNew[i];
7531
7532 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007533 assert( b.apCell[j]!=0 );
7534 pCell = b.apCell[j];
7535 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007536 pTemp = &aOvflSpace[iOvflSpace];
7537 if( !pNew->leaf ){
7538 memcpy(&pNew->aData[8], pCell, 4);
7539 }else if( leafData ){
7540 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007541 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007542 ** cell consists of the integer key for the right-most cell of
7543 ** the sibling-page assembled above only.
7544 */
7545 CellInfo info;
7546 j--;
drh1ffd2472015-06-23 02:37:30 +00007547 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007548 pCell = pTemp;
7549 sz = 4 + putVarint(&pCell[4], info.nKey);
7550 pTemp = 0;
7551 }else{
7552 pCell -= 4;
7553 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7554 ** previously stored on a leaf node, and its reported size was 4
7555 ** bytes, then it may actually be smaller than this
7556 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7557 ** any cell). But it is important to pass the correct size to
7558 ** insertCell(), so reparse the cell now.
7559 **
7560 ** Note that this can never happen in an SQLite data file, as all
7561 ** cells are at least 4 bytes. It only happens in b-trees used
7562 ** to evaluate "IN (SELECT ...)" and similar clauses.
7563 */
drh1ffd2472015-06-23 02:37:30 +00007564 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007565 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007566 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007567 }
7568 }
7569 iOvflSpace += sz;
7570 assert( sz<=pBt->maxLocal+23 );
7571 assert( iOvflSpace <= (int)pBt->pageSize );
7572 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7573 if( rc!=SQLITE_OK ) goto balance_cleanup;
7574 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7575 }
7576
7577 /* Now update the actual sibling pages. The order in which they are updated
7578 ** is important, as this code needs to avoid disrupting any page from which
7579 ** cells may still to be read. In practice, this means:
7580 **
drhd836d422014-10-31 14:26:36 +00007581 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7582 ** then it is not safe to update page apNew[iPg] until after
7583 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007584 **
drhd836d422014-10-31 14:26:36 +00007585 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7586 ** then it is not safe to update page apNew[iPg] until after
7587 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007588 **
7589 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007590 **
7591 ** The iPg value in the following loop starts at nNew-1 goes down
7592 ** to 0, then back up to nNew-1 again, thus making two passes over
7593 ** the pages. On the initial downward pass, only condition (1) above
7594 ** needs to be tested because (2) will always be true from the previous
7595 ** step. On the upward pass, both conditions are always true, so the
7596 ** upwards pass simply processes pages that were missed on the downward
7597 ** pass.
dan33ea4862014-10-09 19:35:37 +00007598 */
drhbec021b2014-10-31 12:22:00 +00007599 for(i=1-nNew; i<nNew; i++){
7600 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007601 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007602 if( abDone[iPg] ) continue; /* Skip pages already processed */
7603 if( i>=0 /* On the upwards pass, or... */
7604 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007605 ){
dan09c68402014-10-11 20:00:24 +00007606 int iNew;
7607 int iOld;
7608 int nNewCell;
7609
drhd836d422014-10-31 14:26:36 +00007610 /* Verify condition (1): If cells are moving left, update iPg
7611 ** only after iPg-1 has already been updated. */
7612 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7613
7614 /* Verify condition (2): If cells are moving right, update iPg
7615 ** only after iPg+1 has already been updated. */
7616 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7617
dan09c68402014-10-11 20:00:24 +00007618 if( iPg==0 ){
7619 iNew = iOld = 0;
7620 nNewCell = cntNew[0];
7621 }else{
drh1ffd2472015-06-23 02:37:30 +00007622 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007623 iNew = cntNew[iPg-1] + !leafData;
7624 nNewCell = cntNew[iPg] - iNew;
7625 }
7626
drh1ffd2472015-06-23 02:37:30 +00007627 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007628 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007629 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007630 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007631 assert( apNew[iPg]->nOverflow==0 );
7632 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007633 }
7634 }
drhd836d422014-10-31 14:26:36 +00007635
7636 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007637 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7638
drh7aa8f852006-03-28 00:24:44 +00007639 assert( nOld>0 );
7640 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007641
danielk197713bd99f2009-06-24 05:40:34 +00007642 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7643 /* The root page of the b-tree now contains no cells. The only sibling
7644 ** page is the right-child of the parent. Copy the contents of the
7645 ** child page into the parent, decreasing the overall height of the
7646 ** b-tree structure by one. This is described as the "balance-shallower"
7647 ** sub-algorithm in some documentation.
7648 **
7649 ** If this is an auto-vacuum database, the call to copyNodeContent()
7650 ** sets all pointer-map entries corresponding to database image pages
7651 ** for which the pointer is stored within the content being copied.
7652 **
drh768f2902014-10-31 02:51:41 +00007653 ** It is critical that the child page be defragmented before being
7654 ** copied into the parent, because if the parent is page 1 then it will
7655 ** by smaller than the child due to the database header, and so all the
7656 ** free space needs to be up front.
7657 */
drh9b5351d2015-09-30 14:19:08 +00007658 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007659 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007660 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007661 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007662 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7663 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007664 );
drhc314dc72009-07-21 11:52:34 +00007665 copyNodeContent(apNew[0], pParent, &rc);
7666 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007667 }else if( ISAUTOVACUUM && !leafCorrection ){
7668 /* Fix the pointer map entries associated with the right-child of each
7669 ** sibling page. All other pointer map entries have already been taken
7670 ** care of. */
7671 for(i=0; i<nNew; i++){
7672 u32 key = get4byte(&apNew[i]->aData[8]);
7673 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007674 }
dan33ea4862014-10-09 19:35:37 +00007675 }
danielk19774dbaa892009-06-16 16:50:22 +00007676
dan33ea4862014-10-09 19:35:37 +00007677 assert( pParent->isInit );
7678 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007679 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007680
dan33ea4862014-10-09 19:35:37 +00007681 /* Free any old pages that were not reused as new pages.
7682 */
7683 for(i=nNew; i<nOld; i++){
7684 freePage(apOld[i], &rc);
7685 }
danielk19774dbaa892009-06-16 16:50:22 +00007686
7687#if 0
dan33ea4862014-10-09 19:35:37 +00007688 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007689 /* The ptrmapCheckPages() contains assert() statements that verify that
7690 ** all pointer map pages are set correctly. This is helpful while
7691 ** debugging. This is usually disabled because a corrupt database may
7692 ** cause an assert() statement to fail. */
7693 ptrmapCheckPages(apNew, nNew);
7694 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007695 }
dan33ea4862014-10-09 19:35:37 +00007696#endif
danielk1977cd581a72009-06-23 15:43:39 +00007697
drh8b2f49b2001-06-08 00:21:52 +00007698 /*
drh14acc042001-06-10 19:56:58 +00007699 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007700 */
drh14acc042001-06-10 19:56:58 +00007701balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007702 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007703 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007704 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007705 }
drh14acc042001-06-10 19:56:58 +00007706 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007707 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007708 }
danielk1977eaa06f62008-09-18 17:34:44 +00007709
drh8b2f49b2001-06-08 00:21:52 +00007710 return rc;
7711}
7712
drh43605152004-05-29 21:46:49 +00007713
7714/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007715** This function is called when the root page of a b-tree structure is
7716** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007717**
danielk1977a50d9aa2009-06-08 14:49:45 +00007718** A new child page is allocated and the contents of the current root
7719** page, including overflow cells, are copied into the child. The root
7720** page is then overwritten to make it an empty page with the right-child
7721** pointer pointing to the new page.
7722**
7723** Before returning, all pointer-map entries corresponding to pages
7724** that the new child-page now contains pointers to are updated. The
7725** entry corresponding to the new right-child pointer of the root
7726** page is also updated.
7727**
7728** If successful, *ppChild is set to contain a reference to the child
7729** page and SQLITE_OK is returned. In this case the caller is required
7730** to call releasePage() on *ppChild exactly once. If an error occurs,
7731** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007732*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007733static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7734 int rc; /* Return value from subprocedures */
7735 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007736 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007737 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007738
danielk1977a50d9aa2009-06-08 14:49:45 +00007739 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007740 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007741
danielk1977a50d9aa2009-06-08 14:49:45 +00007742 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7743 ** page that will become the new right-child of pPage. Copy the contents
7744 ** of the node stored on pRoot into the new child page.
7745 */
drh98add2e2009-07-20 17:11:49 +00007746 rc = sqlite3PagerWrite(pRoot->pDbPage);
7747 if( rc==SQLITE_OK ){
7748 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007749 copyNodeContent(pRoot, pChild, &rc);
7750 if( ISAUTOVACUUM ){
7751 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007752 }
7753 }
7754 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007755 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007756 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007757 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007758 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007759 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7760 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7761 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007762
danielk1977a50d9aa2009-06-08 14:49:45 +00007763 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7764
7765 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007766 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7767 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7768 memcpy(pChild->apOvfl, pRoot->apOvfl,
7769 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007771
7772 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7773 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7774 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7775
7776 *ppChild = pChild;
7777 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007778}
7779
7780/*
danielk197771d5d2c2008-09-29 11:49:47 +00007781** The page that pCur currently points to has just been modified in
7782** some way. This function figures out if this modification means the
7783** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007784** routine. Balancing routines are:
7785**
7786** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007787** balance_deeper()
7788** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007789*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007790static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007791 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007792 const int nMin = pCur->pBt->usableSize * 2 / 3;
7793 u8 aBalanceQuickSpace[13];
7794 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007795
shane75ac1de2009-06-09 18:58:52 +00007796 TESTONLY( int balance_quick_called = 0 );
7797 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007798
7799 do {
7800 int iPage = pCur->iPage;
7801 MemPage *pPage = pCur->apPage[iPage];
7802
7803 if( iPage==0 ){
7804 if( pPage->nOverflow ){
7805 /* The root page of the b-tree is overfull. In this case call the
7806 ** balance_deeper() function to create a new child for the root-page
7807 ** and copy the current contents of the root-page to it. The
7808 ** next iteration of the do-loop will balance the child page.
7809 */
7810 assert( (balance_deeper_called++)==0 );
7811 rc = balance_deeper(pPage, &pCur->apPage[1]);
7812 if( rc==SQLITE_OK ){
7813 pCur->iPage = 1;
7814 pCur->aiIdx[0] = 0;
7815 pCur->aiIdx[1] = 0;
7816 assert( pCur->apPage[1]->nOverflow );
7817 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007818 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007819 break;
7820 }
7821 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7822 break;
7823 }else{
7824 MemPage * const pParent = pCur->apPage[iPage-1];
7825 int const iIdx = pCur->aiIdx[iPage-1];
7826
7827 rc = sqlite3PagerWrite(pParent->pDbPage);
7828 if( rc==SQLITE_OK ){
7829#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007830 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007831 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007832 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007833 && pParent->pgno!=1
7834 && pParent->nCell==iIdx
7835 ){
7836 /* Call balance_quick() to create a new sibling of pPage on which
7837 ** to store the overflow cell. balance_quick() inserts a new cell
7838 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007839 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007840 ** use either balance_nonroot() or balance_deeper(). Until this
7841 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7842 ** buffer.
7843 **
7844 ** The purpose of the following assert() is to check that only a
7845 ** single call to balance_quick() is made for each call to this
7846 ** function. If this were not verified, a subtle bug involving reuse
7847 ** of the aBalanceQuickSpace[] might sneak in.
7848 */
7849 assert( (balance_quick_called++)==0 );
7850 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7851 }else
7852#endif
7853 {
7854 /* In this case, call balance_nonroot() to redistribute cells
7855 ** between pPage and up to 2 of its sibling pages. This involves
7856 ** modifying the contents of pParent, which may cause pParent to
7857 ** become overfull or underfull. The next iteration of the do-loop
7858 ** will balance the parent page to correct this.
7859 **
7860 ** If the parent page becomes overfull, the overflow cell or cells
7861 ** are stored in the pSpace buffer allocated immediately below.
7862 ** A subsequent iteration of the do-loop will deal with this by
7863 ** calling balance_nonroot() (balance_deeper() may be called first,
7864 ** but it doesn't deal with overflow cells - just moves them to a
7865 ** different page). Once this subsequent call to balance_nonroot()
7866 ** has completed, it is safe to release the pSpace buffer used by
7867 ** the previous call, as the overflow cell data will have been
7868 ** copied either into the body of a database page or into the new
7869 ** pSpace buffer passed to the latter call to balance_nonroot().
7870 */
7871 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007872 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7873 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007874 if( pFree ){
7875 /* If pFree is not NULL, it points to the pSpace buffer used
7876 ** by a previous call to balance_nonroot(). Its contents are
7877 ** now stored either on real database pages or within the
7878 ** new pSpace buffer, so it may be safely freed here. */
7879 sqlite3PageFree(pFree);
7880 }
7881
danielk19774dbaa892009-06-16 16:50:22 +00007882 /* The pSpace buffer will be freed after the next call to
7883 ** balance_nonroot(), or just before this function returns, whichever
7884 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007885 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007886 }
7887 }
7888
7889 pPage->nOverflow = 0;
7890
7891 /* The next iteration of the do-loop balances the parent page. */
7892 releasePage(pPage);
7893 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007894 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007895 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007896 }while( rc==SQLITE_OK );
7897
7898 if( pFree ){
7899 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007900 }
7901 return rc;
7902}
7903
drhf74b8d92002-09-01 23:20:45 +00007904
7905/*
drh3b7511c2001-05-26 13:15:44 +00007906** Insert a new record into the BTree. The key is given by (pKey,nKey)
7907** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007908** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007909** is left pointing at a random location.
7910**
7911** For an INTKEY table, only the nKey value of the key is used. pKey is
7912** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007913**
7914** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007915** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007916** been performed. seekResult is the search result returned (a negative
7917** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007918** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007919** (pKey, nKey)).
7920**
drh3e9ca092009-09-08 01:14:48 +00007921** If the seekResult parameter is non-zero, then the caller guarantees that
7922** cursor pCur is pointing at the existing copy of a row that is to be
7923** overwritten. If the seekResult parameter is 0, then cursor pCur may
7924** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007925** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007926*/
drh3aac2dd2004-04-26 14:10:20 +00007927int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007928 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007929 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007930 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007931 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007932 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007933 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007934){
drh3b7511c2001-05-26 13:15:44 +00007935 int rc;
drh3e9ca092009-09-08 01:14:48 +00007936 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007937 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007938 int idx;
drh3b7511c2001-05-26 13:15:44 +00007939 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007940 Btree *p = pCur->pBtree;
7941 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007942 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007943 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007944
drh98add2e2009-07-20 17:11:49 +00007945 if( pCur->eState==CURSOR_FAULT ){
7946 assert( pCur->skipNext!=SQLITE_OK );
7947 return pCur->skipNext;
7948 }
7949
drh1fee73e2007-08-29 04:00:57 +00007950 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007951 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7952 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007953 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007954 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7955
danielk197731d31b82009-07-13 13:18:07 +00007956 /* Assert that the caller has been consistent. If this cursor was opened
7957 ** expecting an index b-tree, then the caller should be inserting blob
7958 ** keys with no associated data. If the cursor was opened expecting an
7959 ** intkey table, the caller should be inserting integer keys with a
7960 ** blob of associated data. */
7961 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7962
danielk19779c3acf32009-05-02 07:36:49 +00007963 /* Save the positions of any other cursors open on this table.
7964 **
danielk19773509a652009-07-06 18:56:13 +00007965 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007966 ** example, when inserting data into a table with auto-generated integer
7967 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7968 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007969 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007970 ** that the cursor is already where it needs to be and returns without
7971 ** doing any work. To avoid thwarting these optimizations, it is important
7972 ** not to clear the cursor here.
7973 */
drh27fb7462015-06-30 02:47:36 +00007974 if( pCur->curFlags & BTCF_Multiple ){
7975 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7976 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007977 }
7978
danielk197771d5d2c2008-09-29 11:49:47 +00007979 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007980 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007981 /* If this is an insert into a table b-tree, invalidate any incrblob
7982 ** cursors open on the row being replaced */
drh4a1c3802004-05-12 15:15:47 +00007983 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007984
7985 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007986 ** new row onto the end, set the "loc" to avoid an unnecessary
7987 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00007988 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7989 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00007990 loc = -1;
7991 }else if( loc==0 ){
7992 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7993 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00007994 }
drh207c8172015-06-29 23:01:32 +00007995 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00007996 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7997 if( rc ) return rc;
drhf74b8d92002-09-01 23:20:45 +00007998 }
danielk1977b980d2212009-06-22 18:03:51 +00007999 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
drh3aac2dd2004-04-26 14:10:20 +00008000
drh3b7511c2001-05-26 13:15:44 +00008001 pPage = pCur->apPage[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008002 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008003 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008004
drh3a4c1412004-05-09 20:40:11 +00008005 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8006 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8007 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008008 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008009 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008010 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008011 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008012 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008013 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008014 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008015 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008016 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008017 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008018 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008019 rc = sqlite3PagerWrite(pPage->pDbPage);
8020 if( rc ){
8021 goto end_insert;
8022 }
danielk197771d5d2c2008-09-29 11:49:47 +00008023 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008024 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008025 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008026 }
drh9bfdc252014-09-24 02:05:41 +00008027 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008028 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008029 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008030 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008031 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008032 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008033 }else{
drh4b70f112004-05-02 21:12:19 +00008034 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008035 }
drh98add2e2009-07-20 17:11:49 +00008036 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008037 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008038
mistachkin48864df2013-03-21 21:20:32 +00008039 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008040 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008041 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008042 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008043 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008044 ** Previous versions of SQLite called moveToRoot() to move the cursor
8045 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008046 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8047 ** set the cursor state to "invalid". This makes common insert operations
8048 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008049 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008050 ** There is a subtle but important optimization here too. When inserting
8051 ** multiple records into an intkey b-tree using a single cursor (as can
8052 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8053 ** is advantageous to leave the cursor pointing to the last entry in
8054 ** the b-tree if possible. If the cursor is left pointing to the last
8055 ** entry in the table, and the next row inserted has an integer key
8056 ** larger than the largest existing key, it is possible to insert the
8057 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008058 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008059 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008060 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008061 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008062 rc = balance(pCur);
8063
8064 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008065 ** fails. Internal data structure corruption will result otherwise.
8066 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8067 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008068 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008069 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008070 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008071 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008072
drh2e38c322004-09-03 18:38:44 +00008073end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008074 return rc;
8075}
8076
8077/*
danf0ee1d32015-09-12 19:26:11 +00008078** Delete the entry that the cursor is pointing to.
8079**
8080** If the second parameter is zero, then the cursor is left pointing at an
8081** arbitrary location after the delete. If it is non-zero, then the cursor
8082** is left in a state such that the next call to BtreeNext() or BtreePrev()
8083** moves it to the same row as it would if the call to BtreeDelete() had
8084** been omitted.
drh3b7511c2001-05-26 13:15:44 +00008085*/
danf0ee1d32015-09-12 19:26:11 +00008086int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
drhd677b3d2007-08-20 22:48:41 +00008087 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008088 BtShared *pBt = p->pBt;
8089 int rc; /* Return code */
8090 MemPage *pPage; /* Page to delete cell from */
8091 unsigned char *pCell; /* Pointer to cell to delete */
8092 int iCellIdx; /* Index of cell to delete */
8093 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008094 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008095 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drh8b2f49b2001-06-08 00:21:52 +00008096
drh1fee73e2007-08-29 04:00:57 +00008097 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008098 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008099 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008100 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008101 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8102 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008103 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8104 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008105
danielk19774dbaa892009-06-16 16:50:22 +00008106 iCellDepth = pCur->iPage;
8107 iCellIdx = pCur->aiIdx[iCellDepth];
8108 pPage = pCur->apPage[iCellDepth];
8109 pCell = findCell(pPage, iCellIdx);
8110
8111 /* If the page containing the entry to delete is not a leaf page, move
8112 ** the cursor to the largest entry in the tree that is smaller than
8113 ** the entry being deleted. This cell will replace the cell being deleted
8114 ** from the internal node. The 'previous' entry is used for this instead
8115 ** of the 'next' entry, as the previous entry is always a part of the
8116 ** sub-tree headed by the child page of the cell being deleted. This makes
8117 ** balancing the tree following the delete operation easier. */
8118 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008119 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008120 rc = sqlite3BtreePrevious(pCur, &notUsed);
8121 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008122 }
8123
8124 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008125 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008126 if( pCur->curFlags & BTCF_Multiple ){
8127 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8128 if( rc ) return rc;
8129 }
drhd60f4f42012-03-23 14:23:52 +00008130
8131 /* If this is a delete operation to remove a row from a table b-tree,
8132 ** invalidate any incrblob cursors open on the row being deleted. */
8133 if( pCur->pKeyInfo==0 ){
8134 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8135 }
8136
danf0ee1d32015-09-12 19:26:11 +00008137 /* If the bPreserve flag is set to true, then the cursor position must
8138 ** be preserved following this delete operation. If the current delete
8139 ** will cause a b-tree rebalance, then this is done by saving the cursor
8140 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8141 ** returning.
8142 **
8143 ** Or, if the current delete will not cause a rebalance, then the cursor
8144 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8145 ** before or after the deleted entry. In this case set bSkipnext to true. */
8146 if( bPreserve ){
8147 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008148 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008149 ){
8150 /* A b-tree rebalance will be required after deleting this entry.
8151 ** Save the cursor key. */
8152 rc = saveCursorKey(pCur);
8153 if( rc ) return rc;
8154 }else{
8155 bSkipnext = 1;
8156 }
8157 }
8158
8159 /* Make the page containing the entry to be deleted writable. Then free any
8160 ** overflow pages associated with the entry and finally remove the cell
8161 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008162 rc = sqlite3PagerWrite(pPage->pDbPage);
8163 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008164 rc = clearCell(pPage, pCell, &szCell);
8165 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008166 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008167
danielk19774dbaa892009-06-16 16:50:22 +00008168 /* If the cell deleted was not located on a leaf page, then the cursor
8169 ** is currently pointing to the largest entry in the sub-tree headed
8170 ** by the child-page of the cell that was just deleted from an internal
8171 ** node. The cell from the leaf node needs to be moved to the internal
8172 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008173 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008174 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8175 int nCell;
8176 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8177 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008178
danielk19774dbaa892009-06-16 16:50:22 +00008179 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008180 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008181 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008182 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008183 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008184 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008185 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008186 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8187 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008188 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008189 }
danielk19774dbaa892009-06-16 16:50:22 +00008190
8191 /* Balance the tree. If the entry deleted was located on a leaf page,
8192 ** then the cursor still points to that page. In this case the first
8193 ** call to balance() repairs the tree, and the if(...) condition is
8194 ** never true.
8195 **
8196 ** Otherwise, if the entry deleted was on an internal node page, then
8197 ** pCur is pointing to the leaf page from which a cell was removed to
8198 ** replace the cell deleted from the internal node. This is slightly
8199 ** tricky as the leaf node may be underfull, and the internal node may
8200 ** be either under or overfull. In this case run the balancing algorithm
8201 ** on the leaf node first. If the balance proceeds far enough up the
8202 ** tree that we can be sure that any problem in the internal node has
8203 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8204 ** walk the cursor up the tree to the internal node and balance it as
8205 ** well. */
8206 rc = balance(pCur);
8207 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8208 while( pCur->iPage>iCellDepth ){
8209 releasePage(pCur->apPage[pCur->iPage--]);
8210 }
8211 rc = balance(pCur);
8212 }
8213
danielk19776b456a22005-03-21 04:04:02 +00008214 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008215 if( bSkipnext ){
8216 assert( bPreserve && pCur->iPage==iCellDepth );
drh78ac1092015-09-20 22:57:47 +00008217 assert( pPage==pCur->apPage[pCur->iPage] );
8218 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008219 pCur->eState = CURSOR_SKIPNEXT;
8220 if( iCellIdx>=pPage->nCell ){
8221 pCur->skipNext = -1;
8222 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8223 }else{
8224 pCur->skipNext = 1;
8225 }
8226 }else{
8227 rc = moveToRoot(pCur);
8228 if( bPreserve ){
8229 pCur->eState = CURSOR_REQUIRESEEK;
8230 }
8231 }
danielk19776b456a22005-03-21 04:04:02 +00008232 }
drh5e2f8b92001-05-28 00:41:15 +00008233 return rc;
drh3b7511c2001-05-26 13:15:44 +00008234}
drh8b2f49b2001-06-08 00:21:52 +00008235
8236/*
drhc6b52df2002-01-04 03:09:29 +00008237** Create a new BTree table. Write into *piTable the page
8238** number for the root page of the new table.
8239**
drhab01f612004-05-22 02:55:23 +00008240** The type of type is determined by the flags parameter. Only the
8241** following values of flags are currently in use. Other values for
8242** flags might not work:
8243**
8244** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8245** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008246*/
drhd4187c72010-08-30 22:15:45 +00008247static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008248 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008249 MemPage *pRoot;
8250 Pgno pgnoRoot;
8251 int rc;
drhd4187c72010-08-30 22:15:45 +00008252 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008253
drh1fee73e2007-08-29 04:00:57 +00008254 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008255 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008256 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008257
danielk1977003ba062004-11-04 02:57:33 +00008258#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008259 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008260 if( rc ){
8261 return rc;
8262 }
danielk1977003ba062004-11-04 02:57:33 +00008263#else
danielk1977687566d2004-11-02 12:56:41 +00008264 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008265 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8266 MemPage *pPageMove; /* The page to move to. */
8267
danielk197720713f32007-05-03 11:43:33 +00008268 /* Creating a new table may probably require moving an existing database
8269 ** to make room for the new tables root page. In case this page turns
8270 ** out to be an overflow page, delete all overflow page-map caches
8271 ** held by open cursors.
8272 */
danielk197792d4d7a2007-05-04 12:05:56 +00008273 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008274
danielk1977003ba062004-11-04 02:57:33 +00008275 /* Read the value of meta[3] from the database to determine where the
8276 ** root page of the new table should go. meta[3] is the largest root-page
8277 ** created so far, so the new root-page is (meta[3]+1).
8278 */
danielk1977602b4662009-07-02 07:47:33 +00008279 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008280 pgnoRoot++;
8281
danielk1977599fcba2004-11-08 07:13:13 +00008282 /* The new root-page may not be allocated on a pointer-map page, or the
8283 ** PENDING_BYTE page.
8284 */
drh72190432008-01-31 14:54:43 +00008285 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008286 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008287 pgnoRoot++;
8288 }
drh499e15b2015-05-22 12:37:37 +00008289 assert( pgnoRoot>=3 || CORRUPT_DB );
8290 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008291
8292 /* Allocate a page. The page that currently resides at pgnoRoot will
8293 ** be moved to the allocated page (unless the allocated page happens
8294 ** to reside at pgnoRoot).
8295 */
dan51f0b6d2013-02-22 20:16:34 +00008296 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008297 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008298 return rc;
8299 }
danielk1977003ba062004-11-04 02:57:33 +00008300
8301 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008302 /* pgnoRoot is the page that will be used for the root-page of
8303 ** the new table (assuming an error did not occur). But we were
8304 ** allocated pgnoMove. If required (i.e. if it was not allocated
8305 ** by extending the file), the current page at position pgnoMove
8306 ** is already journaled.
8307 */
drheeb844a2009-08-08 18:01:07 +00008308 u8 eType = 0;
8309 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008310
danf7679ad2013-04-03 11:38:36 +00008311 /* Save the positions of any open cursors. This is required in
8312 ** case they are holding a reference to an xFetch reference
8313 ** corresponding to page pgnoRoot. */
8314 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008315 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008316 if( rc!=SQLITE_OK ){
8317 return rc;
8318 }
danielk1977f35843b2007-04-07 15:03:17 +00008319
8320 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008321 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008322 if( rc!=SQLITE_OK ){
8323 return rc;
8324 }
8325 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008326 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8327 rc = SQLITE_CORRUPT_BKPT;
8328 }
8329 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008330 releasePage(pRoot);
8331 return rc;
8332 }
drhccae6022005-02-26 17:31:26 +00008333 assert( eType!=PTRMAP_ROOTPAGE );
8334 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008335 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008336 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008337
8338 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008339 if( rc!=SQLITE_OK ){
8340 return rc;
8341 }
drhb00fc3b2013-08-21 23:42:32 +00008342 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008343 if( rc!=SQLITE_OK ){
8344 return rc;
8345 }
danielk19773b8a05f2007-03-19 17:44:26 +00008346 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008347 if( rc!=SQLITE_OK ){
8348 releasePage(pRoot);
8349 return rc;
8350 }
8351 }else{
8352 pRoot = pPageMove;
8353 }
8354
danielk197742741be2005-01-08 12:42:39 +00008355 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008356 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008357 if( rc ){
8358 releasePage(pRoot);
8359 return rc;
8360 }
drhbf592832010-03-30 15:51:12 +00008361
8362 /* When the new root page was allocated, page 1 was made writable in
8363 ** order either to increase the database filesize, or to decrement the
8364 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8365 */
8366 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008367 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008368 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008369 releasePage(pRoot);
8370 return rc;
8371 }
danielk197742741be2005-01-08 12:42:39 +00008372
danielk1977003ba062004-11-04 02:57:33 +00008373 }else{
drh4f0c5872007-03-26 22:05:01 +00008374 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008375 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008376 }
8377#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008378 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008379 if( createTabFlags & BTREE_INTKEY ){
8380 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8381 }else{
8382 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8383 }
8384 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008385 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008386 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008387 *piTable = (int)pgnoRoot;
8388 return SQLITE_OK;
8389}
drhd677b3d2007-08-20 22:48:41 +00008390int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8391 int rc;
8392 sqlite3BtreeEnter(p);
8393 rc = btreeCreateTable(p, piTable, flags);
8394 sqlite3BtreeLeave(p);
8395 return rc;
8396}
drh8b2f49b2001-06-08 00:21:52 +00008397
8398/*
8399** Erase the given database page and all its children. Return
8400** the page to the freelist.
8401*/
drh4b70f112004-05-02 21:12:19 +00008402static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008403 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008404 Pgno pgno, /* Page number to clear */
8405 int freePageFlag, /* Deallocate page if true */
8406 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008407){
danielk1977146ba992009-07-22 14:08:13 +00008408 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008409 int rc;
drh4b70f112004-05-02 21:12:19 +00008410 unsigned char *pCell;
8411 int i;
dan8ce71842014-01-14 20:14:09 +00008412 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008413 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008414
drh1fee73e2007-08-29 04:00:57 +00008415 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008416 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008417 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008418 }
drh28f58dd2015-06-27 19:45:03 +00008419 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008420 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008421 if( pPage->bBusy ){
8422 rc = SQLITE_CORRUPT_BKPT;
8423 goto cleardatabasepage_out;
8424 }
8425 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008426 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008427 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008428 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008429 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008430 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008431 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008432 }
drh9bfdc252014-09-24 02:05:41 +00008433 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008434 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008435 }
drha34b6762004-05-07 13:30:42 +00008436 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008437 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008438 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008439 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008440 assert( pPage->intKey || CORRUPT_DB );
8441 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008442 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008443 }
8444 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008445 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008446 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008447 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008448 }
danielk19776b456a22005-03-21 04:04:02 +00008449
8450cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008451 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008452 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008453 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008454}
8455
8456/*
drhab01f612004-05-22 02:55:23 +00008457** Delete all information from a single table in the database. iTable is
8458** the page number of the root of the table. After this routine returns,
8459** the root page is empty, but still exists.
8460**
8461** This routine will fail with SQLITE_LOCKED if there are any open
8462** read cursors on the table. Open write cursors are moved to the
8463** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008464**
8465** If pnChange is not NULL, then table iTable must be an intkey table. The
8466** integer value pointed to by pnChange is incremented by the number of
8467** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008468*/
danielk1977c7af4842008-10-27 13:59:33 +00008469int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008470 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008471 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008472 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008473 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008474
drhc046e3e2009-07-15 11:26:44 +00008475 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008476
drhc046e3e2009-07-15 11:26:44 +00008477 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008478 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8479 ** is the root of a table b-tree - if it is not, the following call is
8480 ** a no-op). */
8481 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008482 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008483 }
drhd677b3d2007-08-20 22:48:41 +00008484 sqlite3BtreeLeave(p);
8485 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008486}
8487
8488/*
drh079a3072014-03-19 14:10:55 +00008489** Delete all information from the single table that pCur is open on.
8490**
8491** This routine only work for pCur on an ephemeral table.
8492*/
8493int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8494 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8495}
8496
8497/*
drh8b2f49b2001-06-08 00:21:52 +00008498** Erase all information in a table and add the root of the table to
8499** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008500** page 1) is never added to the freelist.
8501**
8502** This routine will fail with SQLITE_LOCKED if there are any open
8503** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008504**
8505** If AUTOVACUUM is enabled and the page at iTable is not the last
8506** root page in the database file, then the last root page
8507** in the database file is moved into the slot formerly occupied by
8508** iTable and that last slot formerly occupied by the last root page
8509** is added to the freelist instead of iTable. In this say, all
8510** root pages are kept at the beginning of the database file, which
8511** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8512** page number that used to be the last root page in the file before
8513** the move. If no page gets moved, *piMoved is set to 0.
8514** The last root page is recorded in meta[3] and the value of
8515** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008516*/
danielk197789d40042008-11-17 14:20:56 +00008517static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008518 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008519 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008520 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008521
drh1fee73e2007-08-29 04:00:57 +00008522 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008523 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008524
danielk1977e6efa742004-11-10 11:55:10 +00008525 /* It is illegal to drop a table if any cursors are open on the
8526 ** database. This is because in auto-vacuum mode the backend may
8527 ** need to move another root-page to fill a gap left by the deleted
8528 ** root page. If an open cursor was using this page a problem would
8529 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008530 **
8531 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008532 */
drhc046e3e2009-07-15 11:26:44 +00008533 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008534 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8535 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008536 }
danielk1977a0bf2652004-11-04 14:30:04 +00008537
drhb00fc3b2013-08-21 23:42:32 +00008538 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008539 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008540 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008541 if( rc ){
8542 releasePage(pPage);
8543 return rc;
8544 }
danielk1977a0bf2652004-11-04 14:30:04 +00008545
drh205f48e2004-11-05 00:43:11 +00008546 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008547
drh4b70f112004-05-02 21:12:19 +00008548 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008549#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008550 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008551 releasePage(pPage);
8552#else
8553 if( pBt->autoVacuum ){
8554 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008555 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008556
8557 if( iTable==maxRootPgno ){
8558 /* If the table being dropped is the table with the largest root-page
8559 ** number in the database, put the root page on the free list.
8560 */
drhc314dc72009-07-21 11:52:34 +00008561 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008562 releasePage(pPage);
8563 if( rc!=SQLITE_OK ){
8564 return rc;
8565 }
8566 }else{
8567 /* The table being dropped does not have the largest root-page
8568 ** number in the database. So move the page that does into the
8569 ** gap left by the deleted root-page.
8570 */
8571 MemPage *pMove;
8572 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008573 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008574 if( rc!=SQLITE_OK ){
8575 return rc;
8576 }
danielk19774c999992008-07-16 18:17:55 +00008577 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008578 releasePage(pMove);
8579 if( rc!=SQLITE_OK ){
8580 return rc;
8581 }
drhfe3313f2009-07-21 19:02:20 +00008582 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008583 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008584 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008585 releasePage(pMove);
8586 if( rc!=SQLITE_OK ){
8587 return rc;
8588 }
8589 *piMoved = maxRootPgno;
8590 }
8591
danielk1977599fcba2004-11-08 07:13:13 +00008592 /* Set the new 'max-root-page' value in the database header. This
8593 ** is the old value less one, less one more if that happens to
8594 ** be a root-page number, less one again if that is the
8595 ** PENDING_BYTE_PAGE.
8596 */
danielk197787a6e732004-11-05 12:58:25 +00008597 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008598 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8599 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008600 maxRootPgno--;
8601 }
danielk1977599fcba2004-11-08 07:13:13 +00008602 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8603
danielk1977aef0bf62005-12-30 16:28:01 +00008604 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008605 }else{
drhc314dc72009-07-21 11:52:34 +00008606 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008607 releasePage(pPage);
8608 }
8609#endif
drh2aa679f2001-06-25 02:11:07 +00008610 }else{
drhc046e3e2009-07-15 11:26:44 +00008611 /* If sqlite3BtreeDropTable was called on page 1.
8612 ** This really never should happen except in a corrupt
8613 ** database.
8614 */
drha34b6762004-05-07 13:30:42 +00008615 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008616 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008617 }
drh8b2f49b2001-06-08 00:21:52 +00008618 return rc;
8619}
drhd677b3d2007-08-20 22:48:41 +00008620int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8621 int rc;
8622 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008623 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008624 sqlite3BtreeLeave(p);
8625 return rc;
8626}
drh8b2f49b2001-06-08 00:21:52 +00008627
drh001bbcb2003-03-19 03:14:00 +00008628
drh8b2f49b2001-06-08 00:21:52 +00008629/*
danielk1977602b4662009-07-02 07:47:33 +00008630** This function may only be called if the b-tree connection already
8631** has a read or write transaction open on the database.
8632**
drh23e11ca2004-05-04 17:27:28 +00008633** Read the meta-information out of a database file. Meta[0]
8634** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008635** through meta[15] are available for use by higher layers. Meta[0]
8636** is read-only, the others are read/write.
8637**
8638** The schema layer numbers meta values differently. At the schema
8639** layer (and the SetCookie and ReadCookie opcodes) the number of
8640** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008641**
8642** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8643** of reading the value out of the header, it instead loads the "DataVersion"
8644** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8645** database file. It is a number computed by the pager. But its access
8646** pattern is the same as header meta values, and so it is convenient to
8647** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008648*/
danielk1977602b4662009-07-02 07:47:33 +00008649void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008650 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008651
drhd677b3d2007-08-20 22:48:41 +00008652 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008653 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008654 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008655 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008656 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008657
drh91618562014-12-19 19:28:02 +00008658 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008659 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008660 }else{
8661 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8662 }
drhae157872004-08-14 19:20:09 +00008663
danielk1977602b4662009-07-02 07:47:33 +00008664 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8665 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008666#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008667 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8668 pBt->btsFlags |= BTS_READ_ONLY;
8669 }
danielk1977003ba062004-11-04 02:57:33 +00008670#endif
drhae157872004-08-14 19:20:09 +00008671
drhd677b3d2007-08-20 22:48:41 +00008672 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008673}
8674
8675/*
drh23e11ca2004-05-04 17:27:28 +00008676** Write meta-information back into the database. Meta[0] is
8677** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008678*/
danielk1977aef0bf62005-12-30 16:28:01 +00008679int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8680 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008681 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008682 int rc;
drh23e11ca2004-05-04 17:27:28 +00008683 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008684 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008685 assert( p->inTrans==TRANS_WRITE );
8686 assert( pBt->pPage1!=0 );
8687 pP1 = pBt->pPage1->aData;
8688 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8689 if( rc==SQLITE_OK ){
8690 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008691#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008692 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008693 assert( pBt->autoVacuum || iMeta==0 );
8694 assert( iMeta==0 || iMeta==1 );
8695 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008696 }
drh64022502009-01-09 14:11:04 +00008697#endif
drh5df72a52002-06-06 23:16:05 +00008698 }
drhd677b3d2007-08-20 22:48:41 +00008699 sqlite3BtreeLeave(p);
8700 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008701}
drh8c42ca92001-06-22 19:15:00 +00008702
danielk1977a5533162009-02-24 10:01:51 +00008703#ifndef SQLITE_OMIT_BTREECOUNT
8704/*
8705** The first argument, pCur, is a cursor opened on some b-tree. Count the
8706** number of entries in the b-tree and write the result to *pnEntry.
8707**
8708** SQLITE_OK is returned if the operation is successfully executed.
8709** Otherwise, if an error is encountered (i.e. an IO error or database
8710** corruption) an SQLite error code is returned.
8711*/
8712int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8713 i64 nEntry = 0; /* Value to return in *pnEntry */
8714 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008715
8716 if( pCur->pgnoRoot==0 ){
8717 *pnEntry = 0;
8718 return SQLITE_OK;
8719 }
danielk1977a5533162009-02-24 10:01:51 +00008720 rc = moveToRoot(pCur);
8721
8722 /* Unless an error occurs, the following loop runs one iteration for each
8723 ** page in the B-Tree structure (not including overflow pages).
8724 */
8725 while( rc==SQLITE_OK ){
8726 int iIdx; /* Index of child node in parent */
8727 MemPage *pPage; /* Current page of the b-tree */
8728
8729 /* If this is a leaf page or the tree is not an int-key tree, then
8730 ** this page contains countable entries. Increment the entry counter
8731 ** accordingly.
8732 */
8733 pPage = pCur->apPage[pCur->iPage];
8734 if( pPage->leaf || !pPage->intKey ){
8735 nEntry += pPage->nCell;
8736 }
8737
8738 /* pPage is a leaf node. This loop navigates the cursor so that it
8739 ** points to the first interior cell that it points to the parent of
8740 ** the next page in the tree that has not yet been visited. The
8741 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8742 ** of the page, or to the number of cells in the page if the next page
8743 ** to visit is the right-child of its parent.
8744 **
8745 ** If all pages in the tree have been visited, return SQLITE_OK to the
8746 ** caller.
8747 */
8748 if( pPage->leaf ){
8749 do {
8750 if( pCur->iPage==0 ){
8751 /* All pages of the b-tree have been visited. Return successfully. */
8752 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008753 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008754 }
danielk197730548662009-07-09 05:07:37 +00008755 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008756 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8757
8758 pCur->aiIdx[pCur->iPage]++;
8759 pPage = pCur->apPage[pCur->iPage];
8760 }
8761
8762 /* Descend to the child node of the cell that the cursor currently
8763 ** points at. This is the right-child if (iIdx==pPage->nCell).
8764 */
8765 iIdx = pCur->aiIdx[pCur->iPage];
8766 if( iIdx==pPage->nCell ){
8767 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8768 }else{
8769 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8770 }
8771 }
8772
shanebe217792009-03-05 04:20:31 +00008773 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008774 return rc;
8775}
8776#endif
drhdd793422001-06-28 01:54:48 +00008777
drhdd793422001-06-28 01:54:48 +00008778/*
drh5eddca62001-06-30 21:53:53 +00008779** Return the pager associated with a BTree. This routine is used for
8780** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008781*/
danielk1977aef0bf62005-12-30 16:28:01 +00008782Pager *sqlite3BtreePager(Btree *p){
8783 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008784}
drh5eddca62001-06-30 21:53:53 +00008785
drhb7f91642004-10-31 02:22:47 +00008786#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008787/*
8788** Append a message to the error message string.
8789*/
drh2e38c322004-09-03 18:38:44 +00008790static void checkAppendMsg(
8791 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008792 const char *zFormat,
8793 ...
8794){
8795 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008796 if( !pCheck->mxErr ) return;
8797 pCheck->mxErr--;
8798 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008799 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008800 if( pCheck->errMsg.nChar ){
8801 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008802 }
drh867db832014-09-26 02:41:05 +00008803 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008804 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008805 }
8806 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8807 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008808 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008809 pCheck->mallocFailed = 1;
8810 }
drh5eddca62001-06-30 21:53:53 +00008811}
drhb7f91642004-10-31 02:22:47 +00008812#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008813
drhb7f91642004-10-31 02:22:47 +00008814#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008815
8816/*
8817** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8818** corresponds to page iPg is already set.
8819*/
8820static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8821 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8822 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8823}
8824
8825/*
8826** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8827*/
8828static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8829 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8830 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8831}
8832
8833
drh5eddca62001-06-30 21:53:53 +00008834/*
8835** Add 1 to the reference count for page iPage. If this is the second
8836** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008837** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008838** if this is the first reference to the page.
8839**
8840** Also check that the page number is in bounds.
8841*/
drh867db832014-09-26 02:41:05 +00008842static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008843 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008844 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008845 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008846 return 1;
8847 }
dan1235bb12012-04-03 17:43:28 +00008848 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008849 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008850 return 1;
8851 }
dan1235bb12012-04-03 17:43:28 +00008852 setPageReferenced(pCheck, iPage);
8853 return 0;
drh5eddca62001-06-30 21:53:53 +00008854}
8855
danielk1977afcdd022004-10-31 16:25:42 +00008856#ifndef SQLITE_OMIT_AUTOVACUUM
8857/*
8858** Check that the entry in the pointer-map for page iChild maps to
8859** page iParent, pointer type ptrType. If not, append an error message
8860** to pCheck.
8861*/
8862static void checkPtrmap(
8863 IntegrityCk *pCheck, /* Integrity check context */
8864 Pgno iChild, /* Child page number */
8865 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008866 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008867){
8868 int rc;
8869 u8 ePtrmapType;
8870 Pgno iPtrmapParent;
8871
8872 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8873 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008874 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008875 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008876 return;
8877 }
8878
8879 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008880 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008881 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8882 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8883 }
8884}
8885#endif
8886
drh5eddca62001-06-30 21:53:53 +00008887/*
8888** Check the integrity of the freelist or of an overflow page list.
8889** Verify that the number of pages on the list is N.
8890*/
drh30e58752002-03-02 20:41:57 +00008891static void checkList(
8892 IntegrityCk *pCheck, /* Integrity checking context */
8893 int isFreeList, /* True for a freelist. False for overflow page list */
8894 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008895 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008896){
8897 int i;
drh3a4c1412004-05-09 20:40:11 +00008898 int expected = N;
8899 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008900 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008901 DbPage *pOvflPage;
8902 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008903 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008904 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008905 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008906 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008907 break;
8908 }
drh867db832014-09-26 02:41:05 +00008909 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008910 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008911 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008912 break;
8913 }
danielk19773b8a05f2007-03-19 17:44:26 +00008914 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008915 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008916 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008917#ifndef SQLITE_OMIT_AUTOVACUUM
8918 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008919 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008920 }
8921#endif
drh43b18e12010-08-17 19:40:08 +00008922 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008923 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008924 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008925 N--;
8926 }else{
8927 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008928 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008929#ifndef SQLITE_OMIT_AUTOVACUUM
8930 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008931 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008932 }
8933#endif
drh867db832014-09-26 02:41:05 +00008934 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008935 }
8936 N -= n;
drh30e58752002-03-02 20:41:57 +00008937 }
drh30e58752002-03-02 20:41:57 +00008938 }
danielk1977afcdd022004-10-31 16:25:42 +00008939#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008940 else{
8941 /* If this database supports auto-vacuum and iPage is not the last
8942 ** page in this overflow list, check that the pointer-map entry for
8943 ** the following page matches iPage.
8944 */
8945 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008946 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008947 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008948 }
danielk1977afcdd022004-10-31 16:25:42 +00008949 }
8950#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008951 iPage = get4byte(pOvflData);
8952 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008953
8954 if( isFreeList && N<(iPage!=0) ){
8955 checkAppendMsg(pCheck, "free-page count in header is too small");
8956 }
drh5eddca62001-06-30 21:53:53 +00008957 }
8958}
drhb7f91642004-10-31 02:22:47 +00008959#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008960
drh67731a92015-04-16 11:56:03 +00008961/*
8962** An implementation of a min-heap.
8963**
8964** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008965** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008966** and aHeap[N*2+1].
8967**
8968** The heap property is this: Every node is less than or equal to both
8969** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008970** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008971**
8972** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8973** the heap, preserving the heap property. The btreeHeapPull() routine
8974** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008975** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008976** property.
8977**
8978** This heap is used for cell overlap and coverage testing. Each u32
8979** entry represents the span of a cell or freeblock on a btree page.
8980** The upper 16 bits are the index of the first byte of a range and the
8981** lower 16 bits are the index of the last byte of that range.
8982*/
8983static void btreeHeapInsert(u32 *aHeap, u32 x){
8984 u32 j, i = ++aHeap[0];
8985 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008986 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008987 x = aHeap[j];
8988 aHeap[j] = aHeap[i];
8989 aHeap[i] = x;
8990 i = j;
8991 }
8992}
8993static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8994 u32 j, i, x;
8995 if( (x = aHeap[0])==0 ) return 0;
8996 *pOut = aHeap[1];
8997 aHeap[1] = aHeap[x];
8998 aHeap[x] = 0xffffffff;
8999 aHeap[0]--;
9000 i = 1;
9001 while( (j = i*2)<=aHeap[0] ){
9002 if( aHeap[j]>aHeap[j+1] ) j++;
9003 if( aHeap[i]<aHeap[j] ) break;
9004 x = aHeap[i];
9005 aHeap[i] = aHeap[j];
9006 aHeap[j] = x;
9007 i = j;
9008 }
9009 return 1;
9010}
9011
drhb7f91642004-10-31 02:22:47 +00009012#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009013/*
9014** Do various sanity checks on a single page of a tree. Return
9015** the tree depth. Root pages return 0. Parents of root pages
9016** return 1, and so forth.
9017**
9018** These checks are done:
9019**
9020** 1. Make sure that cells and freeblocks do not overlap
9021** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009022** 2. Make sure integer cell keys are in order.
9023** 3. Check the integrity of overflow pages.
9024** 4. Recursively call checkTreePage on all children.
9025** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009026*/
9027static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009028 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009029 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009030 i64 *piMinKey, /* Write minimum integer primary key here */
9031 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009032){
drhcbc6b712015-07-02 16:17:30 +00009033 MemPage *pPage = 0; /* The page being analyzed */
9034 int i; /* Loop counter */
9035 int rc; /* Result code from subroutine call */
9036 int depth = -1, d2; /* Depth of a subtree */
9037 int pgno; /* Page number */
9038 int nFrag; /* Number of fragmented bytes on the page */
9039 int hdr; /* Offset to the page header */
9040 int cellStart; /* Offset to the start of the cell pointer array */
9041 int nCell; /* Number of cells */
9042 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9043 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9044 ** False if IPK must be strictly less than maxKey */
9045 u8 *data; /* Page content */
9046 u8 *pCell; /* Cell content */
9047 u8 *pCellIdx; /* Next element of the cell pointer array */
9048 BtShared *pBt; /* The BtShared object that owns pPage */
9049 u32 pc; /* Address of a cell */
9050 u32 usableSize; /* Usable size of the page */
9051 u32 contentOffset; /* Offset to the start of the cell content area */
9052 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009053 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009054 const char *saved_zPfx = pCheck->zPfx;
9055 int saved_v1 = pCheck->v1;
9056 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009057 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009058
drh5eddca62001-06-30 21:53:53 +00009059 /* Check that the page exists
9060 */
drhd9cb6ac2005-10-20 07:28:17 +00009061 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009062 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009063 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009064 if( checkRef(pCheck, iPage) ) return 0;
9065 pCheck->zPfx = "Page %d: ";
9066 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009067 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009068 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009069 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009070 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009071 }
danielk197793caf5a2009-07-11 06:55:33 +00009072
9073 /* Clear MemPage.isInit to make sure the corruption detection code in
9074 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009075 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009076 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009077 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009078 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009079 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009080 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009081 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009082 }
drhcbc6b712015-07-02 16:17:30 +00009083 data = pPage->aData;
9084 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009085
drhcbc6b712015-07-02 16:17:30 +00009086 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009087 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009088 contentOffset = get2byteNotZero(&data[hdr+5]);
9089 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9090
9091 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9092 ** number of cells on the page. */
9093 nCell = get2byte(&data[hdr+3]);
9094 assert( pPage->nCell==nCell );
9095
9096 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9097 ** immediately follows the b-tree page header. */
9098 cellStart = hdr + 12 - 4*pPage->leaf;
9099 assert( pPage->aCellIdx==&data[cellStart] );
9100 pCellIdx = &data[cellStart + 2*(nCell-1)];
9101
9102 if( !pPage->leaf ){
9103 /* Analyze the right-child page of internal pages */
9104 pgno = get4byte(&data[hdr+8]);
9105#ifndef SQLITE_OMIT_AUTOVACUUM
9106 if( pBt->autoVacuum ){
9107 pCheck->zPfx = "On page %d at right child: ";
9108 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9109 }
9110#endif
9111 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9112 keyCanBeEqual = 0;
9113 }else{
9114 /* For leaf pages, the coverage check will occur in the same loop
9115 ** as the other cell checks, so initialize the heap. */
9116 heap = pCheck->heap;
9117 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009118 }
9119
drhcbc6b712015-07-02 16:17:30 +00009120 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9121 ** integer offsets to the cell contents. */
9122 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009123 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009124
drhcbc6b712015-07-02 16:17:30 +00009125 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009126 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009127 assert( pCellIdx==&data[cellStart + i*2] );
9128 pc = get2byteAligned(pCellIdx);
9129 pCellIdx -= 2;
9130 if( pc<contentOffset || pc>usableSize-4 ){
9131 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9132 pc, contentOffset, usableSize-4);
9133 doCoverageCheck = 0;
9134 continue;
shaneh195475d2010-02-19 04:28:08 +00009135 }
drhcbc6b712015-07-02 16:17:30 +00009136 pCell = &data[pc];
9137 pPage->xParseCell(pPage, pCell, &info);
9138 if( pc+info.nSize>usableSize ){
9139 checkAppendMsg(pCheck, "Extends off end of page");
9140 doCoverageCheck = 0;
9141 continue;
drh5eddca62001-06-30 21:53:53 +00009142 }
9143
drhcbc6b712015-07-02 16:17:30 +00009144 /* Check for integer primary key out of range */
9145 if( pPage->intKey ){
9146 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9147 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9148 }
9149 maxKey = info.nKey;
9150 }
9151
9152 /* Check the content overflow list */
9153 if( info.nPayload>info.nLocal ){
9154 int nPage; /* Number of pages on the overflow chain */
9155 Pgno pgnoOvfl; /* First page of the overflow chain */
9156 assert( pc + info.iOverflow <= usableSize );
9157 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9158 pgnoOvfl = get4byte(&pCell[info.iOverflow]);
drhda200cc2004-05-09 11:51:38 +00009159#ifndef SQLITE_OMIT_AUTOVACUUM
9160 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009161 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009162 }
9163#endif
drh867db832014-09-26 02:41:05 +00009164 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009165 }
9166
drh5eddca62001-06-30 21:53:53 +00009167 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009168 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009169 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009170#ifndef SQLITE_OMIT_AUTOVACUUM
9171 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009172 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009173 }
9174#endif
drhcbc6b712015-07-02 16:17:30 +00009175 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9176 keyCanBeEqual = 0;
9177 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009178 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009179 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009180 }
drhcbc6b712015-07-02 16:17:30 +00009181 }else{
9182 /* Populate the coverage-checking heap for leaf pages */
9183 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009184 }
9185 }
drhcbc6b712015-07-02 16:17:30 +00009186 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009187
drh5eddca62001-06-30 21:53:53 +00009188 /* Check for complete coverage of the page
9189 */
drh867db832014-09-26 02:41:05 +00009190 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009191 if( doCoverageCheck && pCheck->mxErr>0 ){
9192 /* For leaf pages, the min-heap has already been initialized and the
9193 ** cells have already been inserted. But for internal pages, that has
9194 ** not yet been done, so do it now */
9195 if( !pPage->leaf ){
9196 heap = pCheck->heap;
9197 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009198 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009199 u32 size;
9200 pc = get2byteAligned(&data[cellStart+i*2]);
9201 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009202 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009203 }
drh2e38c322004-09-03 18:38:44 +00009204 }
drhcbc6b712015-07-02 16:17:30 +00009205 /* Add the freeblocks to the min-heap
9206 **
9207 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009208 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009209 ** freeblocks on the page.
9210 */
drh8c2bbb62009-07-10 02:52:20 +00009211 i = get2byte(&data[hdr+1]);
9212 while( i>0 ){
9213 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009214 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009215 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009216 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009217 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009218 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9219 ** big-endian integer which is the offset in the b-tree page of the next
9220 ** freeblock in the chain, or zero if the freeblock is the last on the
9221 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009222 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009223 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9224 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009225 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009226 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009227 i = j;
drh2e38c322004-09-03 18:38:44 +00009228 }
drhcbc6b712015-07-02 16:17:30 +00009229 /* Analyze the min-heap looking for overlap between cells and/or
9230 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009231 **
9232 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9233 ** There is an implied first entry the covers the page header, the cell
9234 ** pointer index, and the gap between the cell pointer index and the start
9235 ** of cell content.
9236 **
9237 ** The loop below pulls entries from the min-heap in order and compares
9238 ** the start_address against the previous end_address. If there is an
9239 ** overlap, that means bytes are used multiple times. If there is a gap,
9240 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009241 */
9242 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009243 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009244 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009245 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009246 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009247 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009248 break;
drh67731a92015-04-16 11:56:03 +00009249 }else{
drhcbc6b712015-07-02 16:17:30 +00009250 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009251 prev = x;
drh2e38c322004-09-03 18:38:44 +00009252 }
9253 }
drhcbc6b712015-07-02 16:17:30 +00009254 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009255 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9256 ** is stored in the fifth field of the b-tree page header.
9257 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9258 ** number of fragmented free bytes within the cell content area.
9259 */
drhcbc6b712015-07-02 16:17:30 +00009260 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009261 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009262 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009263 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009264 }
9265 }
drh867db832014-09-26 02:41:05 +00009266
9267end_of_check:
drh72e191e2015-07-04 11:14:20 +00009268 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009269 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009270 pCheck->zPfx = saved_zPfx;
9271 pCheck->v1 = saved_v1;
9272 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009273 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009274}
drhb7f91642004-10-31 02:22:47 +00009275#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009276
drhb7f91642004-10-31 02:22:47 +00009277#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009278/*
9279** This routine does a complete check of the given BTree file. aRoot[] is
9280** an array of pages numbers were each page number is the root page of
9281** a table. nRoot is the number of entries in aRoot.
9282**
danielk19773509a652009-07-06 18:56:13 +00009283** A read-only or read-write transaction must be opened before calling
9284** this function.
9285**
drhc890fec2008-08-01 20:10:08 +00009286** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009287** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009288** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009289** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009290*/
drh1dcdbc02007-01-27 02:24:54 +00009291char *sqlite3BtreeIntegrityCheck(
9292 Btree *p, /* The btree to be checked */
9293 int *aRoot, /* An array of root pages numbers for individual trees */
9294 int nRoot, /* Number of entries in aRoot[] */
9295 int mxErr, /* Stop reporting errors after this many */
9296 int *pnErr /* Write number of errors seen to this variable */
9297){
danielk197789d40042008-11-17 14:20:56 +00009298 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009299 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009300 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009301 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009302 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009303 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009304
drhd677b3d2007-08-20 22:48:41 +00009305 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009306 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009307 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009308 sCheck.pBt = pBt;
9309 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009310 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009311 sCheck.mxErr = mxErr;
9312 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009313 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009314 sCheck.zPfx = 0;
9315 sCheck.v1 = 0;
9316 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009317 sCheck.aPgRef = 0;
9318 sCheck.heap = 0;
9319 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009320 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009321 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009322 }
dan1235bb12012-04-03 17:43:28 +00009323
9324 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9325 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009326 sCheck.mallocFailed = 1;
9327 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009328 }
drhe05b3f82015-07-01 17:53:49 +00009329 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9330 if( sCheck.heap==0 ){
9331 sCheck.mallocFailed = 1;
9332 goto integrity_ck_cleanup;
9333 }
9334
drh42cac6d2004-11-20 20:31:11 +00009335 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009336 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009337
9338 /* Check the integrity of the freelist
9339 */
drh867db832014-09-26 02:41:05 +00009340 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009341 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009342 get4byte(&pBt->pPage1->aData[36]));
9343 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009344
9345 /* Check all the tables.
9346 */
drhcbc6b712015-07-02 16:17:30 +00009347 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9348 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009349 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009350 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009351 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009352#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009353 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009354 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009355 }
9356#endif
drhcbc6b712015-07-02 16:17:30 +00009357 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009358 }
drhcbc6b712015-07-02 16:17:30 +00009359 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009360
9361 /* Make sure every page in the file is referenced
9362 */
drh1dcdbc02007-01-27 02:24:54 +00009363 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009364#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009365 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009366 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009367 }
danielk1977afcdd022004-10-31 16:25:42 +00009368#else
9369 /* If the database supports auto-vacuum, make sure no tables contain
9370 ** references to pointer-map pages.
9371 */
dan1235bb12012-04-03 17:43:28 +00009372 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009373 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009374 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009375 }
dan1235bb12012-04-03 17:43:28 +00009376 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009377 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009378 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009379 }
9380#endif
drh5eddca62001-06-30 21:53:53 +00009381 }
9382
drh5eddca62001-06-30 21:53:53 +00009383 /* Clean up and report errors.
9384 */
drhe05b3f82015-07-01 17:53:49 +00009385integrity_ck_cleanup:
9386 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009387 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009388 if( sCheck.mallocFailed ){
9389 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009390 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009391 }
drh1dcdbc02007-01-27 02:24:54 +00009392 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009393 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009394 /* Make sure this analysis did not leave any unref() pages. */
9395 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9396 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009397 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009398}
drhb7f91642004-10-31 02:22:47 +00009399#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009400
drh73509ee2003-04-06 20:44:45 +00009401/*
drhd4e0bb02012-05-27 01:19:04 +00009402** Return the full pathname of the underlying database file. Return
9403** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009404**
9405** The pager filename is invariant as long as the pager is
9406** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009407*/
danielk1977aef0bf62005-12-30 16:28:01 +00009408const char *sqlite3BtreeGetFilename(Btree *p){
9409 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009410 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009411}
9412
9413/*
danielk19775865e3d2004-06-14 06:03:57 +00009414** Return the pathname of the journal file for this database. The return
9415** value of this routine is the same regardless of whether the journal file
9416** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009417**
9418** The pager journal filename is invariant as long as the pager is
9419** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009420*/
danielk1977aef0bf62005-12-30 16:28:01 +00009421const char *sqlite3BtreeGetJournalname(Btree *p){
9422 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009423 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009424}
9425
danielk19771d850a72004-05-31 08:26:49 +00009426/*
9427** Return non-zero if a transaction is active.
9428*/
danielk1977aef0bf62005-12-30 16:28:01 +00009429int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009430 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009431 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009432}
9433
dana550f2d2010-08-02 10:47:05 +00009434#ifndef SQLITE_OMIT_WAL
9435/*
9436** Run a checkpoint on the Btree passed as the first argument.
9437**
9438** Return SQLITE_LOCKED if this or any other connection has an open
9439** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009440**
dancdc1f042010-11-18 12:11:05 +00009441** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009442*/
dancdc1f042010-11-18 12:11:05 +00009443int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009444 int rc = SQLITE_OK;
9445 if( p ){
9446 BtShared *pBt = p->pBt;
9447 sqlite3BtreeEnter(p);
9448 if( pBt->inTransaction!=TRANS_NONE ){
9449 rc = SQLITE_LOCKED;
9450 }else{
dancdc1f042010-11-18 12:11:05 +00009451 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009452 }
9453 sqlite3BtreeLeave(p);
9454 }
9455 return rc;
9456}
9457#endif
9458
danielk19771d850a72004-05-31 08:26:49 +00009459/*
danielk19772372c2b2006-06-27 16:34:56 +00009460** Return non-zero if a read (or write) transaction is active.
9461*/
9462int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009463 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009464 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009465 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009466}
9467
danielk197704103022009-02-03 16:51:24 +00009468int sqlite3BtreeIsInBackup(Btree *p){
9469 assert( p );
9470 assert( sqlite3_mutex_held(p->db->mutex) );
9471 return p->nBackup!=0;
9472}
9473
danielk19772372c2b2006-06-27 16:34:56 +00009474/*
danielk1977da184232006-01-05 11:34:32 +00009475** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009476** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009477** purposes (for example, to store a high-level schema associated with
9478** the shared-btree). The btree layer manages reference counting issues.
9479**
9480** The first time this is called on a shared-btree, nBytes bytes of memory
9481** are allocated, zeroed, and returned to the caller. For each subsequent
9482** call the nBytes parameter is ignored and a pointer to the same blob
9483** of memory returned.
9484**
danielk1977171bfed2008-06-23 09:50:50 +00009485** If the nBytes parameter is 0 and the blob of memory has not yet been
9486** allocated, a null pointer is returned. If the blob has already been
9487** allocated, it is returned as normal.
9488**
danielk1977da184232006-01-05 11:34:32 +00009489** Just before the shared-btree is closed, the function passed as the
9490** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009491** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009492** on the memory, the btree layer does that.
9493*/
9494void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9495 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009496 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009497 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009498 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009499 pBt->xFreeSchema = xFree;
9500 }
drh27641702007-08-22 02:56:42 +00009501 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009502 return pBt->pSchema;
9503}
9504
danielk1977c87d34d2006-01-06 13:00:28 +00009505/*
danielk1977404ca072009-03-16 13:19:36 +00009506** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9507** btree as the argument handle holds an exclusive lock on the
9508** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009509*/
9510int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009511 int rc;
drhe5fe6902007-12-07 18:55:28 +00009512 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009513 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009514 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9515 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009516 sqlite3BtreeLeave(p);
9517 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009518}
9519
drha154dcd2006-03-22 22:10:07 +00009520
9521#ifndef SQLITE_OMIT_SHARED_CACHE
9522/*
9523** Obtain a lock on the table whose root page is iTab. The
9524** lock is a write lock if isWritelock is true or a read lock
9525** if it is false.
9526*/
danielk1977c00da102006-01-07 13:21:04 +00009527int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009528 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009529 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009530 if( p->sharable ){
9531 u8 lockType = READ_LOCK + isWriteLock;
9532 assert( READ_LOCK+1==WRITE_LOCK );
9533 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009534
drh6a9ad3d2008-04-02 16:29:30 +00009535 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009536 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009537 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009538 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009539 }
9540 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009541 }
9542 return rc;
9543}
drha154dcd2006-03-22 22:10:07 +00009544#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009545
danielk1977b4e9af92007-05-01 17:49:49 +00009546#ifndef SQLITE_OMIT_INCRBLOB
9547/*
9548** Argument pCsr must be a cursor opened for writing on an
9549** INTKEY table currently pointing at a valid table entry.
9550** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009551**
9552** Only the data content may only be modified, it is not possible to
9553** change the length of the data stored. If this function is called with
9554** parameters that attempt to write past the end of the existing data,
9555** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009556*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009557int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009558 int rc;
drh1fee73e2007-08-29 04:00:57 +00009559 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009560 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009561 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009562
danielk1977c9000e62009-07-08 13:55:28 +00009563 rc = restoreCursorPosition(pCsr);
9564 if( rc!=SQLITE_OK ){
9565 return rc;
9566 }
danielk19773588ceb2008-06-10 17:30:26 +00009567 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9568 if( pCsr->eState!=CURSOR_VALID ){
9569 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009570 }
9571
dan227a1c42013-04-03 11:17:39 +00009572 /* Save the positions of all other cursors open on this table. This is
9573 ** required in case any of them are holding references to an xFetch
9574 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009575 **
drh3f387402014-09-24 01:23:00 +00009576 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009577 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9578 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009579 */
drh370c9f42013-04-03 20:04:04 +00009580 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9581 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009582
danielk1977c9000e62009-07-08 13:55:28 +00009583 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009584 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009585 ** (b) there is a read/write transaction open,
9586 ** (c) the connection holds a write-lock on the table (if required),
9587 ** (d) there are no conflicting read-locks, and
9588 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009589 */
drh036dbec2014-03-11 23:40:44 +00009590 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009591 return SQLITE_READONLY;
9592 }
drhc9166342012-01-05 23:32:06 +00009593 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9594 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009595 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9596 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009597 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009598
drhfb192682009-07-11 18:26:28 +00009599 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009600}
danielk19772dec9702007-05-02 16:48:37 +00009601
9602/*
dan5a500af2014-03-11 20:33:04 +00009603** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009604*/
dan5a500af2014-03-11 20:33:04 +00009605void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009606 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009607 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009608}
danielk1977b4e9af92007-05-01 17:49:49 +00009609#endif
dane04dc882010-04-20 18:53:15 +00009610
9611/*
9612** Set both the "read version" (single byte at byte offset 18) and
9613** "write version" (single byte at byte offset 19) fields in the database
9614** header to iVersion.
9615*/
9616int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9617 BtShared *pBt = pBtree->pBt;
9618 int rc; /* Return code */
9619
dane04dc882010-04-20 18:53:15 +00009620 assert( iVersion==1 || iVersion==2 );
9621
danb9780022010-04-21 18:37:57 +00009622 /* If setting the version fields to 1, do not automatically open the
9623 ** WAL connection, even if the version fields are currently set to 2.
9624 */
drhc9166342012-01-05 23:32:06 +00009625 pBt->btsFlags &= ~BTS_NO_WAL;
9626 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009627
9628 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009629 if( rc==SQLITE_OK ){
9630 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009631 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009632 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009633 if( rc==SQLITE_OK ){
9634 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9635 if( rc==SQLITE_OK ){
9636 aData[18] = (u8)iVersion;
9637 aData[19] = (u8)iVersion;
9638 }
9639 }
9640 }
dane04dc882010-04-20 18:53:15 +00009641 }
9642
drhc9166342012-01-05 23:32:06 +00009643 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009644 return rc;
9645}
dan428c2182012-08-06 18:50:11 +00009646
drhe0997b32015-03-20 14:57:50 +00009647#ifdef SQLITE_DEBUG
9648/*
9649** Return true if the cursor has a hint specified. This routine is
9650** only used from within assert() statements
9651*/
9652int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9653 return (pCsr->hints & mask)!=0;
9654}
9655#endif
9656
drh781597f2014-05-21 08:21:07 +00009657/*
9658** Return true if the given Btree is read-only.
9659*/
9660int sqlite3BtreeIsReadonly(Btree *p){
9661 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9662}
drhdef68892014-11-04 12:11:23 +00009663
9664/*
9665** Return the size of the header added to each page by this module.
9666*/
drh37c057b2014-12-30 00:57:29 +00009667int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }