blob: 385c511aa7cae29df63a20cfb218e926c1016da4 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drh4c301aa2009-07-15 17:25:45 +0000519 int nPage = 100;
520 sqlite3PagerPagecount(pBt->pPager, &nPage);
521 /* If sqlite3PagerPagecount() fails there is no harm because the
522 ** nPage variable is unchanged from its default value of 100 */
523 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
524 if( !pBt->pHasContent ){
525 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000526 }
527 }
528 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
529 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
530 }
531 return rc;
532}
533
534/*
535** Query the BtShared.pHasContent vector.
536**
537** This function is called when a free-list leaf page is removed from the
538** free-list for reuse. It returns false if it is safe to retrieve the
539** page from the pager layer with the 'no-content' flag set. True otherwise.
540*/
541static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
542 Bitvec *p = pBt->pHasContent;
543 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
544}
545
546/*
547** Clear (destroy) the BtShared.pHasContent bitvec. This should be
548** invoked at the conclusion of each write-transaction.
549*/
550static void btreeClearHasContent(BtShared *pBt){
551 sqlite3BitvecDestroy(pBt->pHasContent);
552 pBt->pHasContent = 0;
553}
554
555/*
drh980b1a72006-08-16 16:42:48 +0000556** Save the current cursor position in the variables BtCursor.nKey
557** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000558**
559** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
560** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000561*/
562static int saveCursorPosition(BtCursor *pCur){
563 int rc;
564
565 assert( CURSOR_VALID==pCur->eState );
566 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000567 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000568
569 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000570 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000571
572 /* If this is an intKey table, then the above call to BtreeKeySize()
573 ** stores the integer key in pCur->nKey. In this case this value is
574 ** all that is required. Otherwise, if pCur is not open on an intKey
575 ** table, then malloc space for and store the pCur->nKey bytes of key
576 ** data.
577 */
drh4c301aa2009-07-15 17:25:45 +0000578 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000579 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000580 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000581 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000582 if( rc==SQLITE_OK ){
583 pCur->pKey = pKey;
584 }else{
drh17435752007-08-16 04:30:38 +0000585 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000586 }
587 }else{
588 rc = SQLITE_NOMEM;
589 }
590 }
danielk197771d5d2c2008-09-29 11:49:47 +0000591 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000592
593 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000594 int i;
595 for(i=0; i<=pCur->iPage; i++){
596 releasePage(pCur->apPage[i]);
597 pCur->apPage[i] = 0;
598 }
599 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000600 pCur->eState = CURSOR_REQUIRESEEK;
601 }
602
danielk197792d4d7a2007-05-04 12:05:56 +0000603 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000604 return rc;
605}
606
607/*
drh0ee3dbe2009-10-16 15:05:18 +0000608** Save the positions of all cursors (except pExcept) that are open on
609** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000610** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
611*/
612static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
613 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000614 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000615 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000616 for(p=pBt->pCursor; p; p=p->pNext){
617 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
618 p->eState==CURSOR_VALID ){
619 int rc = saveCursorPosition(p);
620 if( SQLITE_OK!=rc ){
621 return rc;
622 }
623 }
624 }
625 return SQLITE_OK;
626}
627
628/*
drhbf700f32007-03-31 02:36:44 +0000629** Clear the current cursor position.
630*/
danielk1977be51a652008-10-08 17:58:48 +0000631void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000632 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000633 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000634 pCur->pKey = 0;
635 pCur->eState = CURSOR_INVALID;
636}
637
638/*
danielk19773509a652009-07-06 18:56:13 +0000639** In this version of BtreeMoveto, pKey is a packed index record
640** such as is generated by the OP_MakeRecord opcode. Unpack the
641** record and then call BtreeMovetoUnpacked() to do the work.
642*/
643static int btreeMoveto(
644 BtCursor *pCur, /* Cursor open on the btree to be searched */
645 const void *pKey, /* Packed key if the btree is an index */
646 i64 nKey, /* Integer key for tables. Size of pKey for indices */
647 int bias, /* Bias search to the high end */
648 int *pRes /* Write search results here */
649){
650 int rc; /* Status code */
651 UnpackedRecord *pIdxKey; /* Unpacked index key */
652 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
653
654 if( pKey ){
655 assert( nKey==(i64)(int)nKey );
656 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
657 aSpace, sizeof(aSpace));
658 if( pIdxKey==0 ) return SQLITE_NOMEM;
659 }else{
660 pIdxKey = 0;
661 }
662 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
663 if( pKey ){
664 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
665 }
666 return rc;
667}
668
669/*
drh980b1a72006-08-16 16:42:48 +0000670** Restore the cursor to the position it was in (or as close to as possible)
671** when saveCursorPosition() was called. Note that this call deletes the
672** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000673** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000674** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000675*/
danielk197730548662009-07-09 05:07:37 +0000676static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000677 int rc;
drh1fee73e2007-08-29 04:00:57 +0000678 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000679 assert( pCur->eState>=CURSOR_REQUIRESEEK );
680 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000681 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000682 }
drh980b1a72006-08-16 16:42:48 +0000683 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000684 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000685 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000686 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000687 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000688 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000689 }
690 return rc;
691}
692
drha3460582008-07-11 21:02:53 +0000693#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000694 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000695 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000696 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000697
drha3460582008-07-11 21:02:53 +0000698/*
699** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000700** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000701** at is deleted out from under them.
702**
703** This routine returns an error code if something goes wrong. The
704** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
705*/
706int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
707 int rc;
708
709 rc = restoreCursorPosition(pCur);
710 if( rc ){
711 *pHasMoved = 1;
712 return rc;
713 }
drh4c301aa2009-07-15 17:25:45 +0000714 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000715 *pHasMoved = 1;
716 }else{
717 *pHasMoved = 0;
718 }
719 return SQLITE_OK;
720}
721
danielk1977599fcba2004-11-08 07:13:13 +0000722#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000723/*
drha3152892007-05-05 11:48:52 +0000724** Given a page number of a regular database page, return the page
725** number for the pointer-map page that contains the entry for the
726** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000727*/
danielk1977266664d2006-02-10 08:24:21 +0000728static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000729 int nPagesPerMapPage;
730 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000731 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000732 nPagesPerMapPage = (pBt->usableSize/5)+1;
733 iPtrMap = (pgno-2)/nPagesPerMapPage;
734 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000735 if( ret==PENDING_BYTE_PAGE(pBt) ){
736 ret++;
737 }
738 return ret;
739}
danielk1977a19df672004-11-03 11:37:07 +0000740
danielk1977afcdd022004-10-31 16:25:42 +0000741/*
danielk1977afcdd022004-10-31 16:25:42 +0000742** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000743**
744** This routine updates the pointer map entry for page number 'key'
745** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000746**
747** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
748** a no-op. If an error occurs, the appropriate error code is written
749** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000750*/
drh98add2e2009-07-20 17:11:49 +0000751static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000752 DbPage *pDbPage; /* The pointer map page */
753 u8 *pPtrmap; /* The pointer map data */
754 Pgno iPtrmap; /* The pointer map page number */
755 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000756 int rc; /* Return code from subfunctions */
757
758 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000759
drh1fee73e2007-08-29 04:00:57 +0000760 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000761 /* The master-journal page number must never be used as a pointer map page */
762 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
763
danielk1977ac11ee62005-01-15 12:45:51 +0000764 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000766 *pRC = SQLITE_CORRUPT_BKPT;
767 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000768 }
danielk1977266664d2006-02-10 08:24:21 +0000769 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000770 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000771 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000772 *pRC = rc;
773 return;
danielk1977afcdd022004-10-31 16:25:42 +0000774 }
danielk19778c666b12008-07-18 09:34:57 +0000775 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000776 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000778 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000779 }
danielk19773b8a05f2007-03-19 17:44:26 +0000780 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000781
drh615ae552005-01-16 23:21:00 +0000782 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
783 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000784 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000785 if( rc==SQLITE_OK ){
786 pPtrmap[offset] = eType;
787 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000788 }
danielk1977afcdd022004-10-31 16:25:42 +0000789 }
790
drh4925a552009-07-07 11:39:58 +0000791ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000792 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000793}
794
795/*
796** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000797**
798** This routine retrieves the pointer map entry for page 'key', writing
799** the type and parent page number to *pEType and *pPgno respectively.
800** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000801*/
danielk1977aef0bf62005-12-30 16:28:01 +0000802static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000803 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000804 int iPtrmap; /* Pointer map page index */
805 u8 *pPtrmap; /* Pointer map page data */
806 int offset; /* Offset of entry in pointer map */
807 int rc;
808
drh1fee73e2007-08-29 04:00:57 +0000809 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000810
danielk1977266664d2006-02-10 08:24:21 +0000811 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000812 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000813 if( rc!=0 ){
814 return rc;
815 }
danielk19773b8a05f2007-03-19 17:44:26 +0000816 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000817
danielk19778c666b12008-07-18 09:34:57 +0000818 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000819 assert( pEType!=0 );
820 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000821 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000822
danielk19773b8a05f2007-03-19 17:44:26 +0000823 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000824 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000825 return SQLITE_OK;
826}
827
danielk197785d90ca2008-07-19 14:25:15 +0000828#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000829 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000830 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000831 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000832#endif
danielk1977afcdd022004-10-31 16:25:42 +0000833
drh0d316a42002-08-11 20:10:47 +0000834/*
drh271efa52004-05-30 19:19:05 +0000835** Given a btree page and a cell index (0 means the first cell on
836** the page, 1 means the second cell, and so forth) return a pointer
837** to the cell content.
838**
839** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000840*/
drh1688c862008-07-18 02:44:17 +0000841#define findCell(P,I) \
842 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000843
844/*
drh93a960a2008-07-10 00:32:42 +0000845** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000846** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000847*/
848static u8 *findOverflowCell(MemPage *pPage, int iCell){
849 int i;
drh1fee73e2007-08-29 04:00:57 +0000850 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000851 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000852 int k;
853 struct _OvflCell *pOvfl;
854 pOvfl = &pPage->aOvfl[i];
855 k = pOvfl->idx;
856 if( k<=iCell ){
857 if( k==iCell ){
858 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000859 }
860 iCell--;
861 }
862 }
danielk19771cc5ed82007-05-16 17:28:43 +0000863 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000864}
865
866/*
867** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000868** are two versions of this function. btreeParseCell() takes a
869** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000870** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000871**
872** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000873** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000874*/
danielk197730548662009-07-09 05:07:37 +0000875static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000876 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000877 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000878 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000879){
drhf49661a2008-12-10 16:45:50 +0000880 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000881 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000882
drh1fee73e2007-08-29 04:00:57 +0000883 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000884
drh43605152004-05-29 21:46:49 +0000885 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000886 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000887 n = pPage->childPtrSize;
888 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000889 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000890 if( pPage->hasData ){
891 n += getVarint32(&pCell[n], nPayload);
892 }else{
893 nPayload = 0;
894 }
drh1bd10f82008-12-10 21:19:56 +0000895 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000896 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000897 }else{
drh79df1f42008-07-18 00:57:33 +0000898 pInfo->nData = 0;
899 n += getVarint32(&pCell[n], nPayload);
900 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000901 }
drh72365832007-03-06 15:53:44 +0000902 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000903 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000904 testcase( nPayload==pPage->maxLocal );
905 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000906 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000907 /* This is the (easy) common case where the entire payload fits
908 ** on the local page. No overflow is required.
909 */
910 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000911 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000912 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000913 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000914 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000915 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000916 }
drh1bd10f82008-12-10 21:19:56 +0000917 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000918 }else{
drh271efa52004-05-30 19:19:05 +0000919 /* If the payload will not fit completely on the local page, we have
920 ** to decide how much to store locally and how much to spill onto
921 ** overflow pages. The strategy is to minimize the amount of unused
922 ** space on overflow pages while keeping the amount of local storage
923 ** in between minLocal and maxLocal.
924 **
925 ** Warning: changing the way overflow payload is distributed in any
926 ** way will result in an incompatible file format.
927 */
928 int minLocal; /* Minimum amount of payload held locally */
929 int maxLocal; /* Maximum amount of payload held locally */
930 int surplus; /* Overflow payload available for local storage */
931
932 minLocal = pPage->minLocal;
933 maxLocal = pPage->maxLocal;
934 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000935 testcase( surplus==maxLocal );
936 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000937 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000938 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000939 }else{
drhf49661a2008-12-10 16:45:50 +0000940 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000941 }
drhf49661a2008-12-10 16:45:50 +0000942 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000943 pInfo->nSize = pInfo->iOverflow + 4;
944 }
drh3aac2dd2004-04-26 14:10:20 +0000945}
danielk19771cc5ed82007-05-16 17:28:43 +0000946#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000947 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
948static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000949 MemPage *pPage, /* Page containing the cell */
950 int iCell, /* The cell index. First cell is 0 */
951 CellInfo *pInfo /* Fill in this structure */
952){
danielk19771cc5ed82007-05-16 17:28:43 +0000953 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000954}
drh3aac2dd2004-04-26 14:10:20 +0000955
956/*
drh43605152004-05-29 21:46:49 +0000957** Compute the total number of bytes that a Cell needs in the cell
958** data area of the btree-page. The return number includes the cell
959** data header and the local payload, but not any overflow page or
960** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000961*/
danielk1977ae5558b2009-04-29 11:31:47 +0000962static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
963 u8 *pIter = &pCell[pPage->childPtrSize];
964 u32 nSize;
965
966#ifdef SQLITE_DEBUG
967 /* The value returned by this function should always be the same as
968 ** the (CellInfo.nSize) value found by doing a full parse of the
969 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
970 ** this function verifies that this invariant is not violated. */
971 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000972 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000973#endif
974
975 if( pPage->intKey ){
976 u8 *pEnd;
977 if( pPage->hasData ){
978 pIter += getVarint32(pIter, nSize);
979 }else{
980 nSize = 0;
981 }
982
983 /* pIter now points at the 64-bit integer key value, a variable length
984 ** integer. The following block moves pIter to point at the first byte
985 ** past the end of the key value. */
986 pEnd = &pIter[9];
987 while( (*pIter++)&0x80 && pIter<pEnd );
988 }else{
989 pIter += getVarint32(pIter, nSize);
990 }
991
drh0a45c272009-07-08 01:49:11 +0000992 testcase( nSize==pPage->maxLocal );
993 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000994 if( nSize>pPage->maxLocal ){
995 int minLocal = pPage->minLocal;
996 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000997 testcase( nSize==pPage->maxLocal );
998 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000999 if( nSize>pPage->maxLocal ){
1000 nSize = minLocal;
1001 }
1002 nSize += 4;
1003 }
shane75ac1de2009-06-09 18:58:52 +00001004 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001005
1006 /* The minimum size of any cell is 4 bytes. */
1007 if( nSize<4 ){
1008 nSize = 4;
1009 }
1010
1011 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001012 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001013}
drh0ee3dbe2009-10-16 15:05:18 +00001014
1015#ifdef SQLITE_DEBUG
1016/* This variation on cellSizePtr() is used inside of assert() statements
1017** only. */
drha9121e42008-02-19 14:59:35 +00001018static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001019 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001020}
danielk1977bc6ada42004-06-30 08:20:16 +00001021#endif
drh3b7511c2001-05-26 13:15:44 +00001022
danielk197779a40da2005-01-16 08:00:01 +00001023#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001024/*
danielk197726836652005-01-17 01:33:13 +00001025** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001026** to an overflow page, insert an entry into the pointer-map
1027** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001028*/
drh98add2e2009-07-20 17:11:49 +00001029static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001030 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001031 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001032 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001033 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001034 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001035 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001036 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001037 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001038 }
danielk1977ac11ee62005-01-15 12:45:51 +00001039}
danielk197779a40da2005-01-16 08:00:01 +00001040#endif
1041
danielk1977ac11ee62005-01-15 12:45:51 +00001042
drhda200cc2004-05-09 11:51:38 +00001043/*
drh72f82862001-05-24 21:06:34 +00001044** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001045** end of the page and all free space is collected into one
1046** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001047** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001048*/
shane0af3f892008-11-12 04:55:34 +00001049static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001050 int i; /* Loop counter */
1051 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001052 int hdr; /* Offset to the page header */
1053 int size; /* Size of a cell */
1054 int usableSize; /* Number of usable bytes on a page */
1055 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001056 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001057 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001058 unsigned char *data; /* The page data */
1059 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001060 int iCellFirst; /* First allowable cell index */
1061 int iCellLast; /* Last possible cell index */
1062
drh2af926b2001-05-15 00:39:25 +00001063
danielk19773b8a05f2007-03-19 17:44:26 +00001064 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001065 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001066 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001067 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001068 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001069 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001070 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001071 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001072 cellOffset = pPage->cellOffset;
1073 nCell = pPage->nCell;
1074 assert( nCell==get2byte(&data[hdr+3]) );
1075 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001076 cbrk = get2byte(&data[hdr+5]);
1077 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1078 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001079 iCellFirst = cellOffset + 2*nCell;
1080 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001081 for(i=0; i<nCell; i++){
1082 u8 *pAddr; /* The i-th cell pointer */
1083 pAddr = &data[cellOffset + i*2];
1084 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001085 testcase( pc==iCellFirst );
1086 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001087#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001088 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001089 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1090 */
1091 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001092 return SQLITE_CORRUPT_BKPT;
1093 }
drh17146622009-07-07 17:38:38 +00001094#endif
1095 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001096 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001097 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001098#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1099 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001100 return SQLITE_CORRUPT_BKPT;
1101 }
drh17146622009-07-07 17:38:38 +00001102#else
1103 if( cbrk<iCellFirst || pc+size>usableSize ){
1104 return SQLITE_CORRUPT_BKPT;
1105 }
1106#endif
drh7157e1d2009-07-09 13:25:32 +00001107 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001108 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001109 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001110 memcpy(&data[cbrk], &temp[pc], size);
1111 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001112 }
drh17146622009-07-07 17:38:38 +00001113 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001114 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001115 data[hdr+1] = 0;
1116 data[hdr+2] = 0;
1117 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001118 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001119 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001120 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001121 return SQLITE_CORRUPT_BKPT;
1122 }
shane0af3f892008-11-12 04:55:34 +00001123 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001124}
1125
drha059ad02001-04-17 20:09:11 +00001126/*
danielk19776011a752009-04-01 16:25:32 +00001127** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001128** as the first argument. Write into *pIdx the index into pPage->aData[]
1129** of the first byte of allocated space. Return either SQLITE_OK or
1130** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001131**
drh0a45c272009-07-08 01:49:11 +00001132** The caller guarantees that there is sufficient space to make the
1133** allocation. This routine might need to defragment in order to bring
1134** all the space together, however. This routine will avoid using
1135** the first two bytes past the cell pointer area since presumably this
1136** allocation is being made in order to insert a new cell, so we will
1137** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001138*/
drh0a45c272009-07-08 01:49:11 +00001139static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001140 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1141 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1142 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001143 int top; /* First byte of cell content area */
1144 int gap; /* First byte of gap between cell pointers and cell content */
1145 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001146 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001147
danielk19773b8a05f2007-03-19 17:44:26 +00001148 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001149 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001150 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001151 assert( nByte>=0 ); /* Minimum cell size is 4 */
1152 assert( pPage->nFree>=nByte );
1153 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001154 usableSize = pPage->pBt->usableSize;
1155 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001156
1157 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001158 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1159 gap = pPage->cellOffset + 2*pPage->nCell;
1160 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001161 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001162 testcase( gap+2==top );
1163 testcase( gap+1==top );
1164 testcase( gap==top );
1165
danielk19776011a752009-04-01 16:25:32 +00001166 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001167 /* Always defragment highly fragmented pages */
1168 rc = defragmentPage(pPage);
1169 if( rc ) return rc;
1170 top = get2byte(&data[hdr+5]);
1171 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001172 /* Search the freelist looking for a free slot big enough to satisfy
1173 ** the request. The allocation is made from the first free slot in
1174 ** the list that is large enough to accomadate it.
1175 */
1176 int pc, addr;
1177 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001178 int size; /* Size of the free slot */
1179 if( pc>usableSize-4 || pc<addr+4 ){
1180 return SQLITE_CORRUPT_BKPT;
1181 }
1182 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001183 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001184 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001185 testcase( x==4 );
1186 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001187 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001188 /* Remove the slot from the free-list. Update the number of
1189 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001190 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001191 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001192 }else if( size+pc > usableSize ){
1193 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001194 }else{
danielk1977fad91942009-04-29 17:49:59 +00001195 /* The slot remains on the free-list. Reduce its size to account
1196 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001197 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001198 }
drh0a45c272009-07-08 01:49:11 +00001199 *pIdx = pc + x;
1200 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001201 }
drh9e572e62004-04-23 23:43:10 +00001202 }
1203 }
drh43605152004-05-29 21:46:49 +00001204
drh0a45c272009-07-08 01:49:11 +00001205 /* Check to make sure there is enough space in the gap to satisfy
1206 ** the allocation. If not, defragment.
1207 */
1208 testcase( gap+2+nByte==top );
1209 if( gap+2+nByte>top ){
1210 rc = defragmentPage(pPage);
1211 if( rc ) return rc;
1212 top = get2byte(&data[hdr+5]);
1213 assert( gap+nByte<=top );
1214 }
1215
1216
drh43605152004-05-29 21:46:49 +00001217 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001218 ** and the cell content area. The btreeInitPage() call has already
1219 ** validated the freelist. Given that the freelist is valid, there
1220 ** is no way that the allocation can extend off the end of the page.
1221 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001222 */
drh0a45c272009-07-08 01:49:11 +00001223 top -= nByte;
drh43605152004-05-29 21:46:49 +00001224 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001225 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001226 *pIdx = top;
1227 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001228}
1229
1230/*
drh9e572e62004-04-23 23:43:10 +00001231** Return a section of the pPage->aData to the freelist.
1232** The first byte of the new free block is pPage->aDisk[start]
1233** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001234**
1235** Most of the effort here is involved in coalesing adjacent
1236** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001237*/
shanedcc50b72008-11-13 18:29:50 +00001238static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001239 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001240 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001241 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001242
drh9e572e62004-04-23 23:43:10 +00001243 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001244 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001245 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001246 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001247 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001248 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001249
drhfcce93f2006-02-22 03:08:32 +00001250#ifdef SQLITE_SECURE_DELETE
1251 /* Overwrite deleted information with zeros when the SECURE_DELETE
1252 ** option is enabled at compile-time */
1253 memset(&data[start], 0, size);
1254#endif
1255
drh0a45c272009-07-08 01:49:11 +00001256 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001257 ** even though the freeblock list was checked by btreeInitPage(),
1258 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001259 ** freeblocks that overlapped cells. Nor does it detect when the
1260 ** cell content area exceeds the value in the page header. If these
1261 ** situations arise, then subsequent insert operations might corrupt
1262 ** the freelist. So we do need to check for corruption while scanning
1263 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001264 */
drh43605152004-05-29 21:46:49 +00001265 hdr = pPage->hdrOffset;
1266 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001267 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001268 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001269 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001270 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001271 return SQLITE_CORRUPT_BKPT;
1272 }
drh3aac2dd2004-04-26 14:10:20 +00001273 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001274 }
drh0a45c272009-07-08 01:49:11 +00001275 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001276 return SQLITE_CORRUPT_BKPT;
1277 }
drh3aac2dd2004-04-26 14:10:20 +00001278 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001279 put2byte(&data[addr], start);
1280 put2byte(&data[start], pbegin);
1281 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001282 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001283
1284 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001285 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001286 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001287 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001288 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001289 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001290 pnext = get2byte(&data[pbegin]);
1291 psize = get2byte(&data[pbegin+2]);
1292 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1293 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001294 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001295 return SQLITE_CORRUPT_BKPT;
1296 }
drh0a45c272009-07-08 01:49:11 +00001297 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001298 x = get2byte(&data[pnext]);
1299 put2byte(&data[pbegin], x);
1300 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1301 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001302 }else{
drh3aac2dd2004-04-26 14:10:20 +00001303 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001304 }
1305 }
drh7e3b0a02001-04-28 16:52:40 +00001306
drh43605152004-05-29 21:46:49 +00001307 /* If the cell content area begins with a freeblock, remove it. */
1308 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1309 int top;
1310 pbegin = get2byte(&data[hdr+1]);
1311 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001312 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1313 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001314 }
drhc5053fb2008-11-27 02:22:10 +00001315 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001316 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001317}
1318
1319/*
drh271efa52004-05-30 19:19:05 +00001320** Decode the flags byte (the first byte of the header) for a page
1321** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001322**
1323** Only the following combinations are supported. Anything different
1324** indicates a corrupt database files:
1325**
1326** PTF_ZERODATA
1327** PTF_ZERODATA | PTF_LEAF
1328** PTF_LEAFDATA | PTF_INTKEY
1329** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001330*/
drh44845222008-07-17 18:39:57 +00001331static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001332 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001333
1334 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001335 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001336 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001337 flagByte &= ~PTF_LEAF;
1338 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001339 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001340 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1341 pPage->intKey = 1;
1342 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001343 pPage->maxLocal = pBt->maxLeaf;
1344 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001345 }else if( flagByte==PTF_ZERODATA ){
1346 pPage->intKey = 0;
1347 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001348 pPage->maxLocal = pBt->maxLocal;
1349 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001350 }else{
1351 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001352 }
drh44845222008-07-17 18:39:57 +00001353 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001354}
1355
1356/*
drh7e3b0a02001-04-28 16:52:40 +00001357** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001358**
1359** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001360** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001361** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1362** guarantee that the page is well-formed. It only shows that
1363** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001364*/
danielk197730548662009-07-09 05:07:37 +00001365static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001366
danielk197771d5d2c2008-09-29 11:49:47 +00001367 assert( pPage->pBt!=0 );
1368 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001369 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001370 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1371 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001372
1373 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001374 u16 pc; /* Address of a freeblock within pPage->aData[] */
1375 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001376 u8 *data; /* Equal to pPage->aData */
1377 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001378 u16 usableSize; /* Amount of usable space on each page */
1379 u16 cellOffset; /* Offset from start of page to first cell pointer */
1380 u16 nFree; /* Number of unused bytes on the page */
1381 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001382 int iCellFirst; /* First allowable cell or freeblock offset */
1383 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001384
1385 pBt = pPage->pBt;
1386
danielk1977eaa06f62008-09-18 17:34:44 +00001387 hdr = pPage->hdrOffset;
1388 data = pPage->aData;
1389 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1390 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1391 pPage->maskPage = pBt->pageSize - 1;
1392 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001393 usableSize = pBt->usableSize;
1394 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1395 top = get2byte(&data[hdr+5]);
1396 pPage->nCell = get2byte(&data[hdr+3]);
1397 if( pPage->nCell>MX_CELL(pBt) ){
1398 /* To many cells for a single page. The page must be corrupt */
1399 return SQLITE_CORRUPT_BKPT;
1400 }
drhb908d762009-07-08 16:54:40 +00001401 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001402
shane5eff7cf2009-08-10 03:57:58 +00001403 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001404 ** of page when parsing a cell.
1405 **
1406 ** The following block of code checks early to see if a cell extends
1407 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1408 ** returned if it does.
1409 */
drh0a45c272009-07-08 01:49:11 +00001410 iCellFirst = cellOffset + 2*pPage->nCell;
1411 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001412#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001413 {
drh69e931e2009-06-03 21:04:35 +00001414 int i; /* Index into the cell pointer array */
1415 int sz; /* Size of a cell */
1416
drh69e931e2009-06-03 21:04:35 +00001417 if( !pPage->leaf ) iCellLast--;
1418 for(i=0; i<pPage->nCell; i++){
1419 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001420 testcase( pc==iCellFirst );
1421 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001422 if( pc<iCellFirst || pc>iCellLast ){
1423 return SQLITE_CORRUPT_BKPT;
1424 }
1425 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001426 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001427 if( pc+sz>usableSize ){
1428 return SQLITE_CORRUPT_BKPT;
1429 }
1430 }
drh0a45c272009-07-08 01:49:11 +00001431 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001432 }
1433#endif
1434
danielk1977eaa06f62008-09-18 17:34:44 +00001435 /* Compute the total free space on the page */
1436 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001437 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001438 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001439 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001440 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001441 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001442 return SQLITE_CORRUPT_BKPT;
1443 }
1444 next = get2byte(&data[pc]);
1445 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001446 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1447 /* Free blocks must be in ascending order. And the last byte of
1448 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001449 return SQLITE_CORRUPT_BKPT;
1450 }
shane85095702009-06-15 16:27:08 +00001451 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001452 pc = next;
1453 }
danielk197793c829c2009-06-03 17:26:17 +00001454
1455 /* At this point, nFree contains the sum of the offset to the start
1456 ** of the cell-content area plus the number of free bytes within
1457 ** the cell-content area. If this is greater than the usable-size
1458 ** of the page, then the page must be corrupted. This check also
1459 ** serves to verify that the offset to the start of the cell-content
1460 ** area, according to the page header, lies within the page.
1461 */
1462 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001463 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001464 }
shane5eff7cf2009-08-10 03:57:58 +00001465 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001466 pPage->isInit = 1;
1467 }
drh9e572e62004-04-23 23:43:10 +00001468 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001469}
1470
1471/*
drh8b2f49b2001-06-08 00:21:52 +00001472** Set up a raw page so that it looks like a database page holding
1473** no entries.
drhbd03cae2001-06-02 02:40:57 +00001474*/
drh9e572e62004-04-23 23:43:10 +00001475static void zeroPage(MemPage *pPage, int flags){
1476 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001477 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001478 u8 hdr = pPage->hdrOffset;
1479 u16 first;
drh9e572e62004-04-23 23:43:10 +00001480
danielk19773b8a05f2007-03-19 17:44:26 +00001481 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001482 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1483 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001484 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001485 assert( sqlite3_mutex_held(pBt->mutex) );
drh7ab641f2009-11-24 02:37:02 +00001486#ifdef SQLITE_SECURE_DELETE
1487 memset(&data[hdr], 0, pBt->usableSize - hdr);
1488#endif
drh1bd10f82008-12-10 21:19:56 +00001489 data[hdr] = (char)flags;
1490 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001491 memset(&data[hdr+1], 0, 4);
1492 data[hdr+7] = 0;
1493 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001494 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001495 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001496 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001497 pPage->cellOffset = first;
1498 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001499 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1500 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001501 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001502 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001503}
1504
drh897a8202008-09-18 01:08:15 +00001505
1506/*
1507** Convert a DbPage obtained from the pager into a MemPage used by
1508** the btree layer.
1509*/
1510static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1511 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1512 pPage->aData = sqlite3PagerGetData(pDbPage);
1513 pPage->pDbPage = pDbPage;
1514 pPage->pBt = pBt;
1515 pPage->pgno = pgno;
1516 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1517 return pPage;
1518}
1519
drhbd03cae2001-06-02 02:40:57 +00001520/*
drh3aac2dd2004-04-26 14:10:20 +00001521** Get a page from the pager. Initialize the MemPage.pBt and
1522** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001523**
1524** If the noContent flag is set, it means that we do not care about
1525** the content of the page at this time. So do not go to the disk
1526** to fetch the content. Just fill in the content with zeros for now.
1527** If in the future we call sqlite3PagerWrite() on this page, that
1528** means we have started to be concerned about content and the disk
1529** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001530*/
danielk197730548662009-07-09 05:07:37 +00001531static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001532 BtShared *pBt, /* The btree */
1533 Pgno pgno, /* Number of the page to fetch */
1534 MemPage **ppPage, /* Return the page in this parameter */
1535 int noContent /* Do not load page content if true */
1536){
drh3aac2dd2004-04-26 14:10:20 +00001537 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001538 DbPage *pDbPage;
1539
drh1fee73e2007-08-29 04:00:57 +00001540 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001541 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001542 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001543 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001544 return SQLITE_OK;
1545}
1546
1547/*
danielk1977bea2a942009-01-20 17:06:27 +00001548** Retrieve a page from the pager cache. If the requested page is not
1549** already in the pager cache return NULL. Initialize the MemPage.pBt and
1550** MemPage.aData elements if needed.
1551*/
1552static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1553 DbPage *pDbPage;
1554 assert( sqlite3_mutex_held(pBt->mutex) );
1555 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1556 if( pDbPage ){
1557 return btreePageFromDbPage(pDbPage, pgno, pBt);
1558 }
1559 return 0;
1560}
1561
1562/*
danielk197789d40042008-11-17 14:20:56 +00001563** Return the size of the database file in pages. If there is any kind of
1564** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001565*/
danielk197789d40042008-11-17 14:20:56 +00001566static Pgno pagerPagecount(BtShared *pBt){
1567 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001568 int rc;
danielk197789d40042008-11-17 14:20:56 +00001569 assert( pBt->pPage1 );
1570 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1571 assert( rc==SQLITE_OK || nPage==-1 );
1572 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001573}
1574
1575/*
danielk197789bc4bc2009-07-21 19:25:24 +00001576** Get a page from the pager and initialize it. This routine is just a
1577** convenience wrapper around separate calls to btreeGetPage() and
1578** btreeInitPage().
1579**
1580** If an error occurs, then the value *ppPage is set to is undefined. It
1581** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001582*/
1583static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001584 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001585 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001586 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001587){
1588 int rc;
danielk197789bc4bc2009-07-21 19:25:24 +00001589 TESTONLY( Pgno iLastPg = pagerPagecount(pBt); )
drh1fee73e2007-08-29 04:00:57 +00001590 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001591
1592 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1593 if( rc==SQLITE_OK ){
1594 rc = btreeInitPage(*ppPage);
1595 if( rc!=SQLITE_OK ){
1596 releasePage(*ppPage);
1597 }
drhee696e22004-08-30 16:52:17 +00001598 }
danielk19779f580ad2008-09-10 14:45:57 +00001599
danielk197789bc4bc2009-07-21 19:25:24 +00001600 /* If the requested page number was either 0 or greater than the page
1601 ** number of the last page in the database, this function should return
1602 ** SQLITE_CORRUPT or some other error (i.e. SQLITE_FULL). Check that this
1603 ** is the case. */
1604 assert( (pgno>0 && pgno<=iLastPg) || rc!=SQLITE_OK );
1605 testcase( pgno==0 );
1606 testcase( pgno==iLastPg );
1607
drhde647132004-05-07 17:57:49 +00001608 return rc;
1609}
1610
1611/*
drh3aac2dd2004-04-26 14:10:20 +00001612** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001613** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001614*/
drh4b70f112004-05-02 21:12:19 +00001615static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001616 if( pPage ){
1617 assert( pPage->aData );
1618 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001619 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1620 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001621 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001622 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001623 }
1624}
1625
1626/*
drha6abd042004-06-09 17:37:22 +00001627** During a rollback, when the pager reloads information into the cache
1628** so that the cache is restored to its original state at the start of
1629** the transaction, for each page restored this routine is called.
1630**
1631** This routine needs to reset the extra data section at the end of the
1632** page to agree with the restored data.
1633*/
danielk1977eaa06f62008-09-18 17:34:44 +00001634static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001635 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001636 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001637 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001638 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001640 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001641 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001642 /* pPage might not be a btree page; it might be an overflow page
1643 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001644 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001645 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001646 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001647 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001648 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001649 }
drha6abd042004-06-09 17:37:22 +00001650 }
1651}
1652
1653/*
drhe5fe6902007-12-07 18:55:28 +00001654** Invoke the busy handler for a btree.
1655*/
danielk19771ceedd32008-11-19 10:22:33 +00001656static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001657 BtShared *pBt = (BtShared*)pArg;
1658 assert( pBt->db );
1659 assert( sqlite3_mutex_held(pBt->db->mutex) );
1660 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1661}
1662
1663/*
drhad3e0102004-09-03 23:32:18 +00001664** Open a database file.
1665**
drh382c0242001-10-06 16:33:02 +00001666** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001667** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001668** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001669** If zFilename is ":memory:" then an in-memory database is created
1670** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001671**
1672** If the database is already opened in the same database connection
1673** and we are in shared cache mode, then the open will fail with an
1674** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1675** objects in the same database connection since doing so will lead
1676** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001677*/
drh23e11ca2004-05-04 17:27:28 +00001678int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001679 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001680 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001681 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001682 int flags, /* Options */
1683 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001684){
drh7555d8e2009-03-20 13:15:30 +00001685 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1686 BtShared *pBt = 0; /* Shared part of btree structure */
1687 Btree *p; /* Handle to return */
1688 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1689 int rc = SQLITE_OK; /* Result code from this function */
1690 u8 nReserve; /* Byte of unused space on each page */
1691 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001692
1693 /* Set the variable isMemdb to true for an in-memory database, or
1694 ** false for a file-based database. This symbol is only required if
1695 ** either of the shared-data or autovacuum features are compiled
1696 ** into the library.
1697 */
1698#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1699 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001700 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001701 #else
drh980b1a72006-08-16 16:42:48 +00001702 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001703 #endif
1704#endif
1705
drhe5fe6902007-12-07 18:55:28 +00001706 assert( db!=0 );
1707 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001708
drhe5fe6902007-12-07 18:55:28 +00001709 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001710 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001711 if( !p ){
1712 return SQLITE_NOMEM;
1713 }
1714 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001715 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001716#ifndef SQLITE_OMIT_SHARED_CACHE
1717 p->lock.pBtree = p;
1718 p->lock.iTable = 1;
1719#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001720
drh198bf392006-01-06 21:52:49 +00001721#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001722 /*
1723 ** If this Btree is a candidate for shared cache, try to find an
1724 ** existing BtShared object that we can share with
1725 */
danielk197720c6cc22009-04-01 18:03:00 +00001726 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001727 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001728 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001729 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001730 sqlite3_mutex *mutexShared;
1731 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001732 if( !zFullPathname ){
1733 sqlite3_free(p);
1734 return SQLITE_NOMEM;
1735 }
danielk1977adfb9b02007-09-17 07:02:56 +00001736 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001737 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1738 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001739 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001740 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001741 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001742 assert( pBt->nRef>0 );
1743 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1744 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001745 int iDb;
1746 for(iDb=db->nDb-1; iDb>=0; iDb--){
1747 Btree *pExisting = db->aDb[iDb].pBt;
1748 if( pExisting && pExisting->pBt==pBt ){
1749 sqlite3_mutex_leave(mutexShared);
1750 sqlite3_mutex_leave(mutexOpen);
1751 sqlite3_free(zFullPathname);
1752 sqlite3_free(p);
1753 return SQLITE_CONSTRAINT;
1754 }
1755 }
drhff0587c2007-08-29 17:43:19 +00001756 p->pBt = pBt;
1757 pBt->nRef++;
1758 break;
1759 }
1760 }
1761 sqlite3_mutex_leave(mutexShared);
1762 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001763 }
drhff0587c2007-08-29 17:43:19 +00001764#ifdef SQLITE_DEBUG
1765 else{
1766 /* In debug mode, we mark all persistent databases as sharable
1767 ** even when they are not. This exercises the locking code and
1768 ** gives more opportunity for asserts(sqlite3_mutex_held())
1769 ** statements to find locking problems.
1770 */
1771 p->sharable = 1;
1772 }
1773#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001774 }
1775#endif
drha059ad02001-04-17 20:09:11 +00001776 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001777 /*
1778 ** The following asserts make sure that structures used by the btree are
1779 ** the right size. This is to guard against size changes that result
1780 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001781 */
drhe53831d2007-08-17 01:14:38 +00001782 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1783 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1784 assert( sizeof(u32)==4 );
1785 assert( sizeof(u16)==2 );
1786 assert( sizeof(Pgno)==4 );
1787
1788 pBt = sqlite3MallocZero( sizeof(*pBt) );
1789 if( pBt==0 ){
1790 rc = SQLITE_NOMEM;
1791 goto btree_open_out;
1792 }
danielk197771d5d2c2008-09-29 11:49:47 +00001793 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001794 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001795 if( rc==SQLITE_OK ){
1796 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1797 }
1798 if( rc!=SQLITE_OK ){
1799 goto btree_open_out;
1800 }
danielk19772a50ff02009-04-10 09:47:06 +00001801 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001802 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001803 p->pBt = pBt;
1804
drhe53831d2007-08-17 01:14:38 +00001805 pBt->pCursor = 0;
1806 pBt->pPage1 = 0;
1807 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1808 pBt->pageSize = get2byte(&zDbHeader[16]);
1809 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1810 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001811 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001812#ifndef SQLITE_OMIT_AUTOVACUUM
1813 /* If the magic name ":memory:" will create an in-memory database, then
1814 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1815 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1816 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1817 ** regular file-name. In this case the auto-vacuum applies as per normal.
1818 */
1819 if( zFilename && !isMemdb ){
1820 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1821 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1822 }
1823#endif
1824 nReserve = 0;
1825 }else{
1826 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001827 pBt->pageSizeFixed = 1;
1828#ifndef SQLITE_OMIT_AUTOVACUUM
1829 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1830 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1831#endif
1832 }
drhfa9601a2009-06-18 17:22:39 +00001833 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001834 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001835 pBt->usableSize = pBt->pageSize - nReserve;
1836 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001837
1838#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1839 /* Add the new BtShared object to the linked list sharable BtShareds.
1840 */
1841 if( p->sharable ){
1842 sqlite3_mutex *mutexShared;
1843 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001844 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001845 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001846 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001847 if( pBt->mutex==0 ){
1848 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001849 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001850 goto btree_open_out;
1851 }
drhff0587c2007-08-29 17:43:19 +00001852 }
drhe53831d2007-08-17 01:14:38 +00001853 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001854 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1855 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001856 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001857 }
drheee46cf2004-11-06 00:02:48 +00001858#endif
drh90f5ecb2004-07-22 01:19:35 +00001859 }
danielk1977aef0bf62005-12-30 16:28:01 +00001860
drhcfed7bc2006-03-13 14:28:05 +00001861#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001862 /* If the new Btree uses a sharable pBtShared, then link the new
1863 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001864 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001865 */
drhe53831d2007-08-17 01:14:38 +00001866 if( p->sharable ){
1867 int i;
1868 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001869 for(i=0; i<db->nDb; i++){
1870 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001871 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1872 if( p->pBt<pSib->pBt ){
1873 p->pNext = pSib;
1874 p->pPrev = 0;
1875 pSib->pPrev = p;
1876 }else{
drhabddb0c2007-08-20 13:14:28 +00001877 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001878 pSib = pSib->pNext;
1879 }
1880 p->pNext = pSib->pNext;
1881 p->pPrev = pSib;
1882 if( p->pNext ){
1883 p->pNext->pPrev = p;
1884 }
1885 pSib->pNext = p;
1886 }
1887 break;
1888 }
1889 }
danielk1977aef0bf62005-12-30 16:28:01 +00001890 }
danielk1977aef0bf62005-12-30 16:28:01 +00001891#endif
1892 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001893
1894btree_open_out:
1895 if( rc!=SQLITE_OK ){
1896 if( pBt && pBt->pPager ){
1897 sqlite3PagerClose(pBt->pPager);
1898 }
drh17435752007-08-16 04:30:38 +00001899 sqlite3_free(pBt);
1900 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001901 *ppBtree = 0;
1902 }
drh7555d8e2009-03-20 13:15:30 +00001903 if( mutexOpen ){
1904 assert( sqlite3_mutex_held(mutexOpen) );
1905 sqlite3_mutex_leave(mutexOpen);
1906 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001907 return rc;
drha059ad02001-04-17 20:09:11 +00001908}
1909
1910/*
drhe53831d2007-08-17 01:14:38 +00001911** Decrement the BtShared.nRef counter. When it reaches zero,
1912** remove the BtShared structure from the sharing list. Return
1913** true if the BtShared.nRef counter reaches zero and return
1914** false if it is still positive.
1915*/
1916static int removeFromSharingList(BtShared *pBt){
1917#ifndef SQLITE_OMIT_SHARED_CACHE
1918 sqlite3_mutex *pMaster;
1919 BtShared *pList;
1920 int removed = 0;
1921
drhd677b3d2007-08-20 22:48:41 +00001922 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001923 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001924 sqlite3_mutex_enter(pMaster);
1925 pBt->nRef--;
1926 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001927 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1928 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001929 }else{
drh78f82d12008-09-02 00:52:52 +00001930 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001931 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001932 pList=pList->pNext;
1933 }
drh34004ce2008-07-11 16:15:17 +00001934 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001935 pList->pNext = pBt->pNext;
1936 }
1937 }
drh3285db22007-09-03 22:00:39 +00001938 if( SQLITE_THREADSAFE ){
1939 sqlite3_mutex_free(pBt->mutex);
1940 }
drhe53831d2007-08-17 01:14:38 +00001941 removed = 1;
1942 }
1943 sqlite3_mutex_leave(pMaster);
1944 return removed;
1945#else
1946 return 1;
1947#endif
1948}
1949
1950/*
drhf7141992008-06-19 00:16:08 +00001951** Make sure pBt->pTmpSpace points to an allocation of
1952** MX_CELL_SIZE(pBt) bytes.
1953*/
1954static void allocateTempSpace(BtShared *pBt){
1955 if( !pBt->pTmpSpace ){
1956 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1957 }
1958}
1959
1960/*
1961** Free the pBt->pTmpSpace allocation
1962*/
1963static void freeTempSpace(BtShared *pBt){
1964 sqlite3PageFree( pBt->pTmpSpace);
1965 pBt->pTmpSpace = 0;
1966}
1967
1968/*
drha059ad02001-04-17 20:09:11 +00001969** Close an open database and invalidate all cursors.
1970*/
danielk1977aef0bf62005-12-30 16:28:01 +00001971int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001972 BtShared *pBt = p->pBt;
1973 BtCursor *pCur;
1974
danielk1977aef0bf62005-12-30 16:28:01 +00001975 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001976 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001977 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001978 pCur = pBt->pCursor;
1979 while( pCur ){
1980 BtCursor *pTmp = pCur;
1981 pCur = pCur->pNext;
1982 if( pTmp->pBtree==p ){
1983 sqlite3BtreeCloseCursor(pTmp);
1984 }
drha059ad02001-04-17 20:09:11 +00001985 }
danielk1977aef0bf62005-12-30 16:28:01 +00001986
danielk19778d34dfd2006-01-24 16:37:57 +00001987 /* Rollback any active transaction and free the handle structure.
1988 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1989 ** this handle.
1990 */
danielk1977b597f742006-01-15 11:39:18 +00001991 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001992 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001993
danielk1977aef0bf62005-12-30 16:28:01 +00001994 /* If there are still other outstanding references to the shared-btree
1995 ** structure, return now. The remainder of this procedure cleans
1996 ** up the shared-btree.
1997 */
drhe53831d2007-08-17 01:14:38 +00001998 assert( p->wantToLock==0 && p->locked==0 );
1999 if( !p->sharable || removeFromSharingList(pBt) ){
2000 /* The pBt is no longer on the sharing list, so we can access
2001 ** it without having to hold the mutex.
2002 **
2003 ** Clean out and delete the BtShared object.
2004 */
2005 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002006 sqlite3PagerClose(pBt->pPager);
2007 if( pBt->xFreeSchema && pBt->pSchema ){
2008 pBt->xFreeSchema(pBt->pSchema);
2009 }
2010 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002011 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002012 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002013 }
2014
drhe53831d2007-08-17 01:14:38 +00002015#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002016 assert( p->wantToLock==0 );
2017 assert( p->locked==0 );
2018 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2019 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002020#endif
2021
drhe53831d2007-08-17 01:14:38 +00002022 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002023 return SQLITE_OK;
2024}
2025
2026/*
drhda47d772002-12-02 04:25:19 +00002027** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002028**
2029** The maximum number of cache pages is set to the absolute
2030** value of mxPage. If mxPage is negative, the pager will
2031** operate asynchronously - it will not stop to do fsync()s
2032** to insure data is written to the disk surface before
2033** continuing. Transactions still work if synchronous is off,
2034** and the database cannot be corrupted if this program
2035** crashes. But if the operating system crashes or there is
2036** an abrupt power failure when synchronous is off, the database
2037** could be left in an inconsistent and unrecoverable state.
2038** Synchronous is on by default so database corruption is not
2039** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002040*/
danielk1977aef0bf62005-12-30 16:28:01 +00002041int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2042 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002043 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002044 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002045 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002046 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002047 return SQLITE_OK;
2048}
2049
2050/*
drh973b6e32003-02-12 14:09:42 +00002051** Change the way data is synced to disk in order to increase or decrease
2052** how well the database resists damage due to OS crashes and power
2053** failures. Level 1 is the same as asynchronous (no syncs() occur and
2054** there is a high probability of damage) Level 2 is the default. There
2055** is a very low but non-zero probability of damage. Level 3 reduces the
2056** probability of damage to near zero but with a write performance reduction.
2057*/
danielk197793758c82005-01-21 08:13:14 +00002058#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002059int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002060 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002061 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002062 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002063 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002064 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002065 return SQLITE_OK;
2066}
danielk197793758c82005-01-21 08:13:14 +00002067#endif
drh973b6e32003-02-12 14:09:42 +00002068
drh2c8997b2005-08-27 16:36:48 +00002069/*
2070** Return TRUE if the given btree is set to safety level 1. In other
2071** words, return TRUE if no sync() occurs on the disk files.
2072*/
danielk1977aef0bf62005-12-30 16:28:01 +00002073int sqlite3BtreeSyncDisabled(Btree *p){
2074 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002075 int rc;
drhe5fe6902007-12-07 18:55:28 +00002076 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002077 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002078 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002079 rc = sqlite3PagerNosync(pBt->pPager);
2080 sqlite3BtreeLeave(p);
2081 return rc;
drh2c8997b2005-08-27 16:36:48 +00002082}
2083
danielk1977576ec6b2005-01-21 11:55:25 +00002084#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002085/*
drh90f5ecb2004-07-22 01:19:35 +00002086** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002087** Or, if the page size has already been fixed, return SQLITE_READONLY
2088** without changing anything.
drh06f50212004-11-02 14:24:33 +00002089**
2090** The page size must be a power of 2 between 512 and 65536. If the page
2091** size supplied does not meet this constraint then the page size is not
2092** changed.
2093**
2094** Page sizes are constrained to be a power of two so that the region
2095** of the database file used for locking (beginning at PENDING_BYTE,
2096** the first byte past the 1GB boundary, 0x40000000) needs to occur
2097** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002098**
2099** If parameter nReserve is less than zero, then the number of reserved
2100** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002101**
2102** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2103** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002104*/
drhce4869f2009-04-02 20:16:58 +00002105int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002106 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002107 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002108 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002109 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002110 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002111 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002112 return SQLITE_READONLY;
2113 }
2114 if( nReserve<0 ){
2115 nReserve = pBt->pageSize - pBt->usableSize;
2116 }
drhf49661a2008-12-10 16:45:50 +00002117 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002118 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2119 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002120 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002121 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002122 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002123 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002124 }
drhfa9601a2009-06-18 17:22:39 +00002125 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002126 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002127 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002128 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002129 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002130}
2131
2132/*
2133** Return the currently defined page size
2134*/
danielk1977aef0bf62005-12-30 16:28:01 +00002135int sqlite3BtreeGetPageSize(Btree *p){
2136 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002137}
drh7f751222009-03-17 22:33:00 +00002138
2139/*
2140** Return the number of bytes of space at the end of every page that
2141** are intentually left unused. This is the "reserved" space that is
2142** sometimes used by extensions.
2143*/
danielk1977aef0bf62005-12-30 16:28:01 +00002144int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002145 int n;
2146 sqlite3BtreeEnter(p);
2147 n = p->pBt->pageSize - p->pBt->usableSize;
2148 sqlite3BtreeLeave(p);
2149 return n;
drh2011d5f2004-07-22 02:40:37 +00002150}
drhf8e632b2007-05-08 14:51:36 +00002151
2152/*
2153** Set the maximum page count for a database if mxPage is positive.
2154** No changes are made if mxPage is 0 or negative.
2155** Regardless of the value of mxPage, return the maximum page count.
2156*/
2157int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002158 int n;
2159 sqlite3BtreeEnter(p);
2160 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2161 sqlite3BtreeLeave(p);
2162 return n;
drhf8e632b2007-05-08 14:51:36 +00002163}
danielk1977576ec6b2005-01-21 11:55:25 +00002164#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002165
2166/*
danielk1977951af802004-11-05 15:45:09 +00002167** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2168** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2169** is disabled. The default value for the auto-vacuum property is
2170** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2171*/
danielk1977aef0bf62005-12-30 16:28:01 +00002172int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002173#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002174 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002175#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002176 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002177 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002178 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002179
2180 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002181 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002182 rc = SQLITE_READONLY;
2183 }else{
drh076d4662009-02-18 20:31:18 +00002184 pBt->autoVacuum = av ?1:0;
2185 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002186 }
drhd677b3d2007-08-20 22:48:41 +00002187 sqlite3BtreeLeave(p);
2188 return rc;
danielk1977951af802004-11-05 15:45:09 +00002189#endif
2190}
2191
2192/*
2193** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2194** enabled 1 is returned. Otherwise 0.
2195*/
danielk1977aef0bf62005-12-30 16:28:01 +00002196int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002197#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002198 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002199#else
drhd677b3d2007-08-20 22:48:41 +00002200 int rc;
2201 sqlite3BtreeEnter(p);
2202 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002203 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2204 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2205 BTREE_AUTOVACUUM_INCR
2206 );
drhd677b3d2007-08-20 22:48:41 +00002207 sqlite3BtreeLeave(p);
2208 return rc;
danielk1977951af802004-11-05 15:45:09 +00002209#endif
2210}
2211
2212
2213/*
drha34b6762004-05-07 13:30:42 +00002214** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002215** also acquire a readlock on that file.
2216**
2217** SQLITE_OK is returned on success. If the file is not a
2218** well-formed database file, then SQLITE_CORRUPT is returned.
2219** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002220** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002221*/
danielk1977aef0bf62005-12-30 16:28:01 +00002222static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002223 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002224 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002225 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002226
drh1fee73e2007-08-29 04:00:57 +00002227 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002228 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002229 rc = sqlite3PagerSharedLock(pBt->pPager);
2230 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002231 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002232 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002233
2234 /* Do some checking to help insure the file we opened really is
2235 ** a valid database file.
2236 */
danielk1977ad0132d2008-06-07 08:58:22 +00002237 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2238 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002239 goto page1_init_failed;
2240 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002241 int pageSize;
2242 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002243 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002244 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002245 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002246 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002247 }
drh309169a2007-04-24 17:27:51 +00002248 if( page1[18]>1 ){
2249 pBt->readOnly = 1;
2250 }
2251 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002252 goto page1_init_failed;
2253 }
drhe5ae5732008-06-15 02:51:47 +00002254
2255 /* The maximum embedded fraction must be exactly 25%. And the minimum
2256 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2257 ** The original design allowed these amounts to vary, but as of
2258 ** version 3.6.0, we require them to be fixed.
2259 */
2260 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2261 goto page1_init_failed;
2262 }
drh07d183d2005-05-01 22:52:42 +00002263 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002264 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2265 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2266 ){
drh07d183d2005-05-01 22:52:42 +00002267 goto page1_init_failed;
2268 }
2269 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002270 usableSize = pageSize - page1[20];
2271 if( pageSize!=pBt->pageSize ){
2272 /* After reading the first page of the database assuming a page size
2273 ** of BtShared.pageSize, we have discovered that the page-size is
2274 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2275 ** zero and return SQLITE_OK. The caller will call this function
2276 ** again with the correct page-size.
2277 */
2278 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002279 pBt->usableSize = (u16)usableSize;
2280 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002281 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002282 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2283 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002284 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002285 }
drhb33e1b92009-06-18 11:29:20 +00002286 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002287 goto page1_init_failed;
2288 }
drh1bd10f82008-12-10 21:19:56 +00002289 pBt->pageSize = (u16)pageSize;
2290 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002291#ifndef SQLITE_OMIT_AUTOVACUUM
2292 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002293 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002294#endif
drh306dc212001-05-21 13:45:10 +00002295 }
drhb6f41482004-05-14 01:58:11 +00002296
2297 /* maxLocal is the maximum amount of payload to store locally for
2298 ** a cell. Make sure it is small enough so that at least minFanout
2299 ** cells can will fit on one page. We assume a 10-byte page header.
2300 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002301 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002302 ** 4-byte child pointer
2303 ** 9-byte nKey value
2304 ** 4-byte nData value
2305 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002306 ** So a cell consists of a 2-byte poiner, a header which is as much as
2307 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2308 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002309 */
drhe5ae5732008-06-15 02:51:47 +00002310 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2311 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002312 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002313 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002314 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002315 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002316 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002317
drh72f82862001-05-24 21:06:34 +00002318page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002319 releasePage(pPage1);
2320 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002321 return rc;
drh306dc212001-05-21 13:45:10 +00002322}
2323
2324/*
drhb8ca3072001-12-05 00:21:20 +00002325** If there are no outstanding cursors and we are not in the middle
2326** of a transaction but there is a read lock on the database, then
2327** this routine unrefs the first page of the database file which
2328** has the effect of releasing the read lock.
2329**
drhb8ca3072001-12-05 00:21:20 +00002330** If there is a transaction in progress, this routine is a no-op.
2331*/
danielk1977aef0bf62005-12-30 16:28:01 +00002332static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002333 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002334 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2335 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002336 assert( pBt->pPage1->aData );
2337 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2338 assert( pBt->pPage1->aData );
2339 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002340 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002341 }
2342}
2343
2344/*
drhe39f2f92009-07-23 01:43:59 +00002345** If pBt points to an empty file then convert that empty file
2346** into a new empty database by initializing the first page of
2347** the database.
drh8b2f49b2001-06-08 00:21:52 +00002348*/
danielk1977aef0bf62005-12-30 16:28:01 +00002349static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002350 MemPage *pP1;
2351 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002352 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002353 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002354
drh1fee73e2007-08-29 04:00:57 +00002355 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002356 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
drh313aa572009-12-03 19:40:00 +00002357 if( rc!=SQLITE_OK || nPage>0 ){
danielk1977ad0132d2008-06-07 08:58:22 +00002358 return rc;
2359 }
drh3aac2dd2004-04-26 14:10:20 +00002360 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002361 assert( pP1!=0 );
2362 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002363 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002364 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002365 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2366 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002367 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002368 data[18] = 1;
2369 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002370 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2371 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002372 data[21] = 64;
2373 data[22] = 32;
2374 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002375 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002376 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002377 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002378#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002379 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002380 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002381 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002382 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002383#endif
drh8b2f49b2001-06-08 00:21:52 +00002384 return SQLITE_OK;
2385}
2386
2387/*
danielk1977ee5741e2004-05-31 10:01:34 +00002388** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002389** is started if the second argument is nonzero, otherwise a read-
2390** transaction. If the second argument is 2 or more and exclusive
2391** transaction is started, meaning that no other process is allowed
2392** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002393** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002394** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002395**
danielk1977ee5741e2004-05-31 10:01:34 +00002396** A write-transaction must be started before attempting any
2397** changes to the database. None of the following routines
2398** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002399**
drh23e11ca2004-05-04 17:27:28 +00002400** sqlite3BtreeCreateTable()
2401** sqlite3BtreeCreateIndex()
2402** sqlite3BtreeClearTable()
2403** sqlite3BtreeDropTable()
2404** sqlite3BtreeInsert()
2405** sqlite3BtreeDelete()
2406** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002407**
drhb8ef32c2005-03-14 02:01:49 +00002408** If an initial attempt to acquire the lock fails because of lock contention
2409** and the database was previously unlocked, then invoke the busy handler
2410** if there is one. But if there was previously a read-lock, do not
2411** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2412** returned when there is already a read-lock in order to avoid a deadlock.
2413**
2414** Suppose there are two processes A and B. A has a read lock and B has
2415** a reserved lock. B tries to promote to exclusive but is blocked because
2416** of A's read lock. A tries to promote to reserved but is blocked by B.
2417** One or the other of the two processes must give way or there can be
2418** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2419** when A already has a read lock, we encourage A to give up and let B
2420** proceed.
drha059ad02001-04-17 20:09:11 +00002421*/
danielk1977aef0bf62005-12-30 16:28:01 +00002422int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002423 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002424 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002425 int rc = SQLITE_OK;
2426
drhd677b3d2007-08-20 22:48:41 +00002427 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002428 btreeIntegrity(p);
2429
danielk1977ee5741e2004-05-31 10:01:34 +00002430 /* If the btree is already in a write-transaction, or it
2431 ** is already in a read-transaction and a read-transaction
2432 ** is requested, this is a no-op.
2433 */
danielk1977aef0bf62005-12-30 16:28:01 +00002434 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002435 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002436 }
drhb8ef32c2005-03-14 02:01:49 +00002437
2438 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002439 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002440 rc = SQLITE_READONLY;
2441 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002442 }
2443
danielk1977404ca072009-03-16 13:19:36 +00002444#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002445 /* If another database handle has already opened a write transaction
2446 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002447 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002448 */
danielk1977404ca072009-03-16 13:19:36 +00002449 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2450 pBlock = pBt->pWriter->db;
2451 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002452 BtLock *pIter;
2453 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2454 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002455 pBlock = pIter->pBtree->db;
2456 break;
danielk1977641b0f42007-12-21 04:47:25 +00002457 }
2458 }
2459 }
danielk1977404ca072009-03-16 13:19:36 +00002460 if( pBlock ){
2461 sqlite3ConnectionBlocked(p->db, pBlock);
2462 rc = SQLITE_LOCKED_SHAREDCACHE;
2463 goto trans_begun;
2464 }
danielk1977641b0f42007-12-21 04:47:25 +00002465#endif
2466
danielk1977602b4662009-07-02 07:47:33 +00002467 /* Any read-only or read-write transaction implies a read-lock on
2468 ** page 1. So if some other shared-cache client already has a write-lock
2469 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002470 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2471 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002472
drhb8ef32c2005-03-14 02:01:49 +00002473 do {
danielk1977295dc102009-04-01 19:07:03 +00002474 /* Call lockBtree() until either pBt->pPage1 is populated or
2475 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2476 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2477 ** reading page 1 it discovers that the page-size of the database
2478 ** file is not pBt->pageSize. In this case lockBtree() will update
2479 ** pBt->pageSize to the page-size of the file on disk.
2480 */
2481 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002482
drhb8ef32c2005-03-14 02:01:49 +00002483 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002484 if( pBt->readOnly ){
2485 rc = SQLITE_READONLY;
2486 }else{
danielk1977d8293352009-04-30 09:10:37 +00002487 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002488 if( rc==SQLITE_OK ){
2489 rc = newDatabase(pBt);
2490 }
drhb8ef32c2005-03-14 02:01:49 +00002491 }
2492 }
2493
danielk1977bd434552009-03-18 10:33:00 +00002494 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002495 unlockBtreeIfUnused(pBt);
2496 }
danielk1977aef0bf62005-12-30 16:28:01 +00002497 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002498 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002499
2500 if( rc==SQLITE_OK ){
2501 if( p->inTrans==TRANS_NONE ){
2502 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002503#ifndef SQLITE_OMIT_SHARED_CACHE
2504 if( p->sharable ){
2505 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2506 p->lock.eLock = READ_LOCK;
2507 p->lock.pNext = pBt->pLock;
2508 pBt->pLock = &p->lock;
2509 }
2510#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002511 }
2512 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2513 if( p->inTrans>pBt->inTransaction ){
2514 pBt->inTransaction = p->inTrans;
2515 }
danielk1977641b0f42007-12-21 04:47:25 +00002516#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002517 if( wrflag ){
2518 assert( !pBt->pWriter );
2519 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002520 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002521 }
2522#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002523 }
2524
drhd677b3d2007-08-20 22:48:41 +00002525
2526trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002527 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002528 /* This call makes sure that the pager has the correct number of
2529 ** open savepoints. If the second parameter is greater than 0 and
2530 ** the sub-journal is not already open, then it will be opened here.
2531 */
danielk1977fd7f0452008-12-17 17:30:26 +00002532 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2533 }
danielk197712dd5492008-12-18 15:45:07 +00002534
danielk1977aef0bf62005-12-30 16:28:01 +00002535 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002536 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002537 return rc;
drha059ad02001-04-17 20:09:11 +00002538}
2539
danielk1977687566d2004-11-02 12:56:41 +00002540#ifndef SQLITE_OMIT_AUTOVACUUM
2541
2542/*
2543** Set the pointer-map entries for all children of page pPage. Also, if
2544** pPage contains cells that point to overflow pages, set the pointer
2545** map entries for the overflow pages as well.
2546*/
2547static int setChildPtrmaps(MemPage *pPage){
2548 int i; /* Counter variable */
2549 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002550 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002551 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002552 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002553 Pgno pgno = pPage->pgno;
2554
drh1fee73e2007-08-29 04:00:57 +00002555 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002556 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002557 if( rc!=SQLITE_OK ){
2558 goto set_child_ptrmaps_out;
2559 }
danielk1977687566d2004-11-02 12:56:41 +00002560 nCell = pPage->nCell;
2561
2562 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002563 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002564
drh98add2e2009-07-20 17:11:49 +00002565 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002566
danielk1977687566d2004-11-02 12:56:41 +00002567 if( !pPage->leaf ){
2568 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002569 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002570 }
2571 }
2572
2573 if( !pPage->leaf ){
2574 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002575 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002576 }
2577
2578set_child_ptrmaps_out:
2579 pPage->isInit = isInitOrig;
2580 return rc;
2581}
2582
2583/*
drhf3aed592009-07-08 18:12:49 +00002584** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2585** that it points to iTo. Parameter eType describes the type of pointer to
2586** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002587**
2588** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2589** page of pPage.
2590**
2591** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2592** page pointed to by one of the cells on pPage.
2593**
2594** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2595** overflow page in the list.
2596*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002597static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002598 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002599 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002600 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002601 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002602 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002603 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002604 }
danielk1977f78fc082004-11-02 14:40:32 +00002605 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002606 }else{
drhf49661a2008-12-10 16:45:50 +00002607 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002608 int i;
2609 int nCell;
2610
danielk197730548662009-07-09 05:07:37 +00002611 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002612 nCell = pPage->nCell;
2613
danielk1977687566d2004-11-02 12:56:41 +00002614 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002615 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002616 if( eType==PTRMAP_OVERFLOW1 ){
2617 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002618 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002619 if( info.iOverflow ){
2620 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2621 put4byte(&pCell[info.iOverflow], iTo);
2622 break;
2623 }
2624 }
2625 }else{
2626 if( get4byte(pCell)==iFrom ){
2627 put4byte(pCell, iTo);
2628 break;
2629 }
2630 }
2631 }
2632
2633 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002634 if( eType!=PTRMAP_BTREE ||
2635 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002636 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002637 }
danielk1977687566d2004-11-02 12:56:41 +00002638 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2639 }
2640
2641 pPage->isInit = isInitOrig;
2642 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002643 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002644}
2645
danielk1977003ba062004-11-04 02:57:33 +00002646
danielk19777701e812005-01-10 12:59:51 +00002647/*
2648** Move the open database page pDbPage to location iFreePage in the
2649** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002650**
2651** The isCommit flag indicates that there is no need to remember that
2652** the journal needs to be sync()ed before database page pDbPage->pgno
2653** can be written to. The caller has already promised not to write to that
2654** page.
danielk19777701e812005-01-10 12:59:51 +00002655*/
danielk1977003ba062004-11-04 02:57:33 +00002656static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002657 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002658 MemPage *pDbPage, /* Open page to move */
2659 u8 eType, /* Pointer map 'type' entry for pDbPage */
2660 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002661 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002662 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002663){
2664 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2665 Pgno iDbPage = pDbPage->pgno;
2666 Pager *pPager = pBt->pPager;
2667 int rc;
2668
danielk1977a0bf2652004-11-04 14:30:04 +00002669 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2670 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002671 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002672 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002673
drh85b623f2007-12-13 21:54:09 +00002674 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002675 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2676 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002677 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002678 if( rc!=SQLITE_OK ){
2679 return rc;
2680 }
2681 pDbPage->pgno = iFreePage;
2682
2683 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2684 ** that point to overflow pages. The pointer map entries for all these
2685 ** pages need to be changed.
2686 **
2687 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2688 ** pointer to a subsequent overflow page. If this is the case, then
2689 ** the pointer map needs to be updated for the subsequent overflow page.
2690 */
danielk1977a0bf2652004-11-04 14:30:04 +00002691 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002692 rc = setChildPtrmaps(pDbPage);
2693 if( rc!=SQLITE_OK ){
2694 return rc;
2695 }
2696 }else{
2697 Pgno nextOvfl = get4byte(pDbPage->aData);
2698 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002699 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002700 if( rc!=SQLITE_OK ){
2701 return rc;
2702 }
2703 }
2704 }
2705
2706 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2707 ** that it points at iFreePage. Also fix the pointer map entry for
2708 ** iPtrPage.
2709 */
danielk1977a0bf2652004-11-04 14:30:04 +00002710 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002711 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002712 if( rc!=SQLITE_OK ){
2713 return rc;
2714 }
danielk19773b8a05f2007-03-19 17:44:26 +00002715 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002716 if( rc!=SQLITE_OK ){
2717 releasePage(pPtrPage);
2718 return rc;
2719 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002720 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002721 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002722 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002723 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002724 }
danielk1977003ba062004-11-04 02:57:33 +00002725 }
danielk1977003ba062004-11-04 02:57:33 +00002726 return rc;
2727}
2728
danielk1977dddbcdc2007-04-26 14:42:34 +00002729/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002730static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002731
2732/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002733** Perform a single step of an incremental-vacuum. If successful,
2734** return SQLITE_OK. If there is no work to do (and therefore no
2735** point in calling this function again), return SQLITE_DONE.
2736**
2737** More specificly, this function attempts to re-organize the
2738** database so that the last page of the file currently in use
2739** is no longer in use.
2740**
drhea8ffdf2009-07-22 00:35:23 +00002741** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002742** that the caller will keep calling incrVacuumStep() until
2743** it returns SQLITE_DONE or an error, and that nFin is the
2744** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002745** process is complete. If nFin is zero, it is assumed that
2746** incrVacuumStep() will be called a finite amount of times
2747** which may or may not empty the freelist. A full autovacuum
2748** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002749*/
danielk19773460d192008-12-27 15:23:13 +00002750static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002751 Pgno nFreeList; /* Number of pages still on the free-list */
2752
drh1fee73e2007-08-29 04:00:57 +00002753 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002754 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002755
2756 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2757 int rc;
2758 u8 eType;
2759 Pgno iPtrPage;
2760
2761 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002762 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002763 return SQLITE_DONE;
2764 }
2765
2766 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2767 if( rc!=SQLITE_OK ){
2768 return rc;
2769 }
2770 if( eType==PTRMAP_ROOTPAGE ){
2771 return SQLITE_CORRUPT_BKPT;
2772 }
2773
2774 if( eType==PTRMAP_FREEPAGE ){
2775 if( nFin==0 ){
2776 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002777 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002778 ** truncated to zero after this function returns, so it doesn't
2779 ** matter if it still contains some garbage entries.
2780 */
2781 Pgno iFreePg;
2782 MemPage *pFreePg;
2783 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2784 if( rc!=SQLITE_OK ){
2785 return rc;
2786 }
2787 assert( iFreePg==iLastPg );
2788 releasePage(pFreePg);
2789 }
2790 } else {
2791 Pgno iFreePg; /* Index of free page to move pLastPg to */
2792 MemPage *pLastPg;
2793
danielk197730548662009-07-09 05:07:37 +00002794 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002795 if( rc!=SQLITE_OK ){
2796 return rc;
2797 }
2798
danielk1977b4626a32007-04-28 15:47:43 +00002799 /* If nFin is zero, this loop runs exactly once and page pLastPg
2800 ** is swapped with the first free page pulled off the free list.
2801 **
2802 ** On the other hand, if nFin is greater than zero, then keep
2803 ** looping until a free-page located within the first nFin pages
2804 ** of the file is found.
2805 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002806 do {
2807 MemPage *pFreePg;
2808 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2809 if( rc!=SQLITE_OK ){
2810 releasePage(pLastPg);
2811 return rc;
2812 }
2813 releasePage(pFreePg);
2814 }while( nFin!=0 && iFreePg>nFin );
2815 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002816
2817 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002818 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002819 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002820 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002821 releasePage(pLastPg);
2822 if( rc!=SQLITE_OK ){
2823 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002824 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002825 }
2826 }
2827
danielk19773460d192008-12-27 15:23:13 +00002828 if( nFin==0 ){
2829 iLastPg--;
2830 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002831 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2832 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002833 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002834 if( rc!=SQLITE_OK ){
2835 return rc;
2836 }
2837 rc = sqlite3PagerWrite(pPg->pDbPage);
2838 releasePage(pPg);
2839 if( rc!=SQLITE_OK ){
2840 return rc;
2841 }
2842 }
danielk19773460d192008-12-27 15:23:13 +00002843 iLastPg--;
2844 }
2845 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002846 }
2847 return SQLITE_OK;
2848}
2849
2850/*
2851** A write-transaction must be opened before calling this function.
2852** It performs a single unit of work towards an incremental vacuum.
2853**
2854** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002855** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002856** SQLITE_OK is returned. Otherwise an SQLite error code.
2857*/
2858int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002859 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002860 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002861
2862 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002863 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2864 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002865 rc = SQLITE_DONE;
2866 }else{
2867 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002868 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002869 }
drhd677b3d2007-08-20 22:48:41 +00002870 sqlite3BtreeLeave(p);
2871 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002872}
2873
2874/*
danielk19773b8a05f2007-03-19 17:44:26 +00002875** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002876** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002877**
2878** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2879** the database file should be truncated to during the commit process.
2880** i.e. the database has been reorganized so that only the first *pnTrunc
2881** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002882*/
danielk19773460d192008-12-27 15:23:13 +00002883static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002884 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002885 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002886 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002887
drh1fee73e2007-08-29 04:00:57 +00002888 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002889 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002890 assert(pBt->autoVacuum);
2891 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002892 Pgno nFin; /* Number of pages in database after autovacuuming */
2893 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002894 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2895 Pgno iFree; /* The next page to be freed */
2896 int nEntry; /* Number of entries on one ptrmap page */
2897 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002898
drh41d628c2009-07-11 17:04:08 +00002899 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002900 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2901 /* It is not possible to create a database for which the final page
2902 ** is either a pointer-map page or the pending-byte page. If one
2903 ** is encountered, this indicates corruption.
2904 */
danielk19773460d192008-12-27 15:23:13 +00002905 return SQLITE_CORRUPT_BKPT;
2906 }
danielk1977ef165ce2009-04-06 17:50:03 +00002907
danielk19773460d192008-12-27 15:23:13 +00002908 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002909 nEntry = pBt->usableSize/5;
2910 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002911 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002912 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002913 nFin--;
2914 }
2915 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2916 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002917 }
drhc5e47ac2009-06-04 00:11:56 +00002918 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002919
danielk19773460d192008-12-27 15:23:13 +00002920 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2921 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002922 }
danielk19773460d192008-12-27 15:23:13 +00002923 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002924 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002925 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2926 put4byte(&pBt->pPage1->aData[32], 0);
2927 put4byte(&pBt->pPage1->aData[36], 0);
2928 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002929 }
2930 if( rc!=SQLITE_OK ){
2931 sqlite3PagerRollback(pPager);
2932 }
danielk1977687566d2004-11-02 12:56:41 +00002933 }
2934
danielk19773b8a05f2007-03-19 17:44:26 +00002935 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002936 return rc;
2937}
danielk1977dddbcdc2007-04-26 14:42:34 +00002938
danielk1977a50d9aa2009-06-08 14:49:45 +00002939#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2940# define setChildPtrmaps(x) SQLITE_OK
2941#endif
danielk1977687566d2004-11-02 12:56:41 +00002942
2943/*
drh80e35f42007-03-30 14:06:34 +00002944** This routine does the first phase of a two-phase commit. This routine
2945** causes a rollback journal to be created (if it does not already exist)
2946** and populated with enough information so that if a power loss occurs
2947** the database can be restored to its original state by playing back
2948** the journal. Then the contents of the journal are flushed out to
2949** the disk. After the journal is safely on oxide, the changes to the
2950** database are written into the database file and flushed to oxide.
2951** At the end of this call, the rollback journal still exists on the
2952** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002953** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002954** commit process.
2955**
2956** This call is a no-op if no write-transaction is currently active on pBt.
2957**
2958** Otherwise, sync the database file for the btree pBt. zMaster points to
2959** the name of a master journal file that should be written into the
2960** individual journal file, or is NULL, indicating no master journal file
2961** (single database transaction).
2962**
2963** When this is called, the master journal should already have been
2964** created, populated with this journal pointer and synced to disk.
2965**
2966** Once this is routine has returned, the only thing required to commit
2967** the write-transaction for this database file is to delete the journal.
2968*/
2969int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2970 int rc = SQLITE_OK;
2971 if( p->inTrans==TRANS_WRITE ){
2972 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002973 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002974#ifndef SQLITE_OMIT_AUTOVACUUM
2975 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002976 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002977 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002978 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002979 return rc;
2980 }
2981 }
2982#endif
drh49b9d332009-01-02 18:10:42 +00002983 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002984 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002985 }
2986 return rc;
2987}
2988
2989/*
danielk197794b30732009-07-02 17:21:57 +00002990** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2991** at the conclusion of a transaction.
2992*/
2993static void btreeEndTransaction(Btree *p){
2994 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00002995 assert( sqlite3BtreeHoldsMutex(p) );
2996
danielk197794b30732009-07-02 17:21:57 +00002997 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00002998 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
2999 /* If there are other active statements that belong to this database
3000 ** handle, downgrade to a read-only transaction. The other statements
3001 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003002 downgradeAllSharedCacheTableLocks(p);
3003 p->inTrans = TRANS_READ;
3004 }else{
3005 /* If the handle had any kind of transaction open, decrement the
3006 ** transaction count of the shared btree. If the transaction count
3007 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3008 ** call below will unlock the pager. */
3009 if( p->inTrans!=TRANS_NONE ){
3010 clearAllSharedCacheTableLocks(p);
3011 pBt->nTransaction--;
3012 if( 0==pBt->nTransaction ){
3013 pBt->inTransaction = TRANS_NONE;
3014 }
3015 }
3016
3017 /* Set the current transaction state to TRANS_NONE and unlock the
3018 ** pager if this call closed the only read or write transaction. */
3019 p->inTrans = TRANS_NONE;
3020 unlockBtreeIfUnused(pBt);
3021 }
3022
3023 btreeIntegrity(p);
3024}
3025
3026/*
drh2aa679f2001-06-25 02:11:07 +00003027** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003028**
drh6e345992007-03-30 11:12:08 +00003029** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003030** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3031** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3032** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003033** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003034** routine has to do is delete or truncate or zero the header in the
3035** the rollback journal (which causes the transaction to commit) and
3036** drop locks.
drh6e345992007-03-30 11:12:08 +00003037**
drh5e00f6c2001-09-13 13:46:56 +00003038** This will release the write lock on the database file. If there
3039** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003040*/
drh80e35f42007-03-30 14:06:34 +00003041int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003042 BtShared *pBt = p->pBt;
3043
drhd677b3d2007-08-20 22:48:41 +00003044 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003045 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003046
3047 /* If the handle has a write-transaction open, commit the shared-btrees
3048 ** transaction and set the shared state to TRANS_READ.
3049 */
3050 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003051 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003052 assert( pBt->inTransaction==TRANS_WRITE );
3053 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003054 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003055 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003056 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003057 return rc;
3058 }
danielk1977aef0bf62005-12-30 16:28:01 +00003059 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003060 }
danielk1977aef0bf62005-12-30 16:28:01 +00003061
danielk197794b30732009-07-02 17:21:57 +00003062 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003063 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003064 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003065}
3066
drh80e35f42007-03-30 14:06:34 +00003067/*
3068** Do both phases of a commit.
3069*/
3070int sqlite3BtreeCommit(Btree *p){
3071 int rc;
drhd677b3d2007-08-20 22:48:41 +00003072 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003073 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3074 if( rc==SQLITE_OK ){
3075 rc = sqlite3BtreeCommitPhaseTwo(p);
3076 }
drhd677b3d2007-08-20 22:48:41 +00003077 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003078 return rc;
3079}
3080
danielk1977fbcd5852004-06-15 02:44:18 +00003081#ifndef NDEBUG
3082/*
3083** Return the number of write-cursors open on this handle. This is for use
3084** in assert() expressions, so it is only compiled if NDEBUG is not
3085** defined.
drhfb982642007-08-30 01:19:59 +00003086**
3087** For the purposes of this routine, a write-cursor is any cursor that
3088** is capable of writing to the databse. That means the cursor was
3089** originally opened for writing and the cursor has not be disabled
3090** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003091*/
danielk1977aef0bf62005-12-30 16:28:01 +00003092static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003093 BtCursor *pCur;
3094 int r = 0;
3095 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003096 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003097 }
3098 return r;
3099}
3100#endif
3101
drhc39e0002004-05-07 23:50:57 +00003102/*
drhfb982642007-08-30 01:19:59 +00003103** This routine sets the state to CURSOR_FAULT and the error
3104** code to errCode for every cursor on BtShared that pBtree
3105** references.
3106**
3107** Every cursor is tripped, including cursors that belong
3108** to other database connections that happen to be sharing
3109** the cache with pBtree.
3110**
3111** This routine gets called when a rollback occurs.
3112** All cursors using the same cache must be tripped
3113** to prevent them from trying to use the btree after
3114** the rollback. The rollback may have deleted tables
3115** or moved root pages, so it is not sufficient to
3116** save the state of the cursor. The cursor must be
3117** invalidated.
3118*/
3119void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3120 BtCursor *p;
3121 sqlite3BtreeEnter(pBtree);
3122 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003123 int i;
danielk1977be51a652008-10-08 17:58:48 +00003124 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003125 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003126 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003127 for(i=0; i<=p->iPage; i++){
3128 releasePage(p->apPage[i]);
3129 p->apPage[i] = 0;
3130 }
drhfb982642007-08-30 01:19:59 +00003131 }
3132 sqlite3BtreeLeave(pBtree);
3133}
3134
3135/*
drhecdc7532001-09-23 02:35:53 +00003136** Rollback the transaction in progress. All cursors will be
3137** invalided by this operation. Any attempt to use a cursor
3138** that was open at the beginning of this operation will result
3139** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003140**
3141** This will release the write lock on the database file. If there
3142** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003143*/
danielk1977aef0bf62005-12-30 16:28:01 +00003144int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003145 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003146 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003147 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003148
drhd677b3d2007-08-20 22:48:41 +00003149 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003150 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003151#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003152 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003153 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003154 ** trying to save cursor positions. If this is an automatic rollback (as
3155 ** the result of a constraint, malloc() failure or IO error) then
3156 ** the cache may be internally inconsistent (not contain valid trees) so
3157 ** we cannot simply return the error to the caller. Instead, abort
3158 ** all queries that may be using any of the cursors that failed to save.
3159 */
drhfb982642007-08-30 01:19:59 +00003160 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003161 }
danielk19778d34dfd2006-01-24 16:37:57 +00003162#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003163 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003164
3165 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003166 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003167
danielk19778d34dfd2006-01-24 16:37:57 +00003168 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003169 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003170 if( rc2!=SQLITE_OK ){
3171 rc = rc2;
3172 }
3173
drh24cd67e2004-05-10 16:18:47 +00003174 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003175 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003176 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003177 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003178 releasePage(pPage1);
3179 }
danielk1977fbcd5852004-06-15 02:44:18 +00003180 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003181 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003182 }
danielk1977aef0bf62005-12-30 16:28:01 +00003183
danielk197794b30732009-07-02 17:21:57 +00003184 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003185 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003186 return rc;
3187}
3188
3189/*
danielk1977bd434552009-03-18 10:33:00 +00003190** Start a statement subtransaction. The subtransaction can can be rolled
3191** back independently of the main transaction. You must start a transaction
3192** before starting a subtransaction. The subtransaction is ended automatically
3193** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003194**
3195** Statement subtransactions are used around individual SQL statements
3196** that are contained within a BEGIN...COMMIT block. If a constraint
3197** error occurs within the statement, the effect of that one statement
3198** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003199**
3200** A statement sub-transaction is implemented as an anonymous savepoint. The
3201** value passed as the second parameter is the total number of savepoints,
3202** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3203** are no active savepoints and no other statement-transactions open,
3204** iStatement is 1. This anonymous savepoint can be released or rolled back
3205** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003206*/
danielk1977bd434552009-03-18 10:33:00 +00003207int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003208 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003209 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003210 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003211 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003212 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003213 assert( iStatement>0 );
3214 assert( iStatement>p->db->nSavepoint );
3215 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003216 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003217 }else{
3218 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003219 /* At the pager level, a statement transaction is a savepoint with
3220 ** an index greater than all savepoints created explicitly using
3221 ** SQL statements. It is illegal to open, release or rollback any
3222 ** such savepoints while the statement transaction savepoint is active.
3223 */
danielk1977bd434552009-03-18 10:33:00 +00003224 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003225 }
drhd677b3d2007-08-20 22:48:41 +00003226 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003227 return rc;
3228}
3229
3230/*
danielk1977fd7f0452008-12-17 17:30:26 +00003231** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3232** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003233** savepoint identified by parameter iSavepoint, depending on the value
3234** of op.
3235**
3236** Normally, iSavepoint is greater than or equal to zero. However, if op is
3237** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3238** contents of the entire transaction are rolled back. This is different
3239** from a normal transaction rollback, as no locks are released and the
3240** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003241*/
3242int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3243 int rc = SQLITE_OK;
3244 if( p && p->inTrans==TRANS_WRITE ){
3245 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003246 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3247 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3248 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003249 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003250 if( rc==SQLITE_OK ){
3251 rc = newDatabase(pBt);
3252 }
danielk1977fd7f0452008-12-17 17:30:26 +00003253 sqlite3BtreeLeave(p);
3254 }
3255 return rc;
3256}
3257
3258/*
drh8b2f49b2001-06-08 00:21:52 +00003259** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003260** iTable. If a read-only cursor is requested, it is assumed that
3261** the caller already has at least a read-only transaction open
3262** on the database already. If a write-cursor is requested, then
3263** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003264**
3265** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003266** If wrFlag==1, then the cursor can be used for reading or for
3267** writing if other conditions for writing are also met. These
3268** are the conditions that must be met in order for writing to
3269** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003270**
drhf74b8d92002-09-01 23:20:45 +00003271** 1: The cursor must have been opened with wrFlag==1
3272**
drhfe5d71d2007-03-19 11:54:10 +00003273** 2: Other database connections that share the same pager cache
3274** but which are not in the READ_UNCOMMITTED state may not have
3275** cursors open with wrFlag==0 on the same table. Otherwise
3276** the changes made by this write cursor would be visible to
3277** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003278**
3279** 3: The database must be writable (not on read-only media)
3280**
3281** 4: There must be an active transaction.
3282**
drh6446c4d2001-12-15 14:22:18 +00003283** No checking is done to make sure that page iTable really is the
3284** root page of a b-tree. If it is not, then the cursor acquired
3285** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003286**
drhf25a5072009-11-18 23:01:25 +00003287** It is assumed that the sqlite3BtreeCursorZero() has been called
3288** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003289*/
drhd677b3d2007-08-20 22:48:41 +00003290static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003291 Btree *p, /* The btree */
3292 int iTable, /* Root page of table to open */
3293 int wrFlag, /* 1 to write. 0 read-only */
3294 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3295 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003296){
danielk19773e8add92009-07-04 17:16:00 +00003297 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003298
drh1fee73e2007-08-29 04:00:57 +00003299 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003300 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003301
danielk1977602b4662009-07-02 07:47:33 +00003302 /* The following assert statements verify that if this is a sharable
3303 ** b-tree database, the connection is holding the required table locks,
3304 ** and that no other connection has any open cursor that conflicts with
3305 ** this lock. */
3306 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003307 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3308
danielk19773e8add92009-07-04 17:16:00 +00003309 /* Assert that the caller has opened the required transaction. */
3310 assert( p->inTrans>TRANS_NONE );
3311 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3312 assert( pBt->pPage1 && pBt->pPage1->aData );
3313
danielk197796d48e92009-06-29 06:00:37 +00003314 if( NEVER(wrFlag && pBt->readOnly) ){
3315 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003316 }
danielk19773e8add92009-07-04 17:16:00 +00003317 if( iTable==1 && pagerPagecount(pBt)==0 ){
3318 return SQLITE_EMPTY;
3319 }
danielk1977aef0bf62005-12-30 16:28:01 +00003320
danielk1977aef0bf62005-12-30 16:28:01 +00003321 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003322 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003323 pCur->pgnoRoot = (Pgno)iTable;
3324 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003325 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003326 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003327 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003328 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003329 pCur->pNext = pBt->pCursor;
3330 if( pCur->pNext ){
3331 pCur->pNext->pPrev = pCur;
3332 }
3333 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003334 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003335 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003336 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003337}
drhd677b3d2007-08-20 22:48:41 +00003338int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003339 Btree *p, /* The btree */
3340 int iTable, /* Root page of table to open */
3341 int wrFlag, /* 1 to write. 0 read-only */
3342 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3343 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003344){
3345 int rc;
3346 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003347 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003348 sqlite3BtreeLeave(p);
3349 return rc;
3350}
drh7f751222009-03-17 22:33:00 +00003351
3352/*
3353** Return the size of a BtCursor object in bytes.
3354**
3355** This interfaces is needed so that users of cursors can preallocate
3356** sufficient storage to hold a cursor. The BtCursor object is opaque
3357** to users so they cannot do the sizeof() themselves - they must call
3358** this routine.
3359*/
3360int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003361 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003362}
3363
drh7f751222009-03-17 22:33:00 +00003364/*
drhf25a5072009-11-18 23:01:25 +00003365** Initialize memory that will be converted into a BtCursor object.
3366**
3367** The simple approach here would be to memset() the entire object
3368** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3369** do not need to be zeroed and they are large, so we can save a lot
3370** of run-time by skipping the initialization of those elements.
3371*/
3372void sqlite3BtreeCursorZero(BtCursor *p){
3373 memset(p, 0, offsetof(BtCursor, iPage));
3374}
3375
3376/*
drh7f751222009-03-17 22:33:00 +00003377** Set the cached rowid value of every cursor in the same database file
3378** as pCur and having the same root page number as pCur. The value is
3379** set to iRowid.
3380**
3381** Only positive rowid values are considered valid for this cache.
3382** The cache is initialized to zero, indicating an invalid cache.
3383** A btree will work fine with zero or negative rowids. We just cannot
3384** cache zero or negative rowids, which means tables that use zero or
3385** negative rowids might run a little slower. But in practice, zero
3386** or negative rowids are very uncommon so this should not be a problem.
3387*/
3388void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3389 BtCursor *p;
3390 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3391 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3392 }
3393 assert( pCur->cachedRowid==iRowid );
3394}
drhd677b3d2007-08-20 22:48:41 +00003395
drh7f751222009-03-17 22:33:00 +00003396/*
3397** Return the cached rowid for the given cursor. A negative or zero
3398** return value indicates that the rowid cache is invalid and should be
3399** ignored. If the rowid cache has never before been set, then a
3400** zero is returned.
3401*/
3402sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3403 return pCur->cachedRowid;
3404}
drha059ad02001-04-17 20:09:11 +00003405
3406/*
drh5e00f6c2001-09-13 13:46:56 +00003407** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003408** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003409*/
drh3aac2dd2004-04-26 14:10:20 +00003410int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003411 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003412 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003413 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003414 BtShared *pBt = pCur->pBt;
3415 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003416 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003417 if( pCur->pPrev ){
3418 pCur->pPrev->pNext = pCur->pNext;
3419 }else{
3420 pBt->pCursor = pCur->pNext;
3421 }
3422 if( pCur->pNext ){
3423 pCur->pNext->pPrev = pCur->pPrev;
3424 }
danielk197771d5d2c2008-09-29 11:49:47 +00003425 for(i=0; i<=pCur->iPage; i++){
3426 releasePage(pCur->apPage[i]);
3427 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003428 unlockBtreeIfUnused(pBt);
3429 invalidateOverflowCache(pCur);
3430 /* sqlite3_free(pCur); */
3431 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003432 }
drh8c42ca92001-06-22 19:15:00 +00003433 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003434}
3435
drh5e2f8b92001-05-28 00:41:15 +00003436/*
drh86057612007-06-26 01:04:48 +00003437** Make sure the BtCursor* given in the argument has a valid
3438** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003439** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003440**
3441** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003442** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003443**
3444** 2007-06-25: There is a bug in some versions of MSVC that cause the
3445** compiler to crash when getCellInfo() is implemented as a macro.
3446** But there is a measureable speed advantage to using the macro on gcc
3447** (when less compiler optimizations like -Os or -O0 are used and the
3448** compiler is not doing agressive inlining.) So we use a real function
3449** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003450*/
drh9188b382004-05-14 21:12:22 +00003451#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003452 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003453 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003454 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003455 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003456 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003457 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003458 }
danielk19771cc5ed82007-05-16 17:28:43 +00003459#else
3460 #define assertCellInfo(x)
3461#endif
drh86057612007-06-26 01:04:48 +00003462#ifdef _MSC_VER
3463 /* Use a real function in MSVC to work around bugs in that compiler. */
3464 static void getCellInfo(BtCursor *pCur){
3465 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003466 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003467 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003468 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003469 }else{
3470 assertCellInfo(pCur);
3471 }
3472 }
3473#else /* if not _MSC_VER */
3474 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003475#define getCellInfo(pCur) \
3476 if( pCur->info.nSize==0 ){ \
3477 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003478 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003479 pCur->validNKey = 1; \
3480 }else{ \
3481 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003482 }
3483#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003484
drhea8ffdf2009-07-22 00:35:23 +00003485#ifndef NDEBUG /* The next routine used only within assert() statements */
3486/*
3487** Return true if the given BtCursor is valid. A valid cursor is one
3488** that is currently pointing to a row in a (non-empty) table.
3489** This is a verification routine is used only within assert() statements.
3490*/
3491int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3492 return pCur && pCur->eState==CURSOR_VALID;
3493}
3494#endif /* NDEBUG */
3495
drh9188b382004-05-14 21:12:22 +00003496/*
drh3aac2dd2004-04-26 14:10:20 +00003497** Set *pSize to the size of the buffer needed to hold the value of
3498** the key for the current entry. If the cursor is not pointing
3499** to a valid entry, *pSize is set to 0.
3500**
drh4b70f112004-05-02 21:12:19 +00003501** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003502** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003503**
3504** The caller must position the cursor prior to invoking this routine.
3505**
3506** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003507*/
drh4a1c3802004-05-12 15:15:47 +00003508int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003509 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003510 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3511 if( pCur->eState!=CURSOR_VALID ){
3512 *pSize = 0;
3513 }else{
3514 getCellInfo(pCur);
3515 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003516 }
drhea8ffdf2009-07-22 00:35:23 +00003517 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003518}
drh2af926b2001-05-15 00:39:25 +00003519
drh72f82862001-05-24 21:06:34 +00003520/*
drh0e1c19e2004-05-11 00:58:56 +00003521** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003522** cursor currently points to.
3523**
3524** The caller must guarantee that the cursor is pointing to a non-NULL
3525** valid entry. In other words, the calling procedure must guarantee
3526** that the cursor has Cursor.eState==CURSOR_VALID.
3527**
3528** Failure is not possible. This function always returns SQLITE_OK.
3529** It might just as well be a procedure (returning void) but we continue
3530** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003531*/
3532int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003533 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003534 assert( pCur->eState==CURSOR_VALID );
3535 getCellInfo(pCur);
3536 *pSize = pCur->info.nData;
3537 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003538}
3539
3540/*
danielk1977d04417962007-05-02 13:16:30 +00003541** Given the page number of an overflow page in the database (parameter
3542** ovfl), this function finds the page number of the next page in the
3543** linked list of overflow pages. If possible, it uses the auto-vacuum
3544** pointer-map data instead of reading the content of page ovfl to do so.
3545**
3546** If an error occurs an SQLite error code is returned. Otherwise:
3547**
danielk1977bea2a942009-01-20 17:06:27 +00003548** The page number of the next overflow page in the linked list is
3549** written to *pPgnoNext. If page ovfl is the last page in its linked
3550** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003551**
danielk1977bea2a942009-01-20 17:06:27 +00003552** If ppPage is not NULL, and a reference to the MemPage object corresponding
3553** to page number pOvfl was obtained, then *ppPage is set to point to that
3554** reference. It is the responsibility of the caller to call releasePage()
3555** on *ppPage to free the reference. In no reference was obtained (because
3556** the pointer-map was used to obtain the value for *pPgnoNext), then
3557** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003558*/
3559static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003560 BtShared *pBt, /* The database file */
3561 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003562 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003563 Pgno *pPgnoNext /* OUT: Next overflow page number */
3564){
3565 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003566 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003567 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003568
drh1fee73e2007-08-29 04:00:57 +00003569 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003570 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003571
3572#ifndef SQLITE_OMIT_AUTOVACUUM
3573 /* Try to find the next page in the overflow list using the
3574 ** autovacuum pointer-map pages. Guess that the next page in
3575 ** the overflow list is page number (ovfl+1). If that guess turns
3576 ** out to be wrong, fall back to loading the data of page
3577 ** number ovfl to determine the next page number.
3578 */
3579 if( pBt->autoVacuum ){
3580 Pgno pgno;
3581 Pgno iGuess = ovfl+1;
3582 u8 eType;
3583
3584 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3585 iGuess++;
3586 }
3587
danielk197789d40042008-11-17 14:20:56 +00003588 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003589 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003590 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003591 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003592 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003593 }
3594 }
3595 }
3596#endif
3597
danielk1977d8a3f3d2009-07-11 11:45:23 +00003598 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003599 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003600 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003601 assert( rc==SQLITE_OK || pPage==0 );
3602 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003603 next = get4byte(pPage->aData);
3604 }
danielk1977443c0592009-01-16 15:21:05 +00003605 }
danielk197745d68822009-01-16 16:23:38 +00003606
danielk1977bea2a942009-01-20 17:06:27 +00003607 *pPgnoNext = next;
3608 if( ppPage ){
3609 *ppPage = pPage;
3610 }else{
3611 releasePage(pPage);
3612 }
3613 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003614}
3615
danielk1977da107192007-05-04 08:32:13 +00003616/*
3617** Copy data from a buffer to a page, or from a page to a buffer.
3618**
3619** pPayload is a pointer to data stored on database page pDbPage.
3620** If argument eOp is false, then nByte bytes of data are copied
3621** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3622** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3623** of data are copied from the buffer pBuf to pPayload.
3624**
3625** SQLITE_OK is returned on success, otherwise an error code.
3626*/
3627static int copyPayload(
3628 void *pPayload, /* Pointer to page data */
3629 void *pBuf, /* Pointer to buffer */
3630 int nByte, /* Number of bytes to copy */
3631 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3632 DbPage *pDbPage /* Page containing pPayload */
3633){
3634 if( eOp ){
3635 /* Copy data from buffer to page (a write operation) */
3636 int rc = sqlite3PagerWrite(pDbPage);
3637 if( rc!=SQLITE_OK ){
3638 return rc;
3639 }
3640 memcpy(pPayload, pBuf, nByte);
3641 }else{
3642 /* Copy data from page to buffer (a read operation) */
3643 memcpy(pBuf, pPayload, nByte);
3644 }
3645 return SQLITE_OK;
3646}
danielk1977d04417962007-05-02 13:16:30 +00003647
3648/*
danielk19779f8d6402007-05-02 17:48:45 +00003649** This function is used to read or overwrite payload information
3650** for the entry that the pCur cursor is pointing to. If the eOp
3651** parameter is 0, this is a read operation (data copied into
3652** buffer pBuf). If it is non-zero, a write (data copied from
3653** buffer pBuf).
3654**
3655** A total of "amt" bytes are read or written beginning at "offset".
3656** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003657**
drh3bcdfd22009-07-12 02:32:21 +00003658** The content being read or written might appear on the main page
3659** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003660**
danielk1977dcbb5d32007-05-04 18:36:44 +00003661** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003662** cursor entry uses one or more overflow pages, this function
3663** allocates space for and lazily popluates the overflow page-list
3664** cache array (BtCursor.aOverflow). Subsequent calls use this
3665** cache to make seeking to the supplied offset more efficient.
3666**
3667** Once an overflow page-list cache has been allocated, it may be
3668** invalidated if some other cursor writes to the same table, or if
3669** the cursor is moved to a different row. Additionally, in auto-vacuum
3670** mode, the following events may invalidate an overflow page-list cache.
3671**
3672** * An incremental vacuum,
3673** * A commit in auto_vacuum="full" mode,
3674** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003675*/
danielk19779f8d6402007-05-02 17:48:45 +00003676static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003677 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003678 u32 offset, /* Begin reading this far into payload */
3679 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003680 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003681 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003682){
3683 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003684 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003685 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003686 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003687 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003688 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003689
danielk1977da107192007-05-04 08:32:13 +00003690 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003691 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003692 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003693 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003694
drh86057612007-06-26 01:04:48 +00003695 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003696 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003697 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003698
drh3bcdfd22009-07-12 02:32:21 +00003699 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003700 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3701 ){
danielk1977da107192007-05-04 08:32:13 +00003702 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003703 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003704 }
danielk1977da107192007-05-04 08:32:13 +00003705
3706 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003707 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003708 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003709 if( a+offset>pCur->info.nLocal ){
3710 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003711 }
danielk1977da107192007-05-04 08:32:13 +00003712 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003713 offset = 0;
drha34b6762004-05-07 13:30:42 +00003714 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003715 amt -= a;
drhdd793422001-06-28 01:54:48 +00003716 }else{
drhfa1a98a2004-05-14 19:08:17 +00003717 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003718 }
danielk1977da107192007-05-04 08:32:13 +00003719
3720 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003721 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003722 Pgno nextPage;
3723
drhfa1a98a2004-05-14 19:08:17 +00003724 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003725
danielk19772dec9702007-05-02 16:48:37 +00003726#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003727 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003728 ** has not been allocated, allocate it now. The array is sized at
3729 ** one entry for each overflow page in the overflow chain. The
3730 ** page number of the first overflow page is stored in aOverflow[0],
3731 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3732 ** (the cache is lazily populated).
3733 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003734 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003735 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003736 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003737 /* nOvfl is always positive. If it were zero, fetchPayload would have
3738 ** been used instead of this routine. */
3739 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003740 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003741 }
3742 }
danielk1977da107192007-05-04 08:32:13 +00003743
3744 /* If the overflow page-list cache has been allocated and the
3745 ** entry for the first required overflow page is valid, skip
3746 ** directly to it.
3747 */
danielk19772dec9702007-05-02 16:48:37 +00003748 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3749 iIdx = (offset/ovflSize);
3750 nextPage = pCur->aOverflow[iIdx];
3751 offset = (offset%ovflSize);
3752 }
3753#endif
danielk1977da107192007-05-04 08:32:13 +00003754
3755 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3756
3757#ifndef SQLITE_OMIT_INCRBLOB
3758 /* If required, populate the overflow page-list cache. */
3759 if( pCur->aOverflow ){
3760 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3761 pCur->aOverflow[iIdx] = nextPage;
3762 }
3763#endif
3764
danielk1977d04417962007-05-02 13:16:30 +00003765 if( offset>=ovflSize ){
3766 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003767 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003768 ** data is not required. So first try to lookup the overflow
3769 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003770 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003771 */
danielk19772dec9702007-05-02 16:48:37 +00003772#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003773 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3774 nextPage = pCur->aOverflow[iIdx+1];
3775 } else
danielk19772dec9702007-05-02 16:48:37 +00003776#endif
danielk1977da107192007-05-04 08:32:13 +00003777 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003778 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003779 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003780 /* Need to read this page properly. It contains some of the
3781 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003782 */
3783 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003784 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003785 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003786 if( rc==SQLITE_OK ){
3787 aPayload = sqlite3PagerGetData(pDbPage);
3788 nextPage = get4byte(aPayload);
3789 if( a + offset > ovflSize ){
3790 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003791 }
danielk1977da107192007-05-04 08:32:13 +00003792 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3793 sqlite3PagerUnref(pDbPage);
3794 offset = 0;
3795 amt -= a;
3796 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003797 }
danielk1977cfe9a692004-06-16 12:00:29 +00003798 }
drh2af926b2001-05-15 00:39:25 +00003799 }
drh2af926b2001-05-15 00:39:25 +00003800 }
danielk1977cfe9a692004-06-16 12:00:29 +00003801
danielk1977da107192007-05-04 08:32:13 +00003802 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003803 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003804 }
danielk1977da107192007-05-04 08:32:13 +00003805 return rc;
drh2af926b2001-05-15 00:39:25 +00003806}
3807
drh72f82862001-05-24 21:06:34 +00003808/*
drh3aac2dd2004-04-26 14:10:20 +00003809** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003810** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003811** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003812**
drh5d1a8722009-07-22 18:07:40 +00003813** The caller must ensure that pCur is pointing to a valid row
3814** in the table.
3815**
drh3aac2dd2004-04-26 14:10:20 +00003816** Return SQLITE_OK on success or an error code if anything goes
3817** wrong. An error is returned if "offset+amt" is larger than
3818** the available payload.
drh72f82862001-05-24 21:06:34 +00003819*/
drha34b6762004-05-07 13:30:42 +00003820int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003821 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003822 assert( pCur->eState==CURSOR_VALID );
3823 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3824 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3825 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003826}
3827
3828/*
drh3aac2dd2004-04-26 14:10:20 +00003829** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003830** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003831** begins at "offset".
3832**
3833** Return SQLITE_OK on success or an error code if anything goes
3834** wrong. An error is returned if "offset+amt" is larger than
3835** the available payload.
drh72f82862001-05-24 21:06:34 +00003836*/
drh3aac2dd2004-04-26 14:10:20 +00003837int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003838 int rc;
3839
danielk19773588ceb2008-06-10 17:30:26 +00003840#ifndef SQLITE_OMIT_INCRBLOB
3841 if ( pCur->eState==CURSOR_INVALID ){
3842 return SQLITE_ABORT;
3843 }
3844#endif
3845
drh1fee73e2007-08-29 04:00:57 +00003846 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003847 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003848 if( rc==SQLITE_OK ){
3849 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003850 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3851 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003852 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003853 }
3854 return rc;
drh2af926b2001-05-15 00:39:25 +00003855}
3856
drh72f82862001-05-24 21:06:34 +00003857/*
drh0e1c19e2004-05-11 00:58:56 +00003858** Return a pointer to payload information from the entry that the
3859** pCur cursor is pointing to. The pointer is to the beginning of
3860** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003861** skipKey==1. The number of bytes of available key/data is written
3862** into *pAmt. If *pAmt==0, then the value returned will not be
3863** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003864**
3865** This routine is an optimization. It is common for the entire key
3866** and data to fit on the local page and for there to be no overflow
3867** pages. When that is so, this routine can be used to access the
3868** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003869** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003870** the key/data and copy it into a preallocated buffer.
3871**
3872** The pointer returned by this routine looks directly into the cached
3873** page of the database. The data might change or move the next time
3874** any btree routine is called.
3875*/
3876static const unsigned char *fetchPayload(
3877 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003878 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003879 int skipKey /* read beginning at data if this is true */
3880){
3881 unsigned char *aPayload;
3882 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003883 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003884 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003885
danielk197771d5d2c2008-09-29 11:49:47 +00003886 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003887 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003888 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003889 pPage = pCur->apPage[pCur->iPage];
3890 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003891 if( NEVER(pCur->info.nSize==0) ){
3892 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3893 &pCur->info);
3894 }
drh43605152004-05-29 21:46:49 +00003895 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003896 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003897 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003898 nKey = 0;
3899 }else{
drhf49661a2008-12-10 16:45:50 +00003900 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003901 }
drh0e1c19e2004-05-11 00:58:56 +00003902 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003903 aPayload += nKey;
3904 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003905 }else{
drhfa1a98a2004-05-14 19:08:17 +00003906 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003907 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003908 }
drhe51c44f2004-05-30 20:46:09 +00003909 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003910 return aPayload;
3911}
3912
3913
3914/*
drhe51c44f2004-05-30 20:46:09 +00003915** For the entry that cursor pCur is point to, return as
3916** many bytes of the key or data as are available on the local
3917** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003918**
3919** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003920** or be destroyed on the next call to any Btree routine,
3921** including calls from other threads against the same cache.
3922** Hence, a mutex on the BtShared should be held prior to calling
3923** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003924**
3925** These routines is used to get quick access to key and data
3926** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003927*/
drhe51c44f2004-05-30 20:46:09 +00003928const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003929 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003930 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003931 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003932 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3933 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003934 }
drhfe3313f2009-07-21 19:02:20 +00003935 return p;
drh0e1c19e2004-05-11 00:58:56 +00003936}
drhe51c44f2004-05-30 20:46:09 +00003937const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003938 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003939 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003940 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003941 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3942 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00003943 }
drhfe3313f2009-07-21 19:02:20 +00003944 return p;
drh0e1c19e2004-05-11 00:58:56 +00003945}
3946
3947
3948/*
drh8178a752003-01-05 21:41:40 +00003949** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003950** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00003951**
3952** This function returns SQLITE_CORRUPT if the page-header flags field of
3953** the new child page does not match the flags field of the parent (i.e.
3954** if an intkey page appears to be the parent of a non-intkey page, or
3955** vice-versa).
drh72f82862001-05-24 21:06:34 +00003956*/
drh3aac2dd2004-04-26 14:10:20 +00003957static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003958 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003959 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003960 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003961 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003962
drh1fee73e2007-08-29 04:00:57 +00003963 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003964 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003965 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3966 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3967 return SQLITE_CORRUPT_BKPT;
3968 }
3969 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003970 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003971 pCur->apPage[i+1] = pNewPage;
3972 pCur->aiIdx[i+1] = 0;
3973 pCur->iPage++;
3974
drh271efa52004-05-30 19:19:05 +00003975 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003976 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003977 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003978 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003979 }
drh72f82862001-05-24 21:06:34 +00003980 return SQLITE_OK;
3981}
3982
danielk1977bf93c562008-09-29 15:53:25 +00003983#ifndef NDEBUG
3984/*
3985** Page pParent is an internal (non-leaf) tree page. This function
3986** asserts that page number iChild is the left-child if the iIdx'th
3987** cell in page pParent. Or, if iIdx is equal to the total number of
3988** cells in pParent, that page number iChild is the right-child of
3989** the page.
3990*/
3991static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3992 assert( iIdx<=pParent->nCell );
3993 if( iIdx==pParent->nCell ){
3994 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3995 }else{
3996 assert( get4byte(findCell(pParent, iIdx))==iChild );
3997 }
3998}
3999#else
4000# define assertParentIndex(x,y,z)
4001#endif
4002
drh72f82862001-05-24 21:06:34 +00004003/*
drh5e2f8b92001-05-28 00:41:15 +00004004** Move the cursor up to the parent page.
4005**
4006** pCur->idx is set to the cell index that contains the pointer
4007** to the page we are coming from. If we are coming from the
4008** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004009** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004010*/
danielk197730548662009-07-09 05:07:37 +00004011static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004012 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004013 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004014 assert( pCur->iPage>0 );
4015 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004016 assertParentIndex(
4017 pCur->apPage[pCur->iPage-1],
4018 pCur->aiIdx[pCur->iPage-1],
4019 pCur->apPage[pCur->iPage]->pgno
4020 );
danielk197771d5d2c2008-09-29 11:49:47 +00004021 releasePage(pCur->apPage[pCur->iPage]);
4022 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004023 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004024 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004025}
4026
4027/*
danielk19778f880a82009-07-13 09:41:45 +00004028** Move the cursor to point to the root page of its b-tree structure.
4029**
4030** If the table has a virtual root page, then the cursor is moved to point
4031** to the virtual root page instead of the actual root page. A table has a
4032** virtual root page when the actual root page contains no cells and a
4033** single child page. This can only happen with the table rooted at page 1.
4034**
4035** If the b-tree structure is empty, the cursor state is set to
4036** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4037** cell located on the root (or virtual root) page and the cursor state
4038** is set to CURSOR_VALID.
4039**
4040** If this function returns successfully, it may be assumed that the
4041** page-header flags indicate that the [virtual] root-page is the expected
4042** kind of b-tree page (i.e. if when opening the cursor the caller did not
4043** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4044** indicating a table b-tree, or if the caller did specify a KeyInfo
4045** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4046** b-tree).
drh72f82862001-05-24 21:06:34 +00004047*/
drh5e2f8b92001-05-28 00:41:15 +00004048static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004049 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004050 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004051 Btree *p = pCur->pBtree;
4052 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004053
drh1fee73e2007-08-29 04:00:57 +00004054 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004055 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4056 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4057 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4058 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4059 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004060 assert( pCur->skipNext!=SQLITE_OK );
4061 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004062 }
danielk1977be51a652008-10-08 17:58:48 +00004063 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004064 }
danielk197771d5d2c2008-09-29 11:49:47 +00004065
4066 if( pCur->iPage>=0 ){
4067 int i;
4068 for(i=1; i<=pCur->iPage; i++){
4069 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004070 }
danielk1977172114a2009-07-07 15:47:12 +00004071 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004072 }else{
drh4c301aa2009-07-15 17:25:45 +00004073 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4074 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004075 pCur->eState = CURSOR_INVALID;
4076 return rc;
4077 }
danielk1977172114a2009-07-07 15:47:12 +00004078 pCur->iPage = 0;
4079
4080 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4081 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4082 ** NULL, the caller expects a table b-tree. If this is not the case,
4083 ** return an SQLITE_CORRUPT error. */
4084 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4085 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4086 return SQLITE_CORRUPT_BKPT;
4087 }
drhc39e0002004-05-07 23:50:57 +00004088 }
danielk197771d5d2c2008-09-29 11:49:47 +00004089
danielk19778f880a82009-07-13 09:41:45 +00004090 /* Assert that the root page is of the correct type. This must be the
4091 ** case as the call to this function that loaded the root-page (either
4092 ** this call or a previous invocation) would have detected corruption
4093 ** if the assumption were not true, and it is not possible for the flags
4094 ** byte to have been modified while this cursor is holding a reference
4095 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004096 pRoot = pCur->apPage[0];
4097 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004098 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4099
danielk197771d5d2c2008-09-29 11:49:47 +00004100 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004101 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004102 pCur->atLast = 0;
4103 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004104
drh8856d6a2004-04-29 14:42:46 +00004105 if( pRoot->nCell==0 && !pRoot->leaf ){
4106 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004107 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004108 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004109 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004110 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004111 }else{
4112 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004113 }
4114 return rc;
drh72f82862001-05-24 21:06:34 +00004115}
drh2af926b2001-05-15 00:39:25 +00004116
drh5e2f8b92001-05-28 00:41:15 +00004117/*
4118** Move the cursor down to the left-most leaf entry beneath the
4119** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004120**
4121** The left-most leaf is the one with the smallest key - the first
4122** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004123*/
4124static int moveToLeftmost(BtCursor *pCur){
4125 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004126 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004127 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004128
drh1fee73e2007-08-29 04:00:57 +00004129 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004130 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004131 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4132 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4133 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004134 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004135 }
drhd677b3d2007-08-20 22:48:41 +00004136 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004137}
4138
drh2dcc9aa2002-12-04 13:40:25 +00004139/*
4140** Move the cursor down to the right-most leaf entry beneath the
4141** page to which it is currently pointing. Notice the difference
4142** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4143** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4144** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004145**
4146** The right-most entry is the one with the largest key - the last
4147** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004148*/
4149static int moveToRightmost(BtCursor *pCur){
4150 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004151 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004152 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004153
drh1fee73e2007-08-29 04:00:57 +00004154 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004155 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004156 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004157 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004158 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004159 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004160 }
drhd677b3d2007-08-20 22:48:41 +00004161 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004162 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004163 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004164 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004165 }
danielk1977518002e2008-09-05 05:02:46 +00004166 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004167}
4168
drh5e00f6c2001-09-13 13:46:56 +00004169/* Move the cursor to the first entry in the table. Return SQLITE_OK
4170** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004171** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004172*/
drh3aac2dd2004-04-26 14:10:20 +00004173int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004174 int rc;
drhd677b3d2007-08-20 22:48:41 +00004175
drh1fee73e2007-08-29 04:00:57 +00004176 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004177 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004178 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004179 if( rc==SQLITE_OK ){
4180 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004181 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004182 *pRes = 1;
4183 rc = SQLITE_OK;
4184 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004185 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004186 *pRes = 0;
4187 rc = moveToLeftmost(pCur);
4188 }
drh5e00f6c2001-09-13 13:46:56 +00004189 }
drh5e00f6c2001-09-13 13:46:56 +00004190 return rc;
4191}
drh5e2f8b92001-05-28 00:41:15 +00004192
drh9562b552002-02-19 15:00:07 +00004193/* Move the cursor to the last entry in the table. Return SQLITE_OK
4194** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004195** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004196*/
drh3aac2dd2004-04-26 14:10:20 +00004197int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004198 int rc;
drhd677b3d2007-08-20 22:48:41 +00004199
drh1fee73e2007-08-29 04:00:57 +00004200 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004201 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004202
4203 /* If the cursor already points to the last entry, this is a no-op. */
4204 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4205#ifdef SQLITE_DEBUG
4206 /* This block serves to assert() that the cursor really does point
4207 ** to the last entry in the b-tree. */
4208 int ii;
4209 for(ii=0; ii<pCur->iPage; ii++){
4210 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4211 }
4212 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4213 assert( pCur->apPage[pCur->iPage]->leaf );
4214#endif
4215 return SQLITE_OK;
4216 }
4217
drh9562b552002-02-19 15:00:07 +00004218 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004219 if( rc==SQLITE_OK ){
4220 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004221 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004222 *pRes = 1;
4223 }else{
4224 assert( pCur->eState==CURSOR_VALID );
4225 *pRes = 0;
4226 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004227 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004228 }
drh9562b552002-02-19 15:00:07 +00004229 }
drh9562b552002-02-19 15:00:07 +00004230 return rc;
4231}
4232
drhe14006d2008-03-25 17:23:32 +00004233/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004234** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004235**
drhe63d9992008-08-13 19:11:48 +00004236** For INTKEY tables, the intKey parameter is used. pIdxKey
4237** must be NULL. For index tables, pIdxKey is used and intKey
4238** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004239**
drh5e2f8b92001-05-28 00:41:15 +00004240** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004241** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004242** were present. The cursor might point to an entry that comes
4243** before or after the key.
4244**
drh64022502009-01-09 14:11:04 +00004245** An integer is written into *pRes which is the result of
4246** comparing the key with the entry to which the cursor is
4247** pointing. The meaning of the integer written into
4248** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004249**
4250** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004251** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004252** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004253**
4254** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004255** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004256**
4257** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004258** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004259**
drha059ad02001-04-17 20:09:11 +00004260*/
drhe63d9992008-08-13 19:11:48 +00004261int sqlite3BtreeMovetoUnpacked(
4262 BtCursor *pCur, /* The cursor to be moved */
4263 UnpackedRecord *pIdxKey, /* Unpacked index key */
4264 i64 intKey, /* The table key */
4265 int biasRight, /* If true, bias the search to the high end */
4266 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004267){
drh72f82862001-05-24 21:06:34 +00004268 int rc;
drhd677b3d2007-08-20 22:48:41 +00004269
drh1fee73e2007-08-29 04:00:57 +00004270 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004271 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004272 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004273 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004274
4275 /* If the cursor is already positioned at the point we are trying
4276 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004277 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4278 && pCur->apPage[0]->intKey
4279 ){
drhe63d9992008-08-13 19:11:48 +00004280 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004281 *pRes = 0;
4282 return SQLITE_OK;
4283 }
drhe63d9992008-08-13 19:11:48 +00004284 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004285 *pRes = -1;
4286 return SQLITE_OK;
4287 }
4288 }
4289
drh5e2f8b92001-05-28 00:41:15 +00004290 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004291 if( rc ){
4292 return rc;
4293 }
danielk197771d5d2c2008-09-29 11:49:47 +00004294 assert( pCur->apPage[pCur->iPage] );
4295 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004296 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004297 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004298 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004299 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004300 return SQLITE_OK;
4301 }
danielk197771d5d2c2008-09-29 11:49:47 +00004302 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004303 for(;;){
drh72f82862001-05-24 21:06:34 +00004304 int lwr, upr;
4305 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004306 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004307 int c;
4308
4309 /* pPage->nCell must be greater than zero. If this is the root-page
4310 ** the cursor would have been INVALID above and this for(;;) loop
4311 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004312 ** would have already detected db corruption. Similarly, pPage must
4313 ** be the right kind (index or table) of b-tree page. Otherwise
4314 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004315 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004316 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004317 lwr = 0;
4318 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004319 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004320 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004321 }else{
drhf49661a2008-12-10 16:45:50 +00004322 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004323 }
drh64022502009-01-09 14:11:04 +00004324 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004325 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4326 u8 *pCell; /* Pointer to current cell in pPage */
4327
drh366fda62006-01-13 02:35:09 +00004328 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004329 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004330 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004331 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004332 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004333 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004334 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004335 }
drha2c20e42008-03-29 16:01:04 +00004336 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004337 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004338 c = 0;
drhe63d9992008-08-13 19:11:48 +00004339 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004340 c = -1;
4341 }else{
drhe63d9992008-08-13 19:11:48 +00004342 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004343 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004344 }
danielk197711c327a2009-05-04 19:01:26 +00004345 pCur->validNKey = 1;
4346 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004347 }else{
danielk197711c327a2009-05-04 19:01:26 +00004348 /* The maximum supported page-size is 32768 bytes. This means that
4349 ** the maximum number of record bytes stored on an index B-Tree
4350 ** page is at most 8198 bytes, which may be stored as a 2-byte
4351 ** varint. This information is used to attempt to avoid parsing
4352 ** the entire cell by checking for the cases where the record is
4353 ** stored entirely within the b-tree page by inspecting the first
4354 ** 2 bytes of the cell.
4355 */
4356 int nCell = pCell[0];
4357 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4358 /* This branch runs if the record-size field of the cell is a
4359 ** single byte varint and the record fits entirely on the main
4360 ** b-tree page. */
4361 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4362 }else if( !(pCell[1] & 0x80)
4363 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4364 ){
4365 /* The record-size field is a 2 byte varint and the record
4366 ** fits entirely on the main b-tree page. */
4367 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004368 }else{
danielk197711c327a2009-05-04 19:01:26 +00004369 /* The record flows over onto one or more overflow pages. In
4370 ** this case the whole cell needs to be parsed, a buffer allocated
4371 ** and accessPayload() used to retrieve the record into the
4372 ** buffer before VdbeRecordCompare() can be called. */
4373 void *pCellKey;
4374 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004375 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004376 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004377 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004378 if( pCellKey==0 ){
4379 rc = SQLITE_NOMEM;
4380 goto moveto_finish;
4381 }
drhfb192682009-07-11 18:26:28 +00004382 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004383 if( rc ){
4384 sqlite3_free(pCellKey);
4385 goto moveto_finish;
4386 }
danielk197711c327a2009-05-04 19:01:26 +00004387 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004388 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004389 }
drh3aac2dd2004-04-26 14:10:20 +00004390 }
drh72f82862001-05-24 21:06:34 +00004391 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004392 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004393 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004394 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004395 break;
4396 }else{
drh64022502009-01-09 14:11:04 +00004397 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004398 rc = SQLITE_OK;
4399 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004400 }
drh72f82862001-05-24 21:06:34 +00004401 }
4402 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004403 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004404 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004405 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004406 }
drhf1d68b32007-03-29 04:43:26 +00004407 if( lwr>upr ){
4408 break;
4409 }
drhf49661a2008-12-10 16:45:50 +00004410 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004411 }
4412 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004413 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004414 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004415 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004416 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004417 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004418 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004419 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004420 }
4421 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004422 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004423 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004424 rc = SQLITE_OK;
4425 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004426 }
drhf49661a2008-12-10 16:45:50 +00004427 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004428 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004429 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004430 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004431 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004432 }
drh1e968a02008-03-25 00:22:21 +00004433moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004434 return rc;
4435}
4436
drhd677b3d2007-08-20 22:48:41 +00004437
drh72f82862001-05-24 21:06:34 +00004438/*
drhc39e0002004-05-07 23:50:57 +00004439** Return TRUE if the cursor is not pointing at an entry of the table.
4440**
4441** TRUE will be returned after a call to sqlite3BtreeNext() moves
4442** past the last entry in the table or sqlite3BtreePrev() moves past
4443** the first entry. TRUE is also returned if the table is empty.
4444*/
4445int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004446 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4447 ** have been deleted? This API will need to change to return an error code
4448 ** as well as the boolean result value.
4449 */
4450 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004451}
4452
4453/*
drhbd03cae2001-06-02 02:40:57 +00004454** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004455** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004456** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004457** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004458*/
drhd094db12008-04-03 21:46:57 +00004459int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004460 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004461 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004462 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004463
drh1fee73e2007-08-29 04:00:57 +00004464 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004465 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004466 if( rc!=SQLITE_OK ){
4467 return rc;
4468 }
drh8c4d3a62007-04-06 01:03:32 +00004469 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004470 if( CURSOR_INVALID==pCur->eState ){
4471 *pRes = 1;
4472 return SQLITE_OK;
4473 }
drh4c301aa2009-07-15 17:25:45 +00004474 if( pCur->skipNext>0 ){
4475 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004476 *pRes = 0;
4477 return SQLITE_OK;
4478 }
drh4c301aa2009-07-15 17:25:45 +00004479 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004480
danielk197771d5d2c2008-09-29 11:49:47 +00004481 pPage = pCur->apPage[pCur->iPage];
4482 idx = ++pCur->aiIdx[pCur->iPage];
4483 assert( pPage->isInit );
4484 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004485
drh271efa52004-05-30 19:19:05 +00004486 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004487 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004488 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004489 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004490 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004491 if( rc ) return rc;
4492 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004493 *pRes = 0;
4494 return rc;
drh72f82862001-05-24 21:06:34 +00004495 }
drh5e2f8b92001-05-28 00:41:15 +00004496 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004497 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004498 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004499 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004500 return SQLITE_OK;
4501 }
danielk197730548662009-07-09 05:07:37 +00004502 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004503 pPage = pCur->apPage[pCur->iPage];
4504 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004505 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004506 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004507 rc = sqlite3BtreeNext(pCur, pRes);
4508 }else{
4509 rc = SQLITE_OK;
4510 }
4511 return rc;
drh8178a752003-01-05 21:41:40 +00004512 }
4513 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004514 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004515 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004516 }
drh5e2f8b92001-05-28 00:41:15 +00004517 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004518 return rc;
drh72f82862001-05-24 21:06:34 +00004519}
drhd677b3d2007-08-20 22:48:41 +00004520
drh72f82862001-05-24 21:06:34 +00004521
drh3b7511c2001-05-26 13:15:44 +00004522/*
drh2dcc9aa2002-12-04 13:40:25 +00004523** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004524** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004525** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004526** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004527*/
drhd094db12008-04-03 21:46:57 +00004528int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004529 int rc;
drh8178a752003-01-05 21:41:40 +00004530 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004531
drh1fee73e2007-08-29 04:00:57 +00004532 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004533 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004534 if( rc!=SQLITE_OK ){
4535 return rc;
4536 }
drha2c20e42008-03-29 16:01:04 +00004537 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004538 if( CURSOR_INVALID==pCur->eState ){
4539 *pRes = 1;
4540 return SQLITE_OK;
4541 }
drh4c301aa2009-07-15 17:25:45 +00004542 if( pCur->skipNext<0 ){
4543 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004544 *pRes = 0;
4545 return SQLITE_OK;
4546 }
drh4c301aa2009-07-15 17:25:45 +00004547 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004548
danielk197771d5d2c2008-09-29 11:49:47 +00004549 pPage = pCur->apPage[pCur->iPage];
4550 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004551 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004552 int idx = pCur->aiIdx[pCur->iPage];
4553 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004554 if( rc ){
4555 return rc;
4556 }
drh2dcc9aa2002-12-04 13:40:25 +00004557 rc = moveToRightmost(pCur);
4558 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004559 while( pCur->aiIdx[pCur->iPage]==0 ){
4560 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004561 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004562 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004563 return SQLITE_OK;
4564 }
danielk197730548662009-07-09 05:07:37 +00004565 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004566 }
drh271efa52004-05-30 19:19:05 +00004567 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004568 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004569
4570 pCur->aiIdx[pCur->iPage]--;
4571 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004572 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004573 rc = sqlite3BtreePrevious(pCur, pRes);
4574 }else{
4575 rc = SQLITE_OK;
4576 }
drh2dcc9aa2002-12-04 13:40:25 +00004577 }
drh8178a752003-01-05 21:41:40 +00004578 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004579 return rc;
4580}
4581
4582/*
drh3b7511c2001-05-26 13:15:44 +00004583** Allocate a new page from the database file.
4584**
danielk19773b8a05f2007-03-19 17:44:26 +00004585** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004586** has already been called on the new page.) The new page has also
4587** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004588** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004589**
4590** SQLITE_OK is returned on success. Any other return value indicates
4591** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004592** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004593**
drh199e3cf2002-07-18 11:01:47 +00004594** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4595** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004596** attempt to keep related pages close to each other in the database file,
4597** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004598**
4599** If the "exact" parameter is not 0, and the page-number nearby exists
4600** anywhere on the free-list, then it is guarenteed to be returned. This
4601** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004602*/
drh4f0c5872007-03-26 22:05:01 +00004603static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004604 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004605 MemPage **ppPage,
4606 Pgno *pPgno,
4607 Pgno nearby,
4608 u8 exact
4609){
drh3aac2dd2004-04-26 14:10:20 +00004610 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004611 int rc;
drh35cd6432009-06-05 14:17:21 +00004612 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004613 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004614 MemPage *pTrunk = 0;
4615 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004616 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004617
drh1fee73e2007-08-29 04:00:57 +00004618 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004619 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004620 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004621 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004622 testcase( n==mxPage-1 );
4623 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004624 return SQLITE_CORRUPT_BKPT;
4625 }
drh3aac2dd2004-04-26 14:10:20 +00004626 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004627 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004628 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004629 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4630
4631 /* If the 'exact' parameter was true and a query of the pointer-map
4632 ** shows that the page 'nearby' is somewhere on the free-list, then
4633 ** the entire-list will be searched for that page.
4634 */
4635#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004636 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004637 u8 eType;
4638 assert( nearby>0 );
4639 assert( pBt->autoVacuum );
4640 rc = ptrmapGet(pBt, nearby, &eType, 0);
4641 if( rc ) return rc;
4642 if( eType==PTRMAP_FREEPAGE ){
4643 searchList = 1;
4644 }
4645 *pPgno = nearby;
4646 }
4647#endif
4648
4649 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4650 ** first free-list trunk page. iPrevTrunk is initially 1.
4651 */
danielk19773b8a05f2007-03-19 17:44:26 +00004652 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004653 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004654 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004655
4656 /* The code within this loop is run only once if the 'searchList' variable
4657 ** is not true. Otherwise, it runs once for each trunk-page on the
4658 ** free-list until the page 'nearby' is located.
4659 */
4660 do {
4661 pPrevTrunk = pTrunk;
4662 if( pPrevTrunk ){
4663 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004664 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004665 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004666 }
drhdf35a082009-07-09 02:24:35 +00004667 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004668 if( iTrunk>mxPage ){
4669 rc = SQLITE_CORRUPT_BKPT;
4670 }else{
danielk197730548662009-07-09 05:07:37 +00004671 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004672 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004673 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004674 pTrunk = 0;
4675 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004676 }
4677
4678 k = get4byte(&pTrunk->aData[4]);
4679 if( k==0 && !searchList ){
4680 /* The trunk has no leaves and the list is not being searched.
4681 ** So extract the trunk page itself and use it as the newly
4682 ** allocated page */
4683 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004684 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004685 if( rc ){
4686 goto end_allocate_page;
4687 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004688 *pPgno = iTrunk;
4689 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4690 *ppPage = pTrunk;
4691 pTrunk = 0;
4692 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004693 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004694 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004695 rc = SQLITE_CORRUPT_BKPT;
4696 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004697#ifndef SQLITE_OMIT_AUTOVACUUM
4698 }else if( searchList && nearby==iTrunk ){
4699 /* The list is being searched and this trunk page is the page
4700 ** to allocate, regardless of whether it has leaves.
4701 */
4702 assert( *pPgno==iTrunk );
4703 *ppPage = pTrunk;
4704 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004705 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004706 if( rc ){
4707 goto end_allocate_page;
4708 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004709 if( k==0 ){
4710 if( !pPrevTrunk ){
4711 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4712 }else{
4713 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4714 }
4715 }else{
4716 /* The trunk page is required by the caller but it contains
4717 ** pointers to free-list leaves. The first leaf becomes a trunk
4718 ** page in this case.
4719 */
4720 MemPage *pNewTrunk;
4721 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004722 if( iNewTrunk>mxPage ){
4723 rc = SQLITE_CORRUPT_BKPT;
4724 goto end_allocate_page;
4725 }
drhdf35a082009-07-09 02:24:35 +00004726 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004727 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004728 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004729 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004730 }
danielk19773b8a05f2007-03-19 17:44:26 +00004731 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004732 if( rc!=SQLITE_OK ){
4733 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004734 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004735 }
4736 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4737 put4byte(&pNewTrunk->aData[4], k-1);
4738 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004739 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004740 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004741 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004742 put4byte(&pPage1->aData[32], iNewTrunk);
4743 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004744 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004745 if( rc ){
4746 goto end_allocate_page;
4747 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004748 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4749 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004750 }
4751 pTrunk = 0;
4752 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4753#endif
danielk1977e5765212009-06-17 11:13:28 +00004754 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004755 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004756 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004757 Pgno iPage;
4758 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004759 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004760 if( rc ){
4761 goto end_allocate_page;
4762 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004763 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004764 u32 i;
4765 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004766 closest = 0;
4767 dist = get4byte(&aData[8]) - nearby;
4768 if( dist<0 ) dist = -dist;
4769 for(i=1; i<k; i++){
4770 int d2 = get4byte(&aData[8+i*4]) - nearby;
4771 if( d2<0 ) d2 = -d2;
4772 if( d2<dist ){
4773 closest = i;
4774 dist = d2;
4775 }
4776 }
4777 }else{
4778 closest = 0;
4779 }
4780
4781 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004782 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004783 if( iPage>mxPage ){
4784 rc = SQLITE_CORRUPT_BKPT;
4785 goto end_allocate_page;
4786 }
drhdf35a082009-07-09 02:24:35 +00004787 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004788 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004789 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004790 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004791 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4792 ": %d more free pages\n",
4793 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4794 if( closest<k-1 ){
4795 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4796 }
4797 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004798 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004799 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004800 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004801 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004802 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004803 if( rc!=SQLITE_OK ){
4804 releasePage(*ppPage);
4805 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004806 }
4807 searchList = 0;
4808 }
drhee696e22004-08-30 16:52:17 +00004809 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004810 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004811 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004812 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004813 }else{
drh3aac2dd2004-04-26 14:10:20 +00004814 /* There are no pages on the freelist, so create a new page at the
4815 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004816 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004817 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004818
danielk1977bea2a942009-01-20 17:06:27 +00004819 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4820 (*pPgno)++;
4821 }
4822
danielk1977afcdd022004-10-31 16:25:42 +00004823#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004824 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004825 /* If *pPgno refers to a pointer-map page, allocate two new pages
4826 ** at the end of the file instead of one. The first allocated page
4827 ** becomes a new pointer-map page, the second is used by the caller.
4828 */
danielk1977ac861692009-03-28 10:54:22 +00004829 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004830 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004831 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004832 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004833 if( rc==SQLITE_OK ){
4834 rc = sqlite3PagerWrite(pPg->pDbPage);
4835 releasePage(pPg);
4836 }
4837 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004838 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004839 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004840 }
4841#endif
4842
danielk1977599fcba2004-11-08 07:13:13 +00004843 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004844 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004845 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004846 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004847 if( rc!=SQLITE_OK ){
4848 releasePage(*ppPage);
4849 }
drh3a4c1412004-05-09 20:40:11 +00004850 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004851 }
danielk1977599fcba2004-11-08 07:13:13 +00004852
4853 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004854
4855end_allocate_page:
4856 releasePage(pTrunk);
4857 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004858 if( rc==SQLITE_OK ){
4859 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4860 releasePage(*ppPage);
4861 return SQLITE_CORRUPT_BKPT;
4862 }
4863 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004864 }else{
4865 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004866 }
drh3b7511c2001-05-26 13:15:44 +00004867 return rc;
4868}
4869
4870/*
danielk1977bea2a942009-01-20 17:06:27 +00004871** This function is used to add page iPage to the database file free-list.
4872** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004873**
danielk1977bea2a942009-01-20 17:06:27 +00004874** The value passed as the second argument to this function is optional.
4875** If the caller happens to have a pointer to the MemPage object
4876** corresponding to page iPage handy, it may pass it as the second value.
4877** Otherwise, it may pass NULL.
4878**
4879** If a pointer to a MemPage object is passed as the second argument,
4880** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004881*/
danielk1977bea2a942009-01-20 17:06:27 +00004882static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4883 MemPage *pTrunk = 0; /* Free-list trunk page */
4884 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4885 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4886 MemPage *pPage; /* Page being freed. May be NULL. */
4887 int rc; /* Return Code */
4888 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004889
danielk1977bea2a942009-01-20 17:06:27 +00004890 assert( sqlite3_mutex_held(pBt->mutex) );
4891 assert( iPage>1 );
4892 assert( !pMemPage || pMemPage->pgno==iPage );
4893
4894 if( pMemPage ){
4895 pPage = pMemPage;
4896 sqlite3PagerRef(pPage->pDbPage);
4897 }else{
4898 pPage = btreePageLookup(pBt, iPage);
4899 }
drh3aac2dd2004-04-26 14:10:20 +00004900
drha34b6762004-05-07 13:30:42 +00004901 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004902 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004903 if( rc ) goto freepage_out;
4904 nFree = get4byte(&pPage1->aData[36]);
4905 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004906
drhfcce93f2006-02-22 03:08:32 +00004907#ifdef SQLITE_SECURE_DELETE
4908 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4909 ** always fully overwrite deleted information with zeros.
4910 */
danielk197730548662009-07-09 05:07:37 +00004911 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
danielk1977bea2a942009-01-20 17:06:27 +00004912 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4913 ){
4914 goto freepage_out;
4915 }
drhfcce93f2006-02-22 03:08:32 +00004916 memset(pPage->aData, 0, pPage->pBt->pageSize);
4917#endif
4918
danielk1977687566d2004-11-02 12:56:41 +00004919 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004920 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004921 */
danielk197785d90ca2008-07-19 14:25:15 +00004922 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004923 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004924 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004925 }
danielk1977687566d2004-11-02 12:56:41 +00004926
danielk1977bea2a942009-01-20 17:06:27 +00004927 /* Now manipulate the actual database free-list structure. There are two
4928 ** possibilities. If the free-list is currently empty, or if the first
4929 ** trunk page in the free-list is full, then this page will become a
4930 ** new free-list trunk page. Otherwise, it will become a leaf of the
4931 ** first trunk page in the current free-list. This block tests if it
4932 ** is possible to add the page as a new free-list leaf.
4933 */
4934 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004935 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004936
4937 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004938 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004939 if( rc!=SQLITE_OK ){
4940 goto freepage_out;
4941 }
4942
4943 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00004944 assert( pBt->usableSize>32 );
4945 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004946 rc = SQLITE_CORRUPT_BKPT;
4947 goto freepage_out;
4948 }
drheeb844a2009-08-08 18:01:07 +00004949 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00004950 /* In this case there is room on the trunk page to insert the page
4951 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004952 **
4953 ** Note that the trunk page is not really full until it contains
4954 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4955 ** coded. But due to a coding error in versions of SQLite prior to
4956 ** 3.6.0, databases with freelist trunk pages holding more than
4957 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4958 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00004959 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00004960 ** for now. At some point in the future (once everyone has upgraded
4961 ** to 3.6.0 or later) we should consider fixing the conditional above
4962 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4963 */
danielk19773b8a05f2007-03-19 17:44:26 +00004964 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004965 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004966 put4byte(&pTrunk->aData[4], nLeaf+1);
4967 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004968#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004969 if( pPage ){
4970 sqlite3PagerDontWrite(pPage->pDbPage);
4971 }
drhfcce93f2006-02-22 03:08:32 +00004972#endif
danielk1977bea2a942009-01-20 17:06:27 +00004973 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004974 }
drh3a4c1412004-05-09 20:40:11 +00004975 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004976 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004977 }
drh3b7511c2001-05-26 13:15:44 +00004978 }
danielk1977bea2a942009-01-20 17:06:27 +00004979
4980 /* If control flows to this point, then it was not possible to add the
4981 ** the page being freed as a leaf page of the first trunk in the free-list.
4982 ** Possibly because the free-list is empty, or possibly because the
4983 ** first trunk in the free-list is full. Either way, the page being freed
4984 ** will become the new first trunk page in the free-list.
4985 */
drhc046e3e2009-07-15 11:26:44 +00004986 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
4987 goto freepage_out;
4988 }
4989 rc = sqlite3PagerWrite(pPage->pDbPage);
4990 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004991 goto freepage_out;
4992 }
4993 put4byte(pPage->aData, iTrunk);
4994 put4byte(&pPage->aData[4], 0);
4995 put4byte(&pPage1->aData[32], iPage);
4996 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4997
4998freepage_out:
4999 if( pPage ){
5000 pPage->isInit = 0;
5001 }
5002 releasePage(pPage);
5003 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005004 return rc;
5005}
drhc314dc72009-07-21 11:52:34 +00005006static void freePage(MemPage *pPage, int *pRC){
5007 if( (*pRC)==SQLITE_OK ){
5008 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5009 }
danielk1977bea2a942009-01-20 17:06:27 +00005010}
drh3b7511c2001-05-26 13:15:44 +00005011
5012/*
drh3aac2dd2004-04-26 14:10:20 +00005013** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005014*/
drh3aac2dd2004-04-26 14:10:20 +00005015static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005016 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005017 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005018 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005019 int rc;
drh94440812007-03-06 11:42:19 +00005020 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005021 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005022
drh1fee73e2007-08-29 04:00:57 +00005023 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005024 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005025 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005026 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005027 }
drh6f11bef2004-05-13 01:12:56 +00005028 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005029 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005030 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005031 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5032 assert( ovflPgno==0 || nOvfl>0 );
5033 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005034 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005035 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00005036 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
5037 /* 0 is not a legal page number and page 1 cannot be an
5038 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5039 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005040 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005041 }
danielk1977bea2a942009-01-20 17:06:27 +00005042 if( nOvfl ){
5043 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5044 if( rc ) return rc;
5045 }
5046 rc = freePage2(pBt, pOvfl, ovflPgno);
5047 if( pOvfl ){
5048 sqlite3PagerUnref(pOvfl->pDbPage);
5049 }
drh3b7511c2001-05-26 13:15:44 +00005050 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005051 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005052 }
drh5e2f8b92001-05-28 00:41:15 +00005053 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005054}
5055
5056/*
drh91025292004-05-03 19:49:32 +00005057** Create the byte sequence used to represent a cell on page pPage
5058** and write that byte sequence into pCell[]. Overflow pages are
5059** allocated and filled in as necessary. The calling procedure
5060** is responsible for making sure sufficient space has been allocated
5061** for pCell[].
5062**
5063** Note that pCell does not necessary need to point to the pPage->aData
5064** area. pCell might point to some temporary storage. The cell will
5065** be constructed in this temporary area then copied into pPage->aData
5066** later.
drh3b7511c2001-05-26 13:15:44 +00005067*/
5068static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005069 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005070 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005071 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005072 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005073 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005074 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005075){
drh3b7511c2001-05-26 13:15:44 +00005076 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005077 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005078 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005079 int spaceLeft;
5080 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005081 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005082 unsigned char *pPrior;
5083 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005084 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005085 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005086 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005087 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005088
drh1fee73e2007-08-29 04:00:57 +00005089 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005090
drhc5053fb2008-11-27 02:22:10 +00005091 /* pPage is not necessarily writeable since pCell might be auxiliary
5092 ** buffer space that is separate from the pPage buffer area */
5093 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5094 || sqlite3PagerIswriteable(pPage->pDbPage) );
5095
drh91025292004-05-03 19:49:32 +00005096 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005097 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005098 if( !pPage->leaf ){
5099 nHeader += 4;
5100 }
drh8b18dd42004-05-12 19:18:15 +00005101 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005102 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005103 }else{
drhb026e052007-05-02 01:34:31 +00005104 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005105 }
drh6f11bef2004-05-13 01:12:56 +00005106 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005107 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005108 assert( info.nHeader==nHeader );
5109 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005110 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005111
5112 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005113 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005114 if( pPage->intKey ){
5115 pSrc = pData;
5116 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005117 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005118 }else{
danielk197731d31b82009-07-13 13:18:07 +00005119 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5120 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005121 }
drhf49661a2008-12-10 16:45:50 +00005122 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005123 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005124 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005125 }
drh6f11bef2004-05-13 01:12:56 +00005126 *pnSize = info.nSize;
5127 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005128 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005129 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005130
drh3b7511c2001-05-26 13:15:44 +00005131 while( nPayload>0 ){
5132 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005133#ifndef SQLITE_OMIT_AUTOVACUUM
5134 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005135 if( pBt->autoVacuum ){
5136 do{
5137 pgnoOvfl++;
5138 } while(
5139 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5140 );
danielk1977b39f70b2007-05-17 18:28:11 +00005141 }
danielk1977afcdd022004-10-31 16:25:42 +00005142#endif
drhf49661a2008-12-10 16:45:50 +00005143 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005144#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005145 /* If the database supports auto-vacuum, and the second or subsequent
5146 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005147 ** for that page now.
5148 **
5149 ** If this is the first overflow page, then write a partial entry
5150 ** to the pointer-map. If we write nothing to this pointer-map slot,
5151 ** then the optimistic overflow chain processing in clearCell()
5152 ** may misinterpret the uninitialised values and delete the
5153 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005154 */
danielk19774ef24492007-05-23 09:52:41 +00005155 if( pBt->autoVacuum && rc==SQLITE_OK ){
5156 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005157 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005158 if( rc ){
5159 releasePage(pOvfl);
5160 }
danielk1977afcdd022004-10-31 16:25:42 +00005161 }
5162#endif
drh3b7511c2001-05-26 13:15:44 +00005163 if( rc ){
drh9b171272004-05-08 02:03:22 +00005164 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005165 return rc;
5166 }
drhc5053fb2008-11-27 02:22:10 +00005167
5168 /* If pToRelease is not zero than pPrior points into the data area
5169 ** of pToRelease. Make sure pToRelease is still writeable. */
5170 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5171
5172 /* If pPrior is part of the data area of pPage, then make sure pPage
5173 ** is still writeable */
5174 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5175 || sqlite3PagerIswriteable(pPage->pDbPage) );
5176
drh3aac2dd2004-04-26 14:10:20 +00005177 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005178 releasePage(pToRelease);
5179 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005180 pPrior = pOvfl->aData;
5181 put4byte(pPrior, 0);
5182 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005183 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005184 }
5185 n = nPayload;
5186 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005187
5188 /* If pToRelease is not zero than pPayload points into the data area
5189 ** of pToRelease. Make sure pToRelease is still writeable. */
5190 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5191
5192 /* If pPayload is part of the data area of pPage, then make sure pPage
5193 ** is still writeable */
5194 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5195 || sqlite3PagerIswriteable(pPage->pDbPage) );
5196
drhb026e052007-05-02 01:34:31 +00005197 if( nSrc>0 ){
5198 if( n>nSrc ) n = nSrc;
5199 assert( pSrc );
5200 memcpy(pPayload, pSrc, n);
5201 }else{
5202 memset(pPayload, 0, n);
5203 }
drh3b7511c2001-05-26 13:15:44 +00005204 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005205 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005206 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005207 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005208 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005209 if( nSrc==0 ){
5210 nSrc = nData;
5211 pSrc = pData;
5212 }
drhdd793422001-06-28 01:54:48 +00005213 }
drh9b171272004-05-08 02:03:22 +00005214 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005215 return SQLITE_OK;
5216}
5217
drh14acc042001-06-10 19:56:58 +00005218/*
5219** Remove the i-th cell from pPage. This routine effects pPage only.
5220** The cell content is not freed or deallocated. It is assumed that
5221** the cell content has been copied someplace else. This routine just
5222** removes the reference to the cell from pPage.
5223**
5224** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005225*/
drh98add2e2009-07-20 17:11:49 +00005226static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005227 int i; /* Loop counter */
5228 int pc; /* Offset to cell content of cell being deleted */
5229 u8 *data; /* pPage->aData */
5230 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005231 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005232 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005233
drh98add2e2009-07-20 17:11:49 +00005234 if( *pRC ) return;
5235
drh8c42ca92001-06-22 19:15:00 +00005236 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005237 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005238 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005239 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005240 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005241 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005242 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005243 hdr = pPage->hdrOffset;
5244 testcase( pc==get2byte(&data[hdr+5]) );
5245 testcase( pc+sz==pPage->pBt->usableSize );
5246 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005247 *pRC = SQLITE_CORRUPT_BKPT;
5248 return;
shane0af3f892008-11-12 04:55:34 +00005249 }
shanedcc50b72008-11-13 18:29:50 +00005250 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005251 if( rc ){
5252 *pRC = rc;
5253 return;
shanedcc50b72008-11-13 18:29:50 +00005254 }
drh43605152004-05-29 21:46:49 +00005255 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5256 ptr[0] = ptr[2];
5257 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005258 }
5259 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005260 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005261 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005262}
5263
5264/*
5265** Insert a new cell on pPage at cell index "i". pCell points to the
5266** content of the cell.
5267**
5268** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005269** will not fit, then make a copy of the cell content into pTemp if
5270** pTemp is not null. Regardless of pTemp, allocate a new entry
5271** in pPage->aOvfl[] and make it point to the cell content (either
5272** in pTemp or the original pCell) and also record its index.
5273** Allocating a new entry in pPage->aCell[] implies that
5274** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005275**
5276** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5277** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005278** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005279** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005280*/
drh98add2e2009-07-20 17:11:49 +00005281static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005282 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005283 int i, /* New cell becomes the i-th cell of the page */
5284 u8 *pCell, /* Content of the new cell */
5285 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005286 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005287 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5288 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005289){
drh43605152004-05-29 21:46:49 +00005290 int idx; /* Where to write new cell content in data[] */
5291 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005292 int end; /* First byte past the last cell pointer in data[] */
5293 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005294 int cellOffset; /* Address of first cell pointer in data[] */
5295 u8 *data; /* The content of the whole page */
5296 u8 *ptr; /* Used for moving information around in data[] */
5297
danielk19774dbaa892009-06-16 16:50:22 +00005298 int nSkip = (iChild ? 4 : 0);
5299
drh98add2e2009-07-20 17:11:49 +00005300 if( *pRC ) return;
5301
drh43605152004-05-29 21:46:49 +00005302 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005303 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5304 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005305 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005306 /* The cell should normally be sized correctly. However, when moving a
5307 ** malformed cell from a leaf page to an interior page, if the cell size
5308 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5309 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5310 ** the term after the || in the following assert(). */
5311 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005312 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005313 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005314 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005315 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005316 }
danielk19774dbaa892009-06-16 16:50:22 +00005317 if( iChild ){
5318 put4byte(pCell, iChild);
5319 }
drh43605152004-05-29 21:46:49 +00005320 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005321 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005322 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005323 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005324 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005325 int rc = sqlite3PagerWrite(pPage->pDbPage);
5326 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005327 *pRC = rc;
5328 return;
danielk19776e465eb2007-08-21 13:11:00 +00005329 }
5330 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005331 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005332 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005333 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005334 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005335 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005336 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005337 /* The allocateSpace() routine guarantees the following two properties
5338 ** if it returns success */
5339 assert( idx >= end+2 );
5340 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005341 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005342 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005343 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005344 if( iChild ){
5345 put4byte(&data[idx], iChild);
5346 }
drh0a45c272009-07-08 01:49:11 +00005347 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005348 ptr[0] = ptr[-2];
5349 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005350 }
drh43605152004-05-29 21:46:49 +00005351 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005352 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005353#ifndef SQLITE_OMIT_AUTOVACUUM
5354 if( pPage->pBt->autoVacuum ){
5355 /* The cell may contain a pointer to an overflow page. If so, write
5356 ** the entry for the overflow page into the pointer map.
5357 */
drh98add2e2009-07-20 17:11:49 +00005358 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005359 }
5360#endif
drh14acc042001-06-10 19:56:58 +00005361 }
5362}
5363
5364/*
drhfa1a98a2004-05-14 19:08:17 +00005365** Add a list of cells to a page. The page should be initially empty.
5366** The cells are guaranteed to fit on the page.
5367*/
5368static void assemblePage(
5369 MemPage *pPage, /* The page to be assemblied */
5370 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005371 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005372 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005373){
5374 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005375 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005376 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005377 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5378 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5379 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005380
drh43605152004-05-29 21:46:49 +00005381 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005382 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005383 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005384 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005385
5386 /* Check that the page has just been zeroed by zeroPage() */
5387 assert( pPage->nCell==0 );
5388 assert( get2byte(&data[hdr+5])==nUsable );
5389
5390 pCellptr = &data[pPage->cellOffset + nCell*2];
5391 cellbody = nUsable;
5392 for(i=nCell-1; i>=0; i--){
5393 pCellptr -= 2;
5394 cellbody -= aSize[i];
5395 put2byte(pCellptr, cellbody);
5396 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005397 }
danielk1977fad91942009-04-29 17:49:59 +00005398 put2byte(&data[hdr+3], nCell);
5399 put2byte(&data[hdr+5], cellbody);
5400 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005401 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005402}
5403
drh14acc042001-06-10 19:56:58 +00005404/*
drhc3b70572003-01-04 19:44:07 +00005405** The following parameters determine how many adjacent pages get involved
5406** in a balancing operation. NN is the number of neighbors on either side
5407** of the page that participate in the balancing operation. NB is the
5408** total number of pages that participate, including the target page and
5409** NN neighbors on either side.
5410**
5411** The minimum value of NN is 1 (of course). Increasing NN above 1
5412** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5413** in exchange for a larger degradation in INSERT and UPDATE performance.
5414** The value of NN appears to give the best results overall.
5415*/
5416#define NN 1 /* Number of neighbors on either side of pPage */
5417#define NB (NN*2+1) /* Total pages involved in the balance */
5418
danielk1977ac245ec2005-01-14 13:50:11 +00005419
drh615ae552005-01-16 23:21:00 +00005420#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005421/*
5422** This version of balance() handles the common special case where
5423** a new entry is being inserted on the extreme right-end of the
5424** tree, in other words, when the new entry will become the largest
5425** entry in the tree.
5426**
drhc314dc72009-07-21 11:52:34 +00005427** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005428** a new page to the right-hand side and put the one new entry in
5429** that page. This leaves the right side of the tree somewhat
5430** unbalanced. But odds are that we will be inserting new entries
5431** at the end soon afterwards so the nearly empty page will quickly
5432** fill up. On average.
5433**
5434** pPage is the leaf page which is the right-most page in the tree.
5435** pParent is its parent. pPage must have a single overflow entry
5436** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005437**
5438** The pSpace buffer is used to store a temporary copy of the divider
5439** cell that will be inserted into pParent. Such a cell consists of a 4
5440** byte page number followed by a variable length integer. In other
5441** words, at most 13 bytes. Hence the pSpace buffer must be at
5442** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005443*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005444static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5445 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005446 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005447 int rc; /* Return Code */
5448 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005449
drh1fee73e2007-08-29 04:00:57 +00005450 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005451 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005452 assert( pPage->nOverflow==1 );
5453
drh5d1a8722009-07-22 18:07:40 +00005454 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005455
danielk1977a50d9aa2009-06-08 14:49:45 +00005456 /* Allocate a new page. This page will become the right-sibling of
5457 ** pPage. Make the parent page writable, so that the new divider cell
5458 ** may be inserted. If both these operations are successful, proceed.
5459 */
drh4f0c5872007-03-26 22:05:01 +00005460 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005461
danielk1977eaa06f62008-09-18 17:34:44 +00005462 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005463
5464 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005465 u8 *pCell = pPage->aOvfl[0].pCell;
5466 u16 szCell = cellSizePtr(pPage, pCell);
5467 u8 *pStop;
5468
drhc5053fb2008-11-27 02:22:10 +00005469 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005470 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5471 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005472 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005473
5474 /* If this is an auto-vacuum database, update the pointer map
5475 ** with entries for the new page, and any pointer from the
5476 ** cell on the page to an overflow page. If either of these
5477 ** operations fails, the return code is set, but the contents
5478 ** of the parent page are still manipulated by thh code below.
5479 ** That is Ok, at this point the parent page is guaranteed to
5480 ** be marked as dirty. Returning an error code will cause a
5481 ** rollback, undoing any changes made to the parent page.
5482 */
5483 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005484 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5485 if( szCell>pNew->minLocal ){
5486 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005487 }
5488 }
danielk1977eaa06f62008-09-18 17:34:44 +00005489
danielk19776f235cc2009-06-04 14:46:08 +00005490 /* Create a divider cell to insert into pParent. The divider cell
5491 ** consists of a 4-byte page number (the page number of pPage) and
5492 ** a variable length key value (which must be the same value as the
5493 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005494 **
danielk19776f235cc2009-06-04 14:46:08 +00005495 ** To find the largest key value on pPage, first find the right-most
5496 ** cell on pPage. The first two fields of this cell are the
5497 ** record-length (a variable length integer at most 32-bits in size)
5498 ** and the key value (a variable length integer, may have any value).
5499 ** The first of the while(...) loops below skips over the record-length
5500 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005501 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005502 */
danielk1977eaa06f62008-09-18 17:34:44 +00005503 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005504 pStop = &pCell[9];
5505 while( (*(pCell++)&0x80) && pCell<pStop );
5506 pStop = &pCell[9];
5507 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5508
danielk19774dbaa892009-06-16 16:50:22 +00005509 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005510 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5511 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005512
5513 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005514 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5515
danielk1977e08a3c42008-09-18 18:17:03 +00005516 /* Release the reference to the new page. */
5517 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005518 }
5519
danielk1977eaa06f62008-09-18 17:34:44 +00005520 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005521}
drh615ae552005-01-16 23:21:00 +00005522#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005523
danielk19774dbaa892009-06-16 16:50:22 +00005524#if 0
drhc3b70572003-01-04 19:44:07 +00005525/*
danielk19774dbaa892009-06-16 16:50:22 +00005526** This function does not contribute anything to the operation of SQLite.
5527** it is sometimes activated temporarily while debugging code responsible
5528** for setting pointer-map entries.
5529*/
5530static int ptrmapCheckPages(MemPage **apPage, int nPage){
5531 int i, j;
5532 for(i=0; i<nPage; i++){
5533 Pgno n;
5534 u8 e;
5535 MemPage *pPage = apPage[i];
5536 BtShared *pBt = pPage->pBt;
5537 assert( pPage->isInit );
5538
5539 for(j=0; j<pPage->nCell; j++){
5540 CellInfo info;
5541 u8 *z;
5542
5543 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005544 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005545 if( info.iOverflow ){
5546 Pgno ovfl = get4byte(&z[info.iOverflow]);
5547 ptrmapGet(pBt, ovfl, &e, &n);
5548 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5549 }
5550 if( !pPage->leaf ){
5551 Pgno child = get4byte(z);
5552 ptrmapGet(pBt, child, &e, &n);
5553 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5554 }
5555 }
5556 if( !pPage->leaf ){
5557 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5558 ptrmapGet(pBt, child, &e, &n);
5559 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5560 }
5561 }
5562 return 1;
5563}
5564#endif
5565
danielk1977cd581a72009-06-23 15:43:39 +00005566/*
5567** This function is used to copy the contents of the b-tree node stored
5568** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5569** the pointer-map entries for each child page are updated so that the
5570** parent page stored in the pointer map is page pTo. If pFrom contained
5571** any cells with overflow page pointers, then the corresponding pointer
5572** map entries are also updated so that the parent page is page pTo.
5573**
5574** If pFrom is currently carrying any overflow cells (entries in the
5575** MemPage.aOvfl[] array), they are not copied to pTo.
5576**
danielk197730548662009-07-09 05:07:37 +00005577** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005578**
5579** The performance of this function is not critical. It is only used by
5580** the balance_shallower() and balance_deeper() procedures, neither of
5581** which are called often under normal circumstances.
5582*/
drhc314dc72009-07-21 11:52:34 +00005583static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5584 if( (*pRC)==SQLITE_OK ){
5585 BtShared * const pBt = pFrom->pBt;
5586 u8 * const aFrom = pFrom->aData;
5587 u8 * const aTo = pTo->aData;
5588 int const iFromHdr = pFrom->hdrOffset;
5589 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005590 int rc;
drhc314dc72009-07-21 11:52:34 +00005591 int iData;
5592
5593
5594 assert( pFrom->isInit );
5595 assert( pFrom->nFree>=iToHdr );
5596 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5597
5598 /* Copy the b-tree node content from page pFrom to page pTo. */
5599 iData = get2byte(&aFrom[iFromHdr+5]);
5600 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5601 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5602
5603 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005604 ** match the new data. The initialization of pTo can actually fail under
5605 ** fairly obscure circumstances, even though it is a copy of initialized
5606 ** page pFrom.
5607 */
drhc314dc72009-07-21 11:52:34 +00005608 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005609 rc = btreeInitPage(pTo);
5610 if( rc!=SQLITE_OK ){
5611 *pRC = rc;
5612 return;
5613 }
drhc314dc72009-07-21 11:52:34 +00005614
5615 /* If this is an auto-vacuum database, update the pointer-map entries
5616 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5617 */
5618 if( ISAUTOVACUUM ){
5619 *pRC = setChildPtrmaps(pTo);
5620 }
danielk1977cd581a72009-06-23 15:43:39 +00005621 }
danielk1977cd581a72009-06-23 15:43:39 +00005622}
5623
5624/*
danielk19774dbaa892009-06-16 16:50:22 +00005625** This routine redistributes cells on the iParentIdx'th child of pParent
5626** (hereafter "the page") and up to 2 siblings so that all pages have about the
5627** same amount of free space. Usually a single sibling on either side of the
5628** page are used in the balancing, though both siblings might come from one
5629** side if the page is the first or last child of its parent. If the page
5630** has fewer than 2 siblings (something which can only happen if the page
5631** is a root page or a child of a root page) then all available siblings
5632** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005633**
danielk19774dbaa892009-06-16 16:50:22 +00005634** The number of siblings of the page might be increased or decreased by
5635** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005636**
danielk19774dbaa892009-06-16 16:50:22 +00005637** Note that when this routine is called, some of the cells on the page
5638** might not actually be stored in MemPage.aData[]. This can happen
5639** if the page is overfull. This routine ensures that all cells allocated
5640** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005641**
danielk19774dbaa892009-06-16 16:50:22 +00005642** In the course of balancing the page and its siblings, cells may be
5643** inserted into or removed from the parent page (pParent). Doing so
5644** may cause the parent page to become overfull or underfull. If this
5645** happens, it is the responsibility of the caller to invoke the correct
5646** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005647**
drh5e00f6c2001-09-13 13:46:56 +00005648** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005649** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005650** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005651**
5652** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005653** buffer big enough to hold one page. If while inserting cells into the parent
5654** page (pParent) the parent page becomes overfull, this buffer is
5655** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005656** a maximum of four divider cells into the parent page, and the maximum
5657** size of a cell stored within an internal node is always less than 1/4
5658** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5659** enough for all overflow cells.
5660**
5661** If aOvflSpace is set to a null pointer, this function returns
5662** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005663*/
danielk19774dbaa892009-06-16 16:50:22 +00005664static int balance_nonroot(
5665 MemPage *pParent, /* Parent page of siblings being balanced */
5666 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005667 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5668 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005669){
drh16a9b832007-05-05 18:39:25 +00005670 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005671 int nCell = 0; /* Number of cells in apCell[] */
5672 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005673 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005674 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005675 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005676 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005677 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005678 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005679 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005680 int usableSpace; /* Bytes in pPage beyond the header */
5681 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005682 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005683 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005684 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005685 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005686 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005687 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005688 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005689 u8 *pRight; /* Location in parent of right-sibling pointer */
5690 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005691 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5692 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005693 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005694 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005695 u8 *aSpace1; /* Space for copies of dividers cells */
5696 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005697
danielk1977a50d9aa2009-06-08 14:49:45 +00005698 pBt = pParent->pBt;
5699 assert( sqlite3_mutex_held(pBt->mutex) );
5700 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005701
danielk1977e5765212009-06-17 11:13:28 +00005702#if 0
drh43605152004-05-29 21:46:49 +00005703 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005704#endif
drh2e38c322004-09-03 18:38:44 +00005705
danielk19774dbaa892009-06-16 16:50:22 +00005706 /* At this point pParent may have at most one overflow cell. And if
5707 ** this overflow cell is present, it must be the cell with
5708 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005709 ** is called (indirectly) from sqlite3BtreeDelete().
5710 */
danielk19774dbaa892009-06-16 16:50:22 +00005711 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5712 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5713
danielk197711a8a862009-06-17 11:49:52 +00005714 if( !aOvflSpace ){
5715 return SQLITE_NOMEM;
5716 }
5717
danielk1977a50d9aa2009-06-08 14:49:45 +00005718 /* Find the sibling pages to balance. Also locate the cells in pParent
5719 ** that divide the siblings. An attempt is made to find NN siblings on
5720 ** either side of pPage. More siblings are taken from one side, however,
5721 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005722 ** has NB or fewer children then all children of pParent are taken.
5723 **
5724 ** This loop also drops the divider cells from the parent page. This
5725 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005726 ** overflow cells in the parent page, since if any existed they will
5727 ** have already been removed.
5728 */
danielk19774dbaa892009-06-16 16:50:22 +00005729 i = pParent->nOverflow + pParent->nCell;
5730 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005731 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005732 nOld = i+1;
5733 }else{
5734 nOld = 3;
5735 if( iParentIdx==0 ){
5736 nxDiv = 0;
5737 }else if( iParentIdx==i ){
5738 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005739 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005740 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005741 }
danielk19774dbaa892009-06-16 16:50:22 +00005742 i = 2;
5743 }
5744 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5745 pRight = &pParent->aData[pParent->hdrOffset+8];
5746 }else{
5747 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5748 }
5749 pgno = get4byte(pRight);
5750 while( 1 ){
5751 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5752 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005753 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005754 goto balance_cleanup;
5755 }
danielk1977634f2982005-03-28 08:44:07 +00005756 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005757 if( (i--)==0 ) break;
5758
drhcd09c532009-07-20 19:30:00 +00005759 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005760 apDiv[i] = pParent->aOvfl[0].pCell;
5761 pgno = get4byte(apDiv[i]);
5762 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5763 pParent->nOverflow = 0;
5764 }else{
5765 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5766 pgno = get4byte(apDiv[i]);
5767 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5768
5769 /* Drop the cell from the parent page. apDiv[i] still points to
5770 ** the cell within the parent, even though it has been dropped.
5771 ** This is safe because dropping a cell only overwrites the first
5772 ** four bytes of it, and this function does not need the first
5773 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005774 ** later on.
5775 **
5776 ** Unless SQLite is compiled in secure-delete mode. In this case,
5777 ** the dropCell() routine will overwrite the entire cell with zeroes.
5778 ** In this case, temporarily copy the cell into the aOvflSpace[]
5779 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5780 ** is allocated. */
5781#ifdef SQLITE_SECURE_DELETE
5782 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5783 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5784#endif
drh98add2e2009-07-20 17:11:49 +00005785 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005786 }
drh8b2f49b2001-06-08 00:21:52 +00005787 }
5788
drha9121e42008-02-19 14:59:35 +00005789 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005790 ** alignment */
drha9121e42008-02-19 14:59:35 +00005791 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005792
drh8b2f49b2001-06-08 00:21:52 +00005793 /*
danielk1977634f2982005-03-28 08:44:07 +00005794 ** Allocate space for memory structures
5795 */
danielk19774dbaa892009-06-16 16:50:22 +00005796 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005797 szScratch =
drha9121e42008-02-19 14:59:35 +00005798 nMaxCells*sizeof(u8*) /* apCell */
5799 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005800 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005801 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005802 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005803 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005804 rc = SQLITE_NOMEM;
5805 goto balance_cleanup;
5806 }
drha9121e42008-02-19 14:59:35 +00005807 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005808 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005809 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005810
5811 /*
5812 ** Load pointers to all cells on sibling pages and the divider cells
5813 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005814 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005815 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005816 **
5817 ** If the siblings are on leaf pages, then the child pointers of the
5818 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005819 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005820 ** child pointers. If siblings are not leaves, then all cell in
5821 ** apCell[] include child pointers. Either way, all cells in apCell[]
5822 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005823 **
5824 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5825 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005826 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005827 leafCorrection = apOld[0]->leaf*4;
5828 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005829 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005830 int limit;
5831
5832 /* Before doing anything else, take a copy of the i'th original sibling
5833 ** The rest of this function will use data from the copies rather
5834 ** that the original pages since the original pages will be in the
5835 ** process of being overwritten. */
5836 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5837 memcpy(pOld, apOld[i], sizeof(MemPage));
5838 pOld->aData = (void*)&pOld[1];
5839 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5840
5841 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005842 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005843 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005844 apCell[nCell] = findOverflowCell(pOld, j);
5845 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005846 nCell++;
5847 }
5848 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005849 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005850 u8 *pTemp;
5851 assert( nCell<nMaxCells );
5852 szCell[nCell] = sz;
5853 pTemp = &aSpace1[iSpace1];
5854 iSpace1 += sz;
5855 assert( sz<=pBt->pageSize/4 );
5856 assert( iSpace1<=pBt->pageSize );
5857 memcpy(pTemp, apDiv[i], sz);
5858 apCell[nCell] = pTemp+leafCorrection;
5859 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005860 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005861 if( !pOld->leaf ){
5862 assert( leafCorrection==0 );
5863 assert( pOld->hdrOffset==0 );
5864 /* The right pointer of the child page pOld becomes the left
5865 ** pointer of the divider cell */
5866 memcpy(apCell[nCell], &pOld->aData[8], 4);
5867 }else{
5868 assert( leafCorrection==4 );
5869 if( szCell[nCell]<4 ){
5870 /* Do not allow any cells smaller than 4 bytes. */
5871 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005872 }
5873 }
drh14acc042001-06-10 19:56:58 +00005874 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005875 }
drh8b2f49b2001-06-08 00:21:52 +00005876 }
5877
5878 /*
drh6019e162001-07-02 17:51:45 +00005879 ** Figure out the number of pages needed to hold all nCell cells.
5880 ** Store this number in "k". Also compute szNew[] which is the total
5881 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005882 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005883 ** cntNew[k] should equal nCell.
5884 **
drh96f5b762004-05-16 16:24:36 +00005885 ** Values computed by this block:
5886 **
5887 ** k: The total number of sibling pages
5888 ** szNew[i]: Spaced used on the i-th sibling page.
5889 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5890 ** the right of the i-th sibling page.
5891 ** usableSpace: Number of bytes of space available on each sibling.
5892 **
drh8b2f49b2001-06-08 00:21:52 +00005893 */
drh43605152004-05-29 21:46:49 +00005894 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005895 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005896 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005897 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005898 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005899 szNew[k] = subtotal - szCell[i];
5900 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005901 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005902 subtotal = 0;
5903 k++;
drheac74422009-06-14 12:47:11 +00005904 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005905 }
5906 }
5907 szNew[k] = subtotal;
5908 cntNew[k] = nCell;
5909 k++;
drh96f5b762004-05-16 16:24:36 +00005910
5911 /*
5912 ** The packing computed by the previous block is biased toward the siblings
5913 ** on the left side. The left siblings are always nearly full, while the
5914 ** right-most sibling might be nearly empty. This block of code attempts
5915 ** to adjust the packing of siblings to get a better balance.
5916 **
5917 ** This adjustment is more than an optimization. The packing above might
5918 ** be so out of balance as to be illegal. For example, the right-most
5919 ** sibling might be completely empty. This adjustment is not optional.
5920 */
drh6019e162001-07-02 17:51:45 +00005921 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005922 int szRight = szNew[i]; /* Size of sibling on the right */
5923 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5924 int r; /* Index of right-most cell in left sibling */
5925 int d; /* Index of first cell to the left of right sibling */
5926
5927 r = cntNew[i-1] - 1;
5928 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005929 assert( d<nMaxCells );
5930 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005931 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5932 szRight += szCell[d] + 2;
5933 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005934 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005935 r = cntNew[i-1] - 1;
5936 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005937 }
drh96f5b762004-05-16 16:24:36 +00005938 szNew[i] = szRight;
5939 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005940 }
drh09d0deb2005-08-02 17:13:09 +00005941
danielk19776f235cc2009-06-04 14:46:08 +00005942 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005943 ** a virtual root page. A virtual root page is when the real root
5944 ** page is page 1 and we are the only child of that page.
5945 */
5946 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005947
danielk1977e5765212009-06-17 11:13:28 +00005948 TRACE(("BALANCE: old: %d %d %d ",
5949 apOld[0]->pgno,
5950 nOld>=2 ? apOld[1]->pgno : 0,
5951 nOld>=3 ? apOld[2]->pgno : 0
5952 ));
5953
drh8b2f49b2001-06-08 00:21:52 +00005954 /*
drh6b308672002-07-08 02:16:37 +00005955 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005956 */
drheac74422009-06-14 12:47:11 +00005957 if( apOld[0]->pgno<=1 ){
5958 rc = SQLITE_CORRUPT;
5959 goto balance_cleanup;
5960 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005961 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005962 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005963 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005964 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005965 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005966 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005967 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005968 nNew++;
danielk197728129562005-01-11 10:25:06 +00005969 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005970 }else{
drh7aa8f852006-03-28 00:24:44 +00005971 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005972 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005973 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005974 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005975 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005976
5977 /* Set the pointer-map entry for the new sibling page. */
5978 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005979 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005980 if( rc!=SQLITE_OK ){
5981 goto balance_cleanup;
5982 }
5983 }
drh6b308672002-07-08 02:16:37 +00005984 }
drh8b2f49b2001-06-08 00:21:52 +00005985 }
5986
danielk1977299b1872004-11-22 10:02:10 +00005987 /* Free any old pages that were not reused as new pages.
5988 */
5989 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00005990 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00005991 if( rc ) goto balance_cleanup;
5992 releasePage(apOld[i]);
5993 apOld[i] = 0;
5994 i++;
5995 }
5996
drh8b2f49b2001-06-08 00:21:52 +00005997 /*
drhf9ffac92002-03-02 19:00:31 +00005998 ** Put the new pages in accending order. This helps to
5999 ** keep entries in the disk file in order so that a scan
6000 ** of the table is a linear scan through the file. That
6001 ** in turn helps the operating system to deliver pages
6002 ** from the disk more rapidly.
6003 **
6004 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006005 ** n is never more than NB (a small constant), that should
6006 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006007 **
drhc3b70572003-01-04 19:44:07 +00006008 ** When NB==3, this one optimization makes the database
6009 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006010 */
6011 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006012 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006013 int minI = i;
6014 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006015 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006016 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006017 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006018 }
6019 }
6020 if( minI>i ){
6021 int t;
6022 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006023 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006024 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006025 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006026 apNew[minI] = pT;
6027 }
6028 }
danielk1977e5765212009-06-17 11:13:28 +00006029 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006030 apNew[0]->pgno, szNew[0],
6031 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6032 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6033 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6034 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6035
6036 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6037 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006038
drhf9ffac92002-03-02 19:00:31 +00006039 /*
drh14acc042001-06-10 19:56:58 +00006040 ** Evenly distribute the data in apCell[] across the new pages.
6041 ** Insert divider cells into pParent as necessary.
6042 */
6043 j = 0;
6044 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006045 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006046 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006047 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006048 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006049 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006050 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006051 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006052
danielk1977ac11ee62005-01-15 12:45:51 +00006053 j = cntNew[i];
6054
6055 /* If the sibling page assembled above was not the right-most sibling,
6056 ** insert a divider cell into the parent page.
6057 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006058 assert( i<nNew-1 || j==nCell );
6059 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006060 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006061 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006062 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006063
6064 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006065 pCell = apCell[j];
6066 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006067 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006068 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006069 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006070 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006071 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006072 ** then there is no divider cell in apCell[]. Instead, the divider
6073 ** cell consists of the integer key for the right-most cell of
6074 ** the sibling-page assembled above only.
6075 */
drh6f11bef2004-05-13 01:12:56 +00006076 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006077 j--;
danielk197730548662009-07-09 05:07:37 +00006078 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006079 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006080 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006081 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006082 }else{
6083 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006084 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006085 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006086 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006087 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006088 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006089 ** insertCell(), so reparse the cell now.
6090 **
6091 ** Note that this can never happen in an SQLite data file, as all
6092 ** cells are at least 4 bytes. It only happens in b-trees used
6093 ** to evaluate "IN (SELECT ...)" and similar clauses.
6094 */
6095 if( szCell[j]==4 ){
6096 assert(leafCorrection==4);
6097 sz = cellSizePtr(pParent, pCell);
6098 }
drh4b70f112004-05-02 21:12:19 +00006099 }
danielk19776067a9b2009-06-09 09:41:00 +00006100 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006101 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006102 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006103 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006104 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006105 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006106
drh14acc042001-06-10 19:56:58 +00006107 j++;
6108 nxDiv++;
6109 }
6110 }
drh6019e162001-07-02 17:51:45 +00006111 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006112 assert( nOld>0 );
6113 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006114 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006115 u8 *zChild = &apCopy[nOld-1]->aData[8];
6116 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006117 }
6118
danielk197713bd99f2009-06-24 05:40:34 +00006119 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6120 /* The root page of the b-tree now contains no cells. The only sibling
6121 ** page is the right-child of the parent. Copy the contents of the
6122 ** child page into the parent, decreasing the overall height of the
6123 ** b-tree structure by one. This is described as the "balance-shallower"
6124 ** sub-algorithm in some documentation.
6125 **
6126 ** If this is an auto-vacuum database, the call to copyNodeContent()
6127 ** sets all pointer-map entries corresponding to database image pages
6128 ** for which the pointer is stored within the content being copied.
6129 **
6130 ** The second assert below verifies that the child page is defragmented
6131 ** (it must be, as it was just reconstructed using assemblePage()). This
6132 ** is important if the parent page happens to be page 1 of the database
6133 ** image. */
6134 assert( nNew==1 );
6135 assert( apNew[0]->nFree ==
6136 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6137 );
drhc314dc72009-07-21 11:52:34 +00006138 copyNodeContent(apNew[0], pParent, &rc);
6139 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006140 }else if( ISAUTOVACUUM ){
6141 /* Fix the pointer-map entries for all the cells that were shifted around.
6142 ** There are several different types of pointer-map entries that need to
6143 ** be dealt with by this routine. Some of these have been set already, but
6144 ** many have not. The following is a summary:
6145 **
6146 ** 1) The entries associated with new sibling pages that were not
6147 ** siblings when this function was called. These have already
6148 ** been set. We don't need to worry about old siblings that were
6149 ** moved to the free-list - the freePage() code has taken care
6150 ** of those.
6151 **
6152 ** 2) The pointer-map entries associated with the first overflow
6153 ** page in any overflow chains used by new divider cells. These
6154 ** have also already been taken care of by the insertCell() code.
6155 **
6156 ** 3) If the sibling pages are not leaves, then the child pages of
6157 ** cells stored on the sibling pages may need to be updated.
6158 **
6159 ** 4) If the sibling pages are not internal intkey nodes, then any
6160 ** overflow pages used by these cells may need to be updated
6161 ** (internal intkey nodes never contain pointers to overflow pages).
6162 **
6163 ** 5) If the sibling pages are not leaves, then the pointer-map
6164 ** entries for the right-child pages of each sibling may need
6165 ** to be updated.
6166 **
6167 ** Cases 1 and 2 are dealt with above by other code. The next
6168 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6169 ** setting a pointer map entry is a relatively expensive operation, this
6170 ** code only sets pointer map entries for child or overflow pages that have
6171 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006172 MemPage *pNew = apNew[0];
6173 MemPage *pOld = apCopy[0];
6174 int nOverflow = pOld->nOverflow;
6175 int iNextOld = pOld->nCell + nOverflow;
6176 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6177 j = 0; /* Current 'old' sibling page */
6178 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006179 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006180 int isDivider = 0;
6181 while( i==iNextOld ){
6182 /* Cell i is the cell immediately following the last cell on old
6183 ** sibling page j. If the siblings are not leaf pages of an
6184 ** intkey b-tree, then cell i was a divider cell. */
6185 pOld = apCopy[++j];
6186 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6187 if( pOld->nOverflow ){
6188 nOverflow = pOld->nOverflow;
6189 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6190 }
6191 isDivider = !leafData;
6192 }
6193
6194 assert(nOverflow>0 || iOverflow<i );
6195 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6196 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6197 if( i==iOverflow ){
6198 isDivider = 1;
6199 if( (--nOverflow)>0 ){
6200 iOverflow++;
6201 }
6202 }
6203
6204 if( i==cntNew[k] ){
6205 /* Cell i is the cell immediately following the last cell on new
6206 ** sibling page k. If the siblings are not leaf pages of an
6207 ** intkey b-tree, then cell i is a divider cell. */
6208 pNew = apNew[++k];
6209 if( !leafData ) continue;
6210 }
danielk19774dbaa892009-06-16 16:50:22 +00006211 assert( j<nOld );
6212 assert( k<nNew );
6213
6214 /* If the cell was originally divider cell (and is not now) or
6215 ** an overflow cell, or if the cell was located on a different sibling
6216 ** page before the balancing, then the pointer map entries associated
6217 ** with any child or overflow pages need to be updated. */
6218 if( isDivider || pOld->pgno!=pNew->pgno ){
6219 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006220 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006221 }
drh98add2e2009-07-20 17:11:49 +00006222 if( szCell[i]>pNew->minLocal ){
6223 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006224 }
6225 }
6226 }
6227
6228 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006229 for(i=0; i<nNew; i++){
6230 u32 key = get4byte(&apNew[i]->aData[8]);
6231 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006232 }
6233 }
6234
6235#if 0
6236 /* The ptrmapCheckPages() contains assert() statements that verify that
6237 ** all pointer map pages are set correctly. This is helpful while
6238 ** debugging. This is usually disabled because a corrupt database may
6239 ** cause an assert() statement to fail. */
6240 ptrmapCheckPages(apNew, nNew);
6241 ptrmapCheckPages(&pParent, 1);
6242#endif
6243 }
6244
danielk197771d5d2c2008-09-29 11:49:47 +00006245 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006246 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6247 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006248
drh8b2f49b2001-06-08 00:21:52 +00006249 /*
drh14acc042001-06-10 19:56:58 +00006250 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006251 */
drh14acc042001-06-10 19:56:58 +00006252balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006253 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006254 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006255 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006256 }
drh14acc042001-06-10 19:56:58 +00006257 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006258 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006259 }
danielk1977eaa06f62008-09-18 17:34:44 +00006260
drh8b2f49b2001-06-08 00:21:52 +00006261 return rc;
6262}
6263
drh43605152004-05-29 21:46:49 +00006264
6265/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006266** This function is called when the root page of a b-tree structure is
6267** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006268**
danielk1977a50d9aa2009-06-08 14:49:45 +00006269** A new child page is allocated and the contents of the current root
6270** page, including overflow cells, are copied into the child. The root
6271** page is then overwritten to make it an empty page with the right-child
6272** pointer pointing to the new page.
6273**
6274** Before returning, all pointer-map entries corresponding to pages
6275** that the new child-page now contains pointers to are updated. The
6276** entry corresponding to the new right-child pointer of the root
6277** page is also updated.
6278**
6279** If successful, *ppChild is set to contain a reference to the child
6280** page and SQLITE_OK is returned. In this case the caller is required
6281** to call releasePage() on *ppChild exactly once. If an error occurs,
6282** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006283*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006284static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6285 int rc; /* Return value from subprocedures */
6286 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006287 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006288 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006289
danielk1977a50d9aa2009-06-08 14:49:45 +00006290 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006291 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006292
danielk1977a50d9aa2009-06-08 14:49:45 +00006293 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6294 ** page that will become the new right-child of pPage. Copy the contents
6295 ** of the node stored on pRoot into the new child page.
6296 */
drh98add2e2009-07-20 17:11:49 +00006297 rc = sqlite3PagerWrite(pRoot->pDbPage);
6298 if( rc==SQLITE_OK ){
6299 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006300 copyNodeContent(pRoot, pChild, &rc);
6301 if( ISAUTOVACUUM ){
6302 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006303 }
6304 }
6305 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006306 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006307 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006308 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006309 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006310 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6311 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6312 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006313
danielk1977a50d9aa2009-06-08 14:49:45 +00006314 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6315
6316 /* Copy the overflow cells from pRoot to pChild */
6317 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6318 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006319
6320 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6321 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6322 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6323
6324 *ppChild = pChild;
6325 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006326}
6327
6328/*
danielk197771d5d2c2008-09-29 11:49:47 +00006329** The page that pCur currently points to has just been modified in
6330** some way. This function figures out if this modification means the
6331** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006332** routine. Balancing routines are:
6333**
6334** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006335** balance_deeper()
6336** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006337*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006338static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006339 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006340 const int nMin = pCur->pBt->usableSize * 2 / 3;
6341 u8 aBalanceQuickSpace[13];
6342 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006343
shane75ac1de2009-06-09 18:58:52 +00006344 TESTONLY( int balance_quick_called = 0 );
6345 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006346
6347 do {
6348 int iPage = pCur->iPage;
6349 MemPage *pPage = pCur->apPage[iPage];
6350
6351 if( iPage==0 ){
6352 if( pPage->nOverflow ){
6353 /* The root page of the b-tree is overfull. In this case call the
6354 ** balance_deeper() function to create a new child for the root-page
6355 ** and copy the current contents of the root-page to it. The
6356 ** next iteration of the do-loop will balance the child page.
6357 */
6358 assert( (balance_deeper_called++)==0 );
6359 rc = balance_deeper(pPage, &pCur->apPage[1]);
6360 if( rc==SQLITE_OK ){
6361 pCur->iPage = 1;
6362 pCur->aiIdx[0] = 0;
6363 pCur->aiIdx[1] = 0;
6364 assert( pCur->apPage[1]->nOverflow );
6365 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006366 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006367 break;
6368 }
6369 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6370 break;
6371 }else{
6372 MemPage * const pParent = pCur->apPage[iPage-1];
6373 int const iIdx = pCur->aiIdx[iPage-1];
6374
6375 rc = sqlite3PagerWrite(pParent->pDbPage);
6376 if( rc==SQLITE_OK ){
6377#ifndef SQLITE_OMIT_QUICKBALANCE
6378 if( pPage->hasData
6379 && pPage->nOverflow==1
6380 && pPage->aOvfl[0].idx==pPage->nCell
6381 && pParent->pgno!=1
6382 && pParent->nCell==iIdx
6383 ){
6384 /* Call balance_quick() to create a new sibling of pPage on which
6385 ** to store the overflow cell. balance_quick() inserts a new cell
6386 ** into pParent, which may cause pParent overflow. If this
6387 ** happens, the next interation of the do-loop will balance pParent
6388 ** use either balance_nonroot() or balance_deeper(). Until this
6389 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6390 ** buffer.
6391 **
6392 ** The purpose of the following assert() is to check that only a
6393 ** single call to balance_quick() is made for each call to this
6394 ** function. If this were not verified, a subtle bug involving reuse
6395 ** of the aBalanceQuickSpace[] might sneak in.
6396 */
6397 assert( (balance_quick_called++)==0 );
6398 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6399 }else
6400#endif
6401 {
6402 /* In this case, call balance_nonroot() to redistribute cells
6403 ** between pPage and up to 2 of its sibling pages. This involves
6404 ** modifying the contents of pParent, which may cause pParent to
6405 ** become overfull or underfull. The next iteration of the do-loop
6406 ** will balance the parent page to correct this.
6407 **
6408 ** If the parent page becomes overfull, the overflow cell or cells
6409 ** are stored in the pSpace buffer allocated immediately below.
6410 ** A subsequent iteration of the do-loop will deal with this by
6411 ** calling balance_nonroot() (balance_deeper() may be called first,
6412 ** but it doesn't deal with overflow cells - just moves them to a
6413 ** different page). Once this subsequent call to balance_nonroot()
6414 ** has completed, it is safe to release the pSpace buffer used by
6415 ** the previous call, as the overflow cell data will have been
6416 ** copied either into the body of a database page or into the new
6417 ** pSpace buffer passed to the latter call to balance_nonroot().
6418 */
6419 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006420 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006421 if( pFree ){
6422 /* If pFree is not NULL, it points to the pSpace buffer used
6423 ** by a previous call to balance_nonroot(). Its contents are
6424 ** now stored either on real database pages or within the
6425 ** new pSpace buffer, so it may be safely freed here. */
6426 sqlite3PageFree(pFree);
6427 }
6428
danielk19774dbaa892009-06-16 16:50:22 +00006429 /* The pSpace buffer will be freed after the next call to
6430 ** balance_nonroot(), or just before this function returns, whichever
6431 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006432 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006433 }
6434 }
6435
6436 pPage->nOverflow = 0;
6437
6438 /* The next iteration of the do-loop balances the parent page. */
6439 releasePage(pPage);
6440 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006441 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006442 }while( rc==SQLITE_OK );
6443
6444 if( pFree ){
6445 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006446 }
6447 return rc;
6448}
6449
drhf74b8d92002-09-01 23:20:45 +00006450
6451/*
drh3b7511c2001-05-26 13:15:44 +00006452** Insert a new record into the BTree. The key is given by (pKey,nKey)
6453** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006454** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006455** is left pointing at a random location.
6456**
6457** For an INTKEY table, only the nKey value of the key is used. pKey is
6458** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006459**
6460** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006461** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006462** been performed. seekResult is the search result returned (a negative
6463** number if pCur points at an entry that is smaller than (pKey, nKey), or
6464** a positive value if pCur points at an etry that is larger than
6465** (pKey, nKey)).
6466**
drh3e9ca092009-09-08 01:14:48 +00006467** If the seekResult parameter is non-zero, then the caller guarantees that
6468** cursor pCur is pointing at the existing copy of a row that is to be
6469** overwritten. If the seekResult parameter is 0, then cursor pCur may
6470** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006471** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006472*/
drh3aac2dd2004-04-26 14:10:20 +00006473int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006474 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006475 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006476 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006477 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006478 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006479 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006480){
drh3b7511c2001-05-26 13:15:44 +00006481 int rc;
drh3e9ca092009-09-08 01:14:48 +00006482 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006483 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006484 int idx;
drh3b7511c2001-05-26 13:15:44 +00006485 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006486 Btree *p = pCur->pBtree;
6487 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006488 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006489 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006490
drh98add2e2009-07-20 17:11:49 +00006491 if( pCur->eState==CURSOR_FAULT ){
6492 assert( pCur->skipNext!=SQLITE_OK );
6493 return pCur->skipNext;
6494 }
6495
drh1fee73e2007-08-29 04:00:57 +00006496 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006497 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006498 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6499
danielk197731d31b82009-07-13 13:18:07 +00006500 /* Assert that the caller has been consistent. If this cursor was opened
6501 ** expecting an index b-tree, then the caller should be inserting blob
6502 ** keys with no associated data. If the cursor was opened expecting an
6503 ** intkey table, the caller should be inserting integer keys with a
6504 ** blob of associated data. */
6505 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6506
danielk197796d48e92009-06-29 06:00:37 +00006507 /* If this is an insert into a table b-tree, invalidate any incrblob
6508 ** cursors open on the row being replaced (assuming this is a replace
6509 ** operation - if it is not, the following is a no-op). */
6510 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006511 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006512 }
danielk197796d48e92009-06-29 06:00:37 +00006513
danielk19779c3acf32009-05-02 07:36:49 +00006514 /* Save the positions of any other cursors open on this table.
6515 **
danielk19773509a652009-07-06 18:56:13 +00006516 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006517 ** example, when inserting data into a table with auto-generated integer
6518 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6519 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006520 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006521 ** that the cursor is already where it needs to be and returns without
6522 ** doing any work. To avoid thwarting these optimizations, it is important
6523 ** not to clear the cursor here.
6524 */
drh4c301aa2009-07-15 17:25:45 +00006525 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6526 if( rc ) return rc;
6527 if( !loc ){
6528 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6529 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006530 }
danielk1977b980d2212009-06-22 18:03:51 +00006531 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006532
danielk197771d5d2c2008-09-29 11:49:47 +00006533 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006534 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006535 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006536
drh3a4c1412004-05-09 20:40:11 +00006537 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6538 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6539 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006540 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006541 allocateTempSpace(pBt);
6542 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006543 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006544 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006545 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006546 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006547 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006548 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006549 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006550 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006551 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006552 rc = sqlite3PagerWrite(pPage->pDbPage);
6553 if( rc ){
6554 goto end_insert;
6555 }
danielk197771d5d2c2008-09-29 11:49:47 +00006556 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006557 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006558 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006559 }
drh43605152004-05-29 21:46:49 +00006560 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006561 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006562 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006563 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006564 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006565 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006566 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006567 }else{
drh4b70f112004-05-02 21:12:19 +00006568 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006569 }
drh98add2e2009-07-20 17:11:49 +00006570 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006571 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006572
danielk1977a50d9aa2009-06-08 14:49:45 +00006573 /* If no error has occured and pPage has an overflow cell, call balance()
6574 ** to redistribute the cells within the tree. Since balance() may move
6575 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6576 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006577 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006578 ** Previous versions of SQLite called moveToRoot() to move the cursor
6579 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006580 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6581 ** set the cursor state to "invalid". This makes common insert operations
6582 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006583 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006584 ** There is a subtle but important optimization here too. When inserting
6585 ** multiple records into an intkey b-tree using a single cursor (as can
6586 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6587 ** is advantageous to leave the cursor pointing to the last entry in
6588 ** the b-tree if possible. If the cursor is left pointing to the last
6589 ** entry in the table, and the next row inserted has an integer key
6590 ** larger than the largest existing key, it is possible to insert the
6591 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006592 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006593 pCur->info.nSize = 0;
6594 pCur->validNKey = 0;
6595 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 rc = balance(pCur);
6597
6598 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006599 ** fails. Internal data structure corruption will result otherwise.
6600 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6601 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006602 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006603 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006604 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006605 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006606
drh2e38c322004-09-03 18:38:44 +00006607end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006608 return rc;
6609}
6610
6611/*
drh4b70f112004-05-02 21:12:19 +00006612** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006613** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006614*/
drh3aac2dd2004-04-26 14:10:20 +00006615int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006616 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006617 BtShared *pBt = p->pBt;
6618 int rc; /* Return code */
6619 MemPage *pPage; /* Page to delete cell from */
6620 unsigned char *pCell; /* Pointer to cell to delete */
6621 int iCellIdx; /* Index of cell to delete */
6622 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006623
drh1fee73e2007-08-29 04:00:57 +00006624 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006625 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006626 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006627 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006628 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6629 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6630
danielk19774dbaa892009-06-16 16:50:22 +00006631 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6632 || NEVER(pCur->eState!=CURSOR_VALID)
6633 ){
6634 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006635 }
danielk1977da184232006-01-05 11:34:32 +00006636
danielk197796d48e92009-06-29 06:00:37 +00006637 /* If this is a delete operation to remove a row from a table b-tree,
6638 ** invalidate any incrblob cursors open on the row being deleted. */
6639 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006640 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006641 }
6642
6643 iCellDepth = pCur->iPage;
6644 iCellIdx = pCur->aiIdx[iCellDepth];
6645 pPage = pCur->apPage[iCellDepth];
6646 pCell = findCell(pPage, iCellIdx);
6647
6648 /* If the page containing the entry to delete is not a leaf page, move
6649 ** the cursor to the largest entry in the tree that is smaller than
6650 ** the entry being deleted. This cell will replace the cell being deleted
6651 ** from the internal node. The 'previous' entry is used for this instead
6652 ** of the 'next' entry, as the previous entry is always a part of the
6653 ** sub-tree headed by the child page of the cell being deleted. This makes
6654 ** balancing the tree following the delete operation easier. */
6655 if( !pPage->leaf ){
6656 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006657 rc = sqlite3BtreePrevious(pCur, &notUsed);
6658 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006659 }
6660
6661 /* Save the positions of any other cursors open on this table before
6662 ** making any modifications. Make the page containing the entry to be
6663 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006664 ** entry and finally remove the cell itself from within the page.
6665 */
6666 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6667 if( rc ) return rc;
6668 rc = sqlite3PagerWrite(pPage->pDbPage);
6669 if( rc ) return rc;
6670 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006671 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006672 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006673
danielk19774dbaa892009-06-16 16:50:22 +00006674 /* If the cell deleted was not located on a leaf page, then the cursor
6675 ** is currently pointing to the largest entry in the sub-tree headed
6676 ** by the child-page of the cell that was just deleted from an internal
6677 ** node. The cell from the leaf node needs to be moved to the internal
6678 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006679 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006680 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6681 int nCell;
6682 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6683 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006684
danielk19774dbaa892009-06-16 16:50:22 +00006685 pCell = findCell(pLeaf, pLeaf->nCell-1);
6686 nCell = cellSizePtr(pLeaf, pCell);
6687 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006688
danielk19774dbaa892009-06-16 16:50:22 +00006689 allocateTempSpace(pBt);
6690 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006691
drha4ec1d42009-07-11 13:13:11 +00006692 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006693 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6694 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006695 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006696 }
danielk19774dbaa892009-06-16 16:50:22 +00006697
6698 /* Balance the tree. If the entry deleted was located on a leaf page,
6699 ** then the cursor still points to that page. In this case the first
6700 ** call to balance() repairs the tree, and the if(...) condition is
6701 ** never true.
6702 **
6703 ** Otherwise, if the entry deleted was on an internal node page, then
6704 ** pCur is pointing to the leaf page from which a cell was removed to
6705 ** replace the cell deleted from the internal node. This is slightly
6706 ** tricky as the leaf node may be underfull, and the internal node may
6707 ** be either under or overfull. In this case run the balancing algorithm
6708 ** on the leaf node first. If the balance proceeds far enough up the
6709 ** tree that we can be sure that any problem in the internal node has
6710 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6711 ** walk the cursor up the tree to the internal node and balance it as
6712 ** well. */
6713 rc = balance(pCur);
6714 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6715 while( pCur->iPage>iCellDepth ){
6716 releasePage(pCur->apPage[pCur->iPage--]);
6717 }
6718 rc = balance(pCur);
6719 }
6720
danielk19776b456a22005-03-21 04:04:02 +00006721 if( rc==SQLITE_OK ){
6722 moveToRoot(pCur);
6723 }
drh5e2f8b92001-05-28 00:41:15 +00006724 return rc;
drh3b7511c2001-05-26 13:15:44 +00006725}
drh8b2f49b2001-06-08 00:21:52 +00006726
6727/*
drhc6b52df2002-01-04 03:09:29 +00006728** Create a new BTree table. Write into *piTable the page
6729** number for the root page of the new table.
6730**
drhab01f612004-05-22 02:55:23 +00006731** The type of type is determined by the flags parameter. Only the
6732** following values of flags are currently in use. Other values for
6733** flags might not work:
6734**
6735** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6736** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006737*/
drhd677b3d2007-08-20 22:48:41 +00006738static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006739 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006740 MemPage *pRoot;
6741 Pgno pgnoRoot;
6742 int rc;
drhd677b3d2007-08-20 22:48:41 +00006743
drh1fee73e2007-08-29 04:00:57 +00006744 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006745 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006746 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006747
danielk1977003ba062004-11-04 02:57:33 +00006748#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006749 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006750 if( rc ){
6751 return rc;
6752 }
danielk1977003ba062004-11-04 02:57:33 +00006753#else
danielk1977687566d2004-11-02 12:56:41 +00006754 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006755 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6756 MemPage *pPageMove; /* The page to move to. */
6757
danielk197720713f32007-05-03 11:43:33 +00006758 /* Creating a new table may probably require moving an existing database
6759 ** to make room for the new tables root page. In case this page turns
6760 ** out to be an overflow page, delete all overflow page-map caches
6761 ** held by open cursors.
6762 */
danielk197792d4d7a2007-05-04 12:05:56 +00006763 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006764
danielk1977003ba062004-11-04 02:57:33 +00006765 /* Read the value of meta[3] from the database to determine where the
6766 ** root page of the new table should go. meta[3] is the largest root-page
6767 ** created so far, so the new root-page is (meta[3]+1).
6768 */
danielk1977602b4662009-07-02 07:47:33 +00006769 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006770 pgnoRoot++;
6771
danielk1977599fcba2004-11-08 07:13:13 +00006772 /* The new root-page may not be allocated on a pointer-map page, or the
6773 ** PENDING_BYTE page.
6774 */
drh72190432008-01-31 14:54:43 +00006775 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006776 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006777 pgnoRoot++;
6778 }
6779 assert( pgnoRoot>=3 );
6780
6781 /* Allocate a page. The page that currently resides at pgnoRoot will
6782 ** be moved to the allocated page (unless the allocated page happens
6783 ** to reside at pgnoRoot).
6784 */
drh4f0c5872007-03-26 22:05:01 +00006785 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006786 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006787 return rc;
6788 }
danielk1977003ba062004-11-04 02:57:33 +00006789
6790 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006791 /* pgnoRoot is the page that will be used for the root-page of
6792 ** the new table (assuming an error did not occur). But we were
6793 ** allocated pgnoMove. If required (i.e. if it was not allocated
6794 ** by extending the file), the current page at position pgnoMove
6795 ** is already journaled.
6796 */
drheeb844a2009-08-08 18:01:07 +00006797 u8 eType = 0;
6798 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006799
6800 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006801
6802 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006803 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006804 if( rc!=SQLITE_OK ){
6805 return rc;
6806 }
6807 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006808 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6809 rc = SQLITE_CORRUPT_BKPT;
6810 }
6811 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006812 releasePage(pRoot);
6813 return rc;
6814 }
drhccae6022005-02-26 17:31:26 +00006815 assert( eType!=PTRMAP_ROOTPAGE );
6816 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006817 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006818 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006819
6820 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006821 if( rc!=SQLITE_OK ){
6822 return rc;
6823 }
danielk197730548662009-07-09 05:07:37 +00006824 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006825 if( rc!=SQLITE_OK ){
6826 return rc;
6827 }
danielk19773b8a05f2007-03-19 17:44:26 +00006828 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006829 if( rc!=SQLITE_OK ){
6830 releasePage(pRoot);
6831 return rc;
6832 }
6833 }else{
6834 pRoot = pPageMove;
6835 }
6836
danielk197742741be2005-01-08 12:42:39 +00006837 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006838 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006839 if( rc ){
6840 releasePage(pRoot);
6841 return rc;
6842 }
danielk1977aef0bf62005-12-30 16:28:01 +00006843 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006844 if( rc ){
6845 releasePage(pRoot);
6846 return rc;
6847 }
danielk197742741be2005-01-08 12:42:39 +00006848
danielk1977003ba062004-11-04 02:57:33 +00006849 }else{
drh4f0c5872007-03-26 22:05:01 +00006850 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006851 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006852 }
6853#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006854 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006855 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006856 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006857 *piTable = (int)pgnoRoot;
6858 return SQLITE_OK;
6859}
drhd677b3d2007-08-20 22:48:41 +00006860int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6861 int rc;
6862 sqlite3BtreeEnter(p);
6863 rc = btreeCreateTable(p, piTable, flags);
6864 sqlite3BtreeLeave(p);
6865 return rc;
6866}
drh8b2f49b2001-06-08 00:21:52 +00006867
6868/*
6869** Erase the given database page and all its children. Return
6870** the page to the freelist.
6871*/
drh4b70f112004-05-02 21:12:19 +00006872static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006873 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006874 Pgno pgno, /* Page number to clear */
6875 int freePageFlag, /* Deallocate page if true */
6876 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006877){
danielk1977146ba992009-07-22 14:08:13 +00006878 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006879 int rc;
drh4b70f112004-05-02 21:12:19 +00006880 unsigned char *pCell;
6881 int i;
drh8b2f49b2001-06-08 00:21:52 +00006882
drh1fee73e2007-08-29 04:00:57 +00006883 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006884 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006885 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006886 }
6887
danielk197771d5d2c2008-09-29 11:49:47 +00006888 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006889 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006890 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006891 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006892 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006893 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006894 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006895 }
drh4b70f112004-05-02 21:12:19 +00006896 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006897 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006898 }
drha34b6762004-05-07 13:30:42 +00006899 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006900 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006901 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006902 }else if( pnChange ){
6903 assert( pPage->intKey );
6904 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006905 }
6906 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00006907 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00006908 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006909 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006910 }
danielk19776b456a22005-03-21 04:04:02 +00006911
6912cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006913 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006914 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006915}
6916
6917/*
drhab01f612004-05-22 02:55:23 +00006918** Delete all information from a single table in the database. iTable is
6919** the page number of the root of the table. After this routine returns,
6920** the root page is empty, but still exists.
6921**
6922** This routine will fail with SQLITE_LOCKED if there are any open
6923** read cursors on the table. Open write cursors are moved to the
6924** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006925**
6926** If pnChange is not NULL, then table iTable must be an intkey table. The
6927** integer value pointed to by pnChange is incremented by the number of
6928** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006929*/
danielk1977c7af4842008-10-27 13:59:33 +00006930int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006931 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006932 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006933 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006934 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006935
6936 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6937 ** is the root of a table b-tree - if it is not, the following call is
6938 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00006939 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00006940
drhc046e3e2009-07-15 11:26:44 +00006941 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
6942 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00006943 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006944 }
drhd677b3d2007-08-20 22:48:41 +00006945 sqlite3BtreeLeave(p);
6946 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006947}
6948
6949/*
6950** Erase all information in a table and add the root of the table to
6951** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006952** page 1) is never added to the freelist.
6953**
6954** This routine will fail with SQLITE_LOCKED if there are any open
6955** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006956**
6957** If AUTOVACUUM is enabled and the page at iTable is not the last
6958** root page in the database file, then the last root page
6959** in the database file is moved into the slot formerly occupied by
6960** iTable and that last slot formerly occupied by the last root page
6961** is added to the freelist instead of iTable. In this say, all
6962** root pages are kept at the beginning of the database file, which
6963** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6964** page number that used to be the last root page in the file before
6965** the move. If no page gets moved, *piMoved is set to 0.
6966** The last root page is recorded in meta[3] and the value of
6967** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006968*/
danielk197789d40042008-11-17 14:20:56 +00006969static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006970 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006971 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006972 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006973
drh1fee73e2007-08-29 04:00:57 +00006974 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006975 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006976
danielk1977e6efa742004-11-10 11:55:10 +00006977 /* It is illegal to drop a table if any cursors are open on the
6978 ** database. This is because in auto-vacuum mode the backend may
6979 ** need to move another root-page to fill a gap left by the deleted
6980 ** root page. If an open cursor was using this page a problem would
6981 ** occur.
drhc046e3e2009-07-15 11:26:44 +00006982 **
6983 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00006984 */
drhc046e3e2009-07-15 11:26:44 +00006985 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00006986 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6987 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006988 }
danielk1977a0bf2652004-11-04 14:30:04 +00006989
danielk197730548662009-07-09 05:07:37 +00006990 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006991 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006992 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006993 if( rc ){
6994 releasePage(pPage);
6995 return rc;
6996 }
danielk1977a0bf2652004-11-04 14:30:04 +00006997
drh205f48e2004-11-05 00:43:11 +00006998 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006999
drh4b70f112004-05-02 21:12:19 +00007000 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007001#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007002 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007003 releasePage(pPage);
7004#else
7005 if( pBt->autoVacuum ){
7006 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007007 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007008
7009 if( iTable==maxRootPgno ){
7010 /* If the table being dropped is the table with the largest root-page
7011 ** number in the database, put the root page on the free list.
7012 */
drhc314dc72009-07-21 11:52:34 +00007013 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007014 releasePage(pPage);
7015 if( rc!=SQLITE_OK ){
7016 return rc;
7017 }
7018 }else{
7019 /* The table being dropped does not have the largest root-page
7020 ** number in the database. So move the page that does into the
7021 ** gap left by the deleted root-page.
7022 */
7023 MemPage *pMove;
7024 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007025 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007026 if( rc!=SQLITE_OK ){
7027 return rc;
7028 }
danielk19774c999992008-07-16 18:17:55 +00007029 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007030 releasePage(pMove);
7031 if( rc!=SQLITE_OK ){
7032 return rc;
7033 }
drhfe3313f2009-07-21 19:02:20 +00007034 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007035 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007036 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007037 releasePage(pMove);
7038 if( rc!=SQLITE_OK ){
7039 return rc;
7040 }
7041 *piMoved = maxRootPgno;
7042 }
7043
danielk1977599fcba2004-11-08 07:13:13 +00007044 /* Set the new 'max-root-page' value in the database header. This
7045 ** is the old value less one, less one more if that happens to
7046 ** be a root-page number, less one again if that is the
7047 ** PENDING_BYTE_PAGE.
7048 */
danielk197787a6e732004-11-05 12:58:25 +00007049 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007050 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7051 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007052 maxRootPgno--;
7053 }
danielk1977599fcba2004-11-08 07:13:13 +00007054 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7055
danielk1977aef0bf62005-12-30 16:28:01 +00007056 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007057 }else{
drhc314dc72009-07-21 11:52:34 +00007058 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007059 releasePage(pPage);
7060 }
7061#endif
drh2aa679f2001-06-25 02:11:07 +00007062 }else{
drhc046e3e2009-07-15 11:26:44 +00007063 /* If sqlite3BtreeDropTable was called on page 1.
7064 ** This really never should happen except in a corrupt
7065 ** database.
7066 */
drha34b6762004-05-07 13:30:42 +00007067 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007068 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007069 }
drh8b2f49b2001-06-08 00:21:52 +00007070 return rc;
7071}
drhd677b3d2007-08-20 22:48:41 +00007072int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7073 int rc;
7074 sqlite3BtreeEnter(p);
7075 rc = btreeDropTable(p, iTable, piMoved);
7076 sqlite3BtreeLeave(p);
7077 return rc;
7078}
drh8b2f49b2001-06-08 00:21:52 +00007079
drh001bbcb2003-03-19 03:14:00 +00007080
drh8b2f49b2001-06-08 00:21:52 +00007081/*
danielk1977602b4662009-07-02 07:47:33 +00007082** This function may only be called if the b-tree connection already
7083** has a read or write transaction open on the database.
7084**
drh23e11ca2004-05-04 17:27:28 +00007085** Read the meta-information out of a database file. Meta[0]
7086** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007087** through meta[15] are available for use by higher layers. Meta[0]
7088** is read-only, the others are read/write.
7089**
7090** The schema layer numbers meta values differently. At the schema
7091** layer (and the SetCookie and ReadCookie opcodes) the number of
7092** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007093*/
danielk1977602b4662009-07-02 07:47:33 +00007094void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007095 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007096
drhd677b3d2007-08-20 22:48:41 +00007097 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007098 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007099 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007100 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007101 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007102
danielk1977602b4662009-07-02 07:47:33 +00007103 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007104
danielk1977602b4662009-07-02 07:47:33 +00007105 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7106 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007107#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007108 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007109#endif
drhae157872004-08-14 19:20:09 +00007110
drhd677b3d2007-08-20 22:48:41 +00007111 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007112}
7113
7114/*
drh23e11ca2004-05-04 17:27:28 +00007115** Write meta-information back into the database. Meta[0] is
7116** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007117*/
danielk1977aef0bf62005-12-30 16:28:01 +00007118int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7119 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007120 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007121 int rc;
drh23e11ca2004-05-04 17:27:28 +00007122 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007123 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007124 assert( p->inTrans==TRANS_WRITE );
7125 assert( pBt->pPage1!=0 );
7126 pP1 = pBt->pPage1->aData;
7127 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7128 if( rc==SQLITE_OK ){
7129 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007130#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007131 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007132 assert( pBt->autoVacuum || iMeta==0 );
7133 assert( iMeta==0 || iMeta==1 );
7134 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007135 }
drh64022502009-01-09 14:11:04 +00007136#endif
drh5df72a52002-06-06 23:16:05 +00007137 }
drhd677b3d2007-08-20 22:48:41 +00007138 sqlite3BtreeLeave(p);
7139 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007140}
drh8c42ca92001-06-22 19:15:00 +00007141
danielk1977a5533162009-02-24 10:01:51 +00007142#ifndef SQLITE_OMIT_BTREECOUNT
7143/*
7144** The first argument, pCur, is a cursor opened on some b-tree. Count the
7145** number of entries in the b-tree and write the result to *pnEntry.
7146**
7147** SQLITE_OK is returned if the operation is successfully executed.
7148** Otherwise, if an error is encountered (i.e. an IO error or database
7149** corruption) an SQLite error code is returned.
7150*/
7151int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7152 i64 nEntry = 0; /* Value to return in *pnEntry */
7153 int rc; /* Return code */
7154 rc = moveToRoot(pCur);
7155
7156 /* Unless an error occurs, the following loop runs one iteration for each
7157 ** page in the B-Tree structure (not including overflow pages).
7158 */
7159 while( rc==SQLITE_OK ){
7160 int iIdx; /* Index of child node in parent */
7161 MemPage *pPage; /* Current page of the b-tree */
7162
7163 /* If this is a leaf page or the tree is not an int-key tree, then
7164 ** this page contains countable entries. Increment the entry counter
7165 ** accordingly.
7166 */
7167 pPage = pCur->apPage[pCur->iPage];
7168 if( pPage->leaf || !pPage->intKey ){
7169 nEntry += pPage->nCell;
7170 }
7171
7172 /* pPage is a leaf node. This loop navigates the cursor so that it
7173 ** points to the first interior cell that it points to the parent of
7174 ** the next page in the tree that has not yet been visited. The
7175 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7176 ** of the page, or to the number of cells in the page if the next page
7177 ** to visit is the right-child of its parent.
7178 **
7179 ** If all pages in the tree have been visited, return SQLITE_OK to the
7180 ** caller.
7181 */
7182 if( pPage->leaf ){
7183 do {
7184 if( pCur->iPage==0 ){
7185 /* All pages of the b-tree have been visited. Return successfully. */
7186 *pnEntry = nEntry;
7187 return SQLITE_OK;
7188 }
danielk197730548662009-07-09 05:07:37 +00007189 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007190 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7191
7192 pCur->aiIdx[pCur->iPage]++;
7193 pPage = pCur->apPage[pCur->iPage];
7194 }
7195
7196 /* Descend to the child node of the cell that the cursor currently
7197 ** points at. This is the right-child if (iIdx==pPage->nCell).
7198 */
7199 iIdx = pCur->aiIdx[pCur->iPage];
7200 if( iIdx==pPage->nCell ){
7201 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7202 }else{
7203 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7204 }
7205 }
7206
shanebe217792009-03-05 04:20:31 +00007207 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007208 return rc;
7209}
7210#endif
drhdd793422001-06-28 01:54:48 +00007211
drhdd793422001-06-28 01:54:48 +00007212/*
drh5eddca62001-06-30 21:53:53 +00007213** Return the pager associated with a BTree. This routine is used for
7214** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007215*/
danielk1977aef0bf62005-12-30 16:28:01 +00007216Pager *sqlite3BtreePager(Btree *p){
7217 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007218}
drh5eddca62001-06-30 21:53:53 +00007219
drhb7f91642004-10-31 02:22:47 +00007220#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007221/*
7222** Append a message to the error message string.
7223*/
drh2e38c322004-09-03 18:38:44 +00007224static void checkAppendMsg(
7225 IntegrityCk *pCheck,
7226 char *zMsg1,
7227 const char *zFormat,
7228 ...
7229){
7230 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007231 if( !pCheck->mxErr ) return;
7232 pCheck->mxErr--;
7233 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007234 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007235 if( pCheck->errMsg.nChar ){
7236 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007237 }
drhf089aa42008-07-08 19:34:06 +00007238 if( zMsg1 ){
7239 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7240 }
7241 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7242 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007243 if( pCheck->errMsg.mallocFailed ){
7244 pCheck->mallocFailed = 1;
7245 }
drh5eddca62001-06-30 21:53:53 +00007246}
drhb7f91642004-10-31 02:22:47 +00007247#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007248
drhb7f91642004-10-31 02:22:47 +00007249#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007250/*
7251** Add 1 to the reference count for page iPage. If this is the second
7252** reference to the page, add an error message to pCheck->zErrMsg.
7253** Return 1 if there are 2 ore more references to the page and 0 if
7254** if this is the first reference to the page.
7255**
7256** Also check that the page number is in bounds.
7257*/
danielk197789d40042008-11-17 14:20:56 +00007258static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007259 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007260 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007261 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007262 return 1;
7263 }
7264 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007265 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007266 return 1;
7267 }
7268 return (pCheck->anRef[iPage]++)>1;
7269}
7270
danielk1977afcdd022004-10-31 16:25:42 +00007271#ifndef SQLITE_OMIT_AUTOVACUUM
7272/*
7273** Check that the entry in the pointer-map for page iChild maps to
7274** page iParent, pointer type ptrType. If not, append an error message
7275** to pCheck.
7276*/
7277static void checkPtrmap(
7278 IntegrityCk *pCheck, /* Integrity check context */
7279 Pgno iChild, /* Child page number */
7280 u8 eType, /* Expected pointer map type */
7281 Pgno iParent, /* Expected pointer map parent page number */
7282 char *zContext /* Context description (used for error msg) */
7283){
7284 int rc;
7285 u8 ePtrmapType;
7286 Pgno iPtrmapParent;
7287
7288 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7289 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007290 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007291 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7292 return;
7293 }
7294
7295 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7296 checkAppendMsg(pCheck, zContext,
7297 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7298 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7299 }
7300}
7301#endif
7302
drh5eddca62001-06-30 21:53:53 +00007303/*
7304** Check the integrity of the freelist or of an overflow page list.
7305** Verify that the number of pages on the list is N.
7306*/
drh30e58752002-03-02 20:41:57 +00007307static void checkList(
7308 IntegrityCk *pCheck, /* Integrity checking context */
7309 int isFreeList, /* True for a freelist. False for overflow page list */
7310 int iPage, /* Page number for first page in the list */
7311 int N, /* Expected number of pages in the list */
7312 char *zContext /* Context for error messages */
7313){
7314 int i;
drh3a4c1412004-05-09 20:40:11 +00007315 int expected = N;
7316 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007317 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007318 DbPage *pOvflPage;
7319 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007320 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007321 checkAppendMsg(pCheck, zContext,
7322 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007323 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007324 break;
7325 }
7326 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007327 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007328 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007329 break;
7330 }
danielk19773b8a05f2007-03-19 17:44:26 +00007331 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007332 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007333 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007334#ifndef SQLITE_OMIT_AUTOVACUUM
7335 if( pCheck->pBt->autoVacuum ){
7336 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7337 }
7338#endif
drh45b1fac2008-07-04 17:52:42 +00007339 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007340 checkAppendMsg(pCheck, zContext,
7341 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007342 N--;
7343 }else{
7344 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007345 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007346#ifndef SQLITE_OMIT_AUTOVACUUM
7347 if( pCheck->pBt->autoVacuum ){
7348 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7349 }
7350#endif
7351 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007352 }
7353 N -= n;
drh30e58752002-03-02 20:41:57 +00007354 }
drh30e58752002-03-02 20:41:57 +00007355 }
danielk1977afcdd022004-10-31 16:25:42 +00007356#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007357 else{
7358 /* If this database supports auto-vacuum and iPage is not the last
7359 ** page in this overflow list, check that the pointer-map entry for
7360 ** the following page matches iPage.
7361 */
7362 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007363 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007364 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7365 }
danielk1977afcdd022004-10-31 16:25:42 +00007366 }
7367#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007368 iPage = get4byte(pOvflData);
7369 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007370 }
7371}
drhb7f91642004-10-31 02:22:47 +00007372#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007373
drhb7f91642004-10-31 02:22:47 +00007374#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007375/*
7376** Do various sanity checks on a single page of a tree. Return
7377** the tree depth. Root pages return 0. Parents of root pages
7378** return 1, and so forth.
7379**
7380** These checks are done:
7381**
7382** 1. Make sure that cells and freeblocks do not overlap
7383** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007384** NO 2. Make sure cell keys are in order.
7385** NO 3. Make sure no key is less than or equal to zLowerBound.
7386** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007387** 5. Check the integrity of overflow pages.
7388** 6. Recursively call checkTreePage on all children.
7389** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007390** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007391** the root of the tree.
7392*/
7393static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007394 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007395 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007396 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007397){
7398 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007399 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007400 int hdr, cellStart;
7401 int nCell;
drhda200cc2004-05-09 11:51:38 +00007402 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007403 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007404 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007405 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007406 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007407
drh5bb3eb92007-05-04 13:15:55 +00007408 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007409
drh5eddca62001-06-30 21:53:53 +00007410 /* Check that the page exists
7411 */
drhd9cb6ac2005-10-20 07:28:17 +00007412 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007413 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007414 if( iPage==0 ) return 0;
7415 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007416 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007417 checkAppendMsg(pCheck, zContext,
7418 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007419 return 0;
7420 }
danielk197793caf5a2009-07-11 06:55:33 +00007421
7422 /* Clear MemPage.isInit to make sure the corruption detection code in
7423 ** btreeInitPage() is executed. */
7424 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007425 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007426 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007427 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007428 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007429 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007430 return 0;
7431 }
7432
7433 /* Check out all the cells.
7434 */
7435 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007436 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007437 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007438 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007439 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007440
7441 /* Check payload overflow pages
7442 */
drh5bb3eb92007-05-04 13:15:55 +00007443 sqlite3_snprintf(sizeof(zContext), zContext,
7444 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007445 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007446 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007447 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007448 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007449 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007450 if( (sz>info.nLocal)
7451 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7452 ){
drhb6f41482004-05-14 01:58:11 +00007453 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007454 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7455#ifndef SQLITE_OMIT_AUTOVACUUM
7456 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007457 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007458 }
7459#endif
7460 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007461 }
7462
7463 /* Check sanity of left child page.
7464 */
drhda200cc2004-05-09 11:51:38 +00007465 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007466 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007467#ifndef SQLITE_OMIT_AUTOVACUUM
7468 if( pBt->autoVacuum ){
7469 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7470 }
7471#endif
danielk197762c14b32008-11-19 09:05:26 +00007472 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007473 if( i>0 && d2!=depth ){
7474 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7475 }
7476 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007477 }
drh5eddca62001-06-30 21:53:53 +00007478 }
drhda200cc2004-05-09 11:51:38 +00007479 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007480 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007481 sqlite3_snprintf(sizeof(zContext), zContext,
7482 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007483#ifndef SQLITE_OMIT_AUTOVACUUM
7484 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007485 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007486 }
7487#endif
danielk197762c14b32008-11-19 09:05:26 +00007488 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007489 }
drh5eddca62001-06-30 21:53:53 +00007490
7491 /* Check for complete coverage of the page
7492 */
drhda200cc2004-05-09 11:51:38 +00007493 data = pPage->aData;
7494 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007495 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007496 if( hit==0 ){
7497 pCheck->mallocFailed = 1;
7498 }else{
shane5780ebd2008-11-11 17:36:30 +00007499 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007500 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007501 memset(hit+contentOffset, 0, usableSize-contentOffset);
7502 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007503 nCell = get2byte(&data[hdr+3]);
7504 cellStart = hdr + 12 - 4*pPage->leaf;
7505 for(i=0; i<nCell; i++){
7506 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007507 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007508 int j;
drh8c2bbb62009-07-10 02:52:20 +00007509 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007510 size = cellSizePtr(pPage, &data[pc]);
7511 }
drhd7c7ecd2009-07-14 17:48:06 +00007512 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007513 checkAppendMsg(pCheck, 0,
7514 "Corruption detected in cell %d on page %d",i,iPage,0);
7515 }else{
7516 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7517 }
drh2e38c322004-09-03 18:38:44 +00007518 }
drh8c2bbb62009-07-10 02:52:20 +00007519 i = get2byte(&data[hdr+1]);
7520 while( i>0 ){
7521 int size, j;
7522 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7523 size = get2byte(&data[i+2]);
7524 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7525 for(j=i+size-1; j>=i; j--) hit[j]++;
7526 j = get2byte(&data[i]);
7527 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7528 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7529 i = j;
drh2e38c322004-09-03 18:38:44 +00007530 }
7531 for(i=cnt=0; i<usableSize; i++){
7532 if( hit[i]==0 ){
7533 cnt++;
7534 }else if( hit[i]>1 ){
7535 checkAppendMsg(pCheck, 0,
7536 "Multiple uses for byte %d of page %d", i, iPage);
7537 break;
7538 }
7539 }
7540 if( cnt!=data[hdr+7] ){
7541 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007542 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007543 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007544 }
7545 }
drh8c2bbb62009-07-10 02:52:20 +00007546 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007547 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007548 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007549}
drhb7f91642004-10-31 02:22:47 +00007550#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007551
drhb7f91642004-10-31 02:22:47 +00007552#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007553/*
7554** This routine does a complete check of the given BTree file. aRoot[] is
7555** an array of pages numbers were each page number is the root page of
7556** a table. nRoot is the number of entries in aRoot.
7557**
danielk19773509a652009-07-06 18:56:13 +00007558** A read-only or read-write transaction must be opened before calling
7559** this function.
7560**
drhc890fec2008-08-01 20:10:08 +00007561** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007562** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007563** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007564** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007565*/
drh1dcdbc02007-01-27 02:24:54 +00007566char *sqlite3BtreeIntegrityCheck(
7567 Btree *p, /* The btree to be checked */
7568 int *aRoot, /* An array of root pages numbers for individual trees */
7569 int nRoot, /* Number of entries in aRoot[] */
7570 int mxErr, /* Stop reporting errors after this many */
7571 int *pnErr /* Write number of errors seen to this variable */
7572){
danielk197789d40042008-11-17 14:20:56 +00007573 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007574 int nRef;
drhaaab5722002-02-19 13:39:21 +00007575 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007576 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007577 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007578
drhd677b3d2007-08-20 22:48:41 +00007579 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007580 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007581 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007582 sCheck.pBt = pBt;
7583 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007584 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007585 sCheck.mxErr = mxErr;
7586 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007587 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007588 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007589 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007590 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007591 return 0;
7592 }
drhe5ae5732008-06-15 02:51:47 +00007593 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007594 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007595 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007596 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007597 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007598 }
drhda200cc2004-05-09 11:51:38 +00007599 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007600 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007601 if( i<=sCheck.nPage ){
7602 sCheck.anRef[i] = 1;
7603 }
drhf089aa42008-07-08 19:34:06 +00007604 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007605
7606 /* Check the integrity of the freelist
7607 */
drha34b6762004-05-07 13:30:42 +00007608 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7609 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007610
7611 /* Check all the tables.
7612 */
danielk197789d40042008-11-17 14:20:56 +00007613 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007614 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007615#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007616 if( pBt->autoVacuum && aRoot[i]>1 ){
7617 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7618 }
7619#endif
danielk197762c14b32008-11-19 09:05:26 +00007620 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007621 }
7622
7623 /* Make sure every page in the file is referenced
7624 */
drh1dcdbc02007-01-27 02:24:54 +00007625 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007626#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007627 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007628 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007629 }
danielk1977afcdd022004-10-31 16:25:42 +00007630#else
7631 /* If the database supports auto-vacuum, make sure no tables contain
7632 ** references to pointer-map pages.
7633 */
7634 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007635 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007636 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7637 }
7638 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007639 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007640 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7641 }
7642#endif
drh5eddca62001-06-30 21:53:53 +00007643 }
7644
drh64022502009-01-09 14:11:04 +00007645 /* Make sure this analysis did not leave any unref() pages.
7646 ** This is an internal consistency check; an integrity check
7647 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007648 */
drh64022502009-01-09 14:11:04 +00007649 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007650 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007651 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007652 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007653 );
drh5eddca62001-06-30 21:53:53 +00007654 }
7655
7656 /* Clean up and report errors.
7657 */
drhd677b3d2007-08-20 22:48:41 +00007658 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007659 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007660 if( sCheck.mallocFailed ){
7661 sqlite3StrAccumReset(&sCheck.errMsg);
7662 *pnErr = sCheck.nErr+1;
7663 return 0;
7664 }
drh1dcdbc02007-01-27 02:24:54 +00007665 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007666 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7667 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007668}
drhb7f91642004-10-31 02:22:47 +00007669#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007670
drh73509ee2003-04-06 20:44:45 +00007671/*
7672** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007673**
7674** The pager filename is invariant as long as the pager is
7675** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007676*/
danielk1977aef0bf62005-12-30 16:28:01 +00007677const char *sqlite3BtreeGetFilename(Btree *p){
7678 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007679 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007680}
7681
7682/*
danielk19775865e3d2004-06-14 06:03:57 +00007683** Return the pathname of the journal file for this database. The return
7684** value of this routine is the same regardless of whether the journal file
7685** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007686**
7687** The pager journal filename is invariant as long as the pager is
7688** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007689*/
danielk1977aef0bf62005-12-30 16:28:01 +00007690const char *sqlite3BtreeGetJournalname(Btree *p){
7691 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007692 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007693}
7694
danielk19771d850a72004-05-31 08:26:49 +00007695/*
7696** Return non-zero if a transaction is active.
7697*/
danielk1977aef0bf62005-12-30 16:28:01 +00007698int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007699 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007700 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007701}
7702
7703/*
danielk19772372c2b2006-06-27 16:34:56 +00007704** Return non-zero if a read (or write) transaction is active.
7705*/
7706int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007707 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007708 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007709 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007710}
7711
danielk197704103022009-02-03 16:51:24 +00007712int sqlite3BtreeIsInBackup(Btree *p){
7713 assert( p );
7714 assert( sqlite3_mutex_held(p->db->mutex) );
7715 return p->nBackup!=0;
7716}
7717
danielk19772372c2b2006-06-27 16:34:56 +00007718/*
danielk1977da184232006-01-05 11:34:32 +00007719** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007720** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007721** purposes (for example, to store a high-level schema associated with
7722** the shared-btree). The btree layer manages reference counting issues.
7723**
7724** The first time this is called on a shared-btree, nBytes bytes of memory
7725** are allocated, zeroed, and returned to the caller. For each subsequent
7726** call the nBytes parameter is ignored and a pointer to the same blob
7727** of memory returned.
7728**
danielk1977171bfed2008-06-23 09:50:50 +00007729** If the nBytes parameter is 0 and the blob of memory has not yet been
7730** allocated, a null pointer is returned. If the blob has already been
7731** allocated, it is returned as normal.
7732**
danielk1977da184232006-01-05 11:34:32 +00007733** Just before the shared-btree is closed, the function passed as the
7734** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007735** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007736** on the memory, the btree layer does that.
7737*/
7738void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7739 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007740 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007741 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007742 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007743 pBt->xFreeSchema = xFree;
7744 }
drh27641702007-08-22 02:56:42 +00007745 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007746 return pBt->pSchema;
7747}
7748
danielk1977c87d34d2006-01-06 13:00:28 +00007749/*
danielk1977404ca072009-03-16 13:19:36 +00007750** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7751** btree as the argument handle holds an exclusive lock on the
7752** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007753*/
7754int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007755 int rc;
drhe5fe6902007-12-07 18:55:28 +00007756 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007757 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007758 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7759 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007760 sqlite3BtreeLeave(p);
7761 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007762}
7763
drha154dcd2006-03-22 22:10:07 +00007764
7765#ifndef SQLITE_OMIT_SHARED_CACHE
7766/*
7767** Obtain a lock on the table whose root page is iTab. The
7768** lock is a write lock if isWritelock is true or a read lock
7769** if it is false.
7770*/
danielk1977c00da102006-01-07 13:21:04 +00007771int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007772 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007773 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007774 if( p->sharable ){
7775 u8 lockType = READ_LOCK + isWriteLock;
7776 assert( READ_LOCK+1==WRITE_LOCK );
7777 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007778
drh6a9ad3d2008-04-02 16:29:30 +00007779 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007780 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007781 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007782 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007783 }
7784 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007785 }
7786 return rc;
7787}
drha154dcd2006-03-22 22:10:07 +00007788#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007789
danielk1977b4e9af92007-05-01 17:49:49 +00007790#ifndef SQLITE_OMIT_INCRBLOB
7791/*
7792** Argument pCsr must be a cursor opened for writing on an
7793** INTKEY table currently pointing at a valid table entry.
7794** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007795**
7796** Only the data content may only be modified, it is not possible to
7797** change the length of the data stored. If this function is called with
7798** parameters that attempt to write past the end of the existing data,
7799** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007800*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007801int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007802 int rc;
drh1fee73e2007-08-29 04:00:57 +00007803 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007804 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007805 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007806
danielk1977c9000e62009-07-08 13:55:28 +00007807 rc = restoreCursorPosition(pCsr);
7808 if( rc!=SQLITE_OK ){
7809 return rc;
7810 }
danielk19773588ceb2008-06-10 17:30:26 +00007811 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7812 if( pCsr->eState!=CURSOR_VALID ){
7813 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007814 }
7815
danielk1977c9000e62009-07-08 13:55:28 +00007816 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007817 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007818 ** (b) there is a read/write transaction open,
7819 ** (c) the connection holds a write-lock on the table (if required),
7820 ** (d) there are no conflicting read-locks, and
7821 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007822 */
danielk19774f029602009-07-08 18:45:37 +00007823 if( !pCsr->wrFlag ){
7824 return SQLITE_READONLY;
7825 }
danielk197796d48e92009-06-29 06:00:37 +00007826 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7827 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7828 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007829 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007830
drhfb192682009-07-11 18:26:28 +00007831 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007832}
danielk19772dec9702007-05-02 16:48:37 +00007833
7834/*
7835** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007836** overflow list for the current row. This is used by cursors opened
7837** for incremental blob IO only.
7838**
7839** This function sets a flag only. The actual page location cache
7840** (stored in BtCursor.aOverflow[]) is allocated and used by function
7841** accessPayload() (the worker function for sqlite3BtreeData() and
7842** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007843*/
7844void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007845 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007846 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007847 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007848 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007849 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007850}
danielk1977b4e9af92007-05-01 17:49:49 +00007851#endif