blob: 6bfe24cf4302806ad1e9aa5bd0f8f6e3775e8b77 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh6d08b4d2004-07-20 12:45:22 +000012** $Id: btree.c,v 1.177 2004/07/20 12:45:22 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
drh9e572e62004-04-23 23:43:10 +000039** key and data for any entry are combined to form the "payload". A
40** fixed amount of payload can be carried directly on the database
41** page. If the payload is larger than the preset amount then surplus
42** bytes are stored on overflow pages. The payload for an entry
43** and the preceding pointer are combined to form a "Cell". Each
44** page has a small header which contains the Ptr(N+1) pointer and other
45** information such as the size of key and data.
drh8b2f49b2001-06-08 00:21:52 +000046**
drh9e572e62004-04-23 23:43:10 +000047** FORMAT DETAILS
48**
49** The file is divided into pages. The first page is called page 1,
50** the second is page 2, and so forth. A page number of zero indicates
51** "no such page". The page size can be anything between 512 and 65536.
52** Each page can be either a btree page, a freelist page or an overflow
53** page.
54**
55** The first page is always a btree page. The first 100 bytes of the first
drh271efa52004-05-30 19:19:05 +000056** page contain a special header (the "file header") that describes the file.
57** The format of the file header is as follows:
drh9e572e62004-04-23 23:43:10 +000058**
59** OFFSET SIZE DESCRIPTION
drhde647132004-05-07 17:57:49 +000060** 0 16 Header string: "SQLite format 3\000"
drh9e572e62004-04-23 23:43:10 +000061** 16 2 Page size in bytes.
62** 18 1 File format write version
63** 19 1 File format read version
drh6f11bef2004-05-13 01:12:56 +000064** 20 1 Bytes of unused space at the end of each page
65** 21 1 Max embedded payload fraction
66** 22 1 Min embedded payload fraction
67** 23 1 Min leaf payload fraction
68** 24 4 File change counter
69** 28 4 Reserved for future use
drh9e572e62004-04-23 23:43:10 +000070** 32 4 First freelist page
71** 36 4 Number of freelist pages in the file
72** 40 60 15 4-byte meta values passed to higher layers
73**
74** All of the integer values are big-endian (most significant byte first).
drh6f11bef2004-05-13 01:12:56 +000075**
drhab01f612004-05-22 02:55:23 +000076** The file change counter is incremented when the database is changed more
drh6f11bef2004-05-13 01:12:56 +000077** than once within the same second. This counter, together with the
78** modification time of the file, allows other processes to know
79** when the file has changed and thus when they need to flush their
80** cache.
81**
82** The max embedded payload fraction is the amount of the total usable
83** space in a page that can be consumed by a single cell for standard
84** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
85** is to limit the maximum cell size so that at least 4 cells will fit
drhab01f612004-05-22 02:55:23 +000086** on one page. Thus the default max embedded payload fraction is 64.
drh6f11bef2004-05-13 01:12:56 +000087**
88** If the payload for a cell is larger than the max payload, then extra
89** payload is spilled to overflow pages. Once an overflow page is allocated,
90** as many bytes as possible are moved into the overflow pages without letting
91** the cell size drop below the min embedded payload fraction.
92**
93** The min leaf payload fraction is like the min embedded payload fraction
94** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
95** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
96** not specified in the header.
drh9e572e62004-04-23 23:43:10 +000097**
drh43605152004-05-29 21:46:49 +000098** Each btree pages is divided into three sections: The header, the
99** cell pointer array, and the cell area area. Page 1 also has a 100-byte
drh271efa52004-05-30 19:19:05 +0000100** file header that occurs before the page header.
101**
102** |----------------|
103** | file header | 100 bytes. Page 1 only.
104** |----------------|
105** | page header | 8 bytes for leaves. 12 bytes for interior nodes
106** |----------------|
107** | cell pointer | | 2 bytes per cell. Sorted order.
108** | array | | Grows downward
109** | | v
110** |----------------|
111** | unallocated |
112** | space |
113** |----------------| ^ Grows upwards
114** | cell content | | Arbitrary order interspersed with freeblocks.
115** | area | | and free space fragments.
116** |----------------|
drh43605152004-05-29 21:46:49 +0000117**
118** The page headers looks like this:
drh9e572e62004-04-23 23:43:10 +0000119**
120** OFFSET SIZE DESCRIPTION
drh6f11bef2004-05-13 01:12:56 +0000121** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
drh9e572e62004-04-23 23:43:10 +0000122** 1 2 byte offset to the first freeblock
drh43605152004-05-29 21:46:49 +0000123** 3 2 number of cells on this page
drh271efa52004-05-30 19:19:05 +0000124** 5 2 first byte of the cell content area
drh43605152004-05-29 21:46:49 +0000125** 7 1 number of fragmented free bytes
drh271efa52004-05-30 19:19:05 +0000126** 8 4 Right child (the Ptr(N+1) value). Omitted on leaves.
drh9e572e62004-04-23 23:43:10 +0000127**
128** The flags define the format of this btree page. The leaf flag means that
129** this page has no children. The zerodata flag means that this page carries
130** only keys and no data. The intkey flag means that the key is a single
131** variable length integer at the beginning of the payload.
132**
drh43605152004-05-29 21:46:49 +0000133** The cell pointer array begins on the first byte after the page header.
134** The cell pointer array contains zero or more 2-byte numbers which are
135** offsets from the beginning of the page to the cell content in the cell
136** content area. The cell pointers occur in sorted order. The system strives
137** to keep free space after the last cell pointer so that new cells can
138** be easily added without have to defragment the page.
139**
140** Cell content is stored at the very end of the page and grows toward the
141** beginning of the page.
142**
143** Unused space within the cell content area is collected into a linked list of
144** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
145** to the first freeblock is given in the header. Freeblocks occur in
146** increasing order. Because a freeblock must be at least 4 bytes in size,
147** any group of 3 or fewer unused bytes in the cell content area cannot
148** exist on the freeblock chain. A group of 3 or fewer free bytes is called
149** a fragment. The total number of bytes in all fragments is recorded.
150** in the page header at offset 7.
151**
152** SIZE DESCRIPTION
153** 2 Byte offset of the next freeblock
154** 2 Bytes in this freeblock
155**
156** Cells are of variable length. Cells are stored in the cell content area at
157** the end of the page. Pointers to the cells are in the cell pointer array
158** that immediately follows the page header. Cells is not necessarily
159** contiguous or in order, but cell pointers are contiguous and in order.
160**
161** Cell content makes use of variable length integers. A variable
162** length integer is 1 to 9 bytes where the lower 7 bits of each
drh9e572e62004-04-23 23:43:10 +0000163** byte are used. The integer consists of all bytes that have bit 8 set and
drh6f11bef2004-05-13 01:12:56 +0000164** the first byte with bit 8 clear. The most significant byte of the integer
drhab01f612004-05-22 02:55:23 +0000165** appears first. A variable-length integer may not be more than 9 bytes long.
166** As a special case, all 8 bytes of the 9th byte are used as data. This
167** allows a 64-bit integer to be encoded in 9 bytes.
drh9e572e62004-04-23 23:43:10 +0000168**
169** 0x00 becomes 0x00000000
drh6f11bef2004-05-13 01:12:56 +0000170** 0x7f becomes 0x0000007f
171** 0x81 0x00 becomes 0x00000080
172** 0x82 0x00 becomes 0x00000100
173** 0x80 0x7f becomes 0x0000007f
174** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
drh9e572e62004-04-23 23:43:10 +0000175** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
176**
177** Variable length integers are used for rowids and to hold the number of
178** bytes of key and data in a btree cell.
179**
drh43605152004-05-29 21:46:49 +0000180** The content of a cell looks like this:
drh9e572e62004-04-23 23:43:10 +0000181**
182** SIZE DESCRIPTION
drh3aac2dd2004-04-26 14:10:20 +0000183** 4 Page number of the left child. Omitted if leaf flag is set.
184** var Number of bytes of data. Omitted if the zerodata flag is set.
185** var Number of bytes of key. Or the key itself if intkey flag is set.
drh9e572e62004-04-23 23:43:10 +0000186** * Payload
187** 4 First page of the overflow chain. Omitted if no overflow
188**
189** Overflow pages form a linked list. Each page except the last is completely
190** filled with data (pagesize - 4 bytes). The last page can have as little
191** as 1 byte of data.
192**
193** SIZE DESCRIPTION
194** 4 Page number of next overflow page
195** * Data
196**
197** Freelist pages come in two subtypes: trunk pages and leaf pages. The
198** file header points to first in a linked list of trunk page. Each trunk
199** page points to multiple leaf pages. The content of a leaf page is
200** unspecified. A trunk page looks like this:
201**
202** SIZE DESCRIPTION
203** 4 Page number of next trunk page
204** 4 Number of leaf pointers on this page
205** * zero or more pages numbers of leaves
drha059ad02001-04-17 20:09:11 +0000206*/
207#include "sqliteInt.h"
208#include "pager.h"
209#include "btree.h"
drh1f595712004-06-15 01:40:29 +0000210#include "os.h"
drha059ad02001-04-17 20:09:11 +0000211#include <assert.h>
212
drh4b70f112004-05-02 21:12:19 +0000213
214/* Maximum page size. The upper bound on this value is 65536 (a limit
drh43605152004-05-29 21:46:49 +0000215** imposed by the 2-byte size of cell array pointers.) The
drh4b70f112004-05-02 21:12:19 +0000216** maximum page size determines the amount of stack space allocated
217** by many of the routines in this module. On embedded architectures
218** or any machine where memory and especially stack memory is limited,
219** one may wish to chose a smaller value for the maximum page size.
220*/
221#ifndef MX_PAGE_SIZE
222# define MX_PAGE_SIZE 1024
223#endif
224
drh4b70f112004-05-02 21:12:19 +0000225/* The following value is the maximum cell size assuming a maximum page
226** size give above.
227*/
drh43605152004-05-29 21:46:49 +0000228#define MX_CELL_SIZE (MX_PAGE_SIZE-8)
drh4b70f112004-05-02 21:12:19 +0000229
230/* The maximum number of cells on a single page of the database. This
231** assumes a minimum cell size of 3 bytes. Such small cells will be
232** exceedingly rare, but they are possible.
233*/
drh43605152004-05-29 21:46:49 +0000234#define MX_CELL ((MX_PAGE_SIZE-8)/3)
drh4b70f112004-05-02 21:12:19 +0000235
paulb95a8862003-04-01 21:16:41 +0000236/* Forward declarations */
drh3aac2dd2004-04-26 14:10:20 +0000237typedef struct MemPage MemPage;
paulb95a8862003-04-01 21:16:41 +0000238
drh8c42ca92001-06-22 19:15:00 +0000239/*
drhbd03cae2001-06-02 02:40:57 +0000240** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +0000241** SQLite database in order to identify the file as a real database.
drhde647132004-05-07 17:57:49 +0000242** 123456789 123456 */
243static const char zMagicHeader[] = "SQLite format 3";
drh08ed44e2001-04-29 23:32:55 +0000244
245/*
drh4b70f112004-05-02 21:12:19 +0000246** Page type flags. An ORed combination of these flags appear as the
247** first byte of every BTree page.
drh8c42ca92001-06-22 19:15:00 +0000248*/
drhde647132004-05-07 17:57:49 +0000249#define PTF_INTKEY 0x01
drh9e572e62004-04-23 23:43:10 +0000250#define PTF_ZERODATA 0x02
drh8b18dd42004-05-12 19:18:15 +0000251#define PTF_LEAFDATA 0x04
252#define PTF_LEAF 0x08
drh8c42ca92001-06-22 19:15:00 +0000253
254/*
drh9e572e62004-04-23 23:43:10 +0000255** As each page of the file is loaded into memory, an instance of the following
256** structure is appended and initialized to zero. This structure stores
257** information about the page that is decoded from the raw file page.
drh14acc042001-06-10 19:56:58 +0000258**
drh72f82862001-05-24 21:06:34 +0000259** The pParent field points back to the parent page. This allows us to
260** walk up the BTree from any leaf to the root. Care must be taken to
261** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000262** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000263*/
264struct MemPage {
drha6abd042004-06-09 17:37:22 +0000265 u8 isInit; /* True if previously initialized. MUST BE FIRST! */
drh43605152004-05-29 21:46:49 +0000266 u8 idxShift; /* True if Cell indices have changed */
267 u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
268 u8 intKey; /* True if intkey flag is set */
269 u8 leaf; /* True if leaf flag is set */
270 u8 zeroData; /* True if table stores keys only */
271 u8 leafData; /* True if tables stores data on leaves only */
272 u8 hasData; /* True if this page stores data */
273 u8 hdrOffset; /* 100 for page 1. 0 otherwise */
drh271efa52004-05-30 19:19:05 +0000274 u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
drha2fce642004-06-05 00:01:44 +0000275 u16 maxLocal; /* Copy of Btree.maxLocal or Btree.maxLeaf */
276 u16 minLocal; /* Copy of Btree.minLocal or Btree.minLeaf */
drh43605152004-05-29 21:46:49 +0000277 u16 cellOffset; /* Index in aData of first cell pointer */
278 u16 idxParent; /* Index in parent of this node */
279 u16 nFree; /* Number of free bytes on the page */
280 u16 nCell; /* Number of cells on this page, local and ovfl */
281 struct _OvflCell { /* Cells that will not fit on aData[] */
282 u8 *pCell; /* Pointers to the body of the overflow cell */
283 u16 idx; /* Insert this cell before idx-th non-overflow cell */
drha2fce642004-06-05 00:01:44 +0000284 } aOvfl[5];
drh43605152004-05-29 21:46:49 +0000285 struct Btree *pBt; /* Pointer back to BTree structure */
286 u8 *aData; /* Pointer back to the start of the page */
287 Pgno pgno; /* Page number for this page */
288 MemPage *pParent; /* The parent of this page. NULL for root */
drh8c42ca92001-06-22 19:15:00 +0000289};
drh7e3b0a02001-04-28 16:52:40 +0000290
291/*
drh3b7511c2001-05-26 13:15:44 +0000292** The in-memory image of a disk page has the auxiliary information appended
293** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
294** that extra information.
295*/
drh3aac2dd2004-04-26 14:10:20 +0000296#define EXTRA_SIZE sizeof(MemPage)
drh3b7511c2001-05-26 13:15:44 +0000297
298/*
drha059ad02001-04-17 20:09:11 +0000299** Everything we need to know about an open database
300*/
301struct Btree {
302 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000303 BtCursor *pCursor; /* A list of all open cursors */
drh3aac2dd2004-04-26 14:10:20 +0000304 MemPage *pPage1; /* First page of the database */
drh663fc632002-02-02 18:49:19 +0000305 u8 inTrans; /* True if a transaction is in progress */
drhab01f612004-05-22 02:55:23 +0000306 u8 inStmt; /* True if we are in a statement subtransaction */
drh5df72a52002-06-06 23:16:05 +0000307 u8 readOnly; /* True if the underlying file is readonly */
drhab01f612004-05-22 02:55:23 +0000308 u8 maxEmbedFrac; /* Maximum payload as % of total page size */
309 u8 minEmbedFrac; /* Minimum payload as % of total page size */
310 u8 minLeafFrac; /* Minimum leaf payload as % of total page size */
drha2fce642004-06-05 00:01:44 +0000311 u16 pageSize; /* Total number of bytes on a page */
312 u16 usableSize; /* Number of usable bytes on each page */
drh6f11bef2004-05-13 01:12:56 +0000313 int maxLocal; /* Maximum local payload in non-LEAFDATA tables */
314 int minLocal; /* Minimum local payload in non-LEAFDATA tables */
315 int maxLeaf; /* Maximum local payload in a LEAFDATA table */
316 int minLeaf; /* Minimum local payload in a LEAFDATA table */
drha059ad02001-04-17 20:09:11 +0000317};
318typedef Btree Bt;
319
drh365d68f2001-05-11 11:02:46 +0000320/*
danielk1977ee5741e2004-05-31 10:01:34 +0000321** Btree.inTrans may take one of the following values.
322*/
323#define TRANS_NONE 0
324#define TRANS_READ 1
325#define TRANS_WRITE 2
326
327/*
drhfa1a98a2004-05-14 19:08:17 +0000328** An instance of the following structure is used to hold information
drh271efa52004-05-30 19:19:05 +0000329** about a cell. The parseCellPtr() function fills in this structure
drhab01f612004-05-22 02:55:23 +0000330** based on information extract from the raw disk page.
drhfa1a98a2004-05-14 19:08:17 +0000331*/
332typedef struct CellInfo CellInfo;
333struct CellInfo {
drh43605152004-05-29 21:46:49 +0000334 u8 *pCell; /* Pointer to the start of cell content */
drhfa1a98a2004-05-14 19:08:17 +0000335 i64 nKey; /* The key for INTKEY tables, or number of bytes in key */
336 u32 nData; /* Number of bytes of data */
drh271efa52004-05-30 19:19:05 +0000337 u16 nHeader; /* Size of the cell content header in bytes */
drhfa1a98a2004-05-14 19:08:17 +0000338 u16 nLocal; /* Amount of payload held locally */
drhab01f612004-05-22 02:55:23 +0000339 u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */
drh271efa52004-05-30 19:19:05 +0000340 u16 nSize; /* Size of the cell content on the main b-tree page */
drhfa1a98a2004-05-14 19:08:17 +0000341};
342
343/*
drh365d68f2001-05-11 11:02:46 +0000344** A cursor is a pointer to a particular entry in the BTree.
345** The entry is identified by its MemPage and the index in
drha34b6762004-05-07 13:30:42 +0000346** MemPage.aCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000347*/
drh72f82862001-05-24 21:06:34 +0000348struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000349 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000350 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drhf74b8d92002-09-01 23:20:45 +0000351 BtCursor *pShared; /* Loop of cursors with the same root page */
drh3aac2dd2004-04-26 14:10:20 +0000352 int (*xCompare)(void*,int,const void*,int,const void*); /* Key comp func */
353 void *pArg; /* First arg to xCompare() */
drh8b2f49b2001-06-08 00:21:52 +0000354 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000355 MemPage *pPage; /* Page that contains the entry */
drh3aac2dd2004-04-26 14:10:20 +0000356 int idx; /* Index of the entry in pPage->aCell[] */
drhfa1a98a2004-05-14 19:08:17 +0000357 CellInfo info; /* A parse of the cell we are pointing at */
drhecdc7532001-09-23 02:35:53 +0000358 u8 wrFlag; /* True if writable */
drhc39e0002004-05-07 23:50:57 +0000359 u8 isValid; /* TRUE if points to a valid entry */
360 u8 status; /* Set to SQLITE_ABORT if cursors is invalidated */
drh365d68f2001-05-11 11:02:46 +0000361};
drh7e3b0a02001-04-28 16:52:40 +0000362
drha059ad02001-04-17 20:09:11 +0000363/*
drhab01f612004-05-22 02:55:23 +0000364** Read or write a two- and four-byte big-endian integer values.
drh0d316a42002-08-11 20:10:47 +0000365*/
drh9e572e62004-04-23 23:43:10 +0000366static u32 get2byte(unsigned char *p){
367 return (p[0]<<8) | p[1];
drh0d316a42002-08-11 20:10:47 +0000368}
drh9e572e62004-04-23 23:43:10 +0000369static u32 get4byte(unsigned char *p){
370 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
371}
drh9e572e62004-04-23 23:43:10 +0000372static void put2byte(unsigned char *p, u32 v){
373 p[0] = v>>8;
374 p[1] = v;
375}
376static void put4byte(unsigned char *p, u32 v){
377 p[0] = v>>24;
378 p[1] = v>>16;
379 p[2] = v>>8;
380 p[3] = v;
381}
drh6f11bef2004-05-13 01:12:56 +0000382
drh9e572e62004-04-23 23:43:10 +0000383/*
drhab01f612004-05-22 02:55:23 +0000384** Routines to read and write variable-length integers. These used to
385** be defined locally, but now we use the varint routines in the util.c
386** file.
drh9e572e62004-04-23 23:43:10 +0000387*/
drh6d2fb152004-05-14 16:50:06 +0000388#define getVarint sqlite3GetVarint
389#define getVarint32 sqlite3GetVarint32
390#define putVarint sqlite3PutVarint
drh0d316a42002-08-11 20:10:47 +0000391
392/*
drh271efa52004-05-30 19:19:05 +0000393** Given a btree page and a cell index (0 means the first cell on
394** the page, 1 means the second cell, and so forth) return a pointer
395** to the cell content.
396**
397** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000398*/
drh43605152004-05-29 21:46:49 +0000399static u8 *findCell(MemPage *pPage, int iCell){
400 u8 *data = pPage->aData;
401 assert( iCell>=0 );
402 assert( iCell<get2byte(&data[pPage->hdrOffset+3]) );
403 return data + get2byte(&data[pPage->cellOffset+2*iCell]);
404}
405
406/*
407** This a more complex version of findCell() that works for
408** pages that do contain overflow cells. See insert
409*/
410static u8 *findOverflowCell(MemPage *pPage, int iCell){
411 int i;
412 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000413 int k;
414 struct _OvflCell *pOvfl;
415 pOvfl = &pPage->aOvfl[i];
416 k = pOvfl->idx;
417 if( k<=iCell ){
418 if( k==iCell ){
419 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000420 }
421 iCell--;
422 }
423 }
424 return findCell(pPage, iCell);
425}
426
427/*
428** Parse a cell content block and fill in the CellInfo structure. There
429** are two versions of this function. parseCell() takes a cell index
430** as the second argument and parseCellPtr() takes a pointer to the
431** body of the cell as its second argument.
432*/
433static void parseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000434 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000435 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000436 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000437){
drh271efa52004-05-30 19:19:05 +0000438 int n; /* Number bytes in cell content header */
439 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000440
441 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000442 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000443 n = pPage->childPtrSize;
444 assert( n==4-4*pPage->leaf );
drh8b18dd42004-05-12 19:18:15 +0000445 if( pPage->hasData ){
drh271efa52004-05-30 19:19:05 +0000446 n += getVarint32(&pCell[n], &nPayload);
drh8b18dd42004-05-12 19:18:15 +0000447 }else{
drh271efa52004-05-30 19:19:05 +0000448 nPayload = 0;
drh3aac2dd2004-04-26 14:10:20 +0000449 }
danielk1977e0d4b062004-06-28 01:11:46 +0000450 n += getVarint(&pCell[n], (u64 *)&pInfo->nKey);
drh6f11bef2004-05-13 01:12:56 +0000451 pInfo->nHeader = n;
drh271efa52004-05-30 19:19:05 +0000452 pInfo->nData = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000453 if( !pPage->intKey ){
454 nPayload += pInfo->nKey;
455 }
drh271efa52004-05-30 19:19:05 +0000456 if( nPayload<=pPage->maxLocal ){
457 /* This is the (easy) common case where the entire payload fits
458 ** on the local page. No overflow is required.
459 */
460 int nSize; /* Total size of cell content in bytes */
drh6f11bef2004-05-13 01:12:56 +0000461 pInfo->nLocal = nPayload;
462 pInfo->iOverflow = 0;
drh271efa52004-05-30 19:19:05 +0000463 nSize = nPayload + n;
464 if( nSize<4 ){
465 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000466 }
drh271efa52004-05-30 19:19:05 +0000467 pInfo->nSize = nSize;
drh6f11bef2004-05-13 01:12:56 +0000468 }else{
drh271efa52004-05-30 19:19:05 +0000469 /* If the payload will not fit completely on the local page, we have
470 ** to decide how much to store locally and how much to spill onto
471 ** overflow pages. The strategy is to minimize the amount of unused
472 ** space on overflow pages while keeping the amount of local storage
473 ** in between minLocal and maxLocal.
474 **
475 ** Warning: changing the way overflow payload is distributed in any
476 ** way will result in an incompatible file format.
477 */
478 int minLocal; /* Minimum amount of payload held locally */
479 int maxLocal; /* Maximum amount of payload held locally */
480 int surplus; /* Overflow payload available for local storage */
481
482 minLocal = pPage->minLocal;
483 maxLocal = pPage->maxLocal;
484 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +0000485 if( surplus <= maxLocal ){
486 pInfo->nLocal = surplus;
487 }else{
488 pInfo->nLocal = minLocal;
489 }
490 pInfo->iOverflow = pInfo->nLocal + n;
491 pInfo->nSize = pInfo->iOverflow + 4;
492 }
drh3aac2dd2004-04-26 14:10:20 +0000493}
drh43605152004-05-29 21:46:49 +0000494static void parseCell(
495 MemPage *pPage, /* Page containing the cell */
496 int iCell, /* The cell index. First cell is 0 */
497 CellInfo *pInfo /* Fill in this structure */
498){
499 parseCellPtr(pPage, findCell(pPage, iCell), pInfo);
500}
drh3aac2dd2004-04-26 14:10:20 +0000501
502/*
drh43605152004-05-29 21:46:49 +0000503** Compute the total number of bytes that a Cell needs in the cell
504** data area of the btree-page. The return number includes the cell
505** data header and the local payload, but not any overflow page or
506** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000507*/
danielk1977bc6ada42004-06-30 08:20:16 +0000508#ifndef NDEBUG
drh43605152004-05-29 21:46:49 +0000509static int cellSize(MemPage *pPage, int iCell){
drh6f11bef2004-05-13 01:12:56 +0000510 CellInfo info;
drh43605152004-05-29 21:46:49 +0000511 parseCell(pPage, iCell, &info);
512 return info.nSize;
513}
danielk1977bc6ada42004-06-30 08:20:16 +0000514#endif
drh43605152004-05-29 21:46:49 +0000515static int cellSizePtr(MemPage *pPage, u8 *pCell){
516 CellInfo info;
517 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +0000518 return info.nSize;
drh3b7511c2001-05-26 13:15:44 +0000519}
520
521/*
drhda200cc2004-05-09 11:51:38 +0000522** Do sanity checking on a page. Throw an exception if anything is
523** not right.
524**
525** This routine is used for internal error checking only. It is omitted
526** from most builds.
527*/
528#if defined(BTREE_DEBUG) && !defined(NDEBUG) && 0
529static void _pageIntegrity(MemPage *pPage){
drhb6f41482004-05-14 01:58:11 +0000530 int usableSize;
drhda200cc2004-05-09 11:51:38 +0000531 u8 *data;
drh43605152004-05-29 21:46:49 +0000532 int i, j, idx, c, pc, hdr, nFree;
533 int cellOffset;
534 int nCell, cellLimit;
drhda200cc2004-05-09 11:51:38 +0000535 u8 used[MX_PAGE_SIZE];
536
drhb6f41482004-05-14 01:58:11 +0000537 usableSize = pPage->pBt->usableSize;
538 assert( pPage->aData==&((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000539 hdr = pPage->hdrOffset;
540 assert( hdr==(pPage->pgno==1 ? 100 : 0) );
541 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
542 c = pPage->aData[hdr];
543 if( pPage->isInit ){
544 assert( pPage->leaf == ((c & PTF_LEAF)!=0) );
545 assert( pPage->zeroData == ((c & PTF_ZERODATA)!=0) );
drh8b18dd42004-05-12 19:18:15 +0000546 assert( pPage->leafData == ((c & PTF_LEAFDATA)!=0) );
547 assert( pPage->intKey == ((c & (PTF_INTKEY|PTF_LEAFDATA))!=0) );
548 assert( pPage->hasData ==
549 !(pPage->zeroData || (!pPage->leaf && pPage->leafData)) );
drh43605152004-05-29 21:46:49 +0000550 assert( pPage->cellOffset==pPage->hdrOffset+12-4*pPage->leaf );
551 assert( pPage->nCell = get2byte(&pPage->aData[hdr+3]) );
drhda200cc2004-05-09 11:51:38 +0000552 }
553 data = pPage->aData;
drhb6f41482004-05-14 01:58:11 +0000554 memset(used, 0, usableSize);
drhda200cc2004-05-09 11:51:38 +0000555 for(i=0; i<hdr+10-pPage->leaf*4; i++) used[i] = 1;
556 nFree = 0;
557 pc = get2byte(&data[hdr+1]);
558 while( pc ){
559 int size;
drhb6f41482004-05-14 01:58:11 +0000560 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000561 size = get2byte(&data[pc+2]);
drhb6f41482004-05-14 01:58:11 +0000562 assert( pc+size<=usableSize );
drhda200cc2004-05-09 11:51:38 +0000563 nFree += size;
564 for(i=pc; i<pc+size; i++){
565 assert( used[i]==0 );
566 used[i] = 1;
567 }
568 pc = get2byte(&data[pc]);
569 }
drhda200cc2004-05-09 11:51:38 +0000570 idx = 0;
drh43605152004-05-29 21:46:49 +0000571 nCell = get2byte(&data[hdr+3]);
572 cellLimit = get2byte(&data[hdr+5]);
573 assert( pPage->isInit==0
574 || pPage->nFree==nFree+data[hdr+7]+cellLimit-(cellOffset+2*nCell) );
575 cellOffset = pPage->cellOffset;
576 for(i=0; i<nCell; i++){
drhda200cc2004-05-09 11:51:38 +0000577 int size;
drh43605152004-05-29 21:46:49 +0000578 pc = get2byte(&data[cellOffset+2*i]);
drhb6f41482004-05-14 01:58:11 +0000579 assert( pc>0 && pc<usableSize-4 );
drhda200cc2004-05-09 11:51:38 +0000580 size = cellSize(pPage, &data[pc]);
drhb6f41482004-05-14 01:58:11 +0000581 assert( pc+size<=usableSize );
drh43605152004-05-29 21:46:49 +0000582 for(j=pc; j<pc+size; j++){
583 assert( used[j]==0 );
584 used[j] = 1;
drhda200cc2004-05-09 11:51:38 +0000585 }
drhda200cc2004-05-09 11:51:38 +0000586 }
drh43605152004-05-29 21:46:49 +0000587 for(i=cellOffset+2*nCell; i<cellimit; i++){
588 assert( used[i]==0 );
589 used[i] = 1;
590 }
drhda200cc2004-05-09 11:51:38 +0000591 nFree = 0;
drhb6f41482004-05-14 01:58:11 +0000592 for(i=0; i<usableSize; i++){
drhda200cc2004-05-09 11:51:38 +0000593 assert( used[i]<=1 );
594 if( used[i]==0 ) nFree++;
595 }
drh43605152004-05-29 21:46:49 +0000596 assert( nFree==data[hdr+7] );
drhda200cc2004-05-09 11:51:38 +0000597}
598#define pageIntegrity(X) _pageIntegrity(X)
599#else
600# define pageIntegrity(X)
601#endif
602
603/*
drh72f82862001-05-24 21:06:34 +0000604** Defragment the page given. All Cells are moved to the
605** beginning of the page and all free space is collected
606** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000607*/
drh9e572e62004-04-23 23:43:10 +0000608static void defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +0000609 int i; /* Loop counter */
610 int pc; /* Address of a i-th cell */
611 int addr; /* Offset of first byte after cell pointer array */
612 int hdr; /* Offset to the page header */
613 int size; /* Size of a cell */
614 int usableSize; /* Number of usable bytes on a page */
615 int cellOffset; /* Offset to the cell pointer array */
616 int brk; /* Offset to the cell content area */
617 int nCell; /* Number of cells on the page */
618 unsigned char *data; /* The page data */
619 unsigned char temp[MX_PAGE_SIZE]; /* Temp holding area for cell content */
drh2af926b2001-05-15 00:39:25 +0000620
drha34b6762004-05-07 13:30:42 +0000621 assert( sqlite3pager_iswriteable(pPage->aData) );
drh9e572e62004-04-23 23:43:10 +0000622 assert( pPage->pBt!=0 );
drhb6f41482004-05-14 01:58:11 +0000623 assert( pPage->pBt->usableSize <= MX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +0000624 assert( pPage->nOverflow==0 );
625 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +0000626 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000627 cellOffset = pPage->cellOffset;
628 nCell = pPage->nCell;
629 assert( nCell==get2byte(&data[hdr+3]) );
630 usableSize = pPage->pBt->usableSize;
631 brk = get2byte(&data[hdr+5]);
632 memcpy(&temp[brk], &data[brk], usableSize - brk);
633 brk = usableSize;
634 for(i=0; i<nCell; i++){
635 u8 *pAddr; /* The i-th cell pointer */
636 pAddr = &data[cellOffset + i*2];
637 pc = get2byte(pAddr);
638 assert( pc<pPage->pBt->usableSize );
639 size = cellSizePtr(pPage, &temp[pc]);
640 brk -= size;
641 memcpy(&data[brk], &temp[pc], size);
642 put2byte(pAddr, brk);
drh2af926b2001-05-15 00:39:25 +0000643 }
drh43605152004-05-29 21:46:49 +0000644 assert( brk>=cellOffset+2*nCell );
645 put2byte(&data[hdr+5], brk);
646 data[hdr+1] = 0;
647 data[hdr+2] = 0;
648 data[hdr+7] = 0;
649 addr = cellOffset+2*nCell;
650 memset(&data[addr], 0, brk-addr);
drh365d68f2001-05-11 11:02:46 +0000651}
652
drha059ad02001-04-17 20:09:11 +0000653/*
drh43605152004-05-29 21:46:49 +0000654** Allocate nByte bytes of space on a page.
drhbd03cae2001-06-02 02:40:57 +0000655**
drh9e572e62004-04-23 23:43:10 +0000656** Return the index into pPage->aData[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000657** the new allocation. Or return 0 if there is not enough free
658** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000659**
drh72f82862001-05-24 21:06:34 +0000660** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000661** nBytes of contiguous free space, then this routine automatically
662** calls defragementPage() to consolidate all free space before
663** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000664*/
drh9e572e62004-04-23 23:43:10 +0000665static int allocateSpace(MemPage *pPage, int nByte){
drh3aac2dd2004-04-26 14:10:20 +0000666 int addr, pc, hdr;
drh9e572e62004-04-23 23:43:10 +0000667 int size;
drh24cd67e2004-05-10 16:18:47 +0000668 int nFrag;
drh43605152004-05-29 21:46:49 +0000669 int top;
670 int nCell;
671 int cellOffset;
drh9e572e62004-04-23 23:43:10 +0000672 unsigned char *data;
drh43605152004-05-29 21:46:49 +0000673
drh9e572e62004-04-23 23:43:10 +0000674 data = pPage->aData;
drha34b6762004-05-07 13:30:42 +0000675 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000676 assert( pPage->pBt );
677 if( nByte<4 ) nByte = 4;
drh43605152004-05-29 21:46:49 +0000678 if( pPage->nFree<nByte || pPage->nOverflow>0 ) return 0;
679 pPage->nFree -= nByte;
drh9e572e62004-04-23 23:43:10 +0000680 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +0000681
682 nFrag = data[hdr+7];
683 if( nFrag<60 ){
684 /* Search the freelist looking for a slot big enough to satisfy the
685 ** space request. */
686 addr = hdr+1;
687 while( (pc = get2byte(&data[addr]))>0 ){
688 size = get2byte(&data[pc+2]);
689 if( size>=nByte ){
690 if( size<nByte+4 ){
691 memcpy(&data[addr], &data[pc], 2);
692 data[hdr+7] = nFrag + size - nByte;
693 return pc;
694 }else{
695 put2byte(&data[pc+2], size-nByte);
696 return pc + size - nByte;
697 }
698 }
699 addr = pc;
drh9e572e62004-04-23 23:43:10 +0000700 }
701 }
drh43605152004-05-29 21:46:49 +0000702
703 /* Allocate memory from the gap in between the cell pointer array
704 ** and the cell content area.
705 */
706 top = get2byte(&data[hdr+5]);
707 nCell = get2byte(&data[hdr+3]);
708 cellOffset = pPage->cellOffset;
709 if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){
710 defragmentPage(pPage);
711 top = get2byte(&data[hdr+5]);
drh2af926b2001-05-15 00:39:25 +0000712 }
drh43605152004-05-29 21:46:49 +0000713 top -= nByte;
714 assert( cellOffset + 2*nCell <= top );
715 put2byte(&data[hdr+5], top);
716 return top;
drh7e3b0a02001-04-28 16:52:40 +0000717}
718
719/*
drh9e572e62004-04-23 23:43:10 +0000720** Return a section of the pPage->aData to the freelist.
721** The first byte of the new free block is pPage->aDisk[start]
722** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +0000723**
724** Most of the effort here is involved in coalesing adjacent
725** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000726*/
drh9e572e62004-04-23 23:43:10 +0000727static void freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +0000728 int addr, pbegin, hdr;
drh9e572e62004-04-23 23:43:10 +0000729 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +0000730
drh9e572e62004-04-23 23:43:10 +0000731 assert( pPage->pBt!=0 );
drha34b6762004-05-07 13:30:42 +0000732 assert( sqlite3pager_iswriteable(data) );
drh9e572e62004-04-23 23:43:10 +0000733 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +0000734 assert( (start + size)<=pPage->pBt->usableSize );
drh9e572e62004-04-23 23:43:10 +0000735 if( size<4 ) size = 4;
736
737 /* Add the space back into the linked list of freeblocks */
drh43605152004-05-29 21:46:49 +0000738 hdr = pPage->hdrOffset;
739 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +0000740 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drhb6f41482004-05-14 01:58:11 +0000741 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000742 assert( pbegin>addr );
743 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +0000744 }
drhb6f41482004-05-14 01:58:11 +0000745 assert( pbegin<=pPage->pBt->usableSize-4 );
drh3aac2dd2004-04-26 14:10:20 +0000746 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +0000747 put2byte(&data[addr], start);
748 put2byte(&data[start], pbegin);
749 put2byte(&data[start+2], size);
drh2af926b2001-05-15 00:39:25 +0000750 pPage->nFree += size;
drh9e572e62004-04-23 23:43:10 +0000751
752 /* Coalesce adjacent free blocks */
drh3aac2dd2004-04-26 14:10:20 +0000753 addr = pPage->hdrOffset + 1;
754 while( (pbegin = get2byte(&data[addr]))>0 ){
drh9e572e62004-04-23 23:43:10 +0000755 int pnext, psize;
drh3aac2dd2004-04-26 14:10:20 +0000756 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +0000757 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +0000758 pnext = get2byte(&data[pbegin]);
759 psize = get2byte(&data[pbegin+2]);
760 if( pbegin + psize + 3 >= pnext && pnext>0 ){
761 int frag = pnext - (pbegin+psize);
drh43605152004-05-29 21:46:49 +0000762 assert( frag<=data[pPage->hdrOffset+7] );
763 data[pPage->hdrOffset+7] -= frag;
drh9e572e62004-04-23 23:43:10 +0000764 put2byte(&data[pbegin], get2byte(&data[pnext]));
765 put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin);
766 }else{
drh3aac2dd2004-04-26 14:10:20 +0000767 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +0000768 }
769 }
drh7e3b0a02001-04-28 16:52:40 +0000770
drh43605152004-05-29 21:46:49 +0000771 /* If the cell content area begins with a freeblock, remove it. */
772 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
773 int top;
774 pbegin = get2byte(&data[hdr+1]);
775 memcpy(&data[hdr+1], &data[pbegin], 2);
776 top = get2byte(&data[hdr+5]);
777 put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2]));
drh4b70f112004-05-02 21:12:19 +0000778 }
drh4b70f112004-05-02 21:12:19 +0000779}
780
781/*
drh271efa52004-05-30 19:19:05 +0000782** Decode the flags byte (the first byte of the header) for a page
783** and initialize fields of the MemPage structure accordingly.
784*/
785static void decodeFlags(MemPage *pPage, int flagByte){
786 Btree *pBt; /* A copy of pPage->pBt */
787
788 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
789 pPage->intKey = (flagByte & (PTF_INTKEY|PTF_LEAFDATA))!=0;
790 pPage->zeroData = (flagByte & PTF_ZERODATA)!=0;
791 pPage->leaf = (flagByte & PTF_LEAF)!=0;
792 pPage->childPtrSize = 4*(pPage->leaf==0);
793 pBt = pPage->pBt;
794 if( flagByte & PTF_LEAFDATA ){
795 pPage->leafData = 1;
796 pPage->maxLocal = pBt->maxLeaf;
797 pPage->minLocal = pBt->minLeaf;
798 }else{
799 pPage->leafData = 0;
800 pPage->maxLocal = pBt->maxLocal;
801 pPage->minLocal = pBt->minLocal;
802 }
803 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
804}
805
806/*
drh7e3b0a02001-04-28 16:52:40 +0000807** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000808**
drhbd03cae2001-06-02 02:40:57 +0000809** The pParent parameter must be a pointer to the MemPage which
drh9e572e62004-04-23 23:43:10 +0000810** is the parent of the page being initialized. The root of a
811** BTree has no parent and so for that page, pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000812**
drh72f82862001-05-24 21:06:34 +0000813** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +0000814** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +0000815** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
816** guarantee that the page is well-formed. It only shows that
817** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000818*/
drh9e572e62004-04-23 23:43:10 +0000819static int initPage(
drh3aac2dd2004-04-26 14:10:20 +0000820 MemPage *pPage, /* The page to be initialized */
drh9e572e62004-04-23 23:43:10 +0000821 MemPage *pParent /* The parent. Might be NULL */
822){
drh271efa52004-05-30 19:19:05 +0000823 int pc; /* Address of a freeblock within pPage->aData[] */
824 int i; /* Loop counter */
825 int hdr; /* Offset to beginning of page header */
826 u8 *data; /* Equal to pPage->aData */
827 int usableSize; /* Amount of usable space on each page */
828 int cellOffset; /* Offset from start of page to first cell pointer */
829 int nFree; /* Number of unused bytes on the page */
830 int top; /* First byte of the cell content area */
drh2af926b2001-05-15 00:39:25 +0000831
drh3aac2dd2004-04-26 14:10:20 +0000832 assert( pPage->pBt!=0 );
drh4b70f112004-05-02 21:12:19 +0000833 assert( pParent==0 || pParent->pBt==pPage->pBt );
drha34b6762004-05-07 13:30:42 +0000834 assert( pPage->pgno==sqlite3pager_pagenumber(pPage->aData) );
drhde647132004-05-07 17:57:49 +0000835 assert( pPage->aData == &((unsigned char*)pPage)[-pPage->pBt->pageSize] );
drhda200cc2004-05-09 11:51:38 +0000836 assert( pPage->pParent==0 || pPage->pParent==pParent );
drh10617cd2004-05-14 15:27:27 +0000837 assert( pPage->pParent==pParent || !pPage->isInit );
838 if( pPage->isInit ) return SQLITE_OK;
drhda200cc2004-05-09 11:51:38 +0000839 if( pPage->pParent==0 && pParent!=0 ){
840 pPage->pParent = pParent;
drha34b6762004-05-07 13:30:42 +0000841 sqlite3pager_ref(pParent->aData);
drh5e2f8b92001-05-28 00:41:15 +0000842 }
drhde647132004-05-07 17:57:49 +0000843 hdr = pPage->hdrOffset;
drha34b6762004-05-07 13:30:42 +0000844 data = pPage->aData;
drh271efa52004-05-30 19:19:05 +0000845 decodeFlags(pPage, data[hdr]);
drh43605152004-05-29 21:46:49 +0000846 pPage->nOverflow = 0;
drhc8629a12004-05-08 20:07:40 +0000847 pPage->idxShift = 0;
drhb6f41482004-05-14 01:58:11 +0000848 usableSize = pPage->pBt->usableSize;
drh43605152004-05-29 21:46:49 +0000849 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
850 top = get2byte(&data[hdr+5]);
851 pPage->nCell = get2byte(&data[hdr+3]);
drh9e572e62004-04-23 23:43:10 +0000852
853 /* Compute the total free space on the page */
drh9e572e62004-04-23 23:43:10 +0000854 pc = get2byte(&data[hdr+1]);
drh43605152004-05-29 21:46:49 +0000855 nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell);
drh3add3672004-05-15 00:29:24 +0000856 i = 0;
drh9e572e62004-04-23 23:43:10 +0000857 while( pc>0 ){
858 int next, size;
drhb6f41482004-05-14 01:58:11 +0000859 if( pc>=usableSize ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000860 if( i++>MX_PAGE_SIZE ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000861 next = get2byte(&data[pc]);
862 size = get2byte(&data[pc+2]);
drh3aac2dd2004-04-26 14:10:20 +0000863 if( next>0 && next<=pc+size+3 ) return SQLITE_CORRUPT;
drh3add3672004-05-15 00:29:24 +0000864 nFree += size;
drh9e572e62004-04-23 23:43:10 +0000865 pc = next;
866 }
drh3add3672004-05-15 00:29:24 +0000867 pPage->nFree = nFree;
868 if( nFree>=usableSize ) return SQLITE_CORRUPT;
drh9e572e62004-04-23 23:43:10 +0000869
drhde647132004-05-07 17:57:49 +0000870 pPage->isInit = 1;
drhda200cc2004-05-09 11:51:38 +0000871 pageIntegrity(pPage);
drh9e572e62004-04-23 23:43:10 +0000872 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000873}
874
875/*
drh8b2f49b2001-06-08 00:21:52 +0000876** Set up a raw page so that it looks like a database page holding
877** no entries.
drhbd03cae2001-06-02 02:40:57 +0000878*/
drh9e572e62004-04-23 23:43:10 +0000879static void zeroPage(MemPage *pPage, int flags){
880 unsigned char *data = pPage->aData;
881 Btree *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +0000882 int hdr = pPage->hdrOffset;
drh9e572e62004-04-23 23:43:10 +0000883 int first;
884
drhda200cc2004-05-09 11:51:38 +0000885 assert( sqlite3pager_pagenumber(data)==pPage->pgno );
886 assert( &data[pBt->pageSize] == (unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000887 assert( sqlite3pager_iswriteable(data) );
drhb6f41482004-05-14 01:58:11 +0000888 memset(&data[hdr], 0, pBt->usableSize - hdr);
drh9e572e62004-04-23 23:43:10 +0000889 data[hdr] = flags;
drh43605152004-05-29 21:46:49 +0000890 first = hdr + 8 + 4*((flags&PTF_LEAF)==0);
891 memset(&data[hdr+1], 0, 4);
892 data[hdr+7] = 0;
893 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +0000894 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +0000895 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +0000896 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +0000897 pPage->cellOffset = first;
898 pPage->nOverflow = 0;
drhda200cc2004-05-09 11:51:38 +0000899 pPage->idxShift = 0;
drh43605152004-05-29 21:46:49 +0000900 pPage->nCell = 0;
drhda200cc2004-05-09 11:51:38 +0000901 pPage->isInit = 1;
902 pageIntegrity(pPage);
drhbd03cae2001-06-02 02:40:57 +0000903}
904
905/*
drh3aac2dd2004-04-26 14:10:20 +0000906** Get a page from the pager. Initialize the MemPage.pBt and
907** MemPage.aData elements if needed.
908*/
909static int getPage(Btree *pBt, Pgno pgno, MemPage **ppPage){
910 int rc;
911 unsigned char *aData;
912 MemPage *pPage;
drha34b6762004-05-07 13:30:42 +0000913 rc = sqlite3pager_get(pBt->pPager, pgno, (void**)&aData);
drh3aac2dd2004-04-26 14:10:20 +0000914 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +0000915 pPage = (MemPage*)&aData[pBt->pageSize];
drh3aac2dd2004-04-26 14:10:20 +0000916 pPage->aData = aData;
917 pPage->pBt = pBt;
918 pPage->pgno = pgno;
drhde647132004-05-07 17:57:49 +0000919 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
drh3aac2dd2004-04-26 14:10:20 +0000920 *ppPage = pPage;
921 return SQLITE_OK;
922}
923
924/*
drhde647132004-05-07 17:57:49 +0000925** Get a page from the pager and initialize it. This routine
926** is just a convenience wrapper around separate calls to
927** getPage() and initPage().
928*/
929static int getAndInitPage(
930 Btree *pBt, /* The database file */
931 Pgno pgno, /* Number of the page to get */
932 MemPage **ppPage, /* Write the page pointer here */
933 MemPage *pParent /* Parent of the page */
934){
935 int rc;
936 rc = getPage(pBt, pgno, ppPage);
drh10617cd2004-05-14 15:27:27 +0000937 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
drhde647132004-05-07 17:57:49 +0000938 rc = initPage(*ppPage, pParent);
939 }
940 return rc;
941}
942
943/*
drh3aac2dd2004-04-26 14:10:20 +0000944** Release a MemPage. This should be called once for each prior
945** call to getPage.
946*/
drh4b70f112004-05-02 21:12:19 +0000947static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +0000948 if( pPage ){
949 assert( pPage->aData );
950 assert( pPage->pBt );
951 assert( &pPage->aData[pPage->pBt->pageSize]==(unsigned char*)pPage );
drha34b6762004-05-07 13:30:42 +0000952 sqlite3pager_unref(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +0000953 }
954}
955
956/*
drh72f82862001-05-24 21:06:34 +0000957** This routine is called when the reference count for a page
958** reaches zero. We need to unref the pParent pointer when that
959** happens.
960*/
drhb6f41482004-05-14 01:58:11 +0000961static void pageDestructor(void *pData, int pageSize){
962 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
drh72f82862001-05-24 21:06:34 +0000963 if( pPage->pParent ){
964 MemPage *pParent = pPage->pParent;
965 pPage->pParent = 0;
drha34b6762004-05-07 13:30:42 +0000966 releasePage(pParent);
drh72f82862001-05-24 21:06:34 +0000967 }
drh3aac2dd2004-04-26 14:10:20 +0000968 pPage->isInit = 0;
drh72f82862001-05-24 21:06:34 +0000969}
970
971/*
drha6abd042004-06-09 17:37:22 +0000972** During a rollback, when the pager reloads information into the cache
973** so that the cache is restored to its original state at the start of
974** the transaction, for each page restored this routine is called.
975**
976** This routine needs to reset the extra data section at the end of the
977** page to agree with the restored data.
978*/
979static void pageReinit(void *pData, int pageSize){
980 MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
981 if( pPage->isInit ){
982 pPage->isInit = 0;
983 initPage(pPage, pPage->pParent);
984 }
985}
986
987/*
drh306dc212001-05-21 13:45:10 +0000988** Open a new database.
989**
990** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000991** for accessing the database. We do not open the database file
992** until the first page is loaded.
drh382c0242001-10-06 16:33:02 +0000993**
994** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +0000995** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +0000996** database file will be deleted when sqlite3BtreeClose() is called.
drha059ad02001-04-17 20:09:11 +0000997*/
drh23e11ca2004-05-04 17:27:28 +0000998int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +0000999 const char *zFilename, /* Name of the file containing the BTree database */
1000 Btree **ppBtree, /* Pointer to new Btree object written here */
1001 int nCache, /* Number of cache pages */
danielk197724162fe2004-06-04 06:22:00 +00001002 int flags, /* Options */
1003 void *pBusyHandler /* Busy callback info passed to pager layer */
drh6019e162001-07-02 17:51:45 +00001004){
drha059ad02001-04-17 20:09:11 +00001005 Btree *pBt;
drha34b6762004-05-07 13:30:42 +00001006 int rc;
drha059ad02001-04-17 20:09:11 +00001007
drhd62d3d02003-01-24 12:14:20 +00001008 /*
1009 ** The following asserts make sure that structures used by the btree are
1010 ** the right size. This is to guard against size changes that result
1011 ** when compiling on a different architecture.
1012 */
drh4a1c3802004-05-12 15:15:47 +00001013 assert( sizeof(i64)==8 );
drh9e572e62004-04-23 23:43:10 +00001014 assert( sizeof(u64)==8 );
drhd62d3d02003-01-24 12:14:20 +00001015 assert( sizeof(u32)==4 );
1016 assert( sizeof(u16)==2 );
1017 assert( sizeof(Pgno)==4 );
drhd62d3d02003-01-24 12:14:20 +00001018 assert( sizeof(ptr)==sizeof(char*) );
1019 assert( sizeof(uptr)==sizeof(ptr) );
1020
drha059ad02001-04-17 20:09:11 +00001021 pBt = sqliteMalloc( sizeof(*pBt) );
1022 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +00001023 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +00001024 return SQLITE_NOMEM;
1025 }
drh6019e162001-07-02 17:51:45 +00001026 if( nCache<10 ) nCache = 10;
drha34b6762004-05-07 13:30:42 +00001027 rc = sqlite3pager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE,
danielk197724162fe2004-06-04 06:22:00 +00001028 (flags & BTREE_OMIT_JOURNAL)==0, pBusyHandler);
drha059ad02001-04-17 20:09:11 +00001029 if( rc!=SQLITE_OK ){
drha34b6762004-05-07 13:30:42 +00001030 if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001031 sqliteFree(pBt);
1032 *ppBtree = 0;
1033 return rc;
1034 }
drha34b6762004-05-07 13:30:42 +00001035 sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
drha6abd042004-06-09 17:37:22 +00001036 sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
drha059ad02001-04-17 20:09:11 +00001037 pBt->pCursor = 0;
drha34b6762004-05-07 13:30:42 +00001038 pBt->pPage1 = 0;
1039 pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
drh4b70f112004-05-02 21:12:19 +00001040 pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */
drhb6f41482004-05-14 01:58:11 +00001041 pBt->usableSize = pBt->pageSize;
drh6f11bef2004-05-13 01:12:56 +00001042 pBt->maxEmbedFrac = 64; /* FIX ME - read from header */
1043 pBt->minEmbedFrac = 32; /* FIX ME - read from header */
1044 pBt->minLeafFrac = 32; /* FIX ME - read from header */
drh3a4c1412004-05-09 20:40:11 +00001045
drha059ad02001-04-17 20:09:11 +00001046 *ppBtree = pBt;
1047 return SQLITE_OK;
1048}
1049
1050/*
1051** Close an open database and invalidate all cursors.
1052*/
drh3aac2dd2004-04-26 14:10:20 +00001053int sqlite3BtreeClose(Btree *pBt){
drha059ad02001-04-17 20:09:11 +00001054 while( pBt->pCursor ){
drh3aac2dd2004-04-26 14:10:20 +00001055 sqlite3BtreeCloseCursor(pBt->pCursor);
drha059ad02001-04-17 20:09:11 +00001056 }
drha34b6762004-05-07 13:30:42 +00001057 sqlite3pager_close(pBt->pPager);
drha059ad02001-04-17 20:09:11 +00001058 sqliteFree(pBt);
1059 return SQLITE_OK;
1060}
1061
1062/*
drhda47d772002-12-02 04:25:19 +00001063** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001064**
1065** The maximum number of cache pages is set to the absolute
1066** value of mxPage. If mxPage is negative, the pager will
1067** operate asynchronously - it will not stop to do fsync()s
1068** to insure data is written to the disk surface before
1069** continuing. Transactions still work if synchronous is off,
1070** and the database cannot be corrupted if this program
1071** crashes. But if the operating system crashes or there is
1072** an abrupt power failure when synchronous is off, the database
1073** could be left in an inconsistent and unrecoverable state.
1074** Synchronous is on by default so database corruption is not
1075** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00001076*/
drh23e11ca2004-05-04 17:27:28 +00001077int sqlite3BtreeSetCacheSize(Btree *pBt, int mxPage){
drha34b6762004-05-07 13:30:42 +00001078 sqlite3pager_set_cachesize(pBt->pPager, mxPage);
drhf57b14a2001-09-14 18:54:08 +00001079 return SQLITE_OK;
1080}
1081
1082/*
drh973b6e32003-02-12 14:09:42 +00001083** Change the way data is synced to disk in order to increase or decrease
1084** how well the database resists damage due to OS crashes and power
1085** failures. Level 1 is the same as asynchronous (no syncs() occur and
1086** there is a high probability of damage) Level 2 is the default. There
1087** is a very low but non-zero probability of damage. Level 3 reduces the
1088** probability of damage to near zero but with a write performance reduction.
1089*/
drh3aac2dd2004-04-26 14:10:20 +00001090int sqlite3BtreeSetSafetyLevel(Btree *pBt, int level){
drha34b6762004-05-07 13:30:42 +00001091 sqlite3pager_set_safety_level(pBt->pPager, level);
drh973b6e32003-02-12 14:09:42 +00001092 return SQLITE_OK;
1093}
1094
1095/*
drha34b6762004-05-07 13:30:42 +00001096** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00001097** also acquire a readlock on that file.
1098**
1099** SQLITE_OK is returned on success. If the file is not a
1100** well-formed database file, then SQLITE_CORRUPT is returned.
1101** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
1102** is returned if we run out of memory. SQLITE_PROTOCOL is returned
1103** if there is a locking protocol violation.
1104*/
1105static int lockBtree(Btree *pBt){
1106 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001107 MemPage *pPage1;
drha34b6762004-05-07 13:30:42 +00001108 if( pBt->pPage1 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001109 rc = getPage(pBt, 1, &pPage1);
drh306dc212001-05-21 13:45:10 +00001110 if( rc!=SQLITE_OK ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00001111
drh306dc212001-05-21 13:45:10 +00001112
1113 /* Do some checking to help insure the file we opened really is
1114 ** a valid database file.
1115 */
drhb6f41482004-05-14 01:58:11 +00001116 rc = SQLITE_NOTADB;
drha34b6762004-05-07 13:30:42 +00001117 if( sqlite3pager_pagecount(pBt->pPager)>0 ){
drhb6f41482004-05-14 01:58:11 +00001118 u8 *page1 = pPage1->aData;
1119 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00001120 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00001121 }
drhb6f41482004-05-14 01:58:11 +00001122 if( page1[18]>1 || page1[19]>1 ){
1123 goto page1_init_failed;
1124 }
1125 pBt->pageSize = get2byte(&page1[16]);
1126 pBt->usableSize = pBt->pageSize - page1[20];
1127 if( pBt->usableSize<500 ){
1128 goto page1_init_failed;
1129 }
1130 pBt->maxEmbedFrac = page1[21];
1131 pBt->minEmbedFrac = page1[22];
1132 pBt->minLeafFrac = page1[23];
drh306dc212001-05-21 13:45:10 +00001133 }
drhb6f41482004-05-14 01:58:11 +00001134
1135 /* maxLocal is the maximum amount of payload to store locally for
1136 ** a cell. Make sure it is small enough so that at least minFanout
1137 ** cells can will fit on one page. We assume a 10-byte page header.
1138 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00001139 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00001140 ** 4-byte child pointer
1141 ** 9-byte nKey value
1142 ** 4-byte nData value
1143 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00001144 ** So a cell consists of a 2-byte poiner, a header which is as much as
1145 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
1146 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00001147 */
drh43605152004-05-29 21:46:49 +00001148 pBt->maxLocal = (pBt->usableSize-12)*pBt->maxEmbedFrac/255 - 23;
1149 pBt->minLocal = (pBt->usableSize-12)*pBt->minEmbedFrac/255 - 23;
1150 pBt->maxLeaf = pBt->usableSize - 35;
1151 pBt->minLeaf = (pBt->usableSize-12)*pBt->minLeafFrac/255 - 23;
drhb6f41482004-05-14 01:58:11 +00001152 if( pBt->minLocal>pBt->maxLocal || pBt->maxLocal<0 ){
1153 goto page1_init_failed;
1154 }
1155 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE );
drh3aac2dd2004-04-26 14:10:20 +00001156 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00001157 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00001158
drh72f82862001-05-24 21:06:34 +00001159page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00001160 releasePage(pPage1);
1161 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00001162 return rc;
drh306dc212001-05-21 13:45:10 +00001163}
1164
1165/*
drhb8ca3072001-12-05 00:21:20 +00001166** If there are no outstanding cursors and we are not in the middle
1167** of a transaction but there is a read lock on the database, then
1168** this routine unrefs the first page of the database file which
1169** has the effect of releasing the read lock.
1170**
1171** If there are any outstanding cursors, this routine is a no-op.
1172**
1173** If there is a transaction in progress, this routine is a no-op.
1174*/
1175static void unlockBtreeIfUnused(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001176 if( pBt->inTrans==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){
drh51c6d962004-06-06 00:42:25 +00001177 if( pBt->pPage1->aData==0 ){
1178 MemPage *pPage = pBt->pPage1;
1179 pPage->aData = &((char*)pPage)[-pBt->pageSize];
1180 pPage->pBt = pBt;
1181 pPage->pgno = 1;
1182 }
drh3aac2dd2004-04-26 14:10:20 +00001183 releasePage(pBt->pPage1);
1184 pBt->pPage1 = 0;
drh3aac2dd2004-04-26 14:10:20 +00001185 pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001186 }
1187}
1188
1189/*
drh9e572e62004-04-23 23:43:10 +00001190** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00001191** file.
drh8b2f49b2001-06-08 00:21:52 +00001192*/
1193static int newDatabase(Btree *pBt){
drh9e572e62004-04-23 23:43:10 +00001194 MemPage *pP1;
1195 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00001196 int rc;
drhde647132004-05-07 17:57:49 +00001197 if( sqlite3pager_pagecount(pBt->pPager)>0 ) return SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00001198 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00001199 assert( pP1!=0 );
1200 data = pP1->aData;
drha34b6762004-05-07 13:30:42 +00001201 rc = sqlite3pager_write(data);
drh8b2f49b2001-06-08 00:21:52 +00001202 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00001203 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
1204 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00001205 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00001206 data[18] = 1;
1207 data[19] = 1;
drhb6f41482004-05-14 01:58:11 +00001208 data[20] = pBt->pageSize - pBt->usableSize;
1209 data[21] = pBt->maxEmbedFrac;
1210 data[22] = pBt->minEmbedFrac;
1211 data[23] = pBt->minLeafFrac;
1212 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00001213 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drh8b2f49b2001-06-08 00:21:52 +00001214 return SQLITE_OK;
1215}
1216
1217/*
danielk1977ee5741e2004-05-31 10:01:34 +00001218** Attempt to start a new transaction. A write-transaction
1219** is started if the second argument is true, otherwise a read-
1220** transaction.
drh8b2f49b2001-06-08 00:21:52 +00001221**
danielk1977ee5741e2004-05-31 10:01:34 +00001222** A write-transaction must be started before attempting any
1223** changes to the database. None of the following routines
1224** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00001225**
drh23e11ca2004-05-04 17:27:28 +00001226** sqlite3BtreeCreateTable()
1227** sqlite3BtreeCreateIndex()
1228** sqlite3BtreeClearTable()
1229** sqlite3BtreeDropTable()
1230** sqlite3BtreeInsert()
1231** sqlite3BtreeDelete()
1232** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00001233**
1234** If wrflag is true, then nMaster specifies the maximum length of
1235** a master journal file name supplied later via sqlite3BtreeSync().
1236** This is so that appropriate space can be allocated in the journal file
1237** when it is created..
drha059ad02001-04-17 20:09:11 +00001238*/
danielk197740b38dc2004-06-26 08:38:24 +00001239int sqlite3BtreeBeginTrans(Btree *pBt, int wrflag){
danielk1977ee5741e2004-05-31 10:01:34 +00001240 int rc = SQLITE_OK;
1241
1242 /* If the btree is already in a write-transaction, or it
1243 ** is already in a read-transaction and a read-transaction
1244 ** is requested, this is a no-op.
1245 */
1246 if( pBt->inTrans==TRANS_WRITE ||
1247 (pBt->inTrans==TRANS_READ && !wrflag) ){
1248 return SQLITE_OK;
1249 }
1250 if( pBt->readOnly && wrflag ){
1251 return SQLITE_READONLY;
1252 }
1253
drh3aac2dd2004-04-26 14:10:20 +00001254 if( pBt->pPage1==0 ){
drh7e3b0a02001-04-28 16:52:40 +00001255 rc = lockBtree(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00001256 }
1257
1258 if( rc==SQLITE_OK && wrflag ){
danielk197740b38dc2004-06-26 08:38:24 +00001259 rc = sqlite3pager_begin(pBt->pPage1->aData);
danielk1977ee5741e2004-05-31 10:01:34 +00001260 if( rc==SQLITE_OK ){
1261 rc = newDatabase(pBt);
drh8c42ca92001-06-22 19:15:00 +00001262 }
drha059ad02001-04-17 20:09:11 +00001263 }
danielk1977ee5741e2004-05-31 10:01:34 +00001264
drhf74b8d92002-09-01 23:20:45 +00001265 if( rc==SQLITE_OK ){
danielk1977ee5741e2004-05-31 10:01:34 +00001266 pBt->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
1267 if( wrflag ) pBt->inStmt = 0;
drhb8ca3072001-12-05 00:21:20 +00001268 }else{
1269 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001270 }
drhb8ca3072001-12-05 00:21:20 +00001271 return rc;
drha059ad02001-04-17 20:09:11 +00001272}
1273
1274/*
drh2aa679f2001-06-25 02:11:07 +00001275** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00001276**
1277** This will release the write lock on the database file. If there
1278** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001279*/
drh3aac2dd2004-04-26 14:10:20 +00001280int sqlite3BtreeCommit(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00001281 int rc = SQLITE_OK;
1282 if( pBt->inTrans==TRANS_WRITE ){
1283 rc = sqlite3pager_commit(pBt->pPager);
1284 }
1285 pBt->inTrans = TRANS_NONE;
drh3aac2dd2004-04-26 14:10:20 +00001286 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001287 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001288 return rc;
1289}
1290
danielk1977fbcd5852004-06-15 02:44:18 +00001291#ifndef NDEBUG
1292/*
1293** Return the number of write-cursors open on this handle. This is for use
1294** in assert() expressions, so it is only compiled if NDEBUG is not
1295** defined.
1296*/
1297static int countWriteCursors(Btree *pBt){
1298 BtCursor *pCur;
1299 int r = 0;
1300 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1301 if( pCur->wrFlag ) r++;
1302 }
1303 return r;
1304}
1305#endif
1306
1307#if 0
drha059ad02001-04-17 20:09:11 +00001308/*
drhc39e0002004-05-07 23:50:57 +00001309** Invalidate all cursors
1310*/
1311static void invalidateCursors(Btree *pBt){
1312 BtCursor *pCur;
1313 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1314 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001315 if( pPage /* && !pPage->isInit */ ){
1316 pageIntegrity(pPage);
drhc39e0002004-05-07 23:50:57 +00001317 releasePage(pPage);
1318 pCur->pPage = 0;
1319 pCur->isValid = 0;
1320 pCur->status = SQLITE_ABORT;
1321 }
1322 }
1323}
danielk1977fbcd5852004-06-15 02:44:18 +00001324#endif
drhc39e0002004-05-07 23:50:57 +00001325
drhda200cc2004-05-09 11:51:38 +00001326#ifdef SQLITE_TEST
1327/*
1328** Print debugging information about all cursors to standard output.
1329*/
1330void sqlite3BtreeCursorList(Btree *pBt){
1331 BtCursor *pCur;
1332 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
1333 MemPage *pPage = pCur->pPage;
1334 char *zMode = pCur->wrFlag ? "rw" : "ro";
1335 printf("CURSOR %08x rooted at %4d(%s) currently at %d.%d%s\n",
1336 (int)pCur, pCur->pgnoRoot, zMode,
1337 pPage ? pPage->pgno : 0, pCur->idx,
1338 pCur->isValid ? "" : " eof"
1339 );
1340 }
1341}
1342#endif
1343
drhc39e0002004-05-07 23:50:57 +00001344/*
drhecdc7532001-09-23 02:35:53 +00001345** Rollback the transaction in progress. All cursors will be
1346** invalided by this operation. Any attempt to use a cursor
1347** that was open at the beginning of this operation will result
1348** in an error.
drh5e00f6c2001-09-13 13:46:56 +00001349**
1350** This will release the write lock on the database file. If there
1351** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00001352*/
drh3aac2dd2004-04-26 14:10:20 +00001353int sqlite3BtreeRollback(Btree *pBt){
danielk1977cfe9a692004-06-16 12:00:29 +00001354 int rc = SQLITE_OK;
drh24cd67e2004-05-10 16:18:47 +00001355 MemPage *pPage1;
danielk1977ee5741e2004-05-31 10:01:34 +00001356 if( pBt->inTrans==TRANS_WRITE ){
drh24cd67e2004-05-10 16:18:47 +00001357 rc = sqlite3pager_rollback(pBt->pPager);
1358 /* The rollback may have destroyed the pPage1->aData value. So
1359 ** call getPage() on page 1 again to make sure pPage1->aData is
1360 ** set correctly. */
1361 if( getPage(pBt, 1, &pPage1)==SQLITE_OK ){
1362 releasePage(pPage1);
1363 }
danielk1977fbcd5852004-06-15 02:44:18 +00001364 assert( countWriteCursors(pBt)==0 );
drh24cd67e2004-05-10 16:18:47 +00001365 }
danielk1977ee5741e2004-05-31 10:01:34 +00001366 pBt->inTrans = TRANS_NONE;
1367 pBt->inStmt = 0;
drh5e00f6c2001-09-13 13:46:56 +00001368 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001369 return rc;
1370}
1371
1372/*
drhab01f612004-05-22 02:55:23 +00001373** Start a statement subtransaction. The subtransaction can
1374** can be rolled back independently of the main transaction.
1375** You must start a transaction before starting a subtransaction.
1376** The subtransaction is ended automatically if the main transaction
drh663fc632002-02-02 18:49:19 +00001377** commits or rolls back.
1378**
drhab01f612004-05-22 02:55:23 +00001379** Only one subtransaction may be active at a time. It is an error to try
1380** to start a new subtransaction if another subtransaction is already active.
1381**
1382** Statement subtransactions are used around individual SQL statements
1383** that are contained within a BEGIN...COMMIT block. If a constraint
1384** error occurs within the statement, the effect of that one statement
1385** can be rolled back without having to rollback the entire transaction.
drh663fc632002-02-02 18:49:19 +00001386*/
drh3aac2dd2004-04-26 14:10:20 +00001387int sqlite3BtreeBeginStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001388 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00001389 if( (pBt->inTrans!=TRANS_WRITE) || pBt->inStmt ){
drhf74b8d92002-09-01 23:20:45 +00001390 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh0d65dc02002-02-03 00:56:09 +00001391 }
drha34b6762004-05-07 13:30:42 +00001392 rc = pBt->readOnly ? SQLITE_OK : sqlite3pager_stmt_begin(pBt->pPager);
drh3aac2dd2004-04-26 14:10:20 +00001393 pBt->inStmt = 1;
drh663fc632002-02-02 18:49:19 +00001394 return rc;
1395}
1396
1397
1398/*
drhab01f612004-05-22 02:55:23 +00001399** Commit the statment subtransaction currently in progress. If no
1400** subtransaction is active, this is a no-op.
drh663fc632002-02-02 18:49:19 +00001401*/
drh3aac2dd2004-04-26 14:10:20 +00001402int sqlite3BtreeCommitStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001403 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001404 if( pBt->inStmt && !pBt->readOnly ){
drha34b6762004-05-07 13:30:42 +00001405 rc = sqlite3pager_stmt_commit(pBt->pPager);
drh663fc632002-02-02 18:49:19 +00001406 }else{
1407 rc = SQLITE_OK;
1408 }
drh3aac2dd2004-04-26 14:10:20 +00001409 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001410 return rc;
1411}
1412
1413/*
drhab01f612004-05-22 02:55:23 +00001414** Rollback the active statement subtransaction. If no subtransaction
1415** is active this routine is a no-op.
drh663fc632002-02-02 18:49:19 +00001416**
drhab01f612004-05-22 02:55:23 +00001417** All cursors will be invalidated by this operation. Any attempt
drh663fc632002-02-02 18:49:19 +00001418** to use a cursor that was open at the beginning of this operation
1419** will result in an error.
1420*/
drh3aac2dd2004-04-26 14:10:20 +00001421int sqlite3BtreeRollbackStmt(Btree *pBt){
drh663fc632002-02-02 18:49:19 +00001422 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001423 if( pBt->inStmt==0 || pBt->readOnly ) return SQLITE_OK;
drha34b6762004-05-07 13:30:42 +00001424 rc = sqlite3pager_stmt_rollback(pBt->pPager);
danielk1977fbcd5852004-06-15 02:44:18 +00001425 assert( countWriteCursors(pBt)==0 );
drh3aac2dd2004-04-26 14:10:20 +00001426 pBt->inStmt = 0;
drh663fc632002-02-02 18:49:19 +00001427 return rc;
1428}
1429
1430/*
drh3aac2dd2004-04-26 14:10:20 +00001431** Default key comparison function to be used if no comparison function
1432** is specified on the sqlite3BtreeCursor() call.
1433*/
1434static int dfltCompare(
1435 void *NotUsed, /* User data is not used */
1436 int n1, const void *p1, /* First key to compare */
1437 int n2, const void *p2 /* Second key to compare */
1438){
1439 int c;
1440 c = memcmp(p1, p2, n1<n2 ? n1 : n2);
1441 if( c==0 ){
1442 c = n1 - n2;
1443 }
1444 return c;
1445}
1446
1447/*
drh8b2f49b2001-06-08 00:21:52 +00001448** Create a new cursor for the BTree whose root is on the page
1449** iTable. The act of acquiring a cursor gets a read lock on
1450** the database file.
drh1bee3d72001-10-15 00:44:35 +00001451**
1452** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00001453** If wrFlag==1, then the cursor can be used for reading or for
1454** writing if other conditions for writing are also met. These
1455** are the conditions that must be met in order for writing to
1456** be allowed:
drh6446c4d2001-12-15 14:22:18 +00001457**
drhf74b8d92002-09-01 23:20:45 +00001458** 1: The cursor must have been opened with wrFlag==1
1459**
1460** 2: No other cursors may be open with wrFlag==0 on the same table
1461**
1462** 3: The database must be writable (not on read-only media)
1463**
1464** 4: There must be an active transaction.
1465**
1466** Condition 2 warrants further discussion. If any cursor is opened
1467** on a table with wrFlag==0, that prevents all other cursors from
1468** writing to that table. This is a kind of "read-lock". When a cursor
1469** is opened with wrFlag==0 it is guaranteed that the table will not
1470** change as long as the cursor is open. This allows the cursor to
1471** do a sequential scan of the table without having to worry about
1472** entries being inserted or deleted during the scan. Cursors should
1473** be opened with wrFlag==0 only if this read-lock property is needed.
1474** That is to say, cursors should be opened with wrFlag==0 only if they
drh23e11ca2004-05-04 17:27:28 +00001475** intend to use the sqlite3BtreeNext() system call. All other cursors
drhf74b8d92002-09-01 23:20:45 +00001476** should be opened with wrFlag==1 even if they never really intend
1477** to write.
1478**
drh6446c4d2001-12-15 14:22:18 +00001479** No checking is done to make sure that page iTable really is the
1480** root page of a b-tree. If it is not, then the cursor acquired
1481** will not work correctly.
drh3aac2dd2004-04-26 14:10:20 +00001482**
1483** The comparison function must be logically the same for every cursor
1484** on a particular table. Changing the comparison function will result
1485** in incorrect operations. If the comparison function is NULL, a
1486** default comparison function is used. The comparison function is
1487** always ignored for INTKEY tables.
drha059ad02001-04-17 20:09:11 +00001488*/
drh3aac2dd2004-04-26 14:10:20 +00001489int sqlite3BtreeCursor(
1490 Btree *pBt, /* The btree */
1491 int iTable, /* Root page of table to open */
1492 int wrFlag, /* 1 to write. 0 read-only */
1493 int (*xCmp)(void*,int,const void*,int,const void*), /* Key Comparison func */
1494 void *pArg, /* First arg to xCompare() */
1495 BtCursor **ppCur /* Write new cursor here */
1496){
drha059ad02001-04-17 20:09:11 +00001497 int rc;
drhf74b8d92002-09-01 23:20:45 +00001498 BtCursor *pCur, *pRing;
drhecdc7532001-09-23 02:35:53 +00001499
drha0c9a112004-03-10 13:42:37 +00001500 if( pBt->readOnly && wrFlag ){
1501 *ppCur = 0;
1502 return SQLITE_READONLY;
1503 }
drh4b70f112004-05-02 21:12:19 +00001504 if( pBt->pPage1==0 ){
drha059ad02001-04-17 20:09:11 +00001505 rc = lockBtree(pBt);
1506 if( rc!=SQLITE_OK ){
1507 *ppCur = 0;
1508 return rc;
1509 }
1510 }
drheafe05b2004-06-13 00:54:01 +00001511 pCur = sqliteMallocRaw( sizeof(*pCur) );
drha059ad02001-04-17 20:09:11 +00001512 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +00001513 rc = SQLITE_NOMEM;
1514 goto create_cursor_exception;
1515 }
drh8b2f49b2001-06-08 00:21:52 +00001516 pCur->pgnoRoot = (Pgno)iTable;
drh24cd67e2004-05-10 16:18:47 +00001517 if( iTable==1 && sqlite3pager_pagecount(pBt->pPager)==0 ){
1518 rc = SQLITE_EMPTY;
drheafe05b2004-06-13 00:54:01 +00001519 pCur->pPage = 0;
drh24cd67e2004-05-10 16:18:47 +00001520 goto create_cursor_exception;
1521 }
danielk1977369f27e2004-06-15 11:40:04 +00001522 pCur->pPage = 0; /* For exit-handler, in case getAndInitPage() fails. */
drhde647132004-05-07 17:57:49 +00001523 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->pPage, 0);
drhbd03cae2001-06-02 02:40:57 +00001524 if( rc!=SQLITE_OK ){
1525 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +00001526 }
drh3aac2dd2004-04-26 14:10:20 +00001527 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1528 pCur->pArg = pArg;
drh14acc042001-06-10 19:56:58 +00001529 pCur->pBt = pBt;
drhecdc7532001-09-23 02:35:53 +00001530 pCur->wrFlag = wrFlag;
drh14acc042001-06-10 19:56:58 +00001531 pCur->idx = 0;
drh59eb6762004-06-13 23:07:04 +00001532 memset(&pCur->info, 0, sizeof(pCur->info));
drha059ad02001-04-17 20:09:11 +00001533 pCur->pNext = pBt->pCursor;
1534 if( pCur->pNext ){
1535 pCur->pNext->pPrev = pCur;
1536 }
drh14acc042001-06-10 19:56:58 +00001537 pCur->pPrev = 0;
drhf74b8d92002-09-01 23:20:45 +00001538 pRing = pBt->pCursor;
1539 while( pRing && pRing->pgnoRoot!=pCur->pgnoRoot ){ pRing = pRing->pNext; }
1540 if( pRing ){
1541 pCur->pShared = pRing->pShared;
1542 pRing->pShared = pCur;
1543 }else{
1544 pCur->pShared = pCur;
1545 }
drha059ad02001-04-17 20:09:11 +00001546 pBt->pCursor = pCur;
drhc39e0002004-05-07 23:50:57 +00001547 pCur->isValid = 0;
1548 pCur->status = SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001549 *ppCur = pCur;
1550 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00001551
1552create_cursor_exception:
1553 *ppCur = 0;
1554 if( pCur ){
drh3aac2dd2004-04-26 14:10:20 +00001555 releasePage(pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +00001556 sqliteFree(pCur);
1557 }
drh5e00f6c2001-09-13 13:46:56 +00001558 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +00001559 return rc;
drha059ad02001-04-17 20:09:11 +00001560}
1561
drh7a224de2004-06-02 01:22:02 +00001562#if 0 /* Not Used */
drhd3d39e92004-05-20 22:16:29 +00001563/*
1564** Change the value of the comparison function used by a cursor.
1565*/
danielk1977bf3b7212004-05-18 10:06:24 +00001566void sqlite3BtreeSetCompare(
drhd3d39e92004-05-20 22:16:29 +00001567 BtCursor *pCur, /* The cursor to whose comparison function is changed */
1568 int(*xCmp)(void*,int,const void*,int,const void*), /* New comparison func */
1569 void *pArg /* First argument to xCmp() */
danielk1977bf3b7212004-05-18 10:06:24 +00001570){
1571 pCur->xCompare = xCmp ? xCmp : dfltCompare;
1572 pCur->pArg = pArg;
1573}
drh7a224de2004-06-02 01:22:02 +00001574#endif
danielk1977bf3b7212004-05-18 10:06:24 +00001575
drha059ad02001-04-17 20:09:11 +00001576/*
drh5e00f6c2001-09-13 13:46:56 +00001577** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00001578** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00001579*/
drh3aac2dd2004-04-26 14:10:20 +00001580int sqlite3BtreeCloseCursor(BtCursor *pCur){
drha059ad02001-04-17 20:09:11 +00001581 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +00001582 if( pCur->pPrev ){
1583 pCur->pPrev->pNext = pCur->pNext;
1584 }else{
1585 pBt->pCursor = pCur->pNext;
1586 }
1587 if( pCur->pNext ){
1588 pCur->pNext->pPrev = pCur->pPrev;
1589 }
drh3aac2dd2004-04-26 14:10:20 +00001590 releasePage(pCur->pPage);
drhf74b8d92002-09-01 23:20:45 +00001591 if( pCur->pShared!=pCur ){
1592 BtCursor *pRing = pCur->pShared;
1593 while( pRing->pShared!=pCur ){ pRing = pRing->pShared; }
1594 pRing->pShared = pCur->pShared;
1595 }
drh5e00f6c2001-09-13 13:46:56 +00001596 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +00001597 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +00001598 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001599}
1600
drh7e3b0a02001-04-28 16:52:40 +00001601/*
drh5e2f8b92001-05-28 00:41:15 +00001602** Make a temporary cursor by filling in the fields of pTempCur.
1603** The temporary cursor is not on the cursor list for the Btree.
1604*/
drh14acc042001-06-10 19:56:58 +00001605static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +00001606 memcpy(pTempCur, pCur, sizeof(*pCur));
1607 pTempCur->pNext = 0;
1608 pTempCur->pPrev = 0;
drhecdc7532001-09-23 02:35:53 +00001609 if( pTempCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001610 sqlite3pager_ref(pTempCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001611 }
drh5e2f8b92001-05-28 00:41:15 +00001612}
1613
1614/*
drhbd03cae2001-06-02 02:40:57 +00001615** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +00001616** function above.
1617*/
drh14acc042001-06-10 19:56:58 +00001618static void releaseTempCursor(BtCursor *pCur){
drhecdc7532001-09-23 02:35:53 +00001619 if( pCur->pPage ){
drha34b6762004-05-07 13:30:42 +00001620 sqlite3pager_unref(pCur->pPage->aData);
drhecdc7532001-09-23 02:35:53 +00001621 }
drh5e2f8b92001-05-28 00:41:15 +00001622}
1623
1624/*
drh9188b382004-05-14 21:12:22 +00001625** Make sure the BtCursor.info field of the given cursor is valid.
drhab01f612004-05-22 02:55:23 +00001626** If it is not already valid, call parseCell() to fill it in.
1627**
1628** BtCursor.info is a cache of the information in the current cell.
1629** Using this cache reduces the number of calls to parseCell().
drh9188b382004-05-14 21:12:22 +00001630*/
1631static void getCellInfo(BtCursor *pCur){
drh271efa52004-05-30 19:19:05 +00001632 if( pCur->info.nSize==0 ){
drh3a41a3f2004-05-30 02:14:17 +00001633 parseCell(pCur->pPage, pCur->idx, &pCur->info);
drh9188b382004-05-14 21:12:22 +00001634 }else{
1635#ifndef NDEBUG
1636 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00001637 memset(&info, 0, sizeof(info));
drh3a41a3f2004-05-30 02:14:17 +00001638 parseCell(pCur->pPage, pCur->idx, &info);
drh9188b382004-05-14 21:12:22 +00001639 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
1640#endif
1641 }
1642}
1643
1644/*
drh3aac2dd2004-04-26 14:10:20 +00001645** Set *pSize to the size of the buffer needed to hold the value of
1646** the key for the current entry. If the cursor is not pointing
1647** to a valid entry, *pSize is set to 0.
1648**
drh4b70f112004-05-02 21:12:19 +00001649** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00001650** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00001651*/
drh4a1c3802004-05-12 15:15:47 +00001652int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhc39e0002004-05-07 23:50:57 +00001653 if( !pCur->isValid ){
drh72f82862001-05-24 21:06:34 +00001654 *pSize = 0;
1655 }else{
drh9188b382004-05-14 21:12:22 +00001656 getCellInfo(pCur);
1657 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00001658 }
1659 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00001660}
drh2af926b2001-05-15 00:39:25 +00001661
drh72f82862001-05-24 21:06:34 +00001662/*
drh0e1c19e2004-05-11 00:58:56 +00001663** Set *pSize to the number of bytes of data in the entry the
1664** cursor currently points to. Always return SQLITE_OK.
1665** Failure is not possible. If the cursor is not currently
1666** pointing to an entry (which can happen, for example, if
1667** the database is empty) then *pSize is set to 0.
1668*/
1669int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh0e1c19e2004-05-11 00:58:56 +00001670 if( !pCur->isValid ){
danielk197796fc5fe2004-05-13 11:34:16 +00001671 /* Not pointing at a valid entry - set *pSize to 0. */
drh0e1c19e2004-05-11 00:58:56 +00001672 *pSize = 0;
1673 }else{
drh9188b382004-05-14 21:12:22 +00001674 getCellInfo(pCur);
1675 *pSize = pCur->info.nData;
drh0e1c19e2004-05-11 00:58:56 +00001676 }
1677 return SQLITE_OK;
1678}
1679
1680/*
drh72f82862001-05-24 21:06:34 +00001681** Read payload information from the entry that the pCur cursor is
1682** pointing to. Begin reading the payload at "offset" and read
1683** a total of "amt" bytes. Put the result in zBuf.
1684**
1685** This routine does not make a distinction between key and data.
drhab01f612004-05-22 02:55:23 +00001686** It just reads bytes from the payload area. Data might appear
1687** on the main page or be scattered out on multiple overflow pages.
drh72f82862001-05-24 21:06:34 +00001688*/
drh3aac2dd2004-04-26 14:10:20 +00001689static int getPayload(
1690 BtCursor *pCur, /* Cursor pointing to entry to read from */
1691 int offset, /* Begin reading this far into payload */
1692 int amt, /* Read this many bytes */
1693 unsigned char *pBuf, /* Write the bytes into this buffer */
1694 int skipKey /* offset begins at data if this is true */
1695){
1696 unsigned char *aPayload;
drh2af926b2001-05-15 00:39:25 +00001697 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +00001698 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001699 MemPage *pPage;
1700 Btree *pBt;
drh6f11bef2004-05-13 01:12:56 +00001701 int ovflSize;
drhfa1a98a2004-05-14 19:08:17 +00001702 u32 nKey;
drh3aac2dd2004-04-26 14:10:20 +00001703
drh72f82862001-05-24 21:06:34 +00001704 assert( pCur!=0 && pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001705 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00001706 pBt = pCur->pBt;
1707 pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00001708 pageIntegrity(pPage);
drh3aac2dd2004-04-26 14:10:20 +00001709 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00001710 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00001711 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00001712 aPayload += pCur->info.nHeader;
drh3aac2dd2004-04-26 14:10:20 +00001713 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001714 nKey = 0;
1715 }else{
1716 nKey = pCur->info.nKey;
drh3aac2dd2004-04-26 14:10:20 +00001717 }
1718 assert( offset>=0 );
1719 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001720 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00001721 }
drhfa1a98a2004-05-14 19:08:17 +00001722 if( offset+amt > nKey+pCur->info.nData ){
drha34b6762004-05-07 13:30:42 +00001723 return SQLITE_ERROR;
drh3aac2dd2004-04-26 14:10:20 +00001724 }
drhfa1a98a2004-05-14 19:08:17 +00001725 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00001726 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00001727 if( a+offset>pCur->info.nLocal ){
1728 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00001729 }
drha34b6762004-05-07 13:30:42 +00001730 memcpy(pBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +00001731 if( a==amt ){
1732 return SQLITE_OK;
1733 }
drh2aa679f2001-06-25 02:11:07 +00001734 offset = 0;
drha34b6762004-05-07 13:30:42 +00001735 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00001736 amt -= a;
drhdd793422001-06-28 01:54:48 +00001737 }else{
drhfa1a98a2004-05-14 19:08:17 +00001738 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00001739 }
danielk1977cfe9a692004-06-16 12:00:29 +00001740 ovflSize = pBt->usableSize - 4;
drhbd03cae2001-06-02 02:40:57 +00001741 if( amt>0 ){
drhfa1a98a2004-05-14 19:08:17 +00001742 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977cfe9a692004-06-16 12:00:29 +00001743 while( amt>0 && nextPage ){
1744 rc = sqlite3pager_get(pBt->pPager, nextPage, (void**)&aPayload);
1745 if( rc!=0 ){
1746 return rc;
drh2af926b2001-05-15 00:39:25 +00001747 }
danielk1977cfe9a692004-06-16 12:00:29 +00001748 nextPage = get4byte(aPayload);
1749 if( offset<ovflSize ){
1750 int a = amt;
1751 if( a + offset > ovflSize ){
1752 a = ovflSize - offset;
1753 }
1754 memcpy(pBuf, &aPayload[offset+4], a);
1755 offset = 0;
1756 amt -= a;
1757 pBuf += a;
1758 }else{
1759 offset -= ovflSize;
1760 }
1761 sqlite3pager_unref(aPayload);
drh2af926b2001-05-15 00:39:25 +00001762 }
drh2af926b2001-05-15 00:39:25 +00001763 }
danielk1977cfe9a692004-06-16 12:00:29 +00001764
drha7fcb052001-12-14 15:09:55 +00001765 if( amt>0 ){
1766 return SQLITE_CORRUPT;
1767 }
1768 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +00001769}
1770
drh72f82862001-05-24 21:06:34 +00001771/*
drh3aac2dd2004-04-26 14:10:20 +00001772** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001773** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001774** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00001775**
drh3aac2dd2004-04-26 14:10:20 +00001776** Return SQLITE_OK on success or an error code if anything goes
1777** wrong. An error is returned if "offset+amt" is larger than
1778** the available payload.
drh72f82862001-05-24 21:06:34 +00001779*/
drha34b6762004-05-07 13:30:42 +00001780int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhc39e0002004-05-07 23:50:57 +00001781 if( pCur->isValid==0 ){
1782 return pCur->status;
drh3aac2dd2004-04-26 14:10:20 +00001783 }
drhc39e0002004-05-07 23:50:57 +00001784 assert( pCur->pPage!=0 );
1785 assert( pCur->pPage->intKey==0 );
1786 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001787 return getPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
1788}
1789
1790/*
drh3aac2dd2004-04-26 14:10:20 +00001791** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00001792** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00001793** begins at "offset".
1794**
1795** Return SQLITE_OK on success or an error code if anything goes
1796** wrong. An error is returned if "offset+amt" is larger than
1797** the available payload.
drh72f82862001-05-24 21:06:34 +00001798*/
drh3aac2dd2004-04-26 14:10:20 +00001799int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhc39e0002004-05-07 23:50:57 +00001800 if( !pCur->isValid ){
1801 return pCur->status ? pCur->status : SQLITE_INTERNAL;
1802 }
drh8c1238a2003-01-02 14:43:55 +00001803 assert( pCur->pPage!=0 );
drhc39e0002004-05-07 23:50:57 +00001804 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh3aac2dd2004-04-26 14:10:20 +00001805 return getPayload(pCur, offset, amt, pBuf, 1);
drh2af926b2001-05-15 00:39:25 +00001806}
1807
drh72f82862001-05-24 21:06:34 +00001808/*
drh0e1c19e2004-05-11 00:58:56 +00001809** Return a pointer to payload information from the entry that the
1810** pCur cursor is pointing to. The pointer is to the beginning of
1811** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00001812** skipKey==1. The number of bytes of available key/data is written
1813** into *pAmt. If *pAmt==0, then the value returned will not be
1814** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00001815**
1816** This routine is an optimization. It is common for the entire key
1817** and data to fit on the local page and for there to be no overflow
1818** pages. When that is so, this routine can be used to access the
1819** key and data without making a copy. If the key and/or data spills
1820** onto overflow pages, then getPayload() must be used to reassembly
1821** the key/data and copy it into a preallocated buffer.
1822**
1823** The pointer returned by this routine looks directly into the cached
1824** page of the database. The data might change or move the next time
1825** any btree routine is called.
1826*/
1827static const unsigned char *fetchPayload(
1828 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00001829 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00001830 int skipKey /* read beginning at data if this is true */
1831){
1832 unsigned char *aPayload;
1833 MemPage *pPage;
1834 Btree *pBt;
drhfa1a98a2004-05-14 19:08:17 +00001835 u32 nKey;
1836 int nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001837
1838 assert( pCur!=0 && pCur->pPage!=0 );
1839 assert( pCur->isValid );
1840 pBt = pCur->pBt;
1841 pPage = pCur->pPage;
1842 pageIntegrity(pPage);
1843 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh9188b382004-05-14 21:12:22 +00001844 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00001845 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00001846 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00001847 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00001848 nKey = 0;
1849 }else{
1850 nKey = pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00001851 }
drh0e1c19e2004-05-11 00:58:56 +00001852 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00001853 aPayload += nKey;
1854 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00001855 }else{
drhfa1a98a2004-05-14 19:08:17 +00001856 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00001857 if( nLocal>nKey ){
1858 nLocal = nKey;
1859 }
drh0e1c19e2004-05-11 00:58:56 +00001860 }
drhe51c44f2004-05-30 20:46:09 +00001861 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00001862 return aPayload;
1863}
1864
1865
1866/*
drhe51c44f2004-05-30 20:46:09 +00001867** For the entry that cursor pCur is point to, return as
1868** many bytes of the key or data as are available on the local
1869** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00001870**
1871** The pointer returned is ephemeral. The key/data may move
1872** or be destroyed on the next call to any Btree routine.
1873**
1874** These routines is used to get quick access to key and data
1875** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00001876*/
drhe51c44f2004-05-30 20:46:09 +00001877const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
1878 return (const void*)fetchPayload(pCur, pAmt, 0);
drh0e1c19e2004-05-11 00:58:56 +00001879}
drhe51c44f2004-05-30 20:46:09 +00001880const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
1881 return (const void*)fetchPayload(pCur, pAmt, 1);
drh0e1c19e2004-05-11 00:58:56 +00001882}
1883
1884
1885/*
drh8178a752003-01-05 21:41:40 +00001886** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00001887** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00001888*/
drh3aac2dd2004-04-26 14:10:20 +00001889static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00001890 int rc;
1891 MemPage *pNewPage;
drh3aac2dd2004-04-26 14:10:20 +00001892 MemPage *pOldPage;
drh0d316a42002-08-11 20:10:47 +00001893 Btree *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00001894
drhc39e0002004-05-07 23:50:57 +00001895 assert( pCur->isValid );
drhde647132004-05-07 17:57:49 +00001896 rc = getAndInitPage(pBt, newPgno, &pNewPage, pCur->pPage);
drh6019e162001-07-02 17:51:45 +00001897 if( rc ) return rc;
drhda200cc2004-05-09 11:51:38 +00001898 pageIntegrity(pNewPage);
drh428ae8c2003-01-04 16:48:09 +00001899 pNewPage->idxParent = pCur->idx;
drh3aac2dd2004-04-26 14:10:20 +00001900 pOldPage = pCur->pPage;
1901 pOldPage->idxShift = 0;
1902 releasePage(pOldPage);
drh72f82862001-05-24 21:06:34 +00001903 pCur->pPage = pNewPage;
1904 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00001905 pCur->info.nSize = 0;
drh4be295b2003-12-16 03:44:47 +00001906 if( pNewPage->nCell<1 ){
1907 return SQLITE_CORRUPT;
1908 }
drh72f82862001-05-24 21:06:34 +00001909 return SQLITE_OK;
1910}
1911
1912/*
drh8856d6a2004-04-29 14:42:46 +00001913** Return true if the page is the virtual root of its table.
1914**
1915** The virtual root page is the root page for most tables. But
1916** for the table rooted on page 1, sometime the real root page
1917** is empty except for the right-pointer. In such cases the
1918** virtual root page is the page that the right-pointer of page
1919** 1 is pointing to.
1920*/
1921static int isRootPage(MemPage *pPage){
1922 MemPage *pParent = pPage->pParent;
drhda200cc2004-05-09 11:51:38 +00001923 if( pParent==0 ) return 1;
1924 if( pParent->pgno>1 ) return 0;
1925 if( get2byte(&pParent->aData[pParent->hdrOffset+3])==0 ) return 1;
drh8856d6a2004-04-29 14:42:46 +00001926 return 0;
1927}
1928
1929/*
drh5e2f8b92001-05-28 00:41:15 +00001930** Move the cursor up to the parent page.
1931**
1932** pCur->idx is set to the cell index that contains the pointer
1933** to the page we are coming from. If we are coming from the
1934** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001935** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001936*/
drh8178a752003-01-05 21:41:40 +00001937static void moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001938 Pgno oldPgno;
1939 MemPage *pParent;
drh8178a752003-01-05 21:41:40 +00001940 MemPage *pPage;
drh428ae8c2003-01-04 16:48:09 +00001941 int idxParent;
drh3aac2dd2004-04-26 14:10:20 +00001942
drhc39e0002004-05-07 23:50:57 +00001943 assert( pCur->isValid );
drh8178a752003-01-05 21:41:40 +00001944 pPage = pCur->pPage;
1945 assert( pPage!=0 );
drh8856d6a2004-04-29 14:42:46 +00001946 assert( !isRootPage(pPage) );
drhda200cc2004-05-09 11:51:38 +00001947 pageIntegrity(pPage);
drh8178a752003-01-05 21:41:40 +00001948 pParent = pPage->pParent;
1949 assert( pParent!=0 );
drhda200cc2004-05-09 11:51:38 +00001950 pageIntegrity(pParent);
drh8178a752003-01-05 21:41:40 +00001951 idxParent = pPage->idxParent;
drha34b6762004-05-07 13:30:42 +00001952 sqlite3pager_ref(pParent->aData);
drh3aac2dd2004-04-26 14:10:20 +00001953 oldPgno = pPage->pgno;
1954 releasePage(pPage);
drh72f82862001-05-24 21:06:34 +00001955 pCur->pPage = pParent;
drh271efa52004-05-30 19:19:05 +00001956 pCur->info.nSize = 0;
drh428ae8c2003-01-04 16:48:09 +00001957 assert( pParent->idxShift==0 );
drh43605152004-05-29 21:46:49 +00001958 pCur->idx = idxParent;
drh72f82862001-05-24 21:06:34 +00001959}
1960
1961/*
1962** Move the cursor to the root page
1963*/
drh5e2f8b92001-05-28 00:41:15 +00001964static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00001965 MemPage *pRoot;
drhbd03cae2001-06-02 02:40:57 +00001966 int rc;
drh0d316a42002-08-11 20:10:47 +00001967 Btree *pBt = pCur->pBt;
drhbd03cae2001-06-02 02:40:57 +00001968
drhde647132004-05-07 17:57:49 +00001969 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pRoot, 0);
drhc39e0002004-05-07 23:50:57 +00001970 if( rc ){
1971 pCur->isValid = 0;
1972 return rc;
1973 }
drh3aac2dd2004-04-26 14:10:20 +00001974 releasePage(pCur->pPage);
drhda200cc2004-05-09 11:51:38 +00001975 pageIntegrity(pRoot);
drh3aac2dd2004-04-26 14:10:20 +00001976 pCur->pPage = pRoot;
drh72f82862001-05-24 21:06:34 +00001977 pCur->idx = 0;
drh271efa52004-05-30 19:19:05 +00001978 pCur->info.nSize = 0;
drh8856d6a2004-04-29 14:42:46 +00001979 if( pRoot->nCell==0 && !pRoot->leaf ){
1980 Pgno subpage;
1981 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00001982 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00001983 assert( subpage>0 );
drh3644f082004-05-10 18:45:09 +00001984 pCur->isValid = 1;
drh4b70f112004-05-02 21:12:19 +00001985 rc = moveToChild(pCur, subpage);
drh8856d6a2004-04-29 14:42:46 +00001986 }
drhc39e0002004-05-07 23:50:57 +00001987 pCur->isValid = pCur->pPage->nCell>0;
drh8856d6a2004-04-29 14:42:46 +00001988 return rc;
drh72f82862001-05-24 21:06:34 +00001989}
drh2af926b2001-05-15 00:39:25 +00001990
drh5e2f8b92001-05-28 00:41:15 +00001991/*
1992** Move the cursor down to the left-most leaf entry beneath the
1993** entry to which it is currently pointing.
1994*/
1995static int moveToLeftmost(BtCursor *pCur){
1996 Pgno pgno;
1997 int rc;
drh3aac2dd2004-04-26 14:10:20 +00001998 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00001999
drhc39e0002004-05-07 23:50:57 +00002000 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002001 while( !(pPage = pCur->pPage)->leaf ){
drha34b6762004-05-07 13:30:42 +00002002 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00002003 pgno = get4byte(findCell(pPage, pCur->idx));
drh8178a752003-01-05 21:41:40 +00002004 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00002005 if( rc ) return rc;
2006 }
2007 return SQLITE_OK;
2008}
2009
drh2dcc9aa2002-12-04 13:40:25 +00002010/*
2011** Move the cursor down to the right-most leaf entry beneath the
2012** page to which it is currently pointing. Notice the difference
2013** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
2014** finds the left-most entry beneath the *entry* whereas moveToRightmost()
2015** finds the right-most entry beneath the *page*.
2016*/
2017static int moveToRightmost(BtCursor *pCur){
2018 Pgno pgno;
2019 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002020 MemPage *pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002021
drhc39e0002004-05-07 23:50:57 +00002022 assert( pCur->isValid );
drh3aac2dd2004-04-26 14:10:20 +00002023 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00002024 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh3aac2dd2004-04-26 14:10:20 +00002025 pCur->idx = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00002026 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002027 if( rc ) return rc;
2028 }
drh3aac2dd2004-04-26 14:10:20 +00002029 pCur->idx = pPage->nCell - 1;
drh271efa52004-05-30 19:19:05 +00002030 pCur->info.nSize = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002031 return SQLITE_OK;
2032}
2033
drh5e00f6c2001-09-13 13:46:56 +00002034/* Move the cursor to the first entry in the table. Return SQLITE_OK
2035** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002036** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00002037*/
drh3aac2dd2004-04-26 14:10:20 +00002038int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00002039 int rc;
drhc39e0002004-05-07 23:50:57 +00002040 if( pCur->status ){
2041 return pCur->status;
2042 }
drh5e00f6c2001-09-13 13:46:56 +00002043 rc = moveToRoot(pCur);
2044 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002045 if( pCur->isValid==0 ){
2046 assert( pCur->pPage->nCell==0 );
drh5e00f6c2001-09-13 13:46:56 +00002047 *pRes = 1;
2048 return SQLITE_OK;
2049 }
drhc39e0002004-05-07 23:50:57 +00002050 assert( pCur->pPage->nCell>0 );
drh5e00f6c2001-09-13 13:46:56 +00002051 *pRes = 0;
2052 rc = moveToLeftmost(pCur);
2053 return rc;
2054}
drh5e2f8b92001-05-28 00:41:15 +00002055
drh9562b552002-02-19 15:00:07 +00002056/* Move the cursor to the last entry in the table. Return SQLITE_OK
2057** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00002058** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00002059*/
drh3aac2dd2004-04-26 14:10:20 +00002060int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00002061 int rc;
drhc39e0002004-05-07 23:50:57 +00002062 if( pCur->status ){
2063 return pCur->status;
2064 }
drh9562b552002-02-19 15:00:07 +00002065 rc = moveToRoot(pCur);
2066 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002067 if( pCur->isValid==0 ){
2068 assert( pCur->pPage->nCell==0 );
drh9562b552002-02-19 15:00:07 +00002069 *pRes = 1;
2070 return SQLITE_OK;
2071 }
drhc39e0002004-05-07 23:50:57 +00002072 assert( pCur->isValid );
drh9562b552002-02-19 15:00:07 +00002073 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002074 rc = moveToRightmost(pCur);
drh9562b552002-02-19 15:00:07 +00002075 return rc;
2076}
2077
drh3aac2dd2004-04-26 14:10:20 +00002078/* Move the cursor so that it points to an entry near pKey/nKey.
drh72f82862001-05-24 21:06:34 +00002079** Return a success code.
2080**
drh3aac2dd2004-04-26 14:10:20 +00002081** For INTKEY tables, only the nKey parameter is used. pKey is
2082** ignored. For other tables, nKey is the number of bytes of data
2083** in nKey. The comparison function specified when the cursor was
2084** created is used to compare keys.
2085**
drh5e2f8b92001-05-28 00:41:15 +00002086** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00002087** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00002088** were present. The cursor might point to an entry that comes
2089** before or after the key.
2090**
drhbd03cae2001-06-02 02:40:57 +00002091** The result of comparing the key with the entry to which the
drhab01f612004-05-22 02:55:23 +00002092** cursor is written to *pRes if pRes!=NULL. The meaning of
drhbd03cae2001-06-02 02:40:57 +00002093** this value is as follows:
2094**
2095** *pRes<0 The cursor is left pointing at an entry that
drh1a844c32002-12-04 22:29:28 +00002096** is smaller than pKey or if the table is empty
2097** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00002098**
2099** *pRes==0 The cursor is left pointing at an entry that
2100** exactly matches pKey.
2101**
2102** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00002103** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00002104*/
drh4a1c3802004-05-12 15:15:47 +00002105int sqlite3BtreeMoveto(BtCursor *pCur, const void *pKey, i64 nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00002106 int rc;
drhc39e0002004-05-07 23:50:57 +00002107
2108 if( pCur->status ){
2109 return pCur->status;
2110 }
drh5e2f8b92001-05-28 00:41:15 +00002111 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00002112 if( rc ) return rc;
drhc39e0002004-05-07 23:50:57 +00002113 assert( pCur->pPage );
2114 assert( pCur->pPage->isInit );
2115 if( pCur->isValid==0 ){
drhf328bc82004-05-10 23:29:49 +00002116 *pRes = -1;
drhc39e0002004-05-07 23:50:57 +00002117 assert( pCur->pPage->nCell==0 );
2118 return SQLITE_OK;
2119 }
drh72f82862001-05-24 21:06:34 +00002120 for(;;){
2121 int lwr, upr;
2122 Pgno chldPg;
2123 MemPage *pPage = pCur->pPage;
drh1a844c32002-12-04 22:29:28 +00002124 int c = -1; /* pRes return if table is empty must be -1 */
drh72f82862001-05-24 21:06:34 +00002125 lwr = 0;
2126 upr = pPage->nCell-1;
drhda200cc2004-05-09 11:51:38 +00002127 pageIntegrity(pPage);
drh72f82862001-05-24 21:06:34 +00002128 while( lwr<=upr ){
danielk197713adf8a2004-06-03 16:08:41 +00002129 void *pCellKey;
drh4a1c3802004-05-12 15:15:47 +00002130 i64 nCellKey;
drh72f82862001-05-24 21:06:34 +00002131 pCur->idx = (lwr+upr)/2;
drh271efa52004-05-30 19:19:05 +00002132 pCur->info.nSize = 0;
drhde647132004-05-07 17:57:49 +00002133 sqlite3BtreeKeySize(pCur, &nCellKey);
drh3aac2dd2004-04-26 14:10:20 +00002134 if( pPage->intKey ){
2135 if( nCellKey<nKey ){
2136 c = -1;
2137 }else if( nCellKey>nKey ){
2138 c = +1;
2139 }else{
2140 c = 0;
2141 }
drh3aac2dd2004-04-26 14:10:20 +00002142 }else{
drhe51c44f2004-05-30 20:46:09 +00002143 int available;
danielk197713adf8a2004-06-03 16:08:41 +00002144 pCellKey = (void *)fetchPayload(pCur, &available, 0);
drhe51c44f2004-05-30 20:46:09 +00002145 if( available>=nCellKey ){
2146 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2147 }else{
2148 pCellKey = sqliteMallocRaw( nCellKey );
2149 if( pCellKey==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002150 rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey);
drhe51c44f2004-05-30 20:46:09 +00002151 c = pCur->xCompare(pCur->pArg, nCellKey, pCellKey, nKey, pKey);
2152 sqliteFree(pCellKey);
2153 if( rc ) return rc;
2154 }
drh3aac2dd2004-04-26 14:10:20 +00002155 }
drh72f82862001-05-24 21:06:34 +00002156 if( c==0 ){
drh8b18dd42004-05-12 19:18:15 +00002157 if( pPage->leafData && !pPage->leaf ){
drhfc70e6f2004-05-12 21:11:27 +00002158 lwr = pCur->idx;
2159 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00002160 break;
2161 }else{
drh8b18dd42004-05-12 19:18:15 +00002162 if( pRes ) *pRes = 0;
2163 return SQLITE_OK;
2164 }
drh72f82862001-05-24 21:06:34 +00002165 }
2166 if( c<0 ){
2167 lwr = pCur->idx+1;
2168 }else{
2169 upr = pCur->idx-1;
2170 }
2171 }
2172 assert( lwr==upr+1 );
drh7aa128d2002-06-21 13:09:16 +00002173 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00002174 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00002175 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00002176 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00002177 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00002178 }else{
drh43605152004-05-29 21:46:49 +00002179 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00002180 }
2181 if( chldPg==0 ){
drhc39e0002004-05-07 23:50:57 +00002182 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002183 if( pRes ) *pRes = c;
2184 return SQLITE_OK;
2185 }
drh428ae8c2003-01-04 16:48:09 +00002186 pCur->idx = lwr;
drh271efa52004-05-30 19:19:05 +00002187 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002188 rc = moveToChild(pCur, chldPg);
drhc39e0002004-05-07 23:50:57 +00002189 if( rc ){
2190 return rc;
2191 }
drh72f82862001-05-24 21:06:34 +00002192 }
drhbd03cae2001-06-02 02:40:57 +00002193 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00002194}
2195
2196/*
drhc39e0002004-05-07 23:50:57 +00002197** Return TRUE if the cursor is not pointing at an entry of the table.
2198**
2199** TRUE will be returned after a call to sqlite3BtreeNext() moves
2200** past the last entry in the table or sqlite3BtreePrev() moves past
2201** the first entry. TRUE is also returned if the table is empty.
2202*/
2203int sqlite3BtreeEof(BtCursor *pCur){
2204 return pCur->isValid==0;
2205}
2206
2207/*
drhbd03cae2001-06-02 02:40:57 +00002208** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00002209** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00002210** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00002211** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00002212*/
drh3aac2dd2004-04-26 14:10:20 +00002213int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00002214 int rc;
drh8178a752003-01-05 21:41:40 +00002215 MemPage *pPage = pCur->pPage;
drh8b18dd42004-05-12 19:18:15 +00002216
drh8c1238a2003-01-02 14:43:55 +00002217 assert( pRes!=0 );
drhc39e0002004-05-07 23:50:57 +00002218 if( pCur->isValid==0 ){
drh8c1238a2003-01-02 14:43:55 +00002219 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002220 return SQLITE_OK;
drhecdc7532001-09-23 02:35:53 +00002221 }
drh8178a752003-01-05 21:41:40 +00002222 assert( pPage->isInit );
drh8178a752003-01-05 21:41:40 +00002223 assert( pCur->idx<pPage->nCell );
drh72f82862001-05-24 21:06:34 +00002224 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00002225 pCur->info.nSize = 0;
drh8178a752003-01-05 21:41:40 +00002226 if( pCur->idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00002227 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002228 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00002229 if( rc ) return rc;
2230 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002231 *pRes = 0;
2232 return rc;
drh72f82862001-05-24 21:06:34 +00002233 }
drh5e2f8b92001-05-28 00:41:15 +00002234 do{
drh8856d6a2004-04-29 14:42:46 +00002235 if( isRootPage(pPage) ){
drh8c1238a2003-01-02 14:43:55 +00002236 *pRes = 1;
drhc39e0002004-05-07 23:50:57 +00002237 pCur->isValid = 0;
drh5e2f8b92001-05-28 00:41:15 +00002238 return SQLITE_OK;
2239 }
drh8178a752003-01-05 21:41:40 +00002240 moveToParent(pCur);
2241 pPage = pCur->pPage;
2242 }while( pCur->idx>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00002243 *pRes = 0;
drh8b18dd42004-05-12 19:18:15 +00002244 if( pPage->leafData ){
2245 rc = sqlite3BtreeNext(pCur, pRes);
2246 }else{
2247 rc = SQLITE_OK;
2248 }
2249 return rc;
drh8178a752003-01-05 21:41:40 +00002250 }
2251 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00002252 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00002253 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00002254 }
drh5e2f8b92001-05-28 00:41:15 +00002255 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00002256 return rc;
drh72f82862001-05-24 21:06:34 +00002257}
2258
drh3b7511c2001-05-26 13:15:44 +00002259/*
drh2dcc9aa2002-12-04 13:40:25 +00002260** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00002261** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00002262** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00002263** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00002264*/
drh3aac2dd2004-04-26 14:10:20 +00002265int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00002266 int rc;
2267 Pgno pgno;
drh8178a752003-01-05 21:41:40 +00002268 MemPage *pPage;
drhc39e0002004-05-07 23:50:57 +00002269 if( pCur->isValid==0 ){
2270 *pRes = 1;
2271 return SQLITE_OK;
2272 }
drh8178a752003-01-05 21:41:40 +00002273 pPage = pCur->pPage;
drh8178a752003-01-05 21:41:40 +00002274 assert( pPage->isInit );
drh2dcc9aa2002-12-04 13:40:25 +00002275 assert( pCur->idx>=0 );
drha34b6762004-05-07 13:30:42 +00002276 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00002277 pgno = get4byte( findCell(pPage, pCur->idx) );
drh8178a752003-01-05 21:41:40 +00002278 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00002279 if( rc ) return rc;
2280 rc = moveToRightmost(pCur);
2281 }else{
2282 while( pCur->idx==0 ){
drh8856d6a2004-04-29 14:42:46 +00002283 if( isRootPage(pPage) ){
drhc39e0002004-05-07 23:50:57 +00002284 pCur->isValid = 0;
2285 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00002286 return SQLITE_OK;
2287 }
drh8178a752003-01-05 21:41:40 +00002288 moveToParent(pCur);
2289 pPage = pCur->pPage;
drh2dcc9aa2002-12-04 13:40:25 +00002290 }
2291 pCur->idx--;
drh271efa52004-05-30 19:19:05 +00002292 pCur->info.nSize = 0;
drh8b18dd42004-05-12 19:18:15 +00002293 if( pPage->leafData ){
2294 rc = sqlite3BtreePrevious(pCur, pRes);
2295 }else{
2296 rc = SQLITE_OK;
2297 }
drh2dcc9aa2002-12-04 13:40:25 +00002298 }
drh8178a752003-01-05 21:41:40 +00002299 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00002300 return rc;
2301}
2302
2303/*
drh3a4c1412004-05-09 20:40:11 +00002304** The TRACE macro will print high-level status information about the
2305** btree operation when the global variable sqlite3_btree_trace is
2306** enabled.
2307*/
2308#if SQLITE_TEST
drhe54ca3f2004-06-07 01:52:14 +00002309# define TRACE(X) if( sqlite3_btree_trace )\
2310 { sqlite3DebugPrintf X; fflush(stdout); }
drh3a4c1412004-05-09 20:40:11 +00002311#else
2312# define TRACE(X)
2313#endif
2314int sqlite3_btree_trace=0; /* True to enable tracing */
2315
2316/*
drh3b7511c2001-05-26 13:15:44 +00002317** Allocate a new page from the database file.
2318**
drha34b6762004-05-07 13:30:42 +00002319** The new page is marked as dirty. (In other words, sqlite3pager_write()
drh3b7511c2001-05-26 13:15:44 +00002320** has already been called on the new page.) The new page has also
2321** been referenced and the calling routine is responsible for calling
drha34b6762004-05-07 13:30:42 +00002322** sqlite3pager_unref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00002323**
2324** SQLITE_OK is returned on success. Any other return value indicates
2325** an error. *ppPage and *pPgno are undefined in the event of an error.
drha34b6762004-05-07 13:30:42 +00002326** Do not invoke sqlite3pager_unref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00002327**
drh199e3cf2002-07-18 11:01:47 +00002328** If the "nearby" parameter is not 0, then a (feeble) effort is made to
2329** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00002330** attempt to keep related pages close to each other in the database file,
2331** which in turn can make database access faster.
drh3b7511c2001-05-26 13:15:44 +00002332*/
drh199e3cf2002-07-18 11:01:47 +00002333static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno, Pgno nearby){
drh3aac2dd2004-04-26 14:10:20 +00002334 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00002335 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002336 int n; /* Number of pages on the freelist */
2337 int k; /* Number of leaves on the trunk of the freelist */
drh30e58752002-03-02 20:41:57 +00002338
drh3aac2dd2004-04-26 14:10:20 +00002339 pPage1 = pBt->pPage1;
2340 n = get4byte(&pPage1->aData[36]);
2341 if( n>0 ){
drh91025292004-05-03 19:49:32 +00002342 /* There are pages on the freelist. Reuse one of those pages. */
drh3aac2dd2004-04-26 14:10:20 +00002343 MemPage *pTrunk;
drha34b6762004-05-07 13:30:42 +00002344 rc = sqlite3pager_write(pPage1->aData);
drh3b7511c2001-05-26 13:15:44 +00002345 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002346 put4byte(&pPage1->aData[36], n-1);
2347 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002348 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002349 rc = sqlite3pager_write(pTrunk->aData);
drh3b7511c2001-05-26 13:15:44 +00002350 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00002351 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002352 return rc;
2353 }
drh3aac2dd2004-04-26 14:10:20 +00002354 k = get4byte(&pTrunk->aData[4]);
2355 if( k==0 ){
2356 /* The trunk has no leaves. So extract the trunk page itself and
2357 ** use it as the newly allocated page */
drha34b6762004-05-07 13:30:42 +00002358 *pPgno = get4byte(&pPage1->aData[32]);
drh3aac2dd2004-04-26 14:10:20 +00002359 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
2360 *ppPage = pTrunk;
drh3a4c1412004-05-09 20:40:11 +00002361 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh30e58752002-03-02 20:41:57 +00002362 }else{
drh3aac2dd2004-04-26 14:10:20 +00002363 /* Extract a leaf from the trunk */
2364 int closest;
2365 unsigned char *aData = pTrunk->aData;
2366 if( nearby>0 ){
drhbea00b92002-07-08 10:59:50 +00002367 int i, dist;
2368 closest = 0;
drh3aac2dd2004-04-26 14:10:20 +00002369 dist = get4byte(&aData[8]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002370 if( dist<0 ) dist = -dist;
drh3a4c1412004-05-09 20:40:11 +00002371 for(i=1; i<k; i++){
drh3aac2dd2004-04-26 14:10:20 +00002372 int d2 = get4byte(&aData[8+i*4]) - nearby;
drhbea00b92002-07-08 10:59:50 +00002373 if( d2<0 ) d2 = -d2;
2374 if( d2<dist ) closest = i;
2375 }
2376 }else{
2377 closest = 0;
2378 }
drha34b6762004-05-07 13:30:42 +00002379 *pPgno = get4byte(&aData[8+closest*4]);
drh3a4c1412004-05-09 20:40:11 +00002380 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d: %d more free pages\n",
2381 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh9b171272004-05-08 02:03:22 +00002382 if( closest<k-1 ){
2383 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
2384 }
drh3a4c1412004-05-09 20:40:11 +00002385 put4byte(&aData[4], k-1);
drh3aac2dd2004-04-26 14:10:20 +00002386 rc = getPage(pBt, *pPgno, ppPage);
2387 releasePage(pTrunk);
drh30e58752002-03-02 20:41:57 +00002388 if( rc==SQLITE_OK ){
drh9b171272004-05-08 02:03:22 +00002389 sqlite3pager_dont_rollback((*ppPage)->aData);
drha34b6762004-05-07 13:30:42 +00002390 rc = sqlite3pager_write((*ppPage)->aData);
drh30e58752002-03-02 20:41:57 +00002391 }
2392 }
drh3b7511c2001-05-26 13:15:44 +00002393 }else{
drh3aac2dd2004-04-26 14:10:20 +00002394 /* There are no pages on the freelist, so create a new page at the
2395 ** end of the file */
drha34b6762004-05-07 13:30:42 +00002396 *pPgno = sqlite3pager_pagecount(pBt->pPager) + 1;
drh3aac2dd2004-04-26 14:10:20 +00002397 rc = getPage(pBt, *pPgno, ppPage);
drh3b7511c2001-05-26 13:15:44 +00002398 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002399 rc = sqlite3pager_write((*ppPage)->aData);
drh3a4c1412004-05-09 20:40:11 +00002400 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00002401 }
2402 return rc;
2403}
2404
2405/*
drh3aac2dd2004-04-26 14:10:20 +00002406** Add a page of the database file to the freelist.
drh5e2f8b92001-05-28 00:41:15 +00002407**
drha34b6762004-05-07 13:30:42 +00002408** sqlite3pager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00002409*/
drh3aac2dd2004-04-26 14:10:20 +00002410static int freePage(MemPage *pPage){
2411 Btree *pBt = pPage->pBt;
2412 MemPage *pPage1 = pBt->pPage1;
2413 int rc, n, k;
drh8b2f49b2001-06-08 00:21:52 +00002414
drh3aac2dd2004-04-26 14:10:20 +00002415 /* Prepare the page for freeing */
2416 assert( pPage->pgno>1 );
2417 pPage->isInit = 0;
2418 releasePage(pPage->pParent);
2419 pPage->pParent = 0;
2420
drha34b6762004-05-07 13:30:42 +00002421 /* Increment the free page count on pPage1 */
2422 rc = sqlite3pager_write(pPage1->aData);
drh3aac2dd2004-04-26 14:10:20 +00002423 if( rc ) return rc;
2424 n = get4byte(&pPage1->aData[36]);
2425 put4byte(&pPage1->aData[36], n+1);
2426
2427 if( n==0 ){
2428 /* This is the first free page */
drhda200cc2004-05-09 11:51:38 +00002429 rc = sqlite3pager_write(pPage->aData);
2430 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002431 memset(pPage->aData, 0, 8);
drha34b6762004-05-07 13:30:42 +00002432 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002433 TRACE(("FREE-PAGE: %d first\n", pPage->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002434 }else{
2435 /* Other free pages already exist. Retrive the first trunk page
2436 ** of the freelist and find out how many leaves it has. */
drha34b6762004-05-07 13:30:42 +00002437 MemPage *pTrunk;
2438 rc = getPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002439 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002440 k = get4byte(&pTrunk->aData[4]);
drhb6f41482004-05-14 01:58:11 +00002441 if( k==pBt->usableSize/4 - 8 ){
drh3aac2dd2004-04-26 14:10:20 +00002442 /* The trunk is full. Turn the page being freed into a new
2443 ** trunk page with no leaves. */
drha34b6762004-05-07 13:30:42 +00002444 rc = sqlite3pager_write(pPage->aData);
drh3aac2dd2004-04-26 14:10:20 +00002445 if( rc ) return rc;
2446 put4byte(pPage->aData, pTrunk->pgno);
2447 put4byte(&pPage->aData[4], 0);
2448 put4byte(&pPage1->aData[32], pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002449 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n",
2450 pPage->pgno, pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002451 }else{
2452 /* Add the newly freed page as a leaf on the current trunk */
drha34b6762004-05-07 13:30:42 +00002453 rc = sqlite3pager_write(pTrunk->aData);
drh3aac2dd2004-04-26 14:10:20 +00002454 if( rc ) return rc;
2455 put4byte(&pTrunk->aData[4], k+1);
2456 put4byte(&pTrunk->aData[8+k*4], pPage->pgno);
drha34b6762004-05-07 13:30:42 +00002457 sqlite3pager_dont_write(pBt->pPager, pPage->pgno);
drh3a4c1412004-05-09 20:40:11 +00002458 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
drh3aac2dd2004-04-26 14:10:20 +00002459 }
2460 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00002461 }
drh3b7511c2001-05-26 13:15:44 +00002462 return rc;
2463}
2464
2465/*
drh3aac2dd2004-04-26 14:10:20 +00002466** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00002467*/
drh3aac2dd2004-04-26 14:10:20 +00002468static int clearCell(MemPage *pPage, unsigned char *pCell){
2469 Btree *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00002470 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00002471 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00002472 int rc;
drh3b7511c2001-05-26 13:15:44 +00002473
drh43605152004-05-29 21:46:49 +00002474 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00002475 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00002476 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00002477 }
drh6f11bef2004-05-13 01:12:56 +00002478 ovflPgno = get4byte(&pCell[info.iOverflow]);
drh3aac2dd2004-04-26 14:10:20 +00002479 while( ovflPgno!=0 ){
2480 MemPage *pOvfl;
2481 rc = getPage(pBt, ovflPgno, &pOvfl);
drh3b7511c2001-05-26 13:15:44 +00002482 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00002483 ovflPgno = get4byte(pOvfl->aData);
drha34b6762004-05-07 13:30:42 +00002484 rc = freePage(pOvfl);
drhbd03cae2001-06-02 02:40:57 +00002485 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00002486 sqlite3pager_unref(pOvfl->aData);
drh3b7511c2001-05-26 13:15:44 +00002487 }
drh5e2f8b92001-05-28 00:41:15 +00002488 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00002489}
2490
2491/*
drh91025292004-05-03 19:49:32 +00002492** Create the byte sequence used to represent a cell on page pPage
2493** and write that byte sequence into pCell[]. Overflow pages are
2494** allocated and filled in as necessary. The calling procedure
2495** is responsible for making sure sufficient space has been allocated
2496** for pCell[].
2497**
2498** Note that pCell does not necessary need to point to the pPage->aData
2499** area. pCell might point to some temporary storage. The cell will
2500** be constructed in this temporary area then copied into pPage->aData
2501** later.
drh3b7511c2001-05-26 13:15:44 +00002502*/
2503static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00002504 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00002505 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00002506 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00002507 const void *pData,int nData, /* The data */
2508 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00002509){
drh3b7511c2001-05-26 13:15:44 +00002510 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00002511 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00002512 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00002513 int spaceLeft;
2514 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00002515 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00002516 unsigned char *pPrior;
2517 unsigned char *pPayload;
2518 Btree *pBt = pPage->pBt;
2519 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00002520 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00002521 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00002522
drh91025292004-05-03 19:49:32 +00002523 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00002524 nHeader = 0;
drh91025292004-05-03 19:49:32 +00002525 if( !pPage->leaf ){
2526 nHeader += 4;
2527 }
drh8b18dd42004-05-12 19:18:15 +00002528 if( pPage->hasData ){
drh91025292004-05-03 19:49:32 +00002529 nHeader += putVarint(&pCell[nHeader], nData);
drh6f11bef2004-05-13 01:12:56 +00002530 }else{
drh91025292004-05-03 19:49:32 +00002531 nData = 0;
2532 }
drh6f11bef2004-05-13 01:12:56 +00002533 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh43605152004-05-29 21:46:49 +00002534 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00002535 assert( info.nHeader==nHeader );
2536 assert( info.nKey==nKey );
2537 assert( info.nData==nData );
2538
2539 /* Fill in the payload */
drh3aac2dd2004-04-26 14:10:20 +00002540 nPayload = nData;
2541 if( pPage->intKey ){
2542 pSrc = pData;
2543 nSrc = nData;
drh91025292004-05-03 19:49:32 +00002544 nData = 0;
drh3aac2dd2004-04-26 14:10:20 +00002545 }else{
2546 nPayload += nKey;
2547 pSrc = pKey;
2548 nSrc = nKey;
2549 }
drh6f11bef2004-05-13 01:12:56 +00002550 *pnSize = info.nSize;
2551 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00002552 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00002553 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00002554
drh3b7511c2001-05-26 13:15:44 +00002555 while( nPayload>0 ){
2556 if( spaceLeft==0 ){
drh3aac2dd2004-04-26 14:10:20 +00002557 rc = allocatePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl);
drh3b7511c2001-05-26 13:15:44 +00002558 if( rc ){
drh9b171272004-05-08 02:03:22 +00002559 releasePage(pToRelease);
drh3aac2dd2004-04-26 14:10:20 +00002560 clearCell(pPage, pCell);
drh3b7511c2001-05-26 13:15:44 +00002561 return rc;
2562 }
drh3aac2dd2004-04-26 14:10:20 +00002563 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00002564 releasePage(pToRelease);
2565 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00002566 pPrior = pOvfl->aData;
2567 put4byte(pPrior, 0);
2568 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00002569 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00002570 }
2571 n = nPayload;
2572 if( n>spaceLeft ) n = spaceLeft;
drh3aac2dd2004-04-26 14:10:20 +00002573 if( n>nSrc ) n = nSrc;
2574 memcpy(pPayload, pSrc, n);
drh3b7511c2001-05-26 13:15:44 +00002575 nPayload -= n;
drhde647132004-05-07 17:57:49 +00002576 pPayload += n;
drh9b171272004-05-08 02:03:22 +00002577 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00002578 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00002579 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00002580 if( nSrc==0 ){
2581 nSrc = nData;
2582 pSrc = pData;
2583 }
drhdd793422001-06-28 01:54:48 +00002584 }
drh9b171272004-05-08 02:03:22 +00002585 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00002586 return SQLITE_OK;
2587}
2588
2589/*
drhbd03cae2001-06-02 02:40:57 +00002590** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00002591** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00002592** pointer in the third argument.
2593*/
drh4b70f112004-05-02 21:12:19 +00002594static void reparentPage(Btree *pBt, Pgno pgno, MemPage *pNewParent, int idx){
drhbd03cae2001-06-02 02:40:57 +00002595 MemPage *pThis;
drh4b70f112004-05-02 21:12:19 +00002596 unsigned char *aData;
drhbd03cae2001-06-02 02:40:57 +00002597
drhdd793422001-06-28 01:54:48 +00002598 if( pgno==0 ) return;
drh4b70f112004-05-02 21:12:19 +00002599 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00002600 aData = sqlite3pager_lookup(pBt->pPager, pgno);
drhda200cc2004-05-09 11:51:38 +00002601 if( aData ){
drhb6f41482004-05-14 01:58:11 +00002602 pThis = (MemPage*)&aData[pBt->usableSize];
drhda200cc2004-05-09 11:51:38 +00002603 if( pThis->isInit ){
2604 if( pThis->pParent!=pNewParent ){
2605 if( pThis->pParent ) sqlite3pager_unref(pThis->pParent->aData);
2606 pThis->pParent = pNewParent;
2607 if( pNewParent ) sqlite3pager_ref(pNewParent->aData);
2608 }
2609 pThis->idxParent = idx;
drhdd793422001-06-28 01:54:48 +00002610 }
drha34b6762004-05-07 13:30:42 +00002611 sqlite3pager_unref(aData);
drhbd03cae2001-06-02 02:40:57 +00002612 }
2613}
2614
2615/*
drh4b70f112004-05-02 21:12:19 +00002616** Change the pParent pointer of all children of pPage to point back
2617** to pPage.
2618**
drhbd03cae2001-06-02 02:40:57 +00002619** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00002620** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00002621**
2622** This routine gets called after you memcpy() one page into
2623** another.
2624*/
drh4b70f112004-05-02 21:12:19 +00002625static void reparentChildPages(MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00002626 int i;
drh4b70f112004-05-02 21:12:19 +00002627 Btree *pBt;
2628
drha34b6762004-05-07 13:30:42 +00002629 if( pPage->leaf ) return;
drh4b70f112004-05-02 21:12:19 +00002630 pBt = pPage->pBt;
drhbd03cae2001-06-02 02:40:57 +00002631 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00002632 reparentPage(pBt, get4byte(findCell(pPage,i)), pPage, i);
drhbd03cae2001-06-02 02:40:57 +00002633 }
drh43605152004-05-29 21:46:49 +00002634 reparentPage(pBt, get4byte(&pPage->aData[pPage->hdrOffset+8]), pPage, i);
drh428ae8c2003-01-04 16:48:09 +00002635 pPage->idxShift = 0;
drh14acc042001-06-10 19:56:58 +00002636}
2637
2638/*
2639** Remove the i-th cell from pPage. This routine effects pPage only.
2640** The cell content is not freed or deallocated. It is assumed that
2641** the cell content has been copied someplace else. This routine just
2642** removes the reference to the cell from pPage.
2643**
2644** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00002645*/
drh4b70f112004-05-02 21:12:19 +00002646static void dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00002647 int i; /* Loop counter */
2648 int pc; /* Offset to cell content of cell being deleted */
2649 u8 *data; /* pPage->aData */
2650 u8 *ptr; /* Used to move bytes around within data[] */
2651
drh8c42ca92001-06-22 19:15:00 +00002652 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00002653 assert( sz==cellSize(pPage, idx) );
drha34b6762004-05-07 13:30:42 +00002654 assert( sqlite3pager_iswriteable(pPage->aData) );
drhda200cc2004-05-09 11:51:38 +00002655 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00002656 ptr = &data[pPage->cellOffset + 2*idx];
2657 pc = get2byte(ptr);
2658 assert( pc>10 && pc+sz<=pPage->pBt->usableSize );
drhde647132004-05-07 17:57:49 +00002659 freeSpace(pPage, pc, sz);
drh43605152004-05-29 21:46:49 +00002660 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
2661 ptr[0] = ptr[2];
2662 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00002663 }
2664 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00002665 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
2666 pPage->nFree += 2;
drh428ae8c2003-01-04 16:48:09 +00002667 pPage->idxShift = 1;
drh14acc042001-06-10 19:56:58 +00002668}
2669
2670/*
2671** Insert a new cell on pPage at cell index "i". pCell points to the
2672** content of the cell.
2673**
2674** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00002675** will not fit, then make a copy of the cell content into pTemp if
2676** pTemp is not null. Regardless of pTemp, allocate a new entry
2677** in pPage->aOvfl[] and make it point to the cell content (either
2678** in pTemp or the original pCell) and also record its index.
2679** Allocating a new entry in pPage->aCell[] implies that
2680** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00002681*/
drh24cd67e2004-05-10 16:18:47 +00002682static void insertCell(
2683 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00002684 int i, /* New cell becomes the i-th cell of the page */
2685 u8 *pCell, /* Content of the new cell */
2686 int sz, /* Bytes of content in pCell */
drh24cd67e2004-05-10 16:18:47 +00002687 u8 *pTemp /* Temp storage space for pCell, if needed */
2688){
drh43605152004-05-29 21:46:49 +00002689 int idx; /* Where to write new cell content in data[] */
2690 int j; /* Loop counter */
2691 int top; /* First byte of content for any cell in data[] */
2692 int end; /* First byte past the last cell pointer in data[] */
2693 int ins; /* Index in data[] where new cell pointer is inserted */
2694 int hdr; /* Offset into data[] of the page header */
2695 int cellOffset; /* Address of first cell pointer in data[] */
2696 u8 *data; /* The content of the whole page */
2697 u8 *ptr; /* Used for moving information around in data[] */
2698
2699 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
2700 assert( sz==cellSizePtr(pPage, pCell) );
drha34b6762004-05-07 13:30:42 +00002701 assert( sqlite3pager_iswriteable(pPage->aData) );
drh43605152004-05-29 21:46:49 +00002702 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00002703 if( pTemp ){
2704 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00002705 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00002706 }
drh43605152004-05-29 21:46:49 +00002707 j = pPage->nOverflow++;
2708 assert( j<sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0]) );
2709 pPage->aOvfl[j].pCell = pCell;
2710 pPage->aOvfl[j].idx = i;
2711 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +00002712 }else{
drh43605152004-05-29 21:46:49 +00002713 data = pPage->aData;
2714 hdr = pPage->hdrOffset;
2715 top = get2byte(&data[hdr+5]);
2716 cellOffset = pPage->cellOffset;
2717 end = cellOffset + 2*pPage->nCell + 2;
2718 ins = cellOffset + 2*i;
2719 if( end > top - sz ){
2720 defragmentPage(pPage);
2721 top = get2byte(&data[hdr+5]);
2722 assert( end + sz <= top );
2723 }
2724 idx = allocateSpace(pPage, sz);
2725 assert( idx>0 );
2726 assert( end <= get2byte(&data[hdr+5]) );
2727 pPage->nCell++;
2728 pPage->nFree -= 2;
drhda200cc2004-05-09 11:51:38 +00002729 memcpy(&data[idx], pCell, sz);
drh43605152004-05-29 21:46:49 +00002730 for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){
2731 ptr[0] = ptr[-2];
2732 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00002733 }
drh43605152004-05-29 21:46:49 +00002734 put2byte(&data[ins], idx);
2735 put2byte(&data[hdr+3], pPage->nCell);
2736 pPage->idxShift = 1;
drhda200cc2004-05-09 11:51:38 +00002737 pageIntegrity(pPage);
drh14acc042001-06-10 19:56:58 +00002738 }
2739}
2740
2741/*
drhfa1a98a2004-05-14 19:08:17 +00002742** Add a list of cells to a page. The page should be initially empty.
2743** The cells are guaranteed to fit on the page.
2744*/
2745static void assemblePage(
2746 MemPage *pPage, /* The page to be assemblied */
2747 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00002748 u8 **apCell, /* Pointers to cell bodies */
drhfa1a98a2004-05-14 19:08:17 +00002749 int *aSize /* Sizes of the cells */
2750){
2751 int i; /* Loop counter */
2752 int totalSize; /* Total size of all cells */
2753 int hdr; /* Index of page header */
drh43605152004-05-29 21:46:49 +00002754 int cellptr; /* Address of next cell pointer */
2755 int cellbody; /* Address of next cell body */
drhfa1a98a2004-05-14 19:08:17 +00002756 u8 *data; /* Data for the page */
2757
drh43605152004-05-29 21:46:49 +00002758 assert( pPage->nOverflow==0 );
drhfa1a98a2004-05-14 19:08:17 +00002759 totalSize = 0;
2760 for(i=0; i<nCell; i++){
2761 totalSize += aSize[i];
2762 }
drh43605152004-05-29 21:46:49 +00002763 assert( totalSize+2*nCell<=pPage->nFree );
drhfa1a98a2004-05-14 19:08:17 +00002764 assert( pPage->nCell==0 );
drh43605152004-05-29 21:46:49 +00002765 cellptr = pPage->cellOffset;
drhfa1a98a2004-05-14 19:08:17 +00002766 data = pPage->aData;
2767 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00002768 put2byte(&data[hdr+3], nCell);
2769 cellbody = allocateSpace(pPage, totalSize);
2770 assert( cellbody>0 );
2771 assert( pPage->nFree >= 2*nCell );
2772 pPage->nFree -= 2*nCell;
drhfa1a98a2004-05-14 19:08:17 +00002773 for(i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00002774 put2byte(&data[cellptr], cellbody);
2775 memcpy(&data[cellbody], apCell[i], aSize[i]);
2776 cellptr += 2;
2777 cellbody += aSize[i];
drhfa1a98a2004-05-14 19:08:17 +00002778 }
drh43605152004-05-29 21:46:49 +00002779 assert( cellbody==pPage->pBt->usableSize );
drhfa1a98a2004-05-14 19:08:17 +00002780 pPage->nCell = nCell;
drhfa1a98a2004-05-14 19:08:17 +00002781}
2782
drh14acc042001-06-10 19:56:58 +00002783/*
drhc8629a12004-05-08 20:07:40 +00002784** GCC does not define the offsetof() macro so we'll have to do it
2785** ourselves.
2786*/
2787#ifndef offsetof
2788#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
2789#endif
2790
2791/*
drhc3b70572003-01-04 19:44:07 +00002792** The following parameters determine how many adjacent pages get involved
2793** in a balancing operation. NN is the number of neighbors on either side
2794** of the page that participate in the balancing operation. NB is the
2795** total number of pages that participate, including the target page and
2796** NN neighbors on either side.
2797**
2798** The minimum value of NN is 1 (of course). Increasing NN above 1
2799** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
2800** in exchange for a larger degradation in INSERT and UPDATE performance.
2801** The value of NN appears to give the best results overall.
2802*/
2803#define NN 1 /* Number of neighbors on either side of pPage */
2804#define NB (NN*2+1) /* Total pages involved in the balance */
2805
drh43605152004-05-29 21:46:49 +00002806/* Forward reference */
2807static int balance(MemPage*);
2808
drhc3b70572003-01-04 19:44:07 +00002809/*
drhab01f612004-05-22 02:55:23 +00002810** This routine redistributes Cells on pPage and up to NN*2 siblings
drh8b2f49b2001-06-08 00:21:52 +00002811** of pPage so that all pages have about the same amount of free space.
drh0c6cc4e2004-06-15 02:13:26 +00002812** Usually NN siblings on either side of pPage is used in the balancing,
2813** though more siblings might come from one side if pPage is the first
drhab01f612004-05-22 02:55:23 +00002814** or last child of its parent. If pPage has fewer than 2*NN siblings
drh8b2f49b2001-06-08 00:21:52 +00002815** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00002816** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00002817**
drh0c6cc4e2004-06-15 02:13:26 +00002818** The number of siblings of pPage might be increased or decreased by one or
2819** two in an effort to keep pages nearly full but not over full. The root page
drhab01f612004-05-22 02:55:23 +00002820** is special and is allowed to be nearly empty. If pPage is
drh8c42ca92001-06-22 19:15:00 +00002821** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00002822** or decreased by one, as necessary, to keep the root page from being
drhab01f612004-05-22 02:55:23 +00002823** overfull or completely empty.
drh14acc042001-06-10 19:56:58 +00002824**
drh8b2f49b2001-06-08 00:21:52 +00002825** Note that when this routine is called, some of the Cells on pPage
drh4b70f112004-05-02 21:12:19 +00002826** might not actually be stored in pPage->aData[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00002827** if the page is overfull. Part of the job of this routine is to
drh4b70f112004-05-02 21:12:19 +00002828** make sure all Cells for pPage once again fit in pPage->aData[].
drh14acc042001-06-10 19:56:58 +00002829**
drh8c42ca92001-06-22 19:15:00 +00002830** In the course of balancing the siblings of pPage, the parent of pPage
2831** might become overfull or underfull. If that happens, then this routine
2832** is called recursively on the parent.
2833**
drh5e00f6c2001-09-13 13:46:56 +00002834** If this routine fails for any reason, it might leave the database
2835** in a corrupted state. So if this routine fails, the database should
2836** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00002837*/
drh43605152004-05-29 21:46:49 +00002838static int balance_nonroot(MemPage *pPage){
drh8b2f49b2001-06-08 00:21:52 +00002839 MemPage *pParent; /* The parent of pPage */
drh4b70f112004-05-02 21:12:19 +00002840 Btree *pBt; /* The whole database */
danielk1977cfe9a692004-06-16 12:00:29 +00002841 int nCell = 0; /* Number of cells in aCell[] */
drh8b2f49b2001-06-08 00:21:52 +00002842 int nOld; /* Number of pages in apOld[] */
2843 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00002844 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00002845 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00002846 int idx; /* Index of pPage in pParent->aCell[] */
2847 int nxDiv; /* Next divider slot in pParent->aCell[] */
drh14acc042001-06-10 19:56:58 +00002848 int rc; /* The return code */
drh91025292004-05-03 19:49:32 +00002849 int leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00002850 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00002851 int usableSpace; /* Bytes in pPage beyond the header */
2852 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00002853 int subtotal; /* Subtotal of bytes in cells on one page */
drhb6f41482004-05-14 01:58:11 +00002854 int iSpace = 0; /* First unused byte of aSpace[] */
drhc3b70572003-01-04 19:44:07 +00002855 MemPage *apOld[NB]; /* pPage and up to two siblings */
2856 Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */
drh4b70f112004-05-02 21:12:19 +00002857 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00002858 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
2859 Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */
drhc3b70572003-01-04 19:44:07 +00002860 int idxDiv[NB]; /* Indices of divider cells in pParent */
drh4b70f112004-05-02 21:12:19 +00002861 u8 *apDiv[NB]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00002862 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
2863 int szNew[NB+2]; /* Combined size of cells place on i-th page */
drh4b70f112004-05-02 21:12:19 +00002864 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
drhc3b70572003-01-04 19:44:07 +00002865 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
drh4b70f112004-05-02 21:12:19 +00002866 u8 aCopy[NB][MX_PAGE_SIZE+sizeof(MemPage)]; /* Space for apCopy[] */
drha2fce642004-06-05 00:01:44 +00002867 u8 aSpace[MX_PAGE_SIZE*5]; /* Space to copies of divider cells */
drh8b2f49b2001-06-08 00:21:52 +00002868
drh14acc042001-06-10 19:56:58 +00002869 /*
drh43605152004-05-29 21:46:49 +00002870 ** Find the parent page.
drh8b2f49b2001-06-08 00:21:52 +00002871 */
drh3a4c1412004-05-09 20:40:11 +00002872 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00002873 assert( sqlite3pager_iswriteable(pPage->aData) );
drh4b70f112004-05-02 21:12:19 +00002874 pBt = pPage->pBt;
drh14acc042001-06-10 19:56:58 +00002875 pParent = pPage->pParent;
drh43605152004-05-29 21:46:49 +00002876 sqlite3pager_write(pParent->aData);
2877 assert( pParent );
2878 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
drh14acc042001-06-10 19:56:58 +00002879
drh8b2f49b2001-06-08 00:21:52 +00002880 /*
drh4b70f112004-05-02 21:12:19 +00002881 ** Find the cell in the parent page whose left child points back
drh14acc042001-06-10 19:56:58 +00002882 ** to pPage. The "idx" variable is the index of that cell. If pPage
2883 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00002884 */
drhbb49aba2003-01-04 18:53:27 +00002885 if( pParent->idxShift ){
drha34b6762004-05-07 13:30:42 +00002886 Pgno pgno;
drh4b70f112004-05-02 21:12:19 +00002887 pgno = pPage->pgno;
drha34b6762004-05-07 13:30:42 +00002888 assert( pgno==sqlite3pager_pagenumber(pPage->aData) );
drhbb49aba2003-01-04 18:53:27 +00002889 for(idx=0; idx<pParent->nCell; idx++){
drh43605152004-05-29 21:46:49 +00002890 if( get4byte(findCell(pParent, idx))==pgno ){
drhbb49aba2003-01-04 18:53:27 +00002891 break;
2892 }
drh8b2f49b2001-06-08 00:21:52 +00002893 }
drh4b70f112004-05-02 21:12:19 +00002894 assert( idx<pParent->nCell
drh43605152004-05-29 21:46:49 +00002895 || get4byte(&pParent->aData[pParent->hdrOffset+8])==pgno );
drhbb49aba2003-01-04 18:53:27 +00002896 }else{
2897 idx = pPage->idxParent;
drh8b2f49b2001-06-08 00:21:52 +00002898 }
drh8b2f49b2001-06-08 00:21:52 +00002899
2900 /*
drh14acc042001-06-10 19:56:58 +00002901 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00002902 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00002903 */
drh14acc042001-06-10 19:56:58 +00002904 nOld = nNew = 0;
drha34b6762004-05-07 13:30:42 +00002905 sqlite3pager_ref(pParent->aData);
drh14acc042001-06-10 19:56:58 +00002906
2907 /*
drh4b70f112004-05-02 21:12:19 +00002908 ** Find sibling pages to pPage and the cells in pParent that divide
drhc3b70572003-01-04 19:44:07 +00002909 ** the siblings. An attempt is made to find NN siblings on either
2910 ** side of pPage. More siblings are taken from one side, however, if
2911 ** pPage there are fewer than NN siblings on the other side. If pParent
2912 ** has NB or fewer children then all children of pParent are taken.
drh14acc042001-06-10 19:56:58 +00002913 */
drhc3b70572003-01-04 19:44:07 +00002914 nxDiv = idx - NN;
2915 if( nxDiv + NB > pParent->nCell ){
2916 nxDiv = pParent->nCell - NB + 1;
drh8b2f49b2001-06-08 00:21:52 +00002917 }
drhc3b70572003-01-04 19:44:07 +00002918 if( nxDiv<0 ){
2919 nxDiv = 0;
2920 }
drh8b2f49b2001-06-08 00:21:52 +00002921 nDiv = 0;
drhc3b70572003-01-04 19:44:07 +00002922 for(i=0, k=nxDiv; i<NB; i++, k++){
drh14acc042001-06-10 19:56:58 +00002923 if( k<pParent->nCell ){
2924 idxDiv[i] = k;
drh43605152004-05-29 21:46:49 +00002925 apDiv[i] = findCell(pParent, k);
drh8b2f49b2001-06-08 00:21:52 +00002926 nDiv++;
drha34b6762004-05-07 13:30:42 +00002927 assert( !pParent->leaf );
drh43605152004-05-29 21:46:49 +00002928 pgnoOld[i] = get4byte(apDiv[i]);
drh14acc042001-06-10 19:56:58 +00002929 }else if( k==pParent->nCell ){
drh43605152004-05-29 21:46:49 +00002930 pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]);
drh14acc042001-06-10 19:56:58 +00002931 }else{
2932 break;
drh8b2f49b2001-06-08 00:21:52 +00002933 }
drhde647132004-05-07 17:57:49 +00002934 rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i], pParent);
drh6019e162001-07-02 17:51:45 +00002935 if( rc ) goto balance_cleanup;
drh428ae8c2003-01-04 16:48:09 +00002936 apOld[i]->idxParent = k;
drh91025292004-05-03 19:49:32 +00002937 apCopy[i] = 0;
2938 assert( i==nOld );
drh14acc042001-06-10 19:56:58 +00002939 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00002940 }
2941
2942 /*
drh14acc042001-06-10 19:56:58 +00002943 ** Make copies of the content of pPage and its siblings into aOld[].
2944 ** The rest of this function will use data from the copies rather
2945 ** that the original pages since the original pages will be in the
2946 ** process of being overwritten.
2947 */
2948 for(i=0; i<nOld; i++){
drhd86596e2004-06-22 14:40:11 +00002949 MemPage *p = apCopy[i] = (MemPage*)&aCopy[i+1][-(int)sizeof(MemPage)];
drh43605152004-05-29 21:46:49 +00002950 p->aData = &((u8*)p)[-pBt->pageSize];
2951 memcpy(p->aData, apOld[i]->aData, pBt->pageSize + sizeof(MemPage));
2952 p->aData = &((u8*)p)[-pBt->pageSize];
drh14acc042001-06-10 19:56:58 +00002953 }
2954
2955 /*
2956 ** Load pointers to all cells on sibling pages and the divider cells
2957 ** into the local apCell[] array. Make copies of the divider cells
drhb6f41482004-05-14 01:58:11 +00002958 ** into space obtained form aSpace[] and remove the the divider Cells
2959 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00002960 **
2961 ** If the siblings are on leaf pages, then the child pointers of the
2962 ** divider cells are stripped from the cells before they are copied
drh96f5b762004-05-16 16:24:36 +00002963 ** into aSpace[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00002964 ** child pointers. If siblings are not leaves, then all cell in
2965 ** apCell[] include child pointers. Either way, all cells in apCell[]
2966 ** are alike.
drh96f5b762004-05-16 16:24:36 +00002967 **
2968 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
2969 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00002970 */
2971 nCell = 0;
drh4b70f112004-05-02 21:12:19 +00002972 leafCorrection = pPage->leaf*4;
drh8b18dd42004-05-12 19:18:15 +00002973 leafData = pPage->leafData && pPage->leaf;
drh8b2f49b2001-06-08 00:21:52 +00002974 for(i=0; i<nOld; i++){
drh4b70f112004-05-02 21:12:19 +00002975 MemPage *pOld = apCopy[i];
drh43605152004-05-29 21:46:49 +00002976 int limit = pOld->nCell+pOld->nOverflow;
2977 for(j=0; j<limit; j++){
2978 apCell[nCell] = findOverflowCell(pOld, j);
2979 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
drh14acc042001-06-10 19:56:58 +00002980 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00002981 }
2982 if( i<nOld-1 ){
drh43605152004-05-29 21:46:49 +00002983 int sz = cellSizePtr(pParent, apDiv[i]);
drh8b18dd42004-05-12 19:18:15 +00002984 if( leafData ){
drh96f5b762004-05-16 16:24:36 +00002985 /* With the LEAFDATA flag, pParent cells hold only INTKEYs that
2986 ** are duplicates of keys on the child pages. We need to remove
2987 ** the divider cells from pParent, but the dividers cells are not
2988 ** added to apCell[] because they are duplicates of child cells.
2989 */
drh8b18dd42004-05-12 19:18:15 +00002990 dropCell(pParent, nxDiv, sz);
drh4b70f112004-05-02 21:12:19 +00002991 }else{
drhb6f41482004-05-14 01:58:11 +00002992 u8 *pTemp;
2993 szCell[nCell] = sz;
2994 pTemp = &aSpace[iSpace];
2995 iSpace += sz;
2996 assert( iSpace<=sizeof(aSpace) );
2997 memcpy(pTemp, apDiv[i], sz);
2998 apCell[nCell] = pTemp+leafCorrection;
2999 dropCell(pParent, nxDiv, sz);
drh8b18dd42004-05-12 19:18:15 +00003000 szCell[nCell] -= leafCorrection;
drh43605152004-05-29 21:46:49 +00003001 assert( get4byte(pTemp)==pgnoOld[i] );
drh8b18dd42004-05-12 19:18:15 +00003002 if( !pOld->leaf ){
3003 assert( leafCorrection==0 );
3004 /* The right pointer of the child page pOld becomes the left
3005 ** pointer of the divider cell */
drh43605152004-05-29 21:46:49 +00003006 memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4);
drh8b18dd42004-05-12 19:18:15 +00003007 }else{
3008 assert( leafCorrection==4 );
3009 }
3010 nCell++;
drh4b70f112004-05-02 21:12:19 +00003011 }
drh8b2f49b2001-06-08 00:21:52 +00003012 }
3013 }
3014
3015 /*
drh6019e162001-07-02 17:51:45 +00003016 ** Figure out the number of pages needed to hold all nCell cells.
3017 ** Store this number in "k". Also compute szNew[] which is the total
3018 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00003019 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00003020 ** cntNew[k] should equal nCell.
3021 **
drh96f5b762004-05-16 16:24:36 +00003022 ** Values computed by this block:
3023 **
3024 ** k: The total number of sibling pages
3025 ** szNew[i]: Spaced used on the i-th sibling page.
3026 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
3027 ** the right of the i-th sibling page.
3028 ** usableSpace: Number of bytes of space available on each sibling.
3029 **
drh8b2f49b2001-06-08 00:21:52 +00003030 */
drh43605152004-05-29 21:46:49 +00003031 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00003032 for(subtotal=k=i=0; i<nCell; i++){
drh43605152004-05-29 21:46:49 +00003033 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00003034 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00003035 szNew[k] = subtotal - szCell[i];
3036 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00003037 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00003038 subtotal = 0;
3039 k++;
3040 }
3041 }
3042 szNew[k] = subtotal;
3043 cntNew[k] = nCell;
3044 k++;
drh96f5b762004-05-16 16:24:36 +00003045
3046 /*
3047 ** The packing computed by the previous block is biased toward the siblings
3048 ** on the left side. The left siblings are always nearly full, while the
3049 ** right-most sibling might be nearly empty. This block of code attempts
3050 ** to adjust the packing of siblings to get a better balance.
3051 **
3052 ** This adjustment is more than an optimization. The packing above might
3053 ** be so out of balance as to be illegal. For example, the right-most
3054 ** sibling might be completely empty. This adjustment is not optional.
3055 */
drh6019e162001-07-02 17:51:45 +00003056 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00003057 int szRight = szNew[i]; /* Size of sibling on the right */
3058 int szLeft = szNew[i-1]; /* Size of sibling on the left */
3059 int r; /* Index of right-most cell in left sibling */
3060 int d; /* Index of first cell to the left of right sibling */
3061
3062 r = cntNew[i-1] - 1;
3063 d = r + 1 - leafData;
drh43605152004-05-29 21:46:49 +00003064 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
3065 szRight += szCell[d] + 2;
3066 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00003067 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00003068 r = cntNew[i-1] - 1;
3069 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00003070 }
drh96f5b762004-05-16 16:24:36 +00003071 szNew[i] = szRight;
3072 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00003073 }
3074 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00003075
3076 /*
drh6b308672002-07-08 02:16:37 +00003077 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00003078 */
drh4b70f112004-05-02 21:12:19 +00003079 assert( pPage->pgno>1 );
3080 pageFlags = pPage->aData[0];
drh14acc042001-06-10 19:56:58 +00003081 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00003082 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00003083 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00003084 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00003085 pgnoNew[i] = pgnoOld[i];
3086 apOld[i] = 0;
drhda200cc2004-05-09 11:51:38 +00003087 sqlite3pager_write(pNew->aData);
drh6b308672002-07-08 02:16:37 +00003088 }else{
drhda200cc2004-05-09 11:51:38 +00003089 rc = allocatePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1]);
drh6b308672002-07-08 02:16:37 +00003090 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003091 apNew[i] = pNew;
drh6b308672002-07-08 02:16:37 +00003092 }
drh14acc042001-06-10 19:56:58 +00003093 nNew++;
drhda200cc2004-05-09 11:51:38 +00003094 zeroPage(pNew, pageFlags);
drh8b2f49b2001-06-08 00:21:52 +00003095 }
3096
drh6b308672002-07-08 02:16:37 +00003097 /* Free any old pages that were not reused as new pages.
3098 */
3099 while( i<nOld ){
drh4b70f112004-05-02 21:12:19 +00003100 rc = freePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003101 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00003102 releasePage(apOld[i]);
drh6b308672002-07-08 02:16:37 +00003103 apOld[i] = 0;
3104 i++;
3105 }
3106
drh8b2f49b2001-06-08 00:21:52 +00003107 /*
drhf9ffac92002-03-02 19:00:31 +00003108 ** Put the new pages in accending order. This helps to
3109 ** keep entries in the disk file in order so that a scan
3110 ** of the table is a linear scan through the file. That
3111 ** in turn helps the operating system to deliver pages
3112 ** from the disk more rapidly.
3113 **
3114 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00003115 ** n is never more than NB (a small constant), that should
3116 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00003117 **
drhc3b70572003-01-04 19:44:07 +00003118 ** When NB==3, this one optimization makes the database
3119 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00003120 */
3121 for(i=0; i<k-1; i++){
3122 int minV = pgnoNew[i];
3123 int minI = i;
3124 for(j=i+1; j<k; j++){
drh7d02cb72003-06-04 16:24:39 +00003125 if( pgnoNew[j]<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00003126 minI = j;
3127 minV = pgnoNew[j];
3128 }
3129 }
3130 if( minI>i ){
3131 int t;
3132 MemPage *pT;
3133 t = pgnoNew[i];
3134 pT = apNew[i];
3135 pgnoNew[i] = pgnoNew[minI];
3136 apNew[i] = apNew[minI];
3137 pgnoNew[minI] = t;
3138 apNew[minI] = pT;
3139 }
3140 }
drha2fce642004-06-05 00:01:44 +00003141 TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
drh24cd67e2004-05-10 16:18:47 +00003142 pgnoOld[0],
3143 nOld>=2 ? pgnoOld[1] : 0,
3144 nOld>=3 ? pgnoOld[2] : 0,
drh10c0fa62004-05-18 12:50:17 +00003145 pgnoNew[0], szNew[0],
3146 nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0,
3147 nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0,
drha2fce642004-06-05 00:01:44 +00003148 nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0,
3149 nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0));
drh24cd67e2004-05-10 16:18:47 +00003150
drhf9ffac92002-03-02 19:00:31 +00003151
3152 /*
drh14acc042001-06-10 19:56:58 +00003153 ** Evenly distribute the data in apCell[] across the new pages.
3154 ** Insert divider cells into pParent as necessary.
3155 */
3156 j = 0;
3157 for(i=0; i<nNew; i++){
3158 MemPage *pNew = apNew[i];
drh4b70f112004-05-02 21:12:19 +00003159 assert( pNew->pgno==pgnoNew[i] );
drhfa1a98a2004-05-14 19:08:17 +00003160 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
3161 j = cntNew[i];
drh6019e162001-07-02 17:51:45 +00003162 assert( pNew->nCell>0 );
drh43605152004-05-29 21:46:49 +00003163 assert( pNew->nOverflow==0 );
drh14acc042001-06-10 19:56:58 +00003164 if( i<nNew-1 && j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00003165 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00003166 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00003167 int sz;
3168 pCell = apCell[j];
3169 sz = szCell[j] + leafCorrection;
drh4b70f112004-05-02 21:12:19 +00003170 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00003171 memcpy(&pNew->aData[8], pCell, 4);
drh24cd67e2004-05-10 16:18:47 +00003172 pTemp = 0;
drh8b18dd42004-05-12 19:18:15 +00003173 }else if( leafData ){
drh6f11bef2004-05-13 01:12:56 +00003174 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00003175 j--;
drh43605152004-05-29 21:46:49 +00003176 parseCellPtr(pNew, apCell[j], &info);
drhb6f41482004-05-14 01:58:11 +00003177 pCell = &aSpace[iSpace];
drh6f11bef2004-05-13 01:12:56 +00003178 fillInCell(pParent, pCell, 0, info.nKey, 0, 0, &sz);
drhb6f41482004-05-14 01:58:11 +00003179 iSpace += sz;
3180 assert( iSpace<=sizeof(aSpace) );
drh8b18dd42004-05-12 19:18:15 +00003181 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00003182 }else{
3183 pCell -= 4;
drhb6f41482004-05-14 01:58:11 +00003184 pTemp = &aSpace[iSpace];
3185 iSpace += sz;
3186 assert( iSpace<=sizeof(aSpace) );
drh4b70f112004-05-02 21:12:19 +00003187 }
drh8b18dd42004-05-12 19:18:15 +00003188 insertCell(pParent, nxDiv, pCell, sz, pTemp);
drh43605152004-05-29 21:46:49 +00003189 put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno);
drh14acc042001-06-10 19:56:58 +00003190 j++;
3191 nxDiv++;
3192 }
3193 }
drh6019e162001-07-02 17:51:45 +00003194 assert( j==nCell );
drh4b70f112004-05-02 21:12:19 +00003195 if( (pageFlags & PTF_LEAF)==0 ){
drh43605152004-05-29 21:46:49 +00003196 memcpy(&apNew[nNew-1]->aData[8], &apCopy[nOld-1]->aData[8], 4);
drh14acc042001-06-10 19:56:58 +00003197 }
drh43605152004-05-29 21:46:49 +00003198 if( nxDiv==pParent->nCell+pParent->nOverflow ){
drh4b70f112004-05-02 21:12:19 +00003199 /* Right-most sibling is the right-most child of pParent */
drh43605152004-05-29 21:46:49 +00003200 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]);
drh4b70f112004-05-02 21:12:19 +00003201 }else{
3202 /* Right-most sibling is the left child of the first entry in pParent
3203 ** past the right-most divider entry */
drh43605152004-05-29 21:46:49 +00003204 put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]);
drh14acc042001-06-10 19:56:58 +00003205 }
3206
3207 /*
3208 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00003209 */
3210 for(i=0; i<nNew; i++){
drh4b70f112004-05-02 21:12:19 +00003211 reparentChildPages(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003212 }
drh4b70f112004-05-02 21:12:19 +00003213 reparentChildPages(pParent);
drh8b2f49b2001-06-08 00:21:52 +00003214
3215 /*
drh3a4c1412004-05-09 20:40:11 +00003216 ** Balance the parent page. Note that the current page (pPage) might
3217 ** have been added to the freelist is it might no longer be initialized.
3218 ** But the parent page will always be initialized.
drh8b2f49b2001-06-08 00:21:52 +00003219 */
drhda200cc2004-05-09 11:51:38 +00003220 assert( pParent->isInit );
drh3a4c1412004-05-09 20:40:11 +00003221 /* assert( pPage->isInit ); // No! pPage might have been added to freelist */
3222 /* pageIntegrity(pPage); // No! pPage might have been added to freelist */
drh4b70f112004-05-02 21:12:19 +00003223 rc = balance(pParent);
drhda200cc2004-05-09 11:51:38 +00003224
drh8b2f49b2001-06-08 00:21:52 +00003225 /*
drh14acc042001-06-10 19:56:58 +00003226 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00003227 */
drh14acc042001-06-10 19:56:58 +00003228balance_cleanup:
drh8b2f49b2001-06-08 00:21:52 +00003229 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00003230 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00003231 }
drh14acc042001-06-10 19:56:58 +00003232 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00003233 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00003234 }
drh91025292004-05-03 19:49:32 +00003235 releasePage(pParent);
drh3a4c1412004-05-09 20:40:11 +00003236 TRACE(("BALANCE: finished with %d: old=%d new=%d cells=%d\n",
3237 pPage->pgno, nOld, nNew, nCell));
drh8b2f49b2001-06-08 00:21:52 +00003238 return rc;
3239}
3240
3241/*
drh43605152004-05-29 21:46:49 +00003242** This routine is called for the root page of a btree when the root
3243** page contains no cells. This is an opportunity to make the tree
3244** shallower by one level.
3245*/
3246static int balance_shallower(MemPage *pPage){
3247 MemPage *pChild; /* The only child page of pPage */
3248 Pgno pgnoChild; /* Page number for pChild */
3249 int rc; /* Return code from subprocedures */
3250 u8 *apCell[(MX_CELL+2)*NB]; /* All cells from pages being balanced */
3251 int szCell[(MX_CELL+2)*NB]; /* Local size of all cells */
3252
3253 assert( pPage->pParent==0 );
3254 assert( pPage->nCell==0 );
3255 if( pPage->leaf ){
3256 /* The table is completely empty */
3257 TRACE(("BALANCE: empty table %d\n", pPage->pgno));
3258 }else{
3259 /* The root page is empty but has one child. Transfer the
3260 ** information from that one child into the root page if it
3261 ** will fit. This reduces the depth of the tree by one.
3262 **
3263 ** If the root page is page 1, it has less space available than
3264 ** its child (due to the 100 byte header that occurs at the beginning
3265 ** of the database fle), so it might not be able to hold all of the
3266 ** information currently contained in the child. If this is the
3267 ** case, then do not do the transfer. Leave page 1 empty except
3268 ** for the right-pointer to the child page. The child page becomes
3269 ** the virtual root of the tree.
3270 */
3271 pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3272 assert( pgnoChild>0 );
3273 assert( pgnoChild<=sqlite3pager_pagecount(pPage->pBt->pPager) );
3274 rc = getPage(pPage->pBt, pgnoChild, &pChild);
3275 if( rc ) return rc;
3276 if( pPage->pgno==1 ){
3277 rc = initPage(pChild, pPage);
3278 if( rc ) return rc;
3279 assert( pChild->nOverflow==0 );
3280 if( pChild->nFree>=100 ){
3281 /* The child information will fit on the root page, so do the
3282 ** copy */
3283 int i;
3284 zeroPage(pPage, pChild->aData[0]);
3285 for(i=0; i<pChild->nCell; i++){
3286 apCell[i] = findCell(pChild,i);
3287 szCell[i] = cellSizePtr(pChild, apCell[i]);
3288 }
3289 assemblePage(pPage, pChild->nCell, apCell, szCell);
3290 freePage(pChild);
3291 TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno));
3292 }else{
3293 /* The child has more information that will fit on the root.
3294 ** The tree is already balanced. Do nothing. */
3295 TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno));
3296 }
3297 }else{
3298 memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize);
3299 pPage->isInit = 0;
3300 pPage->pParent = 0;
3301 rc = initPage(pPage, 0);
3302 assert( rc==SQLITE_OK );
3303 freePage(pChild);
3304 TRACE(("BALANCE: transfer child %d into root %d\n",
3305 pChild->pgno, pPage->pgno));
3306 }
3307 reparentChildPages(pPage);
3308 releasePage(pChild);
3309 }
3310 return SQLITE_OK;
3311}
3312
3313
3314/*
3315** The root page is overfull
3316**
3317** When this happens, Create a new child page and copy the
3318** contents of the root into the child. Then make the root
3319** page an empty page with rightChild pointing to the new
3320** child. Finally, call balance_internal() on the new child
3321** to cause it to split.
3322*/
3323static int balance_deeper(MemPage *pPage){
3324 int rc; /* Return value from subprocedures */
3325 MemPage *pChild; /* Pointer to a new child page */
3326 Pgno pgnoChild; /* Page number of the new child page */
3327 Btree *pBt; /* The BTree */
3328 int usableSize; /* Total usable size of a page */
3329 u8 *data; /* Content of the parent page */
3330 u8 *cdata; /* Content of the child page */
3331 int hdr; /* Offset to page header in parent */
3332 int brk; /* Offset to content of first cell in parent */
3333
3334 assert( pPage->pParent==0 );
3335 assert( pPage->nOverflow>0 );
3336 pBt = pPage->pBt;
3337 rc = allocatePage(pBt, &pChild, &pgnoChild, pPage->pgno);
3338 if( rc ) return rc;
3339 assert( sqlite3pager_iswriteable(pChild->aData) );
3340 usableSize = pBt->usableSize;
3341 data = pPage->aData;
3342 hdr = pPage->hdrOffset;
3343 brk = get2byte(&data[hdr+5]);
3344 cdata = pChild->aData;
3345 memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr);
3346 memcpy(&cdata[brk], &data[brk], usableSize-brk);
3347 rc = initPage(pChild, pPage);
3348 if( rc ) return rc;
3349 memcpy(pChild->aOvfl, pPage->aOvfl, pPage->nOverflow*sizeof(pPage->aOvfl[0]));
3350 pChild->nOverflow = pPage->nOverflow;
3351 if( pChild->nOverflow ){
3352 pChild->nFree = 0;
3353 }
3354 assert( pChild->nCell==pPage->nCell );
3355 zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF);
3356 put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild);
3357 TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno));
3358 rc = balance_nonroot(pChild);
3359 releasePage(pChild);
3360 return rc;
3361}
3362
3363/*
3364** Decide if the page pPage needs to be balanced. If balancing is
3365** required, call the appropriate balancing routine.
3366*/
3367static int balance(MemPage *pPage){
3368 int rc = SQLITE_OK;
3369 if( pPage->pParent==0 ){
3370 if( pPage->nOverflow>0 ){
3371 rc = balance_deeper(pPage);
3372 }
3373 if( pPage->nCell==0 ){
3374 rc = balance_shallower(pPage);
3375 }
3376 }else{
3377 if( pPage->nOverflow>0 || pPage->nFree>pPage->pBt->usableSize*2/3 ){
3378 rc = balance_nonroot(pPage);
3379 }
3380 }
3381 return rc;
3382}
3383
3384/*
drhf74b8d92002-09-01 23:20:45 +00003385** This routine checks all cursors that point to the same table
3386** as pCur points to. If any of those cursors were opened with
3387** wrFlag==0 then this routine returns SQLITE_LOCKED. If all
3388** cursors point to the same table were opened with wrFlag==1
3389** then this routine returns SQLITE_OK.
3390**
3391** In addition to checking for read-locks (where a read-lock
3392** means a cursor opened with wrFlag==0) this routine also moves
3393** all cursors other than pCur so that they are pointing to the
3394** first Cell on root page. This is necessary because an insert
3395** or delete might change the number of cells on a page or delete
3396** a page entirely and we do not want to leave any cursors
3397** pointing to non-existant pages or cells.
3398*/
3399static int checkReadLocks(BtCursor *pCur){
3400 BtCursor *p;
3401 assert( pCur->wrFlag );
3402 for(p=pCur->pShared; p!=pCur; p=p->pShared){
3403 assert( p );
3404 assert( p->pgnoRoot==pCur->pgnoRoot );
drha34b6762004-05-07 13:30:42 +00003405 assert( p->pPage->pgno==sqlite3pager_pagenumber(p->pPage->aData) );
drhf74b8d92002-09-01 23:20:45 +00003406 if( p->wrFlag==0 ) return SQLITE_LOCKED;
drh91025292004-05-03 19:49:32 +00003407 if( p->pPage->pgno!=p->pgnoRoot ){
drhf74b8d92002-09-01 23:20:45 +00003408 moveToRoot(p);
3409 }
3410 }
3411 return SQLITE_OK;
3412}
3413
3414/*
drh3b7511c2001-05-26 13:15:44 +00003415** Insert a new record into the BTree. The key is given by (pKey,nKey)
3416** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00003417** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00003418** is left pointing at a random location.
3419**
3420** For an INTKEY table, only the nKey value of the key is used. pKey is
3421** ignored. For a ZERODATA table, the pData and nData are both ignored.
drh3b7511c2001-05-26 13:15:44 +00003422*/
drh3aac2dd2004-04-26 14:10:20 +00003423int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00003424 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00003425 const void *pKey, i64 nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00003426 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00003427){
drh3b7511c2001-05-26 13:15:44 +00003428 int rc;
3429 int loc;
drh14acc042001-06-10 19:56:58 +00003430 int szNew;
drh3b7511c2001-05-26 13:15:44 +00003431 MemPage *pPage;
3432 Btree *pBt = pCur->pBt;
drha34b6762004-05-07 13:30:42 +00003433 unsigned char *oldCell;
3434 unsigned char newCell[MX_CELL_SIZE];
drh3b7511c2001-05-26 13:15:44 +00003435
drhc39e0002004-05-07 23:50:57 +00003436 if( pCur->status ){
3437 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003438 }
danielk1977ee5741e2004-05-31 10:01:34 +00003439 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003440 /* Must start a transaction before doing an insert */
3441 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003442 }
drhf74b8d92002-09-01 23:20:45 +00003443 assert( !pBt->readOnly );
drhecdc7532001-09-23 02:35:53 +00003444 if( !pCur->wrFlag ){
3445 return SQLITE_PERM; /* Cursor not open for writing */
3446 }
drhf74b8d92002-09-01 23:20:45 +00003447 if( checkReadLocks(pCur) ){
3448 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3449 }
drh3aac2dd2004-04-26 14:10:20 +00003450 rc = sqlite3BtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00003451 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00003452 pPage = pCur->pPage;
drh4a1c3802004-05-12 15:15:47 +00003453 assert( pPage->intKey || nKey>=0 );
drh8b18dd42004-05-12 19:18:15 +00003454 assert( pPage->leaf || !pPage->leafData );
drh3a4c1412004-05-09 20:40:11 +00003455 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
3456 pCur->pgnoRoot, nKey, nData, pPage->pgno,
3457 loc==0 ? "overwrite" : "new entry"));
drh7aa128d2002-06-21 13:09:16 +00003458 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003459 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003460 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003461 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, &szNew);
drh3b7511c2001-05-26 13:15:44 +00003462 if( rc ) return rc;
drh43605152004-05-29 21:46:49 +00003463 assert( szNew==cellSizePtr(pPage, newCell) );
drh3a4c1412004-05-09 20:40:11 +00003464 assert( szNew<=sizeof(newCell) );
drhf328bc82004-05-10 23:29:49 +00003465 if( loc==0 && pCur->isValid ){
drha34b6762004-05-07 13:30:42 +00003466 int szOld;
3467 assert( pCur->idx>=0 && pCur->idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00003468 oldCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00003469 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003470 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00003471 }
drh43605152004-05-29 21:46:49 +00003472 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00003473 rc = clearCell(pPage, oldCell);
drh5e2f8b92001-05-28 00:41:15 +00003474 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003475 dropCell(pPage, pCur->idx, szOld);
drh7c717f72001-06-24 20:39:41 +00003476 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00003477 assert( pPage->leaf );
drh14acc042001-06-10 19:56:58 +00003478 pCur->idx++;
drh271efa52004-05-30 19:19:05 +00003479 pCur->info.nSize = 0;
drh14acc042001-06-10 19:56:58 +00003480 }else{
drh4b70f112004-05-02 21:12:19 +00003481 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00003482 }
drh24cd67e2004-05-10 16:18:47 +00003483 insertCell(pPage, pCur->idx, newCell, szNew, 0);
drh4b70f112004-05-02 21:12:19 +00003484 rc = balance(pPage);
drh23e11ca2004-05-04 17:27:28 +00003485 /* sqlite3BtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
drh3fc190c2001-09-14 03:24:23 +00003486 /* fflush(stdout); */
drh4b70f112004-05-02 21:12:19 +00003487 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003488 return rc;
3489}
3490
3491/*
drh4b70f112004-05-02 21:12:19 +00003492** Delete the entry that the cursor is pointing to. The cursor
3493** is left pointing at a random location.
drh3b7511c2001-05-26 13:15:44 +00003494*/
drh3aac2dd2004-04-26 14:10:20 +00003495int sqlite3BtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00003496 MemPage *pPage = pCur->pPage;
drh4b70f112004-05-02 21:12:19 +00003497 unsigned char *pCell;
drh5e2f8b92001-05-28 00:41:15 +00003498 int rc;
danielk1977cfe9a692004-06-16 12:00:29 +00003499 Pgno pgnoChild = 0;
drh0d316a42002-08-11 20:10:47 +00003500 Btree *pBt = pCur->pBt;
drh8b2f49b2001-06-08 00:21:52 +00003501
drh7aa128d2002-06-21 13:09:16 +00003502 assert( pPage->isInit );
drhc39e0002004-05-07 23:50:57 +00003503 if( pCur->status ){
3504 return pCur->status; /* A rollback destroyed this cursor */
drhecdc7532001-09-23 02:35:53 +00003505 }
danielk1977ee5741e2004-05-31 10:01:34 +00003506 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003507 /* Must start a transaction before doing a delete */
3508 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003509 }
drhf74b8d92002-09-01 23:20:45 +00003510 assert( !pBt->readOnly );
drhbd03cae2001-06-02 02:40:57 +00003511 if( pCur->idx >= pPage->nCell ){
3512 return SQLITE_ERROR; /* The cursor is not pointing to anything */
3513 }
drhecdc7532001-09-23 02:35:53 +00003514 if( !pCur->wrFlag ){
3515 return SQLITE_PERM; /* Did not open this cursor for writing */
3516 }
drhf74b8d92002-09-01 23:20:45 +00003517 if( checkReadLocks(pCur) ){
3518 return SQLITE_LOCKED; /* The table pCur points to has a read lock */
3519 }
drha34b6762004-05-07 13:30:42 +00003520 rc = sqlite3pager_write(pPage->aData);
drhbd03cae2001-06-02 02:40:57 +00003521 if( rc ) return rc;
drh43605152004-05-29 21:46:49 +00003522 pCell = findCell(pPage, pCur->idx);
drh4b70f112004-05-02 21:12:19 +00003523 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003524 pgnoChild = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00003525 }
3526 clearCell(pPage, pCell);
3527 if( !pPage->leaf ){
drh14acc042001-06-10 19:56:58 +00003528 /*
drh5e00f6c2001-09-13 13:46:56 +00003529 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00003530 ** do something we will leave a hole on an internal page.
3531 ** We have to fill the hole by moving in a cell from a leaf. The
3532 ** next Cell after the one to be deleted is guaranteed to exist and
3533 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00003534 */
drh14acc042001-06-10 19:56:58 +00003535 BtCursor leafCur;
drh4b70f112004-05-02 21:12:19 +00003536 unsigned char *pNext;
drh14acc042001-06-10 19:56:58 +00003537 int szNext;
drh8c1238a2003-01-02 14:43:55 +00003538 int notUsed;
drh24cd67e2004-05-10 16:18:47 +00003539 unsigned char tempCell[MX_CELL_SIZE];
drh8b18dd42004-05-12 19:18:15 +00003540 assert( !pPage->leafData );
drh14acc042001-06-10 19:56:58 +00003541 getTempCursor(pCur, &leafCur);
drh3aac2dd2004-04-26 14:10:20 +00003542 rc = sqlite3BtreeNext(&leafCur, &notUsed);
drh14acc042001-06-10 19:56:58 +00003543 if( rc!=SQLITE_OK ){
drh8a6ac0a2004-02-14 17:35:07 +00003544 if( rc!=SQLITE_NOMEM ) rc = SQLITE_CORRUPT;
3545 return rc;
drh5e2f8b92001-05-28 00:41:15 +00003546 }
drha34b6762004-05-07 13:30:42 +00003547 rc = sqlite3pager_write(leafCur.pPage->aData);
drh6019e162001-07-02 17:51:45 +00003548 if( rc ) return rc;
drh3a4c1412004-05-09 20:40:11 +00003549 TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n",
3550 pCur->pgnoRoot, pPage->pgno, leafCur.pPage->pgno));
drh43605152004-05-29 21:46:49 +00003551 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
3552 pNext = findCell(leafCur.pPage, leafCur.idx);
3553 szNext = cellSizePtr(leafCur.pPage, pNext);
drh24cd67e2004-05-10 16:18:47 +00003554 assert( sizeof(tempCell)>=szNext+4 );
3555 insertCell(pPage, pCur->idx, pNext-4, szNext+4, tempCell);
drh43605152004-05-29 21:46:49 +00003556 put4byte(findOverflowCell(pPage, pCur->idx), pgnoChild);
drh4b70f112004-05-02 21:12:19 +00003557 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003558 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003559 dropCell(leafCur.pPage, leafCur.idx, szNext);
3560 rc = balance(leafCur.pPage);
drh8c42ca92001-06-22 19:15:00 +00003561 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00003562 }else{
drh3a4c1412004-05-09 20:40:11 +00003563 TRACE(("DELETE: table=%d delete from leaf %d\n",
3564 pCur->pgnoRoot, pPage->pgno));
drh43605152004-05-29 21:46:49 +00003565 dropCell(pPage, pCur->idx, cellSizePtr(pPage, pCell));
drh4b70f112004-05-02 21:12:19 +00003566 rc = balance(pPage);
drh5e2f8b92001-05-28 00:41:15 +00003567 }
drh4b70f112004-05-02 21:12:19 +00003568 moveToRoot(pCur);
drh5e2f8b92001-05-28 00:41:15 +00003569 return rc;
drh3b7511c2001-05-26 13:15:44 +00003570}
drh8b2f49b2001-06-08 00:21:52 +00003571
3572/*
drhc6b52df2002-01-04 03:09:29 +00003573** Create a new BTree table. Write into *piTable the page
3574** number for the root page of the new table.
3575**
drhab01f612004-05-22 02:55:23 +00003576** The type of type is determined by the flags parameter. Only the
3577** following values of flags are currently in use. Other values for
3578** flags might not work:
3579**
3580** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
3581** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00003582*/
drh3aac2dd2004-04-26 14:10:20 +00003583int sqlite3BtreeCreateTable(Btree *pBt, int *piTable, int flags){
drh8b2f49b2001-06-08 00:21:52 +00003584 MemPage *pRoot;
3585 Pgno pgnoRoot;
3586 int rc;
danielk1977ee5741e2004-05-31 10:01:34 +00003587 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003588 /* Must start a transaction first */
3589 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003590 }
drh5df72a52002-06-06 23:16:05 +00003591 if( pBt->readOnly ){
3592 return SQLITE_READONLY;
3593 }
drhda200cc2004-05-09 11:51:38 +00003594 rc = allocatePage(pBt, &pRoot, &pgnoRoot, 1);
drh8b2f49b2001-06-08 00:21:52 +00003595 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003596 assert( sqlite3pager_iswriteable(pRoot->aData) );
drhde647132004-05-07 17:57:49 +00003597 zeroPage(pRoot, flags | PTF_LEAF);
drha34b6762004-05-07 13:30:42 +00003598 sqlite3pager_unref(pRoot->aData);
drh8b2f49b2001-06-08 00:21:52 +00003599 *piTable = (int)pgnoRoot;
3600 return SQLITE_OK;
3601}
3602
3603/*
3604** Erase the given database page and all its children. Return
3605** the page to the freelist.
3606*/
drh4b70f112004-05-02 21:12:19 +00003607static int clearDatabasePage(
3608 Btree *pBt, /* The BTree that contains the table */
3609 Pgno pgno, /* Page number to clear */
3610 MemPage *pParent, /* Parent page. NULL for the root */
3611 int freePageFlag /* Deallocate page if true */
3612){
drh8b2f49b2001-06-08 00:21:52 +00003613 MemPage *pPage;
3614 int rc;
drh4b70f112004-05-02 21:12:19 +00003615 unsigned char *pCell;
3616 int i;
drh8b2f49b2001-06-08 00:21:52 +00003617
drhde647132004-05-07 17:57:49 +00003618 rc = getAndInitPage(pBt, pgno, &pPage, pParent);
drh8b2f49b2001-06-08 00:21:52 +00003619 if( rc ) return rc;
drha34b6762004-05-07 13:30:42 +00003620 rc = sqlite3pager_write(pPage->aData);
drh6019e162001-07-02 17:51:45 +00003621 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003622 for(i=0; i<pPage->nCell; i++){
drh43605152004-05-29 21:46:49 +00003623 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00003624 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003625 rc = clearDatabasePage(pBt, get4byte(pCell), pPage->pParent, 1);
drh8b2f49b2001-06-08 00:21:52 +00003626 if( rc ) return rc;
3627 }
drh4b70f112004-05-02 21:12:19 +00003628 rc = clearCell(pPage, pCell);
drh8b2f49b2001-06-08 00:21:52 +00003629 if( rc ) return rc;
3630 }
drha34b6762004-05-07 13:30:42 +00003631 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003632 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage->pParent, 1);
drh2aa679f2001-06-25 02:11:07 +00003633 if( rc ) return rc;
3634 }
3635 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00003636 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003637 }else{
drh3a4c1412004-05-09 20:40:11 +00003638 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00003639 }
drh4b70f112004-05-02 21:12:19 +00003640 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003641 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003642}
3643
3644/*
drhab01f612004-05-22 02:55:23 +00003645** Delete all information from a single table in the database. iTable is
3646** the page number of the root of the table. After this routine returns,
3647** the root page is empty, but still exists.
3648**
3649** This routine will fail with SQLITE_LOCKED if there are any open
3650** read cursors on the table. Open write cursors are moved to the
3651** root of the table.
drh8b2f49b2001-06-08 00:21:52 +00003652*/
drh3aac2dd2004-04-26 14:10:20 +00003653int sqlite3BtreeClearTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003654 int rc;
drhf74b8d92002-09-01 23:20:45 +00003655 BtCursor *pCur;
danielk1977ee5741e2004-05-31 10:01:34 +00003656 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003657 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003658 }
drhf74b8d92002-09-01 23:20:45 +00003659 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3660 if( pCur->pgnoRoot==(Pgno)iTable ){
3661 if( pCur->wrFlag==0 ) return SQLITE_LOCKED;
3662 moveToRoot(pCur);
3663 }
drhecdc7532001-09-23 02:35:53 +00003664 }
drha34b6762004-05-07 13:30:42 +00003665 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0);
drh8b2f49b2001-06-08 00:21:52 +00003666 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00003667 sqlite3BtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00003668 }
drh8c42ca92001-06-22 19:15:00 +00003669 return rc;
drh8b2f49b2001-06-08 00:21:52 +00003670}
3671
3672/*
3673** Erase all information in a table and add the root of the table to
3674** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00003675** page 1) is never added to the freelist.
3676**
3677** This routine will fail with SQLITE_LOCKED if there are any open
3678** cursors on the table.
drh8b2f49b2001-06-08 00:21:52 +00003679*/
drh3aac2dd2004-04-26 14:10:20 +00003680int sqlite3BtreeDropTable(Btree *pBt, int iTable){
drh8b2f49b2001-06-08 00:21:52 +00003681 int rc;
3682 MemPage *pPage;
drhf74b8d92002-09-01 23:20:45 +00003683 BtCursor *pCur;
danielk1977ee5741e2004-05-31 10:01:34 +00003684 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003685 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh8b2f49b2001-06-08 00:21:52 +00003686 }
drhf74b8d92002-09-01 23:20:45 +00003687 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3688 if( pCur->pgnoRoot==(Pgno)iTable ){
3689 return SQLITE_LOCKED; /* Cannot drop a table that has a cursor */
3690 }
drh5df72a52002-06-06 23:16:05 +00003691 }
drha34b6762004-05-07 13:30:42 +00003692 rc = getPage(pBt, (Pgno)iTable, &pPage);
drh2aa679f2001-06-25 02:11:07 +00003693 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00003694 rc = sqlite3BtreeClearTable(pBt, iTable);
drh2aa679f2001-06-25 02:11:07 +00003695 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00003696 if( iTable>1 ){
drha34b6762004-05-07 13:30:42 +00003697 rc = freePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00003698 }else{
drha34b6762004-05-07 13:30:42 +00003699 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
drh8b2f49b2001-06-08 00:21:52 +00003700 }
drh4b70f112004-05-02 21:12:19 +00003701 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00003702 return rc;
3703}
3704
drh001bbcb2003-03-19 03:14:00 +00003705
drh8b2f49b2001-06-08 00:21:52 +00003706/*
drh23e11ca2004-05-04 17:27:28 +00003707** Read the meta-information out of a database file. Meta[0]
3708** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00003709** through meta[15] are available for use by higher layers. Meta[0]
3710** is read-only, the others are read/write.
3711**
3712** The schema layer numbers meta values differently. At the schema
3713** layer (and the SetCookie and ReadCookie opcodes) the number of
3714** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00003715*/
drh3aac2dd2004-04-26 14:10:20 +00003716int sqlite3BtreeGetMeta(Btree *pBt, int idx, u32 *pMeta){
drh8b2f49b2001-06-08 00:21:52 +00003717 int rc;
drh4b70f112004-05-02 21:12:19 +00003718 unsigned char *pP1;
drh8b2f49b2001-06-08 00:21:52 +00003719
drh23e11ca2004-05-04 17:27:28 +00003720 assert( idx>=0 && idx<=15 );
drha34b6762004-05-07 13:30:42 +00003721 rc = sqlite3pager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00003722 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003723 *pMeta = get4byte(&pP1[36 + idx*4]);
drha34b6762004-05-07 13:30:42 +00003724 sqlite3pager_unref(pP1);
drh8b2f49b2001-06-08 00:21:52 +00003725 return SQLITE_OK;
3726}
3727
3728/*
drh23e11ca2004-05-04 17:27:28 +00003729** Write meta-information back into the database. Meta[0] is
3730** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00003731*/
drh3aac2dd2004-04-26 14:10:20 +00003732int sqlite3BtreeUpdateMeta(Btree *pBt, int idx, u32 iMeta){
drh4b70f112004-05-02 21:12:19 +00003733 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00003734 int rc;
drh23e11ca2004-05-04 17:27:28 +00003735 assert( idx>=1 && idx<=15 );
danielk1977ee5741e2004-05-31 10:01:34 +00003736 if( pBt->inTrans!=TRANS_WRITE ){
drhf74b8d92002-09-01 23:20:45 +00003737 return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR;
drh5df72a52002-06-06 23:16:05 +00003738 }
drhde647132004-05-07 17:57:49 +00003739 assert( pBt->pPage1!=0 );
3740 pP1 = pBt->pPage1->aData;
drha34b6762004-05-07 13:30:42 +00003741 rc = sqlite3pager_write(pP1);
drh4b70f112004-05-02 21:12:19 +00003742 if( rc ) return rc;
drh23e11ca2004-05-04 17:27:28 +00003743 put4byte(&pP1[36 + idx*4], iMeta);
drh8b2f49b2001-06-08 00:21:52 +00003744 return SQLITE_OK;
3745}
drh8c42ca92001-06-22 19:15:00 +00003746
drhf328bc82004-05-10 23:29:49 +00003747/*
3748** Return the flag byte at the beginning of the page that the cursor
3749** is currently pointing to.
3750*/
3751int sqlite3BtreeFlags(BtCursor *pCur){
3752 MemPage *pPage = pCur->pPage;
3753 return pPage ? pPage->aData[pPage->hdrOffset] : 0;
3754}
3755
drh8c42ca92001-06-22 19:15:00 +00003756/*
3757** Print a disassembly of the given page on standard output. This routine
3758** is used for debugging and testing only.
3759*/
drhaaab5722002-02-19 13:39:21 +00003760#ifdef SQLITE_TEST
drh23e11ca2004-05-04 17:27:28 +00003761int sqlite3BtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00003762 int rc;
3763 MemPage *pPage;
drhc8629a12004-05-08 20:07:40 +00003764 int i, j, c;
drh8c42ca92001-06-22 19:15:00 +00003765 int nFree;
3766 u16 idx;
drhab9f7f12004-05-08 10:56:11 +00003767 int hdr;
drh43605152004-05-29 21:46:49 +00003768 int nCell;
drha2fce642004-06-05 00:01:44 +00003769 int isInit;
drhab9f7f12004-05-08 10:56:11 +00003770 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003771 char range[20];
3772 unsigned char payload[20];
drhab9f7f12004-05-08 10:56:11 +00003773
drh4b70f112004-05-02 21:12:19 +00003774 rc = getPage(pBt, (Pgno)pgno, &pPage);
drha2fce642004-06-05 00:01:44 +00003775 isInit = pPage->isInit;
3776 if( pPage->isInit==0 ){
3777 initPage(pPage, 0);
3778 }
drh8c42ca92001-06-22 19:15:00 +00003779 if( rc ){
3780 return rc;
3781 }
drhab9f7f12004-05-08 10:56:11 +00003782 hdr = pPage->hdrOffset;
3783 data = pPage->aData;
drhc8629a12004-05-08 20:07:40 +00003784 c = data[hdr];
drh8b18dd42004-05-12 19:18:15 +00003785 pPage->intKey = (c & (PTF_INTKEY|PTF_LEAFDATA))!=0;
drhc8629a12004-05-08 20:07:40 +00003786 pPage->zeroData = (c & PTF_ZERODATA)!=0;
drh8b18dd42004-05-12 19:18:15 +00003787 pPage->leafData = (c & PTF_LEAFDATA)!=0;
drhc8629a12004-05-08 20:07:40 +00003788 pPage->leaf = (c & PTF_LEAF)!=0;
drh8b18dd42004-05-12 19:18:15 +00003789 pPage->hasData = !(pPage->zeroData || (!pPage->leaf && pPage->leafData));
drh43605152004-05-29 21:46:49 +00003790 nCell = get2byte(&data[hdr+3]);
drhda200cc2004-05-09 11:51:38 +00003791 printf("PAGE %d: flags=0x%02x frag=%d parent=%d\n", pgno,
drh43605152004-05-29 21:46:49 +00003792 data[hdr], data[hdr+7],
drhda200cc2004-05-09 11:51:38 +00003793 (pPage->isInit && pPage->pParent) ? pPage->pParent->pgno : 0);
drhab9f7f12004-05-08 10:56:11 +00003794 assert( hdr == (pgno==1 ? 100 : 0) );
drh43605152004-05-29 21:46:49 +00003795 idx = hdr + 12 - pPage->leaf*4;
3796 for(i=0; i<nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00003797 CellInfo info;
drh4b70f112004-05-02 21:12:19 +00003798 Pgno child;
drh43605152004-05-29 21:46:49 +00003799 unsigned char *pCell;
drh6f11bef2004-05-13 01:12:56 +00003800 int sz;
drh43605152004-05-29 21:46:49 +00003801 int addr;
drh6f11bef2004-05-13 01:12:56 +00003802
drh43605152004-05-29 21:46:49 +00003803 addr = get2byte(&data[idx + 2*i]);
3804 pCell = &data[addr];
3805 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00003806 sz = info.nSize;
drh43605152004-05-29 21:46:49 +00003807 sprintf(range,"%d..%d", addr, addr+sz-1);
drh4b70f112004-05-02 21:12:19 +00003808 if( pPage->leaf ){
3809 child = 0;
3810 }else{
drh43605152004-05-29 21:46:49 +00003811 child = get4byte(pCell);
drh4b70f112004-05-02 21:12:19 +00003812 }
drh6f11bef2004-05-13 01:12:56 +00003813 sz = info.nData;
3814 if( !pPage->intKey ) sz += info.nKey;
drh8c42ca92001-06-22 19:15:00 +00003815 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
drh6f11bef2004-05-13 01:12:56 +00003816 memcpy(payload, &pCell[info.nHeader], sz);
drh8c42ca92001-06-22 19:15:00 +00003817 for(j=0; j<sz; j++){
3818 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
3819 }
3820 payload[sz] = 0;
3821 printf(
drh6f11bef2004-05-13 01:12:56 +00003822 "cell %2d: i=%-10s chld=%-4d nk=%-4lld nd=%-4d payload=%s\n",
3823 i, range, child, info.nKey, info.nData, payload
drh8c42ca92001-06-22 19:15:00 +00003824 );
drh8c42ca92001-06-22 19:15:00 +00003825 }
drh4b70f112004-05-02 21:12:19 +00003826 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003827 printf("right_child: %d\n", get4byte(&data[hdr+8]));
drh4b70f112004-05-02 21:12:19 +00003828 }
drh8c42ca92001-06-22 19:15:00 +00003829 nFree = 0;
3830 i = 0;
drhab9f7f12004-05-08 10:56:11 +00003831 idx = get2byte(&data[hdr+1]);
drhb6f41482004-05-14 01:58:11 +00003832 while( idx>0 && idx<pPage->pBt->usableSize ){
drhab9f7f12004-05-08 10:56:11 +00003833 int sz = get2byte(&data[idx+2]);
drh4b70f112004-05-02 21:12:19 +00003834 sprintf(range,"%d..%d", idx, idx+sz-1);
3835 nFree += sz;
drh8c42ca92001-06-22 19:15:00 +00003836 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
drh4b70f112004-05-02 21:12:19 +00003837 i, range, sz, nFree);
drhab9f7f12004-05-08 10:56:11 +00003838 idx = get2byte(&data[idx]);
drh2aa679f2001-06-25 02:11:07 +00003839 i++;
drh8c42ca92001-06-22 19:15:00 +00003840 }
3841 if( idx!=0 ){
3842 printf("ERROR: next freeblock index out of range: %d\n", idx);
3843 }
drha34b6762004-05-07 13:30:42 +00003844 if( recursive && !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00003845 for(i=0; i<nCell; i++){
3846 unsigned char *pCell = findCell(pPage, i);
3847 sqlite3BtreePageDump(pBt, get4byte(pCell), 1);
drha34b6762004-05-07 13:30:42 +00003848 idx = get2byte(pCell);
drh6019e162001-07-02 17:51:45 +00003849 }
drh43605152004-05-29 21:46:49 +00003850 sqlite3BtreePageDump(pBt, get4byte(&data[hdr+8]), 1);
drh6019e162001-07-02 17:51:45 +00003851 }
drha2fce642004-06-05 00:01:44 +00003852 pPage->isInit = isInit;
drhab9f7f12004-05-08 10:56:11 +00003853 sqlite3pager_unref(data);
drh3644f082004-05-10 18:45:09 +00003854 fflush(stdout);
drh8c42ca92001-06-22 19:15:00 +00003855 return SQLITE_OK;
3856}
drhaaab5722002-02-19 13:39:21 +00003857#endif
drh8c42ca92001-06-22 19:15:00 +00003858
drhaaab5722002-02-19 13:39:21 +00003859#ifdef SQLITE_TEST
drh8c42ca92001-06-22 19:15:00 +00003860/*
drh2aa679f2001-06-25 02:11:07 +00003861** Fill aResult[] with information about the entry and page that the
3862** cursor is pointing to.
3863**
3864** aResult[0] = The page number
3865** aResult[1] = The entry number
3866** aResult[2] = Total number of entries on this page
3867** aResult[3] = Size of this entry
3868** aResult[4] = Number of free bytes on this page
3869** aResult[5] = Number of free blocks on the page
3870** aResult[6] = Page number of the left child of this entry
3871** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00003872**
3873** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00003874*/
drhda200cc2004-05-09 11:51:38 +00003875int sqlite3BtreeCursorInfo(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00003876 int cnt, idx;
3877 MemPage *pPage = pCur->pPage;
drhda200cc2004-05-09 11:51:38 +00003878
3879 pageIntegrity(pPage);
drh4b70f112004-05-02 21:12:19 +00003880 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00003881 aResult[0] = sqlite3pager_pagenumber(pPage->aData);
drh91025292004-05-03 19:49:32 +00003882 assert( aResult[0]==pPage->pgno );
drh8c42ca92001-06-22 19:15:00 +00003883 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00003884 aResult[2] = pPage->nCell;
3885 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
drh43605152004-05-29 21:46:49 +00003886 u8 *pCell = findCell(pPage, pCur->idx);
3887 aResult[3] = cellSizePtr(pPage, pCell);
3888 aResult[6] = pPage->leaf ? 0 : get4byte(pCell);
drh2aa679f2001-06-25 02:11:07 +00003889 }else{
3890 aResult[3] = 0;
3891 aResult[6] = 0;
3892 }
3893 aResult[4] = pPage->nFree;
3894 cnt = 0;
drh4b70f112004-05-02 21:12:19 +00003895 idx = get2byte(&pPage->aData[pPage->hdrOffset+1]);
drhb6f41482004-05-14 01:58:11 +00003896 while( idx>0 && idx<pPage->pBt->usableSize ){
drh2aa679f2001-06-25 02:11:07 +00003897 cnt++;
drh4b70f112004-05-02 21:12:19 +00003898 idx = get2byte(&pPage->aData[idx]);
drh2aa679f2001-06-25 02:11:07 +00003899 }
3900 aResult[5] = cnt;
drh43605152004-05-29 21:46:49 +00003901 aResult[7] = pPage->leaf ? 0 : get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh8c42ca92001-06-22 19:15:00 +00003902 return SQLITE_OK;
3903}
drhaaab5722002-02-19 13:39:21 +00003904#endif
drhdd793422001-06-28 01:54:48 +00003905
drhdd793422001-06-28 01:54:48 +00003906/*
drh5eddca62001-06-30 21:53:53 +00003907** Return the pager associated with a BTree. This routine is used for
3908** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00003909*/
drh3aac2dd2004-04-26 14:10:20 +00003910Pager *sqlite3BtreePager(Btree *pBt){
drhdd793422001-06-28 01:54:48 +00003911 return pBt->pPager;
3912}
drh5eddca62001-06-30 21:53:53 +00003913
3914/*
3915** This structure is passed around through all the sanity checking routines
3916** in order to keep track of some global state information.
3917*/
drhaaab5722002-02-19 13:39:21 +00003918typedef struct IntegrityCk IntegrityCk;
3919struct IntegrityCk {
drh100569d2001-10-02 13:01:48 +00003920 Btree *pBt; /* The tree being checked out */
3921 Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
3922 int nPage; /* Number of pages in the database */
3923 int *anRef; /* Number of times each page is referenced */
drh100569d2001-10-02 13:01:48 +00003924 char *zErrMsg; /* An error message. NULL of no errors seen. */
drh5eddca62001-06-30 21:53:53 +00003925};
3926
3927/*
3928** Append a message to the error message string.
3929*/
drhaaab5722002-02-19 13:39:21 +00003930static void checkAppendMsg(IntegrityCk *pCheck, char *zMsg1, char *zMsg2){
drh5eddca62001-06-30 21:53:53 +00003931 if( pCheck->zErrMsg ){
3932 char *zOld = pCheck->zErrMsg;
3933 pCheck->zErrMsg = 0;
danielk19774adee202004-05-08 08:23:19 +00003934 sqlite3SetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003935 sqliteFree(zOld);
3936 }else{
danielk19774adee202004-05-08 08:23:19 +00003937 sqlite3SetString(&pCheck->zErrMsg, zMsg1, zMsg2, (char*)0);
drh5eddca62001-06-30 21:53:53 +00003938 }
3939}
3940
3941/*
3942** Add 1 to the reference count for page iPage. If this is the second
3943** reference to the page, add an error message to pCheck->zErrMsg.
3944** Return 1 if there are 2 ore more references to the page and 0 if
3945** if this is the first reference to the page.
3946**
3947** Also check that the page number is in bounds.
3948*/
drhaaab5722002-02-19 13:39:21 +00003949static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00003950 if( iPage==0 ) return 1;
drh0de8c112002-07-06 16:32:14 +00003951 if( iPage>pCheck->nPage || iPage<0 ){
drh5eddca62001-06-30 21:53:53 +00003952 char zBuf[100];
3953 sprintf(zBuf, "invalid page number %d", iPage);
3954 checkAppendMsg(pCheck, zContext, zBuf);
3955 return 1;
3956 }
3957 if( pCheck->anRef[iPage]==1 ){
3958 char zBuf[100];
3959 sprintf(zBuf, "2nd reference to page %d", iPage);
3960 checkAppendMsg(pCheck, zContext, zBuf);
3961 return 1;
3962 }
3963 return (pCheck->anRef[iPage]++)>1;
3964}
3965
3966/*
3967** Check the integrity of the freelist or of an overflow page list.
3968** Verify that the number of pages on the list is N.
3969*/
drh30e58752002-03-02 20:41:57 +00003970static void checkList(
3971 IntegrityCk *pCheck, /* Integrity checking context */
3972 int isFreeList, /* True for a freelist. False for overflow page list */
3973 int iPage, /* Page number for first page in the list */
3974 int N, /* Expected number of pages in the list */
3975 char *zContext /* Context for error messages */
3976){
3977 int i;
drh3a4c1412004-05-09 20:40:11 +00003978 int expected = N;
3979 int iFirst = iPage;
drh5eddca62001-06-30 21:53:53 +00003980 char zMsg[100];
drh30e58752002-03-02 20:41:57 +00003981 while( N-- > 0 ){
drh4b70f112004-05-02 21:12:19 +00003982 unsigned char *pOvfl;
drh5eddca62001-06-30 21:53:53 +00003983 if( iPage<1 ){
drh3a4c1412004-05-09 20:40:11 +00003984 sprintf(zMsg, "%d of %d pages missing from overflow list starting at %d",
3985 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00003986 checkAppendMsg(pCheck, zContext, zMsg);
3987 break;
3988 }
3989 if( checkRef(pCheck, iPage, zContext) ) break;
drha34b6762004-05-07 13:30:42 +00003990 if( sqlite3pager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
drh5eddca62001-06-30 21:53:53 +00003991 sprintf(zMsg, "failed to get page %d", iPage);
3992 checkAppendMsg(pCheck, zContext, zMsg);
3993 break;
3994 }
drh30e58752002-03-02 20:41:57 +00003995 if( isFreeList ){
drh4b70f112004-05-02 21:12:19 +00003996 int n = get4byte(&pOvfl[4]);
drh0d316a42002-08-11 20:10:47 +00003997 for(i=0; i<n; i++){
drh4b70f112004-05-02 21:12:19 +00003998 checkRef(pCheck, get4byte(&pOvfl[8+i*4]), zContext);
drh30e58752002-03-02 20:41:57 +00003999 }
drh0d316a42002-08-11 20:10:47 +00004000 N -= n;
drh30e58752002-03-02 20:41:57 +00004001 }
drh4b70f112004-05-02 21:12:19 +00004002 iPage = get4byte(pOvfl);
drha34b6762004-05-07 13:30:42 +00004003 sqlite3pager_unref(pOvfl);
drh5eddca62001-06-30 21:53:53 +00004004 }
4005}
4006
4007/*
4008** Do various sanity checks on a single page of a tree. Return
4009** the tree depth. Root pages return 0. Parents of root pages
4010** return 1, and so forth.
4011**
4012** These checks are done:
4013**
4014** 1. Make sure that cells and freeblocks do not overlap
4015** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00004016** NO 2. Make sure cell keys are in order.
4017** NO 3. Make sure no key is less than or equal to zLowerBound.
4018** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00004019** 5. Check the integrity of overflow pages.
4020** 6. Recursively call checkTreePage on all children.
4021** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00004022** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00004023** the root of the tree.
4024*/
4025static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00004026 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00004027 int iPage, /* Page number of the page to check */
4028 MemPage *pParent, /* Parent page */
4029 char *zParentContext, /* Parent context */
4030 char *zLowerBound, /* All keys should be greater than this, if not NULL */
drh1bffb9c2002-02-03 17:37:36 +00004031 int nLower, /* Number of characters in zLowerBound */
4032 char *zUpperBound, /* All keys should be less than this, if not NULL */
4033 int nUpper /* Number of characters in zUpperBound */
drh5eddca62001-06-30 21:53:53 +00004034){
4035 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00004036 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00004037 int hdr, cellStart;
4038 int nCell;
drhda200cc2004-05-09 11:51:38 +00004039 u8 *data;
drh5eddca62001-06-30 21:53:53 +00004040 BtCursor cur;
drh0d316a42002-08-11 20:10:47 +00004041 Btree *pBt;
drhb6f41482004-05-14 01:58:11 +00004042 int maxLocal, usableSize;
drh5eddca62001-06-30 21:53:53 +00004043 char zMsg[100];
4044 char zContext[100];
drhda200cc2004-05-09 11:51:38 +00004045 char hit[MX_PAGE_SIZE];
drh5eddca62001-06-30 21:53:53 +00004046
4047 /* Check that the page exists
4048 */
drh0d316a42002-08-11 20:10:47 +00004049 cur.pBt = pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00004050 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00004051 if( iPage==0 ) return 0;
4052 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drh4b70f112004-05-02 21:12:19 +00004053 if( (rc = getPage(pBt, (Pgno)iPage, &pPage))!=0 ){
drh5eddca62001-06-30 21:53:53 +00004054 sprintf(zMsg, "unable to get the page. error code=%d", rc);
4055 checkAppendMsg(pCheck, zContext, zMsg);
4056 return 0;
4057 }
drh6f11bef2004-05-13 01:12:56 +00004058 maxLocal = pPage->leafData ? pBt->maxLeaf : pBt->maxLocal;
drh4b70f112004-05-02 21:12:19 +00004059 if( (rc = initPage(pPage, pParent))!=0 ){
drh5eddca62001-06-30 21:53:53 +00004060 sprintf(zMsg, "initPage() returns error code %d", rc);
4061 checkAppendMsg(pCheck, zContext, zMsg);
drh91025292004-05-03 19:49:32 +00004062 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00004063 return 0;
4064 }
4065
4066 /* Check out all the cells.
4067 */
4068 depth = 0;
drh5eddca62001-06-30 21:53:53 +00004069 cur.pPage = pPage;
drh5eddca62001-06-30 21:53:53 +00004070 for(i=0; i<pPage->nCell; i++){
drh6f11bef2004-05-13 01:12:56 +00004071 u8 *pCell;
4072 int sz;
4073 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00004074
4075 /* Check payload overflow pages
4076 */
drh3a4c1412004-05-09 20:40:11 +00004077 sprintf(zContext, "On tree page %d cell %d: ", iPage, i);
drh43605152004-05-29 21:46:49 +00004078 pCell = findCell(pPage,i);
4079 parseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004080 sz = info.nData;
4081 if( !pPage->intKey ) sz += info.nKey;
4082 if( sz>info.nLocal ){
drhb6f41482004-05-14 01:58:11 +00004083 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
drh6f11bef2004-05-13 01:12:56 +00004084 checkList(pCheck, 0, get4byte(&pCell[info.iOverflow]),nPage,zContext);
drh5eddca62001-06-30 21:53:53 +00004085 }
4086
4087 /* Check sanity of left child page.
4088 */
drhda200cc2004-05-09 11:51:38 +00004089 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004090 pgno = get4byte(pCell);
drhda200cc2004-05-09 11:51:38 +00004091 d2 = checkTreePage(pCheck,pgno,pPage,zContext,0,0,0,0);
4092 if( i>0 && d2!=depth ){
4093 checkAppendMsg(pCheck, zContext, "Child page depth differs");
4094 }
4095 depth = d2;
drh5eddca62001-06-30 21:53:53 +00004096 }
drh5eddca62001-06-30 21:53:53 +00004097 }
drhda200cc2004-05-09 11:51:38 +00004098 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004099 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drhda200cc2004-05-09 11:51:38 +00004100 sprintf(zContext, "On page %d at right child: ", iPage);
4101 checkTreePage(pCheck, pgno, pPage, zContext,0,0,0,0);
4102 }
drh5eddca62001-06-30 21:53:53 +00004103
4104 /* Check for complete coverage of the page
4105 */
drhda200cc2004-05-09 11:51:38 +00004106 data = pPage->aData;
4107 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00004108 memset(hit, 0, usableSize);
4109 memset(hit, 1, get2byte(&data[hdr+5]));
4110 nCell = get2byte(&data[hdr+3]);
4111 cellStart = hdr + 12 - 4*pPage->leaf;
4112 for(i=0; i<nCell; i++){
4113 int pc = get2byte(&data[cellStart+i*2]);
4114 int size = cellSizePtr(pPage, &data[pc]);
drh5eddca62001-06-30 21:53:53 +00004115 int j;
drh43605152004-05-29 21:46:49 +00004116 for(j=pc+size-1; j>=pc; j--) hit[j]++;
drh5eddca62001-06-30 21:53:53 +00004117 }
drhb6f41482004-05-14 01:58:11 +00004118 for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i<usableSize && cnt<10000; cnt++){
drhda200cc2004-05-09 11:51:38 +00004119 int size = get2byte(&data[i+2]);
drh5eddca62001-06-30 21:53:53 +00004120 int j;
drhda200cc2004-05-09 11:51:38 +00004121 for(j=i+size-1; j>=i; j--) hit[j]++;
4122 i = get2byte(&data[i]);
drh5eddca62001-06-30 21:53:53 +00004123 }
drhb6f41482004-05-14 01:58:11 +00004124 for(i=cnt=0; i<usableSize; i++){
drh5eddca62001-06-30 21:53:53 +00004125 if( hit[i]==0 ){
drhda200cc2004-05-09 11:51:38 +00004126 cnt++;
drh5eddca62001-06-30 21:53:53 +00004127 }else if( hit[i]>1 ){
4128 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
4129 checkAppendMsg(pCheck, zMsg, 0);
4130 break;
4131 }
4132 }
drh43605152004-05-29 21:46:49 +00004133 if( cnt!=data[hdr+7] ){
drhda200cc2004-05-09 11:51:38 +00004134 sprintf(zMsg, "Fragmented space is %d byte reported as %d on page %d",
drh43605152004-05-29 21:46:49 +00004135 cnt, data[hdr+7], iPage);
drhda200cc2004-05-09 11:51:38 +00004136 checkAppendMsg(pCheck, zMsg, 0);
4137 }
drh6019e162001-07-02 17:51:45 +00004138
drh4b70f112004-05-02 21:12:19 +00004139 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00004140 return depth+1;
drh5eddca62001-06-30 21:53:53 +00004141}
4142
4143/*
4144** This routine does a complete check of the given BTree file. aRoot[] is
4145** an array of pages numbers were each page number is the root page of
4146** a table. nRoot is the number of entries in aRoot.
4147**
4148** If everything checks out, this routine returns NULL. If something is
4149** amiss, an error message is written into memory obtained from malloc()
4150** and a pointer to that error message is returned. The calling function
4151** is responsible for freeing the error message when it is done.
4152*/
drh3aac2dd2004-04-26 14:10:20 +00004153char *sqlite3BtreeIntegrityCheck(Btree *pBt, int *aRoot, int nRoot){
drh5eddca62001-06-30 21:53:53 +00004154 int i;
4155 int nRef;
drhaaab5722002-02-19 13:39:21 +00004156 IntegrityCk sCheck;
drh5eddca62001-06-30 21:53:53 +00004157
drha34b6762004-05-07 13:30:42 +00004158 nRef = *sqlite3pager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00004159 if( lockBtree(pBt)!=SQLITE_OK ){
4160 return sqliteStrDup("Unable to acquire a read lock on the database");
4161 }
drh5eddca62001-06-30 21:53:53 +00004162 sCheck.pBt = pBt;
4163 sCheck.pPager = pBt->pPager;
drha34b6762004-05-07 13:30:42 +00004164 sCheck.nPage = sqlite3pager_pagecount(sCheck.pPager);
drh0de8c112002-07-06 16:32:14 +00004165 if( sCheck.nPage==0 ){
4166 unlockBtreeIfUnused(pBt);
4167 return 0;
4168 }
drh8c1238a2003-01-02 14:43:55 +00004169 sCheck.anRef = sqliteMallocRaw( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
drhda200cc2004-05-09 11:51:38 +00004170 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh1f595712004-06-15 01:40:29 +00004171 i = PENDING_BYTE/pBt->pageSize + 1;
4172 if( i<=sCheck.nPage ){
4173 sCheck.anRef[i] = 1;
4174 }
drh5eddca62001-06-30 21:53:53 +00004175 sCheck.zErrMsg = 0;
4176
4177 /* Check the integrity of the freelist
4178 */
drha34b6762004-05-07 13:30:42 +00004179 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
4180 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00004181
4182 /* Check all the tables.
4183 */
4184 for(i=0; i<nRoot; i++){
drh4ff6dfa2002-03-03 23:06:00 +00004185 if( aRoot[i]==0 ) continue;
drh1bffb9c2002-02-03 17:37:36 +00004186 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0,0,0,0);
drh5eddca62001-06-30 21:53:53 +00004187 }
4188
4189 /* Make sure every page in the file is referenced
4190 */
4191 for(i=1; i<=sCheck.nPage; i++){
4192 if( sCheck.anRef[i]==0 ){
4193 char zBuf[100];
4194 sprintf(zBuf, "Page %d is never used", i);
4195 checkAppendMsg(&sCheck, zBuf, 0);
4196 }
4197 }
4198
4199 /* Make sure this analysis did not leave any unref() pages
4200 */
drh5e00f6c2001-09-13 13:46:56 +00004201 unlockBtreeIfUnused(pBt);
drha34b6762004-05-07 13:30:42 +00004202 if( nRef != *sqlite3pager_stats(pBt->pPager) ){
drh5eddca62001-06-30 21:53:53 +00004203 char zBuf[100];
4204 sprintf(zBuf,
4205 "Outstanding page count goes from %d to %d during this analysis",
drha34b6762004-05-07 13:30:42 +00004206 nRef, *sqlite3pager_stats(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00004207 );
4208 checkAppendMsg(&sCheck, zBuf, 0);
4209 }
4210
4211 /* Clean up and report errors.
4212 */
4213 sqliteFree(sCheck.anRef);
4214 return sCheck.zErrMsg;
4215}
paulb95a8862003-04-01 21:16:41 +00004216
drh73509ee2003-04-06 20:44:45 +00004217/*
4218** Return the full pathname of the underlying database file.
4219*/
drh3aac2dd2004-04-26 14:10:20 +00004220const char *sqlite3BtreeGetFilename(Btree *pBt){
drh73509ee2003-04-06 20:44:45 +00004221 assert( pBt->pPager!=0 );
drha34b6762004-05-07 13:30:42 +00004222 return sqlite3pager_filename(pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00004223}
4224
4225/*
danielk19775865e3d2004-06-14 06:03:57 +00004226** Return the pathname of the directory that contains the database file.
4227*/
4228const char *sqlite3BtreeGetDirname(Btree *pBt){
4229 assert( pBt->pPager!=0 );
4230 return sqlite3pager_dirname(pBt->pPager);
4231}
4232
4233/*
4234** Return the pathname of the journal file for this database. The return
4235** value of this routine is the same regardless of whether the journal file
4236** has been created or not.
4237*/
4238const char *sqlite3BtreeGetJournalname(Btree *pBt){
4239 assert( pBt->pPager!=0 );
4240 return sqlite3pager_journalname(pBt->pPager);
4241}
4242
4243/*
drhf7c57532003-04-25 13:22:51 +00004244** Copy the complete content of pBtFrom into pBtTo. A transaction
4245** must be active for both files.
4246**
4247** The size of file pBtFrom may be reduced by this operation.
drh43605152004-05-29 21:46:49 +00004248** If anything goes wrong, the transaction on pBtFrom is rolled back.
drh73509ee2003-04-06 20:44:45 +00004249*/
drh3aac2dd2004-04-26 14:10:20 +00004250int sqlite3BtreeCopyFile(Btree *pBtTo, Btree *pBtFrom){
drhf7c57532003-04-25 13:22:51 +00004251 int rc = SQLITE_OK;
drh2e6d11b2003-04-25 15:37:57 +00004252 Pgno i, nPage, nToPage;
drhf7c57532003-04-25 13:22:51 +00004253
danielk1977ee5741e2004-05-31 10:01:34 +00004254 if( pBtTo->inTrans!=TRANS_WRITE || pBtFrom->inTrans!=TRANS_WRITE ){
4255 return SQLITE_ERROR;
4256 }
drhf7c57532003-04-25 13:22:51 +00004257 if( pBtTo->pCursor ) return SQLITE_BUSY;
drha34b6762004-05-07 13:30:42 +00004258 nToPage = sqlite3pager_pagecount(pBtTo->pPager);
4259 nPage = sqlite3pager_pagecount(pBtFrom->pPager);
danielk1977369f27e2004-06-15 11:40:04 +00004260 for(i=1; rc==SQLITE_OK && i<=nPage; i++){
drhf7c57532003-04-25 13:22:51 +00004261 void *pPage;
drha34b6762004-05-07 13:30:42 +00004262 rc = sqlite3pager_get(pBtFrom->pPager, i, &pPage);
drhf7c57532003-04-25 13:22:51 +00004263 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004264 rc = sqlite3pager_overwrite(pBtTo->pPager, i, pPage);
drh2e6d11b2003-04-25 15:37:57 +00004265 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004266 sqlite3pager_unref(pPage);
drhf7c57532003-04-25 13:22:51 +00004267 }
drh2e6d11b2003-04-25 15:37:57 +00004268 for(i=nPage+1; rc==SQLITE_OK && i<=nToPage; i++){
4269 void *pPage;
drha34b6762004-05-07 13:30:42 +00004270 rc = sqlite3pager_get(pBtTo->pPager, i, &pPage);
drh2e6d11b2003-04-25 15:37:57 +00004271 if( rc ) break;
drha34b6762004-05-07 13:30:42 +00004272 rc = sqlite3pager_write(pPage);
4273 sqlite3pager_unref(pPage);
4274 sqlite3pager_dont_write(pBtTo->pPager, i);
drh2e6d11b2003-04-25 15:37:57 +00004275 }
4276 if( !rc && nPage<nToPage ){
drha34b6762004-05-07 13:30:42 +00004277 rc = sqlite3pager_truncate(pBtTo->pPager, nPage);
drh2e6d11b2003-04-25 15:37:57 +00004278 }
drhf7c57532003-04-25 13:22:51 +00004279 if( rc ){
drh3aac2dd2004-04-26 14:10:20 +00004280 sqlite3BtreeRollback(pBtTo);
drhf7c57532003-04-25 13:22:51 +00004281 }
4282 return rc;
drh73509ee2003-04-06 20:44:45 +00004283}
danielk19771d850a72004-05-31 08:26:49 +00004284
4285/*
4286** Return non-zero if a transaction is active.
4287*/
4288int sqlite3BtreeIsInTrans(Btree *pBt){
danielk1977ee5741e2004-05-31 10:01:34 +00004289 return (pBt && (pBt->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00004290}
4291
4292/*
4293** Return non-zero if a statement transaction is active.
4294*/
4295int sqlite3BtreeIsInStmt(Btree *pBt){
4296 return (pBt && pBt->inStmt);
4297}
danielk197713adf8a2004-06-03 16:08:41 +00004298
4299/*
4300** This call is a no-op if no write-transaction is currently active on pBt.
4301**
4302** Otherwise, sync the database file for the btree pBt. zMaster points to
4303** the name of a master journal file that should be written into the
4304** individual journal file, or is NULL, indicating no master journal file
4305** (single database transaction).
4306**
4307** When this is called, the master journal should already have been
4308** created, populated with this journal pointer and synced to disk.
4309**
4310** Once this is routine has returned, the only thing required to commit
4311** the write-transaction for this database file is to delete the journal.
4312*/
4313int sqlite3BtreeSync(Btree *pBt, const char *zMaster){
4314 if( pBt->inTrans==TRANS_WRITE ){
4315 return sqlite3pager_sync(pBt->pPager, zMaster);
4316 }
4317 return SQLITE_OK;
4318}