blob: e28a97c846af0ed5fd2e15bb32b0d76af1d2053b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000687 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000697 if( pIdxKey->nField==0 ){
698 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
699 return SQLITE_CORRUPT_BKPT;
700 }
danielk19773509a652009-07-06 18:56:13 +0000701 }else{
702 pIdxKey = 0;
703 }
704 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000705 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000706 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000707 }
708 return rc;
709}
710
711/*
drh980b1a72006-08-16 16:42:48 +0000712** Restore the cursor to the position it was in (or as close to as possible)
713** when saveCursorPosition() was called. Note that this call deletes the
714** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000715** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000716** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000717*/
danielk197730548662009-07-09 05:07:37 +0000718static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000719 int rc;
drh1fee73e2007-08-29 04:00:57 +0000720 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000721 assert( pCur->eState>=CURSOR_REQUIRESEEK );
722 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000723 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000724 }
drh980b1a72006-08-16 16:42:48 +0000725 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000726 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000727 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000728 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000729 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000730 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000731 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
732 pCur->eState = CURSOR_SKIPNEXT;
733 }
drh980b1a72006-08-16 16:42:48 +0000734 }
735 return rc;
736}
737
drha3460582008-07-11 21:02:53 +0000738#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000739 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000740 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000741 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000742
drha3460582008-07-11 21:02:53 +0000743/*
744** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000745** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000746** at is deleted out from under them.
747**
748** This routine returns an error code if something goes wrong. The
749** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
750*/
751int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
752 int rc;
753
754 rc = restoreCursorPosition(pCur);
755 if( rc ){
756 *pHasMoved = 1;
757 return rc;
758 }
drh9b47ee32013-08-20 03:13:51 +0000759 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drha3460582008-07-11 21:02:53 +0000760 *pHasMoved = 1;
761 }else{
762 *pHasMoved = 0;
763 }
764 return SQLITE_OK;
765}
766
danielk1977599fcba2004-11-08 07:13:13 +0000767#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000768/*
drha3152892007-05-05 11:48:52 +0000769** Given a page number of a regular database page, return the page
770** number for the pointer-map page that contains the entry for the
771** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000772**
773** Return 0 (not a valid page) for pgno==1 since there is
774** no pointer map associated with page 1. The integrity_check logic
775** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000776*/
danielk1977266664d2006-02-10 08:24:21 +0000777static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000778 int nPagesPerMapPage;
779 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000780 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000781 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000782 nPagesPerMapPage = (pBt->usableSize/5)+1;
783 iPtrMap = (pgno-2)/nPagesPerMapPage;
784 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000785 if( ret==PENDING_BYTE_PAGE(pBt) ){
786 ret++;
787 }
788 return ret;
789}
danielk1977a19df672004-11-03 11:37:07 +0000790
danielk1977afcdd022004-10-31 16:25:42 +0000791/*
danielk1977afcdd022004-10-31 16:25:42 +0000792** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000793**
794** This routine updates the pointer map entry for page number 'key'
795** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000796**
797** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
798** a no-op. If an error occurs, the appropriate error code is written
799** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000800*/
drh98add2e2009-07-20 17:11:49 +0000801static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000802 DbPage *pDbPage; /* The pointer map page */
803 u8 *pPtrmap; /* The pointer map data */
804 Pgno iPtrmap; /* The pointer map page number */
805 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000806 int rc; /* Return code from subfunctions */
807
808 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000809
drh1fee73e2007-08-29 04:00:57 +0000810 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000811 /* The master-journal page number must never be used as a pointer map page */
812 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
813
danielk1977ac11ee62005-01-15 12:45:51 +0000814 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000815 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000816 *pRC = SQLITE_CORRUPT_BKPT;
817 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000818 }
danielk1977266664d2006-02-10 08:24:21 +0000819 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000820 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000821 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000822 *pRC = rc;
823 return;
danielk1977afcdd022004-10-31 16:25:42 +0000824 }
danielk19778c666b12008-07-18 09:34:57 +0000825 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000826 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000827 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000828 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000829 }
drhfc243732011-05-17 15:21:56 +0000830 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000831 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000832
drh615ae552005-01-16 23:21:00 +0000833 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
834 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000835 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000836 if( rc==SQLITE_OK ){
837 pPtrmap[offset] = eType;
838 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000839 }
danielk1977afcdd022004-10-31 16:25:42 +0000840 }
841
drh4925a552009-07-07 11:39:58 +0000842ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000843 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000844}
845
846/*
847** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000848**
849** This routine retrieves the pointer map entry for page 'key', writing
850** the type and parent page number to *pEType and *pPgno respectively.
851** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000852*/
danielk1977aef0bf62005-12-30 16:28:01 +0000853static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000854 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000855 int iPtrmap; /* Pointer map page index */
856 u8 *pPtrmap; /* Pointer map page data */
857 int offset; /* Offset of entry in pointer map */
858 int rc;
859
drh1fee73e2007-08-29 04:00:57 +0000860 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000861
danielk1977266664d2006-02-10 08:24:21 +0000862 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000863 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000864 if( rc!=0 ){
865 return rc;
866 }
danielk19773b8a05f2007-03-19 17:44:26 +0000867 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000868
danielk19778c666b12008-07-18 09:34:57 +0000869 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000870 if( offset<0 ){
871 sqlite3PagerUnref(pDbPage);
872 return SQLITE_CORRUPT_BKPT;
873 }
874 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000875 assert( pEType!=0 );
876 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000877 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000878
danielk19773b8a05f2007-03-19 17:44:26 +0000879 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000880 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000881 return SQLITE_OK;
882}
883
danielk197785d90ca2008-07-19 14:25:15 +0000884#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000885 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000886 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000887 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000888#endif
danielk1977afcdd022004-10-31 16:25:42 +0000889
drh0d316a42002-08-11 20:10:47 +0000890/*
drh271efa52004-05-30 19:19:05 +0000891** Given a btree page and a cell index (0 means the first cell on
892** the page, 1 means the second cell, and so forth) return a pointer
893** to the cell content.
894**
895** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000896*/
drh1688c862008-07-18 02:44:17 +0000897#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000898 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000899#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
900
drh43605152004-05-29 21:46:49 +0000901
902/*
drh93a960a2008-07-10 00:32:42 +0000903** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000904** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000905*/
906static u8 *findOverflowCell(MemPage *pPage, int iCell){
907 int i;
drh1fee73e2007-08-29 04:00:57 +0000908 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000909 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000910 int k;
drh2cbd78b2012-02-02 19:37:18 +0000911 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000912 if( k<=iCell ){
913 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000914 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000915 }
916 iCell--;
917 }
918 }
danielk19771cc5ed82007-05-16 17:28:43 +0000919 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000920}
921
922/*
923** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000924** are two versions of this function. btreeParseCell() takes a
925** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000926** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000927**
928** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000929** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000930*/
danielk197730548662009-07-09 05:07:37 +0000931static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000932 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000933 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000934 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000935){
drhf49661a2008-12-10 16:45:50 +0000936 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000937 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000938
drh1fee73e2007-08-29 04:00:57 +0000939 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000940
drh43605152004-05-29 21:46:49 +0000941 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000942 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000943 n = pPage->childPtrSize;
944 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000945 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000946 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000947 assert( n==0 );
948 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000949 }else{
950 nPayload = 0;
951 }
drh1bd10f82008-12-10 21:19:56 +0000952 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000953 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000954 }else{
drh79df1f42008-07-18 00:57:33 +0000955 pInfo->nData = 0;
956 n += getVarint32(&pCell[n], nPayload);
957 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000958 }
drh72365832007-03-06 15:53:44 +0000959 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000960 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000961 testcase( nPayload==pPage->maxLocal );
962 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000963 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000964 /* This is the (easy) common case where the entire payload fits
965 ** on the local page. No overflow is required.
966 */
drh41692e92011-01-25 04:34:51 +0000967 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000968 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000969 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000970 }else{
drh271efa52004-05-30 19:19:05 +0000971 /* If the payload will not fit completely on the local page, we have
972 ** to decide how much to store locally and how much to spill onto
973 ** overflow pages. The strategy is to minimize the amount of unused
974 ** space on overflow pages while keeping the amount of local storage
975 ** in between minLocal and maxLocal.
976 **
977 ** Warning: changing the way overflow payload is distributed in any
978 ** way will result in an incompatible file format.
979 */
980 int minLocal; /* Minimum amount of payload held locally */
981 int maxLocal; /* Maximum amount of payload held locally */
982 int surplus; /* Overflow payload available for local storage */
983
984 minLocal = pPage->minLocal;
985 maxLocal = pPage->maxLocal;
986 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000987 testcase( surplus==maxLocal );
988 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000989 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000990 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000991 }else{
drhf49661a2008-12-10 16:45:50 +0000992 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000993 }
drhf49661a2008-12-10 16:45:50 +0000994 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000995 pInfo->nSize = pInfo->iOverflow + 4;
996 }
drh3aac2dd2004-04-26 14:10:20 +0000997}
danielk19771cc5ed82007-05-16 17:28:43 +0000998#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000999 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1000static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001001 MemPage *pPage, /* Page containing the cell */
1002 int iCell, /* The cell index. First cell is 0 */
1003 CellInfo *pInfo /* Fill in this structure */
1004){
danielk19771cc5ed82007-05-16 17:28:43 +00001005 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001006}
drh3aac2dd2004-04-26 14:10:20 +00001007
1008/*
drh43605152004-05-29 21:46:49 +00001009** Compute the total number of bytes that a Cell needs in the cell
1010** data area of the btree-page. The return number includes the cell
1011** data header and the local payload, but not any overflow page or
1012** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001013*/
danielk1977ae5558b2009-04-29 11:31:47 +00001014static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1015 u8 *pIter = &pCell[pPage->childPtrSize];
1016 u32 nSize;
1017
1018#ifdef SQLITE_DEBUG
1019 /* The value returned by this function should always be the same as
1020 ** the (CellInfo.nSize) value found by doing a full parse of the
1021 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1022 ** this function verifies that this invariant is not violated. */
1023 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001024 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001025#endif
1026
1027 if( pPage->intKey ){
1028 u8 *pEnd;
1029 if( pPage->hasData ){
1030 pIter += getVarint32(pIter, nSize);
1031 }else{
1032 nSize = 0;
1033 }
1034
1035 /* pIter now points at the 64-bit integer key value, a variable length
1036 ** integer. The following block moves pIter to point at the first byte
1037 ** past the end of the key value. */
1038 pEnd = &pIter[9];
1039 while( (*pIter++)&0x80 && pIter<pEnd );
1040 }else{
1041 pIter += getVarint32(pIter, nSize);
1042 }
1043
drh0a45c272009-07-08 01:49:11 +00001044 testcase( nSize==pPage->maxLocal );
1045 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001046 if( nSize>pPage->maxLocal ){
1047 int minLocal = pPage->minLocal;
1048 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001049 testcase( nSize==pPage->maxLocal );
1050 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001051 if( nSize>pPage->maxLocal ){
1052 nSize = minLocal;
1053 }
1054 nSize += 4;
1055 }
shane75ac1de2009-06-09 18:58:52 +00001056 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001057
1058 /* The minimum size of any cell is 4 bytes. */
1059 if( nSize<4 ){
1060 nSize = 4;
1061 }
1062
1063 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001064 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001065}
drh0ee3dbe2009-10-16 15:05:18 +00001066
1067#ifdef SQLITE_DEBUG
1068/* This variation on cellSizePtr() is used inside of assert() statements
1069** only. */
drha9121e42008-02-19 14:59:35 +00001070static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001071 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001072}
danielk1977bc6ada42004-06-30 08:20:16 +00001073#endif
drh3b7511c2001-05-26 13:15:44 +00001074
danielk197779a40da2005-01-16 08:00:01 +00001075#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001076/*
danielk197726836652005-01-17 01:33:13 +00001077** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001078** to an overflow page, insert an entry into the pointer-map
1079** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001080*/
drh98add2e2009-07-20 17:11:49 +00001081static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001082 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001083 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001084 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001085 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001086 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001087 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001088 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001089 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001090 }
danielk1977ac11ee62005-01-15 12:45:51 +00001091}
danielk197779a40da2005-01-16 08:00:01 +00001092#endif
1093
danielk1977ac11ee62005-01-15 12:45:51 +00001094
drhda200cc2004-05-09 11:51:38 +00001095/*
drh72f82862001-05-24 21:06:34 +00001096** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001097** end of the page and all free space is collected into one
1098** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001099** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001100*/
shane0af3f892008-11-12 04:55:34 +00001101static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001102 int i; /* Loop counter */
1103 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001104 int hdr; /* Offset to the page header */
1105 int size; /* Size of a cell */
1106 int usableSize; /* Number of usable bytes on a page */
1107 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001108 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001109 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001110 unsigned char *data; /* The page data */
1111 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001112 int iCellFirst; /* First allowable cell index */
1113 int iCellLast; /* Last possible cell index */
1114
drh2af926b2001-05-15 00:39:25 +00001115
danielk19773b8a05f2007-03-19 17:44:26 +00001116 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001117 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001118 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001119 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001120 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001121 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001122 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001123 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001124 cellOffset = pPage->cellOffset;
1125 nCell = pPage->nCell;
1126 assert( nCell==get2byte(&data[hdr+3]) );
1127 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001128 cbrk = get2byte(&data[hdr+5]);
1129 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1130 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001131 iCellFirst = cellOffset + 2*nCell;
1132 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001133 for(i=0; i<nCell; i++){
1134 u8 *pAddr; /* The i-th cell pointer */
1135 pAddr = &data[cellOffset + i*2];
1136 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001137 testcase( pc==iCellFirst );
1138 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001139#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001140 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001141 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1142 */
1143 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001144 return SQLITE_CORRUPT_BKPT;
1145 }
drh17146622009-07-07 17:38:38 +00001146#endif
1147 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001148 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001149 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001150#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1151 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001152 return SQLITE_CORRUPT_BKPT;
1153 }
drh17146622009-07-07 17:38:38 +00001154#else
1155 if( cbrk<iCellFirst || pc+size>usableSize ){
1156 return SQLITE_CORRUPT_BKPT;
1157 }
1158#endif
drh7157e1d2009-07-09 13:25:32 +00001159 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001160 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001161 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001162 memcpy(&data[cbrk], &temp[pc], size);
1163 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001164 }
drh17146622009-07-07 17:38:38 +00001165 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001166 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001167 data[hdr+1] = 0;
1168 data[hdr+2] = 0;
1169 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001170 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001171 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001172 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001173 return SQLITE_CORRUPT_BKPT;
1174 }
shane0af3f892008-11-12 04:55:34 +00001175 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001176}
1177
drha059ad02001-04-17 20:09:11 +00001178/*
danielk19776011a752009-04-01 16:25:32 +00001179** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001180** as the first argument. Write into *pIdx the index into pPage->aData[]
1181** of the first byte of allocated space. Return either SQLITE_OK or
1182** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001183**
drh0a45c272009-07-08 01:49:11 +00001184** The caller guarantees that there is sufficient space to make the
1185** allocation. This routine might need to defragment in order to bring
1186** all the space together, however. This routine will avoid using
1187** the first two bytes past the cell pointer area since presumably this
1188** allocation is being made in order to insert a new cell, so we will
1189** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001190*/
drh0a45c272009-07-08 01:49:11 +00001191static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001192 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1193 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1194 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001195 int top; /* First byte of cell content area */
1196 int gap; /* First byte of gap between cell pointers and cell content */
1197 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001198 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001199
danielk19773b8a05f2007-03-19 17:44:26 +00001200 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001201 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001202 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001203 assert( nByte>=0 ); /* Minimum cell size is 4 */
1204 assert( pPage->nFree>=nByte );
1205 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001206 usableSize = pPage->pBt->usableSize;
1207 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001208
1209 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001210 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1211 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001212 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001213 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001214 testcase( gap+2==top );
1215 testcase( gap+1==top );
1216 testcase( gap==top );
1217
danielk19776011a752009-04-01 16:25:32 +00001218 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001219 /* Always defragment highly fragmented pages */
1220 rc = defragmentPage(pPage);
1221 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001222 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001223 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001224 /* Search the freelist looking for a free slot big enough to satisfy
1225 ** the request. The allocation is made from the first free slot in
drhf7b54962013-05-28 12:11:54 +00001226 ** the list that is large enough to accommodate it.
danielk19776011a752009-04-01 16:25:32 +00001227 */
1228 int pc, addr;
1229 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001230 int size; /* Size of the free slot */
1231 if( pc>usableSize-4 || pc<addr+4 ){
1232 return SQLITE_CORRUPT_BKPT;
1233 }
1234 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001235 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001236 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001237 testcase( x==4 );
1238 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001239 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001240 /* Remove the slot from the free-list. Update the number of
1241 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001242 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001243 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001244 }else if( size+pc > usableSize ){
1245 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001246 }else{
danielk1977fad91942009-04-29 17:49:59 +00001247 /* The slot remains on the free-list. Reduce its size to account
1248 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001249 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001250 }
drh0a45c272009-07-08 01:49:11 +00001251 *pIdx = pc + x;
1252 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001253 }
drh9e572e62004-04-23 23:43:10 +00001254 }
1255 }
drh43605152004-05-29 21:46:49 +00001256
drh0a45c272009-07-08 01:49:11 +00001257 /* Check to make sure there is enough space in the gap to satisfy
1258 ** the allocation. If not, defragment.
1259 */
1260 testcase( gap+2+nByte==top );
1261 if( gap+2+nByte>top ){
1262 rc = defragmentPage(pPage);
1263 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001264 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001265 assert( gap+nByte<=top );
1266 }
1267
1268
drh43605152004-05-29 21:46:49 +00001269 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001270 ** and the cell content area. The btreeInitPage() call has already
1271 ** validated the freelist. Given that the freelist is valid, there
1272 ** is no way that the allocation can extend off the end of the page.
1273 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001274 */
drh0a45c272009-07-08 01:49:11 +00001275 top -= nByte;
drh43605152004-05-29 21:46:49 +00001276 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001277 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001278 *pIdx = top;
1279 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001280}
1281
1282/*
drh9e572e62004-04-23 23:43:10 +00001283** Return a section of the pPage->aData to the freelist.
1284** The first byte of the new free block is pPage->aDisk[start]
1285** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001286**
1287** Most of the effort here is involved in coalesing adjacent
1288** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001289*/
shanedcc50b72008-11-13 18:29:50 +00001290static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001291 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001292 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001293 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001294
drh9e572e62004-04-23 23:43:10 +00001295 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001296 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001297 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001298 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001299 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001300 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001301
drhc9166342012-01-05 23:32:06 +00001302 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001303 /* Overwrite deleted information with zeros when the secure_delete
1304 ** option is enabled */
1305 memset(&data[start], 0, size);
1306 }
drhfcce93f2006-02-22 03:08:32 +00001307
drh0a45c272009-07-08 01:49:11 +00001308 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001309 ** even though the freeblock list was checked by btreeInitPage(),
1310 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001311 ** freeblocks that overlapped cells. Nor does it detect when the
1312 ** cell content area exceeds the value in the page header. If these
1313 ** situations arise, then subsequent insert operations might corrupt
1314 ** the freelist. So we do need to check for corruption while scanning
1315 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001316 */
drh43605152004-05-29 21:46:49 +00001317 hdr = pPage->hdrOffset;
1318 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001319 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001320 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001321 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001322 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001323 return SQLITE_CORRUPT_BKPT;
1324 }
drh3aac2dd2004-04-26 14:10:20 +00001325 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001326 }
drh0a45c272009-07-08 01:49:11 +00001327 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001328 return SQLITE_CORRUPT_BKPT;
1329 }
drh3aac2dd2004-04-26 14:10:20 +00001330 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001331 put2byte(&data[addr], start);
1332 put2byte(&data[start], pbegin);
1333 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001334 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001335
1336 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001337 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001338 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001339 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001340 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001341 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001342 pnext = get2byte(&data[pbegin]);
1343 psize = get2byte(&data[pbegin+2]);
1344 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1345 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001346 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001347 return SQLITE_CORRUPT_BKPT;
1348 }
drh0a45c272009-07-08 01:49:11 +00001349 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001350 x = get2byte(&data[pnext]);
1351 put2byte(&data[pbegin], x);
1352 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1353 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001354 }else{
drh3aac2dd2004-04-26 14:10:20 +00001355 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001356 }
1357 }
drh7e3b0a02001-04-28 16:52:40 +00001358
drh43605152004-05-29 21:46:49 +00001359 /* If the cell content area begins with a freeblock, remove it. */
1360 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1361 int top;
1362 pbegin = get2byte(&data[hdr+1]);
1363 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001364 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1365 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001366 }
drhc5053fb2008-11-27 02:22:10 +00001367 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001368 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001369}
1370
1371/*
drh271efa52004-05-30 19:19:05 +00001372** Decode the flags byte (the first byte of the header) for a page
1373** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001374**
1375** Only the following combinations are supported. Anything different
1376** indicates a corrupt database files:
1377**
1378** PTF_ZERODATA
1379** PTF_ZERODATA | PTF_LEAF
1380** PTF_LEAFDATA | PTF_INTKEY
1381** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001382*/
drh44845222008-07-17 18:39:57 +00001383static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001384 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001385
1386 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001387 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001388 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001389 flagByte &= ~PTF_LEAF;
1390 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001391 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001392 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1393 pPage->intKey = 1;
1394 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001395 pPage->maxLocal = pBt->maxLeaf;
1396 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001397 }else if( flagByte==PTF_ZERODATA ){
1398 pPage->intKey = 0;
1399 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001400 pPage->maxLocal = pBt->maxLocal;
1401 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001402 }else{
1403 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001404 }
drhc9166342012-01-05 23:32:06 +00001405 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001406 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001407}
1408
1409/*
drh7e3b0a02001-04-28 16:52:40 +00001410** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001411**
1412** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001413** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001414** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1415** guarantee that the page is well-formed. It only shows that
1416** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001417*/
danielk197730548662009-07-09 05:07:37 +00001418static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001419
danielk197771d5d2c2008-09-29 11:49:47 +00001420 assert( pPage->pBt!=0 );
1421 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001422 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001423 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1424 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001425
1426 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001427 u16 pc; /* Address of a freeblock within pPage->aData[] */
1428 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001429 u8 *data; /* Equal to pPage->aData */
1430 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001431 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001432 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001433 int nFree; /* Number of unused bytes on the page */
1434 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001435 int iCellFirst; /* First allowable cell or freeblock offset */
1436 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001437
1438 pBt = pPage->pBt;
1439
danielk1977eaa06f62008-09-18 17:34:44 +00001440 hdr = pPage->hdrOffset;
1441 data = pPage->aData;
1442 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001443 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1444 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001445 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001446 usableSize = pBt->usableSize;
1447 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001448 pPage->aDataEnd = &data[usableSize];
1449 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001450 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001451 pPage->nCell = get2byte(&data[hdr+3]);
1452 if( pPage->nCell>MX_CELL(pBt) ){
1453 /* To many cells for a single page. The page must be corrupt */
1454 return SQLITE_CORRUPT_BKPT;
1455 }
drhb908d762009-07-08 16:54:40 +00001456 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001457
shane5eff7cf2009-08-10 03:57:58 +00001458 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001459 ** of page when parsing a cell.
1460 **
1461 ** The following block of code checks early to see if a cell extends
1462 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1463 ** returned if it does.
1464 */
drh0a45c272009-07-08 01:49:11 +00001465 iCellFirst = cellOffset + 2*pPage->nCell;
1466 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001467#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001468 {
drh69e931e2009-06-03 21:04:35 +00001469 int i; /* Index into the cell pointer array */
1470 int sz; /* Size of a cell */
1471
drh69e931e2009-06-03 21:04:35 +00001472 if( !pPage->leaf ) iCellLast--;
1473 for(i=0; i<pPage->nCell; i++){
1474 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001475 testcase( pc==iCellFirst );
1476 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001477 if( pc<iCellFirst || pc>iCellLast ){
1478 return SQLITE_CORRUPT_BKPT;
1479 }
1480 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001481 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001482 if( pc+sz>usableSize ){
1483 return SQLITE_CORRUPT_BKPT;
1484 }
1485 }
drh0a45c272009-07-08 01:49:11 +00001486 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001487 }
1488#endif
1489
danielk1977eaa06f62008-09-18 17:34:44 +00001490 /* Compute the total free space on the page */
1491 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001492 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001493 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001494 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001495 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001496 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001497 return SQLITE_CORRUPT_BKPT;
1498 }
1499 next = get2byte(&data[pc]);
1500 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001501 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1502 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001503 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001504 return SQLITE_CORRUPT_BKPT;
1505 }
shane85095702009-06-15 16:27:08 +00001506 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001507 pc = next;
1508 }
danielk197793c829c2009-06-03 17:26:17 +00001509
1510 /* At this point, nFree contains the sum of the offset to the start
1511 ** of the cell-content area plus the number of free bytes within
1512 ** the cell-content area. If this is greater than the usable-size
1513 ** of the page, then the page must be corrupted. This check also
1514 ** serves to verify that the offset to the start of the cell-content
1515 ** area, according to the page header, lies within the page.
1516 */
1517 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001518 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001519 }
shane5eff7cf2009-08-10 03:57:58 +00001520 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001521 pPage->isInit = 1;
1522 }
drh9e572e62004-04-23 23:43:10 +00001523 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001524}
1525
1526/*
drh8b2f49b2001-06-08 00:21:52 +00001527** Set up a raw page so that it looks like a database page holding
1528** no entries.
drhbd03cae2001-06-02 02:40:57 +00001529*/
drh9e572e62004-04-23 23:43:10 +00001530static void zeroPage(MemPage *pPage, int flags){
1531 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001532 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001533 u8 hdr = pPage->hdrOffset;
1534 u16 first;
drh9e572e62004-04-23 23:43:10 +00001535
danielk19773b8a05f2007-03-19 17:44:26 +00001536 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001537 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1538 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001539 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001540 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001541 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001542 memset(&data[hdr], 0, pBt->usableSize - hdr);
1543 }
drh1bd10f82008-12-10 21:19:56 +00001544 data[hdr] = (char)flags;
1545 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001546 memset(&data[hdr+1], 0, 4);
1547 data[hdr+7] = 0;
1548 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001549 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001550 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001551 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001552 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001553 pPage->aDataEnd = &data[pBt->usableSize];
1554 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001555 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001556 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1557 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001558 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001559 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001560}
1561
drh897a8202008-09-18 01:08:15 +00001562
1563/*
1564** Convert a DbPage obtained from the pager into a MemPage used by
1565** the btree layer.
1566*/
1567static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1568 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1569 pPage->aData = sqlite3PagerGetData(pDbPage);
1570 pPage->pDbPage = pDbPage;
1571 pPage->pBt = pBt;
1572 pPage->pgno = pgno;
1573 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1574 return pPage;
1575}
1576
drhbd03cae2001-06-02 02:40:57 +00001577/*
drh3aac2dd2004-04-26 14:10:20 +00001578** Get a page from the pager. Initialize the MemPage.pBt and
1579** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001580**
1581** If the noContent flag is set, it means that we do not care about
1582** the content of the page at this time. So do not go to the disk
1583** to fetch the content. Just fill in the content with zeros for now.
1584** If in the future we call sqlite3PagerWrite() on this page, that
1585** means we have started to be concerned about content and the disk
1586** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001587*/
danielk197730548662009-07-09 05:07:37 +00001588static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001589 BtShared *pBt, /* The btree */
1590 Pgno pgno, /* Number of the page to fetch */
1591 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001592 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001593){
drh3aac2dd2004-04-26 14:10:20 +00001594 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001595 DbPage *pDbPage;
1596
drhb00fc3b2013-08-21 23:42:32 +00001597 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001598 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001599 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001600 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001601 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001602 return SQLITE_OK;
1603}
1604
1605/*
danielk1977bea2a942009-01-20 17:06:27 +00001606** Retrieve a page from the pager cache. If the requested page is not
1607** already in the pager cache return NULL. Initialize the MemPage.pBt and
1608** MemPage.aData elements if needed.
1609*/
1610static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1611 DbPage *pDbPage;
1612 assert( sqlite3_mutex_held(pBt->mutex) );
1613 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1614 if( pDbPage ){
1615 return btreePageFromDbPage(pDbPage, pgno, pBt);
1616 }
1617 return 0;
1618}
1619
1620/*
danielk197789d40042008-11-17 14:20:56 +00001621** Return the size of the database file in pages. If there is any kind of
1622** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001623*/
drhb1299152010-03-30 22:58:33 +00001624static Pgno btreePagecount(BtShared *pBt){
1625 return pBt->nPage;
1626}
1627u32 sqlite3BtreeLastPage(Btree *p){
1628 assert( sqlite3BtreeHoldsMutex(p) );
1629 assert( ((p->pBt->nPage)&0x8000000)==0 );
1630 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001631}
1632
1633/*
danielk197789bc4bc2009-07-21 19:25:24 +00001634** Get a page from the pager and initialize it. This routine is just a
1635** convenience wrapper around separate calls to btreeGetPage() and
1636** btreeInitPage().
1637**
1638** If an error occurs, then the value *ppPage is set to is undefined. It
1639** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001640*/
1641static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001642 BtShared *pBt, /* The database file */
1643 Pgno pgno, /* Number of the page to get */
1644 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001645 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001646){
1647 int rc;
drh1fee73e2007-08-29 04:00:57 +00001648 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001649 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001650
danba3cbf32010-06-30 04:29:03 +00001651 if( pgno>btreePagecount(pBt) ){
1652 rc = SQLITE_CORRUPT_BKPT;
1653 }else{
drhb00fc3b2013-08-21 23:42:32 +00001654 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001655 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001656 rc = btreeInitPage(*ppPage);
1657 if( rc!=SQLITE_OK ){
1658 releasePage(*ppPage);
1659 }
danielk197789bc4bc2009-07-21 19:25:24 +00001660 }
drhee696e22004-08-30 16:52:17 +00001661 }
danba3cbf32010-06-30 04:29:03 +00001662
1663 testcase( pgno==0 );
1664 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001665 return rc;
1666}
1667
1668/*
drh3aac2dd2004-04-26 14:10:20 +00001669** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001670** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001671*/
drh4b70f112004-05-02 21:12:19 +00001672static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001673 if( pPage ){
1674 assert( pPage->aData );
1675 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001676 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001677 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1678 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001679 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001680 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001681 }
1682}
1683
1684/*
drha6abd042004-06-09 17:37:22 +00001685** During a rollback, when the pager reloads information into the cache
1686** so that the cache is restored to its original state at the start of
1687** the transaction, for each page restored this routine is called.
1688**
1689** This routine needs to reset the extra data section at the end of the
1690** page to agree with the restored data.
1691*/
danielk1977eaa06f62008-09-18 17:34:44 +00001692static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001693 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001694 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001695 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001696 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001697 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001698 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001699 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001700 /* pPage might not be a btree page; it might be an overflow page
1701 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001702 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001703 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001704 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001705 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001706 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001707 }
drha6abd042004-06-09 17:37:22 +00001708 }
1709}
1710
1711/*
drhe5fe6902007-12-07 18:55:28 +00001712** Invoke the busy handler for a btree.
1713*/
danielk19771ceedd32008-11-19 10:22:33 +00001714static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001715 BtShared *pBt = (BtShared*)pArg;
1716 assert( pBt->db );
1717 assert( sqlite3_mutex_held(pBt->db->mutex) );
1718 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1719}
1720
1721/*
drhad3e0102004-09-03 23:32:18 +00001722** Open a database file.
1723**
drh382c0242001-10-06 16:33:02 +00001724** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001725** then an ephemeral database is created. The ephemeral database might
1726** be exclusively in memory, or it might use a disk-based memory cache.
1727** Either way, the ephemeral database will be automatically deleted
1728** when sqlite3BtreeClose() is called.
1729**
drhe53831d2007-08-17 01:14:38 +00001730** If zFilename is ":memory:" then an in-memory database is created
1731** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001732**
drh33f111d2012-01-17 15:29:14 +00001733** The "flags" parameter is a bitmask that might contain bits like
1734** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001735**
drhc47fd8e2009-04-30 13:30:32 +00001736** If the database is already opened in the same database connection
1737** and we are in shared cache mode, then the open will fail with an
1738** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1739** objects in the same database connection since doing so will lead
1740** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001741*/
drh23e11ca2004-05-04 17:27:28 +00001742int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001743 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001744 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001745 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001746 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001747 int flags, /* Options */
1748 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001749){
drh7555d8e2009-03-20 13:15:30 +00001750 BtShared *pBt = 0; /* Shared part of btree structure */
1751 Btree *p; /* Handle to return */
1752 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1753 int rc = SQLITE_OK; /* Result code from this function */
1754 u8 nReserve; /* Byte of unused space on each page */
1755 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001756
drh75c014c2010-08-30 15:02:28 +00001757 /* True if opening an ephemeral, temporary database */
1758 const int isTempDb = zFilename==0 || zFilename[0]==0;
1759
danielk1977aef0bf62005-12-30 16:28:01 +00001760 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001761 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001762 */
drhb0a7c9c2010-12-06 21:09:59 +00001763#ifdef SQLITE_OMIT_MEMORYDB
1764 const int isMemdb = 0;
1765#else
1766 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001767 || (isTempDb && sqlite3TempInMemory(db))
1768 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001769#endif
1770
drhe5fe6902007-12-07 18:55:28 +00001771 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001772 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001773 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001774 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1775
1776 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1777 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1778
1779 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1780 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001781
drh75c014c2010-08-30 15:02:28 +00001782 if( isMemdb ){
1783 flags |= BTREE_MEMORY;
1784 }
1785 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1786 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1787 }
drh17435752007-08-16 04:30:38 +00001788 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001789 if( !p ){
1790 return SQLITE_NOMEM;
1791 }
1792 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001793 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001794#ifndef SQLITE_OMIT_SHARED_CACHE
1795 p->lock.pBtree = p;
1796 p->lock.iTable = 1;
1797#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001798
drh198bf392006-01-06 21:52:49 +00001799#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001800 /*
1801 ** If this Btree is a candidate for shared cache, try to find an
1802 ** existing BtShared object that we can share with
1803 */
drh4ab9d252012-05-26 20:08:49 +00001804 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001805 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001806 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001807 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001808 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001809 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001810 if( !zFullPathname ){
1811 sqlite3_free(p);
1812 return SQLITE_NOMEM;
1813 }
drhafc8b7f2012-05-26 18:06:38 +00001814 if( isMemdb ){
1815 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1816 }else{
1817 rc = sqlite3OsFullPathname(pVfs, zFilename,
1818 nFullPathname, zFullPathname);
1819 if( rc ){
1820 sqlite3_free(zFullPathname);
1821 sqlite3_free(p);
1822 return rc;
1823 }
drh070ad6b2011-11-17 11:43:19 +00001824 }
drh30ddce62011-10-15 00:16:30 +00001825#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001826 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1827 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001828 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001829 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001830#endif
drh78f82d12008-09-02 00:52:52 +00001831 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001832 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001833 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001834 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001835 int iDb;
1836 for(iDb=db->nDb-1; iDb>=0; iDb--){
1837 Btree *pExisting = db->aDb[iDb].pBt;
1838 if( pExisting && pExisting->pBt==pBt ){
1839 sqlite3_mutex_leave(mutexShared);
1840 sqlite3_mutex_leave(mutexOpen);
1841 sqlite3_free(zFullPathname);
1842 sqlite3_free(p);
1843 return SQLITE_CONSTRAINT;
1844 }
1845 }
drhff0587c2007-08-29 17:43:19 +00001846 p->pBt = pBt;
1847 pBt->nRef++;
1848 break;
1849 }
1850 }
1851 sqlite3_mutex_leave(mutexShared);
1852 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001853 }
drhff0587c2007-08-29 17:43:19 +00001854#ifdef SQLITE_DEBUG
1855 else{
1856 /* In debug mode, we mark all persistent databases as sharable
1857 ** even when they are not. This exercises the locking code and
1858 ** gives more opportunity for asserts(sqlite3_mutex_held())
1859 ** statements to find locking problems.
1860 */
1861 p->sharable = 1;
1862 }
1863#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001864 }
1865#endif
drha059ad02001-04-17 20:09:11 +00001866 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001867 /*
1868 ** The following asserts make sure that structures used by the btree are
1869 ** the right size. This is to guard against size changes that result
1870 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001871 */
drhe53831d2007-08-17 01:14:38 +00001872 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1873 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1874 assert( sizeof(u32)==4 );
1875 assert( sizeof(u16)==2 );
1876 assert( sizeof(Pgno)==4 );
1877
1878 pBt = sqlite3MallocZero( sizeof(*pBt) );
1879 if( pBt==0 ){
1880 rc = SQLITE_NOMEM;
1881 goto btree_open_out;
1882 }
danielk197771d5d2c2008-09-29 11:49:47 +00001883 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001884 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001885 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001886 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001887 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1888 }
1889 if( rc!=SQLITE_OK ){
1890 goto btree_open_out;
1891 }
shanehbd2aaf92010-09-01 02:38:21 +00001892 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001893 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001894 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001895 p->pBt = pBt;
1896
drhe53831d2007-08-17 01:14:38 +00001897 pBt->pCursor = 0;
1898 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001899 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001900#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001901 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001902#endif
drhb2eced52010-08-12 02:41:12 +00001903 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001904 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1905 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001906 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001907#ifndef SQLITE_OMIT_AUTOVACUUM
1908 /* If the magic name ":memory:" will create an in-memory database, then
1909 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1910 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1911 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1912 ** regular file-name. In this case the auto-vacuum applies as per normal.
1913 */
1914 if( zFilename && !isMemdb ){
1915 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1916 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1917 }
1918#endif
1919 nReserve = 0;
1920 }else{
1921 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001922 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001923#ifndef SQLITE_OMIT_AUTOVACUUM
1924 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1925 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1926#endif
1927 }
drhfa9601a2009-06-18 17:22:39 +00001928 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001929 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001930 pBt->usableSize = pBt->pageSize - nReserve;
1931 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001932
1933#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1934 /* Add the new BtShared object to the linked list sharable BtShareds.
1935 */
1936 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001937 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001938 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001939 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001940 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001941 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001942 if( pBt->mutex==0 ){
1943 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001944 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001945 goto btree_open_out;
1946 }
drhff0587c2007-08-29 17:43:19 +00001947 }
drhe53831d2007-08-17 01:14:38 +00001948 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001949 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1950 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001951 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001952 }
drheee46cf2004-11-06 00:02:48 +00001953#endif
drh90f5ecb2004-07-22 01:19:35 +00001954 }
danielk1977aef0bf62005-12-30 16:28:01 +00001955
drhcfed7bc2006-03-13 14:28:05 +00001956#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001957 /* If the new Btree uses a sharable pBtShared, then link the new
1958 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001959 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001960 */
drhe53831d2007-08-17 01:14:38 +00001961 if( p->sharable ){
1962 int i;
1963 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001964 for(i=0; i<db->nDb; i++){
1965 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001966 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1967 if( p->pBt<pSib->pBt ){
1968 p->pNext = pSib;
1969 p->pPrev = 0;
1970 pSib->pPrev = p;
1971 }else{
drhabddb0c2007-08-20 13:14:28 +00001972 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001973 pSib = pSib->pNext;
1974 }
1975 p->pNext = pSib->pNext;
1976 p->pPrev = pSib;
1977 if( p->pNext ){
1978 p->pNext->pPrev = p;
1979 }
1980 pSib->pNext = p;
1981 }
1982 break;
1983 }
1984 }
danielk1977aef0bf62005-12-30 16:28:01 +00001985 }
danielk1977aef0bf62005-12-30 16:28:01 +00001986#endif
1987 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001988
1989btree_open_out:
1990 if( rc!=SQLITE_OK ){
1991 if( pBt && pBt->pPager ){
1992 sqlite3PagerClose(pBt->pPager);
1993 }
drh17435752007-08-16 04:30:38 +00001994 sqlite3_free(pBt);
1995 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001996 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001997 }else{
1998 /* If the B-Tree was successfully opened, set the pager-cache size to the
1999 ** default value. Except, when opening on an existing shared pager-cache,
2000 ** do not change the pager-cache size.
2001 */
2002 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2003 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2004 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002005 }
drh7555d8e2009-03-20 13:15:30 +00002006 if( mutexOpen ){
2007 assert( sqlite3_mutex_held(mutexOpen) );
2008 sqlite3_mutex_leave(mutexOpen);
2009 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002010 return rc;
drha059ad02001-04-17 20:09:11 +00002011}
2012
2013/*
drhe53831d2007-08-17 01:14:38 +00002014** Decrement the BtShared.nRef counter. When it reaches zero,
2015** remove the BtShared structure from the sharing list. Return
2016** true if the BtShared.nRef counter reaches zero and return
2017** false if it is still positive.
2018*/
2019static int removeFromSharingList(BtShared *pBt){
2020#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002021 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002022 BtShared *pList;
2023 int removed = 0;
2024
drhd677b3d2007-08-20 22:48:41 +00002025 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002026 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002027 sqlite3_mutex_enter(pMaster);
2028 pBt->nRef--;
2029 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002030 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2031 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002032 }else{
drh78f82d12008-09-02 00:52:52 +00002033 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002034 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002035 pList=pList->pNext;
2036 }
drh34004ce2008-07-11 16:15:17 +00002037 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002038 pList->pNext = pBt->pNext;
2039 }
2040 }
drh3285db22007-09-03 22:00:39 +00002041 if( SQLITE_THREADSAFE ){
2042 sqlite3_mutex_free(pBt->mutex);
2043 }
drhe53831d2007-08-17 01:14:38 +00002044 removed = 1;
2045 }
2046 sqlite3_mutex_leave(pMaster);
2047 return removed;
2048#else
2049 return 1;
2050#endif
2051}
2052
2053/*
drhf7141992008-06-19 00:16:08 +00002054** Make sure pBt->pTmpSpace points to an allocation of
2055** MX_CELL_SIZE(pBt) bytes.
2056*/
2057static void allocateTempSpace(BtShared *pBt){
2058 if( !pBt->pTmpSpace ){
2059 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002060
2061 /* One of the uses of pBt->pTmpSpace is to format cells before
2062 ** inserting them into a leaf page (function fillInCell()). If
2063 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2064 ** by the various routines that manipulate binary cells. Which
2065 ** can mean that fillInCell() only initializes the first 2 or 3
2066 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2067 ** it into a database page. This is not actually a problem, but it
2068 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2069 ** data is passed to system call write(). So to avoid this error,
2070 ** zero the first 4 bytes of temp space here. */
2071 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002072 }
2073}
2074
2075/*
2076** Free the pBt->pTmpSpace allocation
2077*/
2078static void freeTempSpace(BtShared *pBt){
2079 sqlite3PageFree( pBt->pTmpSpace);
2080 pBt->pTmpSpace = 0;
2081}
2082
2083/*
drha059ad02001-04-17 20:09:11 +00002084** Close an open database and invalidate all cursors.
2085*/
danielk1977aef0bf62005-12-30 16:28:01 +00002086int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002087 BtShared *pBt = p->pBt;
2088 BtCursor *pCur;
2089
danielk1977aef0bf62005-12-30 16:28:01 +00002090 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002091 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002092 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002093 pCur = pBt->pCursor;
2094 while( pCur ){
2095 BtCursor *pTmp = pCur;
2096 pCur = pCur->pNext;
2097 if( pTmp->pBtree==p ){
2098 sqlite3BtreeCloseCursor(pTmp);
2099 }
drha059ad02001-04-17 20:09:11 +00002100 }
danielk1977aef0bf62005-12-30 16:28:01 +00002101
danielk19778d34dfd2006-01-24 16:37:57 +00002102 /* Rollback any active transaction and free the handle structure.
2103 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2104 ** this handle.
2105 */
drh0f198a72012-02-13 16:43:16 +00002106 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002107 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002108
danielk1977aef0bf62005-12-30 16:28:01 +00002109 /* If there are still other outstanding references to the shared-btree
2110 ** structure, return now. The remainder of this procedure cleans
2111 ** up the shared-btree.
2112 */
drhe53831d2007-08-17 01:14:38 +00002113 assert( p->wantToLock==0 && p->locked==0 );
2114 if( !p->sharable || removeFromSharingList(pBt) ){
2115 /* The pBt is no longer on the sharing list, so we can access
2116 ** it without having to hold the mutex.
2117 **
2118 ** Clean out and delete the BtShared object.
2119 */
2120 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002121 sqlite3PagerClose(pBt->pPager);
2122 if( pBt->xFreeSchema && pBt->pSchema ){
2123 pBt->xFreeSchema(pBt->pSchema);
2124 }
drhb9755982010-07-24 16:34:37 +00002125 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002126 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002127 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002128 }
2129
drhe53831d2007-08-17 01:14:38 +00002130#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002131 assert( p->wantToLock==0 );
2132 assert( p->locked==0 );
2133 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2134 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002135#endif
2136
drhe53831d2007-08-17 01:14:38 +00002137 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002138 return SQLITE_OK;
2139}
2140
2141/*
drhda47d772002-12-02 04:25:19 +00002142** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002143**
2144** The maximum number of cache pages is set to the absolute
2145** value of mxPage. If mxPage is negative, the pager will
2146** operate asynchronously - it will not stop to do fsync()s
2147** to insure data is written to the disk surface before
2148** continuing. Transactions still work if synchronous is off,
2149** and the database cannot be corrupted if this program
2150** crashes. But if the operating system crashes or there is
2151** an abrupt power failure when synchronous is off, the database
2152** could be left in an inconsistent and unrecoverable state.
2153** Synchronous is on by default so database corruption is not
2154** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002155*/
danielk1977aef0bf62005-12-30 16:28:01 +00002156int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2157 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002158 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002159 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002160 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002161 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002162 return SQLITE_OK;
2163}
2164
2165/*
dan5d8a1372013-03-19 19:28:06 +00002166** Change the limit on the amount of the database file that may be
2167** memory mapped.
2168*/
drh9b4c59f2013-04-15 17:03:42 +00002169int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002170 BtShared *pBt = p->pBt;
2171 assert( sqlite3_mutex_held(p->db->mutex) );
2172 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002173 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002174 sqlite3BtreeLeave(p);
2175 return SQLITE_OK;
2176}
2177
2178/*
drh973b6e32003-02-12 14:09:42 +00002179** Change the way data is synced to disk in order to increase or decrease
2180** how well the database resists damage due to OS crashes and power
2181** failures. Level 1 is the same as asynchronous (no syncs() occur and
2182** there is a high probability of damage) Level 2 is the default. There
2183** is a very low but non-zero probability of damage. Level 3 reduces the
2184** probability of damage to near zero but with a write performance reduction.
2185*/
danielk197793758c82005-01-21 08:13:14 +00002186#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002187int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002188 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002189 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002190){
danielk1977aef0bf62005-12-30 16:28:01 +00002191 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002192 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002193 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002194 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002195 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002196 return SQLITE_OK;
2197}
danielk197793758c82005-01-21 08:13:14 +00002198#endif
drh973b6e32003-02-12 14:09:42 +00002199
drh2c8997b2005-08-27 16:36:48 +00002200/*
2201** Return TRUE if the given btree is set to safety level 1. In other
2202** words, return TRUE if no sync() occurs on the disk files.
2203*/
danielk1977aef0bf62005-12-30 16:28:01 +00002204int sqlite3BtreeSyncDisabled(Btree *p){
2205 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002206 int rc;
drhe5fe6902007-12-07 18:55:28 +00002207 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002208 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002209 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002210 rc = sqlite3PagerNosync(pBt->pPager);
2211 sqlite3BtreeLeave(p);
2212 return rc;
drh2c8997b2005-08-27 16:36:48 +00002213}
2214
drh973b6e32003-02-12 14:09:42 +00002215/*
drh90f5ecb2004-07-22 01:19:35 +00002216** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002217** Or, if the page size has already been fixed, return SQLITE_READONLY
2218** without changing anything.
drh06f50212004-11-02 14:24:33 +00002219**
2220** The page size must be a power of 2 between 512 and 65536. If the page
2221** size supplied does not meet this constraint then the page size is not
2222** changed.
2223**
2224** Page sizes are constrained to be a power of two so that the region
2225** of the database file used for locking (beginning at PENDING_BYTE,
2226** the first byte past the 1GB boundary, 0x40000000) needs to occur
2227** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002228**
2229** If parameter nReserve is less than zero, then the number of reserved
2230** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002231**
drhc9166342012-01-05 23:32:06 +00002232** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002233** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002234*/
drhce4869f2009-04-02 20:16:58 +00002235int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002236 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002237 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002238 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002239 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002240 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002241 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002242 return SQLITE_READONLY;
2243 }
2244 if( nReserve<0 ){
2245 nReserve = pBt->pageSize - pBt->usableSize;
2246 }
drhf49661a2008-12-10 16:45:50 +00002247 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002248 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2249 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002250 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002251 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002252 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002253 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002254 }
drhfa9601a2009-06-18 17:22:39 +00002255 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002256 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002257 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002258 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002259 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002260}
2261
2262/*
2263** Return the currently defined page size
2264*/
danielk1977aef0bf62005-12-30 16:28:01 +00002265int sqlite3BtreeGetPageSize(Btree *p){
2266 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002267}
drh7f751222009-03-17 22:33:00 +00002268
drha1f38532012-10-01 12:44:26 +00002269#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002270/*
2271** This function is similar to sqlite3BtreeGetReserve(), except that it
2272** may only be called if it is guaranteed that the b-tree mutex is already
2273** held.
2274**
2275** This is useful in one special case in the backup API code where it is
2276** known that the shared b-tree mutex is held, but the mutex on the
2277** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2278** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002279** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002280*/
2281int sqlite3BtreeGetReserveNoMutex(Btree *p){
2282 assert( sqlite3_mutex_held(p->pBt->mutex) );
2283 return p->pBt->pageSize - p->pBt->usableSize;
2284}
drha1f38532012-10-01 12:44:26 +00002285#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002286
danbb2b4412011-04-06 17:54:31 +00002287#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002288/*
2289** Return the number of bytes of space at the end of every page that
2290** are intentually left unused. This is the "reserved" space that is
2291** sometimes used by extensions.
2292*/
danielk1977aef0bf62005-12-30 16:28:01 +00002293int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002294 int n;
2295 sqlite3BtreeEnter(p);
2296 n = p->pBt->pageSize - p->pBt->usableSize;
2297 sqlite3BtreeLeave(p);
2298 return n;
drh2011d5f2004-07-22 02:40:37 +00002299}
drhf8e632b2007-05-08 14:51:36 +00002300
2301/*
2302** Set the maximum page count for a database if mxPage is positive.
2303** No changes are made if mxPage is 0 or negative.
2304** Regardless of the value of mxPage, return the maximum page count.
2305*/
2306int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002307 int n;
2308 sqlite3BtreeEnter(p);
2309 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2310 sqlite3BtreeLeave(p);
2311 return n;
drhf8e632b2007-05-08 14:51:36 +00002312}
drh5b47efa2010-02-12 18:18:39 +00002313
2314/*
drhc9166342012-01-05 23:32:06 +00002315** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2316** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002317** setting after the change.
2318*/
2319int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2320 int b;
drhaf034ed2010-02-12 19:46:26 +00002321 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002322 sqlite3BtreeEnter(p);
2323 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002324 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2325 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002326 }
drhc9166342012-01-05 23:32:06 +00002327 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002328 sqlite3BtreeLeave(p);
2329 return b;
2330}
danielk1977576ec6b2005-01-21 11:55:25 +00002331#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002332
2333/*
danielk1977951af802004-11-05 15:45:09 +00002334** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2335** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2336** is disabled. The default value for the auto-vacuum property is
2337** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2338*/
danielk1977aef0bf62005-12-30 16:28:01 +00002339int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002340#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002341 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002342#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002343 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002344 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002345 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002346
2347 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002348 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002349 rc = SQLITE_READONLY;
2350 }else{
drh076d4662009-02-18 20:31:18 +00002351 pBt->autoVacuum = av ?1:0;
2352 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002353 }
drhd677b3d2007-08-20 22:48:41 +00002354 sqlite3BtreeLeave(p);
2355 return rc;
danielk1977951af802004-11-05 15:45:09 +00002356#endif
2357}
2358
2359/*
2360** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2361** enabled 1 is returned. Otherwise 0.
2362*/
danielk1977aef0bf62005-12-30 16:28:01 +00002363int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002364#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002365 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002366#else
drhd677b3d2007-08-20 22:48:41 +00002367 int rc;
2368 sqlite3BtreeEnter(p);
2369 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002370 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2371 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2372 BTREE_AUTOVACUUM_INCR
2373 );
drhd677b3d2007-08-20 22:48:41 +00002374 sqlite3BtreeLeave(p);
2375 return rc;
danielk1977951af802004-11-05 15:45:09 +00002376#endif
2377}
2378
2379
2380/*
drha34b6762004-05-07 13:30:42 +00002381** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002382** also acquire a readlock on that file.
2383**
2384** SQLITE_OK is returned on success. If the file is not a
2385** well-formed database file, then SQLITE_CORRUPT is returned.
2386** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002387** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002388*/
danielk1977aef0bf62005-12-30 16:28:01 +00002389static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002390 int rc; /* Result code from subfunctions */
2391 MemPage *pPage1; /* Page 1 of the database file */
2392 int nPage; /* Number of pages in the database */
2393 int nPageFile = 0; /* Number of pages in the database file */
2394 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002395
drh1fee73e2007-08-29 04:00:57 +00002396 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002397 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002398 rc = sqlite3PagerSharedLock(pBt->pPager);
2399 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002400 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002401 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002402
2403 /* Do some checking to help insure the file we opened really is
2404 ** a valid database file.
2405 */
drhc2a4bab2010-04-02 12:46:45 +00002406 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002407 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002408 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002409 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002410 }
2411 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002412 u32 pageSize;
2413 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002414 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002415 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002416 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002417 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002418 }
dan5cf53532010-05-01 16:40:20 +00002419
2420#ifdef SQLITE_OMIT_WAL
2421 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002422 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002423 }
2424 if( page1[19]>1 ){
2425 goto page1_init_failed;
2426 }
2427#else
dane04dc882010-04-20 18:53:15 +00002428 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002429 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002430 }
dane04dc882010-04-20 18:53:15 +00002431 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002432 goto page1_init_failed;
2433 }
drhe5ae5732008-06-15 02:51:47 +00002434
dana470aeb2010-04-21 11:43:38 +00002435 /* If the write version is set to 2, this database should be accessed
2436 ** in WAL mode. If the log is not already open, open it now. Then
2437 ** return SQLITE_OK and return without populating BtShared.pPage1.
2438 ** The caller detects this and calls this function again. This is
2439 ** required as the version of page 1 currently in the page1 buffer
2440 ** may not be the latest version - there may be a newer one in the log
2441 ** file.
2442 */
drhc9166342012-01-05 23:32:06 +00002443 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002444 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002445 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002446 if( rc!=SQLITE_OK ){
2447 goto page1_init_failed;
2448 }else if( isOpen==0 ){
2449 releasePage(pPage1);
2450 return SQLITE_OK;
2451 }
dan8b5444b2010-04-27 14:37:47 +00002452 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002453 }
dan5cf53532010-05-01 16:40:20 +00002454#endif
dane04dc882010-04-20 18:53:15 +00002455
drhe5ae5732008-06-15 02:51:47 +00002456 /* The maximum embedded fraction must be exactly 25%. And the minimum
2457 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2458 ** The original design allowed these amounts to vary, but as of
2459 ** version 3.6.0, we require them to be fixed.
2460 */
2461 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2462 goto page1_init_failed;
2463 }
drhb2eced52010-08-12 02:41:12 +00002464 pageSize = (page1[16]<<8) | (page1[17]<<16);
2465 if( ((pageSize-1)&pageSize)!=0
2466 || pageSize>SQLITE_MAX_PAGE_SIZE
2467 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002468 ){
drh07d183d2005-05-01 22:52:42 +00002469 goto page1_init_failed;
2470 }
2471 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002472 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002473 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002474 /* After reading the first page of the database assuming a page size
2475 ** of BtShared.pageSize, we have discovered that the page-size is
2476 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2477 ** zero and return SQLITE_OK. The caller will call this function
2478 ** again with the correct page-size.
2479 */
2480 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002481 pBt->usableSize = usableSize;
2482 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002483 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002484 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2485 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002486 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002487 }
danecac6702011-02-09 18:19:20 +00002488 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002489 rc = SQLITE_CORRUPT_BKPT;
2490 goto page1_init_failed;
2491 }
drhb33e1b92009-06-18 11:29:20 +00002492 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002493 goto page1_init_failed;
2494 }
drh43b18e12010-08-17 19:40:08 +00002495 pBt->pageSize = pageSize;
2496 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002497#ifndef SQLITE_OMIT_AUTOVACUUM
2498 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002499 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002500#endif
drh306dc212001-05-21 13:45:10 +00002501 }
drhb6f41482004-05-14 01:58:11 +00002502
2503 /* maxLocal is the maximum amount of payload to store locally for
2504 ** a cell. Make sure it is small enough so that at least minFanout
2505 ** cells can will fit on one page. We assume a 10-byte page header.
2506 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002507 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002508 ** 4-byte child pointer
2509 ** 9-byte nKey value
2510 ** 4-byte nData value
2511 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002512 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002513 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2514 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002515 */
shaneh1df2db72010-08-18 02:28:48 +00002516 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2517 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2518 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2519 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002520 if( pBt->maxLocal>127 ){
2521 pBt->max1bytePayload = 127;
2522 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002523 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002524 }
drh2e38c322004-09-03 18:38:44 +00002525 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002526 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002527 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002528 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002529
drh72f82862001-05-24 21:06:34 +00002530page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002531 releasePage(pPage1);
2532 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002533 return rc;
drh306dc212001-05-21 13:45:10 +00002534}
2535
drh85ec3b62013-05-14 23:12:06 +00002536#ifndef NDEBUG
2537/*
2538** Return the number of cursors open on pBt. This is for use
2539** in assert() expressions, so it is only compiled if NDEBUG is not
2540** defined.
2541**
2542** Only write cursors are counted if wrOnly is true. If wrOnly is
2543** false then all cursors are counted.
2544**
2545** For the purposes of this routine, a cursor is any cursor that
2546** is capable of reading or writing to the databse. Cursors that
2547** have been tripped into the CURSOR_FAULT state are not counted.
2548*/
2549static int countValidCursors(BtShared *pBt, int wrOnly){
2550 BtCursor *pCur;
2551 int r = 0;
2552 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2553 if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2554 }
2555 return r;
2556}
2557#endif
2558
drh306dc212001-05-21 13:45:10 +00002559/*
drhb8ca3072001-12-05 00:21:20 +00002560** If there are no outstanding cursors and we are not in the middle
2561** of a transaction but there is a read lock on the database, then
2562** this routine unrefs the first page of the database file which
2563** has the effect of releasing the read lock.
2564**
drhb8ca3072001-12-05 00:21:20 +00002565** If there is a transaction in progress, this routine is a no-op.
2566*/
danielk1977aef0bf62005-12-30 16:28:01 +00002567static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002568 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002569 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002570 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002571 assert( pBt->pPage1->aData );
2572 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2573 assert( pBt->pPage1->aData );
2574 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002575 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002576 }
2577}
2578
2579/*
drhe39f2f92009-07-23 01:43:59 +00002580** If pBt points to an empty file then convert that empty file
2581** into a new empty database by initializing the first page of
2582** the database.
drh8b2f49b2001-06-08 00:21:52 +00002583*/
danielk1977aef0bf62005-12-30 16:28:01 +00002584static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002585 MemPage *pP1;
2586 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002587 int rc;
drhd677b3d2007-08-20 22:48:41 +00002588
drh1fee73e2007-08-29 04:00:57 +00002589 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002590 if( pBt->nPage>0 ){
2591 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002592 }
drh3aac2dd2004-04-26 14:10:20 +00002593 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002594 assert( pP1!=0 );
2595 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002596 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002597 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002598 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2599 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002600 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2601 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002602 data[18] = 1;
2603 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002604 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2605 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002606 data[21] = 64;
2607 data[22] = 32;
2608 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002609 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002610 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002611 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002612#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002613 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002614 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002615 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002616 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002617#endif
drhdd3cd972010-03-27 17:12:36 +00002618 pBt->nPage = 1;
2619 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002620 return SQLITE_OK;
2621}
2622
2623/*
danb483eba2012-10-13 19:58:11 +00002624** Initialize the first page of the database file (creating a database
2625** consisting of a single page and no schema objects). Return SQLITE_OK
2626** if successful, or an SQLite error code otherwise.
2627*/
2628int sqlite3BtreeNewDb(Btree *p){
2629 int rc;
2630 sqlite3BtreeEnter(p);
2631 p->pBt->nPage = 0;
2632 rc = newDatabase(p->pBt);
2633 sqlite3BtreeLeave(p);
2634 return rc;
2635}
2636
2637/*
danielk1977ee5741e2004-05-31 10:01:34 +00002638** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002639** is started if the second argument is nonzero, otherwise a read-
2640** transaction. If the second argument is 2 or more and exclusive
2641** transaction is started, meaning that no other process is allowed
2642** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002643** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002644** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002645**
danielk1977ee5741e2004-05-31 10:01:34 +00002646** A write-transaction must be started before attempting any
2647** changes to the database. None of the following routines
2648** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002649**
drh23e11ca2004-05-04 17:27:28 +00002650** sqlite3BtreeCreateTable()
2651** sqlite3BtreeCreateIndex()
2652** sqlite3BtreeClearTable()
2653** sqlite3BtreeDropTable()
2654** sqlite3BtreeInsert()
2655** sqlite3BtreeDelete()
2656** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002657**
drhb8ef32c2005-03-14 02:01:49 +00002658** If an initial attempt to acquire the lock fails because of lock contention
2659** and the database was previously unlocked, then invoke the busy handler
2660** if there is one. But if there was previously a read-lock, do not
2661** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2662** returned when there is already a read-lock in order to avoid a deadlock.
2663**
2664** Suppose there are two processes A and B. A has a read lock and B has
2665** a reserved lock. B tries to promote to exclusive but is blocked because
2666** of A's read lock. A tries to promote to reserved but is blocked by B.
2667** One or the other of the two processes must give way or there can be
2668** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2669** when A already has a read lock, we encourage A to give up and let B
2670** proceed.
drha059ad02001-04-17 20:09:11 +00002671*/
danielk1977aef0bf62005-12-30 16:28:01 +00002672int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002673 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002674 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002675 int rc = SQLITE_OK;
2676
drhd677b3d2007-08-20 22:48:41 +00002677 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002678 btreeIntegrity(p);
2679
danielk1977ee5741e2004-05-31 10:01:34 +00002680 /* If the btree is already in a write-transaction, or it
2681 ** is already in a read-transaction and a read-transaction
2682 ** is requested, this is a no-op.
2683 */
danielk1977aef0bf62005-12-30 16:28:01 +00002684 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002685 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002686 }
dan56c517a2013-09-26 11:04:33 +00002687 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002688
2689 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002690 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002691 rc = SQLITE_READONLY;
2692 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002693 }
2694
danielk1977404ca072009-03-16 13:19:36 +00002695#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002696 /* If another database handle has already opened a write transaction
2697 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002698 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002699 */
drhc9166342012-01-05 23:32:06 +00002700 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2701 || (pBt->btsFlags & BTS_PENDING)!=0
2702 ){
danielk1977404ca072009-03-16 13:19:36 +00002703 pBlock = pBt->pWriter->db;
2704 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002705 BtLock *pIter;
2706 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2707 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002708 pBlock = pIter->pBtree->db;
2709 break;
danielk1977641b0f42007-12-21 04:47:25 +00002710 }
2711 }
2712 }
danielk1977404ca072009-03-16 13:19:36 +00002713 if( pBlock ){
2714 sqlite3ConnectionBlocked(p->db, pBlock);
2715 rc = SQLITE_LOCKED_SHAREDCACHE;
2716 goto trans_begun;
2717 }
danielk1977641b0f42007-12-21 04:47:25 +00002718#endif
2719
danielk1977602b4662009-07-02 07:47:33 +00002720 /* Any read-only or read-write transaction implies a read-lock on
2721 ** page 1. So if some other shared-cache client already has a write-lock
2722 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002723 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2724 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002725
drhc9166342012-01-05 23:32:06 +00002726 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2727 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002728 do {
danielk1977295dc102009-04-01 19:07:03 +00002729 /* Call lockBtree() until either pBt->pPage1 is populated or
2730 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2731 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2732 ** reading page 1 it discovers that the page-size of the database
2733 ** file is not pBt->pageSize. In this case lockBtree() will update
2734 ** pBt->pageSize to the page-size of the file on disk.
2735 */
2736 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002737
drhb8ef32c2005-03-14 02:01:49 +00002738 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002739 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002740 rc = SQLITE_READONLY;
2741 }else{
danielk1977d8293352009-04-30 09:10:37 +00002742 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002743 if( rc==SQLITE_OK ){
2744 rc = newDatabase(pBt);
2745 }
drhb8ef32c2005-03-14 02:01:49 +00002746 }
2747 }
2748
danielk1977bd434552009-03-18 10:33:00 +00002749 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002750 unlockBtreeIfUnused(pBt);
2751 }
danf9b76712010-06-01 14:12:45 +00002752 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002753 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002754
2755 if( rc==SQLITE_OK ){
2756 if( p->inTrans==TRANS_NONE ){
2757 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002758#ifndef SQLITE_OMIT_SHARED_CACHE
2759 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002760 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002761 p->lock.eLock = READ_LOCK;
2762 p->lock.pNext = pBt->pLock;
2763 pBt->pLock = &p->lock;
2764 }
2765#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002766 }
2767 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2768 if( p->inTrans>pBt->inTransaction ){
2769 pBt->inTransaction = p->inTrans;
2770 }
danielk1977404ca072009-03-16 13:19:36 +00002771 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002772 MemPage *pPage1 = pBt->pPage1;
2773#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002774 assert( !pBt->pWriter );
2775 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002776 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2777 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002778#endif
dan59257dc2010-08-04 11:34:31 +00002779
2780 /* If the db-size header field is incorrect (as it may be if an old
2781 ** client has been writing the database file), update it now. Doing
2782 ** this sooner rather than later means the database size can safely
2783 ** re-read the database size from page 1 if a savepoint or transaction
2784 ** rollback occurs within the transaction.
2785 */
2786 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2787 rc = sqlite3PagerWrite(pPage1->pDbPage);
2788 if( rc==SQLITE_OK ){
2789 put4byte(&pPage1->aData[28], pBt->nPage);
2790 }
2791 }
2792 }
danielk1977aef0bf62005-12-30 16:28:01 +00002793 }
2794
drhd677b3d2007-08-20 22:48:41 +00002795
2796trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002797 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002798 /* This call makes sure that the pager has the correct number of
2799 ** open savepoints. If the second parameter is greater than 0 and
2800 ** the sub-journal is not already open, then it will be opened here.
2801 */
danielk1977fd7f0452008-12-17 17:30:26 +00002802 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2803 }
danielk197712dd5492008-12-18 15:45:07 +00002804
danielk1977aef0bf62005-12-30 16:28:01 +00002805 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002806 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002807 return rc;
drha059ad02001-04-17 20:09:11 +00002808}
2809
danielk1977687566d2004-11-02 12:56:41 +00002810#ifndef SQLITE_OMIT_AUTOVACUUM
2811
2812/*
2813** Set the pointer-map entries for all children of page pPage. Also, if
2814** pPage contains cells that point to overflow pages, set the pointer
2815** map entries for the overflow pages as well.
2816*/
2817static int setChildPtrmaps(MemPage *pPage){
2818 int i; /* Counter variable */
2819 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002820 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002821 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002822 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002823 Pgno pgno = pPage->pgno;
2824
drh1fee73e2007-08-29 04:00:57 +00002825 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002826 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002827 if( rc!=SQLITE_OK ){
2828 goto set_child_ptrmaps_out;
2829 }
danielk1977687566d2004-11-02 12:56:41 +00002830 nCell = pPage->nCell;
2831
2832 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002833 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002834
drh98add2e2009-07-20 17:11:49 +00002835 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002836
danielk1977687566d2004-11-02 12:56:41 +00002837 if( !pPage->leaf ){
2838 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002839 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002840 }
2841 }
2842
2843 if( !pPage->leaf ){
2844 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002845 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002846 }
2847
2848set_child_ptrmaps_out:
2849 pPage->isInit = isInitOrig;
2850 return rc;
2851}
2852
2853/*
drhf3aed592009-07-08 18:12:49 +00002854** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2855** that it points to iTo. Parameter eType describes the type of pointer to
2856** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002857**
2858** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2859** page of pPage.
2860**
2861** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2862** page pointed to by one of the cells on pPage.
2863**
2864** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2865** overflow page in the list.
2866*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002867static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002868 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002869 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002870 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002871 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002872 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002873 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002874 }
danielk1977f78fc082004-11-02 14:40:32 +00002875 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002876 }else{
drhf49661a2008-12-10 16:45:50 +00002877 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002878 int i;
2879 int nCell;
2880
danielk197730548662009-07-09 05:07:37 +00002881 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002882 nCell = pPage->nCell;
2883
danielk1977687566d2004-11-02 12:56:41 +00002884 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002885 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002886 if( eType==PTRMAP_OVERFLOW1 ){
2887 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002888 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002889 if( info.iOverflow
2890 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2891 && iFrom==get4byte(&pCell[info.iOverflow])
2892 ){
2893 put4byte(&pCell[info.iOverflow], iTo);
2894 break;
danielk1977687566d2004-11-02 12:56:41 +00002895 }
2896 }else{
2897 if( get4byte(pCell)==iFrom ){
2898 put4byte(pCell, iTo);
2899 break;
2900 }
2901 }
2902 }
2903
2904 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002905 if( eType!=PTRMAP_BTREE ||
2906 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002907 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002908 }
danielk1977687566d2004-11-02 12:56:41 +00002909 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2910 }
2911
2912 pPage->isInit = isInitOrig;
2913 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002914 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002915}
2916
danielk1977003ba062004-11-04 02:57:33 +00002917
danielk19777701e812005-01-10 12:59:51 +00002918/*
2919** Move the open database page pDbPage to location iFreePage in the
2920** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002921**
2922** The isCommit flag indicates that there is no need to remember that
2923** the journal needs to be sync()ed before database page pDbPage->pgno
2924** can be written to. The caller has already promised not to write to that
2925** page.
danielk19777701e812005-01-10 12:59:51 +00002926*/
danielk1977003ba062004-11-04 02:57:33 +00002927static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002928 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002929 MemPage *pDbPage, /* Open page to move */
2930 u8 eType, /* Pointer map 'type' entry for pDbPage */
2931 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002932 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002933 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002934){
2935 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2936 Pgno iDbPage = pDbPage->pgno;
2937 Pager *pPager = pBt->pPager;
2938 int rc;
2939
danielk1977a0bf2652004-11-04 14:30:04 +00002940 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2941 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002942 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002943 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002944
drh85b623f2007-12-13 21:54:09 +00002945 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002946 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2947 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002948 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002949 if( rc!=SQLITE_OK ){
2950 return rc;
2951 }
2952 pDbPage->pgno = iFreePage;
2953
2954 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2955 ** that point to overflow pages. The pointer map entries for all these
2956 ** pages need to be changed.
2957 **
2958 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2959 ** pointer to a subsequent overflow page. If this is the case, then
2960 ** the pointer map needs to be updated for the subsequent overflow page.
2961 */
danielk1977a0bf2652004-11-04 14:30:04 +00002962 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002963 rc = setChildPtrmaps(pDbPage);
2964 if( rc!=SQLITE_OK ){
2965 return rc;
2966 }
2967 }else{
2968 Pgno nextOvfl = get4byte(pDbPage->aData);
2969 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002970 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002971 if( rc!=SQLITE_OK ){
2972 return rc;
2973 }
2974 }
2975 }
2976
2977 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2978 ** that it points at iFreePage. Also fix the pointer map entry for
2979 ** iPtrPage.
2980 */
danielk1977a0bf2652004-11-04 14:30:04 +00002981 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002982 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002983 if( rc!=SQLITE_OK ){
2984 return rc;
2985 }
danielk19773b8a05f2007-03-19 17:44:26 +00002986 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002987 if( rc!=SQLITE_OK ){
2988 releasePage(pPtrPage);
2989 return rc;
2990 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002991 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002992 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002993 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002994 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002995 }
danielk1977003ba062004-11-04 02:57:33 +00002996 }
danielk1977003ba062004-11-04 02:57:33 +00002997 return rc;
2998}
2999
danielk1977dddbcdc2007-04-26 14:42:34 +00003000/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003001static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003002
3003/*
dan51f0b6d2013-02-22 20:16:34 +00003004** Perform a single step of an incremental-vacuum. If successful, return
3005** SQLITE_OK. If there is no work to do (and therefore no point in
3006** calling this function again), return SQLITE_DONE. Or, if an error
3007** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003008**
dan51f0b6d2013-02-22 20:16:34 +00003009** More specificly, this function attempts to re-organize the database so
3010** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003011**
dan51f0b6d2013-02-22 20:16:34 +00003012** Parameter nFin is the number of pages that this database would contain
3013** were this function called until it returns SQLITE_DONE.
3014**
3015** If the bCommit parameter is non-zero, this function assumes that the
3016** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3017** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3018** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003019*/
dan51f0b6d2013-02-22 20:16:34 +00003020static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003021 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003022 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003023
drh1fee73e2007-08-29 04:00:57 +00003024 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003025 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003026
3027 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003028 u8 eType;
3029 Pgno iPtrPage;
3030
3031 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003032 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003033 return SQLITE_DONE;
3034 }
3035
3036 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3037 if( rc!=SQLITE_OK ){
3038 return rc;
3039 }
3040 if( eType==PTRMAP_ROOTPAGE ){
3041 return SQLITE_CORRUPT_BKPT;
3042 }
3043
3044 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003045 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003046 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003047 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003048 ** truncated to zero after this function returns, so it doesn't
3049 ** matter if it still contains some garbage entries.
3050 */
3051 Pgno iFreePg;
3052 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003053 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003054 if( rc!=SQLITE_OK ){
3055 return rc;
3056 }
3057 assert( iFreePg==iLastPg );
3058 releasePage(pFreePg);
3059 }
3060 } else {
3061 Pgno iFreePg; /* Index of free page to move pLastPg to */
3062 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003063 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3064 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003065
drhb00fc3b2013-08-21 23:42:32 +00003066 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003067 if( rc!=SQLITE_OK ){
3068 return rc;
3069 }
3070
dan51f0b6d2013-02-22 20:16:34 +00003071 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003072 ** is swapped with the first free page pulled off the free list.
3073 **
dan51f0b6d2013-02-22 20:16:34 +00003074 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003075 ** looping until a free-page located within the first nFin pages
3076 ** of the file is found.
3077 */
dan51f0b6d2013-02-22 20:16:34 +00003078 if( bCommit==0 ){
3079 eMode = BTALLOC_LE;
3080 iNear = nFin;
3081 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003082 do {
3083 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003084 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003085 if( rc!=SQLITE_OK ){
3086 releasePage(pLastPg);
3087 return rc;
3088 }
3089 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003090 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003091 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003092
dane1df4e32013-03-05 11:27:04 +00003093 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003094 releasePage(pLastPg);
3095 if( rc!=SQLITE_OK ){
3096 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003097 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003098 }
3099 }
3100
dan51f0b6d2013-02-22 20:16:34 +00003101 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003102 do {
danielk19773460d192008-12-27 15:23:13 +00003103 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003104 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3105 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003106 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003107 }
3108 return SQLITE_OK;
3109}
3110
3111/*
dan51f0b6d2013-02-22 20:16:34 +00003112** The database opened by the first argument is an auto-vacuum database
3113** nOrig pages in size containing nFree free pages. Return the expected
3114** size of the database in pages following an auto-vacuum operation.
3115*/
3116static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3117 int nEntry; /* Number of entries on one ptrmap page */
3118 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3119 Pgno nFin; /* Return value */
3120
3121 nEntry = pBt->usableSize/5;
3122 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3123 nFin = nOrig - nFree - nPtrmap;
3124 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3125 nFin--;
3126 }
3127 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3128 nFin--;
3129 }
dan51f0b6d2013-02-22 20:16:34 +00003130
3131 return nFin;
3132}
3133
3134/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003135** A write-transaction must be opened before calling this function.
3136** It performs a single unit of work towards an incremental vacuum.
3137**
3138** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003139** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003140** SQLITE_OK is returned. Otherwise an SQLite error code.
3141*/
3142int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003143 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003144 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003145
3146 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003147 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3148 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003149 rc = SQLITE_DONE;
3150 }else{
dan51f0b6d2013-02-22 20:16:34 +00003151 Pgno nOrig = btreePagecount(pBt);
3152 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3153 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3154
dan91384712013-02-24 11:50:43 +00003155 if( nOrig<nFin ){
3156 rc = SQLITE_CORRUPT_BKPT;
3157 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003158 rc = saveAllCursors(pBt, 0, 0);
3159 if( rc==SQLITE_OK ){
3160 invalidateAllOverflowCache(pBt);
3161 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3162 }
dan51f0b6d2013-02-22 20:16:34 +00003163 if( rc==SQLITE_OK ){
3164 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3165 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3166 }
3167 }else{
3168 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003169 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003170 }
drhd677b3d2007-08-20 22:48:41 +00003171 sqlite3BtreeLeave(p);
3172 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003173}
3174
3175/*
danielk19773b8a05f2007-03-19 17:44:26 +00003176** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003177** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003178**
3179** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3180** the database file should be truncated to during the commit process.
3181** i.e. the database has been reorganized so that only the first *pnTrunc
3182** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003183*/
danielk19773460d192008-12-27 15:23:13 +00003184static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003185 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003186 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003187 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003188
drh1fee73e2007-08-29 04:00:57 +00003189 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003190 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003191 assert(pBt->autoVacuum);
3192 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003193 Pgno nFin; /* Number of pages in database after autovacuuming */
3194 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003195 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003196 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003197
drhb1299152010-03-30 22:58:33 +00003198 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003199 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3200 /* It is not possible to create a database for which the final page
3201 ** is either a pointer-map page or the pending-byte page. If one
3202 ** is encountered, this indicates corruption.
3203 */
danielk19773460d192008-12-27 15:23:13 +00003204 return SQLITE_CORRUPT_BKPT;
3205 }
danielk1977ef165ce2009-04-06 17:50:03 +00003206
danielk19773460d192008-12-27 15:23:13 +00003207 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003208 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003209 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003210 if( nFin<nOrig ){
3211 rc = saveAllCursors(pBt, 0, 0);
3212 }
danielk19773460d192008-12-27 15:23:13 +00003213 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003214 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003215 }
danielk19773460d192008-12-27 15:23:13 +00003216 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003217 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3218 put4byte(&pBt->pPage1->aData[32], 0);
3219 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003220 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003221 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003222 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003223 }
3224 if( rc!=SQLITE_OK ){
3225 sqlite3PagerRollback(pPager);
3226 }
danielk1977687566d2004-11-02 12:56:41 +00003227 }
3228
dan0aed84d2013-03-26 14:16:20 +00003229 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003230 return rc;
3231}
danielk1977dddbcdc2007-04-26 14:42:34 +00003232
danielk1977a50d9aa2009-06-08 14:49:45 +00003233#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3234# define setChildPtrmaps(x) SQLITE_OK
3235#endif
danielk1977687566d2004-11-02 12:56:41 +00003236
3237/*
drh80e35f42007-03-30 14:06:34 +00003238** This routine does the first phase of a two-phase commit. This routine
3239** causes a rollback journal to be created (if it does not already exist)
3240** and populated with enough information so that if a power loss occurs
3241** the database can be restored to its original state by playing back
3242** the journal. Then the contents of the journal are flushed out to
3243** the disk. After the journal is safely on oxide, the changes to the
3244** database are written into the database file and flushed to oxide.
3245** At the end of this call, the rollback journal still exists on the
3246** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003247** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003248** commit process.
3249**
3250** This call is a no-op if no write-transaction is currently active on pBt.
3251**
3252** Otherwise, sync the database file for the btree pBt. zMaster points to
3253** the name of a master journal file that should be written into the
3254** individual journal file, or is NULL, indicating no master journal file
3255** (single database transaction).
3256**
3257** When this is called, the master journal should already have been
3258** created, populated with this journal pointer and synced to disk.
3259**
3260** Once this is routine has returned, the only thing required to commit
3261** the write-transaction for this database file is to delete the journal.
3262*/
3263int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3264 int rc = SQLITE_OK;
3265 if( p->inTrans==TRANS_WRITE ){
3266 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003267 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003268#ifndef SQLITE_OMIT_AUTOVACUUM
3269 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003270 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003271 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003272 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003273 return rc;
3274 }
3275 }
danbc1a3c62013-02-23 16:40:46 +00003276 if( pBt->bDoTruncate ){
3277 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3278 }
drh80e35f42007-03-30 14:06:34 +00003279#endif
drh49b9d332009-01-02 18:10:42 +00003280 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003281 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003282 }
3283 return rc;
3284}
3285
3286/*
danielk197794b30732009-07-02 17:21:57 +00003287** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3288** at the conclusion of a transaction.
3289*/
3290static void btreeEndTransaction(Btree *p){
3291 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003292 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003293 assert( sqlite3BtreeHoldsMutex(p) );
3294
danbc1a3c62013-02-23 16:40:46 +00003295#ifndef SQLITE_OMIT_AUTOVACUUM
3296 pBt->bDoTruncate = 0;
3297#endif
danc0537fe2013-06-28 19:41:43 +00003298 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003299 /* If there are other active statements that belong to this database
3300 ** handle, downgrade to a read-only transaction. The other statements
3301 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003302 downgradeAllSharedCacheTableLocks(p);
3303 p->inTrans = TRANS_READ;
3304 }else{
3305 /* If the handle had any kind of transaction open, decrement the
3306 ** transaction count of the shared btree. If the transaction count
3307 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3308 ** call below will unlock the pager. */
3309 if( p->inTrans!=TRANS_NONE ){
3310 clearAllSharedCacheTableLocks(p);
3311 pBt->nTransaction--;
3312 if( 0==pBt->nTransaction ){
3313 pBt->inTransaction = TRANS_NONE;
3314 }
3315 }
3316
3317 /* Set the current transaction state to TRANS_NONE and unlock the
3318 ** pager if this call closed the only read or write transaction. */
3319 p->inTrans = TRANS_NONE;
3320 unlockBtreeIfUnused(pBt);
3321 }
3322
3323 btreeIntegrity(p);
3324}
3325
3326/*
drh2aa679f2001-06-25 02:11:07 +00003327** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003328**
drh6e345992007-03-30 11:12:08 +00003329** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003330** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3331** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3332** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003333** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003334** routine has to do is delete or truncate or zero the header in the
3335** the rollback journal (which causes the transaction to commit) and
3336** drop locks.
drh6e345992007-03-30 11:12:08 +00003337**
dan60939d02011-03-29 15:40:55 +00003338** Normally, if an error occurs while the pager layer is attempting to
3339** finalize the underlying journal file, this function returns an error and
3340** the upper layer will attempt a rollback. However, if the second argument
3341** is non-zero then this b-tree transaction is part of a multi-file
3342** transaction. In this case, the transaction has already been committed
3343** (by deleting a master journal file) and the caller will ignore this
3344** functions return code. So, even if an error occurs in the pager layer,
3345** reset the b-tree objects internal state to indicate that the write
3346** transaction has been closed. This is quite safe, as the pager will have
3347** transitioned to the error state.
3348**
drh5e00f6c2001-09-13 13:46:56 +00003349** This will release the write lock on the database file. If there
3350** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003351*/
dan60939d02011-03-29 15:40:55 +00003352int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003353
drh075ed302010-10-14 01:17:30 +00003354 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003355 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003356 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003357
3358 /* If the handle has a write-transaction open, commit the shared-btrees
3359 ** transaction and set the shared state to TRANS_READ.
3360 */
3361 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003362 int rc;
drh075ed302010-10-14 01:17:30 +00003363 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003364 assert( pBt->inTransaction==TRANS_WRITE );
3365 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003366 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003367 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003368 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003369 return rc;
3370 }
danielk1977aef0bf62005-12-30 16:28:01 +00003371 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003372 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003373 }
danielk1977aef0bf62005-12-30 16:28:01 +00003374
danielk197794b30732009-07-02 17:21:57 +00003375 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003376 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003377 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003378}
3379
drh80e35f42007-03-30 14:06:34 +00003380/*
3381** Do both phases of a commit.
3382*/
3383int sqlite3BtreeCommit(Btree *p){
3384 int rc;
drhd677b3d2007-08-20 22:48:41 +00003385 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003386 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3387 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003388 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003389 }
drhd677b3d2007-08-20 22:48:41 +00003390 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003391 return rc;
3392}
3393
drhc39e0002004-05-07 23:50:57 +00003394/*
drhfb982642007-08-30 01:19:59 +00003395** This routine sets the state to CURSOR_FAULT and the error
3396** code to errCode for every cursor on BtShared that pBtree
3397** references.
3398**
3399** Every cursor is tripped, including cursors that belong
3400** to other database connections that happen to be sharing
3401** the cache with pBtree.
3402**
3403** This routine gets called when a rollback occurs.
3404** All cursors using the same cache must be tripped
3405** to prevent them from trying to use the btree after
3406** the rollback. The rollback may have deleted tables
3407** or moved root pages, so it is not sufficient to
3408** save the state of the cursor. The cursor must be
3409** invalidated.
3410*/
3411void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3412 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003413 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003414 sqlite3BtreeEnter(pBtree);
3415 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003416 int i;
danielk1977be51a652008-10-08 17:58:48 +00003417 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003418 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003419 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003420 for(i=0; i<=p->iPage; i++){
3421 releasePage(p->apPage[i]);
3422 p->apPage[i] = 0;
3423 }
drhfb982642007-08-30 01:19:59 +00003424 }
3425 sqlite3BtreeLeave(pBtree);
3426}
3427
3428/*
drhecdc7532001-09-23 02:35:53 +00003429** Rollback the transaction in progress. All cursors will be
3430** invalided by this operation. Any attempt to use a cursor
3431** that was open at the beginning of this operation will result
3432** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003433**
3434** This will release the write lock on the database file. If there
3435** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003436*/
drh0f198a72012-02-13 16:43:16 +00003437int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003438 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003439 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003440 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003441
drhd677b3d2007-08-20 22:48:41 +00003442 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003443 if( tripCode==SQLITE_OK ){
3444 rc = tripCode = saveAllCursors(pBt, 0, 0);
3445 }else{
3446 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003447 }
drh0f198a72012-02-13 16:43:16 +00003448 if( tripCode ){
3449 sqlite3BtreeTripAllCursors(p, tripCode);
3450 }
danielk1977aef0bf62005-12-30 16:28:01 +00003451 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003452
3453 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003454 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003455
danielk19778d34dfd2006-01-24 16:37:57 +00003456 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003457 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003458 if( rc2!=SQLITE_OK ){
3459 rc = rc2;
3460 }
3461
drh24cd67e2004-05-10 16:18:47 +00003462 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003463 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003464 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003465 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003466 int nPage = get4byte(28+(u8*)pPage1->aData);
3467 testcase( nPage==0 );
3468 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3469 testcase( pBt->nPage!=nPage );
3470 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003471 releasePage(pPage1);
3472 }
drh85ec3b62013-05-14 23:12:06 +00003473 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003474 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003475 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003476 }
danielk1977aef0bf62005-12-30 16:28:01 +00003477
danielk197794b30732009-07-02 17:21:57 +00003478 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003479 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003480 return rc;
3481}
3482
3483/*
danielk1977bd434552009-03-18 10:33:00 +00003484** Start a statement subtransaction. The subtransaction can can be rolled
3485** back independently of the main transaction. You must start a transaction
3486** before starting a subtransaction. The subtransaction is ended automatically
3487** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003488**
3489** Statement subtransactions are used around individual SQL statements
3490** that are contained within a BEGIN...COMMIT block. If a constraint
3491** error occurs within the statement, the effect of that one statement
3492** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003493**
3494** A statement sub-transaction is implemented as an anonymous savepoint. The
3495** value passed as the second parameter is the total number of savepoints,
3496** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3497** are no active savepoints and no other statement-transactions open,
3498** iStatement is 1. This anonymous savepoint can be released or rolled back
3499** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003500*/
danielk1977bd434552009-03-18 10:33:00 +00003501int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003502 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003503 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003504 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003505 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003506 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003507 assert( iStatement>0 );
3508 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003509 assert( pBt->inTransaction==TRANS_WRITE );
3510 /* At the pager level, a statement transaction is a savepoint with
3511 ** an index greater than all savepoints created explicitly using
3512 ** SQL statements. It is illegal to open, release or rollback any
3513 ** such savepoints while the statement transaction savepoint is active.
3514 */
3515 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003516 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003517 return rc;
3518}
3519
3520/*
danielk1977fd7f0452008-12-17 17:30:26 +00003521** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3522** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003523** savepoint identified by parameter iSavepoint, depending on the value
3524** of op.
3525**
3526** Normally, iSavepoint is greater than or equal to zero. However, if op is
3527** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3528** contents of the entire transaction are rolled back. This is different
3529** from a normal transaction rollback, as no locks are released and the
3530** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003531*/
3532int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3533 int rc = SQLITE_OK;
3534 if( p && p->inTrans==TRANS_WRITE ){
3535 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003536 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3537 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3538 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003539 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003540 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003541 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3542 pBt->nPage = 0;
3543 }
drh9f0bbf92009-01-02 21:08:09 +00003544 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003545 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003546
3547 /* The database size was written into the offset 28 of the header
3548 ** when the transaction started, so we know that the value at offset
3549 ** 28 is nonzero. */
3550 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003551 }
danielk1977fd7f0452008-12-17 17:30:26 +00003552 sqlite3BtreeLeave(p);
3553 }
3554 return rc;
3555}
3556
3557/*
drh8b2f49b2001-06-08 00:21:52 +00003558** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003559** iTable. If a read-only cursor is requested, it is assumed that
3560** the caller already has at least a read-only transaction open
3561** on the database already. If a write-cursor is requested, then
3562** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003563**
3564** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003565** If wrFlag==1, then the cursor can be used for reading or for
3566** writing if other conditions for writing are also met. These
3567** are the conditions that must be met in order for writing to
3568** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003569**
drhf74b8d92002-09-01 23:20:45 +00003570** 1: The cursor must have been opened with wrFlag==1
3571**
drhfe5d71d2007-03-19 11:54:10 +00003572** 2: Other database connections that share the same pager cache
3573** but which are not in the READ_UNCOMMITTED state may not have
3574** cursors open with wrFlag==0 on the same table. Otherwise
3575** the changes made by this write cursor would be visible to
3576** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003577**
3578** 3: The database must be writable (not on read-only media)
3579**
3580** 4: There must be an active transaction.
3581**
drh6446c4d2001-12-15 14:22:18 +00003582** No checking is done to make sure that page iTable really is the
3583** root page of a b-tree. If it is not, then the cursor acquired
3584** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003585**
drhf25a5072009-11-18 23:01:25 +00003586** It is assumed that the sqlite3BtreeCursorZero() has been called
3587** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003588*/
drhd677b3d2007-08-20 22:48:41 +00003589static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003590 Btree *p, /* The btree */
3591 int iTable, /* Root page of table to open */
3592 int wrFlag, /* 1 to write. 0 read-only */
3593 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3594 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003595){
danielk19773e8add92009-07-04 17:16:00 +00003596 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003597
drh1fee73e2007-08-29 04:00:57 +00003598 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003599 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003600
danielk1977602b4662009-07-02 07:47:33 +00003601 /* The following assert statements verify that if this is a sharable
3602 ** b-tree database, the connection is holding the required table locks,
3603 ** and that no other connection has any open cursor that conflicts with
3604 ** this lock. */
3605 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003606 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3607
danielk19773e8add92009-07-04 17:16:00 +00003608 /* Assert that the caller has opened the required transaction. */
3609 assert( p->inTrans>TRANS_NONE );
3610 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3611 assert( pBt->pPage1 && pBt->pPage1->aData );
3612
drhc9166342012-01-05 23:32:06 +00003613 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003614 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003615 }
drhb1299152010-03-30 22:58:33 +00003616 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003617 assert( wrFlag==0 );
3618 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003619 }
danielk1977aef0bf62005-12-30 16:28:01 +00003620
danielk1977aef0bf62005-12-30 16:28:01 +00003621 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003622 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003623 pCur->pgnoRoot = (Pgno)iTable;
3624 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003625 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003626 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003627 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003628 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003629 pCur->pNext = pBt->pCursor;
3630 if( pCur->pNext ){
3631 pCur->pNext->pPrev = pCur;
3632 }
3633 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003634 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003635 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003636 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003637}
drhd677b3d2007-08-20 22:48:41 +00003638int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003639 Btree *p, /* The btree */
3640 int iTable, /* Root page of table to open */
3641 int wrFlag, /* 1 to write. 0 read-only */
3642 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3643 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003644){
3645 int rc;
3646 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003647 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003648 sqlite3BtreeLeave(p);
3649 return rc;
3650}
drh7f751222009-03-17 22:33:00 +00003651
3652/*
3653** Return the size of a BtCursor object in bytes.
3654**
3655** This interfaces is needed so that users of cursors can preallocate
3656** sufficient storage to hold a cursor. The BtCursor object is opaque
3657** to users so they cannot do the sizeof() themselves - they must call
3658** this routine.
3659*/
3660int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003661 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003662}
3663
drh7f751222009-03-17 22:33:00 +00003664/*
drhf25a5072009-11-18 23:01:25 +00003665** Initialize memory that will be converted into a BtCursor object.
3666**
3667** The simple approach here would be to memset() the entire object
3668** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3669** do not need to be zeroed and they are large, so we can save a lot
3670** of run-time by skipping the initialization of those elements.
3671*/
3672void sqlite3BtreeCursorZero(BtCursor *p){
3673 memset(p, 0, offsetof(BtCursor, iPage));
3674}
3675
3676/*
drh7f751222009-03-17 22:33:00 +00003677** Set the cached rowid value of every cursor in the same database file
3678** as pCur and having the same root page number as pCur. The value is
3679** set to iRowid.
3680**
3681** Only positive rowid values are considered valid for this cache.
3682** The cache is initialized to zero, indicating an invalid cache.
3683** A btree will work fine with zero or negative rowids. We just cannot
3684** cache zero or negative rowids, which means tables that use zero or
3685** negative rowids might run a little slower. But in practice, zero
3686** or negative rowids are very uncommon so this should not be a problem.
3687*/
3688void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3689 BtCursor *p;
3690 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3691 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3692 }
3693 assert( pCur->cachedRowid==iRowid );
3694}
drhd677b3d2007-08-20 22:48:41 +00003695
drh7f751222009-03-17 22:33:00 +00003696/*
3697** Return the cached rowid for the given cursor. A negative or zero
3698** return value indicates that the rowid cache is invalid and should be
3699** ignored. If the rowid cache has never before been set, then a
3700** zero is returned.
3701*/
3702sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3703 return pCur->cachedRowid;
3704}
drha059ad02001-04-17 20:09:11 +00003705
3706/*
drh5e00f6c2001-09-13 13:46:56 +00003707** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003708** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003709*/
drh3aac2dd2004-04-26 14:10:20 +00003710int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003711 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003712 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003713 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003714 BtShared *pBt = pCur->pBt;
3715 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003716 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003717 if( pCur->pPrev ){
3718 pCur->pPrev->pNext = pCur->pNext;
3719 }else{
3720 pBt->pCursor = pCur->pNext;
3721 }
3722 if( pCur->pNext ){
3723 pCur->pNext->pPrev = pCur->pPrev;
3724 }
danielk197771d5d2c2008-09-29 11:49:47 +00003725 for(i=0; i<=pCur->iPage; i++){
3726 releasePage(pCur->apPage[i]);
3727 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003728 unlockBtreeIfUnused(pBt);
3729 invalidateOverflowCache(pCur);
3730 /* sqlite3_free(pCur); */
3731 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003732 }
drh8c42ca92001-06-22 19:15:00 +00003733 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003734}
3735
drh5e2f8b92001-05-28 00:41:15 +00003736/*
drh86057612007-06-26 01:04:48 +00003737** Make sure the BtCursor* given in the argument has a valid
3738** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003739** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003740**
3741** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003742** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003743**
3744** 2007-06-25: There is a bug in some versions of MSVC that cause the
3745** compiler to crash when getCellInfo() is implemented as a macro.
3746** But there is a measureable speed advantage to using the macro on gcc
3747** (when less compiler optimizations like -Os or -O0 are used and the
3748** compiler is not doing agressive inlining.) So we use a real function
3749** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003750*/
drh9188b382004-05-14 21:12:22 +00003751#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003752 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003753 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003754 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003755 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003756 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003757 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003758 }
danielk19771cc5ed82007-05-16 17:28:43 +00003759#else
3760 #define assertCellInfo(x)
3761#endif
drh86057612007-06-26 01:04:48 +00003762#ifdef _MSC_VER
3763 /* Use a real function in MSVC to work around bugs in that compiler. */
3764 static void getCellInfo(BtCursor *pCur){
3765 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003766 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003767 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003768 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003769 }else{
3770 assertCellInfo(pCur);
3771 }
3772 }
3773#else /* if not _MSC_VER */
3774 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003775#define getCellInfo(pCur) \
3776 if( pCur->info.nSize==0 ){ \
3777 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003778 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003779 pCur->validNKey = 1; \
3780 }else{ \
3781 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003782 }
3783#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003784
drhea8ffdf2009-07-22 00:35:23 +00003785#ifndef NDEBUG /* The next routine used only within assert() statements */
3786/*
3787** Return true if the given BtCursor is valid. A valid cursor is one
3788** that is currently pointing to a row in a (non-empty) table.
3789** This is a verification routine is used only within assert() statements.
3790*/
3791int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3792 return pCur && pCur->eState==CURSOR_VALID;
3793}
3794#endif /* NDEBUG */
3795
drh9188b382004-05-14 21:12:22 +00003796/*
drh3aac2dd2004-04-26 14:10:20 +00003797** Set *pSize to the size of the buffer needed to hold the value of
3798** the key for the current entry. If the cursor is not pointing
3799** to a valid entry, *pSize is set to 0.
3800**
drh4b70f112004-05-02 21:12:19 +00003801** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003802** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003803**
3804** The caller must position the cursor prior to invoking this routine.
3805**
3806** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003807*/
drh4a1c3802004-05-12 15:15:47 +00003808int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003809 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003810 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3811 if( pCur->eState!=CURSOR_VALID ){
3812 *pSize = 0;
3813 }else{
3814 getCellInfo(pCur);
3815 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003816 }
drhea8ffdf2009-07-22 00:35:23 +00003817 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003818}
drh2af926b2001-05-15 00:39:25 +00003819
drh72f82862001-05-24 21:06:34 +00003820/*
drh0e1c19e2004-05-11 00:58:56 +00003821** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003822** cursor currently points to.
3823**
3824** The caller must guarantee that the cursor is pointing to a non-NULL
3825** valid entry. In other words, the calling procedure must guarantee
3826** that the cursor has Cursor.eState==CURSOR_VALID.
3827**
3828** Failure is not possible. This function always returns SQLITE_OK.
3829** It might just as well be a procedure (returning void) but we continue
3830** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003831*/
3832int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003833 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003834 assert( pCur->eState==CURSOR_VALID );
3835 getCellInfo(pCur);
3836 *pSize = pCur->info.nData;
3837 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003838}
3839
3840/*
danielk1977d04417962007-05-02 13:16:30 +00003841** Given the page number of an overflow page in the database (parameter
3842** ovfl), this function finds the page number of the next page in the
3843** linked list of overflow pages. If possible, it uses the auto-vacuum
3844** pointer-map data instead of reading the content of page ovfl to do so.
3845**
3846** If an error occurs an SQLite error code is returned. Otherwise:
3847**
danielk1977bea2a942009-01-20 17:06:27 +00003848** The page number of the next overflow page in the linked list is
3849** written to *pPgnoNext. If page ovfl is the last page in its linked
3850** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003851**
danielk1977bea2a942009-01-20 17:06:27 +00003852** If ppPage is not NULL, and a reference to the MemPage object corresponding
3853** to page number pOvfl was obtained, then *ppPage is set to point to that
3854** reference. It is the responsibility of the caller to call releasePage()
3855** on *ppPage to free the reference. In no reference was obtained (because
3856** the pointer-map was used to obtain the value for *pPgnoNext), then
3857** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003858*/
3859static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003860 BtShared *pBt, /* The database file */
3861 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003862 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003863 Pgno *pPgnoNext /* OUT: Next overflow page number */
3864){
3865 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003866 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003867 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003868
drh1fee73e2007-08-29 04:00:57 +00003869 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003870 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003871
3872#ifndef SQLITE_OMIT_AUTOVACUUM
3873 /* Try to find the next page in the overflow list using the
3874 ** autovacuum pointer-map pages. Guess that the next page in
3875 ** the overflow list is page number (ovfl+1). If that guess turns
3876 ** out to be wrong, fall back to loading the data of page
3877 ** number ovfl to determine the next page number.
3878 */
3879 if( pBt->autoVacuum ){
3880 Pgno pgno;
3881 Pgno iGuess = ovfl+1;
3882 u8 eType;
3883
3884 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3885 iGuess++;
3886 }
3887
drhb1299152010-03-30 22:58:33 +00003888 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003889 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003890 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003891 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003892 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003893 }
3894 }
3895 }
3896#endif
3897
danielk1977d8a3f3d2009-07-11 11:45:23 +00003898 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003899 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003900 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003901 assert( rc==SQLITE_OK || pPage==0 );
3902 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003903 next = get4byte(pPage->aData);
3904 }
danielk1977443c0592009-01-16 15:21:05 +00003905 }
danielk197745d68822009-01-16 16:23:38 +00003906
danielk1977bea2a942009-01-20 17:06:27 +00003907 *pPgnoNext = next;
3908 if( ppPage ){
3909 *ppPage = pPage;
3910 }else{
3911 releasePage(pPage);
3912 }
3913 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003914}
3915
danielk1977da107192007-05-04 08:32:13 +00003916/*
3917** Copy data from a buffer to a page, or from a page to a buffer.
3918**
3919** pPayload is a pointer to data stored on database page pDbPage.
3920** If argument eOp is false, then nByte bytes of data are copied
3921** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3922** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3923** of data are copied from the buffer pBuf to pPayload.
3924**
3925** SQLITE_OK is returned on success, otherwise an error code.
3926*/
3927static int copyPayload(
3928 void *pPayload, /* Pointer to page data */
3929 void *pBuf, /* Pointer to buffer */
3930 int nByte, /* Number of bytes to copy */
3931 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3932 DbPage *pDbPage /* Page containing pPayload */
3933){
3934 if( eOp ){
3935 /* Copy data from buffer to page (a write operation) */
3936 int rc = sqlite3PagerWrite(pDbPage);
3937 if( rc!=SQLITE_OK ){
3938 return rc;
3939 }
3940 memcpy(pPayload, pBuf, nByte);
3941 }else{
3942 /* Copy data from page to buffer (a read operation) */
3943 memcpy(pBuf, pPayload, nByte);
3944 }
3945 return SQLITE_OK;
3946}
danielk1977d04417962007-05-02 13:16:30 +00003947
3948/*
danielk19779f8d6402007-05-02 17:48:45 +00003949** This function is used to read or overwrite payload information
3950** for the entry that the pCur cursor is pointing to. If the eOp
3951** parameter is 0, this is a read operation (data copied into
3952** buffer pBuf). If it is non-zero, a write (data copied from
3953** buffer pBuf).
3954**
3955** A total of "amt" bytes are read or written beginning at "offset".
3956** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003957**
drh3bcdfd22009-07-12 02:32:21 +00003958** The content being read or written might appear on the main page
3959** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003960**
danielk1977dcbb5d32007-05-04 18:36:44 +00003961** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003962** cursor entry uses one or more overflow pages, this function
3963** allocates space for and lazily popluates the overflow page-list
3964** cache array (BtCursor.aOverflow). Subsequent calls use this
3965** cache to make seeking to the supplied offset more efficient.
3966**
3967** Once an overflow page-list cache has been allocated, it may be
3968** invalidated if some other cursor writes to the same table, or if
3969** the cursor is moved to a different row. Additionally, in auto-vacuum
3970** mode, the following events may invalidate an overflow page-list cache.
3971**
3972** * An incremental vacuum,
3973** * A commit in auto_vacuum="full" mode,
3974** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003975*/
danielk19779f8d6402007-05-02 17:48:45 +00003976static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003977 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003978 u32 offset, /* Begin reading this far into payload */
3979 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003980 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003981 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003982){
3983 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003984 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003985 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003986 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003987 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003988 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003989
danielk1977da107192007-05-04 08:32:13 +00003990 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003991 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003992 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003993 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003994
drh86057612007-06-26 01:04:48 +00003995 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003996 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003997 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003998
drh3bcdfd22009-07-12 02:32:21 +00003999 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00004000 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4001 ){
danielk1977da107192007-05-04 08:32:13 +00004002 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004003 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004004 }
danielk1977da107192007-05-04 08:32:13 +00004005
4006 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004007 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004008 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004009 if( a+offset>pCur->info.nLocal ){
4010 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004011 }
danielk1977da107192007-05-04 08:32:13 +00004012 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004013 offset = 0;
drha34b6762004-05-07 13:30:42 +00004014 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004015 amt -= a;
drhdd793422001-06-28 01:54:48 +00004016 }else{
drhfa1a98a2004-05-14 19:08:17 +00004017 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004018 }
danielk1977da107192007-05-04 08:32:13 +00004019
4020 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004021 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004022 Pgno nextPage;
4023
drhfa1a98a2004-05-14 19:08:17 +00004024 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004025
danielk19772dec9702007-05-02 16:48:37 +00004026#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00004027 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00004028 ** has not been allocated, allocate it now. The array is sized at
4029 ** one entry for each overflow page in the overflow chain. The
4030 ** page number of the first overflow page is stored in aOverflow[0],
4031 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4032 ** (the cache is lazily populated).
4033 */
danielk1977dcbb5d32007-05-04 18:36:44 +00004034 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00004035 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00004036 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00004037 /* nOvfl is always positive. If it were zero, fetchPayload would have
4038 ** been used instead of this routine. */
4039 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00004040 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00004041 }
4042 }
danielk1977da107192007-05-04 08:32:13 +00004043
4044 /* If the overflow page-list cache has been allocated and the
4045 ** entry for the first required overflow page is valid, skip
4046 ** directly to it.
4047 */
danielk19772dec9702007-05-02 16:48:37 +00004048 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4049 iIdx = (offset/ovflSize);
4050 nextPage = pCur->aOverflow[iIdx];
4051 offset = (offset%ovflSize);
4052 }
4053#endif
danielk1977da107192007-05-04 08:32:13 +00004054
4055 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4056
4057#ifndef SQLITE_OMIT_INCRBLOB
4058 /* If required, populate the overflow page-list cache. */
4059 if( pCur->aOverflow ){
4060 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4061 pCur->aOverflow[iIdx] = nextPage;
4062 }
4063#endif
4064
danielk1977d04417962007-05-02 13:16:30 +00004065 if( offset>=ovflSize ){
4066 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004067 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004068 ** data is not required. So first try to lookup the overflow
4069 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004070 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004071 */
danielk19772dec9702007-05-02 16:48:37 +00004072#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004073 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4074 nextPage = pCur->aOverflow[iIdx+1];
4075 } else
danielk19772dec9702007-05-02 16:48:37 +00004076#endif
danielk1977da107192007-05-04 08:32:13 +00004077 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004078 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004079 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004080 /* Need to read this page properly. It contains some of the
4081 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004082 */
danf4ba1092011-10-08 14:57:07 +00004083#ifdef SQLITE_DIRECT_OVERFLOW_READ
4084 sqlite3_file *fd;
4085#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004086 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004087 if( a + offset > ovflSize ){
4088 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004089 }
danf4ba1092011-10-08 14:57:07 +00004090
4091#ifdef SQLITE_DIRECT_OVERFLOW_READ
4092 /* If all the following are true:
4093 **
4094 ** 1) this is a read operation, and
4095 ** 2) data is required from the start of this overflow page, and
4096 ** 3) the database is file-backed, and
4097 ** 4) there is no open write-transaction, and
4098 ** 5) the database is not a WAL database,
4099 **
4100 ** then data can be read directly from the database file into the
4101 ** output buffer, bypassing the page-cache altogether. This speeds
4102 ** up loading large records that span many overflow pages.
4103 */
4104 if( eOp==0 /* (1) */
4105 && offset==0 /* (2) */
4106 && pBt->inTransaction==TRANS_READ /* (4) */
4107 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4108 && pBt->pPage1->aData[19]==0x01 /* (5) */
4109 ){
4110 u8 aSave[4];
4111 u8 *aWrite = &pBuf[-4];
4112 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004113 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004114 nextPage = get4byte(aWrite);
4115 memcpy(aWrite, aSave, 4);
4116 }else
4117#endif
4118
4119 {
4120 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004121 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
drhb00fc3b2013-08-21 23:42:32 +00004122 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004123 );
danf4ba1092011-10-08 14:57:07 +00004124 if( rc==SQLITE_OK ){
4125 aPayload = sqlite3PagerGetData(pDbPage);
4126 nextPage = get4byte(aPayload);
4127 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4128 sqlite3PagerUnref(pDbPage);
4129 offset = 0;
4130 }
4131 }
4132 amt -= a;
4133 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004134 }
drh2af926b2001-05-15 00:39:25 +00004135 }
drh2af926b2001-05-15 00:39:25 +00004136 }
danielk1977cfe9a692004-06-16 12:00:29 +00004137
danielk1977da107192007-05-04 08:32:13 +00004138 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004139 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004140 }
danielk1977da107192007-05-04 08:32:13 +00004141 return rc;
drh2af926b2001-05-15 00:39:25 +00004142}
4143
drh72f82862001-05-24 21:06:34 +00004144/*
drh3aac2dd2004-04-26 14:10:20 +00004145** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004146** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004147** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004148**
drh5d1a8722009-07-22 18:07:40 +00004149** The caller must ensure that pCur is pointing to a valid row
4150** in the table.
4151**
drh3aac2dd2004-04-26 14:10:20 +00004152** Return SQLITE_OK on success or an error code if anything goes
4153** wrong. An error is returned if "offset+amt" is larger than
4154** the available payload.
drh72f82862001-05-24 21:06:34 +00004155*/
drha34b6762004-05-07 13:30:42 +00004156int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004157 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004158 assert( pCur->eState==CURSOR_VALID );
4159 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4160 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4161 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004162}
4163
4164/*
drh3aac2dd2004-04-26 14:10:20 +00004165** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004166** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004167** begins at "offset".
4168**
4169** Return SQLITE_OK on success or an error code if anything goes
4170** wrong. An error is returned if "offset+amt" is larger than
4171** the available payload.
drh72f82862001-05-24 21:06:34 +00004172*/
drh3aac2dd2004-04-26 14:10:20 +00004173int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004174 int rc;
4175
danielk19773588ceb2008-06-10 17:30:26 +00004176#ifndef SQLITE_OMIT_INCRBLOB
4177 if ( pCur->eState==CURSOR_INVALID ){
4178 return SQLITE_ABORT;
4179 }
4180#endif
4181
drh1fee73e2007-08-29 04:00:57 +00004182 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004183 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004184 if( rc==SQLITE_OK ){
4185 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004186 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4187 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004188 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004189 }
4190 return rc;
drh2af926b2001-05-15 00:39:25 +00004191}
4192
drh72f82862001-05-24 21:06:34 +00004193/*
drh0e1c19e2004-05-11 00:58:56 +00004194** Return a pointer to payload information from the entry that the
4195** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004196** the key if index btrees (pPage->intKey==0) and is the data for
4197** table btrees (pPage->intKey==1). The number of bytes of available
4198** key/data is written into *pAmt. If *pAmt==0, then the value
4199** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004200**
4201** This routine is an optimization. It is common for the entire key
4202** and data to fit on the local page and for there to be no overflow
4203** pages. When that is so, this routine can be used to access the
4204** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004205** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004206** the key/data and copy it into a preallocated buffer.
4207**
4208** The pointer returned by this routine looks directly into the cached
4209** page of the database. The data might change or move the next time
4210** any btree routine is called.
4211*/
drh2a8d2262013-12-09 20:43:22 +00004212static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004213 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004214 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004215){
danielk197771d5d2c2008-09-29 11:49:47 +00004216 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004217 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004218 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004219 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004220 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhd16546d2013-11-25 21:41:24 +00004221 if( pCur->info.nSize==0 ){
drhfe3313f2009-07-21 19:02:20 +00004222 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4223 &pCur->info);
4224 }
drh2a8d2262013-12-09 20:43:22 +00004225 *pAmt = pCur->info.nLocal;
4226 return (void*)(pCur->info.pCell + pCur->info.nHeader);
drh0e1c19e2004-05-11 00:58:56 +00004227}
4228
4229
4230/*
drhe51c44f2004-05-30 20:46:09 +00004231** For the entry that cursor pCur is point to, return as
4232** many bytes of the key or data as are available on the local
4233** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004234**
4235** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004236** or be destroyed on the next call to any Btree routine,
4237** including calls from other threads against the same cache.
4238** Hence, a mutex on the BtShared should be held prior to calling
4239** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004240**
4241** These routines is used to get quick access to key and data
4242** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004243*/
drh501932c2013-11-21 21:59:53 +00004244const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004245 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004246}
drh501932c2013-11-21 21:59:53 +00004247const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004248 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004249}
4250
4251
4252/*
drh8178a752003-01-05 21:41:40 +00004253** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004254** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004255**
4256** This function returns SQLITE_CORRUPT if the page-header flags field of
4257** the new child page does not match the flags field of the parent (i.e.
4258** if an intkey page appears to be the parent of a non-intkey page, or
4259** vice-versa).
drh72f82862001-05-24 21:06:34 +00004260*/
drh3aac2dd2004-04-26 14:10:20 +00004261static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004262 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004263 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004264 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004265 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004266
drh1fee73e2007-08-29 04:00:57 +00004267 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004268 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004269 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004270 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004271 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4272 return SQLITE_CORRUPT_BKPT;
4273 }
drhb00fc3b2013-08-21 23:42:32 +00004274 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4275 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004276 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004277 pCur->apPage[i+1] = pNewPage;
4278 pCur->aiIdx[i+1] = 0;
4279 pCur->iPage++;
4280
drh271efa52004-05-30 19:19:05 +00004281 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004282 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004283 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004284 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004285 }
drh72f82862001-05-24 21:06:34 +00004286 return SQLITE_OK;
4287}
4288
danbb246c42012-01-12 14:25:55 +00004289#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004290/*
4291** Page pParent is an internal (non-leaf) tree page. This function
4292** asserts that page number iChild is the left-child if the iIdx'th
4293** cell in page pParent. Or, if iIdx is equal to the total number of
4294** cells in pParent, that page number iChild is the right-child of
4295** the page.
4296*/
4297static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4298 assert( iIdx<=pParent->nCell );
4299 if( iIdx==pParent->nCell ){
4300 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4301 }else{
4302 assert( get4byte(findCell(pParent, iIdx))==iChild );
4303 }
4304}
4305#else
4306# define assertParentIndex(x,y,z)
4307#endif
4308
drh72f82862001-05-24 21:06:34 +00004309/*
drh5e2f8b92001-05-28 00:41:15 +00004310** Move the cursor up to the parent page.
4311**
4312** pCur->idx is set to the cell index that contains the pointer
4313** to the page we are coming from. If we are coming from the
4314** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004315** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004316*/
danielk197730548662009-07-09 05:07:37 +00004317static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004318 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004319 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004320 assert( pCur->iPage>0 );
4321 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004322
4323 /* UPDATE: It is actually possible for the condition tested by the assert
4324 ** below to be untrue if the database file is corrupt. This can occur if
4325 ** one cursor has modified page pParent while a reference to it is held
4326 ** by a second cursor. Which can only happen if a single page is linked
4327 ** into more than one b-tree structure in a corrupt database. */
4328#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004329 assertParentIndex(
4330 pCur->apPage[pCur->iPage-1],
4331 pCur->aiIdx[pCur->iPage-1],
4332 pCur->apPage[pCur->iPage]->pgno
4333 );
danbb246c42012-01-12 14:25:55 +00004334#endif
dan6c2688c2012-01-12 15:05:03 +00004335 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004336
danielk197771d5d2c2008-09-29 11:49:47 +00004337 releasePage(pCur->apPage[pCur->iPage]);
4338 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004339 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004340 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004341}
4342
4343/*
danielk19778f880a82009-07-13 09:41:45 +00004344** Move the cursor to point to the root page of its b-tree structure.
4345**
4346** If the table has a virtual root page, then the cursor is moved to point
4347** to the virtual root page instead of the actual root page. A table has a
4348** virtual root page when the actual root page contains no cells and a
4349** single child page. This can only happen with the table rooted at page 1.
4350**
4351** If the b-tree structure is empty, the cursor state is set to
4352** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4353** cell located on the root (or virtual root) page and the cursor state
4354** is set to CURSOR_VALID.
4355**
4356** If this function returns successfully, it may be assumed that the
4357** page-header flags indicate that the [virtual] root-page is the expected
4358** kind of b-tree page (i.e. if when opening the cursor the caller did not
4359** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4360** indicating a table b-tree, or if the caller did specify a KeyInfo
4361** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4362** b-tree).
drh72f82862001-05-24 21:06:34 +00004363*/
drh5e2f8b92001-05-28 00:41:15 +00004364static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004365 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004366 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004367
drh1fee73e2007-08-29 04:00:57 +00004368 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004369 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4370 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4371 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4372 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4373 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004374 assert( pCur->skipNext!=SQLITE_OK );
4375 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004376 }
danielk1977be51a652008-10-08 17:58:48 +00004377 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004378 }
danielk197771d5d2c2008-09-29 11:49:47 +00004379
4380 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004381 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004382 }else if( pCur->pgnoRoot==0 ){
4383 pCur->eState = CURSOR_INVALID;
4384 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004385 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004386 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drhb00fc3b2013-08-21 23:42:32 +00004387 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004388 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004389 pCur->eState = CURSOR_INVALID;
4390 return rc;
4391 }
danielk1977172114a2009-07-07 15:47:12 +00004392 pCur->iPage = 0;
4393
4394 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4395 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4396 ** NULL, the caller expects a table b-tree. If this is not the case,
4397 ** return an SQLITE_CORRUPT error. */
4398 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4399 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4400 return SQLITE_CORRUPT_BKPT;
4401 }
drhc39e0002004-05-07 23:50:57 +00004402 }
danielk197771d5d2c2008-09-29 11:49:47 +00004403
danielk19778f880a82009-07-13 09:41:45 +00004404 /* Assert that the root page is of the correct type. This must be the
4405 ** case as the call to this function that loaded the root-page (either
4406 ** this call or a previous invocation) would have detected corruption
4407 ** if the assumption were not true, and it is not possible for the flags
4408 ** byte to have been modified while this cursor is holding a reference
4409 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004410 pRoot = pCur->apPage[0];
4411 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004412 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4413
danielk197771d5d2c2008-09-29 11:49:47 +00004414 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004415 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004416 pCur->atLast = 0;
4417 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004418
drh4e8fe3f2013-12-06 23:25:27 +00004419 if( pRoot->nCell>0 ){
4420 pCur->eState = CURSOR_VALID;
4421 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004422 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004423 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004424 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004425 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004426 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004427 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004428 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004429 }
4430 return rc;
drh72f82862001-05-24 21:06:34 +00004431}
drh2af926b2001-05-15 00:39:25 +00004432
drh5e2f8b92001-05-28 00:41:15 +00004433/*
4434** Move the cursor down to the left-most leaf entry beneath the
4435** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004436**
4437** The left-most leaf is the one with the smallest key - the first
4438** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004439*/
4440static int moveToLeftmost(BtCursor *pCur){
4441 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004442 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004443 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004444
drh1fee73e2007-08-29 04:00:57 +00004445 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004446 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004447 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4448 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4449 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004450 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004451 }
drhd677b3d2007-08-20 22:48:41 +00004452 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004453}
4454
drh2dcc9aa2002-12-04 13:40:25 +00004455/*
4456** Move the cursor down to the right-most leaf entry beneath the
4457** page to which it is currently pointing. Notice the difference
4458** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4459** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4460** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004461**
4462** The right-most entry is the one with the largest key - the last
4463** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004464*/
4465static int moveToRightmost(BtCursor *pCur){
4466 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004467 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004468 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004469
drh1fee73e2007-08-29 04:00:57 +00004470 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004471 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004472 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004473 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004474 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004475 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004476 }
drhd677b3d2007-08-20 22:48:41 +00004477 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004478 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004479 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004480 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004481 }
danielk1977518002e2008-09-05 05:02:46 +00004482 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004483}
4484
drh5e00f6c2001-09-13 13:46:56 +00004485/* Move the cursor to the first entry in the table. Return SQLITE_OK
4486** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004487** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004488*/
drh3aac2dd2004-04-26 14:10:20 +00004489int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004490 int rc;
drhd677b3d2007-08-20 22:48:41 +00004491
drh1fee73e2007-08-29 04:00:57 +00004492 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004493 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004494 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004495 if( rc==SQLITE_OK ){
4496 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004497 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004498 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004499 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004500 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004501 *pRes = 0;
4502 rc = moveToLeftmost(pCur);
4503 }
drh5e00f6c2001-09-13 13:46:56 +00004504 }
drh5e00f6c2001-09-13 13:46:56 +00004505 return rc;
4506}
drh5e2f8b92001-05-28 00:41:15 +00004507
drh9562b552002-02-19 15:00:07 +00004508/* Move the cursor to the last entry in the table. Return SQLITE_OK
4509** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004510** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004511*/
drh3aac2dd2004-04-26 14:10:20 +00004512int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004513 int rc;
drhd677b3d2007-08-20 22:48:41 +00004514
drh1fee73e2007-08-29 04:00:57 +00004515 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004516 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004517
4518 /* If the cursor already points to the last entry, this is a no-op. */
4519 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4520#ifdef SQLITE_DEBUG
4521 /* This block serves to assert() that the cursor really does point
4522 ** to the last entry in the b-tree. */
4523 int ii;
4524 for(ii=0; ii<pCur->iPage; ii++){
4525 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4526 }
4527 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4528 assert( pCur->apPage[pCur->iPage]->leaf );
4529#endif
4530 return SQLITE_OK;
4531 }
4532
drh9562b552002-02-19 15:00:07 +00004533 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004534 if( rc==SQLITE_OK ){
4535 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004536 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004537 *pRes = 1;
4538 }else{
4539 assert( pCur->eState==CURSOR_VALID );
4540 *pRes = 0;
4541 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004542 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004543 }
drh9562b552002-02-19 15:00:07 +00004544 }
drh9562b552002-02-19 15:00:07 +00004545 return rc;
4546}
4547
drhe14006d2008-03-25 17:23:32 +00004548/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004549** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004550**
drhe63d9992008-08-13 19:11:48 +00004551** For INTKEY tables, the intKey parameter is used. pIdxKey
4552** must be NULL. For index tables, pIdxKey is used and intKey
4553** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004554**
drh5e2f8b92001-05-28 00:41:15 +00004555** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004556** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004557** were present. The cursor might point to an entry that comes
4558** before or after the key.
4559**
drh64022502009-01-09 14:11:04 +00004560** An integer is written into *pRes which is the result of
4561** comparing the key with the entry to which the cursor is
4562** pointing. The meaning of the integer written into
4563** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004564**
4565** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004566** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004567** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004568**
4569** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004570** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004571**
4572** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004573** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004574**
drha059ad02001-04-17 20:09:11 +00004575*/
drhe63d9992008-08-13 19:11:48 +00004576int sqlite3BtreeMovetoUnpacked(
4577 BtCursor *pCur, /* The cursor to be moved */
4578 UnpackedRecord *pIdxKey, /* Unpacked index key */
4579 i64 intKey, /* The table key */
4580 int biasRight, /* If true, bias the search to the high end */
4581 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004582){
drh72f82862001-05-24 21:06:34 +00004583 int rc;
drhd677b3d2007-08-20 22:48:41 +00004584
drh1fee73e2007-08-29 04:00:57 +00004585 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004586 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004587 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004588 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004589
4590 /* If the cursor is already positioned at the point we are trying
4591 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004592 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4593 && pCur->apPage[0]->intKey
4594 ){
drhe63d9992008-08-13 19:11:48 +00004595 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004596 *pRes = 0;
4597 return SQLITE_OK;
4598 }
drhe63d9992008-08-13 19:11:48 +00004599 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004600 *pRes = -1;
4601 return SQLITE_OK;
4602 }
4603 }
4604
drh5e2f8b92001-05-28 00:41:15 +00004605 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004606 if( rc ){
4607 return rc;
4608 }
dana205a482011-08-27 18:48:57 +00004609 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4610 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4611 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004612 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004613 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004614 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004615 return SQLITE_OK;
4616 }
danielk197771d5d2c2008-09-29 11:49:47 +00004617 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004618 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004619 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004620 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004621 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004622 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004623
4624 /* pPage->nCell must be greater than zero. If this is the root-page
4625 ** the cursor would have been INVALID above and this for(;;) loop
4626 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004627 ** would have already detected db corruption. Similarly, pPage must
4628 ** be the right kind (index or table) of b-tree page. Otherwise
4629 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004630 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004631 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004632 lwr = 0;
4633 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004634 assert( biasRight==0 || biasRight==1 );
4635 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004636 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004637 if( pPage->intKey ){
drhec3e6b12013-11-25 02:38:55 +00004638 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004639 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004640 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004641 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004642 while( 0x80 <= *(pCell++) ){
4643 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4644 }
drhd172f862006-01-12 15:01:15 +00004645 }
drha2c20e42008-03-29 16:01:04 +00004646 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004647 if( nCellKey<intKey ){
4648 lwr = idx+1;
4649 if( lwr>upr ){ c = -1; break; }
4650 }else if( nCellKey>intKey ){
4651 upr = idx-1;
4652 if( lwr>upr ){ c = +1; break; }
4653 }else{
4654 assert( nCellKey==intKey );
drhec3e6b12013-11-25 02:38:55 +00004655 pCur->validNKey = 1;
4656 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004657 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004658 if( !pPage->leaf ){
4659 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004660 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004661 }else{
4662 *pRes = 0;
4663 rc = SQLITE_OK;
4664 goto moveto_finish;
4665 }
drhd793f442013-11-25 14:10:15 +00004666 }
drhebf10b12013-11-25 17:38:26 +00004667 assert( lwr+upr>=0 );
4668 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004669 }
4670 }else{
4671 for(;;){
4672 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004673 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4674
drhb2eced52010-08-12 02:41:12 +00004675 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004676 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004677 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004678 ** varint. This information is used to attempt to avoid parsing
4679 ** the entire cell by checking for the cases where the record is
4680 ** stored entirely within the b-tree page by inspecting the first
4681 ** 2 bytes of the cell.
4682 */
drhec3e6b12013-11-25 02:38:55 +00004683 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004684 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004685 /* This branch runs if the record-size field of the cell is a
4686 ** single byte varint and the record fits entirely on the main
4687 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004688 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004689 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4690 }else if( !(pCell[1] & 0x80)
4691 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4692 ){
4693 /* The record-size field is a 2 byte varint and the record
4694 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004695 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004696 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004697 }else{
danielk197711c327a2009-05-04 19:01:26 +00004698 /* The record flows over onto one or more overflow pages. In
4699 ** this case the whole cell needs to be parsed, a buffer allocated
4700 ** and accessPayload() used to retrieve the record into the
4701 ** buffer before VdbeRecordCompare() can be called. */
4702 void *pCellKey;
4703 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004704 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004705 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004706 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004707 if( pCellKey==0 ){
4708 rc = SQLITE_NOMEM;
4709 goto moveto_finish;
4710 }
drhd793f442013-11-25 14:10:15 +00004711 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhfb192682009-07-11 18:26:28 +00004712 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004713 if( rc ){
4714 sqlite3_free(pCellKey);
4715 goto moveto_finish;
4716 }
danielk197711c327a2009-05-04 19:01:26 +00004717 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004718 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004719 }
drhbb933ef2013-11-25 15:01:38 +00004720 if( c<0 ){
4721 lwr = idx+1;
4722 }else if( c>0 ){
4723 upr = idx-1;
4724 }else{
4725 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004726 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004727 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004728 pCur->aiIdx[pCur->iPage] = (u16)idx;
drh1e968a02008-03-25 00:22:21 +00004729 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004730 }
drhebf10b12013-11-25 17:38:26 +00004731 if( lwr>upr ) break;
4732 assert( lwr+upr>=0 );
4733 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004734 }
drh72f82862001-05-24 21:06:34 +00004735 }
drhb07028f2011-10-14 21:49:18 +00004736 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004737 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004738 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004739 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004740 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004741 *pRes = c;
4742 rc = SQLITE_OK;
4743 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004744 }
4745moveto_next_layer:
4746 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004747 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004748 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004749 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004750 }
drhf49661a2008-12-10 16:45:50 +00004751 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004752 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004753 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004754 }
drh1e968a02008-03-25 00:22:21 +00004755moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004756 pCur->info.nSize = 0;
4757 pCur->validNKey = 0;
drhe63d9992008-08-13 19:11:48 +00004758 return rc;
4759}
4760
drhd677b3d2007-08-20 22:48:41 +00004761
drh72f82862001-05-24 21:06:34 +00004762/*
drhc39e0002004-05-07 23:50:57 +00004763** Return TRUE if the cursor is not pointing at an entry of the table.
4764**
4765** TRUE will be returned after a call to sqlite3BtreeNext() moves
4766** past the last entry in the table or sqlite3BtreePrev() moves past
4767** the first entry. TRUE is also returned if the table is empty.
4768*/
4769int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004770 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4771 ** have been deleted? This API will need to change to return an error code
4772 ** as well as the boolean result value.
4773 */
4774 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004775}
4776
4777/*
drhbd03cae2001-06-02 02:40:57 +00004778** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004779** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004780** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004781** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004782*/
drhd094db12008-04-03 21:46:57 +00004783int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004784 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004785 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004786 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004787
drh1fee73e2007-08-29 04:00:57 +00004788 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004789 assert( pRes!=0 );
drh9b47ee32013-08-20 03:13:51 +00004790 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004791 if( pCur->eState!=CURSOR_VALID ){
4792 rc = restoreCursorPosition(pCur);
4793 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004794 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004795 return rc;
4796 }
4797 if( CURSOR_INVALID==pCur->eState ){
4798 *pRes = 1;
4799 return SQLITE_OK;
4800 }
drh9b47ee32013-08-20 03:13:51 +00004801 if( pCur->skipNext ){
4802 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4803 pCur->eState = CURSOR_VALID;
4804 if( pCur->skipNext>0 ){
4805 pCur->skipNext = 0;
4806 *pRes = 0;
4807 return SQLITE_OK;
4808 }
drhf66f26a2013-08-19 20:04:10 +00004809 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004810 }
danielk1977da184232006-01-05 11:34:32 +00004811 }
danielk1977da184232006-01-05 11:34:32 +00004812
danielk197771d5d2c2008-09-29 11:49:47 +00004813 pPage = pCur->apPage[pCur->iPage];
4814 idx = ++pCur->aiIdx[pCur->iPage];
4815 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004816
4817 /* If the database file is corrupt, it is possible for the value of idx
4818 ** to be invalid here. This can only occur if a second cursor modifies
4819 ** the page while cursor pCur is holding a reference to it. Which can
4820 ** only happen if the database is corrupt in such a way as to link the
4821 ** page into more than one b-tree structure. */
4822 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004823
drh271efa52004-05-30 19:19:05 +00004824 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004825 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004826 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004827 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004828 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004829 if( rc ){
4830 *pRes = 0;
4831 return rc;
4832 }
drh5e2f8b92001-05-28 00:41:15 +00004833 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004834 *pRes = 0;
4835 return rc;
drh72f82862001-05-24 21:06:34 +00004836 }
drh5e2f8b92001-05-28 00:41:15 +00004837 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004838 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004839 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004840 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004841 return SQLITE_OK;
4842 }
danielk197730548662009-07-09 05:07:37 +00004843 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004844 pPage = pCur->apPage[pCur->iPage];
4845 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004846 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004847 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004848 rc = sqlite3BtreeNext(pCur, pRes);
4849 }else{
4850 rc = SQLITE_OK;
4851 }
4852 return rc;
drh8178a752003-01-05 21:41:40 +00004853 }
4854 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004855 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004856 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004857 }
drh5e2f8b92001-05-28 00:41:15 +00004858 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004859 return rc;
drh72f82862001-05-24 21:06:34 +00004860}
drhd677b3d2007-08-20 22:48:41 +00004861
drh72f82862001-05-24 21:06:34 +00004862
drh3b7511c2001-05-26 13:15:44 +00004863/*
drh2dcc9aa2002-12-04 13:40:25 +00004864** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004865** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004866** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004867** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004868*/
drhd094db12008-04-03 21:46:57 +00004869int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004870 int rc;
drh8178a752003-01-05 21:41:40 +00004871 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004872
drh1fee73e2007-08-29 04:00:57 +00004873 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004874 assert( pRes!=0 );
4875 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drha2c20e42008-03-29 16:01:04 +00004876 pCur->atLast = 0;
drhf66f26a2013-08-19 20:04:10 +00004877 if( pCur->eState!=CURSOR_VALID ){
4878 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4879 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004880 if( rc!=SQLITE_OK ){
4881 *pRes = 0;
4882 return rc;
4883 }
drhf66f26a2013-08-19 20:04:10 +00004884 }
4885 if( CURSOR_INVALID==pCur->eState ){
4886 *pRes = 1;
4887 return SQLITE_OK;
4888 }
drh9b47ee32013-08-20 03:13:51 +00004889 if( pCur->skipNext ){
4890 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4891 pCur->eState = CURSOR_VALID;
4892 if( pCur->skipNext<0 ){
4893 pCur->skipNext = 0;
4894 *pRes = 0;
4895 return SQLITE_OK;
4896 }
drhf66f26a2013-08-19 20:04:10 +00004897 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004898 }
danielk1977da184232006-01-05 11:34:32 +00004899 }
danielk1977da184232006-01-05 11:34:32 +00004900
danielk197771d5d2c2008-09-29 11:49:47 +00004901 pPage = pCur->apPage[pCur->iPage];
4902 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004903 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004904 int idx = pCur->aiIdx[pCur->iPage];
4905 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004906 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004907 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004908 return rc;
4909 }
drh2dcc9aa2002-12-04 13:40:25 +00004910 rc = moveToRightmost(pCur);
4911 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004912 while( pCur->aiIdx[pCur->iPage]==0 ){
4913 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004914 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004915 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004916 return SQLITE_OK;
4917 }
danielk197730548662009-07-09 05:07:37 +00004918 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004919 }
drh271efa52004-05-30 19:19:05 +00004920 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004921 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004922
4923 pCur->aiIdx[pCur->iPage]--;
4924 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004925 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004926 rc = sqlite3BtreePrevious(pCur, pRes);
4927 }else{
4928 rc = SQLITE_OK;
4929 }
drh2dcc9aa2002-12-04 13:40:25 +00004930 }
drh8178a752003-01-05 21:41:40 +00004931 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004932 return rc;
4933}
4934
4935/*
drh3b7511c2001-05-26 13:15:44 +00004936** Allocate a new page from the database file.
4937**
danielk19773b8a05f2007-03-19 17:44:26 +00004938** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004939** has already been called on the new page.) The new page has also
4940** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004941** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004942**
4943** SQLITE_OK is returned on success. Any other return value indicates
4944** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004945** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004946**
drh82e647d2013-03-02 03:25:55 +00004947** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004948** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004949** attempt to keep related pages close to each other in the database file,
4950** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004951**
drh82e647d2013-03-02 03:25:55 +00004952** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4953** anywhere on the free-list, then it is guaranteed to be returned. If
4954** eMode is BTALLOC_LT then the page returned will be less than or equal
4955** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4956** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004957*/
drh4f0c5872007-03-26 22:05:01 +00004958static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004959 BtShared *pBt, /* The btree */
4960 MemPage **ppPage, /* Store pointer to the allocated page here */
4961 Pgno *pPgno, /* Store the page number here */
4962 Pgno nearby, /* Search for a page near this one */
4963 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004964){
drh3aac2dd2004-04-26 14:10:20 +00004965 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004966 int rc;
drh35cd6432009-06-05 14:17:21 +00004967 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004968 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004969 MemPage *pTrunk = 0;
4970 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004971 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004972
drh1fee73e2007-08-29 04:00:57 +00004973 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00004974 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00004975 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004976 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004977 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004978 testcase( n==mxPage-1 );
4979 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004980 return SQLITE_CORRUPT_BKPT;
4981 }
drh3aac2dd2004-04-26 14:10:20 +00004982 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004983 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004984 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004985 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4986
drh82e647d2013-03-02 03:25:55 +00004987 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004988 ** shows that the page 'nearby' is somewhere on the free-list, then
4989 ** the entire-list will be searched for that page.
4990 */
4991#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00004992 if( eMode==BTALLOC_EXACT ){
4993 if( nearby<=mxPage ){
4994 u8 eType;
4995 assert( nearby>0 );
4996 assert( pBt->autoVacuum );
4997 rc = ptrmapGet(pBt, nearby, &eType, 0);
4998 if( rc ) return rc;
4999 if( eType==PTRMAP_FREEPAGE ){
5000 searchList = 1;
5001 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005002 }
dan51f0b6d2013-02-22 20:16:34 +00005003 }else if( eMode==BTALLOC_LE ){
5004 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005005 }
5006#endif
5007
5008 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5009 ** first free-list trunk page. iPrevTrunk is initially 1.
5010 */
danielk19773b8a05f2007-03-19 17:44:26 +00005011 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005012 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005013 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005014
5015 /* The code within this loop is run only once if the 'searchList' variable
5016 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005017 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5018 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005019 */
5020 do {
5021 pPrevTrunk = pTrunk;
5022 if( pPrevTrunk ){
5023 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005024 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005025 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005026 }
drhdf35a082009-07-09 02:24:35 +00005027 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005028 if( iTrunk>mxPage ){
5029 rc = SQLITE_CORRUPT_BKPT;
5030 }else{
drhb00fc3b2013-08-21 23:42:32 +00005031 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005032 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005033 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005034 pTrunk = 0;
5035 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005036 }
drhb07028f2011-10-14 21:49:18 +00005037 assert( pTrunk!=0 );
5038 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005039
drh93b4fc72011-04-07 14:47:01 +00005040 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005041 if( k==0 && !searchList ){
5042 /* The trunk has no leaves and the list is not being searched.
5043 ** So extract the trunk page itself and use it as the newly
5044 ** allocated page */
5045 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005046 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005047 if( rc ){
5048 goto end_allocate_page;
5049 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005050 *pPgno = iTrunk;
5051 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5052 *ppPage = pTrunk;
5053 pTrunk = 0;
5054 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005055 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005056 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005057 rc = SQLITE_CORRUPT_BKPT;
5058 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005059#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005060 }else if( searchList
5061 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5062 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005063 /* The list is being searched and this trunk page is the page
5064 ** to allocate, regardless of whether it has leaves.
5065 */
dan51f0b6d2013-02-22 20:16:34 +00005066 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005067 *ppPage = pTrunk;
5068 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005069 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005070 if( rc ){
5071 goto end_allocate_page;
5072 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005073 if( k==0 ){
5074 if( !pPrevTrunk ){
5075 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5076 }else{
danf48c3552010-08-23 15:41:24 +00005077 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5078 if( rc!=SQLITE_OK ){
5079 goto end_allocate_page;
5080 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005081 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5082 }
5083 }else{
5084 /* The trunk page is required by the caller but it contains
5085 ** pointers to free-list leaves. The first leaf becomes a trunk
5086 ** page in this case.
5087 */
5088 MemPage *pNewTrunk;
5089 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005090 if( iNewTrunk>mxPage ){
5091 rc = SQLITE_CORRUPT_BKPT;
5092 goto end_allocate_page;
5093 }
drhdf35a082009-07-09 02:24:35 +00005094 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005095 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005096 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005097 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005098 }
danielk19773b8a05f2007-03-19 17:44:26 +00005099 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005100 if( rc!=SQLITE_OK ){
5101 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005102 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005103 }
5104 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5105 put4byte(&pNewTrunk->aData[4], k-1);
5106 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005107 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005108 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005109 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005110 put4byte(&pPage1->aData[32], iNewTrunk);
5111 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005112 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005113 if( rc ){
5114 goto end_allocate_page;
5115 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005116 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5117 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005118 }
5119 pTrunk = 0;
5120 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5121#endif
danielk1977e5765212009-06-17 11:13:28 +00005122 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005123 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005124 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005125 Pgno iPage;
5126 unsigned char *aData = pTrunk->aData;
5127 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005128 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005129 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005130 if( eMode==BTALLOC_LE ){
5131 for(i=0; i<k; i++){
5132 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005133 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005134 closest = i;
5135 break;
5136 }
5137 }
5138 }else{
5139 int dist;
5140 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5141 for(i=1; i<k; i++){
5142 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5143 if( d2<dist ){
5144 closest = i;
5145 dist = d2;
5146 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005147 }
5148 }
5149 }else{
5150 closest = 0;
5151 }
5152
5153 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005154 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005155 if( iPage>mxPage ){
5156 rc = SQLITE_CORRUPT_BKPT;
5157 goto end_allocate_page;
5158 }
drhdf35a082009-07-09 02:24:35 +00005159 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005160 if( !searchList
5161 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5162 ){
danielk1977bea2a942009-01-20 17:06:27 +00005163 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005164 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005165 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5166 ": %d more free pages\n",
5167 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005168 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5169 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005170 if( closest<k-1 ){
5171 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5172 }
5173 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005174 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5175 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005176 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005177 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005178 if( rc!=SQLITE_OK ){
5179 releasePage(*ppPage);
5180 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005181 }
5182 searchList = 0;
5183 }
drhee696e22004-08-30 16:52:17 +00005184 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005185 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005186 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005187 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005188 }else{
danbc1a3c62013-02-23 16:40:46 +00005189 /* There are no pages on the freelist, so append a new page to the
5190 ** database image.
5191 **
5192 ** Normally, new pages allocated by this block can be requested from the
5193 ** pager layer with the 'no-content' flag set. This prevents the pager
5194 ** from trying to read the pages content from disk. However, if the
5195 ** current transaction has already run one or more incremental-vacuum
5196 ** steps, then the page we are about to allocate may contain content
5197 ** that is required in the event of a rollback. In this case, do
5198 ** not set the no-content flag. This causes the pager to load and journal
5199 ** the current page content before overwriting it.
5200 **
5201 ** Note that the pager will not actually attempt to load or journal
5202 ** content for any page that really does lie past the end of the database
5203 ** file on disk. So the effects of disabling the no-content optimization
5204 ** here are confined to those pages that lie between the end of the
5205 ** database image and the end of the database file.
5206 */
drhb00fc3b2013-08-21 23:42:32 +00005207 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005208
drhdd3cd972010-03-27 17:12:36 +00005209 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5210 if( rc ) return rc;
5211 pBt->nPage++;
5212 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005213
danielk1977afcdd022004-10-31 16:25:42 +00005214#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005215 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005216 /* If *pPgno refers to a pointer-map page, allocate two new pages
5217 ** at the end of the file instead of one. The first allocated page
5218 ** becomes a new pointer-map page, the second is used by the caller.
5219 */
danielk1977ac861692009-03-28 10:54:22 +00005220 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005221 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5222 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005223 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005224 if( rc==SQLITE_OK ){
5225 rc = sqlite3PagerWrite(pPg->pDbPage);
5226 releasePage(pPg);
5227 }
5228 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005229 pBt->nPage++;
5230 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005231 }
5232#endif
drhdd3cd972010-03-27 17:12:36 +00005233 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5234 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005235
danielk1977599fcba2004-11-08 07:13:13 +00005236 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005237 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005238 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005239 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005240 if( rc!=SQLITE_OK ){
5241 releasePage(*ppPage);
5242 }
drh3a4c1412004-05-09 20:40:11 +00005243 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005244 }
danielk1977599fcba2004-11-08 07:13:13 +00005245
5246 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005247
5248end_allocate_page:
5249 releasePage(pTrunk);
5250 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005251 if( rc==SQLITE_OK ){
5252 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5253 releasePage(*ppPage);
5254 return SQLITE_CORRUPT_BKPT;
5255 }
5256 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005257 }else{
5258 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005259 }
drh93b4fc72011-04-07 14:47:01 +00005260 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005261 return rc;
5262}
5263
5264/*
danielk1977bea2a942009-01-20 17:06:27 +00005265** This function is used to add page iPage to the database file free-list.
5266** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005267**
danielk1977bea2a942009-01-20 17:06:27 +00005268** The value passed as the second argument to this function is optional.
5269** If the caller happens to have a pointer to the MemPage object
5270** corresponding to page iPage handy, it may pass it as the second value.
5271** Otherwise, it may pass NULL.
5272**
5273** If a pointer to a MemPage object is passed as the second argument,
5274** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005275*/
danielk1977bea2a942009-01-20 17:06:27 +00005276static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5277 MemPage *pTrunk = 0; /* Free-list trunk page */
5278 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5279 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5280 MemPage *pPage; /* Page being freed. May be NULL. */
5281 int rc; /* Return Code */
5282 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005283
danielk1977bea2a942009-01-20 17:06:27 +00005284 assert( sqlite3_mutex_held(pBt->mutex) );
5285 assert( iPage>1 );
5286 assert( !pMemPage || pMemPage->pgno==iPage );
5287
5288 if( pMemPage ){
5289 pPage = pMemPage;
5290 sqlite3PagerRef(pPage->pDbPage);
5291 }else{
5292 pPage = btreePageLookup(pBt, iPage);
5293 }
drh3aac2dd2004-04-26 14:10:20 +00005294
drha34b6762004-05-07 13:30:42 +00005295 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005296 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005297 if( rc ) goto freepage_out;
5298 nFree = get4byte(&pPage1->aData[36]);
5299 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005300
drhc9166342012-01-05 23:32:06 +00005301 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005302 /* If the secure_delete option is enabled, then
5303 ** always fully overwrite deleted information with zeros.
5304 */
drhb00fc3b2013-08-21 23:42:32 +00005305 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005306 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005307 ){
5308 goto freepage_out;
5309 }
5310 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005311 }
drhfcce93f2006-02-22 03:08:32 +00005312
danielk1977687566d2004-11-02 12:56:41 +00005313 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005314 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005315 */
danielk197785d90ca2008-07-19 14:25:15 +00005316 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005317 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005318 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005319 }
danielk1977687566d2004-11-02 12:56:41 +00005320
danielk1977bea2a942009-01-20 17:06:27 +00005321 /* Now manipulate the actual database free-list structure. There are two
5322 ** possibilities. If the free-list is currently empty, or if the first
5323 ** trunk page in the free-list is full, then this page will become a
5324 ** new free-list trunk page. Otherwise, it will become a leaf of the
5325 ** first trunk page in the current free-list. This block tests if it
5326 ** is possible to add the page as a new free-list leaf.
5327 */
5328 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005329 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005330
5331 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005332 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005333 if( rc!=SQLITE_OK ){
5334 goto freepage_out;
5335 }
5336
5337 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005338 assert( pBt->usableSize>32 );
5339 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005340 rc = SQLITE_CORRUPT_BKPT;
5341 goto freepage_out;
5342 }
drheeb844a2009-08-08 18:01:07 +00005343 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005344 /* In this case there is room on the trunk page to insert the page
5345 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005346 **
5347 ** Note that the trunk page is not really full until it contains
5348 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5349 ** coded. But due to a coding error in versions of SQLite prior to
5350 ** 3.6.0, databases with freelist trunk pages holding more than
5351 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5352 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005353 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005354 ** for now. At some point in the future (once everyone has upgraded
5355 ** to 3.6.0 or later) we should consider fixing the conditional above
5356 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5357 */
danielk19773b8a05f2007-03-19 17:44:26 +00005358 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005359 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005360 put4byte(&pTrunk->aData[4], nLeaf+1);
5361 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005362 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005363 sqlite3PagerDontWrite(pPage->pDbPage);
5364 }
danielk1977bea2a942009-01-20 17:06:27 +00005365 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005366 }
drh3a4c1412004-05-09 20:40:11 +00005367 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005368 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005369 }
drh3b7511c2001-05-26 13:15:44 +00005370 }
danielk1977bea2a942009-01-20 17:06:27 +00005371
5372 /* If control flows to this point, then it was not possible to add the
5373 ** the page being freed as a leaf page of the first trunk in the free-list.
5374 ** Possibly because the free-list is empty, or possibly because the
5375 ** first trunk in the free-list is full. Either way, the page being freed
5376 ** will become the new first trunk page in the free-list.
5377 */
drhb00fc3b2013-08-21 23:42:32 +00005378 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005379 goto freepage_out;
5380 }
5381 rc = sqlite3PagerWrite(pPage->pDbPage);
5382 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005383 goto freepage_out;
5384 }
5385 put4byte(pPage->aData, iTrunk);
5386 put4byte(&pPage->aData[4], 0);
5387 put4byte(&pPage1->aData[32], iPage);
5388 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5389
5390freepage_out:
5391 if( pPage ){
5392 pPage->isInit = 0;
5393 }
5394 releasePage(pPage);
5395 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005396 return rc;
5397}
drhc314dc72009-07-21 11:52:34 +00005398static void freePage(MemPage *pPage, int *pRC){
5399 if( (*pRC)==SQLITE_OK ){
5400 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5401 }
danielk1977bea2a942009-01-20 17:06:27 +00005402}
drh3b7511c2001-05-26 13:15:44 +00005403
5404/*
drh3aac2dd2004-04-26 14:10:20 +00005405** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005406*/
drh3aac2dd2004-04-26 14:10:20 +00005407static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005408 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005409 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005410 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005411 int rc;
drh94440812007-03-06 11:42:19 +00005412 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005413 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005414
drh1fee73e2007-08-29 04:00:57 +00005415 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005416 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005417 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005418 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005419 }
drhe42a9b42011-08-31 13:27:19 +00005420 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005421 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005422 }
drh6f11bef2004-05-13 01:12:56 +00005423 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005424 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005425 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005426 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5427 assert( ovflPgno==0 || nOvfl>0 );
5428 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005429 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005430 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005431 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005432 /* 0 is not a legal page number and page 1 cannot be an
5433 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5434 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005435 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005436 }
danielk1977bea2a942009-01-20 17:06:27 +00005437 if( nOvfl ){
5438 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5439 if( rc ) return rc;
5440 }
dan887d4b22010-02-25 12:09:16 +00005441
shaneh1da207e2010-03-09 14:41:12 +00005442 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005443 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5444 ){
5445 /* There is no reason any cursor should have an outstanding reference
5446 ** to an overflow page belonging to a cell that is being deleted/updated.
5447 ** So if there exists more than one reference to this page, then it
5448 ** must not really be an overflow page and the database must be corrupt.
5449 ** It is helpful to detect this before calling freePage2(), as
5450 ** freePage2() may zero the page contents if secure-delete mode is
5451 ** enabled. If this 'overflow' page happens to be a page that the
5452 ** caller is iterating through or using in some other way, this
5453 ** can be problematic.
5454 */
5455 rc = SQLITE_CORRUPT_BKPT;
5456 }else{
5457 rc = freePage2(pBt, pOvfl, ovflPgno);
5458 }
5459
danielk1977bea2a942009-01-20 17:06:27 +00005460 if( pOvfl ){
5461 sqlite3PagerUnref(pOvfl->pDbPage);
5462 }
drh3b7511c2001-05-26 13:15:44 +00005463 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005464 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005465 }
drh5e2f8b92001-05-28 00:41:15 +00005466 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005467}
5468
5469/*
drh91025292004-05-03 19:49:32 +00005470** Create the byte sequence used to represent a cell on page pPage
5471** and write that byte sequence into pCell[]. Overflow pages are
5472** allocated and filled in as necessary. The calling procedure
5473** is responsible for making sure sufficient space has been allocated
5474** for pCell[].
5475**
5476** Note that pCell does not necessary need to point to the pPage->aData
5477** area. pCell might point to some temporary storage. The cell will
5478** be constructed in this temporary area then copied into pPage->aData
5479** later.
drh3b7511c2001-05-26 13:15:44 +00005480*/
5481static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005482 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005483 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005484 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005485 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005486 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005487 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005488){
drh3b7511c2001-05-26 13:15:44 +00005489 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005490 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005491 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005492 int spaceLeft;
5493 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005494 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005495 unsigned char *pPrior;
5496 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005497 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005498 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005499 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005500 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005501
drh1fee73e2007-08-29 04:00:57 +00005502 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005503
drhc5053fb2008-11-27 02:22:10 +00005504 /* pPage is not necessarily writeable since pCell might be auxiliary
5505 ** buffer space that is separate from the pPage buffer area */
5506 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5507 || sqlite3PagerIswriteable(pPage->pDbPage) );
5508
drh91025292004-05-03 19:49:32 +00005509 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005510 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005511 if( !pPage->leaf ){
5512 nHeader += 4;
5513 }
drh8b18dd42004-05-12 19:18:15 +00005514 if( pPage->hasData ){
drh7599d4a2013-12-09 00:47:11 +00005515 nHeader += putVarint32(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005516 }else{
drhb026e052007-05-02 01:34:31 +00005517 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005518 }
drh6f11bef2004-05-13 01:12:56 +00005519 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005520 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005521 assert( info.nHeader==nHeader );
5522 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005523 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005524
5525 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005526 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005527 if( pPage->intKey ){
5528 pSrc = pData;
5529 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005530 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005531 }else{
danielk197731d31b82009-07-13 13:18:07 +00005532 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5533 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005534 }
drhf49661a2008-12-10 16:45:50 +00005535 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005536 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005537 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005538 }
drh6f11bef2004-05-13 01:12:56 +00005539 *pnSize = info.nSize;
5540 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005541 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005542 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005543
drh3b7511c2001-05-26 13:15:44 +00005544 while( nPayload>0 ){
5545 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005546#ifndef SQLITE_OMIT_AUTOVACUUM
5547 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005548 if( pBt->autoVacuum ){
5549 do{
5550 pgnoOvfl++;
5551 } while(
5552 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5553 );
danielk1977b39f70b2007-05-17 18:28:11 +00005554 }
danielk1977afcdd022004-10-31 16:25:42 +00005555#endif
drhf49661a2008-12-10 16:45:50 +00005556 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005557#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005558 /* If the database supports auto-vacuum, and the second or subsequent
5559 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005560 ** for that page now.
5561 **
5562 ** If this is the first overflow page, then write a partial entry
5563 ** to the pointer-map. If we write nothing to this pointer-map slot,
5564 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005565 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005566 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005567 */
danielk19774ef24492007-05-23 09:52:41 +00005568 if( pBt->autoVacuum && rc==SQLITE_OK ){
5569 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005570 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005571 if( rc ){
5572 releasePage(pOvfl);
5573 }
danielk1977afcdd022004-10-31 16:25:42 +00005574 }
5575#endif
drh3b7511c2001-05-26 13:15:44 +00005576 if( rc ){
drh9b171272004-05-08 02:03:22 +00005577 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005578 return rc;
5579 }
drhc5053fb2008-11-27 02:22:10 +00005580
5581 /* If pToRelease is not zero than pPrior points into the data area
5582 ** of pToRelease. Make sure pToRelease is still writeable. */
5583 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5584
5585 /* If pPrior is part of the data area of pPage, then make sure pPage
5586 ** is still writeable */
5587 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5588 || sqlite3PagerIswriteable(pPage->pDbPage) );
5589
drh3aac2dd2004-04-26 14:10:20 +00005590 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005591 releasePage(pToRelease);
5592 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005593 pPrior = pOvfl->aData;
5594 put4byte(pPrior, 0);
5595 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005596 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005597 }
5598 n = nPayload;
5599 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005600
5601 /* If pToRelease is not zero than pPayload points into the data area
5602 ** of pToRelease. Make sure pToRelease is still writeable. */
5603 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5604
5605 /* If pPayload is part of the data area of pPage, then make sure pPage
5606 ** is still writeable */
5607 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5608 || sqlite3PagerIswriteable(pPage->pDbPage) );
5609
drhb026e052007-05-02 01:34:31 +00005610 if( nSrc>0 ){
5611 if( n>nSrc ) n = nSrc;
5612 assert( pSrc );
5613 memcpy(pPayload, pSrc, n);
5614 }else{
5615 memset(pPayload, 0, n);
5616 }
drh3b7511c2001-05-26 13:15:44 +00005617 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005618 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005619 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005620 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005621 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005622 if( nSrc==0 ){
5623 nSrc = nData;
5624 pSrc = pData;
5625 }
drhdd793422001-06-28 01:54:48 +00005626 }
drh9b171272004-05-08 02:03:22 +00005627 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005628 return SQLITE_OK;
5629}
5630
drh14acc042001-06-10 19:56:58 +00005631/*
5632** Remove the i-th cell from pPage. This routine effects pPage only.
5633** The cell content is not freed or deallocated. It is assumed that
5634** the cell content has been copied someplace else. This routine just
5635** removes the reference to the cell from pPage.
5636**
5637** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005638*/
drh98add2e2009-07-20 17:11:49 +00005639static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005640 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005641 u8 *data; /* pPage->aData */
5642 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005643 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005644 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005645
drh98add2e2009-07-20 17:11:49 +00005646 if( *pRC ) return;
5647
drh8c42ca92001-06-22 19:15:00 +00005648 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005649 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005650 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005651 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005652 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005653 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005654 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005655 hdr = pPage->hdrOffset;
5656 testcase( pc==get2byte(&data[hdr+5]) );
5657 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005658 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005659 *pRC = SQLITE_CORRUPT_BKPT;
5660 return;
shane0af3f892008-11-12 04:55:34 +00005661 }
shanedcc50b72008-11-13 18:29:50 +00005662 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005663 if( rc ){
5664 *pRC = rc;
5665 return;
shanedcc50b72008-11-13 18:29:50 +00005666 }
drh14acc042001-06-10 19:56:58 +00005667 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005668 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005669 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005670 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005671}
5672
5673/*
5674** Insert a new cell on pPage at cell index "i". pCell points to the
5675** content of the cell.
5676**
5677** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005678** will not fit, then make a copy of the cell content into pTemp if
5679** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005680** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005681** in pTemp or the original pCell) and also record its index.
5682** Allocating a new entry in pPage->aCell[] implies that
5683** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005684**
5685** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5686** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005687** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005688** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005689*/
drh98add2e2009-07-20 17:11:49 +00005690static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005691 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005692 int i, /* New cell becomes the i-th cell of the page */
5693 u8 *pCell, /* Content of the new cell */
5694 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005695 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005696 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5697 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005698){
drh383d30f2010-02-26 13:07:37 +00005699 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005700 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005701 int end; /* First byte past the last cell pointer in data[] */
5702 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005703 int cellOffset; /* Address of first cell pointer in data[] */
5704 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005705 int nSkip = (iChild ? 4 : 0);
5706
drh98add2e2009-07-20 17:11:49 +00005707 if( *pRC ) return;
5708
drh43605152004-05-29 21:46:49 +00005709 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005710 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005711 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5712 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005713 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005714 /* The cell should normally be sized correctly. However, when moving a
5715 ** malformed cell from a leaf page to an interior page, if the cell size
5716 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5717 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5718 ** the term after the || in the following assert(). */
5719 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005720 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005721 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005722 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005723 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005724 }
danielk19774dbaa892009-06-16 16:50:22 +00005725 if( iChild ){
5726 put4byte(pCell, iChild);
5727 }
drh43605152004-05-29 21:46:49 +00005728 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005729 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5730 pPage->apOvfl[j] = pCell;
5731 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005732 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005733 int rc = sqlite3PagerWrite(pPage->pDbPage);
5734 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005735 *pRC = rc;
5736 return;
danielk19776e465eb2007-08-21 13:11:00 +00005737 }
5738 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005739 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005740 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005741 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005742 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005743 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005744 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005745 /* The allocateSpace() routine guarantees the following two properties
5746 ** if it returns success */
5747 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005748 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005749 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005750 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005751 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005752 if( iChild ){
5753 put4byte(&data[idx], iChild);
5754 }
drh8f518832013-12-09 02:32:19 +00005755 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005756 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005757 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005758#ifndef SQLITE_OMIT_AUTOVACUUM
5759 if( pPage->pBt->autoVacuum ){
5760 /* The cell may contain a pointer to an overflow page. If so, write
5761 ** the entry for the overflow page into the pointer map.
5762 */
drh98add2e2009-07-20 17:11:49 +00005763 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005764 }
5765#endif
drh14acc042001-06-10 19:56:58 +00005766 }
5767}
5768
5769/*
drhfa1a98a2004-05-14 19:08:17 +00005770** Add a list of cells to a page. The page should be initially empty.
5771** The cells are guaranteed to fit on the page.
5772*/
5773static void assemblePage(
5774 MemPage *pPage, /* The page to be assemblied */
5775 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005776 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005777 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005778){
5779 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005780 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005781 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005782 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5783 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5784 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005785
drh43605152004-05-29 21:46:49 +00005786 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005787 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005788 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5789 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005790 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005791
5792 /* Check that the page has just been zeroed by zeroPage() */
5793 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005794 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005795
drh3def2352011-11-11 00:27:15 +00005796 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005797 cellbody = nUsable;
5798 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005799 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005800 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005801 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005802 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005803 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005804 }
danielk1977fad91942009-04-29 17:49:59 +00005805 put2byte(&data[hdr+3], nCell);
5806 put2byte(&data[hdr+5], cellbody);
5807 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005808 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005809}
5810
drh14acc042001-06-10 19:56:58 +00005811/*
drhc3b70572003-01-04 19:44:07 +00005812** The following parameters determine how many adjacent pages get involved
5813** in a balancing operation. NN is the number of neighbors on either side
5814** of the page that participate in the balancing operation. NB is the
5815** total number of pages that participate, including the target page and
5816** NN neighbors on either side.
5817**
5818** The minimum value of NN is 1 (of course). Increasing NN above 1
5819** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5820** in exchange for a larger degradation in INSERT and UPDATE performance.
5821** The value of NN appears to give the best results overall.
5822*/
5823#define NN 1 /* Number of neighbors on either side of pPage */
5824#define NB (NN*2+1) /* Total pages involved in the balance */
5825
danielk1977ac245ec2005-01-14 13:50:11 +00005826
drh615ae552005-01-16 23:21:00 +00005827#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005828/*
5829** This version of balance() handles the common special case where
5830** a new entry is being inserted on the extreme right-end of the
5831** tree, in other words, when the new entry will become the largest
5832** entry in the tree.
5833**
drhc314dc72009-07-21 11:52:34 +00005834** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005835** a new page to the right-hand side and put the one new entry in
5836** that page. This leaves the right side of the tree somewhat
5837** unbalanced. But odds are that we will be inserting new entries
5838** at the end soon afterwards so the nearly empty page will quickly
5839** fill up. On average.
5840**
5841** pPage is the leaf page which is the right-most page in the tree.
5842** pParent is its parent. pPage must have a single overflow entry
5843** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005844**
5845** The pSpace buffer is used to store a temporary copy of the divider
5846** cell that will be inserted into pParent. Such a cell consists of a 4
5847** byte page number followed by a variable length integer. In other
5848** words, at most 13 bytes. Hence the pSpace buffer must be at
5849** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005850*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005851static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5852 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005853 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005854 int rc; /* Return Code */
5855 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005856
drh1fee73e2007-08-29 04:00:57 +00005857 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005858 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005859 assert( pPage->nOverflow==1 );
5860
drh5d433ce2010-08-14 16:02:52 +00005861 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005862 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005863
danielk1977a50d9aa2009-06-08 14:49:45 +00005864 /* Allocate a new page. This page will become the right-sibling of
5865 ** pPage. Make the parent page writable, so that the new divider cell
5866 ** may be inserted. If both these operations are successful, proceed.
5867 */
drh4f0c5872007-03-26 22:05:01 +00005868 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005869
danielk1977eaa06f62008-09-18 17:34:44 +00005870 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005871
5872 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005873 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005874 u16 szCell = cellSizePtr(pPage, pCell);
5875 u8 *pStop;
5876
drhc5053fb2008-11-27 02:22:10 +00005877 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005878 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5879 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005880 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005881
5882 /* If this is an auto-vacuum database, update the pointer map
5883 ** with entries for the new page, and any pointer from the
5884 ** cell on the page to an overflow page. If either of these
5885 ** operations fails, the return code is set, but the contents
5886 ** of the parent page are still manipulated by thh code below.
5887 ** That is Ok, at this point the parent page is guaranteed to
5888 ** be marked as dirty. Returning an error code will cause a
5889 ** rollback, undoing any changes made to the parent page.
5890 */
5891 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005892 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5893 if( szCell>pNew->minLocal ){
5894 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005895 }
5896 }
danielk1977eaa06f62008-09-18 17:34:44 +00005897
danielk19776f235cc2009-06-04 14:46:08 +00005898 /* Create a divider cell to insert into pParent. The divider cell
5899 ** consists of a 4-byte page number (the page number of pPage) and
5900 ** a variable length key value (which must be the same value as the
5901 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005902 **
danielk19776f235cc2009-06-04 14:46:08 +00005903 ** To find the largest key value on pPage, first find the right-most
5904 ** cell on pPage. The first two fields of this cell are the
5905 ** record-length (a variable length integer at most 32-bits in size)
5906 ** and the key value (a variable length integer, may have any value).
5907 ** The first of the while(...) loops below skips over the record-length
5908 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005909 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005910 */
danielk1977eaa06f62008-09-18 17:34:44 +00005911 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005912 pStop = &pCell[9];
5913 while( (*(pCell++)&0x80) && pCell<pStop );
5914 pStop = &pCell[9];
5915 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5916
danielk19774dbaa892009-06-16 16:50:22 +00005917 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005918 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5919 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005920
5921 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005922 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5923
danielk1977e08a3c42008-09-18 18:17:03 +00005924 /* Release the reference to the new page. */
5925 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005926 }
5927
danielk1977eaa06f62008-09-18 17:34:44 +00005928 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005929}
drh615ae552005-01-16 23:21:00 +00005930#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005931
danielk19774dbaa892009-06-16 16:50:22 +00005932#if 0
drhc3b70572003-01-04 19:44:07 +00005933/*
danielk19774dbaa892009-06-16 16:50:22 +00005934** This function does not contribute anything to the operation of SQLite.
5935** it is sometimes activated temporarily while debugging code responsible
5936** for setting pointer-map entries.
5937*/
5938static int ptrmapCheckPages(MemPage **apPage, int nPage){
5939 int i, j;
5940 for(i=0; i<nPage; i++){
5941 Pgno n;
5942 u8 e;
5943 MemPage *pPage = apPage[i];
5944 BtShared *pBt = pPage->pBt;
5945 assert( pPage->isInit );
5946
5947 for(j=0; j<pPage->nCell; j++){
5948 CellInfo info;
5949 u8 *z;
5950
5951 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005952 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005953 if( info.iOverflow ){
5954 Pgno ovfl = get4byte(&z[info.iOverflow]);
5955 ptrmapGet(pBt, ovfl, &e, &n);
5956 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5957 }
5958 if( !pPage->leaf ){
5959 Pgno child = get4byte(z);
5960 ptrmapGet(pBt, child, &e, &n);
5961 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5962 }
5963 }
5964 if( !pPage->leaf ){
5965 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5966 ptrmapGet(pBt, child, &e, &n);
5967 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5968 }
5969 }
5970 return 1;
5971}
5972#endif
5973
danielk1977cd581a72009-06-23 15:43:39 +00005974/*
5975** This function is used to copy the contents of the b-tree node stored
5976** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5977** the pointer-map entries for each child page are updated so that the
5978** parent page stored in the pointer map is page pTo. If pFrom contained
5979** any cells with overflow page pointers, then the corresponding pointer
5980** map entries are also updated so that the parent page is page pTo.
5981**
5982** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005983** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005984**
danielk197730548662009-07-09 05:07:37 +00005985** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005986**
5987** The performance of this function is not critical. It is only used by
5988** the balance_shallower() and balance_deeper() procedures, neither of
5989** which are called often under normal circumstances.
5990*/
drhc314dc72009-07-21 11:52:34 +00005991static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5992 if( (*pRC)==SQLITE_OK ){
5993 BtShared * const pBt = pFrom->pBt;
5994 u8 * const aFrom = pFrom->aData;
5995 u8 * const aTo = pTo->aData;
5996 int const iFromHdr = pFrom->hdrOffset;
5997 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005998 int rc;
drhc314dc72009-07-21 11:52:34 +00005999 int iData;
6000
6001
6002 assert( pFrom->isInit );
6003 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006004 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006005
6006 /* Copy the b-tree node content from page pFrom to page pTo. */
6007 iData = get2byte(&aFrom[iFromHdr+5]);
6008 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6009 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6010
6011 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006012 ** match the new data. The initialization of pTo can actually fail under
6013 ** fairly obscure circumstances, even though it is a copy of initialized
6014 ** page pFrom.
6015 */
drhc314dc72009-07-21 11:52:34 +00006016 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006017 rc = btreeInitPage(pTo);
6018 if( rc!=SQLITE_OK ){
6019 *pRC = rc;
6020 return;
6021 }
drhc314dc72009-07-21 11:52:34 +00006022
6023 /* If this is an auto-vacuum database, update the pointer-map entries
6024 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6025 */
6026 if( ISAUTOVACUUM ){
6027 *pRC = setChildPtrmaps(pTo);
6028 }
danielk1977cd581a72009-06-23 15:43:39 +00006029 }
danielk1977cd581a72009-06-23 15:43:39 +00006030}
6031
6032/*
danielk19774dbaa892009-06-16 16:50:22 +00006033** This routine redistributes cells on the iParentIdx'th child of pParent
6034** (hereafter "the page") and up to 2 siblings so that all pages have about the
6035** same amount of free space. Usually a single sibling on either side of the
6036** page are used in the balancing, though both siblings might come from one
6037** side if the page is the first or last child of its parent. If the page
6038** has fewer than 2 siblings (something which can only happen if the page
6039** is a root page or a child of a root page) then all available siblings
6040** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006041**
danielk19774dbaa892009-06-16 16:50:22 +00006042** The number of siblings of the page might be increased or decreased by
6043** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006044**
danielk19774dbaa892009-06-16 16:50:22 +00006045** Note that when this routine is called, some of the cells on the page
6046** might not actually be stored in MemPage.aData[]. This can happen
6047** if the page is overfull. This routine ensures that all cells allocated
6048** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006049**
danielk19774dbaa892009-06-16 16:50:22 +00006050** In the course of balancing the page and its siblings, cells may be
6051** inserted into or removed from the parent page (pParent). Doing so
6052** may cause the parent page to become overfull or underfull. If this
6053** happens, it is the responsibility of the caller to invoke the correct
6054** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006055**
drh5e00f6c2001-09-13 13:46:56 +00006056** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006057** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006058** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006059**
6060** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006061** buffer big enough to hold one page. If while inserting cells into the parent
6062** page (pParent) the parent page becomes overfull, this buffer is
6063** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006064** a maximum of four divider cells into the parent page, and the maximum
6065** size of a cell stored within an internal node is always less than 1/4
6066** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6067** enough for all overflow cells.
6068**
6069** If aOvflSpace is set to a null pointer, this function returns
6070** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006071*/
mistachkine7c54162012-10-02 22:54:27 +00006072#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6073#pragma optimize("", off)
6074#endif
danielk19774dbaa892009-06-16 16:50:22 +00006075static int balance_nonroot(
6076 MemPage *pParent, /* Parent page of siblings being balanced */
6077 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006078 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006079 int isRoot, /* True if pParent is a root-page */
6080 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006081){
drh16a9b832007-05-05 18:39:25 +00006082 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006083 int nCell = 0; /* Number of cells in apCell[] */
6084 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006085 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006086 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006087 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006088 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006089 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006090 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006091 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006092 int usableSpace; /* Bytes in pPage beyond the header */
6093 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006094 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006095 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006096 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006097 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006098 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006099 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006100 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006101 u8 *pRight; /* Location in parent of right-sibling pointer */
6102 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006103 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6104 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006105 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006106 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006107 u8 *aSpace1; /* Space for copies of dividers cells */
6108 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006109
danielk1977a50d9aa2009-06-08 14:49:45 +00006110 pBt = pParent->pBt;
6111 assert( sqlite3_mutex_held(pBt->mutex) );
6112 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006113
danielk1977e5765212009-06-17 11:13:28 +00006114#if 0
drh43605152004-05-29 21:46:49 +00006115 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006116#endif
drh2e38c322004-09-03 18:38:44 +00006117
danielk19774dbaa892009-06-16 16:50:22 +00006118 /* At this point pParent may have at most one overflow cell. And if
6119 ** this overflow cell is present, it must be the cell with
6120 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006121 ** is called (indirectly) from sqlite3BtreeDelete().
6122 */
danielk19774dbaa892009-06-16 16:50:22 +00006123 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006124 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006125
danielk197711a8a862009-06-17 11:49:52 +00006126 if( !aOvflSpace ){
6127 return SQLITE_NOMEM;
6128 }
6129
danielk1977a50d9aa2009-06-08 14:49:45 +00006130 /* Find the sibling pages to balance. Also locate the cells in pParent
6131 ** that divide the siblings. An attempt is made to find NN siblings on
6132 ** either side of pPage. More siblings are taken from one side, however,
6133 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006134 ** has NB or fewer children then all children of pParent are taken.
6135 **
6136 ** This loop also drops the divider cells from the parent page. This
6137 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006138 ** overflow cells in the parent page, since if any existed they will
6139 ** have already been removed.
6140 */
danielk19774dbaa892009-06-16 16:50:22 +00006141 i = pParent->nOverflow + pParent->nCell;
6142 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006143 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006144 }else{
dan7d6885a2012-08-08 14:04:56 +00006145 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006146 if( iParentIdx==0 ){
6147 nxDiv = 0;
6148 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006149 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006150 }else{
dan7d6885a2012-08-08 14:04:56 +00006151 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006152 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006153 }
dan7d6885a2012-08-08 14:04:56 +00006154 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006155 }
dan7d6885a2012-08-08 14:04:56 +00006156 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006157 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6158 pRight = &pParent->aData[pParent->hdrOffset+8];
6159 }else{
6160 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6161 }
6162 pgno = get4byte(pRight);
6163 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006164 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006165 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006166 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006167 goto balance_cleanup;
6168 }
danielk1977634f2982005-03-28 08:44:07 +00006169 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006170 if( (i--)==0 ) break;
6171
drh2cbd78b2012-02-02 19:37:18 +00006172 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6173 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006174 pgno = get4byte(apDiv[i]);
6175 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6176 pParent->nOverflow = 0;
6177 }else{
6178 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6179 pgno = get4byte(apDiv[i]);
6180 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6181
6182 /* Drop the cell from the parent page. apDiv[i] still points to
6183 ** the cell within the parent, even though it has been dropped.
6184 ** This is safe because dropping a cell only overwrites the first
6185 ** four bytes of it, and this function does not need the first
6186 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006187 ** later on.
6188 **
drh8a575d92011-10-12 17:00:28 +00006189 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006190 ** the dropCell() routine will overwrite the entire cell with zeroes.
6191 ** In this case, temporarily copy the cell into the aOvflSpace[]
6192 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6193 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006194 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006195 int iOff;
6196
6197 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006198 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006199 rc = SQLITE_CORRUPT_BKPT;
6200 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6201 goto balance_cleanup;
6202 }else{
6203 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6204 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6205 }
drh5b47efa2010-02-12 18:18:39 +00006206 }
drh98add2e2009-07-20 17:11:49 +00006207 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006208 }
drh8b2f49b2001-06-08 00:21:52 +00006209 }
6210
drha9121e42008-02-19 14:59:35 +00006211 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006212 ** alignment */
drha9121e42008-02-19 14:59:35 +00006213 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006214
drh8b2f49b2001-06-08 00:21:52 +00006215 /*
danielk1977634f2982005-03-28 08:44:07 +00006216 ** Allocate space for memory structures
6217 */
danielk19774dbaa892009-06-16 16:50:22 +00006218 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006219 szScratch =
drha9121e42008-02-19 14:59:35 +00006220 nMaxCells*sizeof(u8*) /* apCell */
6221 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006222 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006223 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006224 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006225 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006226 rc = SQLITE_NOMEM;
6227 goto balance_cleanup;
6228 }
drha9121e42008-02-19 14:59:35 +00006229 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006230 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006231 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006232
6233 /*
6234 ** Load pointers to all cells on sibling pages and the divider cells
6235 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006236 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006237 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006238 **
6239 ** If the siblings are on leaf pages, then the child pointers of the
6240 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006241 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006242 ** child pointers. If siblings are not leaves, then all cell in
6243 ** apCell[] include child pointers. Either way, all cells in apCell[]
6244 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006245 **
6246 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6247 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006248 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006249 leafCorrection = apOld[0]->leaf*4;
6250 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006251 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006252 int limit;
6253
6254 /* Before doing anything else, take a copy of the i'th original sibling
6255 ** The rest of this function will use data from the copies rather
6256 ** that the original pages since the original pages will be in the
6257 ** process of being overwritten. */
6258 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6259 memcpy(pOld, apOld[i], sizeof(MemPage));
6260 pOld->aData = (void*)&pOld[1];
6261 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6262
6263 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006264 if( pOld->nOverflow>0 ){
6265 for(j=0; j<limit; j++){
6266 assert( nCell<nMaxCells );
6267 apCell[nCell] = findOverflowCell(pOld, j);
6268 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6269 nCell++;
6270 }
6271 }else{
6272 u8 *aData = pOld->aData;
6273 u16 maskPage = pOld->maskPage;
6274 u16 cellOffset = pOld->cellOffset;
6275 for(j=0; j<limit; j++){
6276 assert( nCell<nMaxCells );
6277 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6278 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6279 nCell++;
6280 }
6281 }
danielk19774dbaa892009-06-16 16:50:22 +00006282 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006283 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006284 u8 *pTemp;
6285 assert( nCell<nMaxCells );
6286 szCell[nCell] = sz;
6287 pTemp = &aSpace1[iSpace1];
6288 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006289 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006290 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006291 memcpy(pTemp, apDiv[i], sz);
6292 apCell[nCell] = pTemp+leafCorrection;
6293 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006294 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006295 if( !pOld->leaf ){
6296 assert( leafCorrection==0 );
6297 assert( pOld->hdrOffset==0 );
6298 /* The right pointer of the child page pOld becomes the left
6299 ** pointer of the divider cell */
6300 memcpy(apCell[nCell], &pOld->aData[8], 4);
6301 }else{
6302 assert( leafCorrection==4 );
6303 if( szCell[nCell]<4 ){
6304 /* Do not allow any cells smaller than 4 bytes. */
6305 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006306 }
6307 }
drh14acc042001-06-10 19:56:58 +00006308 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006309 }
drh8b2f49b2001-06-08 00:21:52 +00006310 }
6311
6312 /*
drh6019e162001-07-02 17:51:45 +00006313 ** Figure out the number of pages needed to hold all nCell cells.
6314 ** Store this number in "k". Also compute szNew[] which is the total
6315 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006316 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006317 ** cntNew[k] should equal nCell.
6318 **
drh96f5b762004-05-16 16:24:36 +00006319 ** Values computed by this block:
6320 **
6321 ** k: The total number of sibling pages
6322 ** szNew[i]: Spaced used on the i-th sibling page.
6323 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6324 ** the right of the i-th sibling page.
6325 ** usableSpace: Number of bytes of space available on each sibling.
6326 **
drh8b2f49b2001-06-08 00:21:52 +00006327 */
drh43605152004-05-29 21:46:49 +00006328 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006329 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006330 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006331 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006332 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006333 szNew[k] = subtotal - szCell[i];
6334 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006335 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006336 subtotal = 0;
6337 k++;
drh9978c972010-02-23 17:36:32 +00006338 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006339 }
6340 }
6341 szNew[k] = subtotal;
6342 cntNew[k] = nCell;
6343 k++;
drh96f5b762004-05-16 16:24:36 +00006344
6345 /*
6346 ** The packing computed by the previous block is biased toward the siblings
6347 ** on the left side. The left siblings are always nearly full, while the
6348 ** right-most sibling might be nearly empty. This block of code attempts
6349 ** to adjust the packing of siblings to get a better balance.
6350 **
6351 ** This adjustment is more than an optimization. The packing above might
6352 ** be so out of balance as to be illegal. For example, the right-most
6353 ** sibling might be completely empty. This adjustment is not optional.
6354 */
drh6019e162001-07-02 17:51:45 +00006355 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006356 int szRight = szNew[i]; /* Size of sibling on the right */
6357 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6358 int r; /* Index of right-most cell in left sibling */
6359 int d; /* Index of first cell to the left of right sibling */
6360
6361 r = cntNew[i-1] - 1;
6362 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006363 assert( d<nMaxCells );
6364 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006365 while( szRight==0
6366 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6367 ){
drh43605152004-05-29 21:46:49 +00006368 szRight += szCell[d] + 2;
6369 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006370 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006371 r = cntNew[i-1] - 1;
6372 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006373 }
drh96f5b762004-05-16 16:24:36 +00006374 szNew[i] = szRight;
6375 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006376 }
drh09d0deb2005-08-02 17:13:09 +00006377
danielk19776f235cc2009-06-04 14:46:08 +00006378 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006379 ** a virtual root page. A virtual root page is when the real root
6380 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006381 **
6382 ** UPDATE: The assert() below is not necessarily true if the database
6383 ** file is corrupt. The corruption will be detected and reported later
6384 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006385 */
drh2f32fba2012-01-02 16:38:57 +00006386#if 0
drh09d0deb2005-08-02 17:13:09 +00006387 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006388#endif
drh8b2f49b2001-06-08 00:21:52 +00006389
danielk1977e5765212009-06-17 11:13:28 +00006390 TRACE(("BALANCE: old: %d %d %d ",
6391 apOld[0]->pgno,
6392 nOld>=2 ? apOld[1]->pgno : 0,
6393 nOld>=3 ? apOld[2]->pgno : 0
6394 ));
6395
drh8b2f49b2001-06-08 00:21:52 +00006396 /*
drh6b308672002-07-08 02:16:37 +00006397 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006398 */
drheac74422009-06-14 12:47:11 +00006399 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006400 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006401 goto balance_cleanup;
6402 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006403 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006404 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006405 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006406 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006407 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006408 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006409 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006410 nNew++;
danielk197728129562005-01-11 10:25:06 +00006411 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006412 }else{
drh7aa8f852006-03-28 00:24:44 +00006413 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006414 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006415 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006416 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006417 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006418
6419 /* Set the pointer-map entry for the new sibling page. */
6420 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006421 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006422 if( rc!=SQLITE_OK ){
6423 goto balance_cleanup;
6424 }
6425 }
drh6b308672002-07-08 02:16:37 +00006426 }
drh8b2f49b2001-06-08 00:21:52 +00006427 }
6428
danielk1977299b1872004-11-22 10:02:10 +00006429 /* Free any old pages that were not reused as new pages.
6430 */
6431 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006432 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006433 if( rc ) goto balance_cleanup;
6434 releasePage(apOld[i]);
6435 apOld[i] = 0;
6436 i++;
6437 }
6438
drh8b2f49b2001-06-08 00:21:52 +00006439 /*
drhf9ffac92002-03-02 19:00:31 +00006440 ** Put the new pages in accending order. This helps to
6441 ** keep entries in the disk file in order so that a scan
6442 ** of the table is a linear scan through the file. That
6443 ** in turn helps the operating system to deliver pages
6444 ** from the disk more rapidly.
6445 **
6446 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006447 ** n is never more than NB (a small constant), that should
6448 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006449 **
drhc3b70572003-01-04 19:44:07 +00006450 ** When NB==3, this one optimization makes the database
6451 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006452 */
6453 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006454 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006455 int minI = i;
6456 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006457 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006458 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006459 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006460 }
6461 }
6462 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006463 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006464 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006465 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006466 apNew[minI] = pT;
6467 }
6468 }
danielk1977e5765212009-06-17 11:13:28 +00006469 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006470 apNew[0]->pgno, szNew[0],
6471 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6472 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6473 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6474 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6475
6476 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6477 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006478
drhf9ffac92002-03-02 19:00:31 +00006479 /*
drh14acc042001-06-10 19:56:58 +00006480 ** Evenly distribute the data in apCell[] across the new pages.
6481 ** Insert divider cells into pParent as necessary.
6482 */
6483 j = 0;
6484 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006485 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006486 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006487 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006488 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006489 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006490 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006491 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006492
danielk1977ac11ee62005-01-15 12:45:51 +00006493 j = cntNew[i];
6494
6495 /* If the sibling page assembled above was not the right-most sibling,
6496 ** insert a divider cell into the parent page.
6497 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006498 assert( i<nNew-1 || j==nCell );
6499 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006500 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006501 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006502 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006503
6504 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006505 pCell = apCell[j];
6506 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006507 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006508 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006509 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006510 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006511 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006512 ** then there is no divider cell in apCell[]. Instead, the divider
6513 ** cell consists of the integer key for the right-most cell of
6514 ** the sibling-page assembled above only.
6515 */
drh6f11bef2004-05-13 01:12:56 +00006516 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006517 j--;
danielk197730548662009-07-09 05:07:37 +00006518 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006519 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006520 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006521 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006522 }else{
6523 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006524 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006525 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006526 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006527 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006528 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006529 ** insertCell(), so reparse the cell now.
6530 **
6531 ** Note that this can never happen in an SQLite data file, as all
6532 ** cells are at least 4 bytes. It only happens in b-trees used
6533 ** to evaluate "IN (SELECT ...)" and similar clauses.
6534 */
6535 if( szCell[j]==4 ){
6536 assert(leafCorrection==4);
6537 sz = cellSizePtr(pParent, pCell);
6538 }
drh4b70f112004-05-02 21:12:19 +00006539 }
danielk19776067a9b2009-06-09 09:41:00 +00006540 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006541 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006542 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006543 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006544 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006545 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006546
drh14acc042001-06-10 19:56:58 +00006547 j++;
6548 nxDiv++;
6549 }
6550 }
drh6019e162001-07-02 17:51:45 +00006551 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006552 assert( nOld>0 );
6553 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006554 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006555 u8 *zChild = &apCopy[nOld-1]->aData[8];
6556 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006557 }
6558
danielk197713bd99f2009-06-24 05:40:34 +00006559 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6560 /* The root page of the b-tree now contains no cells. The only sibling
6561 ** page is the right-child of the parent. Copy the contents of the
6562 ** child page into the parent, decreasing the overall height of the
6563 ** b-tree structure by one. This is described as the "balance-shallower"
6564 ** sub-algorithm in some documentation.
6565 **
6566 ** If this is an auto-vacuum database, the call to copyNodeContent()
6567 ** sets all pointer-map entries corresponding to database image pages
6568 ** for which the pointer is stored within the content being copied.
6569 **
6570 ** The second assert below verifies that the child page is defragmented
6571 ** (it must be, as it was just reconstructed using assemblePage()). This
6572 ** is important if the parent page happens to be page 1 of the database
6573 ** image. */
6574 assert( nNew==1 );
6575 assert( apNew[0]->nFree ==
6576 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6577 );
drhc314dc72009-07-21 11:52:34 +00006578 copyNodeContent(apNew[0], pParent, &rc);
6579 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006580 }else if( ISAUTOVACUUM ){
6581 /* Fix the pointer-map entries for all the cells that were shifted around.
6582 ** There are several different types of pointer-map entries that need to
6583 ** be dealt with by this routine. Some of these have been set already, but
6584 ** many have not. The following is a summary:
6585 **
6586 ** 1) The entries associated with new sibling pages that were not
6587 ** siblings when this function was called. These have already
6588 ** been set. We don't need to worry about old siblings that were
6589 ** moved to the free-list - the freePage() code has taken care
6590 ** of those.
6591 **
6592 ** 2) The pointer-map entries associated with the first overflow
6593 ** page in any overflow chains used by new divider cells. These
6594 ** have also already been taken care of by the insertCell() code.
6595 **
6596 ** 3) If the sibling pages are not leaves, then the child pages of
6597 ** cells stored on the sibling pages may need to be updated.
6598 **
6599 ** 4) If the sibling pages are not internal intkey nodes, then any
6600 ** overflow pages used by these cells may need to be updated
6601 ** (internal intkey nodes never contain pointers to overflow pages).
6602 **
6603 ** 5) If the sibling pages are not leaves, then the pointer-map
6604 ** entries for the right-child pages of each sibling may need
6605 ** to be updated.
6606 **
6607 ** Cases 1 and 2 are dealt with above by other code. The next
6608 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6609 ** setting a pointer map entry is a relatively expensive operation, this
6610 ** code only sets pointer map entries for child or overflow pages that have
6611 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006612 MemPage *pNew = apNew[0];
6613 MemPage *pOld = apCopy[0];
6614 int nOverflow = pOld->nOverflow;
6615 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006616 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006617 j = 0; /* Current 'old' sibling page */
6618 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006619 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006620 int isDivider = 0;
6621 while( i==iNextOld ){
6622 /* Cell i is the cell immediately following the last cell on old
6623 ** sibling page j. If the siblings are not leaf pages of an
6624 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006625 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006626 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006627 pOld = apCopy[++j];
6628 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6629 if( pOld->nOverflow ){
6630 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006631 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006632 }
6633 isDivider = !leafData;
6634 }
6635
6636 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006637 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6638 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006639 if( i==iOverflow ){
6640 isDivider = 1;
6641 if( (--nOverflow)>0 ){
6642 iOverflow++;
6643 }
6644 }
6645
6646 if( i==cntNew[k] ){
6647 /* Cell i is the cell immediately following the last cell on new
6648 ** sibling page k. If the siblings are not leaf pages of an
6649 ** intkey b-tree, then cell i is a divider cell. */
6650 pNew = apNew[++k];
6651 if( !leafData ) continue;
6652 }
danielk19774dbaa892009-06-16 16:50:22 +00006653 assert( j<nOld );
6654 assert( k<nNew );
6655
6656 /* If the cell was originally divider cell (and is not now) or
6657 ** an overflow cell, or if the cell was located on a different sibling
6658 ** page before the balancing, then the pointer map entries associated
6659 ** with any child or overflow pages need to be updated. */
6660 if( isDivider || pOld->pgno!=pNew->pgno ){
6661 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006662 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006663 }
drh98add2e2009-07-20 17:11:49 +00006664 if( szCell[i]>pNew->minLocal ){
6665 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006666 }
6667 }
6668 }
6669
6670 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006671 for(i=0; i<nNew; i++){
6672 u32 key = get4byte(&apNew[i]->aData[8]);
6673 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006674 }
6675 }
6676
6677#if 0
6678 /* The ptrmapCheckPages() contains assert() statements that verify that
6679 ** all pointer map pages are set correctly. This is helpful while
6680 ** debugging. This is usually disabled because a corrupt database may
6681 ** cause an assert() statement to fail. */
6682 ptrmapCheckPages(apNew, nNew);
6683 ptrmapCheckPages(&pParent, 1);
6684#endif
6685 }
6686
danielk197771d5d2c2008-09-29 11:49:47 +00006687 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006688 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6689 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006690
drh8b2f49b2001-06-08 00:21:52 +00006691 /*
drh14acc042001-06-10 19:56:58 +00006692 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006693 */
drh14acc042001-06-10 19:56:58 +00006694balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006695 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006696 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006697 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006698 }
drh14acc042001-06-10 19:56:58 +00006699 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006700 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006701 }
danielk1977eaa06f62008-09-18 17:34:44 +00006702
drh8b2f49b2001-06-08 00:21:52 +00006703 return rc;
6704}
mistachkine7c54162012-10-02 22:54:27 +00006705#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6706#pragma optimize("", on)
6707#endif
drh8b2f49b2001-06-08 00:21:52 +00006708
drh43605152004-05-29 21:46:49 +00006709
6710/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006711** This function is called when the root page of a b-tree structure is
6712** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006713**
danielk1977a50d9aa2009-06-08 14:49:45 +00006714** A new child page is allocated and the contents of the current root
6715** page, including overflow cells, are copied into the child. The root
6716** page is then overwritten to make it an empty page with the right-child
6717** pointer pointing to the new page.
6718**
6719** Before returning, all pointer-map entries corresponding to pages
6720** that the new child-page now contains pointers to are updated. The
6721** entry corresponding to the new right-child pointer of the root
6722** page is also updated.
6723**
6724** If successful, *ppChild is set to contain a reference to the child
6725** page and SQLITE_OK is returned. In this case the caller is required
6726** to call releasePage() on *ppChild exactly once. If an error occurs,
6727** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006728*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006729static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6730 int rc; /* Return value from subprocedures */
6731 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006732 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006733 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006734
danielk1977a50d9aa2009-06-08 14:49:45 +00006735 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006736 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006737
danielk1977a50d9aa2009-06-08 14:49:45 +00006738 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6739 ** page that will become the new right-child of pPage. Copy the contents
6740 ** of the node stored on pRoot into the new child page.
6741 */
drh98add2e2009-07-20 17:11:49 +00006742 rc = sqlite3PagerWrite(pRoot->pDbPage);
6743 if( rc==SQLITE_OK ){
6744 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006745 copyNodeContent(pRoot, pChild, &rc);
6746 if( ISAUTOVACUUM ){
6747 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006748 }
6749 }
6750 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006751 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006752 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006753 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006754 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006755 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6756 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6757 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006758
danielk1977a50d9aa2009-06-08 14:49:45 +00006759 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6760
6761 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006762 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6763 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6764 memcpy(pChild->apOvfl, pRoot->apOvfl,
6765 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006766 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006767
6768 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6769 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6770 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6771
6772 *ppChild = pChild;
6773 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006774}
6775
6776/*
danielk197771d5d2c2008-09-29 11:49:47 +00006777** The page that pCur currently points to has just been modified in
6778** some way. This function figures out if this modification means the
6779** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006780** routine. Balancing routines are:
6781**
6782** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006783** balance_deeper()
6784** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006785*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006786static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006787 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006788 const int nMin = pCur->pBt->usableSize * 2 / 3;
6789 u8 aBalanceQuickSpace[13];
6790 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006791
shane75ac1de2009-06-09 18:58:52 +00006792 TESTONLY( int balance_quick_called = 0 );
6793 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006794
6795 do {
6796 int iPage = pCur->iPage;
6797 MemPage *pPage = pCur->apPage[iPage];
6798
6799 if( iPage==0 ){
6800 if( pPage->nOverflow ){
6801 /* The root page of the b-tree is overfull. In this case call the
6802 ** balance_deeper() function to create a new child for the root-page
6803 ** and copy the current contents of the root-page to it. The
6804 ** next iteration of the do-loop will balance the child page.
6805 */
6806 assert( (balance_deeper_called++)==0 );
6807 rc = balance_deeper(pPage, &pCur->apPage[1]);
6808 if( rc==SQLITE_OK ){
6809 pCur->iPage = 1;
6810 pCur->aiIdx[0] = 0;
6811 pCur->aiIdx[1] = 0;
6812 assert( pCur->apPage[1]->nOverflow );
6813 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006814 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006815 break;
6816 }
6817 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6818 break;
6819 }else{
6820 MemPage * const pParent = pCur->apPage[iPage-1];
6821 int const iIdx = pCur->aiIdx[iPage-1];
6822
6823 rc = sqlite3PagerWrite(pParent->pDbPage);
6824 if( rc==SQLITE_OK ){
6825#ifndef SQLITE_OMIT_QUICKBALANCE
6826 if( pPage->hasData
6827 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006828 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006829 && pParent->pgno!=1
6830 && pParent->nCell==iIdx
6831 ){
6832 /* Call balance_quick() to create a new sibling of pPage on which
6833 ** to store the overflow cell. balance_quick() inserts a new cell
6834 ** into pParent, which may cause pParent overflow. If this
6835 ** happens, the next interation of the do-loop will balance pParent
6836 ** use either balance_nonroot() or balance_deeper(). Until this
6837 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6838 ** buffer.
6839 **
6840 ** The purpose of the following assert() is to check that only a
6841 ** single call to balance_quick() is made for each call to this
6842 ** function. If this were not verified, a subtle bug involving reuse
6843 ** of the aBalanceQuickSpace[] might sneak in.
6844 */
6845 assert( (balance_quick_called++)==0 );
6846 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6847 }else
6848#endif
6849 {
6850 /* In this case, call balance_nonroot() to redistribute cells
6851 ** between pPage and up to 2 of its sibling pages. This involves
6852 ** modifying the contents of pParent, which may cause pParent to
6853 ** become overfull or underfull. The next iteration of the do-loop
6854 ** will balance the parent page to correct this.
6855 **
6856 ** If the parent page becomes overfull, the overflow cell or cells
6857 ** are stored in the pSpace buffer allocated immediately below.
6858 ** A subsequent iteration of the do-loop will deal with this by
6859 ** calling balance_nonroot() (balance_deeper() may be called first,
6860 ** but it doesn't deal with overflow cells - just moves them to a
6861 ** different page). Once this subsequent call to balance_nonroot()
6862 ** has completed, it is safe to release the pSpace buffer used by
6863 ** the previous call, as the overflow cell data will have been
6864 ** copied either into the body of a database page or into the new
6865 ** pSpace buffer passed to the latter call to balance_nonroot().
6866 */
6867 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006868 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006869 if( pFree ){
6870 /* If pFree is not NULL, it points to the pSpace buffer used
6871 ** by a previous call to balance_nonroot(). Its contents are
6872 ** now stored either on real database pages or within the
6873 ** new pSpace buffer, so it may be safely freed here. */
6874 sqlite3PageFree(pFree);
6875 }
6876
danielk19774dbaa892009-06-16 16:50:22 +00006877 /* The pSpace buffer will be freed after the next call to
6878 ** balance_nonroot(), or just before this function returns, whichever
6879 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006880 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006881 }
6882 }
6883
6884 pPage->nOverflow = 0;
6885
6886 /* The next iteration of the do-loop balances the parent page. */
6887 releasePage(pPage);
6888 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006889 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006890 }while( rc==SQLITE_OK );
6891
6892 if( pFree ){
6893 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006894 }
6895 return rc;
6896}
6897
drhf74b8d92002-09-01 23:20:45 +00006898
6899/*
drh3b7511c2001-05-26 13:15:44 +00006900** Insert a new record into the BTree. The key is given by (pKey,nKey)
6901** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006902** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006903** is left pointing at a random location.
6904**
6905** For an INTKEY table, only the nKey value of the key is used. pKey is
6906** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006907**
6908** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006909** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006910** been performed. seekResult is the search result returned (a negative
6911** number if pCur points at an entry that is smaller than (pKey, nKey), or
6912** a positive value if pCur points at an etry that is larger than
6913** (pKey, nKey)).
6914**
drh3e9ca092009-09-08 01:14:48 +00006915** If the seekResult parameter is non-zero, then the caller guarantees that
6916** cursor pCur is pointing at the existing copy of a row that is to be
6917** overwritten. If the seekResult parameter is 0, then cursor pCur may
6918** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006919** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006920*/
drh3aac2dd2004-04-26 14:10:20 +00006921int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006922 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006923 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006924 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006925 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006926 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006927 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006928){
drh3b7511c2001-05-26 13:15:44 +00006929 int rc;
drh3e9ca092009-09-08 01:14:48 +00006930 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006931 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006932 int idx;
drh3b7511c2001-05-26 13:15:44 +00006933 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006934 Btree *p = pCur->pBtree;
6935 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006936 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006937 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006938
drh98add2e2009-07-20 17:11:49 +00006939 if( pCur->eState==CURSOR_FAULT ){
6940 assert( pCur->skipNext!=SQLITE_OK );
6941 return pCur->skipNext;
6942 }
6943
drh1fee73e2007-08-29 04:00:57 +00006944 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006945 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6946 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006947 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6948
danielk197731d31b82009-07-13 13:18:07 +00006949 /* Assert that the caller has been consistent. If this cursor was opened
6950 ** expecting an index b-tree, then the caller should be inserting blob
6951 ** keys with no associated data. If the cursor was opened expecting an
6952 ** intkey table, the caller should be inserting integer keys with a
6953 ** blob of associated data. */
6954 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6955
danielk19779c3acf32009-05-02 07:36:49 +00006956 /* Save the positions of any other cursors open on this table.
6957 **
danielk19773509a652009-07-06 18:56:13 +00006958 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006959 ** example, when inserting data into a table with auto-generated integer
6960 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6961 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006962 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006963 ** that the cursor is already where it needs to be and returns without
6964 ** doing any work. To avoid thwarting these optimizations, it is important
6965 ** not to clear the cursor here.
6966 */
drh4c301aa2009-07-15 17:25:45 +00006967 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6968 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006969
6970 /* If this is an insert into a table b-tree, invalidate any incrblob
6971 ** cursors open on the row being replaced (assuming this is a replace
6972 ** operation - if it is not, the following is a no-op). */
6973 if( pCur->pKeyInfo==0 ){
6974 invalidateIncrblobCursors(p, nKey, 0);
6975 }
6976
drh4c301aa2009-07-15 17:25:45 +00006977 if( !loc ){
6978 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6979 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006980 }
danielk1977b980d2212009-06-22 18:03:51 +00006981 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006982
danielk197771d5d2c2008-09-29 11:49:47 +00006983 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006984 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006985 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006986
drh3a4c1412004-05-09 20:40:11 +00006987 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6988 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6989 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006990 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006991 allocateTempSpace(pBt);
6992 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006993 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006994 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006995 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006996 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006997 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006998 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006999 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007000 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007001 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007002 rc = sqlite3PagerWrite(pPage->pDbPage);
7003 if( rc ){
7004 goto end_insert;
7005 }
danielk197771d5d2c2008-09-29 11:49:47 +00007006 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007007 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007008 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007009 }
drh43605152004-05-29 21:46:49 +00007010 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007011 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007012 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007013 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007014 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007015 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007016 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007017 }else{
drh4b70f112004-05-02 21:12:19 +00007018 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007019 }
drh98add2e2009-07-20 17:11:49 +00007020 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007021 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007022
mistachkin48864df2013-03-21 21:20:32 +00007023 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007024 ** to redistribute the cells within the tree. Since balance() may move
7025 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7026 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007027 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007028 ** Previous versions of SQLite called moveToRoot() to move the cursor
7029 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007030 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7031 ** set the cursor state to "invalid". This makes common insert operations
7032 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007033 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007034 ** There is a subtle but important optimization here too. When inserting
7035 ** multiple records into an intkey b-tree using a single cursor (as can
7036 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7037 ** is advantageous to leave the cursor pointing to the last entry in
7038 ** the b-tree if possible. If the cursor is left pointing to the last
7039 ** entry in the table, and the next row inserted has an integer key
7040 ** larger than the largest existing key, it is possible to insert the
7041 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007042 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007043 pCur->info.nSize = 0;
7044 pCur->validNKey = 0;
7045 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007046 rc = balance(pCur);
7047
7048 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007049 ** fails. Internal data structure corruption will result otherwise.
7050 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7051 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007052 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007053 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007054 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007055 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007056
drh2e38c322004-09-03 18:38:44 +00007057end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007058 return rc;
7059}
7060
7061/*
drh4b70f112004-05-02 21:12:19 +00007062** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007063** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007064*/
drh3aac2dd2004-04-26 14:10:20 +00007065int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007066 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007067 BtShared *pBt = p->pBt;
7068 int rc; /* Return code */
7069 MemPage *pPage; /* Page to delete cell from */
7070 unsigned char *pCell; /* Pointer to cell to delete */
7071 int iCellIdx; /* Index of cell to delete */
7072 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007073
drh1fee73e2007-08-29 04:00:57 +00007074 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007075 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007076 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007077 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007078 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7079 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7080
danielk19774dbaa892009-06-16 16:50:22 +00007081 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7082 || NEVER(pCur->eState!=CURSOR_VALID)
7083 ){
7084 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007085 }
danielk1977da184232006-01-05 11:34:32 +00007086
danielk19774dbaa892009-06-16 16:50:22 +00007087 iCellDepth = pCur->iPage;
7088 iCellIdx = pCur->aiIdx[iCellDepth];
7089 pPage = pCur->apPage[iCellDepth];
7090 pCell = findCell(pPage, iCellIdx);
7091
7092 /* If the page containing the entry to delete is not a leaf page, move
7093 ** the cursor to the largest entry in the tree that is smaller than
7094 ** the entry being deleted. This cell will replace the cell being deleted
7095 ** from the internal node. The 'previous' entry is used for this instead
7096 ** of the 'next' entry, as the previous entry is always a part of the
7097 ** sub-tree headed by the child page of the cell being deleted. This makes
7098 ** balancing the tree following the delete operation easier. */
7099 if( !pPage->leaf ){
7100 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007101 rc = sqlite3BtreePrevious(pCur, &notUsed);
7102 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007103 }
7104
7105 /* Save the positions of any other cursors open on this table before
7106 ** making any modifications. Make the page containing the entry to be
7107 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007108 ** entry and finally remove the cell itself from within the page.
7109 */
7110 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7111 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007112
7113 /* If this is a delete operation to remove a row from a table b-tree,
7114 ** invalidate any incrblob cursors open on the row being deleted. */
7115 if( pCur->pKeyInfo==0 ){
7116 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7117 }
7118
drha4ec1d42009-07-11 13:13:11 +00007119 rc = sqlite3PagerWrite(pPage->pDbPage);
7120 if( rc ) return rc;
7121 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007122 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007123 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007124
danielk19774dbaa892009-06-16 16:50:22 +00007125 /* If the cell deleted was not located on a leaf page, then the cursor
7126 ** is currently pointing to the largest entry in the sub-tree headed
7127 ** by the child-page of the cell that was just deleted from an internal
7128 ** node. The cell from the leaf node needs to be moved to the internal
7129 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007130 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007131 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7132 int nCell;
7133 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7134 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007135
danielk19774dbaa892009-06-16 16:50:22 +00007136 pCell = findCell(pLeaf, pLeaf->nCell-1);
7137 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007138 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007139
danielk19774dbaa892009-06-16 16:50:22 +00007140 allocateTempSpace(pBt);
7141 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007142
drha4ec1d42009-07-11 13:13:11 +00007143 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007144 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7145 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007146 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007147 }
danielk19774dbaa892009-06-16 16:50:22 +00007148
7149 /* Balance the tree. If the entry deleted was located on a leaf page,
7150 ** then the cursor still points to that page. In this case the first
7151 ** call to balance() repairs the tree, and the if(...) condition is
7152 ** never true.
7153 **
7154 ** Otherwise, if the entry deleted was on an internal node page, then
7155 ** pCur is pointing to the leaf page from which a cell was removed to
7156 ** replace the cell deleted from the internal node. This is slightly
7157 ** tricky as the leaf node may be underfull, and the internal node may
7158 ** be either under or overfull. In this case run the balancing algorithm
7159 ** on the leaf node first. If the balance proceeds far enough up the
7160 ** tree that we can be sure that any problem in the internal node has
7161 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7162 ** walk the cursor up the tree to the internal node and balance it as
7163 ** well. */
7164 rc = balance(pCur);
7165 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7166 while( pCur->iPage>iCellDepth ){
7167 releasePage(pCur->apPage[pCur->iPage--]);
7168 }
7169 rc = balance(pCur);
7170 }
7171
danielk19776b456a22005-03-21 04:04:02 +00007172 if( rc==SQLITE_OK ){
7173 moveToRoot(pCur);
7174 }
drh5e2f8b92001-05-28 00:41:15 +00007175 return rc;
drh3b7511c2001-05-26 13:15:44 +00007176}
drh8b2f49b2001-06-08 00:21:52 +00007177
7178/*
drhc6b52df2002-01-04 03:09:29 +00007179** Create a new BTree table. Write into *piTable the page
7180** number for the root page of the new table.
7181**
drhab01f612004-05-22 02:55:23 +00007182** The type of type is determined by the flags parameter. Only the
7183** following values of flags are currently in use. Other values for
7184** flags might not work:
7185**
7186** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7187** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007188*/
drhd4187c72010-08-30 22:15:45 +00007189static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007190 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007191 MemPage *pRoot;
7192 Pgno pgnoRoot;
7193 int rc;
drhd4187c72010-08-30 22:15:45 +00007194 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007195
drh1fee73e2007-08-29 04:00:57 +00007196 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007197 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007198 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007199
danielk1977003ba062004-11-04 02:57:33 +00007200#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007201 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007202 if( rc ){
7203 return rc;
7204 }
danielk1977003ba062004-11-04 02:57:33 +00007205#else
danielk1977687566d2004-11-02 12:56:41 +00007206 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007207 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7208 MemPage *pPageMove; /* The page to move to. */
7209
danielk197720713f32007-05-03 11:43:33 +00007210 /* Creating a new table may probably require moving an existing database
7211 ** to make room for the new tables root page. In case this page turns
7212 ** out to be an overflow page, delete all overflow page-map caches
7213 ** held by open cursors.
7214 */
danielk197792d4d7a2007-05-04 12:05:56 +00007215 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007216
danielk1977003ba062004-11-04 02:57:33 +00007217 /* Read the value of meta[3] from the database to determine where the
7218 ** root page of the new table should go. meta[3] is the largest root-page
7219 ** created so far, so the new root-page is (meta[3]+1).
7220 */
danielk1977602b4662009-07-02 07:47:33 +00007221 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007222 pgnoRoot++;
7223
danielk1977599fcba2004-11-08 07:13:13 +00007224 /* The new root-page may not be allocated on a pointer-map page, or the
7225 ** PENDING_BYTE page.
7226 */
drh72190432008-01-31 14:54:43 +00007227 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007228 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007229 pgnoRoot++;
7230 }
7231 assert( pgnoRoot>=3 );
7232
7233 /* Allocate a page. The page that currently resides at pgnoRoot will
7234 ** be moved to the allocated page (unless the allocated page happens
7235 ** to reside at pgnoRoot).
7236 */
dan51f0b6d2013-02-22 20:16:34 +00007237 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007238 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007239 return rc;
7240 }
danielk1977003ba062004-11-04 02:57:33 +00007241
7242 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007243 /* pgnoRoot is the page that will be used for the root-page of
7244 ** the new table (assuming an error did not occur). But we were
7245 ** allocated pgnoMove. If required (i.e. if it was not allocated
7246 ** by extending the file), the current page at position pgnoMove
7247 ** is already journaled.
7248 */
drheeb844a2009-08-08 18:01:07 +00007249 u8 eType = 0;
7250 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007251
danf7679ad2013-04-03 11:38:36 +00007252 /* Save the positions of any open cursors. This is required in
7253 ** case they are holding a reference to an xFetch reference
7254 ** corresponding to page pgnoRoot. */
7255 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007256 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007257 if( rc!=SQLITE_OK ){
7258 return rc;
7259 }
danielk1977f35843b2007-04-07 15:03:17 +00007260
7261 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007262 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007263 if( rc!=SQLITE_OK ){
7264 return rc;
7265 }
7266 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007267 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7268 rc = SQLITE_CORRUPT_BKPT;
7269 }
7270 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007271 releasePage(pRoot);
7272 return rc;
7273 }
drhccae6022005-02-26 17:31:26 +00007274 assert( eType!=PTRMAP_ROOTPAGE );
7275 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007276 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007277 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007278
7279 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007280 if( rc!=SQLITE_OK ){
7281 return rc;
7282 }
drhb00fc3b2013-08-21 23:42:32 +00007283 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007284 if( rc!=SQLITE_OK ){
7285 return rc;
7286 }
danielk19773b8a05f2007-03-19 17:44:26 +00007287 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007288 if( rc!=SQLITE_OK ){
7289 releasePage(pRoot);
7290 return rc;
7291 }
7292 }else{
7293 pRoot = pPageMove;
7294 }
7295
danielk197742741be2005-01-08 12:42:39 +00007296 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007297 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007298 if( rc ){
7299 releasePage(pRoot);
7300 return rc;
7301 }
drhbf592832010-03-30 15:51:12 +00007302
7303 /* When the new root page was allocated, page 1 was made writable in
7304 ** order either to increase the database filesize, or to decrement the
7305 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7306 */
7307 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007308 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007309 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007310 releasePage(pRoot);
7311 return rc;
7312 }
danielk197742741be2005-01-08 12:42:39 +00007313
danielk1977003ba062004-11-04 02:57:33 +00007314 }else{
drh4f0c5872007-03-26 22:05:01 +00007315 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007316 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007317 }
7318#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007319 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007320 if( createTabFlags & BTREE_INTKEY ){
7321 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7322 }else{
7323 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7324 }
7325 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007326 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007327 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007328 *piTable = (int)pgnoRoot;
7329 return SQLITE_OK;
7330}
drhd677b3d2007-08-20 22:48:41 +00007331int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7332 int rc;
7333 sqlite3BtreeEnter(p);
7334 rc = btreeCreateTable(p, piTable, flags);
7335 sqlite3BtreeLeave(p);
7336 return rc;
7337}
drh8b2f49b2001-06-08 00:21:52 +00007338
7339/*
7340** Erase the given database page and all its children. Return
7341** the page to the freelist.
7342*/
drh4b70f112004-05-02 21:12:19 +00007343static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007344 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007345 Pgno pgno, /* Page number to clear */
7346 int freePageFlag, /* Deallocate page if true */
7347 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007348){
danielk1977146ba992009-07-22 14:08:13 +00007349 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007350 int rc;
drh4b70f112004-05-02 21:12:19 +00007351 unsigned char *pCell;
7352 int i;
dan8ce71842014-01-14 20:14:09 +00007353 int hdr;
drh8b2f49b2001-06-08 00:21:52 +00007354
drh1fee73e2007-08-29 04:00:57 +00007355 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007356 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007357 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007358 }
7359
dan11dcd112013-03-15 18:29:18 +00007360 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007361 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007362 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007363 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007364 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007365 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007366 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007367 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007368 }
drh4b70f112004-05-02 21:12:19 +00007369 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007370 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007371 }
drha34b6762004-05-07 13:30:42 +00007372 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007373 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007374 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007375 }else if( pnChange ){
7376 assert( pPage->intKey );
7377 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007378 }
7379 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007380 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007381 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007382 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007383 }
danielk19776b456a22005-03-21 04:04:02 +00007384
7385cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007386 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007387 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007388}
7389
7390/*
drhab01f612004-05-22 02:55:23 +00007391** Delete all information from a single table in the database. iTable is
7392** the page number of the root of the table. After this routine returns,
7393** the root page is empty, but still exists.
7394**
7395** This routine will fail with SQLITE_LOCKED if there are any open
7396** read cursors on the table. Open write cursors are moved to the
7397** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007398**
7399** If pnChange is not NULL, then table iTable must be an intkey table. The
7400** integer value pointed to by pnChange is incremented by the number of
7401** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007402*/
danielk1977c7af4842008-10-27 13:59:33 +00007403int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007404 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007405 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007406 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007407 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007408
drhc046e3e2009-07-15 11:26:44 +00007409 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007410
drhc046e3e2009-07-15 11:26:44 +00007411 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007412 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7413 ** is the root of a table b-tree - if it is not, the following call is
7414 ** a no-op). */
7415 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007416 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007417 }
drhd677b3d2007-08-20 22:48:41 +00007418 sqlite3BtreeLeave(p);
7419 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007420}
7421
7422/*
7423** Erase all information in a table and add the root of the table to
7424** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007425** page 1) is never added to the freelist.
7426**
7427** This routine will fail with SQLITE_LOCKED if there are any open
7428** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007429**
7430** If AUTOVACUUM is enabled and the page at iTable is not the last
7431** root page in the database file, then the last root page
7432** in the database file is moved into the slot formerly occupied by
7433** iTable and that last slot formerly occupied by the last root page
7434** is added to the freelist instead of iTable. In this say, all
7435** root pages are kept at the beginning of the database file, which
7436** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7437** page number that used to be the last root page in the file before
7438** the move. If no page gets moved, *piMoved is set to 0.
7439** The last root page is recorded in meta[3] and the value of
7440** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007441*/
danielk197789d40042008-11-17 14:20:56 +00007442static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007443 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007444 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007445 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007446
drh1fee73e2007-08-29 04:00:57 +00007447 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007448 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007449
danielk1977e6efa742004-11-10 11:55:10 +00007450 /* It is illegal to drop a table if any cursors are open on the
7451 ** database. This is because in auto-vacuum mode the backend may
7452 ** need to move another root-page to fill a gap left by the deleted
7453 ** root page. If an open cursor was using this page a problem would
7454 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007455 **
7456 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007457 */
drhc046e3e2009-07-15 11:26:44 +00007458 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007459 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7460 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007461 }
danielk1977a0bf2652004-11-04 14:30:04 +00007462
drhb00fc3b2013-08-21 23:42:32 +00007463 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007464 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007465 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007466 if( rc ){
7467 releasePage(pPage);
7468 return rc;
7469 }
danielk1977a0bf2652004-11-04 14:30:04 +00007470
drh205f48e2004-11-05 00:43:11 +00007471 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007472
drh4b70f112004-05-02 21:12:19 +00007473 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007474#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007475 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007476 releasePage(pPage);
7477#else
7478 if( pBt->autoVacuum ){
7479 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007480 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007481
7482 if( iTable==maxRootPgno ){
7483 /* If the table being dropped is the table with the largest root-page
7484 ** number in the database, put the root page on the free list.
7485 */
drhc314dc72009-07-21 11:52:34 +00007486 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007487 releasePage(pPage);
7488 if( rc!=SQLITE_OK ){
7489 return rc;
7490 }
7491 }else{
7492 /* The table being dropped does not have the largest root-page
7493 ** number in the database. So move the page that does into the
7494 ** gap left by the deleted root-page.
7495 */
7496 MemPage *pMove;
7497 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007498 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007499 if( rc!=SQLITE_OK ){
7500 return rc;
7501 }
danielk19774c999992008-07-16 18:17:55 +00007502 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007503 releasePage(pMove);
7504 if( rc!=SQLITE_OK ){
7505 return rc;
7506 }
drhfe3313f2009-07-21 19:02:20 +00007507 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007508 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007509 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007510 releasePage(pMove);
7511 if( rc!=SQLITE_OK ){
7512 return rc;
7513 }
7514 *piMoved = maxRootPgno;
7515 }
7516
danielk1977599fcba2004-11-08 07:13:13 +00007517 /* Set the new 'max-root-page' value in the database header. This
7518 ** is the old value less one, less one more if that happens to
7519 ** be a root-page number, less one again if that is the
7520 ** PENDING_BYTE_PAGE.
7521 */
danielk197787a6e732004-11-05 12:58:25 +00007522 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007523 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7524 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007525 maxRootPgno--;
7526 }
danielk1977599fcba2004-11-08 07:13:13 +00007527 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7528
danielk1977aef0bf62005-12-30 16:28:01 +00007529 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007530 }else{
drhc314dc72009-07-21 11:52:34 +00007531 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007532 releasePage(pPage);
7533 }
7534#endif
drh2aa679f2001-06-25 02:11:07 +00007535 }else{
drhc046e3e2009-07-15 11:26:44 +00007536 /* If sqlite3BtreeDropTable was called on page 1.
7537 ** This really never should happen except in a corrupt
7538 ** database.
7539 */
drha34b6762004-05-07 13:30:42 +00007540 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007541 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007542 }
drh8b2f49b2001-06-08 00:21:52 +00007543 return rc;
7544}
drhd677b3d2007-08-20 22:48:41 +00007545int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7546 int rc;
7547 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007548 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007549 sqlite3BtreeLeave(p);
7550 return rc;
7551}
drh8b2f49b2001-06-08 00:21:52 +00007552
drh001bbcb2003-03-19 03:14:00 +00007553
drh8b2f49b2001-06-08 00:21:52 +00007554/*
danielk1977602b4662009-07-02 07:47:33 +00007555** This function may only be called if the b-tree connection already
7556** has a read or write transaction open on the database.
7557**
drh23e11ca2004-05-04 17:27:28 +00007558** Read the meta-information out of a database file. Meta[0]
7559** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007560** through meta[15] are available for use by higher layers. Meta[0]
7561** is read-only, the others are read/write.
7562**
7563** The schema layer numbers meta values differently. At the schema
7564** layer (and the SetCookie and ReadCookie opcodes) the number of
7565** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007566*/
danielk1977602b4662009-07-02 07:47:33 +00007567void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007568 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007569
drhd677b3d2007-08-20 22:48:41 +00007570 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007571 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007572 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007573 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007574 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007575
danielk1977602b4662009-07-02 07:47:33 +00007576 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007577
danielk1977602b4662009-07-02 07:47:33 +00007578 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7579 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007580#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007581 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7582 pBt->btsFlags |= BTS_READ_ONLY;
7583 }
danielk1977003ba062004-11-04 02:57:33 +00007584#endif
drhae157872004-08-14 19:20:09 +00007585
drhd677b3d2007-08-20 22:48:41 +00007586 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007587}
7588
7589/*
drh23e11ca2004-05-04 17:27:28 +00007590** Write meta-information back into the database. Meta[0] is
7591** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007592*/
danielk1977aef0bf62005-12-30 16:28:01 +00007593int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7594 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007595 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007596 int rc;
drh23e11ca2004-05-04 17:27:28 +00007597 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007598 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007599 assert( p->inTrans==TRANS_WRITE );
7600 assert( pBt->pPage1!=0 );
7601 pP1 = pBt->pPage1->aData;
7602 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7603 if( rc==SQLITE_OK ){
7604 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007605#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007606 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007607 assert( pBt->autoVacuum || iMeta==0 );
7608 assert( iMeta==0 || iMeta==1 );
7609 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007610 }
drh64022502009-01-09 14:11:04 +00007611#endif
drh5df72a52002-06-06 23:16:05 +00007612 }
drhd677b3d2007-08-20 22:48:41 +00007613 sqlite3BtreeLeave(p);
7614 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007615}
drh8c42ca92001-06-22 19:15:00 +00007616
danielk1977a5533162009-02-24 10:01:51 +00007617#ifndef SQLITE_OMIT_BTREECOUNT
7618/*
7619** The first argument, pCur, is a cursor opened on some b-tree. Count the
7620** number of entries in the b-tree and write the result to *pnEntry.
7621**
7622** SQLITE_OK is returned if the operation is successfully executed.
7623** Otherwise, if an error is encountered (i.e. an IO error or database
7624** corruption) an SQLite error code is returned.
7625*/
7626int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7627 i64 nEntry = 0; /* Value to return in *pnEntry */
7628 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007629
7630 if( pCur->pgnoRoot==0 ){
7631 *pnEntry = 0;
7632 return SQLITE_OK;
7633 }
danielk1977a5533162009-02-24 10:01:51 +00007634 rc = moveToRoot(pCur);
7635
7636 /* Unless an error occurs, the following loop runs one iteration for each
7637 ** page in the B-Tree structure (not including overflow pages).
7638 */
7639 while( rc==SQLITE_OK ){
7640 int iIdx; /* Index of child node in parent */
7641 MemPage *pPage; /* Current page of the b-tree */
7642
7643 /* If this is a leaf page or the tree is not an int-key tree, then
7644 ** this page contains countable entries. Increment the entry counter
7645 ** accordingly.
7646 */
7647 pPage = pCur->apPage[pCur->iPage];
7648 if( pPage->leaf || !pPage->intKey ){
7649 nEntry += pPage->nCell;
7650 }
7651
7652 /* pPage is a leaf node. This loop navigates the cursor so that it
7653 ** points to the first interior cell that it points to the parent of
7654 ** the next page in the tree that has not yet been visited. The
7655 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7656 ** of the page, or to the number of cells in the page if the next page
7657 ** to visit is the right-child of its parent.
7658 **
7659 ** If all pages in the tree have been visited, return SQLITE_OK to the
7660 ** caller.
7661 */
7662 if( pPage->leaf ){
7663 do {
7664 if( pCur->iPage==0 ){
7665 /* All pages of the b-tree have been visited. Return successfully. */
7666 *pnEntry = nEntry;
7667 return SQLITE_OK;
7668 }
danielk197730548662009-07-09 05:07:37 +00007669 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007670 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7671
7672 pCur->aiIdx[pCur->iPage]++;
7673 pPage = pCur->apPage[pCur->iPage];
7674 }
7675
7676 /* Descend to the child node of the cell that the cursor currently
7677 ** points at. This is the right-child if (iIdx==pPage->nCell).
7678 */
7679 iIdx = pCur->aiIdx[pCur->iPage];
7680 if( iIdx==pPage->nCell ){
7681 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7682 }else{
7683 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7684 }
7685 }
7686
shanebe217792009-03-05 04:20:31 +00007687 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007688 return rc;
7689}
7690#endif
drhdd793422001-06-28 01:54:48 +00007691
drhdd793422001-06-28 01:54:48 +00007692/*
drh5eddca62001-06-30 21:53:53 +00007693** Return the pager associated with a BTree. This routine is used for
7694** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007695*/
danielk1977aef0bf62005-12-30 16:28:01 +00007696Pager *sqlite3BtreePager(Btree *p){
7697 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007698}
drh5eddca62001-06-30 21:53:53 +00007699
drhb7f91642004-10-31 02:22:47 +00007700#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007701/*
7702** Append a message to the error message string.
7703*/
drh2e38c322004-09-03 18:38:44 +00007704static void checkAppendMsg(
7705 IntegrityCk *pCheck,
7706 char *zMsg1,
7707 const char *zFormat,
7708 ...
7709){
7710 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007711 if( !pCheck->mxErr ) return;
7712 pCheck->mxErr--;
7713 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007714 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007715 if( pCheck->errMsg.nChar ){
7716 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007717 }
drhf089aa42008-07-08 19:34:06 +00007718 if( zMsg1 ){
drha6353a32013-12-09 19:03:26 +00007719 sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
drhf089aa42008-07-08 19:34:06 +00007720 }
7721 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7722 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007723 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007724 pCheck->mallocFailed = 1;
7725 }
drh5eddca62001-06-30 21:53:53 +00007726}
drhb7f91642004-10-31 02:22:47 +00007727#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007728
drhb7f91642004-10-31 02:22:47 +00007729#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007730
7731/*
7732** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7733** corresponds to page iPg is already set.
7734*/
7735static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7736 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7737 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7738}
7739
7740/*
7741** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7742*/
7743static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7744 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7745 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7746}
7747
7748
drh5eddca62001-06-30 21:53:53 +00007749/*
7750** Add 1 to the reference count for page iPage. If this is the second
7751** reference to the page, add an error message to pCheck->zErrMsg.
7752** Return 1 if there are 2 ore more references to the page and 0 if
7753** if this is the first reference to the page.
7754**
7755** Also check that the page number is in bounds.
7756*/
danielk197789d40042008-11-17 14:20:56 +00007757static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007758 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007759 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007760 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007761 return 1;
7762 }
dan1235bb12012-04-03 17:43:28 +00007763 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007764 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007765 return 1;
7766 }
dan1235bb12012-04-03 17:43:28 +00007767 setPageReferenced(pCheck, iPage);
7768 return 0;
drh5eddca62001-06-30 21:53:53 +00007769}
7770
danielk1977afcdd022004-10-31 16:25:42 +00007771#ifndef SQLITE_OMIT_AUTOVACUUM
7772/*
7773** Check that the entry in the pointer-map for page iChild maps to
7774** page iParent, pointer type ptrType. If not, append an error message
7775** to pCheck.
7776*/
7777static void checkPtrmap(
7778 IntegrityCk *pCheck, /* Integrity check context */
7779 Pgno iChild, /* Child page number */
7780 u8 eType, /* Expected pointer map type */
7781 Pgno iParent, /* Expected pointer map parent page number */
7782 char *zContext /* Context description (used for error msg) */
7783){
7784 int rc;
7785 u8 ePtrmapType;
7786 Pgno iPtrmapParent;
7787
7788 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7789 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007790 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007791 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7792 return;
7793 }
7794
7795 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7796 checkAppendMsg(pCheck, zContext,
7797 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7798 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7799 }
7800}
7801#endif
7802
drh5eddca62001-06-30 21:53:53 +00007803/*
7804** Check the integrity of the freelist or of an overflow page list.
7805** Verify that the number of pages on the list is N.
7806*/
drh30e58752002-03-02 20:41:57 +00007807static void checkList(
7808 IntegrityCk *pCheck, /* Integrity checking context */
7809 int isFreeList, /* True for a freelist. False for overflow page list */
7810 int iPage, /* Page number for first page in the list */
7811 int N, /* Expected number of pages in the list */
7812 char *zContext /* Context for error messages */
7813){
7814 int i;
drh3a4c1412004-05-09 20:40:11 +00007815 int expected = N;
7816 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007817 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007818 DbPage *pOvflPage;
7819 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007820 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007821 checkAppendMsg(pCheck, zContext,
7822 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007823 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007824 break;
7825 }
7826 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007827 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007828 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007829 break;
7830 }
danielk19773b8a05f2007-03-19 17:44:26 +00007831 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007832 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007833 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007834#ifndef SQLITE_OMIT_AUTOVACUUM
7835 if( pCheck->pBt->autoVacuum ){
7836 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7837 }
7838#endif
drh43b18e12010-08-17 19:40:08 +00007839 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007840 checkAppendMsg(pCheck, zContext,
7841 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007842 N--;
7843 }else{
7844 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007845 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007846#ifndef SQLITE_OMIT_AUTOVACUUM
7847 if( pCheck->pBt->autoVacuum ){
7848 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7849 }
7850#endif
7851 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007852 }
7853 N -= n;
drh30e58752002-03-02 20:41:57 +00007854 }
drh30e58752002-03-02 20:41:57 +00007855 }
danielk1977afcdd022004-10-31 16:25:42 +00007856#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007857 else{
7858 /* If this database supports auto-vacuum and iPage is not the last
7859 ** page in this overflow list, check that the pointer-map entry for
7860 ** the following page matches iPage.
7861 */
7862 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007863 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007864 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7865 }
danielk1977afcdd022004-10-31 16:25:42 +00007866 }
7867#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007868 iPage = get4byte(pOvflData);
7869 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007870 }
7871}
drhb7f91642004-10-31 02:22:47 +00007872#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007873
drhb7f91642004-10-31 02:22:47 +00007874#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007875/*
7876** Do various sanity checks on a single page of a tree. Return
7877** the tree depth. Root pages return 0. Parents of root pages
7878** return 1, and so forth.
7879**
7880** These checks are done:
7881**
7882** 1. Make sure that cells and freeblocks do not overlap
7883** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007884** NO 2. Make sure cell keys are in order.
7885** NO 3. Make sure no key is less than or equal to zLowerBound.
7886** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007887** 5. Check the integrity of overflow pages.
7888** 6. Recursively call checkTreePage on all children.
7889** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007890** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007891** the root of the tree.
7892*/
7893static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007894 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007895 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007896 char *zParentContext, /* Parent context */
7897 i64 *pnParentMinKey,
7898 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007899){
7900 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007901 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007902 int hdr, cellStart;
7903 int nCell;
drhda200cc2004-05-09 11:51:38 +00007904 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007905 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007906 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007907 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007908 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007909 i64 nMinKey = 0;
7910 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007911
drh5bb3eb92007-05-04 13:15:55 +00007912 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007913
drh5eddca62001-06-30 21:53:53 +00007914 /* Check that the page exists
7915 */
drhd9cb6ac2005-10-20 07:28:17 +00007916 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007917 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007918 if( iPage==0 ) return 0;
7919 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007920 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007921 checkAppendMsg(pCheck, zContext,
7922 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007923 return 0;
7924 }
danielk197793caf5a2009-07-11 06:55:33 +00007925
7926 /* Clear MemPage.isInit to make sure the corruption detection code in
7927 ** btreeInitPage() is executed. */
7928 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007929 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007930 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007931 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007932 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007933 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007934 return 0;
7935 }
7936
7937 /* Check out all the cells.
7938 */
7939 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007940 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007941 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007942 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007943 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007944
7945 /* Check payload overflow pages
7946 */
drh5bb3eb92007-05-04 13:15:55 +00007947 sqlite3_snprintf(sizeof(zContext), zContext,
7948 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007949 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007950 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007951 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007952 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007953 /* For intKey pages, check that the keys are in order.
7954 */
7955 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7956 else{
7957 if( info.nKey <= nMaxKey ){
7958 checkAppendMsg(pCheck, zContext,
7959 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7960 }
7961 nMaxKey = info.nKey;
7962 }
drh72365832007-03-06 15:53:44 +00007963 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007964 if( (sz>info.nLocal)
7965 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7966 ){
drhb6f41482004-05-14 01:58:11 +00007967 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007968 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7969#ifndef SQLITE_OMIT_AUTOVACUUM
7970 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007971 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007972 }
7973#endif
7974 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007975 }
7976
7977 /* Check sanity of left child page.
7978 */
drhda200cc2004-05-09 11:51:38 +00007979 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007980 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007981#ifndef SQLITE_OMIT_AUTOVACUUM
7982 if( pBt->autoVacuum ){
7983 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7984 }
7985#endif
shaneh195475d2010-02-19 04:28:08 +00007986 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007987 if( i>0 && d2!=depth ){
7988 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7989 }
7990 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007991 }
drh5eddca62001-06-30 21:53:53 +00007992 }
shaneh195475d2010-02-19 04:28:08 +00007993
drhda200cc2004-05-09 11:51:38 +00007994 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007995 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007996 sqlite3_snprintf(sizeof(zContext), zContext,
7997 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007998#ifndef SQLITE_OMIT_AUTOVACUUM
7999 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008000 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008001 }
8002#endif
shaneh195475d2010-02-19 04:28:08 +00008003 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008004 }
drh5eddca62001-06-30 21:53:53 +00008005
shaneh195475d2010-02-19 04:28:08 +00008006 /* For intKey leaf pages, check that the min/max keys are in order
8007 ** with any left/parent/right pages.
8008 */
8009 if( pPage->leaf && pPage->intKey ){
8010 /* if we are a left child page */
8011 if( pnParentMinKey ){
8012 /* if we are the left most child page */
8013 if( !pnParentMaxKey ){
8014 if( nMaxKey > *pnParentMinKey ){
8015 checkAppendMsg(pCheck, zContext,
8016 "Rowid %lld out of order (max larger than parent min of %lld)",
8017 nMaxKey, *pnParentMinKey);
8018 }
8019 }else{
8020 if( nMinKey <= *pnParentMinKey ){
8021 checkAppendMsg(pCheck, zContext,
8022 "Rowid %lld out of order (min less than parent min of %lld)",
8023 nMinKey, *pnParentMinKey);
8024 }
8025 if( nMaxKey > *pnParentMaxKey ){
8026 checkAppendMsg(pCheck, zContext,
8027 "Rowid %lld out of order (max larger than parent max of %lld)",
8028 nMaxKey, *pnParentMaxKey);
8029 }
8030 *pnParentMinKey = nMaxKey;
8031 }
8032 /* else if we're a right child page */
8033 } else if( pnParentMaxKey ){
8034 if( nMinKey <= *pnParentMaxKey ){
8035 checkAppendMsg(pCheck, zContext,
8036 "Rowid %lld out of order (min less than parent max of %lld)",
8037 nMinKey, *pnParentMaxKey);
8038 }
8039 }
8040 }
8041
drh5eddca62001-06-30 21:53:53 +00008042 /* Check for complete coverage of the page
8043 */
drhda200cc2004-05-09 11:51:38 +00008044 data = pPage->aData;
8045 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008046 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008047 if( hit==0 ){
8048 pCheck->mallocFailed = 1;
8049 }else{
drh5d433ce2010-08-14 16:02:52 +00008050 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008051 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008052 memset(hit+contentOffset, 0, usableSize-contentOffset);
8053 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008054 nCell = get2byte(&data[hdr+3]);
8055 cellStart = hdr + 12 - 4*pPage->leaf;
8056 for(i=0; i<nCell; i++){
8057 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008058 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008059 int j;
drh8c2bbb62009-07-10 02:52:20 +00008060 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008061 size = cellSizePtr(pPage, &data[pc]);
8062 }
drh43b18e12010-08-17 19:40:08 +00008063 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008064 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008065 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008066 }else{
8067 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8068 }
drh2e38c322004-09-03 18:38:44 +00008069 }
drh8c2bbb62009-07-10 02:52:20 +00008070 i = get2byte(&data[hdr+1]);
8071 while( i>0 ){
8072 int size, j;
8073 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8074 size = get2byte(&data[i+2]);
8075 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8076 for(j=i+size-1; j>=i; j--) hit[j]++;
8077 j = get2byte(&data[i]);
8078 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8079 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8080 i = j;
drh2e38c322004-09-03 18:38:44 +00008081 }
8082 for(i=cnt=0; i<usableSize; i++){
8083 if( hit[i]==0 ){
8084 cnt++;
8085 }else if( hit[i]>1 ){
8086 checkAppendMsg(pCheck, 0,
8087 "Multiple uses for byte %d of page %d", i, iPage);
8088 break;
8089 }
8090 }
8091 if( cnt!=data[hdr+7] ){
8092 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008093 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008094 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008095 }
8096 }
drh8c2bbb62009-07-10 02:52:20 +00008097 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008098 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008099 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008100}
drhb7f91642004-10-31 02:22:47 +00008101#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008102
drhb7f91642004-10-31 02:22:47 +00008103#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008104/*
8105** This routine does a complete check of the given BTree file. aRoot[] is
8106** an array of pages numbers were each page number is the root page of
8107** a table. nRoot is the number of entries in aRoot.
8108**
danielk19773509a652009-07-06 18:56:13 +00008109** A read-only or read-write transaction must be opened before calling
8110** this function.
8111**
drhc890fec2008-08-01 20:10:08 +00008112** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008113** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008114** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008115** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008116*/
drh1dcdbc02007-01-27 02:24:54 +00008117char *sqlite3BtreeIntegrityCheck(
8118 Btree *p, /* The btree to be checked */
8119 int *aRoot, /* An array of root pages numbers for individual trees */
8120 int nRoot, /* Number of entries in aRoot[] */
8121 int mxErr, /* Stop reporting errors after this many */
8122 int *pnErr /* Write number of errors seen to this variable */
8123){
danielk197789d40042008-11-17 14:20:56 +00008124 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008125 int nRef;
drhaaab5722002-02-19 13:39:21 +00008126 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008127 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008128 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008129
drhd677b3d2007-08-20 22:48:41 +00008130 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008131 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008132 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008133 sCheck.pBt = pBt;
8134 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008135 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008136 sCheck.mxErr = mxErr;
8137 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008138 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008139 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008140 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008141 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008142 return 0;
8143 }
dan1235bb12012-04-03 17:43:28 +00008144
8145 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8146 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008147 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008148 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008149 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008150 }
drh42cac6d2004-11-20 20:31:11 +00008151 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008152 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008153 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008154 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008155
8156 /* Check the integrity of the freelist
8157 */
drha34b6762004-05-07 13:30:42 +00008158 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8159 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008160
8161 /* Check all the tables.
8162 */
danielk197789d40042008-11-17 14:20:56 +00008163 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008164 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008165#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008166 if( pBt->autoVacuum && aRoot[i]>1 ){
8167 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8168 }
8169#endif
shaneh195475d2010-02-19 04:28:08 +00008170 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008171 }
8172
8173 /* Make sure every page in the file is referenced
8174 */
drh1dcdbc02007-01-27 02:24:54 +00008175 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008176#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008177 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008178 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008179 }
danielk1977afcdd022004-10-31 16:25:42 +00008180#else
8181 /* If the database supports auto-vacuum, make sure no tables contain
8182 ** references to pointer-map pages.
8183 */
dan1235bb12012-04-03 17:43:28 +00008184 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008185 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008186 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8187 }
dan1235bb12012-04-03 17:43:28 +00008188 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008189 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008190 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8191 }
8192#endif
drh5eddca62001-06-30 21:53:53 +00008193 }
8194
drh64022502009-01-09 14:11:04 +00008195 /* Make sure this analysis did not leave any unref() pages.
8196 ** This is an internal consistency check; an integrity check
8197 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008198 */
drh64022502009-01-09 14:11:04 +00008199 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008200 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008201 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008202 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008203 );
drh5eddca62001-06-30 21:53:53 +00008204 }
8205
8206 /* Clean up and report errors.
8207 */
drhd677b3d2007-08-20 22:48:41 +00008208 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008209 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008210 if( sCheck.mallocFailed ){
8211 sqlite3StrAccumReset(&sCheck.errMsg);
8212 *pnErr = sCheck.nErr+1;
8213 return 0;
8214 }
drh1dcdbc02007-01-27 02:24:54 +00008215 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008216 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8217 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008218}
drhb7f91642004-10-31 02:22:47 +00008219#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008220
drh73509ee2003-04-06 20:44:45 +00008221/*
drhd4e0bb02012-05-27 01:19:04 +00008222** Return the full pathname of the underlying database file. Return
8223** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008224**
8225** The pager filename is invariant as long as the pager is
8226** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008227*/
danielk1977aef0bf62005-12-30 16:28:01 +00008228const char *sqlite3BtreeGetFilename(Btree *p){
8229 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008230 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008231}
8232
8233/*
danielk19775865e3d2004-06-14 06:03:57 +00008234** Return the pathname of the journal file for this database. The return
8235** value of this routine is the same regardless of whether the journal file
8236** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008237**
8238** The pager journal filename is invariant as long as the pager is
8239** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008240*/
danielk1977aef0bf62005-12-30 16:28:01 +00008241const char *sqlite3BtreeGetJournalname(Btree *p){
8242 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008243 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008244}
8245
danielk19771d850a72004-05-31 08:26:49 +00008246/*
8247** Return non-zero if a transaction is active.
8248*/
danielk1977aef0bf62005-12-30 16:28:01 +00008249int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008250 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008251 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008252}
8253
dana550f2d2010-08-02 10:47:05 +00008254#ifndef SQLITE_OMIT_WAL
8255/*
8256** Run a checkpoint on the Btree passed as the first argument.
8257**
8258** Return SQLITE_LOCKED if this or any other connection has an open
8259** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008260**
dancdc1f042010-11-18 12:11:05 +00008261** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008262*/
dancdc1f042010-11-18 12:11:05 +00008263int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008264 int rc = SQLITE_OK;
8265 if( p ){
8266 BtShared *pBt = p->pBt;
8267 sqlite3BtreeEnter(p);
8268 if( pBt->inTransaction!=TRANS_NONE ){
8269 rc = SQLITE_LOCKED;
8270 }else{
dancdc1f042010-11-18 12:11:05 +00008271 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008272 }
8273 sqlite3BtreeLeave(p);
8274 }
8275 return rc;
8276}
8277#endif
8278
danielk19771d850a72004-05-31 08:26:49 +00008279/*
danielk19772372c2b2006-06-27 16:34:56 +00008280** Return non-zero if a read (or write) transaction is active.
8281*/
8282int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008283 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008284 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008285 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008286}
8287
danielk197704103022009-02-03 16:51:24 +00008288int sqlite3BtreeIsInBackup(Btree *p){
8289 assert( p );
8290 assert( sqlite3_mutex_held(p->db->mutex) );
8291 return p->nBackup!=0;
8292}
8293
danielk19772372c2b2006-06-27 16:34:56 +00008294/*
danielk1977da184232006-01-05 11:34:32 +00008295** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008296** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008297** purposes (for example, to store a high-level schema associated with
8298** the shared-btree). The btree layer manages reference counting issues.
8299**
8300** The first time this is called on a shared-btree, nBytes bytes of memory
8301** are allocated, zeroed, and returned to the caller. For each subsequent
8302** call the nBytes parameter is ignored and a pointer to the same blob
8303** of memory returned.
8304**
danielk1977171bfed2008-06-23 09:50:50 +00008305** If the nBytes parameter is 0 and the blob of memory has not yet been
8306** allocated, a null pointer is returned. If the blob has already been
8307** allocated, it is returned as normal.
8308**
danielk1977da184232006-01-05 11:34:32 +00008309** Just before the shared-btree is closed, the function passed as the
8310** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008311** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008312** on the memory, the btree layer does that.
8313*/
8314void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8315 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008316 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008317 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008318 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008319 pBt->xFreeSchema = xFree;
8320 }
drh27641702007-08-22 02:56:42 +00008321 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008322 return pBt->pSchema;
8323}
8324
danielk1977c87d34d2006-01-06 13:00:28 +00008325/*
danielk1977404ca072009-03-16 13:19:36 +00008326** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8327** btree as the argument handle holds an exclusive lock on the
8328** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008329*/
8330int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008331 int rc;
drhe5fe6902007-12-07 18:55:28 +00008332 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008333 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008334 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8335 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008336 sqlite3BtreeLeave(p);
8337 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008338}
8339
drha154dcd2006-03-22 22:10:07 +00008340
8341#ifndef SQLITE_OMIT_SHARED_CACHE
8342/*
8343** Obtain a lock on the table whose root page is iTab. The
8344** lock is a write lock if isWritelock is true or a read lock
8345** if it is false.
8346*/
danielk1977c00da102006-01-07 13:21:04 +00008347int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008348 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008349 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008350 if( p->sharable ){
8351 u8 lockType = READ_LOCK + isWriteLock;
8352 assert( READ_LOCK+1==WRITE_LOCK );
8353 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008354
drh6a9ad3d2008-04-02 16:29:30 +00008355 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008356 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008357 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008358 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008359 }
8360 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008361 }
8362 return rc;
8363}
drha154dcd2006-03-22 22:10:07 +00008364#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008365
danielk1977b4e9af92007-05-01 17:49:49 +00008366#ifndef SQLITE_OMIT_INCRBLOB
8367/*
8368** Argument pCsr must be a cursor opened for writing on an
8369** INTKEY table currently pointing at a valid table entry.
8370** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008371**
8372** Only the data content may only be modified, it is not possible to
8373** change the length of the data stored. If this function is called with
8374** parameters that attempt to write past the end of the existing data,
8375** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008376*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008377int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008378 int rc;
drh1fee73e2007-08-29 04:00:57 +00008379 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008380 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008381 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008382
danielk1977c9000e62009-07-08 13:55:28 +00008383 rc = restoreCursorPosition(pCsr);
8384 if( rc!=SQLITE_OK ){
8385 return rc;
8386 }
danielk19773588ceb2008-06-10 17:30:26 +00008387 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8388 if( pCsr->eState!=CURSOR_VALID ){
8389 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008390 }
8391
dan227a1c42013-04-03 11:17:39 +00008392 /* Save the positions of all other cursors open on this table. This is
8393 ** required in case any of them are holding references to an xFetch
8394 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008395 **
8396 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8397 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8398 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008399 */
drh370c9f42013-04-03 20:04:04 +00008400 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8401 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008402
danielk1977c9000e62009-07-08 13:55:28 +00008403 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008404 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008405 ** (b) there is a read/write transaction open,
8406 ** (c) the connection holds a write-lock on the table (if required),
8407 ** (d) there are no conflicting read-locks, and
8408 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008409 */
danielk19774f029602009-07-08 18:45:37 +00008410 if( !pCsr->wrFlag ){
8411 return SQLITE_READONLY;
8412 }
drhc9166342012-01-05 23:32:06 +00008413 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8414 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008415 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8416 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008417 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008418
drhfb192682009-07-11 18:26:28 +00008419 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008420}
danielk19772dec9702007-05-02 16:48:37 +00008421
8422/*
8423** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008424** overflow list for the current row. This is used by cursors opened
8425** for incremental blob IO only.
8426**
8427** This function sets a flag only. The actual page location cache
8428** (stored in BtCursor.aOverflow[]) is allocated and used by function
8429** accessPayload() (the worker function for sqlite3BtreeData() and
8430** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008431*/
8432void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008433 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008434 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008435 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008436 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008437}
danielk1977b4e9af92007-05-01 17:49:49 +00008438#endif
dane04dc882010-04-20 18:53:15 +00008439
8440/*
8441** Set both the "read version" (single byte at byte offset 18) and
8442** "write version" (single byte at byte offset 19) fields in the database
8443** header to iVersion.
8444*/
8445int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8446 BtShared *pBt = pBtree->pBt;
8447 int rc; /* Return code */
8448
dane04dc882010-04-20 18:53:15 +00008449 assert( iVersion==1 || iVersion==2 );
8450
danb9780022010-04-21 18:37:57 +00008451 /* If setting the version fields to 1, do not automatically open the
8452 ** WAL connection, even if the version fields are currently set to 2.
8453 */
drhc9166342012-01-05 23:32:06 +00008454 pBt->btsFlags &= ~BTS_NO_WAL;
8455 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008456
8457 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008458 if( rc==SQLITE_OK ){
8459 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008460 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008461 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008462 if( rc==SQLITE_OK ){
8463 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8464 if( rc==SQLITE_OK ){
8465 aData[18] = (u8)iVersion;
8466 aData[19] = (u8)iVersion;
8467 }
8468 }
8469 }
dane04dc882010-04-20 18:53:15 +00008470 }
8471
drhc9166342012-01-05 23:32:06 +00008472 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008473 return rc;
8474}
dan428c2182012-08-06 18:50:11 +00008475
8476/*
8477** set the mask of hint flags for cursor pCsr. Currently the only valid
8478** values are 0 and BTREE_BULKLOAD.
8479*/
8480void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8481 assert( mask==BTREE_BULKLOAD || mask==0 );
8482 pCsr->hints = mask;
8483}