blob: d5b9b5fd8585260d3c8309a678097b6145d7c439 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
594
595/*
drh980b1a72006-08-16 16:42:48 +0000596** Save the current cursor position in the variables BtCursor.nKey
597** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000598**
599** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
600** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000601*/
602static int saveCursorPosition(BtCursor *pCur){
603 int rc;
604
drhd2f83132015-03-25 17:35:01 +0000605 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000606 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000607 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000608
drhd2f83132015-03-25 17:35:01 +0000609 if( pCur->eState==CURSOR_SKIPNEXT ){
610 pCur->eState = CURSOR_VALID;
611 }else{
612 pCur->skipNext = 0;
613 }
drh980b1a72006-08-16 16:42:48 +0000614 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000615 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000616
617 /* If this is an intKey table, then the above call to BtreeKeySize()
618 ** stores the integer key in pCur->nKey. In this case this value is
619 ** all that is required. Otherwise, if pCur is not open on an intKey
620 ** table, then malloc space for and store the pCur->nKey bytes of key
621 ** data.
622 */
drhc75d8862015-06-27 23:55:20 +0000623 if( 0==pCur->curIntKey ){
drhda4ca9d2014-09-09 17:27:35 +0000624 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000625 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000626 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000627 if( rc==SQLITE_OK ){
628 pCur->pKey = pKey;
629 }else{
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000631 }
632 }else{
633 rc = SQLITE_NOMEM;
634 }
635 }
drhc75d8862015-06-27 23:55:20 +0000636 assert( !pCur->curIntKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000637
638 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000639 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000640 pCur->eState = CURSOR_REQUIRESEEK;
641 }
642
danielk197792d4d7a2007-05-04 12:05:56 +0000643 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000644 return rc;
645}
646
drh637f3d82014-08-22 22:26:07 +0000647/* Forward reference */
648static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
649
drh980b1a72006-08-16 16:42:48 +0000650/*
drh0ee3dbe2009-10-16 15:05:18 +0000651** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000652** the table with root-page iRoot. "Saving the cursor position" means that
653** the location in the btree is remembered in such a way that it can be
654** moved back to the same spot after the btree has been modified. This
655** routine is called just before cursor pExcept is used to modify the
656** table, for example in BtreeDelete() or BtreeInsert().
657**
drh27fb7462015-06-30 02:47:36 +0000658** If there are two or more cursors on the same btree, then all such
659** cursors should have their BTCF_Multiple flag set. The btreeCursor()
660** routine enforces that rule. This routine only needs to be called in
661** the uncommon case when pExpect has the BTCF_Multiple flag set.
662**
663** If pExpect!=NULL and if no other cursors are found on the same root-page,
664** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
665** pointless call to this routine.
666**
drh637f3d82014-08-22 22:26:07 +0000667** Implementation note: This routine merely checks to see if any cursors
668** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
669** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000670*/
671static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000672 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000673 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000674 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000675 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000676 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
677 }
drh27fb7462015-06-30 02:47:36 +0000678 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
679 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
680 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000681}
682
683/* This helper routine to saveAllCursors does the actual work of saving
684** the cursors if and when a cursor is found that actually requires saving.
685** The common case is that no cursors need to be saved, so this routine is
686** broken out from its caller to avoid unnecessary stack pointer movement.
687*/
688static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000689 BtCursor *p, /* The first cursor that needs saving */
690 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
691 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000692){
693 do{
drh138eeeb2013-03-27 03:15:23 +0000694 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000695 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000696 int rc = saveCursorPosition(p);
697 if( SQLITE_OK!=rc ){
698 return rc;
699 }
700 }else{
701 testcase( p->iPage>0 );
702 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000703 }
704 }
drh637f3d82014-08-22 22:26:07 +0000705 p = p->pNext;
706 }while( p );
drh980b1a72006-08-16 16:42:48 +0000707 return SQLITE_OK;
708}
709
710/*
drhbf700f32007-03-31 02:36:44 +0000711** Clear the current cursor position.
712*/
danielk1977be51a652008-10-08 17:58:48 +0000713void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000714 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000715 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000716 pCur->pKey = 0;
717 pCur->eState = CURSOR_INVALID;
718}
719
720/*
danielk19773509a652009-07-06 18:56:13 +0000721** In this version of BtreeMoveto, pKey is a packed index record
722** such as is generated by the OP_MakeRecord opcode. Unpack the
723** record and then call BtreeMovetoUnpacked() to do the work.
724*/
725static int btreeMoveto(
726 BtCursor *pCur, /* Cursor open on the btree to be searched */
727 const void *pKey, /* Packed key if the btree is an index */
728 i64 nKey, /* Integer key for tables. Size of pKey for indices */
729 int bias, /* Bias search to the high end */
730 int *pRes /* Write search results here */
731){
732 int rc; /* Status code */
733 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000734 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000735 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000736
737 if( pKey ){
738 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000739 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
740 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
741 );
danielk19773509a652009-07-06 18:56:13 +0000742 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000743 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000744 if( pIdxKey->nField==0 ){
745 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
746 return SQLITE_CORRUPT_BKPT;
747 }
danielk19773509a652009-07-06 18:56:13 +0000748 }else{
749 pIdxKey = 0;
750 }
751 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000752 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000753 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000754 }
755 return rc;
756}
757
758/*
drh980b1a72006-08-16 16:42:48 +0000759** Restore the cursor to the position it was in (or as close to as possible)
760** when saveCursorPosition() was called. Note that this call deletes the
761** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000762** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000763** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000764*/
danielk197730548662009-07-09 05:07:37 +0000765static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000766 int rc;
drhd2f83132015-03-25 17:35:01 +0000767 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000768 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000769 assert( pCur->eState>=CURSOR_REQUIRESEEK );
770 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000771 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000772 }
drh980b1a72006-08-16 16:42:48 +0000773 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000774 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000775 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000776 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000777 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000778 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000779 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000780 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
781 pCur->eState = CURSOR_SKIPNEXT;
782 }
drh980b1a72006-08-16 16:42:48 +0000783 }
784 return rc;
785}
786
drha3460582008-07-11 21:02:53 +0000787#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000788 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000789 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000790 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000791
drha3460582008-07-11 21:02:53 +0000792/*
drh6848dad2014-08-22 23:33:03 +0000793** Determine whether or not a cursor has moved from the position where
794** it was last placed, or has been invalidated for any other reason.
795** Cursors can move when the row they are pointing at is deleted out
796** from under them, for example. Cursor might also move if a btree
797** is rebalanced.
drha3460582008-07-11 21:02:53 +0000798**
drh6848dad2014-08-22 23:33:03 +0000799** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000800**
drh6848dad2014-08-22 23:33:03 +0000801** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
802** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000803*/
drh6848dad2014-08-22 23:33:03 +0000804int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000805 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000806}
807
808/*
809** This routine restores a cursor back to its original position after it
810** has been moved by some outside activity (such as a btree rebalance or
811** a row having been deleted out from under the cursor).
812**
813** On success, the *pDifferentRow parameter is false if the cursor is left
814** pointing at exactly the same row. *pDifferntRow is the row the cursor
815** was pointing to has been deleted, forcing the cursor to point to some
816** nearby row.
817**
818** This routine should only be called for a cursor that just returned
819** TRUE from sqlite3BtreeCursorHasMoved().
820*/
821int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000822 int rc;
823
drh6848dad2014-08-22 23:33:03 +0000824 assert( pCur!=0 );
825 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000826 rc = restoreCursorPosition(pCur);
827 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000828 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000829 return rc;
830 }
drh606a3572015-03-25 18:29:10 +0000831 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000832 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000833 }else{
drh606a3572015-03-25 18:29:10 +0000834 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000835 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000836 }
837 return SQLITE_OK;
838}
839
danielk1977599fcba2004-11-08 07:13:13 +0000840#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000841/*
drha3152892007-05-05 11:48:52 +0000842** Given a page number of a regular database page, return the page
843** number for the pointer-map page that contains the entry for the
844** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000845**
846** Return 0 (not a valid page) for pgno==1 since there is
847** no pointer map associated with page 1. The integrity_check logic
848** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000849*/
danielk1977266664d2006-02-10 08:24:21 +0000850static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000851 int nPagesPerMapPage;
852 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000853 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000854 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000855 nPagesPerMapPage = (pBt->usableSize/5)+1;
856 iPtrMap = (pgno-2)/nPagesPerMapPage;
857 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000858 if( ret==PENDING_BYTE_PAGE(pBt) ){
859 ret++;
860 }
861 return ret;
862}
danielk1977a19df672004-11-03 11:37:07 +0000863
danielk1977afcdd022004-10-31 16:25:42 +0000864/*
danielk1977afcdd022004-10-31 16:25:42 +0000865** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000866**
867** This routine updates the pointer map entry for page number 'key'
868** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000869**
870** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
871** a no-op. If an error occurs, the appropriate error code is written
872** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000873*/
drh98add2e2009-07-20 17:11:49 +0000874static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000875 DbPage *pDbPage; /* The pointer map page */
876 u8 *pPtrmap; /* The pointer map data */
877 Pgno iPtrmap; /* The pointer map page number */
878 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000879 int rc; /* Return code from subfunctions */
880
881 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000882
drh1fee73e2007-08-29 04:00:57 +0000883 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000884 /* The master-journal page number must never be used as a pointer map page */
885 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
886
danielk1977ac11ee62005-01-15 12:45:51 +0000887 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000888 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000889 *pRC = SQLITE_CORRUPT_BKPT;
890 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000891 }
danielk1977266664d2006-02-10 08:24:21 +0000892 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000893 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000894 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000895 *pRC = rc;
896 return;
danielk1977afcdd022004-10-31 16:25:42 +0000897 }
danielk19778c666b12008-07-18 09:34:57 +0000898 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000899 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000900 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000901 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000902 }
drhfc243732011-05-17 15:21:56 +0000903 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000904 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000905
drh615ae552005-01-16 23:21:00 +0000906 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
907 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000908 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000909 if( rc==SQLITE_OK ){
910 pPtrmap[offset] = eType;
911 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000912 }
danielk1977afcdd022004-10-31 16:25:42 +0000913 }
914
drh4925a552009-07-07 11:39:58 +0000915ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000916 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000917}
918
919/*
920** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000921**
922** This routine retrieves the pointer map entry for page 'key', writing
923** the type and parent page number to *pEType and *pPgno respectively.
924** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000925*/
danielk1977aef0bf62005-12-30 16:28:01 +0000926static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000927 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000928 int iPtrmap; /* Pointer map page index */
929 u8 *pPtrmap; /* Pointer map page data */
930 int offset; /* Offset of entry in pointer map */
931 int rc;
932
drh1fee73e2007-08-29 04:00:57 +0000933 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000934
danielk1977266664d2006-02-10 08:24:21 +0000935 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000936 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000937 if( rc!=0 ){
938 return rc;
939 }
danielk19773b8a05f2007-03-19 17:44:26 +0000940 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000941
danielk19778c666b12008-07-18 09:34:57 +0000942 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000943 if( offset<0 ){
944 sqlite3PagerUnref(pDbPage);
945 return SQLITE_CORRUPT_BKPT;
946 }
947 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000948 assert( pEType!=0 );
949 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000950 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000951
danielk19773b8a05f2007-03-19 17:44:26 +0000952 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000953 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000954 return SQLITE_OK;
955}
956
danielk197785d90ca2008-07-19 14:25:15 +0000957#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000958 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000959 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000960 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000961#endif
danielk1977afcdd022004-10-31 16:25:42 +0000962
drh0d316a42002-08-11 20:10:47 +0000963/*
drh271efa52004-05-30 19:19:05 +0000964** Given a btree page and a cell index (0 means the first cell on
965** the page, 1 means the second cell, and so forth) return a pointer
966** to the cell content.
967**
drhf44890a2015-06-27 03:58:15 +0000968** findCellPastPtr() does the same except it skips past the initial
969** 4-byte child pointer found on interior pages, if there is one.
970**
drh271efa52004-05-30 19:19:05 +0000971** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000972*/
drh1688c862008-07-18 02:44:17 +0000973#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +0000974 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +0000975#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +0000976 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +0000977
drh68f2a572011-06-03 17:50:49 +0000978
drh43605152004-05-29 21:46:49 +0000979/*
drh5fa60512015-06-19 17:19:34 +0000980** This is common tail processing for btreeParseCellPtr() and
981** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
982** on a single B-tree page. Make necessary adjustments to the CellInfo
983** structure.
drh43605152004-05-29 21:46:49 +0000984*/
drh5fa60512015-06-19 17:19:34 +0000985static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
986 MemPage *pPage, /* Page containing the cell */
987 u8 *pCell, /* Pointer to the cell text. */
988 CellInfo *pInfo /* Fill in this structure */
989){
990 /* If the payload will not fit completely on the local page, we have
991 ** to decide how much to store locally and how much to spill onto
992 ** overflow pages. The strategy is to minimize the amount of unused
993 ** space on overflow pages while keeping the amount of local storage
994 ** in between minLocal and maxLocal.
995 **
996 ** Warning: changing the way overflow payload is distributed in any
997 ** way will result in an incompatible file format.
998 */
999 int minLocal; /* Minimum amount of payload held locally */
1000 int maxLocal; /* Maximum amount of payload held locally */
1001 int surplus; /* Overflow payload available for local storage */
1002
1003 minLocal = pPage->minLocal;
1004 maxLocal = pPage->maxLocal;
1005 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1006 testcase( surplus==maxLocal );
1007 testcase( surplus==maxLocal+1 );
1008 if( surplus <= maxLocal ){
1009 pInfo->nLocal = (u16)surplus;
1010 }else{
1011 pInfo->nLocal = (u16)minLocal;
1012 }
1013 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1014 pInfo->nSize = pInfo->iOverflow + 4;
1015}
1016
1017/*
1018** The following routines are implementations of the MemPage.xParseCell()
1019** method.
1020**
1021** Parse a cell content block and fill in the CellInfo structure.
1022**
1023** btreeParseCellPtr() => table btree leaf nodes
1024** btreeParseCellNoPayload() => table btree internal nodes
1025** btreeParseCellPtrIndex() => index btree nodes
1026**
1027** There is also a wrapper function btreeParseCell() that works for
1028** all MemPage types and that references the cell by index rather than
1029** by pointer.
1030*/
1031static void btreeParseCellPtrNoPayload(
1032 MemPage *pPage, /* Page containing the cell */
1033 u8 *pCell, /* Pointer to the cell text. */
1034 CellInfo *pInfo /* Fill in this structure */
1035){
1036 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1037 assert( pPage->leaf==0 );
1038 assert( pPage->noPayload );
1039 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001040#ifndef SQLITE_DEBUG
1041 UNUSED_PARAMETER(pPage);
1042#endif
drh5fa60512015-06-19 17:19:34 +00001043 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1044 pInfo->nPayload = 0;
1045 pInfo->nLocal = 0;
1046 pInfo->iOverflow = 0;
1047 pInfo->pPayload = 0;
1048 return;
1049}
danielk197730548662009-07-09 05:07:37 +00001050static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001051 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001052 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001053 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001054){
drh3e28ff52014-09-24 00:59:08 +00001055 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001056 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001057 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001058
drh1fee73e2007-08-29 04:00:57 +00001059 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001060 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001061 assert( pPage->intKeyLeaf || pPage->noPayload );
1062 assert( pPage->noPayload==0 );
1063 assert( pPage->intKeyLeaf );
1064 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001065 pIter = pCell;
1066
1067 /* The next block of code is equivalent to:
1068 **
1069 ** pIter += getVarint32(pIter, nPayload);
1070 **
1071 ** The code is inlined to avoid a function call.
1072 */
1073 nPayload = *pIter;
1074 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001075 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001076 nPayload &= 0x7f;
1077 do{
1078 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1079 }while( (*pIter)>=0x80 && pIter<pEnd );
1080 }
1081 pIter++;
1082
1083 /* The next block of code is equivalent to:
1084 **
1085 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1086 **
1087 ** The code is inlined to avoid a function call.
1088 */
1089 iKey = *pIter;
1090 if( iKey>=0x80 ){
1091 u8 *pEnd = &pIter[7];
1092 iKey &= 0x7f;
1093 while(1){
1094 iKey = (iKey<<7) | (*++pIter & 0x7f);
1095 if( (*pIter)<0x80 ) break;
1096 if( pIter>=pEnd ){
1097 iKey = (iKey<<8) | *++pIter;
1098 break;
1099 }
1100 }
1101 }
1102 pIter++;
1103
1104 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001105 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001106 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001107 testcase( nPayload==pPage->maxLocal );
1108 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001109 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001110 /* This is the (easy) common case where the entire payload fits
1111 ** on the local page. No overflow is required.
1112 */
drhab1cc582014-09-23 21:25:19 +00001113 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1114 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001115 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001116 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001117 }else{
drh5fa60512015-06-19 17:19:34 +00001118 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1119 }
1120}
1121static void btreeParseCellPtrIndex(
1122 MemPage *pPage, /* Page containing the cell */
1123 u8 *pCell, /* Pointer to the cell text. */
1124 CellInfo *pInfo /* Fill in this structure */
1125){
1126 u8 *pIter; /* For scanning through pCell */
1127 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001128
drh5fa60512015-06-19 17:19:34 +00001129 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1130 assert( pPage->leaf==0 || pPage->leaf==1 );
1131 assert( pPage->intKeyLeaf==0 );
1132 assert( pPage->noPayload==0 );
1133 pIter = pCell + pPage->childPtrSize;
1134 nPayload = *pIter;
1135 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001136 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001137 nPayload &= 0x7f;
1138 do{
1139 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1140 }while( *(pIter)>=0x80 && pIter<pEnd );
1141 }
1142 pIter++;
1143 pInfo->nKey = nPayload;
1144 pInfo->nPayload = nPayload;
1145 pInfo->pPayload = pIter;
1146 testcase( nPayload==pPage->maxLocal );
1147 testcase( nPayload==pPage->maxLocal+1 );
1148 if( nPayload<=pPage->maxLocal ){
1149 /* This is the (easy) common case where the entire payload fits
1150 ** on the local page. No overflow is required.
1151 */
1152 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1153 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1154 pInfo->nLocal = (u16)nPayload;
1155 pInfo->iOverflow = 0;
1156 }else{
1157 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001158 }
drh3aac2dd2004-04-26 14:10:20 +00001159}
danielk197730548662009-07-09 05:07:37 +00001160static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001161 MemPage *pPage, /* Page containing the cell */
1162 int iCell, /* The cell index. First cell is 0 */
1163 CellInfo *pInfo /* Fill in this structure */
1164){
drh5fa60512015-06-19 17:19:34 +00001165 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001166}
drh3aac2dd2004-04-26 14:10:20 +00001167
1168/*
drh5fa60512015-06-19 17:19:34 +00001169** The following routines are implementations of the MemPage.xCellSize
1170** method.
1171**
drh43605152004-05-29 21:46:49 +00001172** Compute the total number of bytes that a Cell needs in the cell
1173** data area of the btree-page. The return number includes the cell
1174** data header and the local payload, but not any overflow page or
1175** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001176**
drh5fa60512015-06-19 17:19:34 +00001177** cellSizePtrNoPayload() => table internal nodes
1178** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001179*/
danielk1977ae5558b2009-04-29 11:31:47 +00001180static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001181 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1182 u8 *pEnd; /* End mark for a varint */
1183 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001184
1185#ifdef SQLITE_DEBUG
1186 /* The value returned by this function should always be the same as
1187 ** the (CellInfo.nSize) value found by doing a full parse of the
1188 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1189 ** this function verifies that this invariant is not violated. */
1190 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001191 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001192#endif
1193
drh25ada072015-06-19 15:07:14 +00001194 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001195 nSize = *pIter;
1196 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001197 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001198 nSize &= 0x7f;
1199 do{
1200 nSize = (nSize<<7) | (*++pIter & 0x7f);
1201 }while( *(pIter)>=0x80 && pIter<pEnd );
1202 }
1203 pIter++;
drhdc41d602014-09-22 19:51:35 +00001204 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001205 /* pIter now points at the 64-bit integer key value, a variable length
1206 ** integer. The following block moves pIter to point at the first byte
1207 ** past the end of the key value. */
1208 pEnd = &pIter[9];
1209 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001210 }
drh0a45c272009-07-08 01:49:11 +00001211 testcase( nSize==pPage->maxLocal );
1212 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001213 if( nSize<=pPage->maxLocal ){
1214 nSize += (u32)(pIter - pCell);
1215 if( nSize<4 ) nSize = 4;
1216 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001217 int minLocal = pPage->minLocal;
1218 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001219 testcase( nSize==pPage->maxLocal );
1220 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001221 if( nSize>pPage->maxLocal ){
1222 nSize = minLocal;
1223 }
drh3e28ff52014-09-24 00:59:08 +00001224 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001225 }
drhdc41d602014-09-22 19:51:35 +00001226 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001227 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001228}
drh25ada072015-06-19 15:07:14 +00001229static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1230 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1231 u8 *pEnd; /* End mark for a varint */
1232
1233#ifdef SQLITE_DEBUG
1234 /* The value returned by this function should always be the same as
1235 ** the (CellInfo.nSize) value found by doing a full parse of the
1236 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1237 ** this function verifies that this invariant is not violated. */
1238 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001239 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001240#else
1241 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001242#endif
1243
1244 assert( pPage->childPtrSize==4 );
1245 pEnd = pIter + 9;
1246 while( (*pIter++)&0x80 && pIter<pEnd );
1247 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1248 return (u16)(pIter - pCell);
1249}
1250
drh0ee3dbe2009-10-16 15:05:18 +00001251
1252#ifdef SQLITE_DEBUG
1253/* This variation on cellSizePtr() is used inside of assert() statements
1254** only. */
drha9121e42008-02-19 14:59:35 +00001255static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001256 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001257}
danielk1977bc6ada42004-06-30 08:20:16 +00001258#endif
drh3b7511c2001-05-26 13:15:44 +00001259
danielk197779a40da2005-01-16 08:00:01 +00001260#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001261/*
danielk197726836652005-01-17 01:33:13 +00001262** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001263** to an overflow page, insert an entry into the pointer-map
1264** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001265*/
drh98add2e2009-07-20 17:11:49 +00001266static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001267 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001268 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001269 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001270 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001271 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001272 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001273 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001274 }
danielk1977ac11ee62005-01-15 12:45:51 +00001275}
danielk197779a40da2005-01-16 08:00:01 +00001276#endif
1277
danielk1977ac11ee62005-01-15 12:45:51 +00001278
drhda200cc2004-05-09 11:51:38 +00001279/*
drh72f82862001-05-24 21:06:34 +00001280** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001281** end of the page and all free space is collected into one
1282** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001283** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001284**
1285** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1286** b-tree page so that there are no freeblocks or fragment bytes, all
1287** unused bytes are contained in the unallocated space region, and all
1288** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001289*/
shane0af3f892008-11-12 04:55:34 +00001290static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001291 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001292 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001293 int hdr; /* Offset to the page header */
1294 int size; /* Size of a cell */
1295 int usableSize; /* Number of usable bytes on a page */
1296 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001297 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001298 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001299 unsigned char *data; /* The page data */
1300 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001301 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001302 int iCellFirst; /* First allowable cell index */
1303 int iCellLast; /* Last possible cell index */
1304
drh2af926b2001-05-15 00:39:25 +00001305
danielk19773b8a05f2007-03-19 17:44:26 +00001306 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001307 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001308 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001309 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001310 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001311 temp = 0;
1312 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001313 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001314 cellOffset = pPage->cellOffset;
1315 nCell = pPage->nCell;
1316 assert( nCell==get2byte(&data[hdr+3]) );
1317 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001318 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001319 iCellFirst = cellOffset + 2*nCell;
1320 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001321 for(i=0; i<nCell; i++){
1322 u8 *pAddr; /* The i-th cell pointer */
1323 pAddr = &data[cellOffset + i*2];
1324 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001325 testcase( pc==iCellFirst );
1326 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001327 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001328 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001329 */
1330 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001331 return SQLITE_CORRUPT_BKPT;
1332 }
drh17146622009-07-07 17:38:38 +00001333 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001334 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001335 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001336 if( cbrk<iCellFirst || pc+size>usableSize ){
1337 return SQLITE_CORRUPT_BKPT;
1338 }
drh7157e1d2009-07-09 13:25:32 +00001339 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001340 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001341 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001342 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001343 if( temp==0 ){
1344 int x;
1345 if( cbrk==pc ) continue;
1346 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1347 x = get2byte(&data[hdr+5]);
1348 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1349 src = temp;
1350 }
1351 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001352 }
drh17146622009-07-07 17:38:38 +00001353 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001354 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001355 data[hdr+1] = 0;
1356 data[hdr+2] = 0;
1357 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001358 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001359 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001360 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001361 return SQLITE_CORRUPT_BKPT;
1362 }
shane0af3f892008-11-12 04:55:34 +00001363 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001364}
1365
drha059ad02001-04-17 20:09:11 +00001366/*
dan8e9ba0c2014-10-14 17:27:04 +00001367** Search the free-list on page pPg for space to store a cell nByte bytes in
1368** size. If one can be found, return a pointer to the space and remove it
1369** from the free-list.
1370**
1371** If no suitable space can be found on the free-list, return NULL.
1372**
drhba0f9992014-10-30 20:48:44 +00001373** This function may detect corruption within pPg. If corruption is
1374** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001375**
drhb7580e82015-06-25 18:36:13 +00001376** Slots on the free list that are between 1 and 3 bytes larger than nByte
1377** will be ignored if adding the extra space to the fragmentation count
1378** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001379*/
drhb7580e82015-06-25 18:36:13 +00001380static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001381 const int hdr = pPg->hdrOffset;
1382 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001383 int iAddr = hdr + 1;
1384 int pc = get2byte(&aData[iAddr]);
1385 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001386 int usableSize = pPg->pBt->usableSize;
1387
drhb7580e82015-06-25 18:36:13 +00001388 assert( pc>0 );
1389 do{
dan8e9ba0c2014-10-14 17:27:04 +00001390 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001391 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1392 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001393 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001394 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001395 return 0;
1396 }
drh113762a2014-11-19 16:36:25 +00001397 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1398 ** freeblock form a big-endian integer which is the size of the freeblock
1399 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001400 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001401 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001402 testcase( x==4 );
1403 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001404 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1405 *pRc = SQLITE_CORRUPT_BKPT;
1406 return 0;
1407 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001408 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1409 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001410 if( aData[hdr+7]>57 ) return 0;
1411
dan8e9ba0c2014-10-14 17:27:04 +00001412 /* Remove the slot from the free-list. Update the number of
1413 ** fragmented bytes within the page. */
1414 memcpy(&aData[iAddr], &aData[pc], 2);
1415 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001416 }else{
1417 /* The slot remains on the free-list. Reduce its size to account
1418 ** for the portion used by the new allocation. */
1419 put2byte(&aData[pc+2], x);
1420 }
1421 return &aData[pc + x];
1422 }
drhb7580e82015-06-25 18:36:13 +00001423 iAddr = pc;
1424 pc = get2byte(&aData[pc]);
1425 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001426
1427 return 0;
1428}
1429
1430/*
danielk19776011a752009-04-01 16:25:32 +00001431** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001432** as the first argument. Write into *pIdx the index into pPage->aData[]
1433** of the first byte of allocated space. Return either SQLITE_OK or
1434** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001435**
drh0a45c272009-07-08 01:49:11 +00001436** The caller guarantees that there is sufficient space to make the
1437** allocation. This routine might need to defragment in order to bring
1438** all the space together, however. This routine will avoid using
1439** the first two bytes past the cell pointer area since presumably this
1440** allocation is being made in order to insert a new cell, so we will
1441** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001442*/
drh0a45c272009-07-08 01:49:11 +00001443static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001444 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1445 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001446 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001447 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001448 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001449
danielk19773b8a05f2007-03-19 17:44:26 +00001450 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001451 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001452 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001453 assert( nByte>=0 ); /* Minimum cell size is 4 */
1454 assert( pPage->nFree>=nByte );
1455 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001456 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001457
drh0a45c272009-07-08 01:49:11 +00001458 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1459 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001460 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001461 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1462 ** and the reserved space is zero (the usual value for reserved space)
1463 ** then the cell content offset of an empty page wants to be 65536.
1464 ** However, that integer is too large to be stored in a 2-byte unsigned
1465 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001466 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001467 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001468 if( gap>top ){
1469 if( top==0 && pPage->pBt->usableSize==65536 ){
1470 top = 65536;
1471 }else{
1472 return SQLITE_CORRUPT_BKPT;
1473 }
drhe7266222015-05-29 17:51:16 +00001474 }
drh4c04f3c2014-08-20 11:56:14 +00001475
1476 /* If there is enough space between gap and top for one more cell pointer
1477 ** array entry offset, and if the freelist is not empty, then search the
1478 ** freelist looking for a free slot big enough to satisfy the request.
1479 */
drh0a45c272009-07-08 01:49:11 +00001480 testcase( gap+2==top );
1481 testcase( gap+1==top );
1482 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001483 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001484 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001485 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001486 assert( pSpace>=data && (pSpace - data)<65536 );
1487 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001488 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001489 }else if( rc ){
1490 return rc;
drh9e572e62004-04-23 23:43:10 +00001491 }
1492 }
drh43605152004-05-29 21:46:49 +00001493
drh4c04f3c2014-08-20 11:56:14 +00001494 /* The request could not be fulfilled using a freelist slot. Check
1495 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001496 */
1497 testcase( gap+2+nByte==top );
1498 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001499 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001500 rc = defragmentPage(pPage);
1501 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001502 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001503 assert( gap+nByte<=top );
1504 }
1505
1506
drh43605152004-05-29 21:46:49 +00001507 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001508 ** and the cell content area. The btreeInitPage() call has already
1509 ** validated the freelist. Given that the freelist is valid, there
1510 ** is no way that the allocation can extend off the end of the page.
1511 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001512 */
drh0a45c272009-07-08 01:49:11 +00001513 top -= nByte;
drh43605152004-05-29 21:46:49 +00001514 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001515 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001516 *pIdx = top;
1517 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001518}
1519
1520/*
drh9e572e62004-04-23 23:43:10 +00001521** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001522** The first byte of the new free block is pPage->aData[iStart]
1523** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001524**
drh5f5c7532014-08-20 17:56:27 +00001525** Adjacent freeblocks are coalesced.
1526**
1527** Note that even though the freeblock list was checked by btreeInitPage(),
1528** that routine will not detect overlap between cells or freeblocks. Nor
1529** does it detect cells or freeblocks that encrouch into the reserved bytes
1530** at the end of the page. So do additional corruption checks inside this
1531** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001532*/
drh5f5c7532014-08-20 17:56:27 +00001533static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001534 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001535 u16 iFreeBlk; /* Address of the next freeblock */
1536 u8 hdr; /* Page header size. 0 or 100 */
1537 u8 nFrag = 0; /* Reduction in fragmentation */
1538 u16 iOrigSize = iSize; /* Original value of iSize */
1539 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1540 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001541 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001542
drh9e572e62004-04-23 23:43:10 +00001543 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001544 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001545 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001546 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001547 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001548 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001549 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001550
drh5f5c7532014-08-20 17:56:27 +00001551 /* Overwrite deleted information with zeros when the secure_delete
1552 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001553 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001554 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001555 }
drhfcce93f2006-02-22 03:08:32 +00001556
drh5f5c7532014-08-20 17:56:27 +00001557 /* The list of freeblocks must be in ascending order. Find the
1558 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001559 */
drh43605152004-05-29 21:46:49 +00001560 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001561 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001562 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1563 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1564 }else{
1565 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1566 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1567 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001568 }
drh7bc4c452014-08-20 18:43:44 +00001569 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1570 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1571
1572 /* At this point:
1573 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001574 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001575 **
1576 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1577 */
1578 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1579 nFrag = iFreeBlk - iEnd;
1580 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1581 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001582 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001583 iSize = iEnd - iStart;
1584 iFreeBlk = get2byte(&data[iFreeBlk]);
1585 }
1586
drh3f387402014-09-24 01:23:00 +00001587 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1588 ** pointer in the page header) then check to see if iStart should be
1589 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001590 */
1591 if( iPtr>hdr+1 ){
1592 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1593 if( iPtrEnd+3>=iStart ){
1594 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1595 nFrag += iStart - iPtrEnd;
1596 iSize = iEnd - iPtr;
1597 iStart = iPtr;
1598 }
1599 }
1600 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1601 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001602 }
drh7bc4c452014-08-20 18:43:44 +00001603 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001604 /* The new freeblock is at the beginning of the cell content area,
1605 ** so just extend the cell content area rather than create another
1606 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001607 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001608 put2byte(&data[hdr+1], iFreeBlk);
1609 put2byte(&data[hdr+5], iEnd);
1610 }else{
1611 /* Insert the new freeblock into the freelist */
1612 put2byte(&data[iPtr], iStart);
1613 put2byte(&data[iStart], iFreeBlk);
1614 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001615 }
drh5f5c7532014-08-20 17:56:27 +00001616 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001617 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001618}
1619
1620/*
drh271efa52004-05-30 19:19:05 +00001621** Decode the flags byte (the first byte of the header) for a page
1622** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001623**
1624** Only the following combinations are supported. Anything different
1625** indicates a corrupt database files:
1626**
1627** PTF_ZERODATA
1628** PTF_ZERODATA | PTF_LEAF
1629** PTF_LEAFDATA | PTF_INTKEY
1630** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001631*/
drh44845222008-07-17 18:39:57 +00001632static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001633 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001634
1635 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001637 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001638 flagByte &= ~PTF_LEAF;
1639 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001640 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001641 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001642 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001643 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1644 ** table b-tree page. */
1645 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1646 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1647 ** table b-tree page. */
1648 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001649 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001650 if( pPage->leaf ){
1651 pPage->intKeyLeaf = 1;
1652 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001653 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001654 }else{
1655 pPage->intKeyLeaf = 0;
1656 pPage->noPayload = 1;
1657 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001658 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001659 }
drh271efa52004-05-30 19:19:05 +00001660 pPage->maxLocal = pBt->maxLeaf;
1661 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001662 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001663 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1664 ** index b-tree page. */
1665 assert( (PTF_ZERODATA)==2 );
1666 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1667 ** index b-tree page. */
1668 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001669 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001670 pPage->intKeyLeaf = 0;
1671 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001672 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001673 pPage->maxLocal = pBt->maxLocal;
1674 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001675 }else{
drhfdab0262014-11-20 15:30:50 +00001676 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1677 ** an error. */
drh44845222008-07-17 18:39:57 +00001678 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001679 }
drhc9166342012-01-05 23:32:06 +00001680 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001681 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001682}
1683
1684/*
drh7e3b0a02001-04-28 16:52:40 +00001685** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001686**
1687** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001688** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001689** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1690** guarantee that the page is well-formed. It only shows that
1691** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001692*/
danielk197730548662009-07-09 05:07:37 +00001693static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001694
danielk197771d5d2c2008-09-29 11:49:47 +00001695 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001696 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001697 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001698 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001699 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1700 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001701
1702 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001703 u16 pc; /* Address of a freeblock within pPage->aData[] */
1704 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001705 u8 *data; /* Equal to pPage->aData */
1706 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001707 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001708 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001709 int nFree; /* Number of unused bytes on the page */
1710 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001711 int iCellFirst; /* First allowable cell or freeblock offset */
1712 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001713
1714 pBt = pPage->pBt;
1715
danielk1977eaa06f62008-09-18 17:34:44 +00001716 hdr = pPage->hdrOffset;
1717 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001718 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1719 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001720 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001721 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1722 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001723 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001724 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001725 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001726 pPage->aDataEnd = &data[usableSize];
1727 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001728 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001729 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1730 ** the start of the cell content area. A zero value for this integer is
1731 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001732 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001733 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1734 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001735 pPage->nCell = get2byte(&data[hdr+3]);
1736 if( pPage->nCell>MX_CELL(pBt) ){
1737 /* To many cells for a single page. The page must be corrupt */
1738 return SQLITE_CORRUPT_BKPT;
1739 }
drhb908d762009-07-08 16:54:40 +00001740 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001741 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1742 ** possible for a root page of a table that contains no rows) then the
1743 ** offset to the cell content area will equal the page size minus the
1744 ** bytes of reserved space. */
1745 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001746
shane5eff7cf2009-08-10 03:57:58 +00001747 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001748 ** of page when parsing a cell.
1749 **
1750 ** The following block of code checks early to see if a cell extends
1751 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1752 ** returned if it does.
1753 */
drh0a45c272009-07-08 01:49:11 +00001754 iCellFirst = cellOffset + 2*pPage->nCell;
1755 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001756 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001757 int i; /* Index into the cell pointer array */
1758 int sz; /* Size of a cell */
1759
drh69e931e2009-06-03 21:04:35 +00001760 if( !pPage->leaf ) iCellLast--;
1761 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001762 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001763 testcase( pc==iCellFirst );
1764 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001765 if( pc<iCellFirst || pc>iCellLast ){
1766 return SQLITE_CORRUPT_BKPT;
1767 }
drh25ada072015-06-19 15:07:14 +00001768 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001769 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001770 if( pc+sz>usableSize ){
1771 return SQLITE_CORRUPT_BKPT;
1772 }
1773 }
drh0a45c272009-07-08 01:49:11 +00001774 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001775 }
drh69e931e2009-06-03 21:04:35 +00001776
drhfdab0262014-11-20 15:30:50 +00001777 /* Compute the total free space on the page
1778 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1779 ** start of the first freeblock on the page, or is zero if there are no
1780 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001781 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001782 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001783 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001784 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001785 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001786 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1787 ** always be at least one cell before the first freeblock.
1788 **
1789 ** Or, the freeblock is off the end of the page
1790 */
danielk1977eaa06f62008-09-18 17:34:44 +00001791 return SQLITE_CORRUPT_BKPT;
1792 }
1793 next = get2byte(&data[pc]);
1794 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001795 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1796 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001797 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001798 return SQLITE_CORRUPT_BKPT;
1799 }
shane85095702009-06-15 16:27:08 +00001800 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001801 pc = next;
1802 }
danielk197793c829c2009-06-03 17:26:17 +00001803
1804 /* At this point, nFree contains the sum of the offset to the start
1805 ** of the cell-content area plus the number of free bytes within
1806 ** the cell-content area. If this is greater than the usable-size
1807 ** of the page, then the page must be corrupted. This check also
1808 ** serves to verify that the offset to the start of the cell-content
1809 ** area, according to the page header, lies within the page.
1810 */
1811 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001812 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001813 }
shane5eff7cf2009-08-10 03:57:58 +00001814 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001815 pPage->isInit = 1;
1816 }
drh9e572e62004-04-23 23:43:10 +00001817 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001818}
1819
1820/*
drh8b2f49b2001-06-08 00:21:52 +00001821** Set up a raw page so that it looks like a database page holding
1822** no entries.
drhbd03cae2001-06-02 02:40:57 +00001823*/
drh9e572e62004-04-23 23:43:10 +00001824static void zeroPage(MemPage *pPage, int flags){
1825 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001826 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001827 u8 hdr = pPage->hdrOffset;
1828 u16 first;
drh9e572e62004-04-23 23:43:10 +00001829
danielk19773b8a05f2007-03-19 17:44:26 +00001830 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001831 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1832 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001833 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001834 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001835 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001836 memset(&data[hdr], 0, pBt->usableSize - hdr);
1837 }
drh1bd10f82008-12-10 21:19:56 +00001838 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001839 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001840 memset(&data[hdr+1], 0, 4);
1841 data[hdr+7] = 0;
1842 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001843 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001844 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001845 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001846 pPage->aDataEnd = &data[pBt->usableSize];
1847 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001848 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001849 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001850 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1851 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001852 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001853 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001854}
1855
drh897a8202008-09-18 01:08:15 +00001856
1857/*
1858** Convert a DbPage obtained from the pager into a MemPage used by
1859** the btree layer.
1860*/
1861static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1862 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1863 pPage->aData = sqlite3PagerGetData(pDbPage);
1864 pPage->pDbPage = pDbPage;
1865 pPage->pBt = pBt;
1866 pPage->pgno = pgno;
drh375beb02015-06-27 15:51:06 +00001867 pPage->hdrOffset = pgno==1 ? 100 : 0;
drh897a8202008-09-18 01:08:15 +00001868 return pPage;
1869}
1870
drhbd03cae2001-06-02 02:40:57 +00001871/*
drh3aac2dd2004-04-26 14:10:20 +00001872** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001873** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001874**
drh7e8c6f12015-05-28 03:28:27 +00001875** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1876** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001877** to fetch the content. Just fill in the content with zeros for now.
1878** If in the future we call sqlite3PagerWrite() on this page, that
1879** means we have started to be concerned about content and the disk
1880** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001881*/
danielk197730548662009-07-09 05:07:37 +00001882static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001883 BtShared *pBt, /* The btree */
1884 Pgno pgno, /* Number of the page to fetch */
1885 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001886 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001887){
drh3aac2dd2004-04-26 14:10:20 +00001888 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001889 DbPage *pDbPage;
1890
drhb00fc3b2013-08-21 23:42:32 +00001891 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001892 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001893 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001894 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001895 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001896 return SQLITE_OK;
1897}
1898
1899/*
danielk1977bea2a942009-01-20 17:06:27 +00001900** Retrieve a page from the pager cache. If the requested page is not
1901** already in the pager cache return NULL. Initialize the MemPage.pBt and
1902** MemPage.aData elements if needed.
1903*/
1904static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1905 DbPage *pDbPage;
1906 assert( sqlite3_mutex_held(pBt->mutex) );
1907 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1908 if( pDbPage ){
1909 return btreePageFromDbPage(pDbPage, pgno, pBt);
1910 }
1911 return 0;
1912}
1913
1914/*
danielk197789d40042008-11-17 14:20:56 +00001915** Return the size of the database file in pages. If there is any kind of
1916** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001917*/
drhb1299152010-03-30 22:58:33 +00001918static Pgno btreePagecount(BtShared *pBt){
1919 return pBt->nPage;
1920}
1921u32 sqlite3BtreeLastPage(Btree *p){
1922 assert( sqlite3BtreeHoldsMutex(p) );
1923 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001924 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001925}
1926
1927/*
drh28f58dd2015-06-27 19:45:03 +00001928** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001929**
drh15a00212015-06-27 20:55:00 +00001930** If pCur!=0 then the page is being fetched as part of a moveToChild()
1931** call. Do additional sanity checking on the page in this case.
1932** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001933**
1934** The page is fetched as read-write unless pCur is not NULL and is
1935** a read-only cursor.
1936**
1937** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001938** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001939*/
1940static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001941 BtShared *pBt, /* The database file */
1942 Pgno pgno, /* Number of the page to get */
1943 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001944 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1945 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001946){
1947 int rc;
drh28f58dd2015-06-27 19:45:03 +00001948 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001949 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001950 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1951 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001952 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001953
danba3cbf32010-06-30 04:29:03 +00001954 if( pgno>btreePagecount(pBt) ){
1955 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001956 goto getAndInitPage_error;
1957 }
1958 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
1959 if( rc ){
1960 goto getAndInitPage_error;
1961 }
1962 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1963 if( (*ppPage)->isInit==0 ){
1964 rc = btreeInitPage(*ppPage);
1965 if( rc!=SQLITE_OK ){
1966 releasePage(*ppPage);
1967 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00001968 }
drhee696e22004-08-30 16:52:17 +00001969 }
danba3cbf32010-06-30 04:29:03 +00001970
drh15a00212015-06-27 20:55:00 +00001971 /* If obtaining a child page for a cursor, we must verify that the page is
1972 ** compatible with the root page. */
1973 if( pCur
drh408efc02015-06-27 22:49:10 +00001974 && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
drh28f58dd2015-06-27 19:45:03 +00001975 ){
1976 rc = SQLITE_CORRUPT_BKPT;
1977 releasePage(*ppPage);
1978 goto getAndInitPage_error;
1979 }
drh28f58dd2015-06-27 19:45:03 +00001980 return SQLITE_OK;
1981
1982getAndInitPage_error:
1983 if( pCur ) pCur->iPage--;
drh325d0872015-06-29 00:52:33 +00001984 testcase( pgno==0 );
1985 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001986 return rc;
1987}
1988
1989/*
drh3aac2dd2004-04-26 14:10:20 +00001990** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001991** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001992*/
drhbbf0f862015-06-27 14:59:26 +00001993static void releasePageNotNull(MemPage *pPage){
1994 assert( pPage->aData );
1995 assert( pPage->pBt );
1996 assert( pPage->pDbPage!=0 );
1997 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1998 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
1999 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2000 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2001}
drh4b70f112004-05-02 21:12:19 +00002002static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002003 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002004}
2005
2006/*
drh7e8c6f12015-05-28 03:28:27 +00002007** Get an unused page.
2008**
2009** This works just like btreeGetPage() with the addition:
2010**
2011** * If the page is already in use for some other purpose, immediately
2012** release it and return an SQLITE_CURRUPT error.
2013** * Make sure the isInit flag is clear
2014*/
2015static int btreeGetUnusedPage(
2016 BtShared *pBt, /* The btree */
2017 Pgno pgno, /* Number of the page to fetch */
2018 MemPage **ppPage, /* Return the page in this parameter */
2019 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2020){
2021 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2022 if( rc==SQLITE_OK ){
2023 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2024 releasePage(*ppPage);
2025 *ppPage = 0;
2026 return SQLITE_CORRUPT_BKPT;
2027 }
2028 (*ppPage)->isInit = 0;
2029 }else{
2030 *ppPage = 0;
2031 }
2032 return rc;
2033}
2034
2035
2036/*
drha6abd042004-06-09 17:37:22 +00002037** During a rollback, when the pager reloads information into the cache
2038** so that the cache is restored to its original state at the start of
2039** the transaction, for each page restored this routine is called.
2040**
2041** This routine needs to reset the extra data section at the end of the
2042** page to agree with the restored data.
2043*/
danielk1977eaa06f62008-09-18 17:34:44 +00002044static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002045 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002046 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002047 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002048 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002049 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002050 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002051 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002052 /* pPage might not be a btree page; it might be an overflow page
2053 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002054 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002055 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002056 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002057 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002058 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002059 }
drha6abd042004-06-09 17:37:22 +00002060 }
2061}
2062
2063/*
drhe5fe6902007-12-07 18:55:28 +00002064** Invoke the busy handler for a btree.
2065*/
danielk19771ceedd32008-11-19 10:22:33 +00002066static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002067 BtShared *pBt = (BtShared*)pArg;
2068 assert( pBt->db );
2069 assert( sqlite3_mutex_held(pBt->db->mutex) );
2070 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2071}
2072
2073/*
drhad3e0102004-09-03 23:32:18 +00002074** Open a database file.
2075**
drh382c0242001-10-06 16:33:02 +00002076** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002077** then an ephemeral database is created. The ephemeral database might
2078** be exclusively in memory, or it might use a disk-based memory cache.
2079** Either way, the ephemeral database will be automatically deleted
2080** when sqlite3BtreeClose() is called.
2081**
drhe53831d2007-08-17 01:14:38 +00002082** If zFilename is ":memory:" then an in-memory database is created
2083** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002084**
drh33f111d2012-01-17 15:29:14 +00002085** The "flags" parameter is a bitmask that might contain bits like
2086** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002087**
drhc47fd8e2009-04-30 13:30:32 +00002088** If the database is already opened in the same database connection
2089** and we are in shared cache mode, then the open will fail with an
2090** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2091** objects in the same database connection since doing so will lead
2092** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002093*/
drh23e11ca2004-05-04 17:27:28 +00002094int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002095 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002096 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002097 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002098 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002099 int flags, /* Options */
2100 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002101){
drh7555d8e2009-03-20 13:15:30 +00002102 BtShared *pBt = 0; /* Shared part of btree structure */
2103 Btree *p; /* Handle to return */
2104 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2105 int rc = SQLITE_OK; /* Result code from this function */
2106 u8 nReserve; /* Byte of unused space on each page */
2107 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002108
drh75c014c2010-08-30 15:02:28 +00002109 /* True if opening an ephemeral, temporary database */
2110 const int isTempDb = zFilename==0 || zFilename[0]==0;
2111
danielk1977aef0bf62005-12-30 16:28:01 +00002112 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002113 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002114 */
drhb0a7c9c2010-12-06 21:09:59 +00002115#ifdef SQLITE_OMIT_MEMORYDB
2116 const int isMemdb = 0;
2117#else
2118 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002119 || (isTempDb && sqlite3TempInMemory(db))
2120 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002121#endif
2122
drhe5fe6902007-12-07 18:55:28 +00002123 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002124 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002125 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002126 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2127
2128 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2129 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2130
2131 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2132 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002133
drh75c014c2010-08-30 15:02:28 +00002134 if( isMemdb ){
2135 flags |= BTREE_MEMORY;
2136 }
2137 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2138 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2139 }
drh17435752007-08-16 04:30:38 +00002140 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002141 if( !p ){
2142 return SQLITE_NOMEM;
2143 }
2144 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002145 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002146#ifndef SQLITE_OMIT_SHARED_CACHE
2147 p->lock.pBtree = p;
2148 p->lock.iTable = 1;
2149#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002150
drh198bf392006-01-06 21:52:49 +00002151#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002152 /*
2153 ** If this Btree is a candidate for shared cache, try to find an
2154 ** existing BtShared object that we can share with
2155 */
drh4ab9d252012-05-26 20:08:49 +00002156 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002157 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002158 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002159 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002160 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002161 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002162
drhff0587c2007-08-29 17:43:19 +00002163 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002164 if( !zFullPathname ){
2165 sqlite3_free(p);
2166 return SQLITE_NOMEM;
2167 }
drhafc8b7f2012-05-26 18:06:38 +00002168 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002169 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002170 }else{
2171 rc = sqlite3OsFullPathname(pVfs, zFilename,
2172 nFullPathname, zFullPathname);
2173 if( rc ){
2174 sqlite3_free(zFullPathname);
2175 sqlite3_free(p);
2176 return rc;
2177 }
drh070ad6b2011-11-17 11:43:19 +00002178 }
drh30ddce62011-10-15 00:16:30 +00002179#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002180 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2181 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002182 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002183 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002184#endif
drh78f82d12008-09-02 00:52:52 +00002185 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002186 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002187 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002188 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002189 int iDb;
2190 for(iDb=db->nDb-1; iDb>=0; iDb--){
2191 Btree *pExisting = db->aDb[iDb].pBt;
2192 if( pExisting && pExisting->pBt==pBt ){
2193 sqlite3_mutex_leave(mutexShared);
2194 sqlite3_mutex_leave(mutexOpen);
2195 sqlite3_free(zFullPathname);
2196 sqlite3_free(p);
2197 return SQLITE_CONSTRAINT;
2198 }
2199 }
drhff0587c2007-08-29 17:43:19 +00002200 p->pBt = pBt;
2201 pBt->nRef++;
2202 break;
2203 }
2204 }
2205 sqlite3_mutex_leave(mutexShared);
2206 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002207 }
drhff0587c2007-08-29 17:43:19 +00002208#ifdef SQLITE_DEBUG
2209 else{
2210 /* In debug mode, we mark all persistent databases as sharable
2211 ** even when they are not. This exercises the locking code and
2212 ** gives more opportunity for asserts(sqlite3_mutex_held())
2213 ** statements to find locking problems.
2214 */
2215 p->sharable = 1;
2216 }
2217#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002218 }
2219#endif
drha059ad02001-04-17 20:09:11 +00002220 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002221 /*
2222 ** The following asserts make sure that structures used by the btree are
2223 ** the right size. This is to guard against size changes that result
2224 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002225 */
drh062cf272015-03-23 19:03:51 +00002226 assert( sizeof(i64)==8 );
2227 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002228 assert( sizeof(u32)==4 );
2229 assert( sizeof(u16)==2 );
2230 assert( sizeof(Pgno)==4 );
2231
2232 pBt = sqlite3MallocZero( sizeof(*pBt) );
2233 if( pBt==0 ){
2234 rc = SQLITE_NOMEM;
2235 goto btree_open_out;
2236 }
danielk197771d5d2c2008-09-29 11:49:47 +00002237 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002238 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002239 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002240 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002241 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2242 }
2243 if( rc!=SQLITE_OK ){
2244 goto btree_open_out;
2245 }
shanehbd2aaf92010-09-01 02:38:21 +00002246 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002247 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002248 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002249 p->pBt = pBt;
2250
drhe53831d2007-08-17 01:14:38 +00002251 pBt->pCursor = 0;
2252 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002253 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002254#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002255 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002256#endif
drh113762a2014-11-19 16:36:25 +00002257 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2258 ** determined by the 2-byte integer located at an offset of 16 bytes from
2259 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002260 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002261 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2262 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002263 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002264#ifndef SQLITE_OMIT_AUTOVACUUM
2265 /* If the magic name ":memory:" will create an in-memory database, then
2266 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2267 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2268 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2269 ** regular file-name. In this case the auto-vacuum applies as per normal.
2270 */
2271 if( zFilename && !isMemdb ){
2272 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2273 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2274 }
2275#endif
2276 nReserve = 0;
2277 }else{
drh113762a2014-11-19 16:36:25 +00002278 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2279 ** determined by the one-byte unsigned integer found at an offset of 20
2280 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002281 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002282 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002283#ifndef SQLITE_OMIT_AUTOVACUUM
2284 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2285 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2286#endif
2287 }
drhfa9601a2009-06-18 17:22:39 +00002288 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002289 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002290 pBt->usableSize = pBt->pageSize - nReserve;
2291 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002292
2293#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2294 /* Add the new BtShared object to the linked list sharable BtShareds.
2295 */
2296 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002297 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002298 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002299 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002300 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002301 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002302 if( pBt->mutex==0 ){
2303 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002304 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002305 goto btree_open_out;
2306 }
drhff0587c2007-08-29 17:43:19 +00002307 }
drhe53831d2007-08-17 01:14:38 +00002308 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002309 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2310 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002311 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002312 }
drheee46cf2004-11-06 00:02:48 +00002313#endif
drh90f5ecb2004-07-22 01:19:35 +00002314 }
danielk1977aef0bf62005-12-30 16:28:01 +00002315
drhcfed7bc2006-03-13 14:28:05 +00002316#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002317 /* If the new Btree uses a sharable pBtShared, then link the new
2318 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002319 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002320 */
drhe53831d2007-08-17 01:14:38 +00002321 if( p->sharable ){
2322 int i;
2323 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002324 for(i=0; i<db->nDb; i++){
2325 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002326 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2327 if( p->pBt<pSib->pBt ){
2328 p->pNext = pSib;
2329 p->pPrev = 0;
2330 pSib->pPrev = p;
2331 }else{
drhabddb0c2007-08-20 13:14:28 +00002332 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002333 pSib = pSib->pNext;
2334 }
2335 p->pNext = pSib->pNext;
2336 p->pPrev = pSib;
2337 if( p->pNext ){
2338 p->pNext->pPrev = p;
2339 }
2340 pSib->pNext = p;
2341 }
2342 break;
2343 }
2344 }
danielk1977aef0bf62005-12-30 16:28:01 +00002345 }
danielk1977aef0bf62005-12-30 16:28:01 +00002346#endif
2347 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002348
2349btree_open_out:
2350 if( rc!=SQLITE_OK ){
2351 if( pBt && pBt->pPager ){
2352 sqlite3PagerClose(pBt->pPager);
2353 }
drh17435752007-08-16 04:30:38 +00002354 sqlite3_free(pBt);
2355 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002356 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002357 }else{
2358 /* If the B-Tree was successfully opened, set the pager-cache size to the
2359 ** default value. Except, when opening on an existing shared pager-cache,
2360 ** do not change the pager-cache size.
2361 */
2362 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2363 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2364 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002365 }
drh7555d8e2009-03-20 13:15:30 +00002366 if( mutexOpen ){
2367 assert( sqlite3_mutex_held(mutexOpen) );
2368 sqlite3_mutex_leave(mutexOpen);
2369 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002370 return rc;
drha059ad02001-04-17 20:09:11 +00002371}
2372
2373/*
drhe53831d2007-08-17 01:14:38 +00002374** Decrement the BtShared.nRef counter. When it reaches zero,
2375** remove the BtShared structure from the sharing list. Return
2376** true if the BtShared.nRef counter reaches zero and return
2377** false if it is still positive.
2378*/
2379static int removeFromSharingList(BtShared *pBt){
2380#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002381 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002382 BtShared *pList;
2383 int removed = 0;
2384
drhd677b3d2007-08-20 22:48:41 +00002385 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002386 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002387 sqlite3_mutex_enter(pMaster);
2388 pBt->nRef--;
2389 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002390 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2391 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002392 }else{
drh78f82d12008-09-02 00:52:52 +00002393 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002394 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002395 pList=pList->pNext;
2396 }
drh34004ce2008-07-11 16:15:17 +00002397 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002398 pList->pNext = pBt->pNext;
2399 }
2400 }
drh3285db22007-09-03 22:00:39 +00002401 if( SQLITE_THREADSAFE ){
2402 sqlite3_mutex_free(pBt->mutex);
2403 }
drhe53831d2007-08-17 01:14:38 +00002404 removed = 1;
2405 }
2406 sqlite3_mutex_leave(pMaster);
2407 return removed;
2408#else
2409 return 1;
2410#endif
2411}
2412
2413/*
drhf7141992008-06-19 00:16:08 +00002414** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002415** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2416** pointer.
drhf7141992008-06-19 00:16:08 +00002417*/
2418static void allocateTempSpace(BtShared *pBt){
2419 if( !pBt->pTmpSpace ){
2420 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002421
2422 /* One of the uses of pBt->pTmpSpace is to format cells before
2423 ** inserting them into a leaf page (function fillInCell()). If
2424 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2425 ** by the various routines that manipulate binary cells. Which
2426 ** can mean that fillInCell() only initializes the first 2 or 3
2427 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2428 ** it into a database page. This is not actually a problem, but it
2429 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2430 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002431 ** zero the first 4 bytes of temp space here.
2432 **
2433 ** Also: Provide four bytes of initialized space before the
2434 ** beginning of pTmpSpace as an area available to prepend the
2435 ** left-child pointer to the beginning of a cell.
2436 */
2437 if( pBt->pTmpSpace ){
2438 memset(pBt->pTmpSpace, 0, 8);
2439 pBt->pTmpSpace += 4;
2440 }
drhf7141992008-06-19 00:16:08 +00002441 }
2442}
2443
2444/*
2445** Free the pBt->pTmpSpace allocation
2446*/
2447static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002448 if( pBt->pTmpSpace ){
2449 pBt->pTmpSpace -= 4;
2450 sqlite3PageFree(pBt->pTmpSpace);
2451 pBt->pTmpSpace = 0;
2452 }
drhf7141992008-06-19 00:16:08 +00002453}
2454
2455/*
drha059ad02001-04-17 20:09:11 +00002456** Close an open database and invalidate all cursors.
2457*/
danielk1977aef0bf62005-12-30 16:28:01 +00002458int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002459 BtShared *pBt = p->pBt;
2460 BtCursor *pCur;
2461
danielk1977aef0bf62005-12-30 16:28:01 +00002462 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002463 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002464 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002465 pCur = pBt->pCursor;
2466 while( pCur ){
2467 BtCursor *pTmp = pCur;
2468 pCur = pCur->pNext;
2469 if( pTmp->pBtree==p ){
2470 sqlite3BtreeCloseCursor(pTmp);
2471 }
drha059ad02001-04-17 20:09:11 +00002472 }
danielk1977aef0bf62005-12-30 16:28:01 +00002473
danielk19778d34dfd2006-01-24 16:37:57 +00002474 /* Rollback any active transaction and free the handle structure.
2475 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2476 ** this handle.
2477 */
drh47b7fc72014-11-11 01:33:57 +00002478 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002479 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002480
danielk1977aef0bf62005-12-30 16:28:01 +00002481 /* If there are still other outstanding references to the shared-btree
2482 ** structure, return now. The remainder of this procedure cleans
2483 ** up the shared-btree.
2484 */
drhe53831d2007-08-17 01:14:38 +00002485 assert( p->wantToLock==0 && p->locked==0 );
2486 if( !p->sharable || removeFromSharingList(pBt) ){
2487 /* The pBt is no longer on the sharing list, so we can access
2488 ** it without having to hold the mutex.
2489 **
2490 ** Clean out and delete the BtShared object.
2491 */
2492 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002493 sqlite3PagerClose(pBt->pPager);
2494 if( pBt->xFreeSchema && pBt->pSchema ){
2495 pBt->xFreeSchema(pBt->pSchema);
2496 }
drhb9755982010-07-24 16:34:37 +00002497 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002498 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002499 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002500 }
2501
drhe53831d2007-08-17 01:14:38 +00002502#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002503 assert( p->wantToLock==0 );
2504 assert( p->locked==0 );
2505 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2506 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002507#endif
2508
drhe53831d2007-08-17 01:14:38 +00002509 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002510 return SQLITE_OK;
2511}
2512
2513/*
drhda47d772002-12-02 04:25:19 +00002514** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002515**
2516** The maximum number of cache pages is set to the absolute
2517** value of mxPage. If mxPage is negative, the pager will
2518** operate asynchronously - it will not stop to do fsync()s
2519** to insure data is written to the disk surface before
2520** continuing. Transactions still work if synchronous is off,
2521** and the database cannot be corrupted if this program
2522** crashes. But if the operating system crashes or there is
2523** an abrupt power failure when synchronous is off, the database
2524** could be left in an inconsistent and unrecoverable state.
2525** Synchronous is on by default so database corruption is not
2526** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002527*/
danielk1977aef0bf62005-12-30 16:28:01 +00002528int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2529 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002530 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002531 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002532 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002533 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002534 return SQLITE_OK;
2535}
2536
drh18c7e402014-03-14 11:46:10 +00002537#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002538/*
dan5d8a1372013-03-19 19:28:06 +00002539** Change the limit on the amount of the database file that may be
2540** memory mapped.
2541*/
drh9b4c59f2013-04-15 17:03:42 +00002542int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002543 BtShared *pBt = p->pBt;
2544 assert( sqlite3_mutex_held(p->db->mutex) );
2545 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002546 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002547 sqlite3BtreeLeave(p);
2548 return SQLITE_OK;
2549}
drh18c7e402014-03-14 11:46:10 +00002550#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002551
2552/*
drh973b6e32003-02-12 14:09:42 +00002553** Change the way data is synced to disk in order to increase or decrease
2554** how well the database resists damage due to OS crashes and power
2555** failures. Level 1 is the same as asynchronous (no syncs() occur and
2556** there is a high probability of damage) Level 2 is the default. There
2557** is a very low but non-zero probability of damage. Level 3 reduces the
2558** probability of damage to near zero but with a write performance reduction.
2559*/
danielk197793758c82005-01-21 08:13:14 +00002560#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002561int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002562 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002563 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002564){
danielk1977aef0bf62005-12-30 16:28:01 +00002565 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002566 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002567 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002568 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002569 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002570 return SQLITE_OK;
2571}
danielk197793758c82005-01-21 08:13:14 +00002572#endif
drh973b6e32003-02-12 14:09:42 +00002573
drh2c8997b2005-08-27 16:36:48 +00002574/*
2575** Return TRUE if the given btree is set to safety level 1. In other
2576** words, return TRUE if no sync() occurs on the disk files.
2577*/
danielk1977aef0bf62005-12-30 16:28:01 +00002578int sqlite3BtreeSyncDisabled(Btree *p){
2579 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002580 int rc;
drhe5fe6902007-12-07 18:55:28 +00002581 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002582 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002583 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002584 rc = sqlite3PagerNosync(pBt->pPager);
2585 sqlite3BtreeLeave(p);
2586 return rc;
drh2c8997b2005-08-27 16:36:48 +00002587}
2588
drh973b6e32003-02-12 14:09:42 +00002589/*
drh90f5ecb2004-07-22 01:19:35 +00002590** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002591** Or, if the page size has already been fixed, return SQLITE_READONLY
2592** without changing anything.
drh06f50212004-11-02 14:24:33 +00002593**
2594** The page size must be a power of 2 between 512 and 65536. If the page
2595** size supplied does not meet this constraint then the page size is not
2596** changed.
2597**
2598** Page sizes are constrained to be a power of two so that the region
2599** of the database file used for locking (beginning at PENDING_BYTE,
2600** the first byte past the 1GB boundary, 0x40000000) needs to occur
2601** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002602**
2603** If parameter nReserve is less than zero, then the number of reserved
2604** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002605**
drhc9166342012-01-05 23:32:06 +00002606** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002607** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002608*/
drhce4869f2009-04-02 20:16:58 +00002609int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002610 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002611 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002612 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002613 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002614#if SQLITE_HAS_CODEC
2615 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2616#endif
drhc9166342012-01-05 23:32:06 +00002617 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002618 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002619 return SQLITE_READONLY;
2620 }
2621 if( nReserve<0 ){
2622 nReserve = pBt->pageSize - pBt->usableSize;
2623 }
drhf49661a2008-12-10 16:45:50 +00002624 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002625 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2626 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002627 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002628 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002629 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002630 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002631 }
drhfa9601a2009-06-18 17:22:39 +00002632 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002633 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002634 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002635 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002636 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002637}
2638
2639/*
2640** Return the currently defined page size
2641*/
danielk1977aef0bf62005-12-30 16:28:01 +00002642int sqlite3BtreeGetPageSize(Btree *p){
2643 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002644}
drh7f751222009-03-17 22:33:00 +00002645
dan0094f372012-09-28 20:23:42 +00002646/*
2647** This function is similar to sqlite3BtreeGetReserve(), except that it
2648** may only be called if it is guaranteed that the b-tree mutex is already
2649** held.
2650**
2651** This is useful in one special case in the backup API code where it is
2652** known that the shared b-tree mutex is held, but the mutex on the
2653** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2654** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002655** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002656*/
2657int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002658 int n;
dan0094f372012-09-28 20:23:42 +00002659 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002660 n = p->pBt->pageSize - p->pBt->usableSize;
2661 return n;
dan0094f372012-09-28 20:23:42 +00002662}
2663
drh7f751222009-03-17 22:33:00 +00002664/*
2665** Return the number of bytes of space at the end of every page that
2666** are intentually left unused. This is the "reserved" space that is
2667** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002668**
2669** If SQLITE_HAS_MUTEX is defined then the number returned is the
2670** greater of the current reserved space and the maximum requested
2671** reserve space.
drh7f751222009-03-17 22:33:00 +00002672*/
drhad0961b2015-02-21 00:19:25 +00002673int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002674 int n;
2675 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002676 n = sqlite3BtreeGetReserveNoMutex(p);
2677#ifdef SQLITE_HAS_CODEC
2678 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2679#endif
drhd677b3d2007-08-20 22:48:41 +00002680 sqlite3BtreeLeave(p);
2681 return n;
drh2011d5f2004-07-22 02:40:37 +00002682}
drhf8e632b2007-05-08 14:51:36 +00002683
drhad0961b2015-02-21 00:19:25 +00002684
drhf8e632b2007-05-08 14:51:36 +00002685/*
2686** Set the maximum page count for a database if mxPage is positive.
2687** No changes are made if mxPage is 0 or negative.
2688** Regardless of the value of mxPage, return the maximum page count.
2689*/
2690int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002691 int n;
2692 sqlite3BtreeEnter(p);
2693 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2694 sqlite3BtreeLeave(p);
2695 return n;
drhf8e632b2007-05-08 14:51:36 +00002696}
drh5b47efa2010-02-12 18:18:39 +00002697
2698/*
drhc9166342012-01-05 23:32:06 +00002699** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2700** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002701** setting after the change.
2702*/
2703int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2704 int b;
drhaf034ed2010-02-12 19:46:26 +00002705 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002706 sqlite3BtreeEnter(p);
2707 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002708 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2709 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002710 }
drhc9166342012-01-05 23:32:06 +00002711 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002712 sqlite3BtreeLeave(p);
2713 return b;
2714}
drh90f5ecb2004-07-22 01:19:35 +00002715
2716/*
danielk1977951af802004-11-05 15:45:09 +00002717** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2718** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2719** is disabled. The default value for the auto-vacuum property is
2720** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2721*/
danielk1977aef0bf62005-12-30 16:28:01 +00002722int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002723#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002724 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002725#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002726 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002727 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002728 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002729
2730 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002731 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002732 rc = SQLITE_READONLY;
2733 }else{
drh076d4662009-02-18 20:31:18 +00002734 pBt->autoVacuum = av ?1:0;
2735 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002736 }
drhd677b3d2007-08-20 22:48:41 +00002737 sqlite3BtreeLeave(p);
2738 return rc;
danielk1977951af802004-11-05 15:45:09 +00002739#endif
2740}
2741
2742/*
2743** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2744** enabled 1 is returned. Otherwise 0.
2745*/
danielk1977aef0bf62005-12-30 16:28:01 +00002746int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002747#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002748 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002749#else
drhd677b3d2007-08-20 22:48:41 +00002750 int rc;
2751 sqlite3BtreeEnter(p);
2752 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002753 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2754 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2755 BTREE_AUTOVACUUM_INCR
2756 );
drhd677b3d2007-08-20 22:48:41 +00002757 sqlite3BtreeLeave(p);
2758 return rc;
danielk1977951af802004-11-05 15:45:09 +00002759#endif
2760}
2761
2762
2763/*
drha34b6762004-05-07 13:30:42 +00002764** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002765** also acquire a readlock on that file.
2766**
2767** SQLITE_OK is returned on success. If the file is not a
2768** well-formed database file, then SQLITE_CORRUPT is returned.
2769** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002770** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002771*/
danielk1977aef0bf62005-12-30 16:28:01 +00002772static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002773 int rc; /* Result code from subfunctions */
2774 MemPage *pPage1; /* Page 1 of the database file */
2775 int nPage; /* Number of pages in the database */
2776 int nPageFile = 0; /* Number of pages in the database file */
2777 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002778
drh1fee73e2007-08-29 04:00:57 +00002779 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002780 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002781 rc = sqlite3PagerSharedLock(pBt->pPager);
2782 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002783 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002784 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002785
2786 /* Do some checking to help insure the file we opened really is
2787 ** a valid database file.
2788 */
drhc2a4bab2010-04-02 12:46:45 +00002789 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002790 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002791 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002792 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002793 }
2794 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002795 u32 pageSize;
2796 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002797 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002798 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002799 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2800 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2801 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002802 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002803 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002804 }
dan5cf53532010-05-01 16:40:20 +00002805
2806#ifdef SQLITE_OMIT_WAL
2807 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002808 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002809 }
2810 if( page1[19]>1 ){
2811 goto page1_init_failed;
2812 }
2813#else
dane04dc882010-04-20 18:53:15 +00002814 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002815 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002816 }
dane04dc882010-04-20 18:53:15 +00002817 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002818 goto page1_init_failed;
2819 }
drhe5ae5732008-06-15 02:51:47 +00002820
dana470aeb2010-04-21 11:43:38 +00002821 /* If the write version is set to 2, this database should be accessed
2822 ** in WAL mode. If the log is not already open, open it now. Then
2823 ** return SQLITE_OK and return without populating BtShared.pPage1.
2824 ** The caller detects this and calls this function again. This is
2825 ** required as the version of page 1 currently in the page1 buffer
2826 ** may not be the latest version - there may be a newer one in the log
2827 ** file.
2828 */
drhc9166342012-01-05 23:32:06 +00002829 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002830 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002831 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002832 if( rc!=SQLITE_OK ){
2833 goto page1_init_failed;
2834 }else if( isOpen==0 ){
2835 releasePage(pPage1);
2836 return SQLITE_OK;
2837 }
dan8b5444b2010-04-27 14:37:47 +00002838 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002839 }
dan5cf53532010-05-01 16:40:20 +00002840#endif
dane04dc882010-04-20 18:53:15 +00002841
drh113762a2014-11-19 16:36:25 +00002842 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2843 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2844 **
drhe5ae5732008-06-15 02:51:47 +00002845 ** The original design allowed these amounts to vary, but as of
2846 ** version 3.6.0, we require them to be fixed.
2847 */
2848 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2849 goto page1_init_failed;
2850 }
drh113762a2014-11-19 16:36:25 +00002851 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2852 ** determined by the 2-byte integer located at an offset of 16 bytes from
2853 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002854 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002855 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2856 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002857 if( ((pageSize-1)&pageSize)!=0
2858 || pageSize>SQLITE_MAX_PAGE_SIZE
2859 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002860 ){
drh07d183d2005-05-01 22:52:42 +00002861 goto page1_init_failed;
2862 }
2863 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002864 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2865 ** integer at offset 20 is the number of bytes of space at the end of
2866 ** each page to reserve for extensions.
2867 **
2868 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2869 ** determined by the one-byte unsigned integer found at an offset of 20
2870 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002871 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002872 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002873 /* After reading the first page of the database assuming a page size
2874 ** of BtShared.pageSize, we have discovered that the page-size is
2875 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2876 ** zero and return SQLITE_OK. The caller will call this function
2877 ** again with the correct page-size.
2878 */
2879 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002880 pBt->usableSize = usableSize;
2881 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002882 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002883 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2884 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002885 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002886 }
danecac6702011-02-09 18:19:20 +00002887 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002888 rc = SQLITE_CORRUPT_BKPT;
2889 goto page1_init_failed;
2890 }
drh113762a2014-11-19 16:36:25 +00002891 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2892 ** be less than 480. In other words, if the page size is 512, then the
2893 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002894 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002895 goto page1_init_failed;
2896 }
drh43b18e12010-08-17 19:40:08 +00002897 pBt->pageSize = pageSize;
2898 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002899#ifndef SQLITE_OMIT_AUTOVACUUM
2900 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002901 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002902#endif
drh306dc212001-05-21 13:45:10 +00002903 }
drhb6f41482004-05-14 01:58:11 +00002904
2905 /* maxLocal is the maximum amount of payload to store locally for
2906 ** a cell. Make sure it is small enough so that at least minFanout
2907 ** cells can will fit on one page. We assume a 10-byte page header.
2908 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002909 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002910 ** 4-byte child pointer
2911 ** 9-byte nKey value
2912 ** 4-byte nData value
2913 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002914 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002915 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2916 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002917 */
shaneh1df2db72010-08-18 02:28:48 +00002918 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2919 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2920 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2921 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002922 if( pBt->maxLocal>127 ){
2923 pBt->max1bytePayload = 127;
2924 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002925 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002926 }
drh2e38c322004-09-03 18:38:44 +00002927 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002928 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002929 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002930 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002931
drh72f82862001-05-24 21:06:34 +00002932page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002933 releasePage(pPage1);
2934 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002935 return rc;
drh306dc212001-05-21 13:45:10 +00002936}
2937
drh85ec3b62013-05-14 23:12:06 +00002938#ifndef NDEBUG
2939/*
2940** Return the number of cursors open on pBt. This is for use
2941** in assert() expressions, so it is only compiled if NDEBUG is not
2942** defined.
2943**
2944** Only write cursors are counted if wrOnly is true. If wrOnly is
2945** false then all cursors are counted.
2946**
2947** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002948** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002949** have been tripped into the CURSOR_FAULT state are not counted.
2950*/
2951static int countValidCursors(BtShared *pBt, int wrOnly){
2952 BtCursor *pCur;
2953 int r = 0;
2954 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002955 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2956 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002957 }
2958 return r;
2959}
2960#endif
2961
drh306dc212001-05-21 13:45:10 +00002962/*
drhb8ca3072001-12-05 00:21:20 +00002963** If there are no outstanding cursors and we are not in the middle
2964** of a transaction but there is a read lock on the database, then
2965** this routine unrefs the first page of the database file which
2966** has the effect of releasing the read lock.
2967**
drhb8ca3072001-12-05 00:21:20 +00002968** If there is a transaction in progress, this routine is a no-op.
2969*/
danielk1977aef0bf62005-12-30 16:28:01 +00002970static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002971 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002972 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002973 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002974 MemPage *pPage1 = pBt->pPage1;
2975 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002976 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002977 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00002978 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002979 }
2980}
2981
2982/*
drhe39f2f92009-07-23 01:43:59 +00002983** If pBt points to an empty file then convert that empty file
2984** into a new empty database by initializing the first page of
2985** the database.
drh8b2f49b2001-06-08 00:21:52 +00002986*/
danielk1977aef0bf62005-12-30 16:28:01 +00002987static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002988 MemPage *pP1;
2989 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002990 int rc;
drhd677b3d2007-08-20 22:48:41 +00002991
drh1fee73e2007-08-29 04:00:57 +00002992 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002993 if( pBt->nPage>0 ){
2994 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002995 }
drh3aac2dd2004-04-26 14:10:20 +00002996 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002997 assert( pP1!=0 );
2998 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002999 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003000 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003001 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3002 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003003 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3004 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003005 data[18] = 1;
3006 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003007 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3008 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003009 data[21] = 64;
3010 data[22] = 32;
3011 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003012 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003013 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003014 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003015#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003016 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003017 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003018 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003019 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003020#endif
drhdd3cd972010-03-27 17:12:36 +00003021 pBt->nPage = 1;
3022 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003023 return SQLITE_OK;
3024}
3025
3026/*
danb483eba2012-10-13 19:58:11 +00003027** Initialize the first page of the database file (creating a database
3028** consisting of a single page and no schema objects). Return SQLITE_OK
3029** if successful, or an SQLite error code otherwise.
3030*/
3031int sqlite3BtreeNewDb(Btree *p){
3032 int rc;
3033 sqlite3BtreeEnter(p);
3034 p->pBt->nPage = 0;
3035 rc = newDatabase(p->pBt);
3036 sqlite3BtreeLeave(p);
3037 return rc;
3038}
3039
3040/*
danielk1977ee5741e2004-05-31 10:01:34 +00003041** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003042** is started if the second argument is nonzero, otherwise a read-
3043** transaction. If the second argument is 2 or more and exclusive
3044** transaction is started, meaning that no other process is allowed
3045** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003046** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003047** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003048**
danielk1977ee5741e2004-05-31 10:01:34 +00003049** A write-transaction must be started before attempting any
3050** changes to the database. None of the following routines
3051** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003052**
drh23e11ca2004-05-04 17:27:28 +00003053** sqlite3BtreeCreateTable()
3054** sqlite3BtreeCreateIndex()
3055** sqlite3BtreeClearTable()
3056** sqlite3BtreeDropTable()
3057** sqlite3BtreeInsert()
3058** sqlite3BtreeDelete()
3059** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003060**
drhb8ef32c2005-03-14 02:01:49 +00003061** If an initial attempt to acquire the lock fails because of lock contention
3062** and the database was previously unlocked, then invoke the busy handler
3063** if there is one. But if there was previously a read-lock, do not
3064** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3065** returned when there is already a read-lock in order to avoid a deadlock.
3066**
3067** Suppose there are two processes A and B. A has a read lock and B has
3068** a reserved lock. B tries to promote to exclusive but is blocked because
3069** of A's read lock. A tries to promote to reserved but is blocked by B.
3070** One or the other of the two processes must give way or there can be
3071** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3072** when A already has a read lock, we encourage A to give up and let B
3073** proceed.
drha059ad02001-04-17 20:09:11 +00003074*/
danielk1977aef0bf62005-12-30 16:28:01 +00003075int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003076 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003077 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003078 int rc = SQLITE_OK;
3079
drhd677b3d2007-08-20 22:48:41 +00003080 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003081 btreeIntegrity(p);
3082
danielk1977ee5741e2004-05-31 10:01:34 +00003083 /* If the btree is already in a write-transaction, or it
3084 ** is already in a read-transaction and a read-transaction
3085 ** is requested, this is a no-op.
3086 */
danielk1977aef0bf62005-12-30 16:28:01 +00003087 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003088 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003089 }
dan56c517a2013-09-26 11:04:33 +00003090 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003091
3092 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003093 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003094 rc = SQLITE_READONLY;
3095 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003096 }
3097
danielk1977404ca072009-03-16 13:19:36 +00003098#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003099 /* If another database handle has already opened a write transaction
3100 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003101 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003102 */
drhc9166342012-01-05 23:32:06 +00003103 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3104 || (pBt->btsFlags & BTS_PENDING)!=0
3105 ){
danielk1977404ca072009-03-16 13:19:36 +00003106 pBlock = pBt->pWriter->db;
3107 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003108 BtLock *pIter;
3109 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3110 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003111 pBlock = pIter->pBtree->db;
3112 break;
danielk1977641b0f42007-12-21 04:47:25 +00003113 }
3114 }
3115 }
danielk1977404ca072009-03-16 13:19:36 +00003116 if( pBlock ){
3117 sqlite3ConnectionBlocked(p->db, pBlock);
3118 rc = SQLITE_LOCKED_SHAREDCACHE;
3119 goto trans_begun;
3120 }
danielk1977641b0f42007-12-21 04:47:25 +00003121#endif
3122
danielk1977602b4662009-07-02 07:47:33 +00003123 /* Any read-only or read-write transaction implies a read-lock on
3124 ** page 1. So if some other shared-cache client already has a write-lock
3125 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003126 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3127 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003128
drhc9166342012-01-05 23:32:06 +00003129 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3130 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003131 do {
danielk1977295dc102009-04-01 19:07:03 +00003132 /* Call lockBtree() until either pBt->pPage1 is populated or
3133 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3134 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3135 ** reading page 1 it discovers that the page-size of the database
3136 ** file is not pBt->pageSize. In this case lockBtree() will update
3137 ** pBt->pageSize to the page-size of the file on disk.
3138 */
3139 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003140
drhb8ef32c2005-03-14 02:01:49 +00003141 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003142 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003143 rc = SQLITE_READONLY;
3144 }else{
danielk1977d8293352009-04-30 09:10:37 +00003145 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003146 if( rc==SQLITE_OK ){
3147 rc = newDatabase(pBt);
3148 }
drhb8ef32c2005-03-14 02:01:49 +00003149 }
3150 }
3151
danielk1977bd434552009-03-18 10:33:00 +00003152 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003153 unlockBtreeIfUnused(pBt);
3154 }
danf9b76712010-06-01 14:12:45 +00003155 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003156 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003157
3158 if( rc==SQLITE_OK ){
3159 if( p->inTrans==TRANS_NONE ){
3160 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003161#ifndef SQLITE_OMIT_SHARED_CACHE
3162 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003163 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003164 p->lock.eLock = READ_LOCK;
3165 p->lock.pNext = pBt->pLock;
3166 pBt->pLock = &p->lock;
3167 }
3168#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003169 }
3170 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3171 if( p->inTrans>pBt->inTransaction ){
3172 pBt->inTransaction = p->inTrans;
3173 }
danielk1977404ca072009-03-16 13:19:36 +00003174 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003175 MemPage *pPage1 = pBt->pPage1;
3176#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003177 assert( !pBt->pWriter );
3178 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003179 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3180 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003181#endif
dan59257dc2010-08-04 11:34:31 +00003182
3183 /* If the db-size header field is incorrect (as it may be if an old
3184 ** client has been writing the database file), update it now. Doing
3185 ** this sooner rather than later means the database size can safely
3186 ** re-read the database size from page 1 if a savepoint or transaction
3187 ** rollback occurs within the transaction.
3188 */
3189 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3190 rc = sqlite3PagerWrite(pPage1->pDbPage);
3191 if( rc==SQLITE_OK ){
3192 put4byte(&pPage1->aData[28], pBt->nPage);
3193 }
3194 }
3195 }
danielk1977aef0bf62005-12-30 16:28:01 +00003196 }
3197
drhd677b3d2007-08-20 22:48:41 +00003198
3199trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003200 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003201 /* This call makes sure that the pager has the correct number of
3202 ** open savepoints. If the second parameter is greater than 0 and
3203 ** the sub-journal is not already open, then it will be opened here.
3204 */
danielk1977fd7f0452008-12-17 17:30:26 +00003205 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3206 }
danielk197712dd5492008-12-18 15:45:07 +00003207
danielk1977aef0bf62005-12-30 16:28:01 +00003208 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003209 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003210 return rc;
drha059ad02001-04-17 20:09:11 +00003211}
3212
danielk1977687566d2004-11-02 12:56:41 +00003213#ifndef SQLITE_OMIT_AUTOVACUUM
3214
3215/*
3216** Set the pointer-map entries for all children of page pPage. Also, if
3217** pPage contains cells that point to overflow pages, set the pointer
3218** map entries for the overflow pages as well.
3219*/
3220static int setChildPtrmaps(MemPage *pPage){
3221 int i; /* Counter variable */
3222 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003223 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003224 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003225 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003226 Pgno pgno = pPage->pgno;
3227
drh1fee73e2007-08-29 04:00:57 +00003228 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003229 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003230 if( rc!=SQLITE_OK ){
3231 goto set_child_ptrmaps_out;
3232 }
danielk1977687566d2004-11-02 12:56:41 +00003233 nCell = pPage->nCell;
3234
3235 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003236 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003237
drh98add2e2009-07-20 17:11:49 +00003238 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003239
danielk1977687566d2004-11-02 12:56:41 +00003240 if( !pPage->leaf ){
3241 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003242 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003243 }
3244 }
3245
3246 if( !pPage->leaf ){
3247 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003248 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003249 }
3250
3251set_child_ptrmaps_out:
3252 pPage->isInit = isInitOrig;
3253 return rc;
3254}
3255
3256/*
drhf3aed592009-07-08 18:12:49 +00003257** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3258** that it points to iTo. Parameter eType describes the type of pointer to
3259** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003260**
3261** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3262** page of pPage.
3263**
3264** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3265** page pointed to by one of the cells on pPage.
3266**
3267** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3268** overflow page in the list.
3269*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003270static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003271 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003272 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003273 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003274 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003275 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003276 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003277 }
danielk1977f78fc082004-11-02 14:40:32 +00003278 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003279 }else{
drhf49661a2008-12-10 16:45:50 +00003280 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003281 int i;
3282 int nCell;
drha1f75d92015-05-24 10:18:12 +00003283 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003284
drha1f75d92015-05-24 10:18:12 +00003285 rc = btreeInitPage(pPage);
3286 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003287 nCell = pPage->nCell;
3288
danielk1977687566d2004-11-02 12:56:41 +00003289 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003290 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003291 if( eType==PTRMAP_OVERFLOW1 ){
3292 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003293 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003294 if( info.iOverflow
3295 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3296 && iFrom==get4byte(&pCell[info.iOverflow])
3297 ){
3298 put4byte(&pCell[info.iOverflow], iTo);
3299 break;
danielk1977687566d2004-11-02 12:56:41 +00003300 }
3301 }else{
3302 if( get4byte(pCell)==iFrom ){
3303 put4byte(pCell, iTo);
3304 break;
3305 }
3306 }
3307 }
3308
3309 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003310 if( eType!=PTRMAP_BTREE ||
3311 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003312 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003313 }
danielk1977687566d2004-11-02 12:56:41 +00003314 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3315 }
3316
3317 pPage->isInit = isInitOrig;
3318 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003319 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003320}
3321
danielk1977003ba062004-11-04 02:57:33 +00003322
danielk19777701e812005-01-10 12:59:51 +00003323/*
3324** Move the open database page pDbPage to location iFreePage in the
3325** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003326**
3327** The isCommit flag indicates that there is no need to remember that
3328** the journal needs to be sync()ed before database page pDbPage->pgno
3329** can be written to. The caller has already promised not to write to that
3330** page.
danielk19777701e812005-01-10 12:59:51 +00003331*/
danielk1977003ba062004-11-04 02:57:33 +00003332static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003333 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003334 MemPage *pDbPage, /* Open page to move */
3335 u8 eType, /* Pointer map 'type' entry for pDbPage */
3336 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003337 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003338 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003339){
3340 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3341 Pgno iDbPage = pDbPage->pgno;
3342 Pager *pPager = pBt->pPager;
3343 int rc;
3344
danielk1977a0bf2652004-11-04 14:30:04 +00003345 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3346 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003347 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003348 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003349
drh85b623f2007-12-13 21:54:09 +00003350 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003351 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3352 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003353 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003354 if( rc!=SQLITE_OK ){
3355 return rc;
3356 }
3357 pDbPage->pgno = iFreePage;
3358
3359 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3360 ** that point to overflow pages. The pointer map entries for all these
3361 ** pages need to be changed.
3362 **
3363 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3364 ** pointer to a subsequent overflow page. If this is the case, then
3365 ** the pointer map needs to be updated for the subsequent overflow page.
3366 */
danielk1977a0bf2652004-11-04 14:30:04 +00003367 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003368 rc = setChildPtrmaps(pDbPage);
3369 if( rc!=SQLITE_OK ){
3370 return rc;
3371 }
3372 }else{
3373 Pgno nextOvfl = get4byte(pDbPage->aData);
3374 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003375 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003376 if( rc!=SQLITE_OK ){
3377 return rc;
3378 }
3379 }
3380 }
3381
3382 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3383 ** that it points at iFreePage. Also fix the pointer map entry for
3384 ** iPtrPage.
3385 */
danielk1977a0bf2652004-11-04 14:30:04 +00003386 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003387 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003388 if( rc!=SQLITE_OK ){
3389 return rc;
3390 }
danielk19773b8a05f2007-03-19 17:44:26 +00003391 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003392 if( rc!=SQLITE_OK ){
3393 releasePage(pPtrPage);
3394 return rc;
3395 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003396 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003397 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003398 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003399 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003400 }
danielk1977003ba062004-11-04 02:57:33 +00003401 }
danielk1977003ba062004-11-04 02:57:33 +00003402 return rc;
3403}
3404
danielk1977dddbcdc2007-04-26 14:42:34 +00003405/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003406static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003407
3408/*
dan51f0b6d2013-02-22 20:16:34 +00003409** Perform a single step of an incremental-vacuum. If successful, return
3410** SQLITE_OK. If there is no work to do (and therefore no point in
3411** calling this function again), return SQLITE_DONE. Or, if an error
3412** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003413**
peter.d.reid60ec9142014-09-06 16:39:46 +00003414** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003415** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003416**
dan51f0b6d2013-02-22 20:16:34 +00003417** Parameter nFin is the number of pages that this database would contain
3418** were this function called until it returns SQLITE_DONE.
3419**
3420** If the bCommit parameter is non-zero, this function assumes that the
3421** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003422** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003423** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003424*/
dan51f0b6d2013-02-22 20:16:34 +00003425static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003426 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003427 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003428
drh1fee73e2007-08-29 04:00:57 +00003429 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003430 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003431
3432 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003433 u8 eType;
3434 Pgno iPtrPage;
3435
3436 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003437 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003438 return SQLITE_DONE;
3439 }
3440
3441 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3442 if( rc!=SQLITE_OK ){
3443 return rc;
3444 }
3445 if( eType==PTRMAP_ROOTPAGE ){
3446 return SQLITE_CORRUPT_BKPT;
3447 }
3448
3449 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003450 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003451 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003452 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003453 ** truncated to zero after this function returns, so it doesn't
3454 ** matter if it still contains some garbage entries.
3455 */
3456 Pgno iFreePg;
3457 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003458 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003459 if( rc!=SQLITE_OK ){
3460 return rc;
3461 }
3462 assert( iFreePg==iLastPg );
3463 releasePage(pFreePg);
3464 }
3465 } else {
3466 Pgno iFreePg; /* Index of free page to move pLastPg to */
3467 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003468 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3469 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003470
drhb00fc3b2013-08-21 23:42:32 +00003471 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003472 if( rc!=SQLITE_OK ){
3473 return rc;
3474 }
3475
dan51f0b6d2013-02-22 20:16:34 +00003476 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003477 ** is swapped with the first free page pulled off the free list.
3478 **
dan51f0b6d2013-02-22 20:16:34 +00003479 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003480 ** looping until a free-page located within the first nFin pages
3481 ** of the file is found.
3482 */
dan51f0b6d2013-02-22 20:16:34 +00003483 if( bCommit==0 ){
3484 eMode = BTALLOC_LE;
3485 iNear = nFin;
3486 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003487 do {
3488 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003489 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003490 if( rc!=SQLITE_OK ){
3491 releasePage(pLastPg);
3492 return rc;
3493 }
3494 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003495 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003496 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003497
dane1df4e32013-03-05 11:27:04 +00003498 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003499 releasePage(pLastPg);
3500 if( rc!=SQLITE_OK ){
3501 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003502 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003503 }
3504 }
3505
dan51f0b6d2013-02-22 20:16:34 +00003506 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003507 do {
danielk19773460d192008-12-27 15:23:13 +00003508 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003509 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3510 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003511 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003512 }
3513 return SQLITE_OK;
3514}
3515
3516/*
dan51f0b6d2013-02-22 20:16:34 +00003517** The database opened by the first argument is an auto-vacuum database
3518** nOrig pages in size containing nFree free pages. Return the expected
3519** size of the database in pages following an auto-vacuum operation.
3520*/
3521static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3522 int nEntry; /* Number of entries on one ptrmap page */
3523 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3524 Pgno nFin; /* Return value */
3525
3526 nEntry = pBt->usableSize/5;
3527 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3528 nFin = nOrig - nFree - nPtrmap;
3529 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3530 nFin--;
3531 }
3532 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3533 nFin--;
3534 }
dan51f0b6d2013-02-22 20:16:34 +00003535
3536 return nFin;
3537}
3538
3539/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003540** A write-transaction must be opened before calling this function.
3541** It performs a single unit of work towards an incremental vacuum.
3542**
3543** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003544** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003545** SQLITE_OK is returned. Otherwise an SQLite error code.
3546*/
3547int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003548 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003549 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003550
3551 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003552 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3553 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003554 rc = SQLITE_DONE;
3555 }else{
dan51f0b6d2013-02-22 20:16:34 +00003556 Pgno nOrig = btreePagecount(pBt);
3557 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3558 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3559
dan91384712013-02-24 11:50:43 +00003560 if( nOrig<nFin ){
3561 rc = SQLITE_CORRUPT_BKPT;
3562 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003563 rc = saveAllCursors(pBt, 0, 0);
3564 if( rc==SQLITE_OK ){
3565 invalidateAllOverflowCache(pBt);
3566 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3567 }
dan51f0b6d2013-02-22 20:16:34 +00003568 if( rc==SQLITE_OK ){
3569 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3570 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3571 }
3572 }else{
3573 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003574 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003575 }
drhd677b3d2007-08-20 22:48:41 +00003576 sqlite3BtreeLeave(p);
3577 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003578}
3579
3580/*
danielk19773b8a05f2007-03-19 17:44:26 +00003581** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003582** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003583**
3584** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3585** the database file should be truncated to during the commit process.
3586** i.e. the database has been reorganized so that only the first *pnTrunc
3587** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003588*/
danielk19773460d192008-12-27 15:23:13 +00003589static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003590 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003591 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003592 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003593
drh1fee73e2007-08-29 04:00:57 +00003594 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003595 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003596 assert(pBt->autoVacuum);
3597 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003598 Pgno nFin; /* Number of pages in database after autovacuuming */
3599 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003600 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003601 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003602
drhb1299152010-03-30 22:58:33 +00003603 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003604 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3605 /* It is not possible to create a database for which the final page
3606 ** is either a pointer-map page or the pending-byte page. If one
3607 ** is encountered, this indicates corruption.
3608 */
danielk19773460d192008-12-27 15:23:13 +00003609 return SQLITE_CORRUPT_BKPT;
3610 }
danielk1977ef165ce2009-04-06 17:50:03 +00003611
danielk19773460d192008-12-27 15:23:13 +00003612 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003613 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003614 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003615 if( nFin<nOrig ){
3616 rc = saveAllCursors(pBt, 0, 0);
3617 }
danielk19773460d192008-12-27 15:23:13 +00003618 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003619 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003620 }
danielk19773460d192008-12-27 15:23:13 +00003621 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003622 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3623 put4byte(&pBt->pPage1->aData[32], 0);
3624 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003625 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003626 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003627 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003628 }
3629 if( rc!=SQLITE_OK ){
3630 sqlite3PagerRollback(pPager);
3631 }
danielk1977687566d2004-11-02 12:56:41 +00003632 }
3633
dan0aed84d2013-03-26 14:16:20 +00003634 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003635 return rc;
3636}
danielk1977dddbcdc2007-04-26 14:42:34 +00003637
danielk1977a50d9aa2009-06-08 14:49:45 +00003638#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3639# define setChildPtrmaps(x) SQLITE_OK
3640#endif
danielk1977687566d2004-11-02 12:56:41 +00003641
3642/*
drh80e35f42007-03-30 14:06:34 +00003643** This routine does the first phase of a two-phase commit. This routine
3644** causes a rollback journal to be created (if it does not already exist)
3645** and populated with enough information so that if a power loss occurs
3646** the database can be restored to its original state by playing back
3647** the journal. Then the contents of the journal are flushed out to
3648** the disk. After the journal is safely on oxide, the changes to the
3649** database are written into the database file and flushed to oxide.
3650** At the end of this call, the rollback journal still exists on the
3651** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003652** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003653** commit process.
3654**
3655** This call is a no-op if no write-transaction is currently active on pBt.
3656**
3657** Otherwise, sync the database file for the btree pBt. zMaster points to
3658** the name of a master journal file that should be written into the
3659** individual journal file, or is NULL, indicating no master journal file
3660** (single database transaction).
3661**
3662** When this is called, the master journal should already have been
3663** created, populated with this journal pointer and synced to disk.
3664**
3665** Once this is routine has returned, the only thing required to commit
3666** the write-transaction for this database file is to delete the journal.
3667*/
3668int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3669 int rc = SQLITE_OK;
3670 if( p->inTrans==TRANS_WRITE ){
3671 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003672 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003673#ifndef SQLITE_OMIT_AUTOVACUUM
3674 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003675 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003676 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003677 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003678 return rc;
3679 }
3680 }
danbc1a3c62013-02-23 16:40:46 +00003681 if( pBt->bDoTruncate ){
3682 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3683 }
drh80e35f42007-03-30 14:06:34 +00003684#endif
drh49b9d332009-01-02 18:10:42 +00003685 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003686 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003687 }
3688 return rc;
3689}
3690
3691/*
danielk197794b30732009-07-02 17:21:57 +00003692** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3693** at the conclusion of a transaction.
3694*/
3695static void btreeEndTransaction(Btree *p){
3696 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003697 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003698 assert( sqlite3BtreeHoldsMutex(p) );
3699
danbc1a3c62013-02-23 16:40:46 +00003700#ifndef SQLITE_OMIT_AUTOVACUUM
3701 pBt->bDoTruncate = 0;
3702#endif
danc0537fe2013-06-28 19:41:43 +00003703 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003704 /* If there are other active statements that belong to this database
3705 ** handle, downgrade to a read-only transaction. The other statements
3706 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003707 downgradeAllSharedCacheTableLocks(p);
3708 p->inTrans = TRANS_READ;
3709 }else{
3710 /* If the handle had any kind of transaction open, decrement the
3711 ** transaction count of the shared btree. If the transaction count
3712 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3713 ** call below will unlock the pager. */
3714 if( p->inTrans!=TRANS_NONE ){
3715 clearAllSharedCacheTableLocks(p);
3716 pBt->nTransaction--;
3717 if( 0==pBt->nTransaction ){
3718 pBt->inTransaction = TRANS_NONE;
3719 }
3720 }
3721
3722 /* Set the current transaction state to TRANS_NONE and unlock the
3723 ** pager if this call closed the only read or write transaction. */
3724 p->inTrans = TRANS_NONE;
3725 unlockBtreeIfUnused(pBt);
3726 }
3727
3728 btreeIntegrity(p);
3729}
3730
3731/*
drh2aa679f2001-06-25 02:11:07 +00003732** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003733**
drh6e345992007-03-30 11:12:08 +00003734** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003735** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3736** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3737** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003738** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003739** routine has to do is delete or truncate or zero the header in the
3740** the rollback journal (which causes the transaction to commit) and
3741** drop locks.
drh6e345992007-03-30 11:12:08 +00003742**
dan60939d02011-03-29 15:40:55 +00003743** Normally, if an error occurs while the pager layer is attempting to
3744** finalize the underlying journal file, this function returns an error and
3745** the upper layer will attempt a rollback. However, if the second argument
3746** is non-zero then this b-tree transaction is part of a multi-file
3747** transaction. In this case, the transaction has already been committed
3748** (by deleting a master journal file) and the caller will ignore this
3749** functions return code. So, even if an error occurs in the pager layer,
3750** reset the b-tree objects internal state to indicate that the write
3751** transaction has been closed. This is quite safe, as the pager will have
3752** transitioned to the error state.
3753**
drh5e00f6c2001-09-13 13:46:56 +00003754** This will release the write lock on the database file. If there
3755** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003756*/
dan60939d02011-03-29 15:40:55 +00003757int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003758
drh075ed302010-10-14 01:17:30 +00003759 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003760 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003761 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003762
3763 /* If the handle has a write-transaction open, commit the shared-btrees
3764 ** transaction and set the shared state to TRANS_READ.
3765 */
3766 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003767 int rc;
drh075ed302010-10-14 01:17:30 +00003768 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003769 assert( pBt->inTransaction==TRANS_WRITE );
3770 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003771 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003772 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003773 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003774 return rc;
3775 }
drh3da9c042014-12-22 18:41:21 +00003776 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003777 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003778 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003779 }
danielk1977aef0bf62005-12-30 16:28:01 +00003780
danielk197794b30732009-07-02 17:21:57 +00003781 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003782 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003783 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003784}
3785
drh80e35f42007-03-30 14:06:34 +00003786/*
3787** Do both phases of a commit.
3788*/
3789int sqlite3BtreeCommit(Btree *p){
3790 int rc;
drhd677b3d2007-08-20 22:48:41 +00003791 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003792 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3793 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003794 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003795 }
drhd677b3d2007-08-20 22:48:41 +00003796 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003797 return rc;
3798}
3799
drhc39e0002004-05-07 23:50:57 +00003800/*
drhfb982642007-08-30 01:19:59 +00003801** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003802** code to errCode for every cursor on any BtShared that pBtree
3803** references. Or if the writeOnly flag is set to 1, then only
3804** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003805**
drh47b7fc72014-11-11 01:33:57 +00003806** Every cursor is a candidate to be tripped, including cursors
3807** that belong to other database connections that happen to be
3808** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003809**
dan80231042014-11-12 14:56:02 +00003810** This routine gets called when a rollback occurs. If the writeOnly
3811** flag is true, then only write-cursors need be tripped - read-only
3812** cursors save their current positions so that they may continue
3813** following the rollback. Or, if writeOnly is false, all cursors are
3814** tripped. In general, writeOnly is false if the transaction being
3815** rolled back modified the database schema. In this case b-tree root
3816** pages may be moved or deleted from the database altogether, making
3817** it unsafe for read cursors to continue.
3818**
3819** If the writeOnly flag is true and an error is encountered while
3820** saving the current position of a read-only cursor, all cursors,
3821** including all read-cursors are tripped.
3822**
3823** SQLITE_OK is returned if successful, or if an error occurs while
3824** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003825*/
dan80231042014-11-12 14:56:02 +00003826int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003827 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003828 int rc = SQLITE_OK;
3829
drh47b7fc72014-11-11 01:33:57 +00003830 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003831 if( pBtree ){
3832 sqlite3BtreeEnter(pBtree);
3833 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3834 int i;
3835 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003836 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003837 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003838 if( rc!=SQLITE_OK ){
3839 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3840 break;
3841 }
3842 }
3843 }else{
3844 sqlite3BtreeClearCursor(p);
3845 p->eState = CURSOR_FAULT;
3846 p->skipNext = errCode;
3847 }
3848 for(i=0; i<=p->iPage; i++){
3849 releasePage(p->apPage[i]);
3850 p->apPage[i] = 0;
3851 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003852 }
dan80231042014-11-12 14:56:02 +00003853 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003854 }
dan80231042014-11-12 14:56:02 +00003855 return rc;
drhfb982642007-08-30 01:19:59 +00003856}
3857
3858/*
drh47b7fc72014-11-11 01:33:57 +00003859** Rollback the transaction in progress.
3860**
3861** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3862** Only write cursors are tripped if writeOnly is true but all cursors are
3863** tripped if writeOnly is false. Any attempt to use
3864** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003865**
3866** This will release the write lock on the database file. If there
3867** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003868*/
drh47b7fc72014-11-11 01:33:57 +00003869int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003870 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003871 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003872 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003873
drh47b7fc72014-11-11 01:33:57 +00003874 assert( writeOnly==1 || writeOnly==0 );
3875 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003876 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003877 if( tripCode==SQLITE_OK ){
3878 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003879 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003880 }else{
3881 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003882 }
drh0f198a72012-02-13 16:43:16 +00003883 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003884 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3885 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3886 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003887 }
danielk1977aef0bf62005-12-30 16:28:01 +00003888 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003889
3890 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003891 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003892
danielk19778d34dfd2006-01-24 16:37:57 +00003893 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003894 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003895 if( rc2!=SQLITE_OK ){
3896 rc = rc2;
3897 }
3898
drh24cd67e2004-05-10 16:18:47 +00003899 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003900 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003901 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003902 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003903 int nPage = get4byte(28+(u8*)pPage1->aData);
3904 testcase( nPage==0 );
3905 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3906 testcase( pBt->nPage!=nPage );
3907 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003908 releasePage(pPage1);
3909 }
drh85ec3b62013-05-14 23:12:06 +00003910 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003911 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003912 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003913 }
danielk1977aef0bf62005-12-30 16:28:01 +00003914
danielk197794b30732009-07-02 17:21:57 +00003915 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003916 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003917 return rc;
3918}
3919
3920/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003921** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003922** back independently of the main transaction. You must start a transaction
3923** before starting a subtransaction. The subtransaction is ended automatically
3924** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003925**
3926** Statement subtransactions are used around individual SQL statements
3927** that are contained within a BEGIN...COMMIT block. If a constraint
3928** error occurs within the statement, the effect of that one statement
3929** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003930**
3931** A statement sub-transaction is implemented as an anonymous savepoint. The
3932** value passed as the second parameter is the total number of savepoints,
3933** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3934** are no active savepoints and no other statement-transactions open,
3935** iStatement is 1. This anonymous savepoint can be released or rolled back
3936** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003937*/
danielk1977bd434552009-03-18 10:33:00 +00003938int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003939 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003940 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003941 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003942 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003943 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003944 assert( iStatement>0 );
3945 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003946 assert( pBt->inTransaction==TRANS_WRITE );
3947 /* At the pager level, a statement transaction is a savepoint with
3948 ** an index greater than all savepoints created explicitly using
3949 ** SQL statements. It is illegal to open, release or rollback any
3950 ** such savepoints while the statement transaction savepoint is active.
3951 */
3952 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003953 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003954 return rc;
3955}
3956
3957/*
danielk1977fd7f0452008-12-17 17:30:26 +00003958** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3959** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003960** savepoint identified by parameter iSavepoint, depending on the value
3961** of op.
3962**
3963** Normally, iSavepoint is greater than or equal to zero. However, if op is
3964** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3965** contents of the entire transaction are rolled back. This is different
3966** from a normal transaction rollback, as no locks are released and the
3967** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003968*/
3969int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3970 int rc = SQLITE_OK;
3971 if( p && p->inTrans==TRANS_WRITE ){
3972 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003973 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3974 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3975 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003976 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003977 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003978 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3979 pBt->nPage = 0;
3980 }
drh9f0bbf92009-01-02 21:08:09 +00003981 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003982 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003983
3984 /* The database size was written into the offset 28 of the header
3985 ** when the transaction started, so we know that the value at offset
3986 ** 28 is nonzero. */
3987 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003988 }
danielk1977fd7f0452008-12-17 17:30:26 +00003989 sqlite3BtreeLeave(p);
3990 }
3991 return rc;
3992}
3993
3994/*
drh8b2f49b2001-06-08 00:21:52 +00003995** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003996** iTable. If a read-only cursor is requested, it is assumed that
3997** the caller already has at least a read-only transaction open
3998** on the database already. If a write-cursor is requested, then
3999** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004000**
4001** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004002** If wrFlag==1, then the cursor can be used for reading or for
4003** writing if other conditions for writing are also met. These
4004** are the conditions that must be met in order for writing to
4005** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004006**
drhf74b8d92002-09-01 23:20:45 +00004007** 1: The cursor must have been opened with wrFlag==1
4008**
drhfe5d71d2007-03-19 11:54:10 +00004009** 2: Other database connections that share the same pager cache
4010** but which are not in the READ_UNCOMMITTED state may not have
4011** cursors open with wrFlag==0 on the same table. Otherwise
4012** the changes made by this write cursor would be visible to
4013** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004014**
4015** 3: The database must be writable (not on read-only media)
4016**
4017** 4: There must be an active transaction.
4018**
drh6446c4d2001-12-15 14:22:18 +00004019** No checking is done to make sure that page iTable really is the
4020** root page of a b-tree. If it is not, then the cursor acquired
4021** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004022**
drhf25a5072009-11-18 23:01:25 +00004023** It is assumed that the sqlite3BtreeCursorZero() has been called
4024** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004025*/
drhd677b3d2007-08-20 22:48:41 +00004026static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004027 Btree *p, /* The btree */
4028 int iTable, /* Root page of table to open */
4029 int wrFlag, /* 1 to write. 0 read-only */
4030 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4031 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004032){
danielk19773e8add92009-07-04 17:16:00 +00004033 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004034 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004035
drh1fee73e2007-08-29 04:00:57 +00004036 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00004037 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00004038
danielk1977602b4662009-07-02 07:47:33 +00004039 /* The following assert statements verify that if this is a sharable
4040 ** b-tree database, the connection is holding the required table locks,
4041 ** and that no other connection has any open cursor that conflicts with
4042 ** this lock. */
4043 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00004044 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4045
danielk19773e8add92009-07-04 17:16:00 +00004046 /* Assert that the caller has opened the required transaction. */
4047 assert( p->inTrans>TRANS_NONE );
4048 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4049 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004050 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004051
drh3fbb0222014-09-24 19:47:27 +00004052 if( wrFlag ){
4053 allocateTempSpace(pBt);
4054 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4055 }
drhb1299152010-03-30 22:58:33 +00004056 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004057 assert( wrFlag==0 );
4058 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004059 }
danielk1977aef0bf62005-12-30 16:28:01 +00004060
danielk1977aef0bf62005-12-30 16:28:01 +00004061 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004062 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004063 pCur->pgnoRoot = (Pgno)iTable;
4064 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004065 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004066 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004067 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004068 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4069 pCur->curFlags = wrFlag;
drh28f58dd2015-06-27 19:45:03 +00004070 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004071 /* If there are two or more cursors on the same btree, then all such
4072 ** cursors *must* have the BTCF_Multiple flag set. */
4073 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4074 if( pX->pgnoRoot==(Pgno)iTable ){
4075 pX->curFlags |= BTCF_Multiple;
4076 pCur->curFlags |= BTCF_Multiple;
4077 }
drha059ad02001-04-17 20:09:11 +00004078 }
drh27fb7462015-06-30 02:47:36 +00004079 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004080 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004081 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004082 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004083}
drhd677b3d2007-08-20 22:48:41 +00004084int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004085 Btree *p, /* The btree */
4086 int iTable, /* Root page of table to open */
4087 int wrFlag, /* 1 to write. 0 read-only */
4088 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4089 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004090){
4091 int rc;
dan08f901b2015-05-25 19:24:36 +00004092 if( iTable<1 ){
4093 rc = SQLITE_CORRUPT_BKPT;
4094 }else{
4095 sqlite3BtreeEnter(p);
4096 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4097 sqlite3BtreeLeave(p);
4098 }
drhd677b3d2007-08-20 22:48:41 +00004099 return rc;
4100}
drh7f751222009-03-17 22:33:00 +00004101
4102/*
4103** Return the size of a BtCursor object in bytes.
4104**
4105** This interfaces is needed so that users of cursors can preallocate
4106** sufficient storage to hold a cursor. The BtCursor object is opaque
4107** to users so they cannot do the sizeof() themselves - they must call
4108** this routine.
4109*/
4110int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004111 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004112}
4113
drh7f751222009-03-17 22:33:00 +00004114/*
drhf25a5072009-11-18 23:01:25 +00004115** Initialize memory that will be converted into a BtCursor object.
4116**
4117** The simple approach here would be to memset() the entire object
4118** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4119** do not need to be zeroed and they are large, so we can save a lot
4120** of run-time by skipping the initialization of those elements.
4121*/
4122void sqlite3BtreeCursorZero(BtCursor *p){
4123 memset(p, 0, offsetof(BtCursor, iPage));
4124}
4125
4126/*
drh5e00f6c2001-09-13 13:46:56 +00004127** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004128** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004129*/
drh3aac2dd2004-04-26 14:10:20 +00004130int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004131 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004132 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004133 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004134 BtShared *pBt = pCur->pBt;
4135 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004136 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004137 assert( pBt->pCursor!=0 );
4138 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004139 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004140 }else{
4141 BtCursor *pPrev = pBt->pCursor;
4142 do{
4143 if( pPrev->pNext==pCur ){
4144 pPrev->pNext = pCur->pNext;
4145 break;
4146 }
4147 pPrev = pPrev->pNext;
4148 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004149 }
danielk197771d5d2c2008-09-29 11:49:47 +00004150 for(i=0; i<=pCur->iPage; i++){
4151 releasePage(pCur->apPage[i]);
4152 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004153 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004154 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004155 /* sqlite3_free(pCur); */
4156 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004157 }
drh8c42ca92001-06-22 19:15:00 +00004158 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004159}
4160
drh5e2f8b92001-05-28 00:41:15 +00004161/*
drh86057612007-06-26 01:04:48 +00004162** Make sure the BtCursor* given in the argument has a valid
4163** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004164** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004165**
4166** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004167** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004168*/
drh9188b382004-05-14 21:12:22 +00004169#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004170 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004171 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004172 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004173 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004174 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004175 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004176 }
danielk19771cc5ed82007-05-16 17:28:43 +00004177#else
4178 #define assertCellInfo(x)
4179#endif
drhc5b41ac2015-06-17 02:11:46 +00004180static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4181 if( pCur->info.nSize==0 ){
4182 int iPage = pCur->iPage;
4183 pCur->curFlags |= BTCF_ValidNKey;
4184 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4185 }else{
4186 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004187 }
drhc5b41ac2015-06-17 02:11:46 +00004188}
drh9188b382004-05-14 21:12:22 +00004189
drhea8ffdf2009-07-22 00:35:23 +00004190#ifndef NDEBUG /* The next routine used only within assert() statements */
4191/*
4192** Return true if the given BtCursor is valid. A valid cursor is one
4193** that is currently pointing to a row in a (non-empty) table.
4194** This is a verification routine is used only within assert() statements.
4195*/
4196int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4197 return pCur && pCur->eState==CURSOR_VALID;
4198}
4199#endif /* NDEBUG */
4200
drh9188b382004-05-14 21:12:22 +00004201/*
drh3aac2dd2004-04-26 14:10:20 +00004202** Set *pSize to the size of the buffer needed to hold the value of
4203** the key for the current entry. If the cursor is not pointing
4204** to a valid entry, *pSize is set to 0.
4205**
drh4b70f112004-05-02 21:12:19 +00004206** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004207** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004208**
4209** The caller must position the cursor prior to invoking this routine.
4210**
4211** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004212*/
drh4a1c3802004-05-12 15:15:47 +00004213int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004214 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004215 assert( pCur->eState==CURSOR_VALID );
4216 getCellInfo(pCur);
4217 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004218 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004219}
drh2af926b2001-05-15 00:39:25 +00004220
drh72f82862001-05-24 21:06:34 +00004221/*
drh0e1c19e2004-05-11 00:58:56 +00004222** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004223** cursor currently points to.
4224**
4225** The caller must guarantee that the cursor is pointing to a non-NULL
4226** valid entry. In other words, the calling procedure must guarantee
4227** that the cursor has Cursor.eState==CURSOR_VALID.
4228**
4229** Failure is not possible. This function always returns SQLITE_OK.
4230** It might just as well be a procedure (returning void) but we continue
4231** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004232*/
4233int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004234 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004235 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004236 assert( pCur->iPage>=0 );
4237 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004238 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004239 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004240 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004241 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004242}
4243
4244/*
danielk1977d04417962007-05-02 13:16:30 +00004245** Given the page number of an overflow page in the database (parameter
4246** ovfl), this function finds the page number of the next page in the
4247** linked list of overflow pages. If possible, it uses the auto-vacuum
4248** pointer-map data instead of reading the content of page ovfl to do so.
4249**
4250** If an error occurs an SQLite error code is returned. Otherwise:
4251**
danielk1977bea2a942009-01-20 17:06:27 +00004252** The page number of the next overflow page in the linked list is
4253** written to *pPgnoNext. If page ovfl is the last page in its linked
4254** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004255**
danielk1977bea2a942009-01-20 17:06:27 +00004256** If ppPage is not NULL, and a reference to the MemPage object corresponding
4257** to page number pOvfl was obtained, then *ppPage is set to point to that
4258** reference. It is the responsibility of the caller to call releasePage()
4259** on *ppPage to free the reference. In no reference was obtained (because
4260** the pointer-map was used to obtain the value for *pPgnoNext), then
4261** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004262*/
4263static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004264 BtShared *pBt, /* The database file */
4265 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004266 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004267 Pgno *pPgnoNext /* OUT: Next overflow page number */
4268){
4269 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004270 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004271 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004272
drh1fee73e2007-08-29 04:00:57 +00004273 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004274 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004275
4276#ifndef SQLITE_OMIT_AUTOVACUUM
4277 /* Try to find the next page in the overflow list using the
4278 ** autovacuum pointer-map pages. Guess that the next page in
4279 ** the overflow list is page number (ovfl+1). If that guess turns
4280 ** out to be wrong, fall back to loading the data of page
4281 ** number ovfl to determine the next page number.
4282 */
4283 if( pBt->autoVacuum ){
4284 Pgno pgno;
4285 Pgno iGuess = ovfl+1;
4286 u8 eType;
4287
4288 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4289 iGuess++;
4290 }
4291
drhb1299152010-03-30 22:58:33 +00004292 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004293 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004294 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004295 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004296 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004297 }
4298 }
4299 }
4300#endif
4301
danielk1977d8a3f3d2009-07-11 11:45:23 +00004302 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004303 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004304 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004305 assert( rc==SQLITE_OK || pPage==0 );
4306 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004307 next = get4byte(pPage->aData);
4308 }
danielk1977443c0592009-01-16 15:21:05 +00004309 }
danielk197745d68822009-01-16 16:23:38 +00004310
danielk1977bea2a942009-01-20 17:06:27 +00004311 *pPgnoNext = next;
4312 if( ppPage ){
4313 *ppPage = pPage;
4314 }else{
4315 releasePage(pPage);
4316 }
4317 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004318}
4319
danielk1977da107192007-05-04 08:32:13 +00004320/*
4321** Copy data from a buffer to a page, or from a page to a buffer.
4322**
4323** pPayload is a pointer to data stored on database page pDbPage.
4324** If argument eOp is false, then nByte bytes of data are copied
4325** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4326** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4327** of data are copied from the buffer pBuf to pPayload.
4328**
4329** SQLITE_OK is returned on success, otherwise an error code.
4330*/
4331static int copyPayload(
4332 void *pPayload, /* Pointer to page data */
4333 void *pBuf, /* Pointer to buffer */
4334 int nByte, /* Number of bytes to copy */
4335 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4336 DbPage *pDbPage /* Page containing pPayload */
4337){
4338 if( eOp ){
4339 /* Copy data from buffer to page (a write operation) */
4340 int rc = sqlite3PagerWrite(pDbPage);
4341 if( rc!=SQLITE_OK ){
4342 return rc;
4343 }
4344 memcpy(pPayload, pBuf, nByte);
4345 }else{
4346 /* Copy data from page to buffer (a read operation) */
4347 memcpy(pBuf, pPayload, nByte);
4348 }
4349 return SQLITE_OK;
4350}
danielk1977d04417962007-05-02 13:16:30 +00004351
4352/*
danielk19779f8d6402007-05-02 17:48:45 +00004353** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004354** for the entry that the pCur cursor is pointing to. The eOp
4355** argument is interpreted as follows:
4356**
4357** 0: The operation is a read. Populate the overflow cache.
4358** 1: The operation is a write. Populate the overflow cache.
4359** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004360**
4361** A total of "amt" bytes are read or written beginning at "offset".
4362** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004363**
drh3bcdfd22009-07-12 02:32:21 +00004364** The content being read or written might appear on the main page
4365** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004366**
dan5a500af2014-03-11 20:33:04 +00004367** If the current cursor entry uses one or more overflow pages and the
4368** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004369** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004370** Subsequent calls use this cache to make seeking to the supplied offset
4371** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004372**
4373** Once an overflow page-list cache has been allocated, it may be
4374** invalidated if some other cursor writes to the same table, or if
4375** the cursor is moved to a different row. Additionally, in auto-vacuum
4376** mode, the following events may invalidate an overflow page-list cache.
4377**
4378** * An incremental vacuum,
4379** * A commit in auto_vacuum="full" mode,
4380** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004381*/
danielk19779f8d6402007-05-02 17:48:45 +00004382static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004383 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004384 u32 offset, /* Begin reading this far into payload */
4385 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004386 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004387 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004388){
4389 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004390 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004391 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004392 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004393 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004394#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004395 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004396 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004397#endif
drh3aac2dd2004-04-26 14:10:20 +00004398
danielk1977da107192007-05-04 08:32:13 +00004399 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004400 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004401 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004402 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004403 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004404
drh86057612007-06-26 01:04:48 +00004405 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004406 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004407#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004408 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004409#endif
drhab1cc582014-09-23 21:25:19 +00004410 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004411
drhab1cc582014-09-23 21:25:19 +00004412 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004413 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004414 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004415 }
danielk1977da107192007-05-04 08:32:13 +00004416
4417 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004418 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004419 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004420 if( a+offset>pCur->info.nLocal ){
4421 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004422 }
dan5a500af2014-03-11 20:33:04 +00004423 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004424 offset = 0;
drha34b6762004-05-07 13:30:42 +00004425 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004426 amt -= a;
drhdd793422001-06-28 01:54:48 +00004427 }else{
drhfa1a98a2004-05-14 19:08:17 +00004428 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004429 }
danielk1977da107192007-05-04 08:32:13 +00004430
dan85753662014-12-11 16:38:18 +00004431
danielk1977da107192007-05-04 08:32:13 +00004432 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004433 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004434 Pgno nextPage;
4435
drhfa1a98a2004-05-14 19:08:17 +00004436 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004437
drha38c9512014-04-01 01:24:34 +00004438 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4439 ** Except, do not allocate aOverflow[] for eOp==2.
4440 **
4441 ** The aOverflow[] array is sized at one entry for each overflow page
4442 ** in the overflow chain. The page number of the first overflow page is
4443 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4444 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004445 */
drh036dbec2014-03-11 23:40:44 +00004446 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004447 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004448 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004449 Pgno *aNew = (Pgno*)sqlite3Realloc(
4450 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004451 );
4452 if( aNew==0 ){
4453 rc = SQLITE_NOMEM;
4454 }else{
4455 pCur->nOvflAlloc = nOvfl*2;
4456 pCur->aOverflow = aNew;
4457 }
4458 }
4459 if( rc==SQLITE_OK ){
4460 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004461 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004462 }
4463 }
danielk1977da107192007-05-04 08:32:13 +00004464
4465 /* If the overflow page-list cache has been allocated and the
4466 ** entry for the first required overflow page is valid, skip
4467 ** directly to it.
4468 */
drh3f387402014-09-24 01:23:00 +00004469 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4470 && pCur->aOverflow[offset/ovflSize]
4471 ){
danielk19772dec9702007-05-02 16:48:37 +00004472 iIdx = (offset/ovflSize);
4473 nextPage = pCur->aOverflow[iIdx];
4474 offset = (offset%ovflSize);
4475 }
danielk1977da107192007-05-04 08:32:13 +00004476
4477 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4478
danielk1977da107192007-05-04 08:32:13 +00004479 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004480 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004481 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4482 pCur->aOverflow[iIdx] = nextPage;
4483 }
danielk1977da107192007-05-04 08:32:13 +00004484
danielk1977d04417962007-05-02 13:16:30 +00004485 if( offset>=ovflSize ){
4486 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004487 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004488 ** data is not required. So first try to lookup the overflow
4489 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004490 ** function.
drha38c9512014-04-01 01:24:34 +00004491 **
4492 ** Note that the aOverflow[] array must be allocated because eOp!=2
4493 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004494 */
drha38c9512014-04-01 01:24:34 +00004495 assert( eOp!=2 );
4496 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004497 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004498 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004499 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004500 }else{
danielk1977da107192007-05-04 08:32:13 +00004501 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004502 }
danielk1977da107192007-05-04 08:32:13 +00004503 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004504 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004505 /* Need to read this page properly. It contains some of the
4506 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004507 */
danf4ba1092011-10-08 14:57:07 +00004508#ifdef SQLITE_DIRECT_OVERFLOW_READ
4509 sqlite3_file *fd;
4510#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004511 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004512 if( a + offset > ovflSize ){
4513 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004514 }
danf4ba1092011-10-08 14:57:07 +00004515
4516#ifdef SQLITE_DIRECT_OVERFLOW_READ
4517 /* If all the following are true:
4518 **
4519 ** 1) this is a read operation, and
4520 ** 2) data is required from the start of this overflow page, and
4521 ** 3) the database is file-backed, and
4522 ** 4) there is no open write-transaction, and
4523 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004524 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004525 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004526 **
4527 ** then data can be read directly from the database file into the
4528 ** output buffer, bypassing the page-cache altogether. This speeds
4529 ** up loading large records that span many overflow pages.
4530 */
dan5a500af2014-03-11 20:33:04 +00004531 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004532 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004533 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004534 && pBt->inTransaction==TRANS_READ /* (4) */
4535 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4536 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004537 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004538 ){
4539 u8 aSave[4];
4540 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004541 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004542 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004543 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004544 nextPage = get4byte(aWrite);
4545 memcpy(aWrite, aSave, 4);
4546 }else
4547#endif
4548
4549 {
4550 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004551 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004552 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004553 );
danf4ba1092011-10-08 14:57:07 +00004554 if( rc==SQLITE_OK ){
4555 aPayload = sqlite3PagerGetData(pDbPage);
4556 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004557 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004558 sqlite3PagerUnref(pDbPage);
4559 offset = 0;
4560 }
4561 }
4562 amt -= a;
4563 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004564 }
drh2af926b2001-05-15 00:39:25 +00004565 }
drh2af926b2001-05-15 00:39:25 +00004566 }
danielk1977cfe9a692004-06-16 12:00:29 +00004567
danielk1977da107192007-05-04 08:32:13 +00004568 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004569 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004570 }
danielk1977da107192007-05-04 08:32:13 +00004571 return rc;
drh2af926b2001-05-15 00:39:25 +00004572}
4573
drh72f82862001-05-24 21:06:34 +00004574/*
drh3aac2dd2004-04-26 14:10:20 +00004575** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004576** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004577** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004578**
drh5d1a8722009-07-22 18:07:40 +00004579** The caller must ensure that pCur is pointing to a valid row
4580** in the table.
4581**
drh3aac2dd2004-04-26 14:10:20 +00004582** Return SQLITE_OK on success or an error code if anything goes
4583** wrong. An error is returned if "offset+amt" is larger than
4584** the available payload.
drh72f82862001-05-24 21:06:34 +00004585*/
drha34b6762004-05-07 13:30:42 +00004586int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004587 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004588 assert( pCur->eState==CURSOR_VALID );
4589 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4590 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4591 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004592}
4593
4594/*
drh3aac2dd2004-04-26 14:10:20 +00004595** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004596** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004597** begins at "offset".
4598**
4599** Return SQLITE_OK on success or an error code if anything goes
4600** wrong. An error is returned if "offset+amt" is larger than
4601** the available payload.
drh72f82862001-05-24 21:06:34 +00004602*/
drh3aac2dd2004-04-26 14:10:20 +00004603int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004604 int rc;
4605
danielk19773588ceb2008-06-10 17:30:26 +00004606#ifndef SQLITE_OMIT_INCRBLOB
4607 if ( pCur->eState==CURSOR_INVALID ){
4608 return SQLITE_ABORT;
4609 }
4610#endif
4611
drh1fee73e2007-08-29 04:00:57 +00004612 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004613 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004614 if( rc==SQLITE_OK ){
4615 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004616 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4617 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004618 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004619 }
4620 return rc;
drh2af926b2001-05-15 00:39:25 +00004621}
4622
drh72f82862001-05-24 21:06:34 +00004623/*
drh0e1c19e2004-05-11 00:58:56 +00004624** Return a pointer to payload information from the entry that the
4625** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004626** the key if index btrees (pPage->intKey==0) and is the data for
4627** table btrees (pPage->intKey==1). The number of bytes of available
4628** key/data is written into *pAmt. If *pAmt==0, then the value
4629** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004630**
4631** This routine is an optimization. It is common for the entire key
4632** and data to fit on the local page and for there to be no overflow
4633** pages. When that is so, this routine can be used to access the
4634** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004635** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004636** the key/data and copy it into a preallocated buffer.
4637**
4638** The pointer returned by this routine looks directly into the cached
4639** page of the database. The data might change or move the next time
4640** any btree routine is called.
4641*/
drh2a8d2262013-12-09 20:43:22 +00004642static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004643 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004644 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004645){
drhf3392e32015-04-15 17:26:55 +00004646 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004647 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004648 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004649 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004650 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004651 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004652 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004653 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4654 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4655 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4656 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4657 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004658 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004659}
4660
4661
4662/*
drhe51c44f2004-05-30 20:46:09 +00004663** For the entry that cursor pCur is point to, return as
4664** many bytes of the key or data as are available on the local
4665** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004666**
4667** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004668** or be destroyed on the next call to any Btree routine,
4669** including calls from other threads against the same cache.
4670** Hence, a mutex on the BtShared should be held prior to calling
4671** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004672**
4673** These routines is used to get quick access to key and data
4674** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004675*/
drh501932c2013-11-21 21:59:53 +00004676const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004677 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004678}
drh501932c2013-11-21 21:59:53 +00004679const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004680 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004681}
4682
4683
4684/*
drh8178a752003-01-05 21:41:40 +00004685** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004686** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004687**
4688** This function returns SQLITE_CORRUPT if the page-header flags field of
4689** the new child page does not match the flags field of the parent (i.e.
4690** if an intkey page appears to be the parent of a non-intkey page, or
4691** vice-versa).
drh72f82862001-05-24 21:06:34 +00004692*/
drh3aac2dd2004-04-26 14:10:20 +00004693static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004694 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004695
drh1fee73e2007-08-29 04:00:57 +00004696 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004697 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004698 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004699 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004700 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4701 return SQLITE_CORRUPT_BKPT;
4702 }
drh271efa52004-05-30 19:19:05 +00004703 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004704 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004705 pCur->iPage++;
4706 pCur->aiIdx[pCur->iPage] = 0;
4707 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4708 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004709}
4710
drhcbd33492015-03-25 13:06:54 +00004711#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004712/*
4713** Page pParent is an internal (non-leaf) tree page. This function
4714** asserts that page number iChild is the left-child if the iIdx'th
4715** cell in page pParent. Or, if iIdx is equal to the total number of
4716** cells in pParent, that page number iChild is the right-child of
4717** the page.
4718*/
4719static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004720 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4721 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004722 assert( iIdx<=pParent->nCell );
4723 if( iIdx==pParent->nCell ){
4724 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4725 }else{
4726 assert( get4byte(findCell(pParent, iIdx))==iChild );
4727 }
4728}
4729#else
4730# define assertParentIndex(x,y,z)
4731#endif
4732
drh72f82862001-05-24 21:06:34 +00004733/*
drh5e2f8b92001-05-28 00:41:15 +00004734** Move the cursor up to the parent page.
4735**
4736** pCur->idx is set to the cell index that contains the pointer
4737** to the page we are coming from. If we are coming from the
4738** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004739** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004740*/
danielk197730548662009-07-09 05:07:37 +00004741static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004742 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004743 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004744 assert( pCur->iPage>0 );
4745 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004746 assertParentIndex(
4747 pCur->apPage[pCur->iPage-1],
4748 pCur->aiIdx[pCur->iPage-1],
4749 pCur->apPage[pCur->iPage]->pgno
4750 );
dan6c2688c2012-01-12 15:05:03 +00004751 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004752 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004753 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004754 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004755}
4756
4757/*
danielk19778f880a82009-07-13 09:41:45 +00004758** Move the cursor to point to the root page of its b-tree structure.
4759**
4760** If the table has a virtual root page, then the cursor is moved to point
4761** to the virtual root page instead of the actual root page. A table has a
4762** virtual root page when the actual root page contains no cells and a
4763** single child page. This can only happen with the table rooted at page 1.
4764**
4765** If the b-tree structure is empty, the cursor state is set to
4766** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4767** cell located on the root (or virtual root) page and the cursor state
4768** is set to CURSOR_VALID.
4769**
4770** If this function returns successfully, it may be assumed that the
4771** page-header flags indicate that the [virtual] root-page is the expected
4772** kind of b-tree page (i.e. if when opening the cursor the caller did not
4773** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4774** indicating a table b-tree, or if the caller did specify a KeyInfo
4775** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4776** b-tree).
drh72f82862001-05-24 21:06:34 +00004777*/
drh5e2f8b92001-05-28 00:41:15 +00004778static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004779 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004780 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004781
drh1fee73e2007-08-29 04:00:57 +00004782 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004783 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4784 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4785 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4786 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4787 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004788 assert( pCur->skipNext!=SQLITE_OK );
4789 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004790 }
danielk1977be51a652008-10-08 17:58:48 +00004791 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004792 }
danielk197771d5d2c2008-09-29 11:49:47 +00004793
4794 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004795 while( pCur->iPage ){
4796 assert( pCur->apPage[pCur->iPage]!=0 );
4797 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4798 }
dana205a482011-08-27 18:48:57 +00004799 }else if( pCur->pgnoRoot==0 ){
4800 pCur->eState = CURSOR_INVALID;
4801 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004802 }else{
drh28f58dd2015-06-27 19:45:03 +00004803 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004804 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004805 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004806 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004807 pCur->eState = CURSOR_INVALID;
4808 return rc;
4809 }
danielk1977172114a2009-07-07 15:47:12 +00004810 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004811 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004812 }
danielk197771d5d2c2008-09-29 11:49:47 +00004813 pRoot = pCur->apPage[0];
4814 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004815
4816 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4817 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4818 ** NULL, the caller expects a table b-tree. If this is not the case,
4819 ** return an SQLITE_CORRUPT error.
4820 **
4821 ** Earlier versions of SQLite assumed that this test could not fail
4822 ** if the root page was already loaded when this function was called (i.e.
4823 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4824 ** in such a way that page pRoot is linked into a second b-tree table
4825 ** (or the freelist). */
4826 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4827 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4828 return SQLITE_CORRUPT_BKPT;
4829 }
danielk19778f880a82009-07-13 09:41:45 +00004830
danielk197771d5d2c2008-09-29 11:49:47 +00004831 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004832 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004833 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004834
drh4e8fe3f2013-12-06 23:25:27 +00004835 if( pRoot->nCell>0 ){
4836 pCur->eState = CURSOR_VALID;
4837 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004838 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004839 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004840 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004841 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004842 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004843 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004844 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004845 }
4846 return rc;
drh72f82862001-05-24 21:06:34 +00004847}
drh2af926b2001-05-15 00:39:25 +00004848
drh5e2f8b92001-05-28 00:41:15 +00004849/*
4850** Move the cursor down to the left-most leaf entry beneath the
4851** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004852**
4853** The left-most leaf is the one with the smallest key - the first
4854** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004855*/
4856static int moveToLeftmost(BtCursor *pCur){
4857 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004858 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004859 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004860
drh1fee73e2007-08-29 04:00:57 +00004861 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004862 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004863 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4864 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4865 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004866 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004867 }
drhd677b3d2007-08-20 22:48:41 +00004868 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004869}
4870
drh2dcc9aa2002-12-04 13:40:25 +00004871/*
4872** Move the cursor down to the right-most leaf entry beneath the
4873** page to which it is currently pointing. Notice the difference
4874** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4875** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4876** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004877**
4878** The right-most entry is the one with the largest key - the last
4879** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004880*/
4881static int moveToRightmost(BtCursor *pCur){
4882 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004883 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004884 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004885
drh1fee73e2007-08-29 04:00:57 +00004886 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004887 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004888 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004889 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004890 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004891 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004892 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004893 }
drhee6438d2014-09-01 13:29:32 +00004894 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4895 assert( pCur->info.nSize==0 );
4896 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4897 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004898}
4899
drh5e00f6c2001-09-13 13:46:56 +00004900/* Move the cursor to the first entry in the table. Return SQLITE_OK
4901** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004902** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004903*/
drh3aac2dd2004-04-26 14:10:20 +00004904int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004905 int rc;
drhd677b3d2007-08-20 22:48:41 +00004906
drh1fee73e2007-08-29 04:00:57 +00004907 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004908 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004909 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004910 if( rc==SQLITE_OK ){
4911 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004912 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004913 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004914 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004915 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004916 *pRes = 0;
4917 rc = moveToLeftmost(pCur);
4918 }
drh5e00f6c2001-09-13 13:46:56 +00004919 }
drh5e00f6c2001-09-13 13:46:56 +00004920 return rc;
4921}
drh5e2f8b92001-05-28 00:41:15 +00004922
drh9562b552002-02-19 15:00:07 +00004923/* Move the cursor to the last entry in the table. Return SQLITE_OK
4924** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004925** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004926*/
drh3aac2dd2004-04-26 14:10:20 +00004927int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004928 int rc;
drhd677b3d2007-08-20 22:48:41 +00004929
drh1fee73e2007-08-29 04:00:57 +00004930 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004931 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004932
4933 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004934 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004935#ifdef SQLITE_DEBUG
4936 /* This block serves to assert() that the cursor really does point
4937 ** to the last entry in the b-tree. */
4938 int ii;
4939 for(ii=0; ii<pCur->iPage; ii++){
4940 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4941 }
4942 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4943 assert( pCur->apPage[pCur->iPage]->leaf );
4944#endif
4945 return SQLITE_OK;
4946 }
4947
drh9562b552002-02-19 15:00:07 +00004948 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004949 if( rc==SQLITE_OK ){
4950 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004951 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004952 *pRes = 1;
4953 }else{
4954 assert( pCur->eState==CURSOR_VALID );
4955 *pRes = 0;
4956 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004957 if( rc==SQLITE_OK ){
4958 pCur->curFlags |= BTCF_AtLast;
4959 }else{
4960 pCur->curFlags &= ~BTCF_AtLast;
4961 }
4962
drhd677b3d2007-08-20 22:48:41 +00004963 }
drh9562b552002-02-19 15:00:07 +00004964 }
drh9562b552002-02-19 15:00:07 +00004965 return rc;
4966}
4967
drhe14006d2008-03-25 17:23:32 +00004968/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004969** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004970**
drhe63d9992008-08-13 19:11:48 +00004971** For INTKEY tables, the intKey parameter is used. pIdxKey
4972** must be NULL. For index tables, pIdxKey is used and intKey
4973** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004974**
drh5e2f8b92001-05-28 00:41:15 +00004975** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004976** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004977** were present. The cursor might point to an entry that comes
4978** before or after the key.
4979**
drh64022502009-01-09 14:11:04 +00004980** An integer is written into *pRes which is the result of
4981** comparing the key with the entry to which the cursor is
4982** pointing. The meaning of the integer written into
4983** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004984**
4985** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004986** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004987** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004988**
4989** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004990** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004991**
4992** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004993** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004994**
drha059ad02001-04-17 20:09:11 +00004995*/
drhe63d9992008-08-13 19:11:48 +00004996int sqlite3BtreeMovetoUnpacked(
4997 BtCursor *pCur, /* The cursor to be moved */
4998 UnpackedRecord *pIdxKey, /* Unpacked index key */
4999 i64 intKey, /* The table key */
5000 int biasRight, /* If true, bias the search to the high end */
5001 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005002){
drh72f82862001-05-24 21:06:34 +00005003 int rc;
dan3b9330f2014-02-27 20:44:18 +00005004 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005005
drh1fee73e2007-08-29 04:00:57 +00005006 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005007 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005008 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005009 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005010
5011 /* If the cursor is already positioned at the point we are trying
5012 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005013 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005014 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005015 ){
drhe63d9992008-08-13 19:11:48 +00005016 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005017 *pRes = 0;
5018 return SQLITE_OK;
5019 }
drh036dbec2014-03-11 23:40:44 +00005020 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005021 *pRes = -1;
5022 return SQLITE_OK;
5023 }
5024 }
5025
dan1fed5da2014-02-25 21:01:25 +00005026 if( pIdxKey ){
5027 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005028 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005029 assert( pIdxKey->default_rc==1
5030 || pIdxKey->default_rc==0
5031 || pIdxKey->default_rc==-1
5032 );
drh13a747e2014-03-03 21:46:55 +00005033 }else{
drhb6e8fd12014-03-06 01:56:33 +00005034 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005035 }
5036
drh5e2f8b92001-05-28 00:41:15 +00005037 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005038 if( rc ){
5039 return rc;
5040 }
dana205a482011-08-27 18:48:57 +00005041 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5042 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5043 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005044 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005045 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005046 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005047 return SQLITE_OK;
5048 }
drhc75d8862015-06-27 23:55:20 +00005049 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5050 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005051 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005052 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005053 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005054 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005055 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005056
5057 /* pPage->nCell must be greater than zero. If this is the root-page
5058 ** the cursor would have been INVALID above and this for(;;) loop
5059 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005060 ** would have already detected db corruption. Similarly, pPage must
5061 ** be the right kind (index or table) of b-tree page. Otherwise
5062 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005063 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005064 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005065 lwr = 0;
5066 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005067 assert( biasRight==0 || biasRight==1 );
5068 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005069 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005070 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005071 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005072 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005073 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005074 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005075 while( 0x80 <= *(pCell++) ){
5076 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5077 }
drhd172f862006-01-12 15:01:15 +00005078 }
drha2c20e42008-03-29 16:01:04 +00005079 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005080 if( nCellKey<intKey ){
5081 lwr = idx+1;
5082 if( lwr>upr ){ c = -1; break; }
5083 }else if( nCellKey>intKey ){
5084 upr = idx-1;
5085 if( lwr>upr ){ c = +1; break; }
5086 }else{
5087 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005088 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005089 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005090 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005091 if( !pPage->leaf ){
5092 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005093 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005094 }else{
5095 *pRes = 0;
5096 rc = SQLITE_OK;
5097 goto moveto_finish;
5098 }
drhd793f442013-11-25 14:10:15 +00005099 }
drhebf10b12013-11-25 17:38:26 +00005100 assert( lwr+upr>=0 );
5101 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005102 }
5103 }else{
5104 for(;;){
drhc6827502015-05-28 15:14:32 +00005105 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005106 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005107
drhb2eced52010-08-12 02:41:12 +00005108 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005109 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005110 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005111 ** varint. This information is used to attempt to avoid parsing
5112 ** the entire cell by checking for the cases where the record is
5113 ** stored entirely within the b-tree page by inspecting the first
5114 ** 2 bytes of the cell.
5115 */
drhec3e6b12013-11-25 02:38:55 +00005116 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005117 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005118 /* This branch runs if the record-size field of the cell is a
5119 ** single byte varint and the record fits entirely on the main
5120 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005121 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005122 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005123 }else if( !(pCell[1] & 0x80)
5124 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5125 ){
5126 /* The record-size field is a 2 byte varint and the record
5127 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005128 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005129 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005130 }else{
danielk197711c327a2009-05-04 19:01:26 +00005131 /* The record flows over onto one or more overflow pages. In
5132 ** this case the whole cell needs to be parsed, a buffer allocated
5133 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005134 ** buffer before VdbeRecordCompare() can be called.
5135 **
5136 ** If the record is corrupt, the xRecordCompare routine may read
5137 ** up to two varints past the end of the buffer. An extra 18
5138 ** bytes of padding is allocated at the end of the buffer in
5139 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005140 void *pCellKey;
5141 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005142 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005143 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005144 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5145 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5146 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5147 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005148 if( nCell<2 ){
5149 rc = SQLITE_CORRUPT_BKPT;
5150 goto moveto_finish;
5151 }
5152 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005153 if( pCellKey==0 ){
5154 rc = SQLITE_NOMEM;
5155 goto moveto_finish;
5156 }
drhd793f442013-11-25 14:10:15 +00005157 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005158 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005159 if( rc ){
5160 sqlite3_free(pCellKey);
5161 goto moveto_finish;
5162 }
drh75179de2014-09-16 14:37:35 +00005163 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005164 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005165 }
dan38fdead2014-04-01 10:19:02 +00005166 assert(
5167 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005168 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005169 );
drhbb933ef2013-11-25 15:01:38 +00005170 if( c<0 ){
5171 lwr = idx+1;
5172 }else if( c>0 ){
5173 upr = idx-1;
5174 }else{
5175 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005176 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005177 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005178 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005179 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005180 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005181 }
drhebf10b12013-11-25 17:38:26 +00005182 if( lwr>upr ) break;
5183 assert( lwr+upr>=0 );
5184 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005185 }
drh72f82862001-05-24 21:06:34 +00005186 }
drhb07028f2011-10-14 21:49:18 +00005187 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005188 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005189 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005190 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005191 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005192 *pRes = c;
5193 rc = SQLITE_OK;
5194 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005195 }
5196moveto_next_layer:
5197 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005198 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005199 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005200 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005201 }
drhf49661a2008-12-10 16:45:50 +00005202 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005203 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005204 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005205 }
drh1e968a02008-03-25 00:22:21 +00005206moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005207 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005208 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005209 return rc;
5210}
5211
drhd677b3d2007-08-20 22:48:41 +00005212
drh72f82862001-05-24 21:06:34 +00005213/*
drhc39e0002004-05-07 23:50:57 +00005214** Return TRUE if the cursor is not pointing at an entry of the table.
5215**
5216** TRUE will be returned after a call to sqlite3BtreeNext() moves
5217** past the last entry in the table or sqlite3BtreePrev() moves past
5218** the first entry. TRUE is also returned if the table is empty.
5219*/
5220int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005221 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5222 ** have been deleted? This API will need to change to return an error code
5223 ** as well as the boolean result value.
5224 */
5225 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005226}
5227
5228/*
drhbd03cae2001-06-02 02:40:57 +00005229** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005230** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005231** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005232** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005233**
drhee6438d2014-09-01 13:29:32 +00005234** The main entry point is sqlite3BtreeNext(). That routine is optimized
5235** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5236** to the next cell on the current page. The (slower) btreeNext() helper
5237** routine is called when it is necessary to move to a different page or
5238** to restore the cursor.
5239**
drhe39a7322014-02-03 14:04:11 +00005240** The calling function will set *pRes to 0 or 1. The initial *pRes value
5241** will be 1 if the cursor being stepped corresponds to an SQL index and
5242** if this routine could have been skipped if that SQL index had been
5243** a unique index. Otherwise the caller will have set *pRes to zero.
5244** Zero is the common case. The btree implementation is free to use the
5245** initial *pRes value as a hint to improve performance, but the current
5246** SQLite btree implementation does not. (Note that the comdb2 btree
5247** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005248*/
drhee6438d2014-09-01 13:29:32 +00005249static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005250 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005251 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005252 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005253
drh1fee73e2007-08-29 04:00:57 +00005254 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005255 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005256 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005257 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005258 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005259 rc = restoreCursorPosition(pCur);
5260 if( rc!=SQLITE_OK ){
5261 return rc;
5262 }
5263 if( CURSOR_INVALID==pCur->eState ){
5264 *pRes = 1;
5265 return SQLITE_OK;
5266 }
drh9b47ee32013-08-20 03:13:51 +00005267 if( pCur->skipNext ){
5268 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5269 pCur->eState = CURSOR_VALID;
5270 if( pCur->skipNext>0 ){
5271 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005272 return SQLITE_OK;
5273 }
drhf66f26a2013-08-19 20:04:10 +00005274 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005275 }
danielk1977da184232006-01-05 11:34:32 +00005276 }
danielk1977da184232006-01-05 11:34:32 +00005277
danielk197771d5d2c2008-09-29 11:49:47 +00005278 pPage = pCur->apPage[pCur->iPage];
5279 idx = ++pCur->aiIdx[pCur->iPage];
5280 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005281
5282 /* If the database file is corrupt, it is possible for the value of idx
5283 ** to be invalid here. This can only occur if a second cursor modifies
5284 ** the page while cursor pCur is holding a reference to it. Which can
5285 ** only happen if the database is corrupt in such a way as to link the
5286 ** page into more than one b-tree structure. */
5287 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005288
danielk197771d5d2c2008-09-29 11:49:47 +00005289 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005290 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005291 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005292 if( rc ) return rc;
5293 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005294 }
drh5e2f8b92001-05-28 00:41:15 +00005295 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005296 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005297 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005298 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005299 return SQLITE_OK;
5300 }
danielk197730548662009-07-09 05:07:37 +00005301 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005302 pPage = pCur->apPage[pCur->iPage];
5303 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005304 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005305 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005306 }else{
drhee6438d2014-09-01 13:29:32 +00005307 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005308 }
drh8178a752003-01-05 21:41:40 +00005309 }
drh3aac2dd2004-04-26 14:10:20 +00005310 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005311 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005312 }else{
5313 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005314 }
drh72f82862001-05-24 21:06:34 +00005315}
drhee6438d2014-09-01 13:29:32 +00005316int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5317 MemPage *pPage;
5318 assert( cursorHoldsMutex(pCur) );
5319 assert( pRes!=0 );
5320 assert( *pRes==0 || *pRes==1 );
5321 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5322 pCur->info.nSize = 0;
5323 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5324 *pRes = 0;
5325 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5326 pPage = pCur->apPage[pCur->iPage];
5327 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5328 pCur->aiIdx[pCur->iPage]--;
5329 return btreeNext(pCur, pRes);
5330 }
5331 if( pPage->leaf ){
5332 return SQLITE_OK;
5333 }else{
5334 return moveToLeftmost(pCur);
5335 }
5336}
drh72f82862001-05-24 21:06:34 +00005337
drh3b7511c2001-05-26 13:15:44 +00005338/*
drh2dcc9aa2002-12-04 13:40:25 +00005339** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005340** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005341** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005342** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005343**
drhee6438d2014-09-01 13:29:32 +00005344** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5345** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005346** to the previous cell on the current page. The (slower) btreePrevious()
5347** helper routine is called when it is necessary to move to a different page
5348** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005349**
drhe39a7322014-02-03 14:04:11 +00005350** The calling function will set *pRes to 0 or 1. The initial *pRes value
5351** will be 1 if the cursor being stepped corresponds to an SQL index and
5352** if this routine could have been skipped if that SQL index had been
5353** a unique index. Otherwise the caller will have set *pRes to zero.
5354** Zero is the common case. The btree implementation is free to use the
5355** initial *pRes value as a hint to improve performance, but the current
5356** SQLite btree implementation does not. (Note that the comdb2 btree
5357** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005358*/
drhee6438d2014-09-01 13:29:32 +00005359static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005360 int rc;
drh8178a752003-01-05 21:41:40 +00005361 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005362
drh1fee73e2007-08-29 04:00:57 +00005363 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005364 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005365 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005366 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005367 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5368 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005369 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005370 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005371 if( rc!=SQLITE_OK ){
5372 return rc;
drhf66f26a2013-08-19 20:04:10 +00005373 }
5374 if( CURSOR_INVALID==pCur->eState ){
5375 *pRes = 1;
5376 return SQLITE_OK;
5377 }
drh9b47ee32013-08-20 03:13:51 +00005378 if( pCur->skipNext ){
5379 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5380 pCur->eState = CURSOR_VALID;
5381 if( pCur->skipNext<0 ){
5382 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005383 return SQLITE_OK;
5384 }
drhf66f26a2013-08-19 20:04:10 +00005385 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005386 }
danielk1977da184232006-01-05 11:34:32 +00005387 }
danielk1977da184232006-01-05 11:34:32 +00005388
danielk197771d5d2c2008-09-29 11:49:47 +00005389 pPage = pCur->apPage[pCur->iPage];
5390 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005391 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005392 int idx = pCur->aiIdx[pCur->iPage];
5393 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005394 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005395 rc = moveToRightmost(pCur);
5396 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005397 while( pCur->aiIdx[pCur->iPage]==0 ){
5398 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005399 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005400 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005401 return SQLITE_OK;
5402 }
danielk197730548662009-07-09 05:07:37 +00005403 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005404 }
drhee6438d2014-09-01 13:29:32 +00005405 assert( pCur->info.nSize==0 );
5406 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005407
5408 pCur->aiIdx[pCur->iPage]--;
5409 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005410 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005411 rc = sqlite3BtreePrevious(pCur, pRes);
5412 }else{
5413 rc = SQLITE_OK;
5414 }
drh2dcc9aa2002-12-04 13:40:25 +00005415 }
drh2dcc9aa2002-12-04 13:40:25 +00005416 return rc;
5417}
drhee6438d2014-09-01 13:29:32 +00005418int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5419 assert( cursorHoldsMutex(pCur) );
5420 assert( pRes!=0 );
5421 assert( *pRes==0 || *pRes==1 );
5422 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5423 *pRes = 0;
5424 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5425 pCur->info.nSize = 0;
5426 if( pCur->eState!=CURSOR_VALID
5427 || pCur->aiIdx[pCur->iPage]==0
5428 || pCur->apPage[pCur->iPage]->leaf==0
5429 ){
5430 return btreePrevious(pCur, pRes);
5431 }
5432 pCur->aiIdx[pCur->iPage]--;
5433 return SQLITE_OK;
5434}
drh2dcc9aa2002-12-04 13:40:25 +00005435
5436/*
drh3b7511c2001-05-26 13:15:44 +00005437** Allocate a new page from the database file.
5438**
danielk19773b8a05f2007-03-19 17:44:26 +00005439** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005440** has already been called on the new page.) The new page has also
5441** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005442** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005443**
5444** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005445** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005446**
drh82e647d2013-03-02 03:25:55 +00005447** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005448** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005449** attempt to keep related pages close to each other in the database file,
5450** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005451**
drh82e647d2013-03-02 03:25:55 +00005452** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5453** anywhere on the free-list, then it is guaranteed to be returned. If
5454** eMode is BTALLOC_LT then the page returned will be less than or equal
5455** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5456** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005457*/
drh4f0c5872007-03-26 22:05:01 +00005458static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005459 BtShared *pBt, /* The btree */
5460 MemPage **ppPage, /* Store pointer to the allocated page here */
5461 Pgno *pPgno, /* Store the page number here */
5462 Pgno nearby, /* Search for a page near this one */
5463 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005464){
drh3aac2dd2004-04-26 14:10:20 +00005465 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005466 int rc;
drh35cd6432009-06-05 14:17:21 +00005467 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005468 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005469 MemPage *pTrunk = 0;
5470 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005471 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005472
drh1fee73e2007-08-29 04:00:57 +00005473 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005474 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005475 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005476 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005477 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5478 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005479 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005480 testcase( n==mxPage-1 );
5481 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005482 return SQLITE_CORRUPT_BKPT;
5483 }
drh3aac2dd2004-04-26 14:10:20 +00005484 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005485 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005486 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005487 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005488 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005489
drh82e647d2013-03-02 03:25:55 +00005490 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005491 ** shows that the page 'nearby' is somewhere on the free-list, then
5492 ** the entire-list will be searched for that page.
5493 */
5494#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005495 if( eMode==BTALLOC_EXACT ){
5496 if( nearby<=mxPage ){
5497 u8 eType;
5498 assert( nearby>0 );
5499 assert( pBt->autoVacuum );
5500 rc = ptrmapGet(pBt, nearby, &eType, 0);
5501 if( rc ) return rc;
5502 if( eType==PTRMAP_FREEPAGE ){
5503 searchList = 1;
5504 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005505 }
dan51f0b6d2013-02-22 20:16:34 +00005506 }else if( eMode==BTALLOC_LE ){
5507 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005508 }
5509#endif
5510
5511 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5512 ** first free-list trunk page. iPrevTrunk is initially 1.
5513 */
danielk19773b8a05f2007-03-19 17:44:26 +00005514 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005515 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005516 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005517
5518 /* The code within this loop is run only once if the 'searchList' variable
5519 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005520 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5521 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005522 */
5523 do {
5524 pPrevTrunk = pTrunk;
5525 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005526 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5527 ** is the page number of the next freelist trunk page in the list or
5528 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005529 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005530 }else{
drh113762a2014-11-19 16:36:25 +00005531 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5532 ** stores the page number of the first page of the freelist, or zero if
5533 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005534 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005535 }
drhdf35a082009-07-09 02:24:35 +00005536 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005537 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005538 rc = SQLITE_CORRUPT_BKPT;
5539 }else{
drh7e8c6f12015-05-28 03:28:27 +00005540 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005541 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005542 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005543 pTrunk = 0;
5544 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005545 }
drhb07028f2011-10-14 21:49:18 +00005546 assert( pTrunk!=0 );
5547 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005548 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5549 ** is the number of leaf page pointers to follow. */
5550 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005551 if( k==0 && !searchList ){
5552 /* The trunk has no leaves and the list is not being searched.
5553 ** So extract the trunk page itself and use it as the newly
5554 ** allocated page */
5555 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005556 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005557 if( rc ){
5558 goto end_allocate_page;
5559 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005560 *pPgno = iTrunk;
5561 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5562 *ppPage = pTrunk;
5563 pTrunk = 0;
5564 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005565 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005566 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005567 rc = SQLITE_CORRUPT_BKPT;
5568 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005569#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005570 }else if( searchList
5571 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5572 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005573 /* The list is being searched and this trunk page is the page
5574 ** to allocate, regardless of whether it has leaves.
5575 */
dan51f0b6d2013-02-22 20:16:34 +00005576 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005577 *ppPage = pTrunk;
5578 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005579 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005580 if( rc ){
5581 goto end_allocate_page;
5582 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005583 if( k==0 ){
5584 if( !pPrevTrunk ){
5585 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5586 }else{
danf48c3552010-08-23 15:41:24 +00005587 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5588 if( rc!=SQLITE_OK ){
5589 goto end_allocate_page;
5590 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005591 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5592 }
5593 }else{
5594 /* The trunk page is required by the caller but it contains
5595 ** pointers to free-list leaves. The first leaf becomes a trunk
5596 ** page in this case.
5597 */
5598 MemPage *pNewTrunk;
5599 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005600 if( iNewTrunk>mxPage ){
5601 rc = SQLITE_CORRUPT_BKPT;
5602 goto end_allocate_page;
5603 }
drhdf35a082009-07-09 02:24:35 +00005604 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005605 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005606 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005607 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005608 }
danielk19773b8a05f2007-03-19 17:44:26 +00005609 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005610 if( rc!=SQLITE_OK ){
5611 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005612 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005613 }
5614 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5615 put4byte(&pNewTrunk->aData[4], k-1);
5616 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005617 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005618 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005619 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005620 put4byte(&pPage1->aData[32], iNewTrunk);
5621 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005622 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005623 if( rc ){
5624 goto end_allocate_page;
5625 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005626 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5627 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005628 }
5629 pTrunk = 0;
5630 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5631#endif
danielk1977e5765212009-06-17 11:13:28 +00005632 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005633 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005634 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005635 Pgno iPage;
5636 unsigned char *aData = pTrunk->aData;
5637 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005638 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005639 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005640 if( eMode==BTALLOC_LE ){
5641 for(i=0; i<k; i++){
5642 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005643 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005644 closest = i;
5645 break;
5646 }
5647 }
5648 }else{
5649 int dist;
5650 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5651 for(i=1; i<k; i++){
5652 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5653 if( d2<dist ){
5654 closest = i;
5655 dist = d2;
5656 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005657 }
5658 }
5659 }else{
5660 closest = 0;
5661 }
5662
5663 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005664 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005665 if( iPage>mxPage ){
5666 rc = SQLITE_CORRUPT_BKPT;
5667 goto end_allocate_page;
5668 }
drhdf35a082009-07-09 02:24:35 +00005669 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005670 if( !searchList
5671 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5672 ){
danielk1977bea2a942009-01-20 17:06:27 +00005673 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005674 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005675 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5676 ": %d more free pages\n",
5677 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005678 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5679 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005680 if( closest<k-1 ){
5681 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5682 }
5683 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005684 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005685 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005687 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005688 if( rc!=SQLITE_OK ){
5689 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005690 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005691 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005692 }
5693 searchList = 0;
5694 }
drhee696e22004-08-30 16:52:17 +00005695 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005696 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005697 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005699 }else{
danbc1a3c62013-02-23 16:40:46 +00005700 /* There are no pages on the freelist, so append a new page to the
5701 ** database image.
5702 **
5703 ** Normally, new pages allocated by this block can be requested from the
5704 ** pager layer with the 'no-content' flag set. This prevents the pager
5705 ** from trying to read the pages content from disk. However, if the
5706 ** current transaction has already run one or more incremental-vacuum
5707 ** steps, then the page we are about to allocate may contain content
5708 ** that is required in the event of a rollback. In this case, do
5709 ** not set the no-content flag. This causes the pager to load and journal
5710 ** the current page content before overwriting it.
5711 **
5712 ** Note that the pager will not actually attempt to load or journal
5713 ** content for any page that really does lie past the end of the database
5714 ** file on disk. So the effects of disabling the no-content optimization
5715 ** here are confined to those pages that lie between the end of the
5716 ** database image and the end of the database file.
5717 */
drh3f387402014-09-24 01:23:00 +00005718 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005719
drhdd3cd972010-03-27 17:12:36 +00005720 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5721 if( rc ) return rc;
5722 pBt->nPage++;
5723 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005724
danielk1977afcdd022004-10-31 16:25:42 +00005725#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005726 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005727 /* If *pPgno refers to a pointer-map page, allocate two new pages
5728 ** at the end of the file instead of one. The first allocated page
5729 ** becomes a new pointer-map page, the second is used by the caller.
5730 */
danielk1977ac861692009-03-28 10:54:22 +00005731 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005732 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5733 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005734 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005735 if( rc==SQLITE_OK ){
5736 rc = sqlite3PagerWrite(pPg->pDbPage);
5737 releasePage(pPg);
5738 }
5739 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005740 pBt->nPage++;
5741 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005742 }
5743#endif
drhdd3cd972010-03-27 17:12:36 +00005744 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5745 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005746
danielk1977599fcba2004-11-08 07:13:13 +00005747 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005748 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005749 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005750 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005751 if( rc!=SQLITE_OK ){
5752 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005753 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005754 }
drh3a4c1412004-05-09 20:40:11 +00005755 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005756 }
danielk1977599fcba2004-11-08 07:13:13 +00005757
5758 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005759
5760end_allocate_page:
5761 releasePage(pTrunk);
5762 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005763 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5764 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005765 return rc;
5766}
5767
5768/*
danielk1977bea2a942009-01-20 17:06:27 +00005769** This function is used to add page iPage to the database file free-list.
5770** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005771**
danielk1977bea2a942009-01-20 17:06:27 +00005772** The value passed as the second argument to this function is optional.
5773** If the caller happens to have a pointer to the MemPage object
5774** corresponding to page iPage handy, it may pass it as the second value.
5775** Otherwise, it may pass NULL.
5776**
5777** If a pointer to a MemPage object is passed as the second argument,
5778** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005779*/
danielk1977bea2a942009-01-20 17:06:27 +00005780static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5781 MemPage *pTrunk = 0; /* Free-list trunk page */
5782 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5783 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5784 MemPage *pPage; /* Page being freed. May be NULL. */
5785 int rc; /* Return Code */
5786 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005787
danielk1977bea2a942009-01-20 17:06:27 +00005788 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005789 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005790 assert( !pMemPage || pMemPage->pgno==iPage );
5791
danfb0246b2015-05-26 12:18:17 +00005792 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005793 if( pMemPage ){
5794 pPage = pMemPage;
5795 sqlite3PagerRef(pPage->pDbPage);
5796 }else{
5797 pPage = btreePageLookup(pBt, iPage);
5798 }
drh3aac2dd2004-04-26 14:10:20 +00005799
drha34b6762004-05-07 13:30:42 +00005800 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005801 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005802 if( rc ) goto freepage_out;
5803 nFree = get4byte(&pPage1->aData[36]);
5804 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005805
drhc9166342012-01-05 23:32:06 +00005806 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005807 /* If the secure_delete option is enabled, then
5808 ** always fully overwrite deleted information with zeros.
5809 */
drhb00fc3b2013-08-21 23:42:32 +00005810 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005811 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005812 ){
5813 goto freepage_out;
5814 }
5815 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005816 }
drhfcce93f2006-02-22 03:08:32 +00005817
danielk1977687566d2004-11-02 12:56:41 +00005818 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005819 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005820 */
danielk197785d90ca2008-07-19 14:25:15 +00005821 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005822 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005823 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005824 }
danielk1977687566d2004-11-02 12:56:41 +00005825
danielk1977bea2a942009-01-20 17:06:27 +00005826 /* Now manipulate the actual database free-list structure. There are two
5827 ** possibilities. If the free-list is currently empty, or if the first
5828 ** trunk page in the free-list is full, then this page will become a
5829 ** new free-list trunk page. Otherwise, it will become a leaf of the
5830 ** first trunk page in the current free-list. This block tests if it
5831 ** is possible to add the page as a new free-list leaf.
5832 */
5833 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005834 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005835
5836 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005837 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005838 if( rc!=SQLITE_OK ){
5839 goto freepage_out;
5840 }
5841
5842 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005843 assert( pBt->usableSize>32 );
5844 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005845 rc = SQLITE_CORRUPT_BKPT;
5846 goto freepage_out;
5847 }
drheeb844a2009-08-08 18:01:07 +00005848 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005849 /* In this case there is room on the trunk page to insert the page
5850 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005851 **
5852 ** Note that the trunk page is not really full until it contains
5853 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5854 ** coded. But due to a coding error in versions of SQLite prior to
5855 ** 3.6.0, databases with freelist trunk pages holding more than
5856 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5857 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005858 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005859 ** for now. At some point in the future (once everyone has upgraded
5860 ** to 3.6.0 or later) we should consider fixing the conditional above
5861 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005862 **
5863 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5864 ** avoid using the last six entries in the freelist trunk page array in
5865 ** order that database files created by newer versions of SQLite can be
5866 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005867 */
danielk19773b8a05f2007-03-19 17:44:26 +00005868 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005869 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005870 put4byte(&pTrunk->aData[4], nLeaf+1);
5871 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005872 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005873 sqlite3PagerDontWrite(pPage->pDbPage);
5874 }
danielk1977bea2a942009-01-20 17:06:27 +00005875 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005876 }
drh3a4c1412004-05-09 20:40:11 +00005877 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005878 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005879 }
drh3b7511c2001-05-26 13:15:44 +00005880 }
danielk1977bea2a942009-01-20 17:06:27 +00005881
5882 /* If control flows to this point, then it was not possible to add the
5883 ** the page being freed as a leaf page of the first trunk in the free-list.
5884 ** Possibly because the free-list is empty, or possibly because the
5885 ** first trunk in the free-list is full. Either way, the page being freed
5886 ** will become the new first trunk page in the free-list.
5887 */
drhb00fc3b2013-08-21 23:42:32 +00005888 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005889 goto freepage_out;
5890 }
5891 rc = sqlite3PagerWrite(pPage->pDbPage);
5892 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005893 goto freepage_out;
5894 }
5895 put4byte(pPage->aData, iTrunk);
5896 put4byte(&pPage->aData[4], 0);
5897 put4byte(&pPage1->aData[32], iPage);
5898 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5899
5900freepage_out:
5901 if( pPage ){
5902 pPage->isInit = 0;
5903 }
5904 releasePage(pPage);
5905 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005906 return rc;
5907}
drhc314dc72009-07-21 11:52:34 +00005908static void freePage(MemPage *pPage, int *pRC){
5909 if( (*pRC)==SQLITE_OK ){
5910 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5911 }
danielk1977bea2a942009-01-20 17:06:27 +00005912}
drh3b7511c2001-05-26 13:15:44 +00005913
5914/*
drh9bfdc252014-09-24 02:05:41 +00005915** Free any overflow pages associated with the given Cell. Write the
5916** local Cell size (the number of bytes on the original page, omitting
5917** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005918*/
drh9bfdc252014-09-24 02:05:41 +00005919static int clearCell(
5920 MemPage *pPage, /* The page that contains the Cell */
5921 unsigned char *pCell, /* First byte of the Cell */
5922 u16 *pnSize /* Write the size of the Cell here */
5923){
danielk1977aef0bf62005-12-30 16:28:01 +00005924 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005925 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005926 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005927 int rc;
drh94440812007-03-06 11:42:19 +00005928 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005929 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005930
drh1fee73e2007-08-29 04:00:57 +00005931 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005932 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005933 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005934 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005935 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005936 }
drhe42a9b42011-08-31 13:27:19 +00005937 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005938 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005939 }
drh6f11bef2004-05-13 01:12:56 +00005940 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005941 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005942 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005943 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005944 assert( nOvfl>0 ||
5945 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5946 );
drh72365832007-03-06 15:53:44 +00005947 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005948 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005949 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005950 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005951 /* 0 is not a legal page number and page 1 cannot be an
5952 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5953 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005954 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005955 }
danielk1977bea2a942009-01-20 17:06:27 +00005956 if( nOvfl ){
5957 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5958 if( rc ) return rc;
5959 }
dan887d4b22010-02-25 12:09:16 +00005960
shaneh1da207e2010-03-09 14:41:12 +00005961 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005962 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5963 ){
5964 /* There is no reason any cursor should have an outstanding reference
5965 ** to an overflow page belonging to a cell that is being deleted/updated.
5966 ** So if there exists more than one reference to this page, then it
5967 ** must not really be an overflow page and the database must be corrupt.
5968 ** It is helpful to detect this before calling freePage2(), as
5969 ** freePage2() may zero the page contents if secure-delete mode is
5970 ** enabled. If this 'overflow' page happens to be a page that the
5971 ** caller is iterating through or using in some other way, this
5972 ** can be problematic.
5973 */
5974 rc = SQLITE_CORRUPT_BKPT;
5975 }else{
5976 rc = freePage2(pBt, pOvfl, ovflPgno);
5977 }
5978
danielk1977bea2a942009-01-20 17:06:27 +00005979 if( pOvfl ){
5980 sqlite3PagerUnref(pOvfl->pDbPage);
5981 }
drh3b7511c2001-05-26 13:15:44 +00005982 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005983 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005984 }
drh5e2f8b92001-05-28 00:41:15 +00005985 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005986}
5987
5988/*
drh91025292004-05-03 19:49:32 +00005989** Create the byte sequence used to represent a cell on page pPage
5990** and write that byte sequence into pCell[]. Overflow pages are
5991** allocated and filled in as necessary. The calling procedure
5992** is responsible for making sure sufficient space has been allocated
5993** for pCell[].
5994**
5995** Note that pCell does not necessary need to point to the pPage->aData
5996** area. pCell might point to some temporary storage. The cell will
5997** be constructed in this temporary area then copied into pPage->aData
5998** later.
drh3b7511c2001-05-26 13:15:44 +00005999*/
6000static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006001 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006002 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006003 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006004 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006005 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006006 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006007){
drh3b7511c2001-05-26 13:15:44 +00006008 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006009 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006010 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006011 int spaceLeft;
6012 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006013 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006014 unsigned char *pPrior;
6015 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006016 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006017 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006018 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006019
drh1fee73e2007-08-29 04:00:57 +00006020 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006021
drhc5053fb2008-11-27 02:22:10 +00006022 /* pPage is not necessarily writeable since pCell might be auxiliary
6023 ** buffer space that is separate from the pPage buffer area */
6024 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6025 || sqlite3PagerIswriteable(pPage->pDbPage) );
6026
drh91025292004-05-03 19:49:32 +00006027 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006028 nHeader = pPage->childPtrSize;
6029 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006030 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006031 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006032 }else{
drh6200c882014-09-23 22:36:25 +00006033 assert( nData==0 );
6034 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006035 }
drh6f11bef2004-05-13 01:12:56 +00006036 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006037
drh6200c882014-09-23 22:36:25 +00006038 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006039 if( pPage->intKey ){
6040 pSrc = pData;
6041 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006042 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006043 }else{
drh98ef0f62015-06-30 01:25:52 +00006044 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006045 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006046 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006047 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006048 }
drh6200c882014-09-23 22:36:25 +00006049 if( nPayload<=pPage->maxLocal ){
6050 n = nHeader + nPayload;
6051 testcase( n==3 );
6052 testcase( n==4 );
6053 if( n<4 ) n = 4;
6054 *pnSize = n;
6055 spaceLeft = nPayload;
6056 pPrior = pCell;
6057 }else{
6058 int mn = pPage->minLocal;
6059 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6060 testcase( n==pPage->maxLocal );
6061 testcase( n==pPage->maxLocal+1 );
6062 if( n > pPage->maxLocal ) n = mn;
6063 spaceLeft = n;
6064 *pnSize = n + nHeader + 4;
6065 pPrior = &pCell[nHeader+n];
6066 }
drh3aac2dd2004-04-26 14:10:20 +00006067 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006068
drh6200c882014-09-23 22:36:25 +00006069 /* At this point variables should be set as follows:
6070 **
6071 ** nPayload Total payload size in bytes
6072 ** pPayload Begin writing payload here
6073 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6074 ** that means content must spill into overflow pages.
6075 ** *pnSize Size of the local cell (not counting overflow pages)
6076 ** pPrior Where to write the pgno of the first overflow page
6077 **
6078 ** Use a call to btreeParseCellPtr() to verify that the values above
6079 ** were computed correctly.
6080 */
6081#if SQLITE_DEBUG
6082 {
6083 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006084 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006085 assert( nHeader=(int)(info.pPayload - pCell) );
6086 assert( info.nKey==nKey );
6087 assert( *pnSize == info.nSize );
6088 assert( spaceLeft == info.nLocal );
6089 assert( pPrior == &pCell[info.iOverflow] );
6090 }
6091#endif
6092
6093 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006094 while( nPayload>0 ){
6095 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006096#ifndef SQLITE_OMIT_AUTOVACUUM
6097 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006098 if( pBt->autoVacuum ){
6099 do{
6100 pgnoOvfl++;
6101 } while(
6102 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6103 );
danielk1977b39f70b2007-05-17 18:28:11 +00006104 }
danielk1977afcdd022004-10-31 16:25:42 +00006105#endif
drhf49661a2008-12-10 16:45:50 +00006106 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006107#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006108 /* If the database supports auto-vacuum, and the second or subsequent
6109 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006110 ** for that page now.
6111 **
6112 ** If this is the first overflow page, then write a partial entry
6113 ** to the pointer-map. If we write nothing to this pointer-map slot,
6114 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006115 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006116 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006117 */
danielk19774ef24492007-05-23 09:52:41 +00006118 if( pBt->autoVacuum && rc==SQLITE_OK ){
6119 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006120 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006121 if( rc ){
6122 releasePage(pOvfl);
6123 }
danielk1977afcdd022004-10-31 16:25:42 +00006124 }
6125#endif
drh3b7511c2001-05-26 13:15:44 +00006126 if( rc ){
drh9b171272004-05-08 02:03:22 +00006127 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006128 return rc;
6129 }
drhc5053fb2008-11-27 02:22:10 +00006130
6131 /* If pToRelease is not zero than pPrior points into the data area
6132 ** of pToRelease. Make sure pToRelease is still writeable. */
6133 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6134
6135 /* If pPrior is part of the data area of pPage, then make sure pPage
6136 ** is still writeable */
6137 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6138 || sqlite3PagerIswriteable(pPage->pDbPage) );
6139
drh3aac2dd2004-04-26 14:10:20 +00006140 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006141 releasePage(pToRelease);
6142 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006143 pPrior = pOvfl->aData;
6144 put4byte(pPrior, 0);
6145 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006146 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006147 }
6148 n = nPayload;
6149 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006150
6151 /* If pToRelease is not zero than pPayload points into the data area
6152 ** of pToRelease. Make sure pToRelease is still writeable. */
6153 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6154
6155 /* If pPayload is part of the data area of pPage, then make sure pPage
6156 ** is still writeable */
6157 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6158 || sqlite3PagerIswriteable(pPage->pDbPage) );
6159
drhb026e052007-05-02 01:34:31 +00006160 if( nSrc>0 ){
6161 if( n>nSrc ) n = nSrc;
6162 assert( pSrc );
6163 memcpy(pPayload, pSrc, n);
6164 }else{
6165 memset(pPayload, 0, n);
6166 }
drh3b7511c2001-05-26 13:15:44 +00006167 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006168 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006169 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006170 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006171 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006172 if( nSrc==0 ){
6173 nSrc = nData;
6174 pSrc = pData;
6175 }
drhdd793422001-06-28 01:54:48 +00006176 }
drh9b171272004-05-08 02:03:22 +00006177 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006178 return SQLITE_OK;
6179}
6180
drh14acc042001-06-10 19:56:58 +00006181/*
6182** Remove the i-th cell from pPage. This routine effects pPage only.
6183** The cell content is not freed or deallocated. It is assumed that
6184** the cell content has been copied someplace else. This routine just
6185** removes the reference to the cell from pPage.
6186**
6187** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006188*/
drh98add2e2009-07-20 17:11:49 +00006189static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006190 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006191 u8 *data; /* pPage->aData */
6192 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006193 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006194 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006195
drh98add2e2009-07-20 17:11:49 +00006196 if( *pRC ) return;
6197
drh8c42ca92001-06-22 19:15:00 +00006198 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006199 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006200 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006201 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006202 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006203 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006204 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006205 hdr = pPage->hdrOffset;
6206 testcase( pc==get2byte(&data[hdr+5]) );
6207 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006208 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006209 *pRC = SQLITE_CORRUPT_BKPT;
6210 return;
shane0af3f892008-11-12 04:55:34 +00006211 }
shanedcc50b72008-11-13 18:29:50 +00006212 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006213 if( rc ){
6214 *pRC = rc;
6215 return;
shanedcc50b72008-11-13 18:29:50 +00006216 }
drh14acc042001-06-10 19:56:58 +00006217 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006218 if( pPage->nCell==0 ){
6219 memset(&data[hdr+1], 0, 4);
6220 data[hdr+7] = 0;
6221 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6222 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6223 - pPage->childPtrSize - 8;
6224 }else{
6225 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6226 put2byte(&data[hdr+3], pPage->nCell);
6227 pPage->nFree += 2;
6228 }
drh14acc042001-06-10 19:56:58 +00006229}
6230
6231/*
6232** Insert a new cell on pPage at cell index "i". pCell points to the
6233** content of the cell.
6234**
6235** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006236** will not fit, then make a copy of the cell content into pTemp if
6237** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006238** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006239** in pTemp or the original pCell) and also record its index.
6240** Allocating a new entry in pPage->aCell[] implies that
6241** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006242*/
drh98add2e2009-07-20 17:11:49 +00006243static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006244 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006245 int i, /* New cell becomes the i-th cell of the page */
6246 u8 *pCell, /* Content of the new cell */
6247 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006248 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006249 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6250 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006251){
drh383d30f2010-02-26 13:07:37 +00006252 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006253 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006254 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006255 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006256
drh98add2e2009-07-20 17:11:49 +00006257 if( *pRC ) return;
6258
drh43605152004-05-29 21:46:49 +00006259 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006260 assert( MX_CELL(pPage->pBt)<=10921 );
6261 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006262 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6263 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006265 /* The cell should normally be sized correctly. However, when moving a
6266 ** malformed cell from a leaf page to an interior page, if the cell size
6267 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6268 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6269 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006270 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006271 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006272 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006273 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006274 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006275 }
danielk19774dbaa892009-06-16 16:50:22 +00006276 if( iChild ){
6277 put4byte(pCell, iChild);
6278 }
drh43605152004-05-29 21:46:49 +00006279 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006280 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6281 pPage->apOvfl[j] = pCell;
6282 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006283
6284 /* When multiple overflows occur, they are always sequential and in
6285 ** sorted order. This invariants arise because multiple overflows can
6286 ** only occur when inserting divider cells into the parent page during
6287 ** balancing, and the dividers are adjacent and sorted.
6288 */
6289 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6290 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006291 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006292 int rc = sqlite3PagerWrite(pPage->pDbPage);
6293 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006294 *pRC = rc;
6295 return;
danielk19776e465eb2007-08-21 13:11:00 +00006296 }
6297 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006298 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006299 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006300 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006301 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006302 /* The allocateSpace() routine guarantees the following properties
6303 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006304 assert( idx >= 0 );
6305 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006306 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006307 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006308 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006309 if( iChild ){
6310 put4byte(&data[idx], iChild);
6311 }
drh2c8fb922015-06-25 19:53:48 +00006312 pIns = pPage->aCellIdx + i*2;
6313 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6314 put2byte(pIns, idx);
6315 pPage->nCell++;
6316 /* increment the cell count */
6317 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6318 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006319#ifndef SQLITE_OMIT_AUTOVACUUM
6320 if( pPage->pBt->autoVacuum ){
6321 /* The cell may contain a pointer to an overflow page. If so, write
6322 ** the entry for the overflow page into the pointer map.
6323 */
drh98add2e2009-07-20 17:11:49 +00006324 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006325 }
6326#endif
drh14acc042001-06-10 19:56:58 +00006327 }
6328}
6329
6330/*
drh1ffd2472015-06-23 02:37:30 +00006331** A CellArray object contains a cache of pointers and sizes for a
6332** consecutive sequence of cells that might be held multiple pages.
6333*/
6334typedef struct CellArray CellArray;
6335struct CellArray {
6336 int nCell; /* Number of cells in apCell[] */
6337 MemPage *pRef; /* Reference page */
6338 u8 **apCell; /* All cells begin balanced */
6339 u16 *szCell; /* Local size of all cells in apCell[] */
6340};
6341
6342/*
6343** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6344** computed.
6345*/
6346static void populateCellCache(CellArray *p, int idx, int N){
6347 assert( idx>=0 && idx+N<=p->nCell );
6348 while( N>0 ){
6349 assert( p->apCell[idx]!=0 );
6350 if( p->szCell[idx]==0 ){
6351 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6352 }else{
6353 assert( CORRUPT_DB ||
6354 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6355 }
6356 idx++;
6357 N--;
6358 }
6359}
6360
6361/*
6362** Return the size of the Nth element of the cell array
6363*/
6364static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6365 assert( N>=0 && N<p->nCell );
6366 assert( p->szCell[N]==0 );
6367 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6368 return p->szCell[N];
6369}
6370static u16 cachedCellSize(CellArray *p, int N){
6371 assert( N>=0 && N<p->nCell );
6372 if( p->szCell[N] ) return p->szCell[N];
6373 return computeCellSize(p, N);
6374}
6375
6376/*
dan8e9ba0c2014-10-14 17:27:04 +00006377** Array apCell[] contains pointers to nCell b-tree page cells. The
6378** szCell[] array contains the size in bytes of each cell. This function
6379** replaces the current contents of page pPg with the contents of the cell
6380** array.
6381**
6382** Some of the cells in apCell[] may currently be stored in pPg. This
6383** function works around problems caused by this by making a copy of any
6384** such cells before overwriting the page data.
6385**
6386** The MemPage.nFree field is invalidated by this function. It is the
6387** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006388*/
drh658873b2015-06-22 20:02:04 +00006389static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006390 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006391 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006392 u8 **apCell, /* Array of cells */
6393 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006394){
6395 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6396 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6397 const int usableSize = pPg->pBt->usableSize;
6398 u8 * const pEnd = &aData[usableSize];
6399 int i;
6400 u8 *pCellptr = pPg->aCellIdx;
6401 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6402 u8 *pData;
6403
6404 i = get2byte(&aData[hdr+5]);
6405 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006406
dan8e9ba0c2014-10-14 17:27:04 +00006407 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006408 for(i=0; i<nCell; i++){
6409 u8 *pCell = apCell[i];
6410 if( pCell>aData && pCell<pEnd ){
6411 pCell = &pTmp[pCell - aData];
6412 }
6413 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006414 put2byte(pCellptr, (pData - aData));
6415 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006416 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6417 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006418 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006419 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006420 }
6421
dand7b545b2014-10-13 18:03:27 +00006422 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006423 pPg->nCell = nCell;
6424 pPg->nOverflow = 0;
6425
6426 put2byte(&aData[hdr+1], 0);
6427 put2byte(&aData[hdr+3], pPg->nCell);
6428 put2byte(&aData[hdr+5], pData - aData);
6429 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006430 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006431}
6432
dan8e9ba0c2014-10-14 17:27:04 +00006433/*
6434** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6435** contains the size in bytes of each such cell. This function attempts to
6436** add the cells stored in the array to page pPg. If it cannot (because
6437** the page needs to be defragmented before the cells will fit), non-zero
6438** is returned. Otherwise, if the cells are added successfully, zero is
6439** returned.
6440**
6441** Argument pCellptr points to the first entry in the cell-pointer array
6442** (part of page pPg) to populate. After cell apCell[0] is written to the
6443** page body, a 16-bit offset is written to pCellptr. And so on, for each
6444** cell in the array. It is the responsibility of the caller to ensure
6445** that it is safe to overwrite this part of the cell-pointer array.
6446**
6447** When this function is called, *ppData points to the start of the
6448** content area on page pPg. If the size of the content area is extended,
6449** *ppData is updated to point to the new start of the content area
6450** before returning.
6451**
6452** Finally, argument pBegin points to the byte immediately following the
6453** end of the space required by this page for the cell-pointer area (for
6454** all cells - not just those inserted by the current call). If the content
6455** area must be extended to before this point in order to accomodate all
6456** cells in apCell[], then the cells do not fit and non-zero is returned.
6457*/
dand7b545b2014-10-13 18:03:27 +00006458static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006459 MemPage *pPg, /* Page to add cells to */
6460 u8 *pBegin, /* End of cell-pointer array */
6461 u8 **ppData, /* IN/OUT: Page content -area pointer */
6462 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006463 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006464 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006465 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006466){
6467 int i;
6468 u8 *aData = pPg->aData;
6469 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006470 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006471 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006472 for(i=iFirst; i<iEnd; i++){
6473 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006474 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006475 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006476 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006477 pData -= sz;
6478 if( pData<pBegin ) return 1;
6479 pSlot = pData;
6480 }
drhf7838932015-06-23 15:36:34 +00006481 memcpy(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006482 put2byte(pCellptr, (pSlot - aData));
6483 pCellptr += 2;
6484 }
6485 *ppData = pData;
6486 return 0;
6487}
6488
dan8e9ba0c2014-10-14 17:27:04 +00006489/*
6490** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6491** contains the size in bytes of each such cell. This function adds the
6492** space associated with each cell in the array that is currently stored
6493** within the body of pPg to the pPg free-list. The cell-pointers and other
6494** fields of the page are not updated.
6495**
6496** This function returns the total number of cells added to the free-list.
6497*/
dand7b545b2014-10-13 18:03:27 +00006498static int pageFreeArray(
6499 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006500 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006501 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006502 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006503){
6504 u8 * const aData = pPg->aData;
6505 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006506 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006507 int nRet = 0;
6508 int i;
drhf7838932015-06-23 15:36:34 +00006509 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006510 u8 *pFree = 0;
6511 int szFree = 0;
6512
drhf7838932015-06-23 15:36:34 +00006513 for(i=iFirst; i<iEnd; i++){
6514 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006515 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006516 int sz;
6517 /* No need to use cachedCellSize() here. The sizes of all cells that
6518 ** are to be freed have already been computing while deciding which
6519 ** cells need freeing */
6520 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006521 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006522 if( pFree ){
6523 assert( pFree>aData && (pFree - aData)<65536 );
6524 freeSpace(pPg, (u16)(pFree - aData), szFree);
6525 }
dand7b545b2014-10-13 18:03:27 +00006526 pFree = pCell;
6527 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006528 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006529 }else{
6530 pFree = pCell;
6531 szFree += sz;
6532 }
6533 nRet++;
6534 }
6535 }
drhfefa0942014-11-05 21:21:08 +00006536 if( pFree ){
6537 assert( pFree>aData && (pFree - aData)<65536 );
6538 freeSpace(pPg, (u16)(pFree - aData), szFree);
6539 }
dand7b545b2014-10-13 18:03:27 +00006540 return nRet;
6541}
6542
dand7b545b2014-10-13 18:03:27 +00006543/*
drh5ab63772014-11-27 03:46:04 +00006544** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6545** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6546** with apCell[iOld]. After balancing, this page should hold nNew cells
6547** starting at apCell[iNew].
6548**
6549** This routine makes the necessary adjustments to pPg so that it contains
6550** the correct cells after being balanced.
6551**
dand7b545b2014-10-13 18:03:27 +00006552** The pPg->nFree field is invalid when this function returns. It is the
6553** responsibility of the caller to set it correctly.
6554*/
drh658873b2015-06-22 20:02:04 +00006555static int editPage(
dan09c68402014-10-11 20:00:24 +00006556 MemPage *pPg, /* Edit this page */
6557 int iOld, /* Index of first cell currently on page */
6558 int iNew, /* Index of new first cell on page */
6559 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006560 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006561){
dand7b545b2014-10-13 18:03:27 +00006562 u8 * const aData = pPg->aData;
6563 const int hdr = pPg->hdrOffset;
6564 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6565 int nCell = pPg->nCell; /* Cells stored on pPg */
6566 u8 *pData;
6567 u8 *pCellptr;
6568 int i;
6569 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6570 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006571
6572#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006573 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6574 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006575#endif
6576
dand7b545b2014-10-13 18:03:27 +00006577 /* Remove cells from the start and end of the page */
6578 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006579 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006580 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6581 nCell -= nShift;
6582 }
6583 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006584 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006585 }
dan09c68402014-10-11 20:00:24 +00006586
drh5ab63772014-11-27 03:46:04 +00006587 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006588 if( pData<pBegin ) goto editpage_fail;
6589
6590 /* Add cells to the start of the page */
6591 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006592 int nAdd = MIN(nNew,iOld-iNew);
6593 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006594 pCellptr = pPg->aCellIdx;
6595 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6596 if( pageInsertArray(
6597 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006598 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006599 ) ) goto editpage_fail;
6600 nCell += nAdd;
6601 }
6602
6603 /* Add any overflow cells */
6604 for(i=0; i<pPg->nOverflow; i++){
6605 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6606 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006607 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006608 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6609 nCell++;
6610 if( pageInsertArray(
6611 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006612 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006613 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006614 }
dand7b545b2014-10-13 18:03:27 +00006615 }
dan09c68402014-10-11 20:00:24 +00006616
dand7b545b2014-10-13 18:03:27 +00006617 /* Append cells to the end of the page */
6618 pCellptr = &pPg->aCellIdx[nCell*2];
6619 if( pageInsertArray(
6620 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006621 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006622 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006623
dand7b545b2014-10-13 18:03:27 +00006624 pPg->nCell = nNew;
6625 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006626
dand7b545b2014-10-13 18:03:27 +00006627 put2byte(&aData[hdr+3], pPg->nCell);
6628 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006629
6630#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006631 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006632 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006633 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006634 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6635 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006636 }
drh1ffd2472015-06-23 02:37:30 +00006637 assert( 0==memcmp(pCell, &aData[iOff],
6638 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006639 }
dan09c68402014-10-11 20:00:24 +00006640#endif
6641
drh658873b2015-06-22 20:02:04 +00006642 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006643 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006644 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006645 populateCellCache(pCArray, iNew, nNew);
6646 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006647}
6648
drh14acc042001-06-10 19:56:58 +00006649/*
drhc3b70572003-01-04 19:44:07 +00006650** The following parameters determine how many adjacent pages get involved
6651** in a balancing operation. NN is the number of neighbors on either side
6652** of the page that participate in the balancing operation. NB is the
6653** total number of pages that participate, including the target page and
6654** NN neighbors on either side.
6655**
6656** The minimum value of NN is 1 (of course). Increasing NN above 1
6657** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6658** in exchange for a larger degradation in INSERT and UPDATE performance.
6659** The value of NN appears to give the best results overall.
6660*/
6661#define NN 1 /* Number of neighbors on either side of pPage */
6662#define NB (NN*2+1) /* Total pages involved in the balance */
6663
danielk1977ac245ec2005-01-14 13:50:11 +00006664
drh615ae552005-01-16 23:21:00 +00006665#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006666/*
6667** This version of balance() handles the common special case where
6668** a new entry is being inserted on the extreme right-end of the
6669** tree, in other words, when the new entry will become the largest
6670** entry in the tree.
6671**
drhc314dc72009-07-21 11:52:34 +00006672** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006673** a new page to the right-hand side and put the one new entry in
6674** that page. This leaves the right side of the tree somewhat
6675** unbalanced. But odds are that we will be inserting new entries
6676** at the end soon afterwards so the nearly empty page will quickly
6677** fill up. On average.
6678**
6679** pPage is the leaf page which is the right-most page in the tree.
6680** pParent is its parent. pPage must have a single overflow entry
6681** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006682**
6683** The pSpace buffer is used to store a temporary copy of the divider
6684** cell that will be inserted into pParent. Such a cell consists of a 4
6685** byte page number followed by a variable length integer. In other
6686** words, at most 13 bytes. Hence the pSpace buffer must be at
6687** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006688*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006689static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6690 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006691 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006692 int rc; /* Return Code */
6693 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006694
drh1fee73e2007-08-29 04:00:57 +00006695 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006696 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006697 assert( pPage->nOverflow==1 );
6698
drh5d433ce2010-08-14 16:02:52 +00006699 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006700 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006701
danielk1977a50d9aa2009-06-08 14:49:45 +00006702 /* Allocate a new page. This page will become the right-sibling of
6703 ** pPage. Make the parent page writable, so that the new divider cell
6704 ** may be inserted. If both these operations are successful, proceed.
6705 */
drh4f0c5872007-03-26 22:05:01 +00006706 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006707
danielk1977eaa06f62008-09-18 17:34:44 +00006708 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006709
6710 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006711 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006712 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006713 u8 *pStop;
6714
drhc5053fb2008-11-27 02:22:10 +00006715 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006716 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6717 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006718 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006719 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006720 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006721
6722 /* If this is an auto-vacuum database, update the pointer map
6723 ** with entries for the new page, and any pointer from the
6724 ** cell on the page to an overflow page. If either of these
6725 ** operations fails, the return code is set, but the contents
6726 ** of the parent page are still manipulated by thh code below.
6727 ** That is Ok, at this point the parent page is guaranteed to
6728 ** be marked as dirty. Returning an error code will cause a
6729 ** rollback, undoing any changes made to the parent page.
6730 */
6731 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006732 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6733 if( szCell>pNew->minLocal ){
6734 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006735 }
6736 }
danielk1977eaa06f62008-09-18 17:34:44 +00006737
danielk19776f235cc2009-06-04 14:46:08 +00006738 /* Create a divider cell to insert into pParent. The divider cell
6739 ** consists of a 4-byte page number (the page number of pPage) and
6740 ** a variable length key value (which must be the same value as the
6741 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006742 **
danielk19776f235cc2009-06-04 14:46:08 +00006743 ** To find the largest key value on pPage, first find the right-most
6744 ** cell on pPage. The first two fields of this cell are the
6745 ** record-length (a variable length integer at most 32-bits in size)
6746 ** and the key value (a variable length integer, may have any value).
6747 ** The first of the while(...) loops below skips over the record-length
6748 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006749 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006750 */
danielk1977eaa06f62008-09-18 17:34:44 +00006751 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006752 pStop = &pCell[9];
6753 while( (*(pCell++)&0x80) && pCell<pStop );
6754 pStop = &pCell[9];
6755 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6756
danielk19774dbaa892009-06-16 16:50:22 +00006757 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006758 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6759 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006760
6761 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006762 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6763
danielk1977e08a3c42008-09-18 18:17:03 +00006764 /* Release the reference to the new page. */
6765 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006766 }
6767
danielk1977eaa06f62008-09-18 17:34:44 +00006768 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006769}
drh615ae552005-01-16 23:21:00 +00006770#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006771
dane6593d82014-10-24 16:40:49 +00006772#if 0
drhc3b70572003-01-04 19:44:07 +00006773/*
danielk19774dbaa892009-06-16 16:50:22 +00006774** This function does not contribute anything to the operation of SQLite.
6775** it is sometimes activated temporarily while debugging code responsible
6776** for setting pointer-map entries.
6777*/
6778static int ptrmapCheckPages(MemPage **apPage, int nPage){
6779 int i, j;
6780 for(i=0; i<nPage; i++){
6781 Pgno n;
6782 u8 e;
6783 MemPage *pPage = apPage[i];
6784 BtShared *pBt = pPage->pBt;
6785 assert( pPage->isInit );
6786
6787 for(j=0; j<pPage->nCell; j++){
6788 CellInfo info;
6789 u8 *z;
6790
6791 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006792 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006793 if( info.iOverflow ){
6794 Pgno ovfl = get4byte(&z[info.iOverflow]);
6795 ptrmapGet(pBt, ovfl, &e, &n);
6796 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6797 }
6798 if( !pPage->leaf ){
6799 Pgno child = get4byte(z);
6800 ptrmapGet(pBt, child, &e, &n);
6801 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6802 }
6803 }
6804 if( !pPage->leaf ){
6805 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6806 ptrmapGet(pBt, child, &e, &n);
6807 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6808 }
6809 }
6810 return 1;
6811}
6812#endif
6813
danielk1977cd581a72009-06-23 15:43:39 +00006814/*
6815** This function is used to copy the contents of the b-tree node stored
6816** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6817** the pointer-map entries for each child page are updated so that the
6818** parent page stored in the pointer map is page pTo. If pFrom contained
6819** any cells with overflow page pointers, then the corresponding pointer
6820** map entries are also updated so that the parent page is page pTo.
6821**
6822** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006823** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006824**
danielk197730548662009-07-09 05:07:37 +00006825** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006826**
6827** The performance of this function is not critical. It is only used by
6828** the balance_shallower() and balance_deeper() procedures, neither of
6829** which are called often under normal circumstances.
6830*/
drhc314dc72009-07-21 11:52:34 +00006831static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6832 if( (*pRC)==SQLITE_OK ){
6833 BtShared * const pBt = pFrom->pBt;
6834 u8 * const aFrom = pFrom->aData;
6835 u8 * const aTo = pTo->aData;
6836 int const iFromHdr = pFrom->hdrOffset;
6837 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006838 int rc;
drhc314dc72009-07-21 11:52:34 +00006839 int iData;
6840
6841
6842 assert( pFrom->isInit );
6843 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006844 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006845
6846 /* Copy the b-tree node content from page pFrom to page pTo. */
6847 iData = get2byte(&aFrom[iFromHdr+5]);
6848 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6849 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6850
6851 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006852 ** match the new data. The initialization of pTo can actually fail under
6853 ** fairly obscure circumstances, even though it is a copy of initialized
6854 ** page pFrom.
6855 */
drhc314dc72009-07-21 11:52:34 +00006856 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006857 rc = btreeInitPage(pTo);
6858 if( rc!=SQLITE_OK ){
6859 *pRC = rc;
6860 return;
6861 }
drhc314dc72009-07-21 11:52:34 +00006862
6863 /* If this is an auto-vacuum database, update the pointer-map entries
6864 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6865 */
6866 if( ISAUTOVACUUM ){
6867 *pRC = setChildPtrmaps(pTo);
6868 }
danielk1977cd581a72009-06-23 15:43:39 +00006869 }
danielk1977cd581a72009-06-23 15:43:39 +00006870}
6871
6872/*
danielk19774dbaa892009-06-16 16:50:22 +00006873** This routine redistributes cells on the iParentIdx'th child of pParent
6874** (hereafter "the page") and up to 2 siblings so that all pages have about the
6875** same amount of free space. Usually a single sibling on either side of the
6876** page are used in the balancing, though both siblings might come from one
6877** side if the page is the first or last child of its parent. If the page
6878** has fewer than 2 siblings (something which can only happen if the page
6879** is a root page or a child of a root page) then all available siblings
6880** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006881**
danielk19774dbaa892009-06-16 16:50:22 +00006882** The number of siblings of the page might be increased or decreased by
6883** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006884**
danielk19774dbaa892009-06-16 16:50:22 +00006885** Note that when this routine is called, some of the cells on the page
6886** might not actually be stored in MemPage.aData[]. This can happen
6887** if the page is overfull. This routine ensures that all cells allocated
6888** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006889**
danielk19774dbaa892009-06-16 16:50:22 +00006890** In the course of balancing the page and its siblings, cells may be
6891** inserted into or removed from the parent page (pParent). Doing so
6892** may cause the parent page to become overfull or underfull. If this
6893** happens, it is the responsibility of the caller to invoke the correct
6894** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006895**
drh5e00f6c2001-09-13 13:46:56 +00006896** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006897** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006898** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006899**
6900** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006901** buffer big enough to hold one page. If while inserting cells into the parent
6902** page (pParent) the parent page becomes overfull, this buffer is
6903** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006904** a maximum of four divider cells into the parent page, and the maximum
6905** size of a cell stored within an internal node is always less than 1/4
6906** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6907** enough for all overflow cells.
6908**
6909** If aOvflSpace is set to a null pointer, this function returns
6910** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006911*/
mistachkine7c54162012-10-02 22:54:27 +00006912#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6913#pragma optimize("", off)
6914#endif
danielk19774dbaa892009-06-16 16:50:22 +00006915static int balance_nonroot(
6916 MemPage *pParent, /* Parent page of siblings being balanced */
6917 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006918 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006919 int isRoot, /* True if pParent is a root-page */
6920 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006921){
drh16a9b832007-05-05 18:39:25 +00006922 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006923 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006924 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006925 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006926 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006927 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006928 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006929 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006930 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006931 int usableSpace; /* Bytes in pPage beyond the header */
6932 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006933 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006934 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006935 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006936 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006937 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006938 u8 *pRight; /* Location in parent of right-sibling pointer */
6939 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006940 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6941 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006942 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006943 u8 *aSpace1; /* Space for copies of dividers cells */
6944 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006945 u8 abDone[NB+2]; /* True after i'th new page is populated */
6946 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006947 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006948 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006949 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006950
6951 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006952 b.nCell = 0;
6953 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006954 pBt = pParent->pBt;
6955 assert( sqlite3_mutex_held(pBt->mutex) );
6956 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006957
danielk1977e5765212009-06-17 11:13:28 +00006958#if 0
drh43605152004-05-29 21:46:49 +00006959 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006960#endif
drh2e38c322004-09-03 18:38:44 +00006961
danielk19774dbaa892009-06-16 16:50:22 +00006962 /* At this point pParent may have at most one overflow cell. And if
6963 ** this overflow cell is present, it must be the cell with
6964 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006965 ** is called (indirectly) from sqlite3BtreeDelete().
6966 */
danielk19774dbaa892009-06-16 16:50:22 +00006967 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006968 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006969
danielk197711a8a862009-06-17 11:49:52 +00006970 if( !aOvflSpace ){
6971 return SQLITE_NOMEM;
6972 }
6973
danielk1977a50d9aa2009-06-08 14:49:45 +00006974 /* Find the sibling pages to balance. Also locate the cells in pParent
6975 ** that divide the siblings. An attempt is made to find NN siblings on
6976 ** either side of pPage. More siblings are taken from one side, however,
6977 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006978 ** has NB or fewer children then all children of pParent are taken.
6979 **
6980 ** This loop also drops the divider cells from the parent page. This
6981 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006982 ** overflow cells in the parent page, since if any existed they will
6983 ** have already been removed.
6984 */
danielk19774dbaa892009-06-16 16:50:22 +00006985 i = pParent->nOverflow + pParent->nCell;
6986 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006987 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006988 }else{
dan7d6885a2012-08-08 14:04:56 +00006989 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006990 if( iParentIdx==0 ){
6991 nxDiv = 0;
6992 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006993 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006994 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006995 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006996 }
dan7d6885a2012-08-08 14:04:56 +00006997 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006998 }
dan7d6885a2012-08-08 14:04:56 +00006999 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007000 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7001 pRight = &pParent->aData[pParent->hdrOffset+8];
7002 }else{
7003 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7004 }
7005 pgno = get4byte(pRight);
7006 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007007 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007008 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007009 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007010 goto balance_cleanup;
7011 }
danielk1977634f2982005-03-28 08:44:07 +00007012 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007013 if( (i--)==0 ) break;
7014
drh2cbd78b2012-02-02 19:37:18 +00007015 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7016 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007017 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007018 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007019 pParent->nOverflow = 0;
7020 }else{
7021 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7022 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007023 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007024
7025 /* Drop the cell from the parent page. apDiv[i] still points to
7026 ** the cell within the parent, even though it has been dropped.
7027 ** This is safe because dropping a cell only overwrites the first
7028 ** four bytes of it, and this function does not need the first
7029 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007030 ** later on.
7031 **
drh8a575d92011-10-12 17:00:28 +00007032 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007033 ** the dropCell() routine will overwrite the entire cell with zeroes.
7034 ** In this case, temporarily copy the cell into the aOvflSpace[]
7035 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7036 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007037 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007038 int iOff;
7039
7040 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007041 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007042 rc = SQLITE_CORRUPT_BKPT;
7043 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7044 goto balance_cleanup;
7045 }else{
7046 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7047 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7048 }
drh5b47efa2010-02-12 18:18:39 +00007049 }
drh98add2e2009-07-20 17:11:49 +00007050 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007051 }
drh8b2f49b2001-06-08 00:21:52 +00007052 }
7053
drha9121e42008-02-19 14:59:35 +00007054 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007055 ** alignment */
drha9121e42008-02-19 14:59:35 +00007056 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007057
drh8b2f49b2001-06-08 00:21:52 +00007058 /*
danielk1977634f2982005-03-28 08:44:07 +00007059 ** Allocate space for memory structures
7060 */
drhfacf0302008-06-17 15:12:00 +00007061 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007062 nMaxCells*sizeof(u8*) /* b.apCell */
7063 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007064 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007065
drhcbd55b02014-11-04 14:22:27 +00007066 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7067 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007068 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007069 b.apCell = sqlite3ScratchMalloc( szScratch );
7070 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007071 rc = SQLITE_NOMEM;
7072 goto balance_cleanup;
7073 }
drh1ffd2472015-06-23 02:37:30 +00007074 b.szCell = (u16*)&b.apCell[nMaxCells];
7075 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007076 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007077
7078 /*
7079 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007080 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007081 ** into space obtained from aSpace1[]. The divider cells have already
7082 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007083 **
7084 ** If the siblings are on leaf pages, then the child pointers of the
7085 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007086 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007087 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007088 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007089 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007090 **
7091 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7092 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007093 */
drh1ffd2472015-06-23 02:37:30 +00007094 b.pRef = apOld[0];
7095 leafCorrection = b.pRef->leaf*4;
7096 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007097 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007098 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007099 int limit = pOld->nCell;
7100 u8 *aData = pOld->aData;
7101 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007102 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007103 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007104
drh73d340a2015-05-28 11:23:11 +00007105 /* Verify that all sibling pages are of the same "type" (table-leaf,
7106 ** table-interior, index-leaf, or index-interior).
7107 */
7108 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7109 rc = SQLITE_CORRUPT_BKPT;
7110 goto balance_cleanup;
7111 }
7112
drhfe647dc2015-06-23 18:24:25 +00007113 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7114 ** constains overflow cells, include them in the b.apCell[] array
7115 ** in the correct spot.
7116 **
7117 ** Note that when there are multiple overflow cells, it is always the
7118 ** case that they are sequential and adjacent. This invariant arises
7119 ** because multiple overflows can only occurs when inserting divider
7120 ** cells into a parent on a prior balance, and divider cells are always
7121 ** adjacent and are inserted in order. There is an assert() tagged
7122 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7123 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007124 **
7125 ** This must be done in advance. Once the balance starts, the cell
7126 ** offset section of the btree page will be overwritten and we will no
7127 ** long be able to find the cells if a pointer to each cell is not saved
7128 ** first.
7129 */
drh1ffd2472015-06-23 02:37:30 +00007130 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007131 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007132 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007133 limit = pOld->aiOvfl[0];
7134 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007135 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007136 piCell += 2;
7137 b.nCell++;
7138 }
7139 for(k=0; k<pOld->nOverflow; k++){
7140 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007141 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007142 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007143 }
drh1ffd2472015-06-23 02:37:30 +00007144 }
drhfe647dc2015-06-23 18:24:25 +00007145 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7146 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007147 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007148 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007149 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007150 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007151 }
7152
drh1ffd2472015-06-23 02:37:30 +00007153 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007154 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007155 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007156 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007157 assert( b.nCell<nMaxCells );
7158 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007159 pTemp = &aSpace1[iSpace1];
7160 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007161 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007162 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007163 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007164 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007165 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007166 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007167 if( !pOld->leaf ){
7168 assert( leafCorrection==0 );
7169 assert( pOld->hdrOffset==0 );
7170 /* The right pointer of the child page pOld becomes the left
7171 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007172 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007173 }else{
7174 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007175 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007176 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7177 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007178 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7179 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007180 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007181 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007182 }
7183 }
drh1ffd2472015-06-23 02:37:30 +00007184 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007185 }
drh8b2f49b2001-06-08 00:21:52 +00007186 }
7187
7188 /*
drh1ffd2472015-06-23 02:37:30 +00007189 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007190 ** Store this number in "k". Also compute szNew[] which is the total
7191 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007192 ** in b.apCell[] of the cell that divides page i from page i+1.
7193 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007194 **
drh96f5b762004-05-16 16:24:36 +00007195 ** Values computed by this block:
7196 **
7197 ** k: The total number of sibling pages
7198 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007199 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007200 ** the right of the i-th sibling page.
7201 ** usableSpace: Number of bytes of space available on each sibling.
7202 **
drh8b2f49b2001-06-08 00:21:52 +00007203 */
drh43605152004-05-29 21:46:49 +00007204 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007205 for(i=0; i<nOld; i++){
7206 MemPage *p = apOld[i];
7207 szNew[i] = usableSpace - p->nFree;
7208 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7209 for(j=0; j<p->nOverflow; j++){
7210 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7211 }
7212 cntNew[i] = cntOld[i];
7213 }
7214 k = nOld;
7215 for(i=0; i<k; i++){
7216 int sz;
7217 while( szNew[i]>usableSpace ){
7218 if( i+1>=k ){
7219 k = i+2;
7220 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7221 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007222 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007223 }
drh1ffd2472015-06-23 02:37:30 +00007224 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007225 szNew[i] -= sz;
7226 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007227 if( cntNew[i]<b.nCell ){
7228 sz = 2 + cachedCellSize(&b, cntNew[i]);
7229 }else{
7230 sz = 0;
7231 }
drh658873b2015-06-22 20:02:04 +00007232 }
7233 szNew[i+1] += sz;
7234 cntNew[i]--;
7235 }
drh1ffd2472015-06-23 02:37:30 +00007236 while( cntNew[i]<b.nCell ){
7237 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007238 if( szNew[i]+sz>usableSpace ) break;
7239 szNew[i] += sz;
7240 cntNew[i]++;
7241 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007242 if( cntNew[i]<b.nCell ){
7243 sz = 2 + cachedCellSize(&b, cntNew[i]);
7244 }else{
7245 sz = 0;
7246 }
drh658873b2015-06-22 20:02:04 +00007247 }
7248 szNew[i+1] -= sz;
7249 }
drh1ffd2472015-06-23 02:37:30 +00007250 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007251 k = i+1;
drh672073a2015-06-24 12:07:40 +00007252 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007253 rc = SQLITE_CORRUPT_BKPT;
7254 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007255 }
7256 }
drh96f5b762004-05-16 16:24:36 +00007257
7258 /*
7259 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007260 ** on the left side (siblings with smaller keys). The left siblings are
7261 ** always nearly full, while the right-most sibling might be nearly empty.
7262 ** The next block of code attempts to adjust the packing of siblings to
7263 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007264 **
7265 ** This adjustment is more than an optimization. The packing above might
7266 ** be so out of balance as to be illegal. For example, the right-most
7267 ** sibling might be completely empty. This adjustment is not optional.
7268 */
drh6019e162001-07-02 17:51:45 +00007269 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007270 int szRight = szNew[i]; /* Size of sibling on the right */
7271 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7272 int r; /* Index of right-most cell in left sibling */
7273 int d; /* Index of first cell to the left of right sibling */
7274
drh008d64c2015-06-23 16:00:24 +00007275 r = cntNew[i-1] - 1;
7276 d = r + 1 - leafData;
7277 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007278 do{
drh1ffd2472015-06-23 02:37:30 +00007279 assert( d<nMaxCells );
7280 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007281 (void)cachedCellSize(&b, r);
7282 if( szRight!=0
7283 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7284 break;
7285 }
7286 szRight += b.szCell[d] + 2;
7287 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007288 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007289 r--;
7290 d--;
drh672073a2015-06-24 12:07:40 +00007291 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007292 szNew[i] = szRight;
7293 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007294 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7295 rc = SQLITE_CORRUPT_BKPT;
7296 goto balance_cleanup;
7297 }
drh6019e162001-07-02 17:51:45 +00007298 }
drh09d0deb2005-08-02 17:13:09 +00007299
drh2a0df922014-10-30 23:14:56 +00007300 /* Sanity check: For a non-corrupt database file one of the follwing
7301 ** must be true:
7302 ** (1) We found one or more cells (cntNew[0])>0), or
7303 ** (2) pPage is a virtual root page. A virtual root page is when
7304 ** the real root page is page 1 and we are the only child of
7305 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007306 */
drh2a0df922014-10-30 23:14:56 +00007307 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007308 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7309 apOld[0]->pgno, apOld[0]->nCell,
7310 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7311 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007312 ));
7313
drh8b2f49b2001-06-08 00:21:52 +00007314 /*
drh6b308672002-07-08 02:16:37 +00007315 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007316 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007317 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007318 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007319 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007320 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007321 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007322 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007323 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007324 nNew++;
danielk197728129562005-01-11 10:25:06 +00007325 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007326 }else{
drh7aa8f852006-03-28 00:24:44 +00007327 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007328 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007329 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007330 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007331 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007332 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007333 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007334
7335 /* Set the pointer-map entry for the new sibling page. */
7336 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007337 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007338 if( rc!=SQLITE_OK ){
7339 goto balance_cleanup;
7340 }
7341 }
drh6b308672002-07-08 02:16:37 +00007342 }
drh8b2f49b2001-06-08 00:21:52 +00007343 }
7344
7345 /*
dan33ea4862014-10-09 19:35:37 +00007346 ** Reassign page numbers so that the new pages are in ascending order.
7347 ** This helps to keep entries in the disk file in order so that a scan
7348 ** of the table is closer to a linear scan through the file. That in turn
7349 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007350 **
dan33ea4862014-10-09 19:35:37 +00007351 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7352 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007353 **
dan33ea4862014-10-09 19:35:37 +00007354 ** When NB==3, this one optimization makes the database about 25% faster
7355 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007356 */
dan33ea4862014-10-09 19:35:37 +00007357 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007358 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007359 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007360 for(j=0; j<i; j++){
7361 if( aPgno[j]==aPgno[i] ){
7362 /* This branch is taken if the set of sibling pages somehow contains
7363 ** duplicate entries. This can happen if the database is corrupt.
7364 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007365 ** we do the detection here in order to avoid populating the pager
7366 ** cache with two separate objects associated with the same
7367 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007368 assert( CORRUPT_DB );
7369 rc = SQLITE_CORRUPT_BKPT;
7370 goto balance_cleanup;
7371 }
7372 }
dan33ea4862014-10-09 19:35:37 +00007373 }
7374 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007375 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007376 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007377 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007378 }
drh00fe08a2014-10-31 00:05:23 +00007379 pgno = aPgOrder[iBest];
7380 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007381 if( iBest!=i ){
7382 if( iBest>i ){
7383 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7384 }
7385 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7386 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007387 }
7388 }
dan33ea4862014-10-09 19:35:37 +00007389
7390 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7391 "%d(%d nc=%d) %d(%d nc=%d)\n",
7392 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007393 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007394 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007395 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007396 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007397 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007398 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7399 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7400 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7401 ));
danielk19774dbaa892009-06-16 16:50:22 +00007402
7403 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7404 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007405
dan33ea4862014-10-09 19:35:37 +00007406 /* If the sibling pages are not leaves, ensure that the right-child pointer
7407 ** of the right-most new sibling page is set to the value that was
7408 ** originally in the same field of the right-most old sibling page. */
7409 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7410 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7411 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7412 }
danielk1977ac11ee62005-01-15 12:45:51 +00007413
dan33ea4862014-10-09 19:35:37 +00007414 /* Make any required updates to pointer map entries associated with
7415 ** cells stored on sibling pages following the balance operation. Pointer
7416 ** map entries associated with divider cells are set by the insertCell()
7417 ** routine. The associated pointer map entries are:
7418 **
7419 ** a) if the cell contains a reference to an overflow chain, the
7420 ** entry associated with the first page in the overflow chain, and
7421 **
7422 ** b) if the sibling pages are not leaves, the child page associated
7423 ** with the cell.
7424 **
7425 ** If the sibling pages are not leaves, then the pointer map entry
7426 ** associated with the right-child of each sibling may also need to be
7427 ** updated. This happens below, after the sibling pages have been
7428 ** populated, not here.
7429 */
7430 if( ISAUTOVACUUM ){
7431 MemPage *pNew = apNew[0];
7432 u8 *aOld = pNew->aData;
7433 int cntOldNext = pNew->nCell + pNew->nOverflow;
7434 int usableSize = pBt->usableSize;
7435 int iNew = 0;
7436 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007437
drh1ffd2472015-06-23 02:37:30 +00007438 for(i=0; i<b.nCell; i++){
7439 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007440 if( i==cntOldNext ){
7441 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7442 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7443 aOld = pOld->aData;
7444 }
7445 if( i==cntNew[iNew] ){
7446 pNew = apNew[++iNew];
7447 if( !leafData ) continue;
7448 }
7449
7450 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007451 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007452 ** or else the divider cell to the left of sibling page iOld. So,
7453 ** if sibling page iOld had the same page number as pNew, and if
7454 ** pCell really was a part of sibling page iOld (not a divider or
7455 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007456 if( iOld>=nNew
7457 || pNew->pgno!=aPgno[iOld]
7458 || pCell<aOld
7459 || pCell>=&aOld[usableSize]
7460 ){
dan33ea4862014-10-09 19:35:37 +00007461 if( !leafCorrection ){
7462 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7463 }
drh1ffd2472015-06-23 02:37:30 +00007464 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007465 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007466 }
drhea82b372015-06-23 21:35:28 +00007467 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007468 }
drh14acc042001-06-10 19:56:58 +00007469 }
7470 }
dan33ea4862014-10-09 19:35:37 +00007471
7472 /* Insert new divider cells into pParent. */
7473 for(i=0; i<nNew-1; i++){
7474 u8 *pCell;
7475 u8 *pTemp;
7476 int sz;
7477 MemPage *pNew = apNew[i];
7478 j = cntNew[i];
7479
7480 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007481 assert( b.apCell[j]!=0 );
7482 pCell = b.apCell[j];
7483 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007484 pTemp = &aOvflSpace[iOvflSpace];
7485 if( !pNew->leaf ){
7486 memcpy(&pNew->aData[8], pCell, 4);
7487 }else if( leafData ){
7488 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007489 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007490 ** cell consists of the integer key for the right-most cell of
7491 ** the sibling-page assembled above only.
7492 */
7493 CellInfo info;
7494 j--;
drh1ffd2472015-06-23 02:37:30 +00007495 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007496 pCell = pTemp;
7497 sz = 4 + putVarint(&pCell[4], info.nKey);
7498 pTemp = 0;
7499 }else{
7500 pCell -= 4;
7501 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7502 ** previously stored on a leaf node, and its reported size was 4
7503 ** bytes, then it may actually be smaller than this
7504 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7505 ** any cell). But it is important to pass the correct size to
7506 ** insertCell(), so reparse the cell now.
7507 **
7508 ** Note that this can never happen in an SQLite data file, as all
7509 ** cells are at least 4 bytes. It only happens in b-trees used
7510 ** to evaluate "IN (SELECT ...)" and similar clauses.
7511 */
drh1ffd2472015-06-23 02:37:30 +00007512 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007513 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007514 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007515 }
7516 }
7517 iOvflSpace += sz;
7518 assert( sz<=pBt->maxLocal+23 );
7519 assert( iOvflSpace <= (int)pBt->pageSize );
7520 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7521 if( rc!=SQLITE_OK ) goto balance_cleanup;
7522 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7523 }
7524
7525 /* Now update the actual sibling pages. The order in which they are updated
7526 ** is important, as this code needs to avoid disrupting any page from which
7527 ** cells may still to be read. In practice, this means:
7528 **
drhd836d422014-10-31 14:26:36 +00007529 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7530 ** then it is not safe to update page apNew[iPg] until after
7531 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007532 **
drhd836d422014-10-31 14:26:36 +00007533 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7534 ** then it is not safe to update page apNew[iPg] until after
7535 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007536 **
7537 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007538 **
7539 ** The iPg value in the following loop starts at nNew-1 goes down
7540 ** to 0, then back up to nNew-1 again, thus making two passes over
7541 ** the pages. On the initial downward pass, only condition (1) above
7542 ** needs to be tested because (2) will always be true from the previous
7543 ** step. On the upward pass, both conditions are always true, so the
7544 ** upwards pass simply processes pages that were missed on the downward
7545 ** pass.
dan33ea4862014-10-09 19:35:37 +00007546 */
drhbec021b2014-10-31 12:22:00 +00007547 for(i=1-nNew; i<nNew; i++){
7548 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007549 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007550 if( abDone[iPg] ) continue; /* Skip pages already processed */
7551 if( i>=0 /* On the upwards pass, or... */
7552 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007553 ){
dan09c68402014-10-11 20:00:24 +00007554 int iNew;
7555 int iOld;
7556 int nNewCell;
7557
drhd836d422014-10-31 14:26:36 +00007558 /* Verify condition (1): If cells are moving left, update iPg
7559 ** only after iPg-1 has already been updated. */
7560 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7561
7562 /* Verify condition (2): If cells are moving right, update iPg
7563 ** only after iPg+1 has already been updated. */
7564 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7565
dan09c68402014-10-11 20:00:24 +00007566 if( iPg==0 ){
7567 iNew = iOld = 0;
7568 nNewCell = cntNew[0];
7569 }else{
drh1ffd2472015-06-23 02:37:30 +00007570 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007571 iNew = cntNew[iPg-1] + !leafData;
7572 nNewCell = cntNew[iPg] - iNew;
7573 }
7574
drh1ffd2472015-06-23 02:37:30 +00007575 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007576 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007577 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007578 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007579 assert( apNew[iPg]->nOverflow==0 );
7580 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007581 }
7582 }
drhd836d422014-10-31 14:26:36 +00007583
7584 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007585 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7586
drh7aa8f852006-03-28 00:24:44 +00007587 assert( nOld>0 );
7588 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007589
danielk197713bd99f2009-06-24 05:40:34 +00007590 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7591 /* The root page of the b-tree now contains no cells. The only sibling
7592 ** page is the right-child of the parent. Copy the contents of the
7593 ** child page into the parent, decreasing the overall height of the
7594 ** b-tree structure by one. This is described as the "balance-shallower"
7595 ** sub-algorithm in some documentation.
7596 **
7597 ** If this is an auto-vacuum database, the call to copyNodeContent()
7598 ** sets all pointer-map entries corresponding to database image pages
7599 ** for which the pointer is stored within the content being copied.
7600 **
drh768f2902014-10-31 02:51:41 +00007601 ** It is critical that the child page be defragmented before being
7602 ** copied into the parent, because if the parent is page 1 then it will
7603 ** by smaller than the child due to the database header, and so all the
7604 ** free space needs to be up front.
7605 */
danielk197713bd99f2009-06-24 05:40:34 +00007606 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007607 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007608 testcase( rc!=SQLITE_OK );
7609 assert( apNew[0]->nFree ==
7610 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7611 || rc!=SQLITE_OK
7612 );
7613 copyNodeContent(apNew[0], pParent, &rc);
7614 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007615 }else if( ISAUTOVACUUM && !leafCorrection ){
7616 /* Fix the pointer map entries associated with the right-child of each
7617 ** sibling page. All other pointer map entries have already been taken
7618 ** care of. */
7619 for(i=0; i<nNew; i++){
7620 u32 key = get4byte(&apNew[i]->aData[8]);
7621 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007622 }
dan33ea4862014-10-09 19:35:37 +00007623 }
danielk19774dbaa892009-06-16 16:50:22 +00007624
dan33ea4862014-10-09 19:35:37 +00007625 assert( pParent->isInit );
7626 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007627 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007628
dan33ea4862014-10-09 19:35:37 +00007629 /* Free any old pages that were not reused as new pages.
7630 */
7631 for(i=nNew; i<nOld; i++){
7632 freePage(apOld[i], &rc);
7633 }
7634
dane6593d82014-10-24 16:40:49 +00007635#if 0
dan33ea4862014-10-09 19:35:37 +00007636 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007637 /* The ptrmapCheckPages() contains assert() statements that verify that
7638 ** all pointer map pages are set correctly. This is helpful while
7639 ** debugging. This is usually disabled because a corrupt database may
7640 ** cause an assert() statement to fail. */
7641 ptrmapCheckPages(apNew, nNew);
7642 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007643 }
dan33ea4862014-10-09 19:35:37 +00007644#endif
danielk1977cd581a72009-06-23 15:43:39 +00007645
drh8b2f49b2001-06-08 00:21:52 +00007646 /*
drh14acc042001-06-10 19:56:58 +00007647 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007648 */
drh14acc042001-06-10 19:56:58 +00007649balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007650 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007651 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007652 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007653 }
drh14acc042001-06-10 19:56:58 +00007654 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007655 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007656 }
danielk1977eaa06f62008-09-18 17:34:44 +00007657
drh8b2f49b2001-06-08 00:21:52 +00007658 return rc;
7659}
mistachkine7c54162012-10-02 22:54:27 +00007660#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7661#pragma optimize("", on)
7662#endif
drh8b2f49b2001-06-08 00:21:52 +00007663
drh43605152004-05-29 21:46:49 +00007664
7665/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007666** This function is called when the root page of a b-tree structure is
7667** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007668**
danielk1977a50d9aa2009-06-08 14:49:45 +00007669** A new child page is allocated and the contents of the current root
7670** page, including overflow cells, are copied into the child. The root
7671** page is then overwritten to make it an empty page with the right-child
7672** pointer pointing to the new page.
7673**
7674** Before returning, all pointer-map entries corresponding to pages
7675** that the new child-page now contains pointers to are updated. The
7676** entry corresponding to the new right-child pointer of the root
7677** page is also updated.
7678**
7679** If successful, *ppChild is set to contain a reference to the child
7680** page and SQLITE_OK is returned. In this case the caller is required
7681** to call releasePage() on *ppChild exactly once. If an error occurs,
7682** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007683*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007684static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7685 int rc; /* Return value from subprocedures */
7686 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007687 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007688 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007689
danielk1977a50d9aa2009-06-08 14:49:45 +00007690 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007691 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007692
danielk1977a50d9aa2009-06-08 14:49:45 +00007693 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7694 ** page that will become the new right-child of pPage. Copy the contents
7695 ** of the node stored on pRoot into the new child page.
7696 */
drh98add2e2009-07-20 17:11:49 +00007697 rc = sqlite3PagerWrite(pRoot->pDbPage);
7698 if( rc==SQLITE_OK ){
7699 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007700 copyNodeContent(pRoot, pChild, &rc);
7701 if( ISAUTOVACUUM ){
7702 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007703 }
7704 }
7705 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007706 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007707 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007708 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007709 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007710 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7711 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7712 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007713
danielk1977a50d9aa2009-06-08 14:49:45 +00007714 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7715
7716 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007717 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7718 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7719 memcpy(pChild->apOvfl, pRoot->apOvfl,
7720 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007721 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007722
7723 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7724 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7725 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7726
7727 *ppChild = pChild;
7728 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007729}
7730
7731/*
danielk197771d5d2c2008-09-29 11:49:47 +00007732** The page that pCur currently points to has just been modified in
7733** some way. This function figures out if this modification means the
7734** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007735** routine. Balancing routines are:
7736**
7737** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007738** balance_deeper()
7739** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007740*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007741static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007742 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007743 const int nMin = pCur->pBt->usableSize * 2 / 3;
7744 u8 aBalanceQuickSpace[13];
7745 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007746
shane75ac1de2009-06-09 18:58:52 +00007747 TESTONLY( int balance_quick_called = 0 );
7748 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007749
7750 do {
7751 int iPage = pCur->iPage;
7752 MemPage *pPage = pCur->apPage[iPage];
7753
7754 if( iPage==0 ){
7755 if( pPage->nOverflow ){
7756 /* The root page of the b-tree is overfull. In this case call the
7757 ** balance_deeper() function to create a new child for the root-page
7758 ** and copy the current contents of the root-page to it. The
7759 ** next iteration of the do-loop will balance the child page.
7760 */
7761 assert( (balance_deeper_called++)==0 );
7762 rc = balance_deeper(pPage, &pCur->apPage[1]);
7763 if( rc==SQLITE_OK ){
7764 pCur->iPage = 1;
7765 pCur->aiIdx[0] = 0;
7766 pCur->aiIdx[1] = 0;
7767 assert( pCur->apPage[1]->nOverflow );
7768 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007769 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 break;
7771 }
7772 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7773 break;
7774 }else{
7775 MemPage * const pParent = pCur->apPage[iPage-1];
7776 int const iIdx = pCur->aiIdx[iPage-1];
7777
7778 rc = sqlite3PagerWrite(pParent->pDbPage);
7779 if( rc==SQLITE_OK ){
7780#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007781 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007782 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007783 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007784 && pParent->pgno!=1
7785 && pParent->nCell==iIdx
7786 ){
7787 /* Call balance_quick() to create a new sibling of pPage on which
7788 ** to store the overflow cell. balance_quick() inserts a new cell
7789 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007790 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007791 ** use either balance_nonroot() or balance_deeper(). Until this
7792 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7793 ** buffer.
7794 **
7795 ** The purpose of the following assert() is to check that only a
7796 ** single call to balance_quick() is made for each call to this
7797 ** function. If this were not verified, a subtle bug involving reuse
7798 ** of the aBalanceQuickSpace[] might sneak in.
7799 */
7800 assert( (balance_quick_called++)==0 );
7801 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7802 }else
7803#endif
7804 {
7805 /* In this case, call balance_nonroot() to redistribute cells
7806 ** between pPage and up to 2 of its sibling pages. This involves
7807 ** modifying the contents of pParent, which may cause pParent to
7808 ** become overfull or underfull. The next iteration of the do-loop
7809 ** will balance the parent page to correct this.
7810 **
7811 ** If the parent page becomes overfull, the overflow cell or cells
7812 ** are stored in the pSpace buffer allocated immediately below.
7813 ** A subsequent iteration of the do-loop will deal with this by
7814 ** calling balance_nonroot() (balance_deeper() may be called first,
7815 ** but it doesn't deal with overflow cells - just moves them to a
7816 ** different page). Once this subsequent call to balance_nonroot()
7817 ** has completed, it is safe to release the pSpace buffer used by
7818 ** the previous call, as the overflow cell data will have been
7819 ** copied either into the body of a database page or into the new
7820 ** pSpace buffer passed to the latter call to balance_nonroot().
7821 */
7822 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007823 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7824 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007825 if( pFree ){
7826 /* If pFree is not NULL, it points to the pSpace buffer used
7827 ** by a previous call to balance_nonroot(). Its contents are
7828 ** now stored either on real database pages or within the
7829 ** new pSpace buffer, so it may be safely freed here. */
7830 sqlite3PageFree(pFree);
7831 }
7832
danielk19774dbaa892009-06-16 16:50:22 +00007833 /* The pSpace buffer will be freed after the next call to
7834 ** balance_nonroot(), or just before this function returns, whichever
7835 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007836 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007837 }
7838 }
7839
7840 pPage->nOverflow = 0;
7841
7842 /* The next iteration of the do-loop balances the parent page. */
7843 releasePage(pPage);
7844 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007845 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007846 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007847 }while( rc==SQLITE_OK );
7848
7849 if( pFree ){
7850 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007851 }
7852 return rc;
7853}
7854
drhf74b8d92002-09-01 23:20:45 +00007855
7856/*
drh3b7511c2001-05-26 13:15:44 +00007857** Insert a new record into the BTree. The key is given by (pKey,nKey)
7858** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007859** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007860** is left pointing at a random location.
7861**
7862** For an INTKEY table, only the nKey value of the key is used. pKey is
7863** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007864**
7865** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007866** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007867** been performed. seekResult is the search result returned (a negative
7868** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007869** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007870** (pKey, nKey)).
7871**
drh3e9ca092009-09-08 01:14:48 +00007872** If the seekResult parameter is non-zero, then the caller guarantees that
7873** cursor pCur is pointing at the existing copy of a row that is to be
7874** overwritten. If the seekResult parameter is 0, then cursor pCur may
7875** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007876** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007877*/
drh3aac2dd2004-04-26 14:10:20 +00007878int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007879 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007880 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007881 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007882 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007883 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007884 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007885){
drh3b7511c2001-05-26 13:15:44 +00007886 int rc;
drh3e9ca092009-09-08 01:14:48 +00007887 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007888 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007889 int idx;
drh3b7511c2001-05-26 13:15:44 +00007890 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007891 Btree *p = pCur->pBtree;
7892 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007893 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007894 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007895
drh98add2e2009-07-20 17:11:49 +00007896 if( pCur->eState==CURSOR_FAULT ){
7897 assert( pCur->skipNext!=SQLITE_OK );
7898 return pCur->skipNext;
7899 }
7900
drh1fee73e2007-08-29 04:00:57 +00007901 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007902 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7903 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007904 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007905 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7906
danielk197731d31b82009-07-13 13:18:07 +00007907 /* Assert that the caller has been consistent. If this cursor was opened
7908 ** expecting an index b-tree, then the caller should be inserting blob
7909 ** keys with no associated data. If the cursor was opened expecting an
7910 ** intkey table, the caller should be inserting integer keys with a
7911 ** blob of associated data. */
7912 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7913
danielk19779c3acf32009-05-02 07:36:49 +00007914 /* Save the positions of any other cursors open on this table.
7915 **
danielk19773509a652009-07-06 18:56:13 +00007916 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007917 ** example, when inserting data into a table with auto-generated integer
7918 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7919 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007920 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007921 ** that the cursor is already where it needs to be and returns without
7922 ** doing any work. To avoid thwarting these optimizations, it is important
7923 ** not to clear the cursor here.
7924 */
drh27fb7462015-06-30 02:47:36 +00007925 if( pCur->curFlags & BTCF_Multiple ){
7926 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7927 if( rc ) return rc;
7928 }
drhd60f4f42012-03-23 14:23:52 +00007929
drhd60f4f42012-03-23 14:23:52 +00007930 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007931 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007932 /* If this is an insert into a table b-tree, invalidate any incrblob
7933 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007934 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007935
7936 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007937 ** new row onto the end, set the "loc" to avoid an unnecessary
7938 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00007939 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7940 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00007941 loc = -1;
7942 }else if( loc==0 ){
7943 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7944 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00007945 }
drh207c8172015-06-29 23:01:32 +00007946 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00007947 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7948 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007949 }
danielk1977b980d2212009-06-22 18:03:51 +00007950 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007951
danielk197771d5d2c2008-09-29 11:49:47 +00007952 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007953 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007954 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007955
drh3a4c1412004-05-09 20:40:11 +00007956 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7957 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7958 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007959 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007960 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007961 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007962 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007963 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007964 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007965 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007966 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007967 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007968 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007969 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007970 rc = sqlite3PagerWrite(pPage->pDbPage);
7971 if( rc ){
7972 goto end_insert;
7973 }
danielk197771d5d2c2008-09-29 11:49:47 +00007974 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007975 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007976 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007977 }
drh9bfdc252014-09-24 02:05:41 +00007978 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007979 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007980 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007981 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007982 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007983 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007984 }else{
drh4b70f112004-05-02 21:12:19 +00007985 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007986 }
drh98add2e2009-07-20 17:11:49 +00007987 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007988 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007989
mistachkin48864df2013-03-21 21:20:32 +00007990 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007991 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007992 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007993 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007994 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007995 ** Previous versions of SQLite called moveToRoot() to move the cursor
7996 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007997 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7998 ** set the cursor state to "invalid". This makes common insert operations
7999 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008000 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008001 ** There is a subtle but important optimization here too. When inserting
8002 ** multiple records into an intkey b-tree using a single cursor (as can
8003 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8004 ** is advantageous to leave the cursor pointing to the last entry in
8005 ** the b-tree if possible. If the cursor is left pointing to the last
8006 ** entry in the table, and the next row inserted has an integer key
8007 ** larger than the largest existing key, it is possible to insert the
8008 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008009 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008010 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008011 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008012 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008013 rc = balance(pCur);
8014
8015 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008016 ** fails. Internal data structure corruption will result otherwise.
8017 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8018 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008019 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008020 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008021 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008022 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008023
drh2e38c322004-09-03 18:38:44 +00008024end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008025 return rc;
8026}
8027
8028/*
drh4b70f112004-05-02 21:12:19 +00008029** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00008030** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00008031*/
drh3aac2dd2004-04-26 14:10:20 +00008032int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00008033 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008034 BtShared *pBt = p->pBt;
8035 int rc; /* Return code */
8036 MemPage *pPage; /* Page to delete cell from */
8037 unsigned char *pCell; /* Pointer to cell to delete */
8038 int iCellIdx; /* Index of cell to delete */
8039 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008040 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00008041
drh1fee73e2007-08-29 04:00:57 +00008042 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008043 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008044 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008045 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008046 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8047 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008048 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8049 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008050
danielk19774dbaa892009-06-16 16:50:22 +00008051 iCellDepth = pCur->iPage;
8052 iCellIdx = pCur->aiIdx[iCellDepth];
8053 pPage = pCur->apPage[iCellDepth];
8054 pCell = findCell(pPage, iCellIdx);
8055
8056 /* If the page containing the entry to delete is not a leaf page, move
8057 ** the cursor to the largest entry in the tree that is smaller than
8058 ** the entry being deleted. This cell will replace the cell being deleted
8059 ** from the internal node. The 'previous' entry is used for this instead
8060 ** of the 'next' entry, as the previous entry is always a part of the
8061 ** sub-tree headed by the child page of the cell being deleted. This makes
8062 ** balancing the tree following the delete operation easier. */
8063 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008064 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008065 rc = sqlite3BtreePrevious(pCur, &notUsed);
8066 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008067 }
8068
8069 /* Save the positions of any other cursors open on this table before
8070 ** making any modifications. Make the page containing the entry to be
8071 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00008072 ** entry and finally remove the cell itself from within the page.
8073 */
drh27fb7462015-06-30 02:47:36 +00008074 if( pCur->curFlags & BTCF_Multiple ){
8075 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8076 if( rc ) return rc;
8077 }
drhd60f4f42012-03-23 14:23:52 +00008078
8079 /* If this is a delete operation to remove a row from a table b-tree,
8080 ** invalidate any incrblob cursors open on the row being deleted. */
8081 if( pCur->pKeyInfo==0 ){
8082 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8083 }
8084
drha4ec1d42009-07-11 13:13:11 +00008085 rc = sqlite3PagerWrite(pPage->pDbPage);
8086 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008087 rc = clearCell(pPage, pCell, &szCell);
8088 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008089 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008090
danielk19774dbaa892009-06-16 16:50:22 +00008091 /* If the cell deleted was not located on a leaf page, then the cursor
8092 ** is currently pointing to the largest entry in the sub-tree headed
8093 ** by the child-page of the cell that was just deleted from an internal
8094 ** node. The cell from the leaf node needs to be moved to the internal
8095 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008096 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008097 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8098 int nCell;
8099 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8100 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008101
danielk19774dbaa892009-06-16 16:50:22 +00008102 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008103 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008104 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008105 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008106 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008107 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008108 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008109 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8110 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008111 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008112 }
danielk19774dbaa892009-06-16 16:50:22 +00008113
8114 /* Balance the tree. If the entry deleted was located on a leaf page,
8115 ** then the cursor still points to that page. In this case the first
8116 ** call to balance() repairs the tree, and the if(...) condition is
8117 ** never true.
8118 **
8119 ** Otherwise, if the entry deleted was on an internal node page, then
8120 ** pCur is pointing to the leaf page from which a cell was removed to
8121 ** replace the cell deleted from the internal node. This is slightly
8122 ** tricky as the leaf node may be underfull, and the internal node may
8123 ** be either under or overfull. In this case run the balancing algorithm
8124 ** on the leaf node first. If the balance proceeds far enough up the
8125 ** tree that we can be sure that any problem in the internal node has
8126 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8127 ** walk the cursor up the tree to the internal node and balance it as
8128 ** well. */
8129 rc = balance(pCur);
8130 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8131 while( pCur->iPage>iCellDepth ){
8132 releasePage(pCur->apPage[pCur->iPage--]);
8133 }
8134 rc = balance(pCur);
8135 }
8136
danielk19776b456a22005-03-21 04:04:02 +00008137 if( rc==SQLITE_OK ){
8138 moveToRoot(pCur);
8139 }
drh5e2f8b92001-05-28 00:41:15 +00008140 return rc;
drh3b7511c2001-05-26 13:15:44 +00008141}
drh8b2f49b2001-06-08 00:21:52 +00008142
8143/*
drhc6b52df2002-01-04 03:09:29 +00008144** Create a new BTree table. Write into *piTable the page
8145** number for the root page of the new table.
8146**
drhab01f612004-05-22 02:55:23 +00008147** The type of type is determined by the flags parameter. Only the
8148** following values of flags are currently in use. Other values for
8149** flags might not work:
8150**
8151** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8152** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008153*/
drhd4187c72010-08-30 22:15:45 +00008154static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008155 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008156 MemPage *pRoot;
8157 Pgno pgnoRoot;
8158 int rc;
drhd4187c72010-08-30 22:15:45 +00008159 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008160
drh1fee73e2007-08-29 04:00:57 +00008161 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008162 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008163 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008164
danielk1977003ba062004-11-04 02:57:33 +00008165#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008166 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008167 if( rc ){
8168 return rc;
8169 }
danielk1977003ba062004-11-04 02:57:33 +00008170#else
danielk1977687566d2004-11-02 12:56:41 +00008171 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008172 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8173 MemPage *pPageMove; /* The page to move to. */
8174
danielk197720713f32007-05-03 11:43:33 +00008175 /* Creating a new table may probably require moving an existing database
8176 ** to make room for the new tables root page. In case this page turns
8177 ** out to be an overflow page, delete all overflow page-map caches
8178 ** held by open cursors.
8179 */
danielk197792d4d7a2007-05-04 12:05:56 +00008180 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008181
danielk1977003ba062004-11-04 02:57:33 +00008182 /* Read the value of meta[3] from the database to determine where the
8183 ** root page of the new table should go. meta[3] is the largest root-page
8184 ** created so far, so the new root-page is (meta[3]+1).
8185 */
danielk1977602b4662009-07-02 07:47:33 +00008186 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008187 pgnoRoot++;
8188
danielk1977599fcba2004-11-08 07:13:13 +00008189 /* The new root-page may not be allocated on a pointer-map page, or the
8190 ** PENDING_BYTE page.
8191 */
drh72190432008-01-31 14:54:43 +00008192 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008193 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008194 pgnoRoot++;
8195 }
drh499e15b2015-05-22 12:37:37 +00008196 assert( pgnoRoot>=3 || CORRUPT_DB );
8197 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008198
8199 /* Allocate a page. The page that currently resides at pgnoRoot will
8200 ** be moved to the allocated page (unless the allocated page happens
8201 ** to reside at pgnoRoot).
8202 */
dan51f0b6d2013-02-22 20:16:34 +00008203 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008204 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008205 return rc;
8206 }
danielk1977003ba062004-11-04 02:57:33 +00008207
8208 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008209 /* pgnoRoot is the page that will be used for the root-page of
8210 ** the new table (assuming an error did not occur). But we were
8211 ** allocated pgnoMove. If required (i.e. if it was not allocated
8212 ** by extending the file), the current page at position pgnoMove
8213 ** is already journaled.
8214 */
drheeb844a2009-08-08 18:01:07 +00008215 u8 eType = 0;
8216 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008217
danf7679ad2013-04-03 11:38:36 +00008218 /* Save the positions of any open cursors. This is required in
8219 ** case they are holding a reference to an xFetch reference
8220 ** corresponding to page pgnoRoot. */
8221 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008222 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008223 if( rc!=SQLITE_OK ){
8224 return rc;
8225 }
danielk1977f35843b2007-04-07 15:03:17 +00008226
8227 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008228 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008229 if( rc!=SQLITE_OK ){
8230 return rc;
8231 }
8232 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008233 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8234 rc = SQLITE_CORRUPT_BKPT;
8235 }
8236 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008237 releasePage(pRoot);
8238 return rc;
8239 }
drhccae6022005-02-26 17:31:26 +00008240 assert( eType!=PTRMAP_ROOTPAGE );
8241 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008242 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008243 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008244
8245 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008246 if( rc!=SQLITE_OK ){
8247 return rc;
8248 }
drhb00fc3b2013-08-21 23:42:32 +00008249 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008250 if( rc!=SQLITE_OK ){
8251 return rc;
8252 }
danielk19773b8a05f2007-03-19 17:44:26 +00008253 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008254 if( rc!=SQLITE_OK ){
8255 releasePage(pRoot);
8256 return rc;
8257 }
8258 }else{
8259 pRoot = pPageMove;
8260 }
8261
danielk197742741be2005-01-08 12:42:39 +00008262 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008263 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008264 if( rc ){
8265 releasePage(pRoot);
8266 return rc;
8267 }
drhbf592832010-03-30 15:51:12 +00008268
8269 /* When the new root page was allocated, page 1 was made writable in
8270 ** order either to increase the database filesize, or to decrement the
8271 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8272 */
8273 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008274 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008275 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008276 releasePage(pRoot);
8277 return rc;
8278 }
danielk197742741be2005-01-08 12:42:39 +00008279
danielk1977003ba062004-11-04 02:57:33 +00008280 }else{
drh4f0c5872007-03-26 22:05:01 +00008281 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008282 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008283 }
8284#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008285 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008286 if( createTabFlags & BTREE_INTKEY ){
8287 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8288 }else{
8289 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8290 }
8291 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008292 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008293 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008294 *piTable = (int)pgnoRoot;
8295 return SQLITE_OK;
8296}
drhd677b3d2007-08-20 22:48:41 +00008297int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8298 int rc;
8299 sqlite3BtreeEnter(p);
8300 rc = btreeCreateTable(p, piTable, flags);
8301 sqlite3BtreeLeave(p);
8302 return rc;
8303}
drh8b2f49b2001-06-08 00:21:52 +00008304
8305/*
8306** Erase the given database page and all its children. Return
8307** the page to the freelist.
8308*/
drh4b70f112004-05-02 21:12:19 +00008309static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008310 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008311 Pgno pgno, /* Page number to clear */
8312 int freePageFlag, /* Deallocate page if true */
8313 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008314){
danielk1977146ba992009-07-22 14:08:13 +00008315 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008316 int rc;
drh4b70f112004-05-02 21:12:19 +00008317 unsigned char *pCell;
8318 int i;
dan8ce71842014-01-14 20:14:09 +00008319 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008320 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008321
drh1fee73e2007-08-29 04:00:57 +00008322 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008323 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008324 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008325 }
drh28f58dd2015-06-27 19:45:03 +00008326 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008327 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008328 if( pPage->bBusy ){
8329 rc = SQLITE_CORRUPT_BKPT;
8330 goto cleardatabasepage_out;
8331 }
8332 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008333 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008334 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008335 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008336 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008337 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008338 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008339 }
drh9bfdc252014-09-24 02:05:41 +00008340 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008341 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008342 }
drhccf46d02015-04-01 13:21:33 +00008343 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008344 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008345 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008346 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008347 assert( pPage->intKey || CORRUPT_DB );
8348 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008349 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008350 }
8351 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008352 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008353 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008354 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008355 }
danielk19776b456a22005-03-21 04:04:02 +00008356
8357cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008358 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008359 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008360 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008361}
8362
8363/*
drhab01f612004-05-22 02:55:23 +00008364** Delete all information from a single table in the database. iTable is
8365** the page number of the root of the table. After this routine returns,
8366** the root page is empty, but still exists.
8367**
8368** This routine will fail with SQLITE_LOCKED if there are any open
8369** read cursors on the table. Open write cursors are moved to the
8370** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008371**
8372** If pnChange is not NULL, then table iTable must be an intkey table. The
8373** integer value pointed to by pnChange is incremented by the number of
8374** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008375*/
danielk1977c7af4842008-10-27 13:59:33 +00008376int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008377 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008378 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008379 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008380 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008381
drhc046e3e2009-07-15 11:26:44 +00008382 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008383
drhc046e3e2009-07-15 11:26:44 +00008384 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008385 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8386 ** is the root of a table b-tree - if it is not, the following call is
8387 ** a no-op). */
8388 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008389 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008390 }
drhd677b3d2007-08-20 22:48:41 +00008391 sqlite3BtreeLeave(p);
8392 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008393}
8394
8395/*
drh079a3072014-03-19 14:10:55 +00008396** Delete all information from the single table that pCur is open on.
8397**
8398** This routine only work for pCur on an ephemeral table.
8399*/
8400int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8401 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8402}
8403
8404/*
drh8b2f49b2001-06-08 00:21:52 +00008405** Erase all information in a table and add the root of the table to
8406** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008407** page 1) is never added to the freelist.
8408**
8409** This routine will fail with SQLITE_LOCKED if there are any open
8410** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008411**
8412** If AUTOVACUUM is enabled and the page at iTable is not the last
8413** root page in the database file, then the last root page
8414** in the database file is moved into the slot formerly occupied by
8415** iTable and that last slot formerly occupied by the last root page
8416** is added to the freelist instead of iTable. In this say, all
8417** root pages are kept at the beginning of the database file, which
8418** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8419** page number that used to be the last root page in the file before
8420** the move. If no page gets moved, *piMoved is set to 0.
8421** The last root page is recorded in meta[3] and the value of
8422** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008423*/
danielk197789d40042008-11-17 14:20:56 +00008424static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008425 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008426 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008427 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008428
drh1fee73e2007-08-29 04:00:57 +00008429 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008430 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008431
danielk1977e6efa742004-11-10 11:55:10 +00008432 /* It is illegal to drop a table if any cursors are open on the
8433 ** database. This is because in auto-vacuum mode the backend may
8434 ** need to move another root-page to fill a gap left by the deleted
8435 ** root page. If an open cursor was using this page a problem would
8436 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008437 **
8438 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008439 */
drhc046e3e2009-07-15 11:26:44 +00008440 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008441 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8442 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008443 }
danielk1977a0bf2652004-11-04 14:30:04 +00008444
drhb00fc3b2013-08-21 23:42:32 +00008445 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008446 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008447 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008448 if( rc ){
8449 releasePage(pPage);
8450 return rc;
8451 }
danielk1977a0bf2652004-11-04 14:30:04 +00008452
drh205f48e2004-11-05 00:43:11 +00008453 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008454
drh4b70f112004-05-02 21:12:19 +00008455 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008456#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008457 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008458 releasePage(pPage);
8459#else
8460 if( pBt->autoVacuum ){
8461 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008462 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008463
8464 if( iTable==maxRootPgno ){
8465 /* If the table being dropped is the table with the largest root-page
8466 ** number in the database, put the root page on the free list.
8467 */
drhc314dc72009-07-21 11:52:34 +00008468 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008469 releasePage(pPage);
8470 if( rc!=SQLITE_OK ){
8471 return rc;
8472 }
8473 }else{
8474 /* The table being dropped does not have the largest root-page
8475 ** number in the database. So move the page that does into the
8476 ** gap left by the deleted root-page.
8477 */
8478 MemPage *pMove;
8479 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008480 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008481 if( rc!=SQLITE_OK ){
8482 return rc;
8483 }
danielk19774c999992008-07-16 18:17:55 +00008484 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008485 releasePage(pMove);
8486 if( rc!=SQLITE_OK ){
8487 return rc;
8488 }
drhfe3313f2009-07-21 19:02:20 +00008489 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008490 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008491 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008492 releasePage(pMove);
8493 if( rc!=SQLITE_OK ){
8494 return rc;
8495 }
8496 *piMoved = maxRootPgno;
8497 }
8498
danielk1977599fcba2004-11-08 07:13:13 +00008499 /* Set the new 'max-root-page' value in the database header. This
8500 ** is the old value less one, less one more if that happens to
8501 ** be a root-page number, less one again if that is the
8502 ** PENDING_BYTE_PAGE.
8503 */
danielk197787a6e732004-11-05 12:58:25 +00008504 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008505 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8506 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008507 maxRootPgno--;
8508 }
danielk1977599fcba2004-11-08 07:13:13 +00008509 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8510
danielk1977aef0bf62005-12-30 16:28:01 +00008511 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008512 }else{
drhc314dc72009-07-21 11:52:34 +00008513 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008514 releasePage(pPage);
8515 }
8516#endif
drh2aa679f2001-06-25 02:11:07 +00008517 }else{
drhc046e3e2009-07-15 11:26:44 +00008518 /* If sqlite3BtreeDropTable was called on page 1.
8519 ** This really never should happen except in a corrupt
8520 ** database.
8521 */
drha34b6762004-05-07 13:30:42 +00008522 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008523 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008524 }
drh8b2f49b2001-06-08 00:21:52 +00008525 return rc;
8526}
drhd677b3d2007-08-20 22:48:41 +00008527int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8528 int rc;
8529 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008530 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008531 sqlite3BtreeLeave(p);
8532 return rc;
8533}
drh8b2f49b2001-06-08 00:21:52 +00008534
drh001bbcb2003-03-19 03:14:00 +00008535
drh8b2f49b2001-06-08 00:21:52 +00008536/*
danielk1977602b4662009-07-02 07:47:33 +00008537** This function may only be called if the b-tree connection already
8538** has a read or write transaction open on the database.
8539**
drh23e11ca2004-05-04 17:27:28 +00008540** Read the meta-information out of a database file. Meta[0]
8541** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008542** through meta[15] are available for use by higher layers. Meta[0]
8543** is read-only, the others are read/write.
8544**
8545** The schema layer numbers meta values differently. At the schema
8546** layer (and the SetCookie and ReadCookie opcodes) the number of
8547** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008548**
8549** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8550** of reading the value out of the header, it instead loads the "DataVersion"
8551** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8552** database file. It is a number computed by the pager. But its access
8553** pattern is the same as header meta values, and so it is convenient to
8554** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008555*/
danielk1977602b4662009-07-02 07:47:33 +00008556void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008557 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008558
drhd677b3d2007-08-20 22:48:41 +00008559 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008560 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008561 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008562 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008563 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008564
drh91618562014-12-19 19:28:02 +00008565 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008566 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008567 }else{
8568 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8569 }
drhae157872004-08-14 19:20:09 +00008570
danielk1977602b4662009-07-02 07:47:33 +00008571 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8572 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008573#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008574 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8575 pBt->btsFlags |= BTS_READ_ONLY;
8576 }
danielk1977003ba062004-11-04 02:57:33 +00008577#endif
drhae157872004-08-14 19:20:09 +00008578
drhd677b3d2007-08-20 22:48:41 +00008579 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008580}
8581
8582/*
drh23e11ca2004-05-04 17:27:28 +00008583** Write meta-information back into the database. Meta[0] is
8584** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008585*/
danielk1977aef0bf62005-12-30 16:28:01 +00008586int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8587 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008588 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008589 int rc;
drh23e11ca2004-05-04 17:27:28 +00008590 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008591 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008592 assert( p->inTrans==TRANS_WRITE );
8593 assert( pBt->pPage1!=0 );
8594 pP1 = pBt->pPage1->aData;
8595 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8596 if( rc==SQLITE_OK ){
8597 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008598#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008599 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008600 assert( pBt->autoVacuum || iMeta==0 );
8601 assert( iMeta==0 || iMeta==1 );
8602 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008603 }
drh64022502009-01-09 14:11:04 +00008604#endif
drh5df72a52002-06-06 23:16:05 +00008605 }
drhd677b3d2007-08-20 22:48:41 +00008606 sqlite3BtreeLeave(p);
8607 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008608}
drh8c42ca92001-06-22 19:15:00 +00008609
danielk1977a5533162009-02-24 10:01:51 +00008610#ifndef SQLITE_OMIT_BTREECOUNT
8611/*
8612** The first argument, pCur, is a cursor opened on some b-tree. Count the
8613** number of entries in the b-tree and write the result to *pnEntry.
8614**
8615** SQLITE_OK is returned if the operation is successfully executed.
8616** Otherwise, if an error is encountered (i.e. an IO error or database
8617** corruption) an SQLite error code is returned.
8618*/
8619int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8620 i64 nEntry = 0; /* Value to return in *pnEntry */
8621 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008622
8623 if( pCur->pgnoRoot==0 ){
8624 *pnEntry = 0;
8625 return SQLITE_OK;
8626 }
danielk1977a5533162009-02-24 10:01:51 +00008627 rc = moveToRoot(pCur);
8628
8629 /* Unless an error occurs, the following loop runs one iteration for each
8630 ** page in the B-Tree structure (not including overflow pages).
8631 */
8632 while( rc==SQLITE_OK ){
8633 int iIdx; /* Index of child node in parent */
8634 MemPage *pPage; /* Current page of the b-tree */
8635
8636 /* If this is a leaf page or the tree is not an int-key tree, then
8637 ** this page contains countable entries. Increment the entry counter
8638 ** accordingly.
8639 */
8640 pPage = pCur->apPage[pCur->iPage];
8641 if( pPage->leaf || !pPage->intKey ){
8642 nEntry += pPage->nCell;
8643 }
8644
8645 /* pPage is a leaf node. This loop navigates the cursor so that it
8646 ** points to the first interior cell that it points to the parent of
8647 ** the next page in the tree that has not yet been visited. The
8648 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8649 ** of the page, or to the number of cells in the page if the next page
8650 ** to visit is the right-child of its parent.
8651 **
8652 ** If all pages in the tree have been visited, return SQLITE_OK to the
8653 ** caller.
8654 */
8655 if( pPage->leaf ){
8656 do {
8657 if( pCur->iPage==0 ){
8658 /* All pages of the b-tree have been visited. Return successfully. */
8659 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008660 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008661 }
danielk197730548662009-07-09 05:07:37 +00008662 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008663 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8664
8665 pCur->aiIdx[pCur->iPage]++;
8666 pPage = pCur->apPage[pCur->iPage];
8667 }
8668
8669 /* Descend to the child node of the cell that the cursor currently
8670 ** points at. This is the right-child if (iIdx==pPage->nCell).
8671 */
8672 iIdx = pCur->aiIdx[pCur->iPage];
8673 if( iIdx==pPage->nCell ){
8674 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8675 }else{
8676 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8677 }
8678 }
8679
shanebe217792009-03-05 04:20:31 +00008680 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008681 return rc;
8682}
8683#endif
drhdd793422001-06-28 01:54:48 +00008684
drhdd793422001-06-28 01:54:48 +00008685/*
drh5eddca62001-06-30 21:53:53 +00008686** Return the pager associated with a BTree. This routine is used for
8687** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008688*/
danielk1977aef0bf62005-12-30 16:28:01 +00008689Pager *sqlite3BtreePager(Btree *p){
8690 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008691}
drh5eddca62001-06-30 21:53:53 +00008692
drhb7f91642004-10-31 02:22:47 +00008693#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008694/*
8695** Append a message to the error message string.
8696*/
drh2e38c322004-09-03 18:38:44 +00008697static void checkAppendMsg(
8698 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008699 const char *zFormat,
8700 ...
8701){
8702 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008703 if( !pCheck->mxErr ) return;
8704 pCheck->mxErr--;
8705 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008706 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008707 if( pCheck->errMsg.nChar ){
8708 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008709 }
drh867db832014-09-26 02:41:05 +00008710 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008711 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008712 }
8713 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8714 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008715 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008716 pCheck->mallocFailed = 1;
8717 }
drh5eddca62001-06-30 21:53:53 +00008718}
drhb7f91642004-10-31 02:22:47 +00008719#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008720
drhb7f91642004-10-31 02:22:47 +00008721#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008722
8723/*
8724** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8725** corresponds to page iPg is already set.
8726*/
8727static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8728 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8729 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8730}
8731
8732/*
8733** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8734*/
8735static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8736 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8737 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8738}
8739
8740
drh5eddca62001-06-30 21:53:53 +00008741/*
8742** Add 1 to the reference count for page iPage. If this is the second
8743** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008744** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008745** if this is the first reference to the page.
8746**
8747** Also check that the page number is in bounds.
8748*/
drh867db832014-09-26 02:41:05 +00008749static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008750 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008751 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008752 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008753 return 1;
8754 }
dan1235bb12012-04-03 17:43:28 +00008755 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008756 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008757 return 1;
8758 }
dan1235bb12012-04-03 17:43:28 +00008759 setPageReferenced(pCheck, iPage);
8760 return 0;
drh5eddca62001-06-30 21:53:53 +00008761}
8762
danielk1977afcdd022004-10-31 16:25:42 +00008763#ifndef SQLITE_OMIT_AUTOVACUUM
8764/*
8765** Check that the entry in the pointer-map for page iChild maps to
8766** page iParent, pointer type ptrType. If not, append an error message
8767** to pCheck.
8768*/
8769static void checkPtrmap(
8770 IntegrityCk *pCheck, /* Integrity check context */
8771 Pgno iChild, /* Child page number */
8772 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008773 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008774){
8775 int rc;
8776 u8 ePtrmapType;
8777 Pgno iPtrmapParent;
8778
8779 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8780 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008781 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008782 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008783 return;
8784 }
8785
8786 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008787 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008788 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8789 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8790 }
8791}
8792#endif
8793
drh5eddca62001-06-30 21:53:53 +00008794/*
8795** Check the integrity of the freelist or of an overflow page list.
8796** Verify that the number of pages on the list is N.
8797*/
drh30e58752002-03-02 20:41:57 +00008798static void checkList(
8799 IntegrityCk *pCheck, /* Integrity checking context */
8800 int isFreeList, /* True for a freelist. False for overflow page list */
8801 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008802 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008803){
8804 int i;
drh3a4c1412004-05-09 20:40:11 +00008805 int expected = N;
8806 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008807 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008808 DbPage *pOvflPage;
8809 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008810 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008811 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008812 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008813 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008814 break;
8815 }
drh867db832014-09-26 02:41:05 +00008816 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008817 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008818 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008819 break;
8820 }
danielk19773b8a05f2007-03-19 17:44:26 +00008821 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008822 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008823 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008824#ifndef SQLITE_OMIT_AUTOVACUUM
8825 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008826 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008827 }
8828#endif
drh43b18e12010-08-17 19:40:08 +00008829 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008830 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008831 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008832 N--;
8833 }else{
8834 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008835 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008836#ifndef SQLITE_OMIT_AUTOVACUUM
8837 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008838 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008839 }
8840#endif
drh867db832014-09-26 02:41:05 +00008841 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008842 }
8843 N -= n;
drh30e58752002-03-02 20:41:57 +00008844 }
drh30e58752002-03-02 20:41:57 +00008845 }
danielk1977afcdd022004-10-31 16:25:42 +00008846#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008847 else{
8848 /* If this database supports auto-vacuum and iPage is not the last
8849 ** page in this overflow list, check that the pointer-map entry for
8850 ** the following page matches iPage.
8851 */
8852 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008853 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008854 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008855 }
danielk1977afcdd022004-10-31 16:25:42 +00008856 }
8857#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008858 iPage = get4byte(pOvflData);
8859 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008860 }
8861}
drhb7f91642004-10-31 02:22:47 +00008862#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008863
drh67731a92015-04-16 11:56:03 +00008864/*
8865** An implementation of a min-heap.
8866**
8867** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008868** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008869** and aHeap[N*2+1].
8870**
8871** The heap property is this: Every node is less than or equal to both
8872** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008873** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008874**
8875** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8876** the heap, preserving the heap property. The btreeHeapPull() routine
8877** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008878** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008879** property.
8880**
8881** This heap is used for cell overlap and coverage testing. Each u32
8882** entry represents the span of a cell or freeblock on a btree page.
8883** The upper 16 bits are the index of the first byte of a range and the
8884** lower 16 bits are the index of the last byte of that range.
8885*/
8886static void btreeHeapInsert(u32 *aHeap, u32 x){
8887 u32 j, i = ++aHeap[0];
8888 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008889 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008890 x = aHeap[j];
8891 aHeap[j] = aHeap[i];
8892 aHeap[i] = x;
8893 i = j;
8894 }
8895}
8896static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8897 u32 j, i, x;
8898 if( (x = aHeap[0])==0 ) return 0;
8899 *pOut = aHeap[1];
8900 aHeap[1] = aHeap[x];
8901 aHeap[x] = 0xffffffff;
8902 aHeap[0]--;
8903 i = 1;
8904 while( (j = i*2)<=aHeap[0] ){
8905 if( aHeap[j]>aHeap[j+1] ) j++;
8906 if( aHeap[i]<aHeap[j] ) break;
8907 x = aHeap[i];
8908 aHeap[i] = aHeap[j];
8909 aHeap[j] = x;
8910 i = j;
8911 }
8912 return 1;
8913}
8914
drhb7f91642004-10-31 02:22:47 +00008915#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008916/*
8917** Do various sanity checks on a single page of a tree. Return
8918** the tree depth. Root pages return 0. Parents of root pages
8919** return 1, and so forth.
8920**
8921** These checks are done:
8922**
8923** 1. Make sure that cells and freeblocks do not overlap
8924** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00008925** 2. Make sure integer cell keys are in order.
8926** 3. Check the integrity of overflow pages.
8927** 4. Recursively call checkTreePage on all children.
8928** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00008929*/
8930static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008931 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008932 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00008933 i64 *piMinKey, /* Write minimum integer primary key here */
8934 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00008935){
drhcbc6b712015-07-02 16:17:30 +00008936 MemPage *pPage = 0; /* The page being analyzed */
8937 int i; /* Loop counter */
8938 int rc; /* Result code from subroutine call */
8939 int depth = -1, d2; /* Depth of a subtree */
8940 int pgno; /* Page number */
8941 int nFrag; /* Number of fragmented bytes on the page */
8942 int hdr; /* Offset to the page header */
8943 int cellStart; /* Offset to the start of the cell pointer array */
8944 int nCell; /* Number of cells */
8945 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
8946 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
8947 ** False if IPK must be strictly less than maxKey */
8948 u8 *data; /* Page content */
8949 u8 *pCell; /* Cell content */
8950 u8 *pCellIdx; /* Next element of the cell pointer array */
8951 BtShared *pBt; /* The BtShared object that owns pPage */
8952 u32 pc; /* Address of a cell */
8953 u32 usableSize; /* Usable size of the page */
8954 u32 contentOffset; /* Offset to the start of the cell content area */
8955 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00008956 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00008957 const char *saved_zPfx = pCheck->zPfx;
8958 int saved_v1 = pCheck->v1;
8959 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00008960 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00008961
drh5eddca62001-06-30 21:53:53 +00008962 /* Check that the page exists
8963 */
drhd9cb6ac2005-10-20 07:28:17 +00008964 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008965 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008966 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008967 if( checkRef(pCheck, iPage) ) return 0;
8968 pCheck->zPfx = "Page %d: ";
8969 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008970 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008971 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008972 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008973 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008974 }
danielk197793caf5a2009-07-11 06:55:33 +00008975
8976 /* Clear MemPage.isInit to make sure the corruption detection code in
8977 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00008978 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00008979 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008980 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008981 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008982 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008983 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00008984 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008985 }
drhcbc6b712015-07-02 16:17:30 +00008986 data = pPage->aData;
8987 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00008988
drhcbc6b712015-07-02 16:17:30 +00008989 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00008990 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00008991 contentOffset = get2byteNotZero(&data[hdr+5]);
8992 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
8993
8994 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
8995 ** number of cells on the page. */
8996 nCell = get2byte(&data[hdr+3]);
8997 assert( pPage->nCell==nCell );
8998
8999 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9000 ** immediately follows the b-tree page header. */
9001 cellStart = hdr + 12 - 4*pPage->leaf;
9002 assert( pPage->aCellIdx==&data[cellStart] );
9003 pCellIdx = &data[cellStart + 2*(nCell-1)];
9004
9005 if( !pPage->leaf ){
9006 /* Analyze the right-child page of internal pages */
9007 pgno = get4byte(&data[hdr+8]);
9008#ifndef SQLITE_OMIT_AUTOVACUUM
9009 if( pBt->autoVacuum ){
9010 pCheck->zPfx = "On page %d at right child: ";
9011 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9012 }
9013#endif
9014 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9015 keyCanBeEqual = 0;
9016 }else{
9017 /* For leaf pages, the coverage check will occur in the same loop
9018 ** as the other cell checks, so initialize the heap. */
9019 heap = pCheck->heap;
9020 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009021 }
9022
9023 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9024 ** integer offsets to the cell contents. */
9025 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009026 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009027
drhcbc6b712015-07-02 16:17:30 +00009028 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009029 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009030 assert( pCellIdx==&data[cellStart + i*2] );
9031 pc = get2byteAligned(pCellIdx);
9032 pCellIdx -= 2;
9033 if( pc<contentOffset || pc>usableSize-4 ){
9034 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9035 pc, contentOffset, usableSize-4);
9036 doCoverageCheck = 0;
9037 continue;
shaneh195475d2010-02-19 04:28:08 +00009038 }
drhcbc6b712015-07-02 16:17:30 +00009039 pCell = &data[pc];
9040 pPage->xParseCell(pPage, pCell, &info);
9041 if( pc+info.nSize>usableSize ){
9042 checkAppendMsg(pCheck, "Extends off end of page");
9043 doCoverageCheck = 0;
9044 continue;
9045 }
9046
9047 /* Check for integer primary key out of range */
9048 if( pPage->intKey ){
9049 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9050 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9051 }
9052 maxKey = info.nKey;
9053 }
9054
9055 /* Check the content overflow list */
9056 if( info.nPayload>info.nLocal ){
9057 int nPage; /* Number of pages on the overflow chain */
9058 Pgno pgnoOvfl; /* First page of the overflow chain */
9059 assert( pc + info.iOverflow <= usableSize );
9060 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9061 pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk1977afcdd022004-10-31 16:25:42 +00009062#ifndef SQLITE_OMIT_AUTOVACUUM
9063 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009064 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009065 }
9066#endif
drh867db832014-09-26 02:41:05 +00009067 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009068 }
9069
drhda200cc2004-05-09 11:51:38 +00009070 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009071 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009072 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009073#ifndef SQLITE_OMIT_AUTOVACUUM
9074 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009075 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009076 }
9077#endif
drhcbc6b712015-07-02 16:17:30 +00009078 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9079 keyCanBeEqual = 0;
9080 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009081 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009082 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009083 }
drhcbc6b712015-07-02 16:17:30 +00009084 }else{
9085 /* Populate the coverage-checking heap for leaf pages */
9086 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009087 }
drh5eddca62001-06-30 21:53:53 +00009088 }
drhcbc6b712015-07-02 16:17:30 +00009089 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009090
drh5eddca62001-06-30 21:53:53 +00009091 /* Check for complete coverage of the page
9092 */
drh867db832014-09-26 02:41:05 +00009093 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009094 if( doCoverageCheck && pCheck->mxErr>0 ){
9095 /* For leaf pages, the min-heap has already been initialized and the
9096 ** cells have already been inserted. But for internal pages, that has
9097 ** not yet been done, so do it now */
9098 if( !pPage->leaf ){
9099 heap = pCheck->heap;
9100 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009101 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009102 u32 size;
9103 pc = get2byteAligned(&data[cellStart+i*2]);
9104 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009105 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009106 }
drh2e38c322004-09-03 18:38:44 +00009107 }
drhcbc6b712015-07-02 16:17:30 +00009108 /* Add the freeblocks to the min-heap
9109 **
9110 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009111 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009112 ** freeblocks on the page.
9113 */
drh8c2bbb62009-07-10 02:52:20 +00009114 i = get2byte(&data[hdr+1]);
9115 while( i>0 ){
9116 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009117 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009118 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009119 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009120 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009121 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9122 ** big-endian integer which is the offset in the b-tree page of the next
9123 ** freeblock in the chain, or zero if the freeblock is the last on the
9124 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009125 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009126 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9127 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009128 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009129 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009130 i = j;
drh2e38c322004-09-03 18:38:44 +00009131 }
drhcbc6b712015-07-02 16:17:30 +00009132 /* Analyze the min-heap looking for overlap between cells and/or
9133 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009134 **
9135 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9136 ** There is an implied first entry the covers the page header, the cell
9137 ** pointer index, and the gap between the cell pointer index and the start
9138 ** of cell content.
9139 **
9140 ** The loop below pulls entries from the min-heap in order and compares
9141 ** the start_address against the previous end_address. If there is an
9142 ** overlap, that means bytes are used multiple times. If there is a gap,
9143 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009144 */
9145 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009146 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009147 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009148 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009149 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009150 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009151 break;
drh67731a92015-04-16 11:56:03 +00009152 }else{
drhcbc6b712015-07-02 16:17:30 +00009153 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009154 prev = x;
drh2e38c322004-09-03 18:38:44 +00009155 }
9156 }
drhcbc6b712015-07-02 16:17:30 +00009157 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009158 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9159 ** is stored in the fifth field of the b-tree page header.
9160 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9161 ** number of fragmented free bytes within the cell content area.
9162 */
drhcbc6b712015-07-02 16:17:30 +00009163 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009164 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009165 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009166 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009167 }
9168 }
drh867db832014-09-26 02:41:05 +00009169
9170end_of_check:
drh72e191e2015-07-04 11:14:20 +00009171 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009172 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009173 pCheck->zPfx = saved_zPfx;
9174 pCheck->v1 = saved_v1;
9175 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009176 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009177}
drhb7f91642004-10-31 02:22:47 +00009178#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009179
drhb7f91642004-10-31 02:22:47 +00009180#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009181/*
9182** This routine does a complete check of the given BTree file. aRoot[] is
9183** an array of pages numbers were each page number is the root page of
9184** a table. nRoot is the number of entries in aRoot.
9185**
danielk19773509a652009-07-06 18:56:13 +00009186** A read-only or read-write transaction must be opened before calling
9187** this function.
9188**
drhc890fec2008-08-01 20:10:08 +00009189** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009190** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009191** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009192** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009193*/
drh1dcdbc02007-01-27 02:24:54 +00009194char *sqlite3BtreeIntegrityCheck(
9195 Btree *p, /* The btree to be checked */
9196 int *aRoot, /* An array of root pages numbers for individual trees */
9197 int nRoot, /* Number of entries in aRoot[] */
9198 int mxErr, /* Stop reporting errors after this many */
9199 int *pnErr /* Write number of errors seen to this variable */
9200){
danielk197789d40042008-11-17 14:20:56 +00009201 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009202 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009203 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009204 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009205 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009206 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009207
drhd677b3d2007-08-20 22:48:41 +00009208 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009209 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009210 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009211 sCheck.pBt = pBt;
9212 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009213 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009214 sCheck.mxErr = mxErr;
9215 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009216 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009217 sCheck.zPfx = 0;
9218 sCheck.v1 = 0;
9219 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009220 sCheck.aPgRef = 0;
9221 sCheck.heap = 0;
9222 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009223 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009224 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009225 }
dan1235bb12012-04-03 17:43:28 +00009226
9227 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9228 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009229 sCheck.mallocFailed = 1;
9230 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009231 }
drhe05b3f82015-07-01 17:53:49 +00009232 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9233 if( sCheck.heap==0 ){
9234 sCheck.mallocFailed = 1;
9235 goto integrity_ck_cleanup;
9236 }
9237
drh42cac6d2004-11-20 20:31:11 +00009238 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009239 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009240
9241 /* Check the integrity of the freelist
9242 */
drh867db832014-09-26 02:41:05 +00009243 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009244 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009245 get4byte(&pBt->pPage1->aData[36]));
9246 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009247
9248 /* Check all the tables.
9249 */
drhcbc6b712015-07-02 16:17:30 +00009250 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9251 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009252 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009253 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009254 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009255#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009256 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009257 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009258 }
9259#endif
drhcbc6b712015-07-02 16:17:30 +00009260 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009261 }
drhcbc6b712015-07-02 16:17:30 +00009262 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009263
9264 /* Make sure every page in the file is referenced
9265 */
drh1dcdbc02007-01-27 02:24:54 +00009266 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009267#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009268 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009269 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009270 }
danielk1977afcdd022004-10-31 16:25:42 +00009271#else
9272 /* If the database supports auto-vacuum, make sure no tables contain
9273 ** references to pointer-map pages.
9274 */
dan1235bb12012-04-03 17:43:28 +00009275 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009276 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009277 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009278 }
dan1235bb12012-04-03 17:43:28 +00009279 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009280 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009281 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009282 }
9283#endif
drh5eddca62001-06-30 21:53:53 +00009284 }
9285
drh5eddca62001-06-30 21:53:53 +00009286 /* Clean up and report errors.
9287 */
drhe05b3f82015-07-01 17:53:49 +00009288integrity_ck_cleanup:
9289 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009290 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009291 if( sCheck.mallocFailed ){
9292 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009293 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009294 }
drh1dcdbc02007-01-27 02:24:54 +00009295 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009296 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009297 /* Make sure this analysis did not leave any unref() pages. */
9298 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9299 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009300 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009301}
drhb7f91642004-10-31 02:22:47 +00009302#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009303
drh73509ee2003-04-06 20:44:45 +00009304/*
drhd4e0bb02012-05-27 01:19:04 +00009305** Return the full pathname of the underlying database file. Return
9306** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009307**
9308** The pager filename is invariant as long as the pager is
9309** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009310*/
danielk1977aef0bf62005-12-30 16:28:01 +00009311const char *sqlite3BtreeGetFilename(Btree *p){
9312 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009313 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009314}
9315
9316/*
danielk19775865e3d2004-06-14 06:03:57 +00009317** Return the pathname of the journal file for this database. The return
9318** value of this routine is the same regardless of whether the journal file
9319** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009320**
9321** The pager journal filename is invariant as long as the pager is
9322** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009323*/
danielk1977aef0bf62005-12-30 16:28:01 +00009324const char *sqlite3BtreeGetJournalname(Btree *p){
9325 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009326 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009327}
9328
danielk19771d850a72004-05-31 08:26:49 +00009329/*
9330** Return non-zero if a transaction is active.
9331*/
danielk1977aef0bf62005-12-30 16:28:01 +00009332int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009333 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009334 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009335}
9336
dana550f2d2010-08-02 10:47:05 +00009337#ifndef SQLITE_OMIT_WAL
9338/*
9339** Run a checkpoint on the Btree passed as the first argument.
9340**
9341** Return SQLITE_LOCKED if this or any other connection has an open
9342** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009343**
dancdc1f042010-11-18 12:11:05 +00009344** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009345*/
dancdc1f042010-11-18 12:11:05 +00009346int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009347 int rc = SQLITE_OK;
9348 if( p ){
9349 BtShared *pBt = p->pBt;
9350 sqlite3BtreeEnter(p);
9351 if( pBt->inTransaction!=TRANS_NONE ){
9352 rc = SQLITE_LOCKED;
9353 }else{
dancdc1f042010-11-18 12:11:05 +00009354 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009355 }
9356 sqlite3BtreeLeave(p);
9357 }
9358 return rc;
9359}
9360#endif
9361
danielk19771d850a72004-05-31 08:26:49 +00009362/*
danielk19772372c2b2006-06-27 16:34:56 +00009363** Return non-zero if a read (or write) transaction is active.
9364*/
9365int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009366 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009367 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009368 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009369}
9370
danielk197704103022009-02-03 16:51:24 +00009371int sqlite3BtreeIsInBackup(Btree *p){
9372 assert( p );
9373 assert( sqlite3_mutex_held(p->db->mutex) );
9374 return p->nBackup!=0;
9375}
9376
danielk19772372c2b2006-06-27 16:34:56 +00009377/*
danielk1977da184232006-01-05 11:34:32 +00009378** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009379** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009380** purposes (for example, to store a high-level schema associated with
9381** the shared-btree). The btree layer manages reference counting issues.
9382**
9383** The first time this is called on a shared-btree, nBytes bytes of memory
9384** are allocated, zeroed, and returned to the caller. For each subsequent
9385** call the nBytes parameter is ignored and a pointer to the same blob
9386** of memory returned.
9387**
danielk1977171bfed2008-06-23 09:50:50 +00009388** If the nBytes parameter is 0 and the blob of memory has not yet been
9389** allocated, a null pointer is returned. If the blob has already been
9390** allocated, it is returned as normal.
9391**
danielk1977da184232006-01-05 11:34:32 +00009392** Just before the shared-btree is closed, the function passed as the
9393** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009394** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009395** on the memory, the btree layer does that.
9396*/
9397void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9398 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009399 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009400 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009401 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009402 pBt->xFreeSchema = xFree;
9403 }
drh27641702007-08-22 02:56:42 +00009404 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009405 return pBt->pSchema;
9406}
9407
danielk1977c87d34d2006-01-06 13:00:28 +00009408/*
danielk1977404ca072009-03-16 13:19:36 +00009409** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9410** btree as the argument handle holds an exclusive lock on the
9411** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009412*/
9413int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009414 int rc;
drhe5fe6902007-12-07 18:55:28 +00009415 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009416 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009417 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9418 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009419 sqlite3BtreeLeave(p);
9420 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009421}
9422
drha154dcd2006-03-22 22:10:07 +00009423
9424#ifndef SQLITE_OMIT_SHARED_CACHE
9425/*
9426** Obtain a lock on the table whose root page is iTab. The
9427** lock is a write lock if isWritelock is true or a read lock
9428** if it is false.
9429*/
danielk1977c00da102006-01-07 13:21:04 +00009430int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009431 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009432 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009433 if( p->sharable ){
9434 u8 lockType = READ_LOCK + isWriteLock;
9435 assert( READ_LOCK+1==WRITE_LOCK );
9436 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009437
drh6a9ad3d2008-04-02 16:29:30 +00009438 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009439 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009440 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009441 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009442 }
9443 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009444 }
9445 return rc;
9446}
drha154dcd2006-03-22 22:10:07 +00009447#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009448
danielk1977b4e9af92007-05-01 17:49:49 +00009449#ifndef SQLITE_OMIT_INCRBLOB
9450/*
9451** Argument pCsr must be a cursor opened for writing on an
9452** INTKEY table currently pointing at a valid table entry.
9453** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009454**
9455** Only the data content may only be modified, it is not possible to
9456** change the length of the data stored. If this function is called with
9457** parameters that attempt to write past the end of the existing data,
9458** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009459*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009460int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009461 int rc;
drh1fee73e2007-08-29 04:00:57 +00009462 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009463 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009464 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009465
danielk1977c9000e62009-07-08 13:55:28 +00009466 rc = restoreCursorPosition(pCsr);
9467 if( rc!=SQLITE_OK ){
9468 return rc;
9469 }
danielk19773588ceb2008-06-10 17:30:26 +00009470 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9471 if( pCsr->eState!=CURSOR_VALID ){
9472 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009473 }
9474
dan227a1c42013-04-03 11:17:39 +00009475 /* Save the positions of all other cursors open on this table. This is
9476 ** required in case any of them are holding references to an xFetch
9477 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009478 **
drh3f387402014-09-24 01:23:00 +00009479 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009480 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9481 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009482 */
drh370c9f42013-04-03 20:04:04 +00009483 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9484 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009485
danielk1977c9000e62009-07-08 13:55:28 +00009486 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009487 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009488 ** (b) there is a read/write transaction open,
9489 ** (c) the connection holds a write-lock on the table (if required),
9490 ** (d) there are no conflicting read-locks, and
9491 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009492 */
drh036dbec2014-03-11 23:40:44 +00009493 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009494 return SQLITE_READONLY;
9495 }
drhc9166342012-01-05 23:32:06 +00009496 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9497 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009498 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9499 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009500 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009501
drhfb192682009-07-11 18:26:28 +00009502 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009503}
danielk19772dec9702007-05-02 16:48:37 +00009504
9505/*
dan5a500af2014-03-11 20:33:04 +00009506** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009507*/
dan5a500af2014-03-11 20:33:04 +00009508void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009509 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009510 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009511}
danielk1977b4e9af92007-05-01 17:49:49 +00009512#endif
dane04dc882010-04-20 18:53:15 +00009513
9514/*
9515** Set both the "read version" (single byte at byte offset 18) and
9516** "write version" (single byte at byte offset 19) fields in the database
9517** header to iVersion.
9518*/
9519int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9520 BtShared *pBt = pBtree->pBt;
9521 int rc; /* Return code */
9522
dane04dc882010-04-20 18:53:15 +00009523 assert( iVersion==1 || iVersion==2 );
9524
danb9780022010-04-21 18:37:57 +00009525 /* If setting the version fields to 1, do not automatically open the
9526 ** WAL connection, even if the version fields are currently set to 2.
9527 */
drhc9166342012-01-05 23:32:06 +00009528 pBt->btsFlags &= ~BTS_NO_WAL;
9529 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009530
9531 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009532 if( rc==SQLITE_OK ){
9533 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009534 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009535 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009536 if( rc==SQLITE_OK ){
9537 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9538 if( rc==SQLITE_OK ){
9539 aData[18] = (u8)iVersion;
9540 aData[19] = (u8)iVersion;
9541 }
9542 }
9543 }
dane04dc882010-04-20 18:53:15 +00009544 }
9545
drhc9166342012-01-05 23:32:06 +00009546 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009547 return rc;
9548}
dan428c2182012-08-06 18:50:11 +00009549
9550/*
drhe0997b32015-03-20 14:57:50 +00009551** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009552*/
9553void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009554 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009555 pCsr->hints = mask;
9556}
drh781597f2014-05-21 08:21:07 +00009557
drhe0997b32015-03-20 14:57:50 +00009558#ifdef SQLITE_DEBUG
9559/*
9560** Return true if the cursor has a hint specified. This routine is
9561** only used from within assert() statements
9562*/
9563int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9564 return (pCsr->hints & mask)!=0;
9565}
9566#endif
9567
drh781597f2014-05-21 08:21:07 +00009568/*
9569** Return true if the given Btree is read-only.
9570*/
9571int sqlite3BtreeIsReadonly(Btree *p){
9572 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9573}
drhdef68892014-11-04 12:11:23 +00009574
9575/*
9576** Return the size of the header added to each page by this module.
9577*/
drh37c057b2014-12-30 00:57:29 +00009578int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }