blob: 1612490f08fa7f082c3578ccdcd94b20f196b3da [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
danielk1977bd5969a2009-07-11 17:39:42 +000012** $Id: btree.c,v 1.680 2009/07/11 17:39:42 danielk1977 Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000015** See the header comment on "btreeInt.h" for additional information.
16** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000017*/
drha3152892007-05-05 11:48:52 +000018#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000019
drh8c42ca92001-06-22 19:15:00 +000020/*
drha3152892007-05-05 11:48:52 +000021** The header string that appears at the beginning of every
22** SQLite database.
drh556b2a22005-06-14 16:04:05 +000023*/
drh556b2a22005-06-14 16:04:05 +000024static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000025
drh8c42ca92001-06-22 19:15:00 +000026/*
drha3152892007-05-05 11:48:52 +000027** Set this global variable to 1 to enable tracing using the TRACE
28** macro.
drh615ae552005-01-16 23:21:00 +000029*/
drhe8f52c52008-07-12 14:52:20 +000030#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000031int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000032# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
33#else
34# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000035#endif
drh615ae552005-01-16 23:21:00 +000036
drh86f8c192007-08-22 00:39:19 +000037
38
drhe53831d2007-08-17 01:14:38 +000039#ifndef SQLITE_OMIT_SHARED_CACHE
40/*
danielk1977502b4e02008-09-02 14:07:24 +000041** A list of BtShared objects that are eligible for participation
42** in shared cache. This variable has file scope during normal builds,
43** but the test harness needs to access it so we make it global for
44** test builds.
drh7555d8e2009-03-20 13:15:30 +000045**
46** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000047*/
48#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000049BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#else
drh78f82d12008-09-02 00:52:52 +000051static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000052#endif
drhe53831d2007-08-17 01:14:38 +000053#endif /* SQLITE_OMIT_SHARED_CACHE */
54
55#ifndef SQLITE_OMIT_SHARED_CACHE
56/*
57** Enable or disable the shared pager and schema features.
58**
59** This routine has no effect on existing database connections.
60** The shared cache setting effects only future calls to
61** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
62*/
63int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000064 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000065 return SQLITE_OK;
66}
67#endif
68
drhd677b3d2007-08-20 22:48:41 +000069
danielk1977aef0bf62005-12-30 16:28:01 +000070
71#ifdef SQLITE_OMIT_SHARED_CACHE
72 /*
drhc25eabe2009-02-24 18:57:31 +000073 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
74 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000075 ** manipulate entries in the BtShared.pLock linked list used to store
76 ** shared-cache table level locks. If the library is compiled with the
77 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000078 ** of each BtShared structure and so this locking is not necessary.
79 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000080 */
drhc25eabe2009-02-24 18:57:31 +000081 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
82 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
83 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000084 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000085 #define hasSharedCacheTableLock(a,b,c,d) 1
86 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000087#endif
danielk1977aef0bf62005-12-30 16:28:01 +000088
drhe53831d2007-08-17 01:14:38 +000089#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000090
91#ifdef SQLITE_DEBUG
92/*
93** This function is only used as part of an assert() statement. It checks
94** that connection p holds the required locks to read or write to the
95** b-tree with root page iRoot. If so, true is returned. Otherwise, false.
96** For example, when writing to a table b-tree with root-page iRoot via
97** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
101** When writing to an index b-tree that resides in a sharable database, the
102** caller should have first obtained a lock specifying the root page of
103** the corresponding table b-tree. This makes things a bit more complicated,
104** as this module treats each b-tree as a separate structure. To determine
105** the table b-tree corresponding to the index b-tree being written, this
106** function has to search through the database schema.
107**
108** Instead of a lock on the b-tree rooted at page iRoot, the caller may
109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
122 /* If this b-tree database is not shareable, or if the client is reading
123 ** and has the read-uncommitted flag set, then no lock is required.
124 ** In these cases return true immediately. If the client is reading
125 ** or writing an index b-tree, but the schema is not loaded, then return
126 ** true also. In this case the lock is required, but it is too difficult
127 ** to check if the client actually holds it. This doesn't happen very
128 ** often. */
129 if( (pBtree->sharable==0)
130 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
131 || (isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0 ))
132 ){
133 return 1;
134 }
135
136 /* Figure out the root-page that the lock should be held on. For table
137 ** b-trees, this is just the root page of the b-tree being read or
138 ** written. For index b-trees, it is the root page of the associated
139 ** table. */
140 if( isIndex ){
141 HashElem *p;
142 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
143 Index *pIdx = (Index *)sqliteHashData(p);
144 if( pIdx->tnum==iRoot ){
145 iTab = pIdx->pTable->tnum;
146 }
147 }
148 }else{
149 iTab = iRoot;
150 }
151
152 /* Search for the required lock. Either a write-lock on root-page iTab, a
153 ** write-lock on the schema table, or (if the client is reading) a
154 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
155 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
156 if( pLock->pBtree==pBtree
157 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
158 && pLock->eLock>=eLockType
159 ){
160 return 1;
161 }
162 }
163
164 /* Failed to find the required lock. */
165 return 0;
166}
167
168/*
169** This function is also used as part of assert() statements only. It
170** returns true if there exist one or more cursors open on the table
171** with root page iRoot that do not belong to either connection pBtree
172** or some other connection that has the read-uncommitted flag set.
173**
174** For example, before writing to page iRoot:
175**
176** assert( !hasReadConflicts(pBtree, iRoot) );
177*/
178static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
179 BtCursor *p;
180 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
181 if( p->pgnoRoot==iRoot
182 && p->pBtree!=pBtree
183 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
184 ){
185 return 1;
186 }
187 }
188 return 0;
189}
190#endif /* #ifdef SQLITE_DEBUG */
191
danielk1977da184232006-01-05 11:34:32 +0000192/*
danielk1977aef0bf62005-12-30 16:28:01 +0000193** Query to see if btree handle p may obtain a lock of type eLock
194** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000195** SQLITE_OK if the lock may be obtained (by calling
196** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000197*/
drhc25eabe2009-02-24 18:57:31 +0000198static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000199 BtShared *pBt = p->pBt;
200 BtLock *pIter;
201
drh1fee73e2007-08-29 04:00:57 +0000202 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000203 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
204 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000205 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000206
danielk19775b413d72009-04-01 09:41:54 +0000207 /* If requesting a write-lock, then the Btree must have an open write
208 ** transaction on this file. And, obviously, for this to be so there
209 ** must be an open write transaction on the file itself.
210 */
211 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
212 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
213
danielk1977da184232006-01-05 11:34:32 +0000214 /* This is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000215 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000216 return SQLITE_OK;
217 }
218
danielk1977641b0f42007-12-21 04:47:25 +0000219 /* If some other connection is holding an exclusive lock, the
220 ** requested lock may not be obtained.
221 */
danielk1977404ca072009-03-16 13:19:36 +0000222 if( pBt->pWriter!=p && pBt->isExclusive ){
223 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
224 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000225 }
226
danielk1977e0d9e6f2009-07-03 16:25:06 +0000227 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
228 /* The condition (pIter->eLock!=eLock) in the following if(...)
229 ** statement is a simplification of:
230 **
231 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
232 **
233 ** since we know that if eLock==WRITE_LOCK, then no other connection
234 ** may hold a WRITE_LOCK on any table in this file (since there can
235 ** only be a single writer).
236 */
237 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
238 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
239 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
240 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
241 if( eLock==WRITE_LOCK ){
242 assert( p==pBt->pWriter );
243 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000244 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000245 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000246 }
247 }
248 return SQLITE_OK;
249}
drhe53831d2007-08-17 01:14:38 +0000250#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000251
drhe53831d2007-08-17 01:14:38 +0000252#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000253/*
254** Add a lock on the table with root-page iTable to the shared-btree used
255** by Btree handle p. Parameter eLock must be either READ_LOCK or
256** WRITE_LOCK.
257**
danielk19779d104862009-07-09 08:27:14 +0000258** This function assumes the following:
259**
260** (a) The specified b-tree connection handle is connected to a sharable
261** b-tree database (one with the BtShared.sharable) flag set, and
262**
263** (b) No other b-tree connection handle holds a lock that conflicts
264** with the requested lock (i.e. querySharedCacheTableLock() has
265** already been called and returned SQLITE_OK).
266**
267** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
268** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000269*/
drhc25eabe2009-02-24 18:57:31 +0000270static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000271 BtShared *pBt = p->pBt;
272 BtLock *pLock = 0;
273 BtLock *pIter;
274
drh1fee73e2007-08-29 04:00:57 +0000275 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000276 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
277 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000278
danielk1977e0d9e6f2009-07-03 16:25:06 +0000279 /* A connection with the read-uncommitted flag set will never try to
280 ** obtain a read-lock using this function. The only read-lock obtained
281 ** by a connection in read-uncommitted mode is on the sqlite_master
282 ** table, and that lock is obtained in BtreeBeginTrans(). */
283 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
284
danielk19779d104862009-07-09 08:27:14 +0000285 /* This function should only be called on a sharable b-tree after it
286 ** has been determined that no other b-tree holds a conflicting lock. */
287 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000288 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000289
290 /* First search the list for an existing lock on this table. */
291 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
292 if( pIter->iTable==iTable && pIter->pBtree==p ){
293 pLock = pIter;
294 break;
295 }
296 }
297
298 /* If the above search did not find a BtLock struct associating Btree p
299 ** with table iTable, allocate one and link it into the list.
300 */
301 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000302 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000303 if( !pLock ){
304 return SQLITE_NOMEM;
305 }
306 pLock->iTable = iTable;
307 pLock->pBtree = p;
308 pLock->pNext = pBt->pLock;
309 pBt->pLock = pLock;
310 }
311
312 /* Set the BtLock.eLock variable to the maximum of the current lock
313 ** and the requested lock. This means if a write-lock was already held
314 ** and a read-lock requested, we don't incorrectly downgrade the lock.
315 */
316 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000317 if( eLock>pLock->eLock ){
318 pLock->eLock = eLock;
319 }
danielk1977aef0bf62005-12-30 16:28:01 +0000320
321 return SQLITE_OK;
322}
drhe53831d2007-08-17 01:14:38 +0000323#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000324
drhe53831d2007-08-17 01:14:38 +0000325#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000326/*
drhc25eabe2009-02-24 18:57:31 +0000327** Release all the table locks (locks obtained via calls to
328** the setSharedCacheTableLock() procedure) held by Btree handle p.
danielk1977fa542f12009-04-02 18:28:08 +0000329**
330** This function assumes that handle p has an open read or write
331** transaction. If it does not, then the BtShared.isPending variable
332** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000333*/
drhc25eabe2009-02-24 18:57:31 +0000334static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000335 BtShared *pBt = p->pBt;
336 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000337
drh1fee73e2007-08-29 04:00:57 +0000338 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000339 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000340 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000341
danielk1977aef0bf62005-12-30 16:28:01 +0000342 while( *ppIter ){
343 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000344 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000345 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( pLock->pBtree==p ){
347 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000348 assert( pLock->iTable!=1 || pLock==&p->lock );
349 if( pLock->iTable!=1 ){
350 sqlite3_free(pLock);
351 }
danielk1977aef0bf62005-12-30 16:28:01 +0000352 }else{
353 ppIter = &pLock->pNext;
354 }
355 }
danielk1977641b0f42007-12-21 04:47:25 +0000356
danielk1977404ca072009-03-16 13:19:36 +0000357 assert( pBt->isPending==0 || pBt->pWriter );
358 if( pBt->pWriter==p ){
359 pBt->pWriter = 0;
360 pBt->isExclusive = 0;
361 pBt->isPending = 0;
362 }else if( pBt->nTransaction==2 ){
363 /* This function is called when connection p is concluding its
364 ** transaction. If there currently exists a writer, and p is not
365 ** that writer, then the number of locks held by connections other
366 ** than the writer must be about to drop to zero. In this case
367 ** set the isPending flag to 0.
368 **
369 ** If there is not currently a writer, then BtShared.isPending must
370 ** be zero already. So this next line is harmless in that case.
371 */
372 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000373 }
danielk1977aef0bf62005-12-30 16:28:01 +0000374}
danielk197794b30732009-07-02 17:21:57 +0000375
danielk1977e0d9e6f2009-07-03 16:25:06 +0000376/*
377** This function changes all write-locks held by connection p to read-locks.
378*/
danielk197794b30732009-07-02 17:21:57 +0000379static void downgradeAllSharedCacheTableLocks(Btree *p){
380 BtShared *pBt = p->pBt;
381 if( pBt->pWriter==p ){
382 BtLock *pLock;
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
387 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
388 pLock->eLock = READ_LOCK;
389 }
390 }
391}
392
danielk1977aef0bf62005-12-30 16:28:01 +0000393#endif /* SQLITE_OMIT_SHARED_CACHE */
394
drh980b1a72006-08-16 16:42:48 +0000395static void releasePage(MemPage *pPage); /* Forward reference */
396
drh1fee73e2007-08-29 04:00:57 +0000397/*
398** Verify that the cursor holds a mutex on the BtShared
399*/
400#ifndef NDEBUG
401static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000402 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000403}
404#endif
405
406
danielk197792d4d7a2007-05-04 12:05:56 +0000407#ifndef SQLITE_OMIT_INCRBLOB
408/*
409** Invalidate the overflow page-list cache for cursor pCur, if any.
410*/
411static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000412 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000413 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000414 pCur->aOverflow = 0;
415}
416
417/*
418** Invalidate the overflow page-list cache for all cursors opened
419** on the shared btree structure pBt.
420*/
421static void invalidateAllOverflowCache(BtShared *pBt){
422 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000423 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000424 for(p=pBt->pCursor; p; p=p->pNext){
425 invalidateOverflowCache(p);
426 }
427}
danielk197796d48e92009-06-29 06:00:37 +0000428
429/*
430** This function is called before modifying the contents of a table
431** b-tree to invalidate any incrblob cursors that are open on the
432** row or one of the rows being modified. Argument pgnoRoot is the
433** root-page of the table b-tree.
434**
435** If argument isClearTable is true, then the entire contents of the
436** table is about to be deleted. In this case invalidate all incrblob
437** cursors open on any row within the table with root-page pgnoRoot.
438**
439** Otherwise, if argument isClearTable is false, then the row with
440** rowid iRow is being replaced or deleted. In this case invalidate
441** only those incrblob cursors open on this specific row.
442*/
443static void invalidateIncrblobCursors(
444 Btree *pBtree, /* The database file to check */
445 Pgno pgnoRoot, /* Look for read cursors on this btree */
446 i64 iRow, /* The rowid that might be changing */
447 int isClearTable /* True if all rows are being deleted */
448){
449 BtCursor *p;
450 BtShared *pBt = pBtree->pBt;
451 assert( sqlite3BtreeHoldsMutex(pBtree) );
452 for(p=pBt->pCursor; p; p=p->pNext){
453 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
454 p->eState = CURSOR_INVALID;
455 }
456 }
457}
458
danielk197792d4d7a2007-05-04 12:05:56 +0000459#else
460 #define invalidateOverflowCache(x)
461 #define invalidateAllOverflowCache(x)
danielk197796d48e92009-06-29 06:00:37 +0000462 #define invalidateIncrblobCursors(w,x,y,z)
danielk197792d4d7a2007-05-04 12:05:56 +0000463#endif
464
drh980b1a72006-08-16 16:42:48 +0000465/*
danielk1977bea2a942009-01-20 17:06:27 +0000466** Set bit pgno of the BtShared.pHasContent bitvec. This is called
467** when a page that previously contained data becomes a free-list leaf
468** page.
469**
470** The BtShared.pHasContent bitvec exists to work around an obscure
471** bug caused by the interaction of two useful IO optimizations surrounding
472** free-list leaf pages:
473**
474** 1) When all data is deleted from a page and the page becomes
475** a free-list leaf page, the page is not written to the database
476** (as free-list leaf pages contain no meaningful data). Sometimes
477** such a page is not even journalled (as it will not be modified,
478** why bother journalling it?).
479**
480** 2) When a free-list leaf page is reused, its content is not read
481** from the database or written to the journal file (why should it
482** be, if it is not at all meaningful?).
483**
484** By themselves, these optimizations work fine and provide a handy
485** performance boost to bulk delete or insert operations. However, if
486** a page is moved to the free-list and then reused within the same
487** transaction, a problem comes up. If the page is not journalled when
488** it is moved to the free-list and it is also not journalled when it
489** is extracted from the free-list and reused, then the original data
490** may be lost. In the event of a rollback, it may not be possible
491** to restore the database to its original configuration.
492**
493** The solution is the BtShared.pHasContent bitvec. Whenever a page is
494** moved to become a free-list leaf page, the corresponding bit is
495** set in the bitvec. Whenever a leaf page is extracted from the free-list,
496** optimization 2 above is ommitted if the corresponding bit is already
497** set in BtShared.pHasContent. The contents of the bitvec are cleared
498** at the end of every transaction.
499*/
500static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
501 int rc = SQLITE_OK;
502 if( !pBt->pHasContent ){
503 int nPage;
504 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
505 if( rc==SQLITE_OK ){
506 pBt->pHasContent = sqlite3BitvecCreate((u32)nPage);
507 if( !pBt->pHasContent ){
508 rc = SQLITE_NOMEM;
509 }
510 }
511 }
512 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
513 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
514 }
515 return rc;
516}
517
518/*
519** Query the BtShared.pHasContent vector.
520**
521** This function is called when a free-list leaf page is removed from the
522** free-list for reuse. It returns false if it is safe to retrieve the
523** page from the pager layer with the 'no-content' flag set. True otherwise.
524*/
525static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
526 Bitvec *p = pBt->pHasContent;
527 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
528}
529
530/*
531** Clear (destroy) the BtShared.pHasContent bitvec. This should be
532** invoked at the conclusion of each write-transaction.
533*/
534static void btreeClearHasContent(BtShared *pBt){
535 sqlite3BitvecDestroy(pBt->pHasContent);
536 pBt->pHasContent = 0;
537}
538
539/*
drh980b1a72006-08-16 16:42:48 +0000540** Save the current cursor position in the variables BtCursor.nKey
541** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
542*/
543static int saveCursorPosition(BtCursor *pCur){
544 int rc;
545
546 assert( CURSOR_VALID==pCur->eState );
547 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000548 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000549
550 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
551
552 /* If this is an intKey table, then the above call to BtreeKeySize()
553 ** stores the integer key in pCur->nKey. In this case this value is
554 ** all that is required. Otherwise, if pCur is not open on an intKey
555 ** table, then malloc space for and store the pCur->nKey bytes of key
556 ** data.
557 */
danielk197771d5d2c2008-09-29 11:49:47 +0000558 if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){
drhf49661a2008-12-10 16:45:50 +0000559 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000560 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000561 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000562 if( rc==SQLITE_OK ){
563 pCur->pKey = pKey;
564 }else{
drh17435752007-08-16 04:30:38 +0000565 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000566 }
567 }else{
568 rc = SQLITE_NOMEM;
569 }
570 }
danielk197771d5d2c2008-09-29 11:49:47 +0000571 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000572
573 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000574 int i;
575 for(i=0; i<=pCur->iPage; i++){
576 releasePage(pCur->apPage[i]);
577 pCur->apPage[i] = 0;
578 }
579 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000580 pCur->eState = CURSOR_REQUIRESEEK;
581 }
582
danielk197792d4d7a2007-05-04 12:05:56 +0000583 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000584 return rc;
585}
586
587/*
588** Save the positions of all cursors except pExcept open on the table
589** with root-page iRoot. Usually, this is called just before cursor
590** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
591*/
592static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
593 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000594 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000595 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000596 for(p=pBt->pCursor; p; p=p->pNext){
597 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
598 p->eState==CURSOR_VALID ){
599 int rc = saveCursorPosition(p);
600 if( SQLITE_OK!=rc ){
601 return rc;
602 }
603 }
604 }
605 return SQLITE_OK;
606}
607
608/*
drhbf700f32007-03-31 02:36:44 +0000609** Clear the current cursor position.
610*/
danielk1977be51a652008-10-08 17:58:48 +0000611void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000612 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000613 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000614 pCur->pKey = 0;
615 pCur->eState = CURSOR_INVALID;
616}
617
618/*
danielk19773509a652009-07-06 18:56:13 +0000619** In this version of BtreeMoveto, pKey is a packed index record
620** such as is generated by the OP_MakeRecord opcode. Unpack the
621** record and then call BtreeMovetoUnpacked() to do the work.
622*/
623static int btreeMoveto(
624 BtCursor *pCur, /* Cursor open on the btree to be searched */
625 const void *pKey, /* Packed key if the btree is an index */
626 i64 nKey, /* Integer key for tables. Size of pKey for indices */
627 int bias, /* Bias search to the high end */
628 int *pRes /* Write search results here */
629){
630 int rc; /* Status code */
631 UnpackedRecord *pIdxKey; /* Unpacked index key */
632 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
633
634 if( pKey ){
635 assert( nKey==(i64)(int)nKey );
636 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
637 aSpace, sizeof(aSpace));
638 if( pIdxKey==0 ) return SQLITE_NOMEM;
639 }else{
640 pIdxKey = 0;
641 }
642 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
643 if( pKey ){
644 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
645 }
646 return rc;
647}
648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Restore the cursor to the position it was in (or as close to as possible)
651** when saveCursorPosition() was called. Note that this call deletes the
652** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000653** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000654** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000655*/
danielk197730548662009-07-09 05:07:37 +0000656static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000657 int rc;
drh1fee73e2007-08-29 04:00:57 +0000658 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000659 assert( pCur->eState>=CURSOR_REQUIRESEEK );
660 if( pCur->eState==CURSOR_FAULT ){
661 return pCur->skip;
662 }
drh980b1a72006-08-16 16:42:48 +0000663 pCur->eState = CURSOR_INVALID;
danielk19773509a652009-07-06 18:56:13 +0000664 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip);
drh980b1a72006-08-16 16:42:48 +0000665 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000666 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000667 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000668 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000669 }
670 return rc;
671}
672
drha3460582008-07-11 21:02:53 +0000673#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000674 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000675 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000676 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000677
drha3460582008-07-11 21:02:53 +0000678/*
679** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000680** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000681** at is deleted out from under them.
682**
683** This routine returns an error code if something goes wrong. The
684** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
685*/
686int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
687 int rc;
688
689 rc = restoreCursorPosition(pCur);
690 if( rc ){
691 *pHasMoved = 1;
692 return rc;
693 }
694 if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){
695 *pHasMoved = 1;
696 }else{
697 *pHasMoved = 0;
698 }
699 return SQLITE_OK;
700}
701
danielk1977599fcba2004-11-08 07:13:13 +0000702#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000703/*
drha3152892007-05-05 11:48:52 +0000704** Given a page number of a regular database page, return the page
705** number for the pointer-map page that contains the entry for the
706** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000707*/
danielk1977266664d2006-02-10 08:24:21 +0000708static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000709 int nPagesPerMapPage;
710 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000711 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000712 nPagesPerMapPage = (pBt->usableSize/5)+1;
713 iPtrMap = (pgno-2)/nPagesPerMapPage;
714 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000715 if( ret==PENDING_BYTE_PAGE(pBt) ){
716 ret++;
717 }
718 return ret;
719}
danielk1977a19df672004-11-03 11:37:07 +0000720
danielk1977afcdd022004-10-31 16:25:42 +0000721/*
danielk1977afcdd022004-10-31 16:25:42 +0000722** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000723**
724** This routine updates the pointer map entry for page number 'key'
725** so that it maps to type 'eType' and parent page number 'pgno'.
726** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000727*/
danielk1977aef0bf62005-12-30 16:28:01 +0000728static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){
danielk19773b8a05f2007-03-19 17:44:26 +0000729 DbPage *pDbPage; /* The pointer map page */
730 u8 *pPtrmap; /* The pointer map data */
731 Pgno iPtrmap; /* The pointer map page number */
732 int offset; /* Offset in pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000733 int rc;
734
drh1fee73e2007-08-29 04:00:57 +0000735 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000736 /* The master-journal page number must never be used as a pointer map page */
737 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
738
danielk1977ac11ee62005-01-15 12:45:51 +0000739 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000740 if( key==0 ){
drh49285702005-09-17 15:20:26 +0000741 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000742 }
danielk1977266664d2006-02-10 08:24:21 +0000743 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000744 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000745 if( rc!=SQLITE_OK ){
danielk1977afcdd022004-10-31 16:25:42 +0000746 return rc;
747 }
danielk19778c666b12008-07-18 09:34:57 +0000748 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000749 if( offset<0 ){
drh4925a552009-07-07 11:39:58 +0000750 rc = SQLITE_CORRUPT_BKPT;
751 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000752 }
danielk19773b8a05f2007-03-19 17:44:26 +0000753 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000754
drh615ae552005-01-16 23:21:00 +0000755 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
756 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
danielk19773b8a05f2007-03-19 17:44:26 +0000757 rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000758 if( rc==SQLITE_OK ){
759 pPtrmap[offset] = eType;
760 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000761 }
danielk1977afcdd022004-10-31 16:25:42 +0000762 }
763
drh4925a552009-07-07 11:39:58 +0000764ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000765 sqlite3PagerUnref(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000766 return rc;
danielk1977afcdd022004-10-31 16:25:42 +0000767}
768
769/*
770** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000771**
772** This routine retrieves the pointer map entry for page 'key', writing
773** the type and parent page number to *pEType and *pPgno respectively.
774** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000775*/
danielk1977aef0bf62005-12-30 16:28:01 +0000776static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000777 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000778 int iPtrmap; /* Pointer map page index */
779 u8 *pPtrmap; /* Pointer map page data */
780 int offset; /* Offset of entry in pointer map */
781 int rc;
782
drh1fee73e2007-08-29 04:00:57 +0000783 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000784
danielk1977266664d2006-02-10 08:24:21 +0000785 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000786 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000787 if( rc!=0 ){
788 return rc;
789 }
danielk19773b8a05f2007-03-19 17:44:26 +0000790 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000791
danielk19778c666b12008-07-18 09:34:57 +0000792 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000793 assert( pEType!=0 );
794 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000795 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000796
danielk19773b8a05f2007-03-19 17:44:26 +0000797 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000798 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000799 return SQLITE_OK;
800}
801
danielk197785d90ca2008-07-19 14:25:15 +0000802#else /* if defined SQLITE_OMIT_AUTOVACUUM */
803 #define ptrmapPut(w,x,y,z) SQLITE_OK
804 #define ptrmapGet(w,x,y,z) SQLITE_OK
danielk1977325ccfa2009-07-02 05:23:25 +0000805 #define ptrmapPutOvflPtr(x, y) SQLITE_OK
danielk197785d90ca2008-07-19 14:25:15 +0000806#endif
danielk1977afcdd022004-10-31 16:25:42 +0000807
drh0d316a42002-08-11 20:10:47 +0000808/*
drh271efa52004-05-30 19:19:05 +0000809** Given a btree page and a cell index (0 means the first cell on
810** the page, 1 means the second cell, and so forth) return a pointer
811** to the cell content.
812**
813** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000814*/
drh1688c862008-07-18 02:44:17 +0000815#define findCell(P,I) \
816 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000817
818/*
drh93a960a2008-07-10 00:32:42 +0000819** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000820** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000821*/
822static u8 *findOverflowCell(MemPage *pPage, int iCell){
823 int i;
drh1fee73e2007-08-29 04:00:57 +0000824 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000825 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000826 int k;
827 struct _OvflCell *pOvfl;
828 pOvfl = &pPage->aOvfl[i];
829 k = pOvfl->idx;
830 if( k<=iCell ){
831 if( k==iCell ){
832 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000833 }
834 iCell--;
835 }
836 }
danielk19771cc5ed82007-05-16 17:28:43 +0000837 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000838}
839
840/*
841** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000842** are two versions of this function. btreeParseCell() takes a
843** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000844** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000845**
846** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000847** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000848*/
danielk197730548662009-07-09 05:07:37 +0000849static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000850 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000851 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000852 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000853){
drhf49661a2008-12-10 16:45:50 +0000854 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000855 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000856
drh1fee73e2007-08-29 04:00:57 +0000857 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000858
drh43605152004-05-29 21:46:49 +0000859 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000860 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000861 n = pPage->childPtrSize;
862 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000863 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000864 if( pPage->hasData ){
865 n += getVarint32(&pCell[n], nPayload);
866 }else{
867 nPayload = 0;
868 }
drh1bd10f82008-12-10 21:19:56 +0000869 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000870 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000871 }else{
drh79df1f42008-07-18 00:57:33 +0000872 pInfo->nData = 0;
873 n += getVarint32(&pCell[n], nPayload);
874 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000875 }
drh72365832007-03-06 15:53:44 +0000876 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000877 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000878 testcase( nPayload==pPage->maxLocal );
879 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000880 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000881 /* This is the (easy) common case where the entire payload fits
882 ** on the local page. No overflow is required.
883 */
884 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000885 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000886 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000887 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000888 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000889 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000890 }
drh1bd10f82008-12-10 21:19:56 +0000891 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000892 }else{
drh271efa52004-05-30 19:19:05 +0000893 /* If the payload will not fit completely on the local page, we have
894 ** to decide how much to store locally and how much to spill onto
895 ** overflow pages. The strategy is to minimize the amount of unused
896 ** space on overflow pages while keeping the amount of local storage
897 ** in between minLocal and maxLocal.
898 **
899 ** Warning: changing the way overflow payload is distributed in any
900 ** way will result in an incompatible file format.
901 */
902 int minLocal; /* Minimum amount of payload held locally */
903 int maxLocal; /* Maximum amount of payload held locally */
904 int surplus; /* Overflow payload available for local storage */
905
906 minLocal = pPage->minLocal;
907 maxLocal = pPage->maxLocal;
908 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000909 testcase( surplus==maxLocal );
910 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000911 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000912 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000913 }else{
drhf49661a2008-12-10 16:45:50 +0000914 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000915 }
drhf49661a2008-12-10 16:45:50 +0000916 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000917 pInfo->nSize = pInfo->iOverflow + 4;
918 }
drh3aac2dd2004-04-26 14:10:20 +0000919}
danielk19771cc5ed82007-05-16 17:28:43 +0000920#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000921 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
922static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000923 MemPage *pPage, /* Page containing the cell */
924 int iCell, /* The cell index. First cell is 0 */
925 CellInfo *pInfo /* Fill in this structure */
926){
danielk19771cc5ed82007-05-16 17:28:43 +0000927 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000928}
drh3aac2dd2004-04-26 14:10:20 +0000929
930/*
drh43605152004-05-29 21:46:49 +0000931** Compute the total number of bytes that a Cell needs in the cell
932** data area of the btree-page. The return number includes the cell
933** data header and the local payload, but not any overflow page or
934** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000935*/
danielk1977ae5558b2009-04-29 11:31:47 +0000936static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
937 u8 *pIter = &pCell[pPage->childPtrSize];
938 u32 nSize;
939
940#ifdef SQLITE_DEBUG
941 /* The value returned by this function should always be the same as
942 ** the (CellInfo.nSize) value found by doing a full parse of the
943 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
944 ** this function verifies that this invariant is not violated. */
945 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000946 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000947#endif
948
949 if( pPage->intKey ){
950 u8 *pEnd;
951 if( pPage->hasData ){
952 pIter += getVarint32(pIter, nSize);
953 }else{
954 nSize = 0;
955 }
956
957 /* pIter now points at the 64-bit integer key value, a variable length
958 ** integer. The following block moves pIter to point at the first byte
959 ** past the end of the key value. */
960 pEnd = &pIter[9];
961 while( (*pIter++)&0x80 && pIter<pEnd );
962 }else{
963 pIter += getVarint32(pIter, nSize);
964 }
965
drh0a45c272009-07-08 01:49:11 +0000966 testcase( nSize==pPage->maxLocal );
967 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000968 if( nSize>pPage->maxLocal ){
969 int minLocal = pPage->minLocal;
970 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000971 testcase( nSize==pPage->maxLocal );
972 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000973 if( nSize>pPage->maxLocal ){
974 nSize = minLocal;
975 }
976 nSize += 4;
977 }
shane75ac1de2009-06-09 18:58:52 +0000978 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +0000979
980 /* The minimum size of any cell is 4 bytes. */
981 if( nSize<4 ){
982 nSize = 4;
983 }
984
985 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +0000986 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +0000987}
danielk1977bc6ada42004-06-30 08:20:16 +0000988#ifndef NDEBUG
drha9121e42008-02-19 14:59:35 +0000989static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +0000990 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +0000991}
danielk1977bc6ada42004-06-30 08:20:16 +0000992#endif
drh3b7511c2001-05-26 13:15:44 +0000993
danielk197779a40da2005-01-16 08:00:01 +0000994#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +0000995/*
danielk197726836652005-01-17 01:33:13 +0000996** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +0000997** to an overflow page, insert an entry into the pointer-map
998** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +0000999*/
danielk197726836652005-01-17 01:33:13 +00001000static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){
drhfa67c3c2008-07-11 02:21:40 +00001001 CellInfo info;
1002 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001003 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001004 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001005 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001006 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1007 return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno);
danielk1977ac11ee62005-01-15 12:45:51 +00001008 }
danielk197779a40da2005-01-16 08:00:01 +00001009 return SQLITE_OK;
danielk1977ac11ee62005-01-15 12:45:51 +00001010}
danielk197779a40da2005-01-16 08:00:01 +00001011#endif
1012
danielk1977ac11ee62005-01-15 12:45:51 +00001013
drhda200cc2004-05-09 11:51:38 +00001014/*
drh72f82862001-05-24 21:06:34 +00001015** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001016** end of the page and all free space is collected into one
1017** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001018** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001019*/
shane0af3f892008-11-12 04:55:34 +00001020static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001021 int i; /* Loop counter */
1022 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001023 int hdr; /* Offset to the page header */
1024 int size; /* Size of a cell */
1025 int usableSize; /* Number of usable bytes on a page */
1026 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001027 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001028 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001029 unsigned char *data; /* The page data */
1030 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001031 int iCellFirst; /* First allowable cell index */
1032 int iCellLast; /* Last possible cell index */
1033
drh2af926b2001-05-15 00:39:25 +00001034
danielk19773b8a05f2007-03-19 17:44:26 +00001035 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001036 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001037 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001038 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001039 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001040 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001041 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001042 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001043 cellOffset = pPage->cellOffset;
1044 nCell = pPage->nCell;
1045 assert( nCell==get2byte(&data[hdr+3]) );
1046 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001047 cbrk = get2byte(&data[hdr+5]);
1048 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1049 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001050 iCellFirst = cellOffset + 2*nCell;
1051 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001052 for(i=0; i<nCell; i++){
1053 u8 *pAddr; /* The i-th cell pointer */
1054 pAddr = &data[cellOffset + i*2];
1055 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001056 testcase( pc==iCellFirst );
1057 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001058#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001059 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001060 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1061 */
1062 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001063 return SQLITE_CORRUPT_BKPT;
1064 }
drh17146622009-07-07 17:38:38 +00001065#endif
1066 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001067 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001068 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001069#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1070 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001071 return SQLITE_CORRUPT_BKPT;
1072 }
drh17146622009-07-07 17:38:38 +00001073#else
1074 if( cbrk<iCellFirst || pc+size>usableSize ){
1075 return SQLITE_CORRUPT_BKPT;
1076 }
1077#endif
drh7157e1d2009-07-09 13:25:32 +00001078 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001079 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001080 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001081 memcpy(&data[cbrk], &temp[pc], size);
1082 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001083 }
drh17146622009-07-07 17:38:38 +00001084 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001085 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001086 data[hdr+1] = 0;
1087 data[hdr+2] = 0;
1088 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001089 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001090 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001091 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001092 return SQLITE_CORRUPT_BKPT;
1093 }
shane0af3f892008-11-12 04:55:34 +00001094 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001095}
1096
drha059ad02001-04-17 20:09:11 +00001097/*
danielk19776011a752009-04-01 16:25:32 +00001098** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001099** as the first argument. Write into *pIdx the index into pPage->aData[]
1100** of the first byte of allocated space. Return either SQLITE_OK or
1101** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001102**
drh0a45c272009-07-08 01:49:11 +00001103** The caller guarantees that there is sufficient space to make the
1104** allocation. This routine might need to defragment in order to bring
1105** all the space together, however. This routine will avoid using
1106** the first two bytes past the cell pointer area since presumably this
1107** allocation is being made in order to insert a new cell, so we will
1108** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001109*/
drh0a45c272009-07-08 01:49:11 +00001110static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001111 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1112 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1113 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001114 int top; /* First byte of cell content area */
1115 int gap; /* First byte of gap between cell pointers and cell content */
1116 int rc; /* Integer return code */
drh43605152004-05-29 21:46:49 +00001117
danielk19773b8a05f2007-03-19 17:44:26 +00001118 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001119 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001120 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001121 assert( nByte>=0 ); /* Minimum cell size is 4 */
1122 assert( pPage->nFree>=nByte );
1123 assert( pPage->nOverflow==0 );
drh43605152004-05-29 21:46:49 +00001124
1125 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001126 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1127 gap = pPage->cellOffset + 2*pPage->nCell;
1128 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001129 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001130 testcase( gap+2==top );
1131 testcase( gap+1==top );
1132 testcase( gap==top );
1133
danielk19776011a752009-04-01 16:25:32 +00001134 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001135 /* Always defragment highly fragmented pages */
1136 rc = defragmentPage(pPage);
1137 if( rc ) return rc;
1138 top = get2byte(&data[hdr+5]);
1139 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001140 /* Search the freelist looking for a free slot big enough to satisfy
1141 ** the request. The allocation is made from the first free slot in
1142 ** the list that is large enough to accomadate it.
1143 */
1144 int pc, addr;
1145 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1146 int size = get2byte(&data[pc+2]); /* Size of free slot */
drh43605152004-05-29 21:46:49 +00001147 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001148 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001149 testcase( x==4 );
1150 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001151 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001152 /* Remove the slot from the free-list. Update the number of
1153 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001154 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001155 data[hdr+7] = (u8)(nFrag + x);
drh43605152004-05-29 21:46:49 +00001156 }else{
danielk1977fad91942009-04-29 17:49:59 +00001157 /* The slot remains on the free-list. Reduce its size to account
1158 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001159 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001160 }
drh0a45c272009-07-08 01:49:11 +00001161 *pIdx = pc + x;
1162 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001163 }
drh9e572e62004-04-23 23:43:10 +00001164 }
1165 }
drh43605152004-05-29 21:46:49 +00001166
drh0a45c272009-07-08 01:49:11 +00001167 /* Check to make sure there is enough space in the gap to satisfy
1168 ** the allocation. If not, defragment.
1169 */
1170 testcase( gap+2+nByte==top );
1171 if( gap+2+nByte>top ){
1172 rc = defragmentPage(pPage);
1173 if( rc ) return rc;
1174 top = get2byte(&data[hdr+5]);
1175 assert( gap+nByte<=top );
1176 }
1177
1178
drh43605152004-05-29 21:46:49 +00001179 /* Allocate memory from the gap in between the cell pointer array
1180 ** and the cell content area.
1181 */
drh0a45c272009-07-08 01:49:11 +00001182 top -= nByte;
drh43605152004-05-29 21:46:49 +00001183 put2byte(&data[hdr+5], top);
drh0a45c272009-07-08 01:49:11 +00001184 *pIdx = top;
1185 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001186}
1187
1188/*
drh9e572e62004-04-23 23:43:10 +00001189** Return a section of the pPage->aData to the freelist.
1190** The first byte of the new free block is pPage->aDisk[start]
1191** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001192**
1193** Most of the effort here is involved in coalesing adjacent
1194** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001195*/
shanedcc50b72008-11-13 18:29:50 +00001196static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001197 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001198 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001199 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001200
drh9e572e62004-04-23 23:43:10 +00001201 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001202 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001203 assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) );
danielk1977bc6ada42004-06-30 08:20:16 +00001204 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001205 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001206 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001207
drhfcce93f2006-02-22 03:08:32 +00001208#ifdef SQLITE_SECURE_DELETE
1209 /* Overwrite deleted information with zeros when the SECURE_DELETE
1210 ** option is enabled at compile-time */
1211 memset(&data[start], 0, size);
1212#endif
1213
drh0a45c272009-07-08 01:49:11 +00001214 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001215 ** even though the freeblock list was checked by btreeInitPage(),
1216 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001217 ** freeblocks that overlapped cells. Nor does it detect when the
1218 ** cell content area exceeds the value in the page header. If these
1219 ** situations arise, then subsequent insert operations might corrupt
1220 ** the freelist. So we do need to check for corruption while scanning
1221 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001222 */
drh43605152004-05-29 21:46:49 +00001223 hdr = pPage->hdrOffset;
1224 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001225 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001226 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001227 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001228 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001229 return SQLITE_CORRUPT_BKPT;
1230 }
drh3aac2dd2004-04-26 14:10:20 +00001231 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001232 }
drh0a45c272009-07-08 01:49:11 +00001233 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001234 return SQLITE_CORRUPT_BKPT;
1235 }
drh3aac2dd2004-04-26 14:10:20 +00001236 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001237 put2byte(&data[addr], start);
1238 put2byte(&data[start], pbegin);
1239 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001240 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001241
1242 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001243 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001244 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001245 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001246 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001247 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001248 pnext = get2byte(&data[pbegin]);
1249 psize = get2byte(&data[pbegin+2]);
1250 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1251 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001252 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001253 return SQLITE_CORRUPT_BKPT;
1254 }
drh0a45c272009-07-08 01:49:11 +00001255 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001256 x = get2byte(&data[pnext]);
1257 put2byte(&data[pbegin], x);
1258 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1259 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001260 }else{
drh3aac2dd2004-04-26 14:10:20 +00001261 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001262 }
1263 }
drh7e3b0a02001-04-28 16:52:40 +00001264
drh43605152004-05-29 21:46:49 +00001265 /* If the cell content area begins with a freeblock, remove it. */
1266 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1267 int top;
1268 pbegin = get2byte(&data[hdr+1]);
1269 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001270 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1271 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001272 }
drhc5053fb2008-11-27 02:22:10 +00001273 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001274 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001275}
1276
1277/*
drh271efa52004-05-30 19:19:05 +00001278** Decode the flags byte (the first byte of the header) for a page
1279** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001280**
1281** Only the following combinations are supported. Anything different
1282** indicates a corrupt database files:
1283**
1284** PTF_ZERODATA
1285** PTF_ZERODATA | PTF_LEAF
1286** PTF_LEAFDATA | PTF_INTKEY
1287** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001288*/
drh44845222008-07-17 18:39:57 +00001289static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001290 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001291
1292 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001293 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001294 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001295 flagByte &= ~PTF_LEAF;
1296 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001297 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001298 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1299 pPage->intKey = 1;
1300 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001301 pPage->maxLocal = pBt->maxLeaf;
1302 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001303 }else if( flagByte==PTF_ZERODATA ){
1304 pPage->intKey = 0;
1305 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001306 pPage->maxLocal = pBt->maxLocal;
1307 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001308 }else{
1309 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001310 }
drh44845222008-07-17 18:39:57 +00001311 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001312}
1313
1314/*
drh7e3b0a02001-04-28 16:52:40 +00001315** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001316**
1317** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001318** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001319** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1320** guarantee that the page is well-formed. It only shows that
1321** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001322*/
danielk197730548662009-07-09 05:07:37 +00001323static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001324
danielk197771d5d2c2008-09-29 11:49:47 +00001325 assert( pPage->pBt!=0 );
1326 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001327 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001328 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1329 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001330
1331 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001332 u16 pc; /* Address of a freeblock within pPage->aData[] */
1333 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001334 u8 *data; /* Equal to pPage->aData */
1335 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001336 u16 usableSize; /* Amount of usable space on each page */
1337 u16 cellOffset; /* Offset from start of page to first cell pointer */
1338 u16 nFree; /* Number of unused bytes on the page */
1339 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001340 int iCellFirst; /* First allowable cell or freeblock offset */
1341 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001342
1343 pBt = pPage->pBt;
1344
danielk1977eaa06f62008-09-18 17:34:44 +00001345 hdr = pPage->hdrOffset;
1346 data = pPage->aData;
1347 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1348 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1349 pPage->maskPage = pBt->pageSize - 1;
1350 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001351 usableSize = pBt->usableSize;
1352 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1353 top = get2byte(&data[hdr+5]);
1354 pPage->nCell = get2byte(&data[hdr+3]);
1355 if( pPage->nCell>MX_CELL(pBt) ){
1356 /* To many cells for a single page. The page must be corrupt */
1357 return SQLITE_CORRUPT_BKPT;
1358 }
drhb908d762009-07-08 16:54:40 +00001359 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001360
1361 /* A malformed database page might cause use to read past the end
1362 ** of page when parsing a cell.
1363 **
1364 ** The following block of code checks early to see if a cell extends
1365 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1366 ** returned if it does.
1367 */
drh0a45c272009-07-08 01:49:11 +00001368 iCellFirst = cellOffset + 2*pPage->nCell;
1369 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001370#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001371 {
drh69e931e2009-06-03 21:04:35 +00001372 int i; /* Index into the cell pointer array */
1373 int sz; /* Size of a cell */
1374
drh69e931e2009-06-03 21:04:35 +00001375 if( !pPage->leaf ) iCellLast--;
1376 for(i=0; i<pPage->nCell; i++){
1377 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001378 testcase( pc==iCellFirst );
1379 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001380 if( pc<iCellFirst || pc>iCellLast ){
1381 return SQLITE_CORRUPT_BKPT;
1382 }
1383 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001384 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001385 if( pc+sz>usableSize ){
1386 return SQLITE_CORRUPT_BKPT;
1387 }
1388 }
drh0a45c272009-07-08 01:49:11 +00001389 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001390 }
1391#endif
1392
danielk1977eaa06f62008-09-18 17:34:44 +00001393 /* Compute the total free space on the page */
1394 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001395 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001396 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001397 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001398 if( pc<iCellFirst || pc>iCellLast ){
danielk1977eaa06f62008-09-18 17:34:44 +00001399 /* Free block is off the page */
1400 return SQLITE_CORRUPT_BKPT;
1401 }
1402 next = get2byte(&data[pc]);
1403 size = get2byte(&data[pc+2]);
1404 if( next>0 && next<=pc+size+3 ){
drh0a45c272009-07-08 01:49:11 +00001405 /* Free blocks must be in ascending order */
danielk1977eaa06f62008-09-18 17:34:44 +00001406 return SQLITE_CORRUPT_BKPT;
1407 }
shane85095702009-06-15 16:27:08 +00001408 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001409 pc = next;
1410 }
danielk197793c829c2009-06-03 17:26:17 +00001411
1412 /* At this point, nFree contains the sum of the offset to the start
1413 ** of the cell-content area plus the number of free bytes within
1414 ** the cell-content area. If this is greater than the usable-size
1415 ** of the page, then the page must be corrupted. This check also
1416 ** serves to verify that the offset to the start of the cell-content
1417 ** area, according to the page header, lies within the page.
1418 */
1419 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001420 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001421 }
drh0a45c272009-07-08 01:49:11 +00001422 pPage->nFree = nFree - iCellFirst;
danielk197771d5d2c2008-09-29 11:49:47 +00001423 pPage->isInit = 1;
1424 }
drh9e572e62004-04-23 23:43:10 +00001425 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001426}
1427
1428/*
drh8b2f49b2001-06-08 00:21:52 +00001429** Set up a raw page so that it looks like a database page holding
1430** no entries.
drhbd03cae2001-06-02 02:40:57 +00001431*/
drh9e572e62004-04-23 23:43:10 +00001432static void zeroPage(MemPage *pPage, int flags){
1433 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001434 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001435 u8 hdr = pPage->hdrOffset;
1436 u16 first;
drh9e572e62004-04-23 23:43:10 +00001437
danielk19773b8a05f2007-03-19 17:44:26 +00001438 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001439 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1440 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001441 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001442 assert( sqlite3_mutex_held(pBt->mutex) );
drh1af4a6e2008-07-18 03:32:51 +00001443 /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/
drh1bd10f82008-12-10 21:19:56 +00001444 data[hdr] = (char)flags;
1445 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001446 memset(&data[hdr+1], 0, 4);
1447 data[hdr+7] = 0;
1448 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001449 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001450 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001451 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001452 pPage->cellOffset = first;
1453 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001454 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1455 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001456 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001457 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001458}
1459
drh897a8202008-09-18 01:08:15 +00001460
1461/*
1462** Convert a DbPage obtained from the pager into a MemPage used by
1463** the btree layer.
1464*/
1465static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1466 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1467 pPage->aData = sqlite3PagerGetData(pDbPage);
1468 pPage->pDbPage = pDbPage;
1469 pPage->pBt = pBt;
1470 pPage->pgno = pgno;
1471 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1472 return pPage;
1473}
1474
drhbd03cae2001-06-02 02:40:57 +00001475/*
drh3aac2dd2004-04-26 14:10:20 +00001476** Get a page from the pager. Initialize the MemPage.pBt and
1477** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001478**
1479** If the noContent flag is set, it means that we do not care about
1480** the content of the page at this time. So do not go to the disk
1481** to fetch the content. Just fill in the content with zeros for now.
1482** If in the future we call sqlite3PagerWrite() on this page, that
1483** means we have started to be concerned about content and the disk
1484** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001485*/
danielk197730548662009-07-09 05:07:37 +00001486static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001487 BtShared *pBt, /* The btree */
1488 Pgno pgno, /* Number of the page to fetch */
1489 MemPage **ppPage, /* Return the page in this parameter */
1490 int noContent /* Do not load page content if true */
1491){
drh3aac2dd2004-04-26 14:10:20 +00001492 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001493 DbPage *pDbPage;
1494
drh1fee73e2007-08-29 04:00:57 +00001495 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001496 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001497 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001498 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001499 return SQLITE_OK;
1500}
1501
1502/*
danielk1977bea2a942009-01-20 17:06:27 +00001503** Retrieve a page from the pager cache. If the requested page is not
1504** already in the pager cache return NULL. Initialize the MemPage.pBt and
1505** MemPage.aData elements if needed.
1506*/
1507static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1508 DbPage *pDbPage;
1509 assert( sqlite3_mutex_held(pBt->mutex) );
1510 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1511 if( pDbPage ){
1512 return btreePageFromDbPage(pDbPage, pgno, pBt);
1513 }
1514 return 0;
1515}
1516
1517/*
danielk197789d40042008-11-17 14:20:56 +00001518** Return the size of the database file in pages. If there is any kind of
1519** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001520*/
danielk197789d40042008-11-17 14:20:56 +00001521static Pgno pagerPagecount(BtShared *pBt){
1522 int nPage = -1;
danielk197767fd7a92008-09-10 17:53:35 +00001523 int rc;
danielk197789d40042008-11-17 14:20:56 +00001524 assert( pBt->pPage1 );
1525 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
1526 assert( rc==SQLITE_OK || nPage==-1 );
1527 return (Pgno)nPage;
danielk197767fd7a92008-09-10 17:53:35 +00001528}
1529
1530/*
drhde647132004-05-07 17:57:49 +00001531** Get a page from the pager and initialize it. This routine
1532** is just a convenience wrapper around separate calls to
danielk197730548662009-07-09 05:07:37 +00001533** btreeGetPage() and btreeInitPage().
drhde647132004-05-07 17:57:49 +00001534*/
1535static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001536 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001537 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001538 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001539){
1540 int rc;
drh897a8202008-09-18 01:08:15 +00001541 MemPage *pPage;
1542
drh1fee73e2007-08-29 04:00:57 +00001543 assert( sqlite3_mutex_held(pBt->mutex) );
drh897a8202008-09-18 01:08:15 +00001544 if( pgno==0 ){
drh49285702005-09-17 15:20:26 +00001545 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001546 }
danielk19779f580ad2008-09-10 14:45:57 +00001547
drh897a8202008-09-18 01:08:15 +00001548 /* It is often the case that the page we want is already in cache.
1549 ** If so, get it directly. This saves us from having to call
1550 ** pagerPagecount() to make sure pgno is within limits, which results
1551 ** in a measureable performance improvements.
1552 */
danielk1977bea2a942009-01-20 17:06:27 +00001553 *ppPage = pPage = btreePageLookup(pBt, pgno);
1554 if( pPage ){
drh897a8202008-09-18 01:08:15 +00001555 /* Page is already in cache */
drh897a8202008-09-18 01:08:15 +00001556 rc = SQLITE_OK;
1557 }else{
1558 /* Page not in cache. Acquire it. */
drhf3aed592009-07-08 18:12:49 +00001559 testcase( pgno==pagerPagecount(pBt) );
danielk197789d40042008-11-17 14:20:56 +00001560 if( pgno>pagerPagecount(pBt) ){
drh897a8202008-09-18 01:08:15 +00001561 return SQLITE_CORRUPT_BKPT;
1562 }
danielk197730548662009-07-09 05:07:37 +00001563 rc = btreeGetPage(pBt, pgno, ppPage, 0);
drh897a8202008-09-18 01:08:15 +00001564 if( rc ) return rc;
1565 pPage = *ppPage;
1566 }
danielk197771d5d2c2008-09-29 11:49:47 +00001567 if( !pPage->isInit ){
danielk197730548662009-07-09 05:07:37 +00001568 rc = btreeInitPage(pPage);
drh897a8202008-09-18 01:08:15 +00001569 }
1570 if( rc!=SQLITE_OK ){
1571 releasePage(pPage);
1572 *ppPage = 0;
1573 }
drhde647132004-05-07 17:57:49 +00001574 return rc;
1575}
1576
1577/*
drh3aac2dd2004-04-26 14:10:20 +00001578** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001579** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001580*/
drh4b70f112004-05-02 21:12:19 +00001581static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001582 if( pPage ){
drh30df0092008-12-23 15:58:06 +00001583 assert( pPage->nOverflow==0 || sqlite3PagerPageRefcount(pPage->pDbPage)>1 );
drh3aac2dd2004-04-26 14:10:20 +00001584 assert( pPage->aData );
1585 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001586 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1587 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001588 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001589 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001590 }
1591}
1592
1593/*
drha6abd042004-06-09 17:37:22 +00001594** During a rollback, when the pager reloads information into the cache
1595** so that the cache is restored to its original state at the start of
1596** the transaction, for each page restored this routine is called.
1597**
1598** This routine needs to reset the extra data section at the end of the
1599** page to agree with the restored data.
1600*/
danielk1977eaa06f62008-09-18 17:34:44 +00001601static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001602 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001603 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001604 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001605 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001606 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001607 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001608 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001609 /* pPage might not be a btree page; it might be an overflow page
1610 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001611 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001612 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001613 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001614 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001615 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001616 }
drha6abd042004-06-09 17:37:22 +00001617 }
1618}
1619
1620/*
drhe5fe6902007-12-07 18:55:28 +00001621** Invoke the busy handler for a btree.
1622*/
danielk19771ceedd32008-11-19 10:22:33 +00001623static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001624 BtShared *pBt = (BtShared*)pArg;
1625 assert( pBt->db );
1626 assert( sqlite3_mutex_held(pBt->db->mutex) );
1627 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1628}
1629
1630/*
drhad3e0102004-09-03 23:32:18 +00001631** Open a database file.
1632**
drh382c0242001-10-06 16:33:02 +00001633** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001634** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001635** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001636** If zFilename is ":memory:" then an in-memory database is created
1637** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001638**
1639** If the database is already opened in the same database connection
1640** and we are in shared cache mode, then the open will fail with an
1641** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1642** objects in the same database connection since doing so will lead
1643** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001644*/
drh23e11ca2004-05-04 17:27:28 +00001645int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001646 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001647 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001648 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001649 int flags, /* Options */
1650 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001651){
drh7555d8e2009-03-20 13:15:30 +00001652 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1653 BtShared *pBt = 0; /* Shared part of btree structure */
1654 Btree *p; /* Handle to return */
1655 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1656 int rc = SQLITE_OK; /* Result code from this function */
1657 u8 nReserve; /* Byte of unused space on each page */
1658 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001659
1660 /* Set the variable isMemdb to true for an in-memory database, or
1661 ** false for a file-based database. This symbol is only required if
1662 ** either of the shared-data or autovacuum features are compiled
1663 ** into the library.
1664 */
1665#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1666 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001667 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001668 #else
drh980b1a72006-08-16 16:42:48 +00001669 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001670 #endif
1671#endif
1672
drhe5fe6902007-12-07 18:55:28 +00001673 assert( db!=0 );
1674 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001675
drhe5fe6902007-12-07 18:55:28 +00001676 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001677 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001678 if( !p ){
1679 return SQLITE_NOMEM;
1680 }
1681 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001682 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001683#ifndef SQLITE_OMIT_SHARED_CACHE
1684 p->lock.pBtree = p;
1685 p->lock.iTable = 1;
1686#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001687
drh198bf392006-01-06 21:52:49 +00001688#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001689 /*
1690 ** If this Btree is a candidate for shared cache, try to find an
1691 ** existing BtShared object that we can share with
1692 */
danielk197720c6cc22009-04-01 18:03:00 +00001693 if( isMemdb==0 && zFilename && zFilename[0] ){
danielk1977502b4e02008-09-02 14:07:24 +00001694 if( sqlite3GlobalConfig.sharedCacheEnabled ){
danielk1977adfb9b02007-09-17 07:02:56 +00001695 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001696 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001697 sqlite3_mutex *mutexShared;
1698 p->sharable = 1;
drh34004ce2008-07-11 16:15:17 +00001699 db->flags |= SQLITE_SharedCache;
drhff0587c2007-08-29 17:43:19 +00001700 if( !zFullPathname ){
1701 sqlite3_free(p);
1702 return SQLITE_NOMEM;
1703 }
danielk1977adfb9b02007-09-17 07:02:56 +00001704 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001705 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1706 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001707 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001708 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001709 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001710 assert( pBt->nRef>0 );
1711 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1712 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001713 int iDb;
1714 for(iDb=db->nDb-1; iDb>=0; iDb--){
1715 Btree *pExisting = db->aDb[iDb].pBt;
1716 if( pExisting && pExisting->pBt==pBt ){
1717 sqlite3_mutex_leave(mutexShared);
1718 sqlite3_mutex_leave(mutexOpen);
1719 sqlite3_free(zFullPathname);
1720 sqlite3_free(p);
1721 return SQLITE_CONSTRAINT;
1722 }
1723 }
drhff0587c2007-08-29 17:43:19 +00001724 p->pBt = pBt;
1725 pBt->nRef++;
1726 break;
1727 }
1728 }
1729 sqlite3_mutex_leave(mutexShared);
1730 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001731 }
drhff0587c2007-08-29 17:43:19 +00001732#ifdef SQLITE_DEBUG
1733 else{
1734 /* In debug mode, we mark all persistent databases as sharable
1735 ** even when they are not. This exercises the locking code and
1736 ** gives more opportunity for asserts(sqlite3_mutex_held())
1737 ** statements to find locking problems.
1738 */
1739 p->sharable = 1;
1740 }
1741#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001742 }
1743#endif
drha059ad02001-04-17 20:09:11 +00001744 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001745 /*
1746 ** The following asserts make sure that structures used by the btree are
1747 ** the right size. This is to guard against size changes that result
1748 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001749 */
drhe53831d2007-08-17 01:14:38 +00001750 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1751 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1752 assert( sizeof(u32)==4 );
1753 assert( sizeof(u16)==2 );
1754 assert( sizeof(Pgno)==4 );
1755
1756 pBt = sqlite3MallocZero( sizeof(*pBt) );
1757 if( pBt==0 ){
1758 rc = SQLITE_NOMEM;
1759 goto btree_open_out;
1760 }
danielk197771d5d2c2008-09-29 11:49:47 +00001761 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh33f4e022007-09-03 15:19:34 +00001762 EXTRA_SIZE, flags, vfsFlags);
drhe53831d2007-08-17 01:14:38 +00001763 if( rc==SQLITE_OK ){
1764 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1765 }
1766 if( rc!=SQLITE_OK ){
1767 goto btree_open_out;
1768 }
danielk19772a50ff02009-04-10 09:47:06 +00001769 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001770 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001771 p->pBt = pBt;
1772
drhe53831d2007-08-17 01:14:38 +00001773 sqlite3PagerSetReiniter(pBt->pPager, pageReinit);
1774 pBt->pCursor = 0;
1775 pBt->pPage1 = 0;
1776 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
1777 pBt->pageSize = get2byte(&zDbHeader[16]);
1778 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1779 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001780 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001781#ifndef SQLITE_OMIT_AUTOVACUUM
1782 /* If the magic name ":memory:" will create an in-memory database, then
1783 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1784 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1785 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1786 ** regular file-name. In this case the auto-vacuum applies as per normal.
1787 */
1788 if( zFilename && !isMemdb ){
1789 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1790 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1791 }
1792#endif
1793 nReserve = 0;
1794 }else{
1795 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001796 pBt->pageSizeFixed = 1;
1797#ifndef SQLITE_OMIT_AUTOVACUUM
1798 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1799 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1800#endif
1801 }
drhfa9601a2009-06-18 17:22:39 +00001802 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001803 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001804 pBt->usableSize = pBt->pageSize - nReserve;
1805 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001806
1807#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1808 /* Add the new BtShared object to the linked list sharable BtShareds.
1809 */
1810 if( p->sharable ){
1811 sqlite3_mutex *mutexShared;
1812 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001813 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001814 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001815 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001816 if( pBt->mutex==0 ){
1817 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001818 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001819 goto btree_open_out;
1820 }
drhff0587c2007-08-29 17:43:19 +00001821 }
drhe53831d2007-08-17 01:14:38 +00001822 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001823 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1824 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001825 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001826 }
drheee46cf2004-11-06 00:02:48 +00001827#endif
drh90f5ecb2004-07-22 01:19:35 +00001828 }
danielk1977aef0bf62005-12-30 16:28:01 +00001829
drhcfed7bc2006-03-13 14:28:05 +00001830#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001831 /* If the new Btree uses a sharable pBtShared, then link the new
1832 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001833 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001834 */
drhe53831d2007-08-17 01:14:38 +00001835 if( p->sharable ){
1836 int i;
1837 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001838 for(i=0; i<db->nDb; i++){
1839 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001840 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1841 if( p->pBt<pSib->pBt ){
1842 p->pNext = pSib;
1843 p->pPrev = 0;
1844 pSib->pPrev = p;
1845 }else{
drhabddb0c2007-08-20 13:14:28 +00001846 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001847 pSib = pSib->pNext;
1848 }
1849 p->pNext = pSib->pNext;
1850 p->pPrev = pSib;
1851 if( p->pNext ){
1852 p->pNext->pPrev = p;
1853 }
1854 pSib->pNext = p;
1855 }
1856 break;
1857 }
1858 }
danielk1977aef0bf62005-12-30 16:28:01 +00001859 }
danielk1977aef0bf62005-12-30 16:28:01 +00001860#endif
1861 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001862
1863btree_open_out:
1864 if( rc!=SQLITE_OK ){
1865 if( pBt && pBt->pPager ){
1866 sqlite3PagerClose(pBt->pPager);
1867 }
drh17435752007-08-16 04:30:38 +00001868 sqlite3_free(pBt);
1869 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001870 *ppBtree = 0;
1871 }
drh7555d8e2009-03-20 13:15:30 +00001872 if( mutexOpen ){
1873 assert( sqlite3_mutex_held(mutexOpen) );
1874 sqlite3_mutex_leave(mutexOpen);
1875 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001876 return rc;
drha059ad02001-04-17 20:09:11 +00001877}
1878
1879/*
drhe53831d2007-08-17 01:14:38 +00001880** Decrement the BtShared.nRef counter. When it reaches zero,
1881** remove the BtShared structure from the sharing list. Return
1882** true if the BtShared.nRef counter reaches zero and return
1883** false if it is still positive.
1884*/
1885static int removeFromSharingList(BtShared *pBt){
1886#ifndef SQLITE_OMIT_SHARED_CACHE
1887 sqlite3_mutex *pMaster;
1888 BtShared *pList;
1889 int removed = 0;
1890
drhd677b3d2007-08-20 22:48:41 +00001891 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001892 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001893 sqlite3_mutex_enter(pMaster);
1894 pBt->nRef--;
1895 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001896 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1897 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001898 }else{
drh78f82d12008-09-02 00:52:52 +00001899 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001900 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001901 pList=pList->pNext;
1902 }
drh34004ce2008-07-11 16:15:17 +00001903 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001904 pList->pNext = pBt->pNext;
1905 }
1906 }
drh3285db22007-09-03 22:00:39 +00001907 if( SQLITE_THREADSAFE ){
1908 sqlite3_mutex_free(pBt->mutex);
1909 }
drhe53831d2007-08-17 01:14:38 +00001910 removed = 1;
1911 }
1912 sqlite3_mutex_leave(pMaster);
1913 return removed;
1914#else
1915 return 1;
1916#endif
1917}
1918
1919/*
drhf7141992008-06-19 00:16:08 +00001920** Make sure pBt->pTmpSpace points to an allocation of
1921** MX_CELL_SIZE(pBt) bytes.
1922*/
1923static void allocateTempSpace(BtShared *pBt){
1924 if( !pBt->pTmpSpace ){
1925 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1926 }
1927}
1928
1929/*
1930** Free the pBt->pTmpSpace allocation
1931*/
1932static void freeTempSpace(BtShared *pBt){
1933 sqlite3PageFree( pBt->pTmpSpace);
1934 pBt->pTmpSpace = 0;
1935}
1936
1937/*
drha059ad02001-04-17 20:09:11 +00001938** Close an open database and invalidate all cursors.
1939*/
danielk1977aef0bf62005-12-30 16:28:01 +00001940int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001941 BtShared *pBt = p->pBt;
1942 BtCursor *pCur;
1943
danielk1977aef0bf62005-12-30 16:28:01 +00001944 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001945 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001946 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001947 pCur = pBt->pCursor;
1948 while( pCur ){
1949 BtCursor *pTmp = pCur;
1950 pCur = pCur->pNext;
1951 if( pTmp->pBtree==p ){
1952 sqlite3BtreeCloseCursor(pTmp);
1953 }
drha059ad02001-04-17 20:09:11 +00001954 }
danielk1977aef0bf62005-12-30 16:28:01 +00001955
danielk19778d34dfd2006-01-24 16:37:57 +00001956 /* Rollback any active transaction and free the handle structure.
1957 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1958 ** this handle.
1959 */
danielk1977b597f742006-01-15 11:39:18 +00001960 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001961 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001962
danielk1977aef0bf62005-12-30 16:28:01 +00001963 /* If there are still other outstanding references to the shared-btree
1964 ** structure, return now. The remainder of this procedure cleans
1965 ** up the shared-btree.
1966 */
drhe53831d2007-08-17 01:14:38 +00001967 assert( p->wantToLock==0 && p->locked==0 );
1968 if( !p->sharable || removeFromSharingList(pBt) ){
1969 /* The pBt is no longer on the sharing list, so we can access
1970 ** it without having to hold the mutex.
1971 **
1972 ** Clean out and delete the BtShared object.
1973 */
1974 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001975 sqlite3PagerClose(pBt->pPager);
1976 if( pBt->xFreeSchema && pBt->pSchema ){
1977 pBt->xFreeSchema(pBt->pSchema);
1978 }
1979 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00001980 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00001981 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00001982 }
1983
drhe53831d2007-08-17 01:14:38 +00001984#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00001985 assert( p->wantToLock==0 );
1986 assert( p->locked==0 );
1987 if( p->pPrev ) p->pPrev->pNext = p->pNext;
1988 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00001989#endif
1990
drhe53831d2007-08-17 01:14:38 +00001991 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00001992 return SQLITE_OK;
1993}
1994
1995/*
drhda47d772002-12-02 04:25:19 +00001996** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00001997**
1998** The maximum number of cache pages is set to the absolute
1999** value of mxPage. If mxPage is negative, the pager will
2000** operate asynchronously - it will not stop to do fsync()s
2001** to insure data is written to the disk surface before
2002** continuing. Transactions still work if synchronous is off,
2003** and the database cannot be corrupted if this program
2004** crashes. But if the operating system crashes or there is
2005** an abrupt power failure when synchronous is off, the database
2006** could be left in an inconsistent and unrecoverable state.
2007** Synchronous is on by default so database corruption is not
2008** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002009*/
danielk1977aef0bf62005-12-30 16:28:01 +00002010int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2011 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002012 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002013 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002014 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002015 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002016 return SQLITE_OK;
2017}
2018
2019/*
drh973b6e32003-02-12 14:09:42 +00002020** Change the way data is synced to disk in order to increase or decrease
2021** how well the database resists damage due to OS crashes and power
2022** failures. Level 1 is the same as asynchronous (no syncs() occur and
2023** there is a high probability of damage) Level 2 is the default. There
2024** is a very low but non-zero probability of damage. Level 3 reduces the
2025** probability of damage to near zero but with a write performance reduction.
2026*/
danielk197793758c82005-01-21 08:13:14 +00002027#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002028int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002029 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002030 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002031 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002032 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002033 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002034 return SQLITE_OK;
2035}
danielk197793758c82005-01-21 08:13:14 +00002036#endif
drh973b6e32003-02-12 14:09:42 +00002037
drh2c8997b2005-08-27 16:36:48 +00002038/*
2039** Return TRUE if the given btree is set to safety level 1. In other
2040** words, return TRUE if no sync() occurs on the disk files.
2041*/
danielk1977aef0bf62005-12-30 16:28:01 +00002042int sqlite3BtreeSyncDisabled(Btree *p){
2043 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002044 int rc;
drhe5fe6902007-12-07 18:55:28 +00002045 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002046 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002047 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002048 rc = sqlite3PagerNosync(pBt->pPager);
2049 sqlite3BtreeLeave(p);
2050 return rc;
drh2c8997b2005-08-27 16:36:48 +00002051}
2052
danielk1977576ec6b2005-01-21 11:55:25 +00002053#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002054/*
drh90f5ecb2004-07-22 01:19:35 +00002055** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002056** Or, if the page size has already been fixed, return SQLITE_READONLY
2057** without changing anything.
drh06f50212004-11-02 14:24:33 +00002058**
2059** The page size must be a power of 2 between 512 and 65536. If the page
2060** size supplied does not meet this constraint then the page size is not
2061** changed.
2062**
2063** Page sizes are constrained to be a power of two so that the region
2064** of the database file used for locking (beginning at PENDING_BYTE,
2065** the first byte past the 1GB boundary, 0x40000000) needs to occur
2066** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002067**
2068** If parameter nReserve is less than zero, then the number of reserved
2069** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002070**
2071** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2072** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002073*/
drhce4869f2009-04-02 20:16:58 +00002074int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002075 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002076 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002077 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002078 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002079 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002080 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002081 return SQLITE_READONLY;
2082 }
2083 if( nReserve<0 ){
2084 nReserve = pBt->pageSize - pBt->usableSize;
2085 }
drhf49661a2008-12-10 16:45:50 +00002086 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002087 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2088 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002089 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002090 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002091 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002092 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002093 }
drhfa9601a2009-06-18 17:22:39 +00002094 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002095 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002096 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002097 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002098 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002099}
2100
2101/*
2102** Return the currently defined page size
2103*/
danielk1977aef0bf62005-12-30 16:28:01 +00002104int sqlite3BtreeGetPageSize(Btree *p){
2105 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002106}
drh7f751222009-03-17 22:33:00 +00002107
2108/*
2109** Return the number of bytes of space at the end of every page that
2110** are intentually left unused. This is the "reserved" space that is
2111** sometimes used by extensions.
2112*/
danielk1977aef0bf62005-12-30 16:28:01 +00002113int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002114 int n;
2115 sqlite3BtreeEnter(p);
2116 n = p->pBt->pageSize - p->pBt->usableSize;
2117 sqlite3BtreeLeave(p);
2118 return n;
drh2011d5f2004-07-22 02:40:37 +00002119}
drhf8e632b2007-05-08 14:51:36 +00002120
2121/*
2122** Set the maximum page count for a database if mxPage is positive.
2123** No changes are made if mxPage is 0 or negative.
2124** Regardless of the value of mxPage, return the maximum page count.
2125*/
2126int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002127 int n;
2128 sqlite3BtreeEnter(p);
2129 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2130 sqlite3BtreeLeave(p);
2131 return n;
drhf8e632b2007-05-08 14:51:36 +00002132}
danielk1977576ec6b2005-01-21 11:55:25 +00002133#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002134
2135/*
danielk1977951af802004-11-05 15:45:09 +00002136** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2137** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2138** is disabled. The default value for the auto-vacuum property is
2139** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2140*/
danielk1977aef0bf62005-12-30 16:28:01 +00002141int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002142#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002143 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002144#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002145 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002146 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002147 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002148
2149 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002150 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002151 rc = SQLITE_READONLY;
2152 }else{
drh076d4662009-02-18 20:31:18 +00002153 pBt->autoVacuum = av ?1:0;
2154 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002155 }
drhd677b3d2007-08-20 22:48:41 +00002156 sqlite3BtreeLeave(p);
2157 return rc;
danielk1977951af802004-11-05 15:45:09 +00002158#endif
2159}
2160
2161/*
2162** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2163** enabled 1 is returned. Otherwise 0.
2164*/
danielk1977aef0bf62005-12-30 16:28:01 +00002165int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002166#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002167 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002168#else
drhd677b3d2007-08-20 22:48:41 +00002169 int rc;
2170 sqlite3BtreeEnter(p);
2171 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002172 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2173 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2174 BTREE_AUTOVACUUM_INCR
2175 );
drhd677b3d2007-08-20 22:48:41 +00002176 sqlite3BtreeLeave(p);
2177 return rc;
danielk1977951af802004-11-05 15:45:09 +00002178#endif
2179}
2180
2181
2182/*
drha34b6762004-05-07 13:30:42 +00002183** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002184** also acquire a readlock on that file.
2185**
2186** SQLITE_OK is returned on success. If the file is not a
2187** well-formed database file, then SQLITE_CORRUPT is returned.
2188** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002189** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002190*/
danielk1977aef0bf62005-12-30 16:28:01 +00002191static int lockBtree(BtShared *pBt){
danielk1977f653d782008-03-20 11:04:21 +00002192 int rc;
drh3aac2dd2004-04-26 14:10:20 +00002193 MemPage *pPage1;
danielk197793f7af92008-05-09 16:57:50 +00002194 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002195
drh1fee73e2007-08-29 04:00:57 +00002196 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002197 assert( pBt->pPage1==0 );
danielk197730548662009-07-09 05:07:37 +00002198 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002199 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002200
2201 /* Do some checking to help insure the file we opened really is
2202 ** a valid database file.
2203 */
danielk1977ad0132d2008-06-07 08:58:22 +00002204 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2205 if( rc!=SQLITE_OK ){
danielk197793f7af92008-05-09 16:57:50 +00002206 goto page1_init_failed;
2207 }else if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002208 int pageSize;
2209 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002210 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002211 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002212 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002213 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002214 }
drh309169a2007-04-24 17:27:51 +00002215 if( page1[18]>1 ){
2216 pBt->readOnly = 1;
2217 }
2218 if( page1[19]>1 ){
drhb6f41482004-05-14 01:58:11 +00002219 goto page1_init_failed;
2220 }
drhe5ae5732008-06-15 02:51:47 +00002221
2222 /* The maximum embedded fraction must be exactly 25%. And the minimum
2223 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2224 ** The original design allowed these amounts to vary, but as of
2225 ** version 3.6.0, we require them to be fixed.
2226 */
2227 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2228 goto page1_init_failed;
2229 }
drh07d183d2005-05-01 22:52:42 +00002230 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002231 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2232 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2233 ){
drh07d183d2005-05-01 22:52:42 +00002234 goto page1_init_failed;
2235 }
2236 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002237 usableSize = pageSize - page1[20];
2238 if( pageSize!=pBt->pageSize ){
2239 /* After reading the first page of the database assuming a page size
2240 ** of BtShared.pageSize, we have discovered that the page-size is
2241 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2242 ** zero and return SQLITE_OK. The caller will call this function
2243 ** again with the correct page-size.
2244 */
2245 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002246 pBt->usableSize = (u16)usableSize;
2247 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002248 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002249 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2250 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002251 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002252 }
drhb33e1b92009-06-18 11:29:20 +00002253 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002254 goto page1_init_failed;
2255 }
drh1bd10f82008-12-10 21:19:56 +00002256 pBt->pageSize = (u16)pageSize;
2257 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002258#ifndef SQLITE_OMIT_AUTOVACUUM
2259 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002260 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002261#endif
drh306dc212001-05-21 13:45:10 +00002262 }
drhb6f41482004-05-14 01:58:11 +00002263
2264 /* maxLocal is the maximum amount of payload to store locally for
2265 ** a cell. Make sure it is small enough so that at least minFanout
2266 ** cells can will fit on one page. We assume a 10-byte page header.
2267 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002268 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002269 ** 4-byte child pointer
2270 ** 9-byte nKey value
2271 ** 4-byte nData value
2272 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002273 ** So a cell consists of a 2-byte poiner, a header which is as much as
2274 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2275 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002276 */
drhe5ae5732008-06-15 02:51:47 +00002277 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2278 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002279 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002280 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002281 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002282 pBt->pPage1 = pPage1;
drhb6f41482004-05-14 01:58:11 +00002283 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002284
drh72f82862001-05-24 21:06:34 +00002285page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002286 releasePage(pPage1);
2287 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002288 return rc;
drh306dc212001-05-21 13:45:10 +00002289}
2290
2291/*
drhb8ca3072001-12-05 00:21:20 +00002292** If there are no outstanding cursors and we are not in the middle
2293** of a transaction but there is a read lock on the database, then
2294** this routine unrefs the first page of the database file which
2295** has the effect of releasing the read lock.
2296**
drhb8ca3072001-12-05 00:21:20 +00002297** If there is a transaction in progress, this routine is a no-op.
2298*/
danielk1977aef0bf62005-12-30 16:28:01 +00002299static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002300 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002301 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2302 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002303 assert( pBt->pPage1->aData );
2304 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2305 assert( pBt->pPage1->aData );
2306 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002307 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002308 }
2309}
2310
2311/*
drh9e572e62004-04-23 23:43:10 +00002312** Create a new database by initializing the first page of the
drh8c42ca92001-06-22 19:15:00 +00002313** file.
drh8b2f49b2001-06-08 00:21:52 +00002314*/
danielk1977aef0bf62005-12-30 16:28:01 +00002315static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002316 MemPage *pP1;
2317 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002318 int rc;
danielk1977ad0132d2008-06-07 08:58:22 +00002319 int nPage;
drhd677b3d2007-08-20 22:48:41 +00002320
drh1fee73e2007-08-29 04:00:57 +00002321 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977ad0132d2008-06-07 08:58:22 +00002322 rc = sqlite3PagerPagecount(pBt->pPager, &nPage);
2323 if( rc!=SQLITE_OK || nPage>0 ){
2324 return rc;
2325 }
drh3aac2dd2004-04-26 14:10:20 +00002326 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002327 assert( pP1!=0 );
2328 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002329 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002330 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002331 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2332 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002333 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002334 data[18] = 1;
2335 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002336 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2337 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002338 data[21] = 64;
2339 data[22] = 32;
2340 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002341 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002342 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002343 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002344#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002345 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002346 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002347 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002348 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002349#endif
drh8b2f49b2001-06-08 00:21:52 +00002350 return SQLITE_OK;
2351}
2352
2353/*
danielk1977ee5741e2004-05-31 10:01:34 +00002354** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002355** is started if the second argument is nonzero, otherwise a read-
2356** transaction. If the second argument is 2 or more and exclusive
2357** transaction is started, meaning that no other process is allowed
2358** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002359** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002360** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002361**
danielk1977ee5741e2004-05-31 10:01:34 +00002362** A write-transaction must be started before attempting any
2363** changes to the database. None of the following routines
2364** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002365**
drh23e11ca2004-05-04 17:27:28 +00002366** sqlite3BtreeCreateTable()
2367** sqlite3BtreeCreateIndex()
2368** sqlite3BtreeClearTable()
2369** sqlite3BtreeDropTable()
2370** sqlite3BtreeInsert()
2371** sqlite3BtreeDelete()
2372** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002373**
drhb8ef32c2005-03-14 02:01:49 +00002374** If an initial attempt to acquire the lock fails because of lock contention
2375** and the database was previously unlocked, then invoke the busy handler
2376** if there is one. But if there was previously a read-lock, do not
2377** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2378** returned when there is already a read-lock in order to avoid a deadlock.
2379**
2380** Suppose there are two processes A and B. A has a read lock and B has
2381** a reserved lock. B tries to promote to exclusive but is blocked because
2382** of A's read lock. A tries to promote to reserved but is blocked by B.
2383** One or the other of the two processes must give way or there can be
2384** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2385** when A already has a read lock, we encourage A to give up and let B
2386** proceed.
drha059ad02001-04-17 20:09:11 +00002387*/
danielk1977aef0bf62005-12-30 16:28:01 +00002388int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002389 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002390 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002391 int rc = SQLITE_OK;
2392
drhd677b3d2007-08-20 22:48:41 +00002393 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002394 btreeIntegrity(p);
2395
danielk1977ee5741e2004-05-31 10:01:34 +00002396 /* If the btree is already in a write-transaction, or it
2397 ** is already in a read-transaction and a read-transaction
2398 ** is requested, this is a no-op.
2399 */
danielk1977aef0bf62005-12-30 16:28:01 +00002400 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002401 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002402 }
drhb8ef32c2005-03-14 02:01:49 +00002403
2404 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002405 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002406 rc = SQLITE_READONLY;
2407 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002408 }
2409
danielk1977404ca072009-03-16 13:19:36 +00002410#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002411 /* If another database handle has already opened a write transaction
2412 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002413 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002414 */
danielk1977404ca072009-03-16 13:19:36 +00002415 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2416 pBlock = pBt->pWriter->db;
2417 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002418 BtLock *pIter;
2419 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2420 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002421 pBlock = pIter->pBtree->db;
2422 break;
danielk1977641b0f42007-12-21 04:47:25 +00002423 }
2424 }
2425 }
danielk1977404ca072009-03-16 13:19:36 +00002426 if( pBlock ){
2427 sqlite3ConnectionBlocked(p->db, pBlock);
2428 rc = SQLITE_LOCKED_SHAREDCACHE;
2429 goto trans_begun;
2430 }
danielk1977641b0f42007-12-21 04:47:25 +00002431#endif
2432
danielk1977602b4662009-07-02 07:47:33 +00002433 /* Any read-only or read-write transaction implies a read-lock on
2434 ** page 1. So if some other shared-cache client already has a write-lock
2435 ** on page 1, the transaction cannot be opened. */
2436 if( SQLITE_OK!=(rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK)) ){
2437 goto trans_begun;
2438 }
2439
drhb8ef32c2005-03-14 02:01:49 +00002440 do {
danielk1977295dc102009-04-01 19:07:03 +00002441 /* Call lockBtree() until either pBt->pPage1 is populated or
2442 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2443 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2444 ** reading page 1 it discovers that the page-size of the database
2445 ** file is not pBt->pageSize. In this case lockBtree() will update
2446 ** pBt->pageSize to the page-size of the file on disk.
2447 */
2448 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002449
drhb8ef32c2005-03-14 02:01:49 +00002450 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002451 if( pBt->readOnly ){
2452 rc = SQLITE_READONLY;
2453 }else{
danielk1977d8293352009-04-30 09:10:37 +00002454 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002455 if( rc==SQLITE_OK ){
2456 rc = newDatabase(pBt);
2457 }
drhb8ef32c2005-03-14 02:01:49 +00002458 }
2459 }
2460
danielk1977bd434552009-03-18 10:33:00 +00002461 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002462 unlockBtreeIfUnused(pBt);
2463 }
danielk1977aef0bf62005-12-30 16:28:01 +00002464 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002465 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002466
2467 if( rc==SQLITE_OK ){
2468 if( p->inTrans==TRANS_NONE ){
2469 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002470#ifndef SQLITE_OMIT_SHARED_CACHE
2471 if( p->sharable ){
2472 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2473 p->lock.eLock = READ_LOCK;
2474 p->lock.pNext = pBt->pLock;
2475 pBt->pLock = &p->lock;
2476 }
2477#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002478 }
2479 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2480 if( p->inTrans>pBt->inTransaction ){
2481 pBt->inTransaction = p->inTrans;
2482 }
danielk1977641b0f42007-12-21 04:47:25 +00002483#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002484 if( wrflag ){
2485 assert( !pBt->pWriter );
2486 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002487 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002488 }
2489#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002490 }
2491
drhd677b3d2007-08-20 22:48:41 +00002492
2493trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002494 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002495 /* This call makes sure that the pager has the correct number of
2496 ** open savepoints. If the second parameter is greater than 0 and
2497 ** the sub-journal is not already open, then it will be opened here.
2498 */
danielk1977fd7f0452008-12-17 17:30:26 +00002499 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2500 }
danielk197712dd5492008-12-18 15:45:07 +00002501
danielk1977aef0bf62005-12-30 16:28:01 +00002502 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002503 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002504 return rc;
drha059ad02001-04-17 20:09:11 +00002505}
2506
danielk1977687566d2004-11-02 12:56:41 +00002507#ifndef SQLITE_OMIT_AUTOVACUUM
2508
2509/*
2510** Set the pointer-map entries for all children of page pPage. Also, if
2511** pPage contains cells that point to overflow pages, set the pointer
2512** map entries for the overflow pages as well.
2513*/
2514static int setChildPtrmaps(MemPage *pPage){
2515 int i; /* Counter variable */
2516 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002517 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002518 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002519 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002520 Pgno pgno = pPage->pgno;
2521
drh1fee73e2007-08-29 04:00:57 +00002522 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002523 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002524 if( rc!=SQLITE_OK ){
2525 goto set_child_ptrmaps_out;
2526 }
danielk1977687566d2004-11-02 12:56:41 +00002527 nCell = pPage->nCell;
2528
2529 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002530 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002531
danielk197726836652005-01-17 01:33:13 +00002532 rc = ptrmapPutOvflPtr(pPage, pCell);
2533 if( rc!=SQLITE_OK ){
2534 goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002535 }
danielk197726836652005-01-17 01:33:13 +00002536
danielk1977687566d2004-11-02 12:56:41 +00002537 if( !pPage->leaf ){
2538 Pgno childPgno = get4byte(pCell);
2539 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
danielk197700a696d2008-09-29 16:41:31 +00002540 if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out;
danielk1977687566d2004-11-02 12:56:41 +00002541 }
2542 }
2543
2544 if( !pPage->leaf ){
2545 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2546 rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno);
2547 }
2548
2549set_child_ptrmaps_out:
2550 pPage->isInit = isInitOrig;
2551 return rc;
2552}
2553
2554/*
drhf3aed592009-07-08 18:12:49 +00002555** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2556** that it points to iTo. Parameter eType describes the type of pointer to
2557** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002558**
2559** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2560** page of pPage.
2561**
2562** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2563** page pointed to by one of the cells on pPage.
2564**
2565** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2566** overflow page in the list.
2567*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002568static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002569 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002570 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002571 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002572 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002573 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002574 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002575 }
danielk1977f78fc082004-11-02 14:40:32 +00002576 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002577 }else{
drhf49661a2008-12-10 16:45:50 +00002578 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002579 int i;
2580 int nCell;
2581
danielk197730548662009-07-09 05:07:37 +00002582 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002583 nCell = pPage->nCell;
2584
danielk1977687566d2004-11-02 12:56:41 +00002585 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002586 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002587 if( eType==PTRMAP_OVERFLOW1 ){
2588 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002589 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002590 if( info.iOverflow ){
2591 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2592 put4byte(&pCell[info.iOverflow], iTo);
2593 break;
2594 }
2595 }
2596 }else{
2597 if( get4byte(pCell)==iFrom ){
2598 put4byte(pCell, iTo);
2599 break;
2600 }
2601 }
2602 }
2603
2604 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002605 if( eType!=PTRMAP_BTREE ||
2606 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002607 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002608 }
danielk1977687566d2004-11-02 12:56:41 +00002609 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2610 }
2611
2612 pPage->isInit = isInitOrig;
2613 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002614 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002615}
2616
danielk1977003ba062004-11-04 02:57:33 +00002617
danielk19777701e812005-01-10 12:59:51 +00002618/*
2619** Move the open database page pDbPage to location iFreePage in the
2620** database. The pDbPage reference remains valid.
2621*/
danielk1977003ba062004-11-04 02:57:33 +00002622static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002623 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002624 MemPage *pDbPage, /* Open page to move */
2625 u8 eType, /* Pointer map 'type' entry for pDbPage */
2626 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002627 Pgno iFreePage, /* The location to move pDbPage to */
2628 int isCommit
danielk1977003ba062004-11-04 02:57:33 +00002629){
2630 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2631 Pgno iDbPage = pDbPage->pgno;
2632 Pager *pPager = pBt->pPager;
2633 int rc;
2634
danielk1977a0bf2652004-11-04 14:30:04 +00002635 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2636 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002637 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002638 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002639
drh85b623f2007-12-13 21:54:09 +00002640 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002641 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2642 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002643 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002644 if( rc!=SQLITE_OK ){
2645 return rc;
2646 }
2647 pDbPage->pgno = iFreePage;
2648
2649 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2650 ** that point to overflow pages. The pointer map entries for all these
2651 ** pages need to be changed.
2652 **
2653 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2654 ** pointer to a subsequent overflow page. If this is the case, then
2655 ** the pointer map needs to be updated for the subsequent overflow page.
2656 */
danielk1977a0bf2652004-11-04 14:30:04 +00002657 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002658 rc = setChildPtrmaps(pDbPage);
2659 if( rc!=SQLITE_OK ){
2660 return rc;
2661 }
2662 }else{
2663 Pgno nextOvfl = get4byte(pDbPage->aData);
2664 if( nextOvfl!=0 ){
danielk1977003ba062004-11-04 02:57:33 +00002665 rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage);
2666 if( rc!=SQLITE_OK ){
2667 return rc;
2668 }
2669 }
2670 }
2671
2672 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2673 ** that it points at iFreePage. Also fix the pointer map entry for
2674 ** iPtrPage.
2675 */
danielk1977a0bf2652004-11-04 14:30:04 +00002676 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002677 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002678 if( rc!=SQLITE_OK ){
2679 return rc;
2680 }
danielk19773b8a05f2007-03-19 17:44:26 +00002681 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002682 if( rc!=SQLITE_OK ){
2683 releasePage(pPtrPage);
2684 return rc;
2685 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002686 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002687 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002688 if( rc==SQLITE_OK ){
2689 rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage);
2690 }
danielk1977003ba062004-11-04 02:57:33 +00002691 }
danielk1977003ba062004-11-04 02:57:33 +00002692 return rc;
2693}
2694
danielk1977dddbcdc2007-04-26 14:42:34 +00002695/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002696static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002697
2698/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002699** Perform a single step of an incremental-vacuum. If successful,
2700** return SQLITE_OK. If there is no work to do (and therefore no
2701** point in calling this function again), return SQLITE_DONE.
2702**
2703** More specificly, this function attempts to re-organize the
2704** database so that the last page of the file currently in use
2705** is no longer in use.
2706**
2707** If the nFin parameter is non-zero, the implementation assumes
2708** that the caller will keep calling incrVacuumStep() until
2709** it returns SQLITE_DONE or an error, and that nFin is the
2710** number of pages the database file will contain after this
2711** process is complete.
2712*/
danielk19773460d192008-12-27 15:23:13 +00002713static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002714 Pgno nFreeList; /* Number of pages still on the free-list */
2715
drh1fee73e2007-08-29 04:00:57 +00002716 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002717 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002718
2719 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
2720 int rc;
2721 u8 eType;
2722 Pgno iPtrPage;
2723
2724 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002725 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002726 return SQLITE_DONE;
2727 }
2728
2729 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2730 if( rc!=SQLITE_OK ){
2731 return rc;
2732 }
2733 if( eType==PTRMAP_ROOTPAGE ){
2734 return SQLITE_CORRUPT_BKPT;
2735 }
2736
2737 if( eType==PTRMAP_FREEPAGE ){
2738 if( nFin==0 ){
2739 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002740 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002741 ** truncated to zero after this function returns, so it doesn't
2742 ** matter if it still contains some garbage entries.
2743 */
2744 Pgno iFreePg;
2745 MemPage *pFreePg;
2746 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2747 if( rc!=SQLITE_OK ){
2748 return rc;
2749 }
2750 assert( iFreePg==iLastPg );
2751 releasePage(pFreePg);
2752 }
2753 } else {
2754 Pgno iFreePg; /* Index of free page to move pLastPg to */
2755 MemPage *pLastPg;
2756
danielk197730548662009-07-09 05:07:37 +00002757 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002758 if( rc!=SQLITE_OK ){
2759 return rc;
2760 }
2761
danielk1977b4626a32007-04-28 15:47:43 +00002762 /* If nFin is zero, this loop runs exactly once and page pLastPg
2763 ** is swapped with the first free page pulled off the free list.
2764 **
2765 ** On the other hand, if nFin is greater than zero, then keep
2766 ** looping until a free-page located within the first nFin pages
2767 ** of the file is found.
2768 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002769 do {
2770 MemPage *pFreePg;
2771 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2772 if( rc!=SQLITE_OK ){
2773 releasePage(pLastPg);
2774 return rc;
2775 }
2776 releasePage(pFreePg);
2777 }while( nFin!=0 && iFreePg>nFin );
2778 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002779
2780 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002781 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002782 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002783 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002784 releasePage(pLastPg);
2785 if( rc!=SQLITE_OK ){
2786 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002787 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002788 }
2789 }
2790
danielk19773460d192008-12-27 15:23:13 +00002791 if( nFin==0 ){
2792 iLastPg--;
2793 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002794 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2795 MemPage *pPg;
danielk197730548662009-07-09 05:07:37 +00002796 int rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002797 if( rc!=SQLITE_OK ){
2798 return rc;
2799 }
2800 rc = sqlite3PagerWrite(pPg->pDbPage);
2801 releasePage(pPg);
2802 if( rc!=SQLITE_OK ){
2803 return rc;
2804 }
2805 }
danielk19773460d192008-12-27 15:23:13 +00002806 iLastPg--;
2807 }
2808 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
danielk1977dddbcdc2007-04-26 14:42:34 +00002809 }
2810 return SQLITE_OK;
2811}
2812
2813/*
2814** A write-transaction must be opened before calling this function.
2815** It performs a single unit of work towards an incremental vacuum.
2816**
2817** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002818** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002819** SQLITE_OK is returned. Otherwise an SQLite error code.
2820*/
2821int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002822 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002823 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002824
2825 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002826 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2827 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002828 rc = SQLITE_DONE;
2829 }else{
2830 invalidateAllOverflowCache(pBt);
danielk1977bea2a942009-01-20 17:06:27 +00002831 rc = incrVacuumStep(pBt, 0, pagerPagecount(pBt));
danielk1977dddbcdc2007-04-26 14:42:34 +00002832 }
drhd677b3d2007-08-20 22:48:41 +00002833 sqlite3BtreeLeave(p);
2834 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002835}
2836
2837/*
danielk19773b8a05f2007-03-19 17:44:26 +00002838** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002839** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002840**
2841** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2842** the database file should be truncated to during the commit process.
2843** i.e. the database has been reorganized so that only the first *pnTrunc
2844** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002845*/
danielk19773460d192008-12-27 15:23:13 +00002846static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002847 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002848 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002849 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002850
drh1fee73e2007-08-29 04:00:57 +00002851 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002852 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002853 assert(pBt->autoVacuum);
2854 if( !pBt->incrVacuum ){
drh41d628c2009-07-11 17:04:08 +00002855 Pgno nFin; /* Number of pages to be freed */
2856 Pgno nFree; /* Number of pages no the freelist */
2857 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2858 Pgno iFree; /* The next page to be freed */
2859 int nEntry; /* Number of entries on one ptrmap page */
2860 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002861
drh41d628c2009-07-11 17:04:08 +00002862 nOrig = pagerPagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002863 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2864 /* It is not possible to create a database for which the final page
2865 ** is either a pointer-map page or the pending-byte page. If one
2866 ** is encountered, this indicates corruption.
2867 */
danielk19773460d192008-12-27 15:23:13 +00002868 return SQLITE_CORRUPT_BKPT;
2869 }
danielk1977ef165ce2009-04-06 17:50:03 +00002870
danielk19773460d192008-12-27 15:23:13 +00002871 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002872 nEntry = pBt->usableSize/5;
2873 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002874 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002875 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002876 nFin--;
2877 }
2878 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2879 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002880 }
drhc5e47ac2009-06-04 00:11:56 +00002881 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002882
danielk19773460d192008-12-27 15:23:13 +00002883 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2884 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 }
danielk19773460d192008-12-27 15:23:13 +00002886 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002887 rc = SQLITE_OK;
danielk19773460d192008-12-27 15:23:13 +00002888 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2889 put4byte(&pBt->pPage1->aData[32], 0);
2890 put4byte(&pBt->pPage1->aData[36], 0);
2891 sqlite3PagerTruncateImage(pBt->pPager, nFin);
danielk1977dddbcdc2007-04-26 14:42:34 +00002892 }
2893 if( rc!=SQLITE_OK ){
2894 sqlite3PagerRollback(pPager);
2895 }
danielk1977687566d2004-11-02 12:56:41 +00002896 }
2897
danielk19773b8a05f2007-03-19 17:44:26 +00002898 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002899 return rc;
2900}
danielk1977dddbcdc2007-04-26 14:42:34 +00002901
danielk1977a50d9aa2009-06-08 14:49:45 +00002902#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2903# define setChildPtrmaps(x) SQLITE_OK
2904#endif
danielk1977687566d2004-11-02 12:56:41 +00002905
2906/*
drh80e35f42007-03-30 14:06:34 +00002907** This routine does the first phase of a two-phase commit. This routine
2908** causes a rollback journal to be created (if it does not already exist)
2909** and populated with enough information so that if a power loss occurs
2910** the database can be restored to its original state by playing back
2911** the journal. Then the contents of the journal are flushed out to
2912** the disk. After the journal is safely on oxide, the changes to the
2913** database are written into the database file and flushed to oxide.
2914** At the end of this call, the rollback journal still exists on the
2915** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00002916** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00002917** commit process.
2918**
2919** This call is a no-op if no write-transaction is currently active on pBt.
2920**
2921** Otherwise, sync the database file for the btree pBt. zMaster points to
2922** the name of a master journal file that should be written into the
2923** individual journal file, or is NULL, indicating no master journal file
2924** (single database transaction).
2925**
2926** When this is called, the master journal should already have been
2927** created, populated with this journal pointer and synced to disk.
2928**
2929** Once this is routine has returned, the only thing required to commit
2930** the write-transaction for this database file is to delete the journal.
2931*/
2932int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
2933 int rc = SQLITE_OK;
2934 if( p->inTrans==TRANS_WRITE ){
2935 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002936 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00002937#ifndef SQLITE_OMIT_AUTOVACUUM
2938 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00002939 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00002940 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00002941 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002942 return rc;
2943 }
2944 }
2945#endif
drh49b9d332009-01-02 18:10:42 +00002946 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00002947 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00002948 }
2949 return rc;
2950}
2951
2952/*
danielk197794b30732009-07-02 17:21:57 +00002953** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
2954** at the conclusion of a transaction.
2955*/
2956static void btreeEndTransaction(Btree *p){
2957 BtShared *pBt = p->pBt;
2958 BtCursor *pCsr;
2959 assert( sqlite3BtreeHoldsMutex(p) );
2960
2961 /* Search for a cursor held open by this b-tree connection. If one exists,
2962 ** then the transaction will be downgraded to a read-only transaction
2963 ** instead of actually concluded. A subsequent call to CommitPhaseTwo()
2964 ** or Rollback() will finish the transaction and unlock the database. */
2965 for(pCsr=pBt->pCursor; pCsr && pCsr->pBtree!=p; pCsr=pCsr->pNext);
2966 assert( pCsr==0 || p->inTrans>TRANS_NONE );
2967
2968 btreeClearHasContent(pBt);
2969 if( pCsr ){
2970 downgradeAllSharedCacheTableLocks(p);
2971 p->inTrans = TRANS_READ;
2972 }else{
2973 /* If the handle had any kind of transaction open, decrement the
2974 ** transaction count of the shared btree. If the transaction count
2975 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
2976 ** call below will unlock the pager. */
2977 if( p->inTrans!=TRANS_NONE ){
2978 clearAllSharedCacheTableLocks(p);
2979 pBt->nTransaction--;
2980 if( 0==pBt->nTransaction ){
2981 pBt->inTransaction = TRANS_NONE;
2982 }
2983 }
2984
2985 /* Set the current transaction state to TRANS_NONE and unlock the
2986 ** pager if this call closed the only read or write transaction. */
2987 p->inTrans = TRANS_NONE;
2988 unlockBtreeIfUnused(pBt);
2989 }
2990
2991 btreeIntegrity(p);
2992}
2993
2994/*
drh2aa679f2001-06-25 02:11:07 +00002995** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00002996**
drh6e345992007-03-30 11:12:08 +00002997** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00002998** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
2999** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3000** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003001** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003002** routine has to do is delete or truncate or zero the header in the
3003** the rollback journal (which causes the transaction to commit) and
3004** drop locks.
drh6e345992007-03-30 11:12:08 +00003005**
drh5e00f6c2001-09-13 13:46:56 +00003006** This will release the write lock on the database file. If there
3007** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003008*/
drh80e35f42007-03-30 14:06:34 +00003009int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003010 BtShared *pBt = p->pBt;
3011
drhd677b3d2007-08-20 22:48:41 +00003012 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003013 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003014
3015 /* If the handle has a write-transaction open, commit the shared-btrees
3016 ** transaction and set the shared state to TRANS_READ.
3017 */
3018 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003019 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003020 assert( pBt->inTransaction==TRANS_WRITE );
3021 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003022 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003023 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003024 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003025 return rc;
3026 }
danielk1977aef0bf62005-12-30 16:28:01 +00003027 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003028 }
danielk1977aef0bf62005-12-30 16:28:01 +00003029
danielk197794b30732009-07-02 17:21:57 +00003030 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003031 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003032 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003033}
3034
drh80e35f42007-03-30 14:06:34 +00003035/*
3036** Do both phases of a commit.
3037*/
3038int sqlite3BtreeCommit(Btree *p){
3039 int rc;
drhd677b3d2007-08-20 22:48:41 +00003040 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003041 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3042 if( rc==SQLITE_OK ){
3043 rc = sqlite3BtreeCommitPhaseTwo(p);
3044 }
drhd677b3d2007-08-20 22:48:41 +00003045 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003046 return rc;
3047}
3048
danielk1977fbcd5852004-06-15 02:44:18 +00003049#ifndef NDEBUG
3050/*
3051** Return the number of write-cursors open on this handle. This is for use
3052** in assert() expressions, so it is only compiled if NDEBUG is not
3053** defined.
drhfb982642007-08-30 01:19:59 +00003054**
3055** For the purposes of this routine, a write-cursor is any cursor that
3056** is capable of writing to the databse. That means the cursor was
3057** originally opened for writing and the cursor has not be disabled
3058** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003059*/
danielk1977aef0bf62005-12-30 16:28:01 +00003060static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003061 BtCursor *pCur;
3062 int r = 0;
3063 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003064 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003065 }
3066 return r;
3067}
3068#endif
3069
drhc39e0002004-05-07 23:50:57 +00003070/*
drhfb982642007-08-30 01:19:59 +00003071** This routine sets the state to CURSOR_FAULT and the error
3072** code to errCode for every cursor on BtShared that pBtree
3073** references.
3074**
3075** Every cursor is tripped, including cursors that belong
3076** to other database connections that happen to be sharing
3077** the cache with pBtree.
3078**
3079** This routine gets called when a rollback occurs.
3080** All cursors using the same cache must be tripped
3081** to prevent them from trying to use the btree after
3082** the rollback. The rollback may have deleted tables
3083** or moved root pages, so it is not sufficient to
3084** save the state of the cursor. The cursor must be
3085** invalidated.
3086*/
3087void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3088 BtCursor *p;
3089 sqlite3BtreeEnter(pBtree);
3090 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003091 int i;
danielk1977be51a652008-10-08 17:58:48 +00003092 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003093 p->eState = CURSOR_FAULT;
3094 p->skip = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003095 for(i=0; i<=p->iPage; i++){
3096 releasePage(p->apPage[i]);
3097 p->apPage[i] = 0;
3098 }
drhfb982642007-08-30 01:19:59 +00003099 }
3100 sqlite3BtreeLeave(pBtree);
3101}
3102
3103/*
drhecdc7532001-09-23 02:35:53 +00003104** Rollback the transaction in progress. All cursors will be
3105** invalided by this operation. Any attempt to use a cursor
3106** that was open at the beginning of this operation will result
3107** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003108**
3109** This will release the write lock on the database file. If there
3110** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003111*/
danielk1977aef0bf62005-12-30 16:28:01 +00003112int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003113 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003114 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003115 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003116
drhd677b3d2007-08-20 22:48:41 +00003117 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003118 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003119#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003120 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003121 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003122 ** trying to save cursor positions. If this is an automatic rollback (as
3123 ** the result of a constraint, malloc() failure or IO error) then
3124 ** the cache may be internally inconsistent (not contain valid trees) so
3125 ** we cannot simply return the error to the caller. Instead, abort
3126 ** all queries that may be using any of the cursors that failed to save.
3127 */
drhfb982642007-08-30 01:19:59 +00003128 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003129 }
danielk19778d34dfd2006-01-24 16:37:57 +00003130#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003131 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003132
3133 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003134 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003135
danielk19778d34dfd2006-01-24 16:37:57 +00003136 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003137 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003138 if( rc2!=SQLITE_OK ){
3139 rc = rc2;
3140 }
3141
drh24cd67e2004-05-10 16:18:47 +00003142 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003143 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003144 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003145 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh24cd67e2004-05-10 16:18:47 +00003146 releasePage(pPage1);
3147 }
danielk1977fbcd5852004-06-15 02:44:18 +00003148 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003149 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003150 }
danielk1977aef0bf62005-12-30 16:28:01 +00003151
danielk197794b30732009-07-02 17:21:57 +00003152 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003153 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003154 return rc;
3155}
3156
3157/*
danielk1977bd434552009-03-18 10:33:00 +00003158** Start a statement subtransaction. The subtransaction can can be rolled
3159** back independently of the main transaction. You must start a transaction
3160** before starting a subtransaction. The subtransaction is ended automatically
3161** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003162**
3163** Statement subtransactions are used around individual SQL statements
3164** that are contained within a BEGIN...COMMIT block. If a constraint
3165** error occurs within the statement, the effect of that one statement
3166** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003167**
3168** A statement sub-transaction is implemented as an anonymous savepoint. The
3169** value passed as the second parameter is the total number of savepoints,
3170** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3171** are no active savepoints and no other statement-transactions open,
3172** iStatement is 1. This anonymous savepoint can be released or rolled back
3173** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003174*/
danielk1977bd434552009-03-18 10:33:00 +00003175int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003176 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003177 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003178 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003179 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003180 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003181 assert( iStatement>0 );
3182 assert( iStatement>p->db->nSavepoint );
3183 if( NEVER(p->inTrans!=TRANS_WRITE || pBt->readOnly) ){
drh64022502009-01-09 14:11:04 +00003184 rc = SQLITE_INTERNAL;
drhd677b3d2007-08-20 22:48:41 +00003185 }else{
3186 assert( pBt->inTransaction==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003187 /* At the pager level, a statement transaction is a savepoint with
3188 ** an index greater than all savepoints created explicitly using
3189 ** SQL statements. It is illegal to open, release or rollback any
3190 ** such savepoints while the statement transaction savepoint is active.
3191 */
danielk1977bd434552009-03-18 10:33:00 +00003192 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
danielk197797a227c2006-01-20 16:32:04 +00003193 }
drhd677b3d2007-08-20 22:48:41 +00003194 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003195 return rc;
3196}
3197
3198/*
danielk1977fd7f0452008-12-17 17:30:26 +00003199** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3200** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003201** savepoint identified by parameter iSavepoint, depending on the value
3202** of op.
3203**
3204** Normally, iSavepoint is greater than or equal to zero. However, if op is
3205** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3206** contents of the entire transaction are rolled back. This is different
3207** from a normal transaction rollback, as no locks are released and the
3208** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003209*/
3210int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3211 int rc = SQLITE_OK;
3212 if( p && p->inTrans==TRANS_WRITE ){
3213 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003214 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3215 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3216 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003217 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003218 if( rc==SQLITE_OK ){
3219 rc = newDatabase(pBt);
3220 }
danielk1977fd7f0452008-12-17 17:30:26 +00003221 sqlite3BtreeLeave(p);
3222 }
3223 return rc;
3224}
3225
3226/*
drh8b2f49b2001-06-08 00:21:52 +00003227** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003228** iTable. If a read-only cursor is requested, it is assumed that
3229** the caller already has at least a read-only transaction open
3230** on the database already. If a write-cursor is requested, then
3231** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003232**
3233** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003234** If wrFlag==1, then the cursor can be used for reading or for
3235** writing if other conditions for writing are also met. These
3236** are the conditions that must be met in order for writing to
3237** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003238**
drhf74b8d92002-09-01 23:20:45 +00003239** 1: The cursor must have been opened with wrFlag==1
3240**
drhfe5d71d2007-03-19 11:54:10 +00003241** 2: Other database connections that share the same pager cache
3242** but which are not in the READ_UNCOMMITTED state may not have
3243** cursors open with wrFlag==0 on the same table. Otherwise
3244** the changes made by this write cursor would be visible to
3245** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003246**
3247** 3: The database must be writable (not on read-only media)
3248**
3249** 4: There must be an active transaction.
3250**
drh6446c4d2001-12-15 14:22:18 +00003251** No checking is done to make sure that page iTable really is the
3252** root page of a b-tree. If it is not, then the cursor acquired
3253** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003254**
3255** It is assumed that the sqlite3BtreeCursorSize() bytes of memory
3256** pointed to by pCur have been zeroed by the caller.
drha059ad02001-04-17 20:09:11 +00003257*/
drhd677b3d2007-08-20 22:48:41 +00003258static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003259 Btree *p, /* The btree */
3260 int iTable, /* Root page of table to open */
3261 int wrFlag, /* 1 to write. 0 read-only */
3262 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3263 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003264){
danielk19773e8add92009-07-04 17:16:00 +00003265 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003266
drh1fee73e2007-08-29 04:00:57 +00003267 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003268 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003269
danielk1977602b4662009-07-02 07:47:33 +00003270 /* The following assert statements verify that if this is a sharable
3271 ** b-tree database, the connection is holding the required table locks,
3272 ** and that no other connection has any open cursor that conflicts with
3273 ** this lock. */
3274 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003275 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3276
danielk19773e8add92009-07-04 17:16:00 +00003277 /* Assert that the caller has opened the required transaction. */
3278 assert( p->inTrans>TRANS_NONE );
3279 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3280 assert( pBt->pPage1 && pBt->pPage1->aData );
3281
danielk197796d48e92009-06-29 06:00:37 +00003282 if( NEVER(wrFlag && pBt->readOnly) ){
3283 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003284 }
danielk19773e8add92009-07-04 17:16:00 +00003285 if( iTable==1 && pagerPagecount(pBt)==0 ){
3286 return SQLITE_EMPTY;
3287 }
danielk1977aef0bf62005-12-30 16:28:01 +00003288
danielk1977aef0bf62005-12-30 16:28:01 +00003289 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003290 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003291 pCur->pgnoRoot = (Pgno)iTable;
3292 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003293 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003294 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003295 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003296 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003297 pCur->pNext = pBt->pCursor;
3298 if( pCur->pNext ){
3299 pCur->pNext->pPrev = pCur;
3300 }
3301 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003302 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003303 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003304 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003305}
drhd677b3d2007-08-20 22:48:41 +00003306int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003307 Btree *p, /* The btree */
3308 int iTable, /* Root page of table to open */
3309 int wrFlag, /* 1 to write. 0 read-only */
3310 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3311 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003312){
3313 int rc;
3314 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003315 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003316 sqlite3BtreeLeave(p);
3317 return rc;
3318}
drh7f751222009-03-17 22:33:00 +00003319
3320/*
3321** Return the size of a BtCursor object in bytes.
3322**
3323** This interfaces is needed so that users of cursors can preallocate
3324** sufficient storage to hold a cursor. The BtCursor object is opaque
3325** to users so they cannot do the sizeof() themselves - they must call
3326** this routine.
3327*/
3328int sqlite3BtreeCursorSize(void){
danielk1977cd3e8f72008-03-25 09:47:35 +00003329 return sizeof(BtCursor);
3330}
3331
drh7f751222009-03-17 22:33:00 +00003332/*
3333** Set the cached rowid value of every cursor in the same database file
3334** as pCur and having the same root page number as pCur. The value is
3335** set to iRowid.
3336**
3337** Only positive rowid values are considered valid for this cache.
3338** The cache is initialized to zero, indicating an invalid cache.
3339** A btree will work fine with zero or negative rowids. We just cannot
3340** cache zero or negative rowids, which means tables that use zero or
3341** negative rowids might run a little slower. But in practice, zero
3342** or negative rowids are very uncommon so this should not be a problem.
3343*/
3344void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3345 BtCursor *p;
3346 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3347 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3348 }
3349 assert( pCur->cachedRowid==iRowid );
3350}
drhd677b3d2007-08-20 22:48:41 +00003351
drh7f751222009-03-17 22:33:00 +00003352/*
3353** Return the cached rowid for the given cursor. A negative or zero
3354** return value indicates that the rowid cache is invalid and should be
3355** ignored. If the rowid cache has never before been set, then a
3356** zero is returned.
3357*/
3358sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3359 return pCur->cachedRowid;
3360}
drha059ad02001-04-17 20:09:11 +00003361
3362/*
drh5e00f6c2001-09-13 13:46:56 +00003363** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003364** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003365*/
drh3aac2dd2004-04-26 14:10:20 +00003366int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003367 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003368 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003369 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003370 BtShared *pBt = pCur->pBt;
3371 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003372 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003373 if( pCur->pPrev ){
3374 pCur->pPrev->pNext = pCur->pNext;
3375 }else{
3376 pBt->pCursor = pCur->pNext;
3377 }
3378 if( pCur->pNext ){
3379 pCur->pNext->pPrev = pCur->pPrev;
3380 }
danielk197771d5d2c2008-09-29 11:49:47 +00003381 for(i=0; i<=pCur->iPage; i++){
3382 releasePage(pCur->apPage[i]);
3383 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003384 unlockBtreeIfUnused(pBt);
3385 invalidateOverflowCache(pCur);
3386 /* sqlite3_free(pCur); */
3387 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003388 }
drh8c42ca92001-06-22 19:15:00 +00003389 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003390}
3391
drh5e2f8b92001-05-28 00:41:15 +00003392/*
drh86057612007-06-26 01:04:48 +00003393** Make sure the BtCursor* given in the argument has a valid
3394** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003395** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003396**
3397** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003398** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003399**
3400** 2007-06-25: There is a bug in some versions of MSVC that cause the
3401** compiler to crash when getCellInfo() is implemented as a macro.
3402** But there is a measureable speed advantage to using the macro on gcc
3403** (when less compiler optimizations like -Os or -O0 are used and the
3404** compiler is not doing agressive inlining.) So we use a real function
3405** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003406*/
drh9188b382004-05-14 21:12:22 +00003407#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003408 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003409 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003410 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003411 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003412 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003413 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003414 }
danielk19771cc5ed82007-05-16 17:28:43 +00003415#else
3416 #define assertCellInfo(x)
3417#endif
drh86057612007-06-26 01:04:48 +00003418#ifdef _MSC_VER
3419 /* Use a real function in MSVC to work around bugs in that compiler. */
3420 static void getCellInfo(BtCursor *pCur){
3421 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003422 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003423 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003424 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003425 }else{
3426 assertCellInfo(pCur);
3427 }
3428 }
3429#else /* if not _MSC_VER */
3430 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003431#define getCellInfo(pCur) \
3432 if( pCur->info.nSize==0 ){ \
3433 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003434 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003435 pCur->validNKey = 1; \
3436 }else{ \
3437 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003438 }
3439#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003440
3441/*
drh3aac2dd2004-04-26 14:10:20 +00003442** Set *pSize to the size of the buffer needed to hold the value of
3443** the key for the current entry. If the cursor is not pointing
3444** to a valid entry, *pSize is set to 0.
3445**
drh4b70f112004-05-02 21:12:19 +00003446** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003447** itself, not the number of bytes in the key.
drh7e3b0a02001-04-28 16:52:40 +00003448*/
drh4a1c3802004-05-12 15:15:47 +00003449int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003450 int rc;
3451
drh1fee73e2007-08-29 04:00:57 +00003452 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003453 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003454 if( rc==SQLITE_OK ){
3455 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3456 if( pCur->eState==CURSOR_INVALID ){
3457 *pSize = 0;
3458 }else{
drh86057612007-06-26 01:04:48 +00003459 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003460 *pSize = pCur->info.nKey;
3461 }
drh72f82862001-05-24 21:06:34 +00003462 }
danielk1977da184232006-01-05 11:34:32 +00003463 return rc;
drha059ad02001-04-17 20:09:11 +00003464}
drh2af926b2001-05-15 00:39:25 +00003465
drh72f82862001-05-24 21:06:34 +00003466/*
drh0e1c19e2004-05-11 00:58:56 +00003467** Set *pSize to the number of bytes of data in the entry the
3468** cursor currently points to. Always return SQLITE_OK.
3469** Failure is not possible. If the cursor is not currently
3470** pointing to an entry (which can happen, for example, if
3471** the database is empty) then *pSize is set to 0.
3472*/
3473int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drhd677b3d2007-08-20 22:48:41 +00003474 int rc;
3475
drh1fee73e2007-08-29 04:00:57 +00003476 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003477 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003478 if( rc==SQLITE_OK ){
3479 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3480 if( pCur->eState==CURSOR_INVALID ){
3481 /* Not pointing at a valid entry - set *pSize to 0. */
3482 *pSize = 0;
3483 }else{
drh86057612007-06-26 01:04:48 +00003484 getCellInfo(pCur);
danielk1977da184232006-01-05 11:34:32 +00003485 *pSize = pCur->info.nData;
3486 }
drh0e1c19e2004-05-11 00:58:56 +00003487 }
danielk1977da184232006-01-05 11:34:32 +00003488 return rc;
drh0e1c19e2004-05-11 00:58:56 +00003489}
3490
3491/*
danielk1977d04417962007-05-02 13:16:30 +00003492** Given the page number of an overflow page in the database (parameter
3493** ovfl), this function finds the page number of the next page in the
3494** linked list of overflow pages. If possible, it uses the auto-vacuum
3495** pointer-map data instead of reading the content of page ovfl to do so.
3496**
3497** If an error occurs an SQLite error code is returned. Otherwise:
3498**
danielk1977bea2a942009-01-20 17:06:27 +00003499** The page number of the next overflow page in the linked list is
3500** written to *pPgnoNext. If page ovfl is the last page in its linked
3501** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003502**
danielk1977bea2a942009-01-20 17:06:27 +00003503** If ppPage is not NULL, and a reference to the MemPage object corresponding
3504** to page number pOvfl was obtained, then *ppPage is set to point to that
3505** reference. It is the responsibility of the caller to call releasePage()
3506** on *ppPage to free the reference. In no reference was obtained (because
3507** the pointer-map was used to obtain the value for *pPgnoNext), then
3508** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003509*/
3510static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003511 BtShared *pBt, /* The database file */
3512 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003513 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003514 Pgno *pPgnoNext /* OUT: Next overflow page number */
3515){
3516 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003517 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003518 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003519
drh1fee73e2007-08-29 04:00:57 +00003520 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003521 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003522
3523#ifndef SQLITE_OMIT_AUTOVACUUM
3524 /* Try to find the next page in the overflow list using the
3525 ** autovacuum pointer-map pages. Guess that the next page in
3526 ** the overflow list is page number (ovfl+1). If that guess turns
3527 ** out to be wrong, fall back to loading the data of page
3528 ** number ovfl to determine the next page number.
3529 */
3530 if( pBt->autoVacuum ){
3531 Pgno pgno;
3532 Pgno iGuess = ovfl+1;
3533 u8 eType;
3534
3535 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3536 iGuess++;
3537 }
3538
danielk197789d40042008-11-17 14:20:56 +00003539 if( iGuess<=pagerPagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003540 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003541 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003542 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003543 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003544 }
3545 }
3546 }
3547#endif
3548
danielk1977d8a3f3d2009-07-11 11:45:23 +00003549 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003550 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003551 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003552 assert( rc==SQLITE_OK || pPage==0 );
3553 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003554 next = get4byte(pPage->aData);
3555 }
danielk1977443c0592009-01-16 15:21:05 +00003556 }
danielk197745d68822009-01-16 16:23:38 +00003557
danielk1977bea2a942009-01-20 17:06:27 +00003558 *pPgnoNext = next;
3559 if( ppPage ){
3560 *ppPage = pPage;
3561 }else{
3562 releasePage(pPage);
3563 }
3564 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003565}
3566
danielk1977da107192007-05-04 08:32:13 +00003567/*
3568** Copy data from a buffer to a page, or from a page to a buffer.
3569**
3570** pPayload is a pointer to data stored on database page pDbPage.
3571** If argument eOp is false, then nByte bytes of data are copied
3572** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3573** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3574** of data are copied from the buffer pBuf to pPayload.
3575**
3576** SQLITE_OK is returned on success, otherwise an error code.
3577*/
3578static int copyPayload(
3579 void *pPayload, /* Pointer to page data */
3580 void *pBuf, /* Pointer to buffer */
3581 int nByte, /* Number of bytes to copy */
3582 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3583 DbPage *pDbPage /* Page containing pPayload */
3584){
3585 if( eOp ){
3586 /* Copy data from buffer to page (a write operation) */
3587 int rc = sqlite3PagerWrite(pDbPage);
3588 if( rc!=SQLITE_OK ){
3589 return rc;
3590 }
3591 memcpy(pPayload, pBuf, nByte);
3592 }else{
3593 /* Copy data from page to buffer (a read operation) */
3594 memcpy(pBuf, pPayload, nByte);
3595 }
3596 return SQLITE_OK;
3597}
danielk1977d04417962007-05-02 13:16:30 +00003598
3599/*
danielk19779f8d6402007-05-02 17:48:45 +00003600** This function is used to read or overwrite payload information
3601** for the entry that the pCur cursor is pointing to. If the eOp
3602** parameter is 0, this is a read operation (data copied into
3603** buffer pBuf). If it is non-zero, a write (data copied from
3604** buffer pBuf).
3605**
3606** A total of "amt" bytes are read or written beginning at "offset".
3607** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003608**
3609** This routine does not make a distinction between key and data.
danielk19779f8d6402007-05-02 17:48:45 +00003610** It just reads or writes bytes from the payload area. Data might
3611** appear on the main page or be scattered out on multiple overflow
3612** pages.
danielk1977da107192007-05-04 08:32:13 +00003613**
danielk1977dcbb5d32007-05-04 18:36:44 +00003614** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003615** cursor entry uses one or more overflow pages, this function
3616** allocates space for and lazily popluates the overflow page-list
3617** cache array (BtCursor.aOverflow). Subsequent calls use this
3618** cache to make seeking to the supplied offset more efficient.
3619**
3620** Once an overflow page-list cache has been allocated, it may be
3621** invalidated if some other cursor writes to the same table, or if
3622** the cursor is moved to a different row. Additionally, in auto-vacuum
3623** mode, the following events may invalidate an overflow page-list cache.
3624**
3625** * An incremental vacuum,
3626** * A commit in auto_vacuum="full" mode,
3627** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003628*/
danielk19779f8d6402007-05-02 17:48:45 +00003629static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003630 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003631 u32 offset, /* Begin reading this far into payload */
3632 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003633 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003634 int skipKey, /* offset begins at data if this is true */
3635 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003636){
3637 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003638 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003639 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003640 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003641 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003642 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003643
danielk1977da107192007-05-04 08:32:13 +00003644 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003645 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003646 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003647 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003648
drh86057612007-06-26 01:04:48 +00003649 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003650 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003651 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003652
drh3aac2dd2004-04-26 14:10:20 +00003653 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003654 offset += nKey;
drh3aac2dd2004-04-26 14:10:20 +00003655 }
danielk19770d065412008-11-12 18:21:36 +00003656 if( offset+amt > nKey+pCur->info.nData
3657 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3658 ){
danielk1977da107192007-05-04 08:32:13 +00003659 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003660 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003661 }
danielk1977da107192007-05-04 08:32:13 +00003662
3663 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003664 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003665 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003666 if( a+offset>pCur->info.nLocal ){
3667 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003668 }
danielk1977da107192007-05-04 08:32:13 +00003669 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003670 offset = 0;
drha34b6762004-05-07 13:30:42 +00003671 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003672 amt -= a;
drhdd793422001-06-28 01:54:48 +00003673 }else{
drhfa1a98a2004-05-14 19:08:17 +00003674 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003675 }
danielk1977da107192007-05-04 08:32:13 +00003676
3677 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003678 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003679 Pgno nextPage;
3680
drhfa1a98a2004-05-14 19:08:17 +00003681 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003682
danielk19772dec9702007-05-02 16:48:37 +00003683#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003684 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003685 ** has not been allocated, allocate it now. The array is sized at
3686 ** one entry for each overflow page in the overflow chain. The
3687 ** page number of the first overflow page is stored in aOverflow[0],
3688 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3689 ** (the cache is lazily populated).
3690 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003691 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003692 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003693 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
danielk19772dec9702007-05-02 16:48:37 +00003694 if( nOvfl && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003695 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003696 }
3697 }
danielk1977da107192007-05-04 08:32:13 +00003698
3699 /* If the overflow page-list cache has been allocated and the
3700 ** entry for the first required overflow page is valid, skip
3701 ** directly to it.
3702 */
danielk19772dec9702007-05-02 16:48:37 +00003703 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3704 iIdx = (offset/ovflSize);
3705 nextPage = pCur->aOverflow[iIdx];
3706 offset = (offset%ovflSize);
3707 }
3708#endif
danielk1977da107192007-05-04 08:32:13 +00003709
3710 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3711
3712#ifndef SQLITE_OMIT_INCRBLOB
3713 /* If required, populate the overflow page-list cache. */
3714 if( pCur->aOverflow ){
3715 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3716 pCur->aOverflow[iIdx] = nextPage;
3717 }
3718#endif
3719
danielk1977d04417962007-05-02 13:16:30 +00003720 if( offset>=ovflSize ){
3721 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003722 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003723 ** data is not required. So first try to lookup the overflow
3724 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003725 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003726 */
danielk19772dec9702007-05-02 16:48:37 +00003727#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003728 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3729 nextPage = pCur->aOverflow[iIdx+1];
3730 } else
danielk19772dec9702007-05-02 16:48:37 +00003731#endif
danielk1977da107192007-05-04 08:32:13 +00003732 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003733 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003734 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003735 /* Need to read this page properly. It contains some of the
3736 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003737 */
3738 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003739 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003740 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003741 if( rc==SQLITE_OK ){
3742 aPayload = sqlite3PagerGetData(pDbPage);
3743 nextPage = get4byte(aPayload);
3744 if( a + offset > ovflSize ){
3745 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003746 }
danielk1977da107192007-05-04 08:32:13 +00003747 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3748 sqlite3PagerUnref(pDbPage);
3749 offset = 0;
3750 amt -= a;
3751 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003752 }
danielk1977cfe9a692004-06-16 12:00:29 +00003753 }
drh2af926b2001-05-15 00:39:25 +00003754 }
drh2af926b2001-05-15 00:39:25 +00003755 }
danielk1977cfe9a692004-06-16 12:00:29 +00003756
danielk1977da107192007-05-04 08:32:13 +00003757 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003758 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003759 }
danielk1977da107192007-05-04 08:32:13 +00003760 return rc;
drh2af926b2001-05-15 00:39:25 +00003761}
3762
drh72f82862001-05-24 21:06:34 +00003763/*
drh3aac2dd2004-04-26 14:10:20 +00003764** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003765** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003766** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003767**
drh3aac2dd2004-04-26 14:10:20 +00003768** Return SQLITE_OK on success or an error code if anything goes
3769** wrong. An error is returned if "offset+amt" is larger than
3770** the available payload.
drh72f82862001-05-24 21:06:34 +00003771*/
drha34b6762004-05-07 13:30:42 +00003772int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003773 int rc;
3774
drh1fee73e2007-08-29 04:00:57 +00003775 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003776 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003777 if( rc==SQLITE_OK ){
3778 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003779 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3780 if( pCur->apPage[0]->intKey ){
danielk1977da184232006-01-05 11:34:32 +00003781 return SQLITE_CORRUPT_BKPT;
3782 }
danielk197771d5d2c2008-09-29 11:49:47 +00003783 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003784 rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0);
drh6575a222005-03-10 17:06:34 +00003785 }
danielk1977da184232006-01-05 11:34:32 +00003786 return rc;
drh3aac2dd2004-04-26 14:10:20 +00003787}
3788
3789/*
drh3aac2dd2004-04-26 14:10:20 +00003790** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003791** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003792** begins at "offset".
3793**
3794** Return SQLITE_OK on success or an error code if anything goes
3795** wrong. An error is returned if "offset+amt" is larger than
3796** the available payload.
drh72f82862001-05-24 21:06:34 +00003797*/
drh3aac2dd2004-04-26 14:10:20 +00003798int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003799 int rc;
3800
danielk19773588ceb2008-06-10 17:30:26 +00003801#ifndef SQLITE_OMIT_INCRBLOB
3802 if ( pCur->eState==CURSOR_INVALID ){
3803 return SQLITE_ABORT;
3804 }
3805#endif
3806
drh1fee73e2007-08-29 04:00:57 +00003807 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003808 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003809 if( rc==SQLITE_OK ){
3810 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003811 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3812 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh16a9b832007-05-05 18:39:25 +00003813 rc = accessPayload(pCur, offset, amt, pBuf, 1, 0);
danielk1977da184232006-01-05 11:34:32 +00003814 }
3815 return rc;
drh2af926b2001-05-15 00:39:25 +00003816}
3817
drh72f82862001-05-24 21:06:34 +00003818/*
drh0e1c19e2004-05-11 00:58:56 +00003819** Return a pointer to payload information from the entry that the
3820** pCur cursor is pointing to. The pointer is to the beginning of
3821** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003822** skipKey==1. The number of bytes of available key/data is written
3823** into *pAmt. If *pAmt==0, then the value returned will not be
3824** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003825**
3826** This routine is an optimization. It is common for the entire key
3827** and data to fit on the local page and for there to be no overflow
3828** pages. When that is so, this routine can be used to access the
3829** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003830** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003831** the key/data and copy it into a preallocated buffer.
3832**
3833** The pointer returned by this routine looks directly into the cached
3834** page of the database. The data might change or move the next time
3835** any btree routine is called.
3836*/
3837static const unsigned char *fetchPayload(
3838 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003839 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003840 int skipKey /* read beginning at data if this is true */
3841){
3842 unsigned char *aPayload;
3843 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003844 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003845 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003846
danielk197771d5d2c2008-09-29 11:49:47 +00003847 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003848 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003849 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003850 pPage = pCur->apPage[pCur->iPage];
3851 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh86057612007-06-26 01:04:48 +00003852 getCellInfo(pCur);
drh43605152004-05-29 21:46:49 +00003853 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003854 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003855 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003856 nKey = 0;
3857 }else{
drhf49661a2008-12-10 16:45:50 +00003858 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003859 }
drh0e1c19e2004-05-11 00:58:56 +00003860 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003861 aPayload += nKey;
3862 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003863 }else{
drhfa1a98a2004-05-14 19:08:17 +00003864 nLocal = pCur->info.nLocal;
drhe51c44f2004-05-30 20:46:09 +00003865 if( nLocal>nKey ){
3866 nLocal = nKey;
3867 }
drh0e1c19e2004-05-11 00:58:56 +00003868 }
drhe51c44f2004-05-30 20:46:09 +00003869 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003870 return aPayload;
3871}
3872
3873
3874/*
drhe51c44f2004-05-30 20:46:09 +00003875** For the entry that cursor pCur is point to, return as
3876** many bytes of the key or data as are available on the local
3877** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003878**
3879** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003880** or be destroyed on the next call to any Btree routine,
3881** including calls from other threads against the same cache.
3882** Hence, a mutex on the BtShared should be held prior to calling
3883** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003884**
3885** These routines is used to get quick access to key and data
3886** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003887*/
drhe51c44f2004-05-30 20:46:09 +00003888const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003889 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003890 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003891 if( pCur->eState==CURSOR_VALID ){
3892 return (const void*)fetchPayload(pCur, pAmt, 0);
3893 }
3894 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003895}
drhe51c44f2004-05-30 20:46:09 +00003896const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
danielk19774b0aa4c2009-05-28 11:05:57 +00003897 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003898 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003899 if( pCur->eState==CURSOR_VALID ){
3900 return (const void*)fetchPayload(pCur, pAmt, 1);
3901 }
3902 return 0;
drh0e1c19e2004-05-11 00:58:56 +00003903}
3904
3905
3906/*
drh8178a752003-01-05 21:41:40 +00003907** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00003908** page number of the child page to move to.
drh72f82862001-05-24 21:06:34 +00003909*/
drh3aac2dd2004-04-26 14:10:20 +00003910static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00003911 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003912 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00003913 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00003914 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00003915
drh1fee73e2007-08-29 04:00:57 +00003916 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003917 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003918 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
3919 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
3920 return SQLITE_CORRUPT_BKPT;
3921 }
3922 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00003923 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00003924 pCur->apPage[i+1] = pNewPage;
3925 pCur->aiIdx[i+1] = 0;
3926 pCur->iPage++;
3927
drh271efa52004-05-30 19:19:05 +00003928 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003929 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00003930 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00003931 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00003932 }
drh72f82862001-05-24 21:06:34 +00003933 return SQLITE_OK;
3934}
3935
danielk1977bf93c562008-09-29 15:53:25 +00003936#ifndef NDEBUG
3937/*
3938** Page pParent is an internal (non-leaf) tree page. This function
3939** asserts that page number iChild is the left-child if the iIdx'th
3940** cell in page pParent. Or, if iIdx is equal to the total number of
3941** cells in pParent, that page number iChild is the right-child of
3942** the page.
3943*/
3944static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
3945 assert( iIdx<=pParent->nCell );
3946 if( iIdx==pParent->nCell ){
3947 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
3948 }else{
3949 assert( get4byte(findCell(pParent, iIdx))==iChild );
3950 }
3951}
3952#else
3953# define assertParentIndex(x,y,z)
3954#endif
3955
drh72f82862001-05-24 21:06:34 +00003956/*
drh5e2f8b92001-05-28 00:41:15 +00003957** Move the cursor up to the parent page.
3958**
3959** pCur->idx is set to the cell index that contains the pointer
3960** to the page we are coming from. If we are coming from the
3961** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00003962** the largest cell index.
drh72f82862001-05-24 21:06:34 +00003963*/
danielk197730548662009-07-09 05:07:37 +00003964static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00003965 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00003966 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003967 assert( pCur->iPage>0 );
3968 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00003969 assertParentIndex(
3970 pCur->apPage[pCur->iPage-1],
3971 pCur->aiIdx[pCur->iPage-1],
3972 pCur->apPage[pCur->iPage]->pgno
3973 );
danielk197771d5d2c2008-09-29 11:49:47 +00003974 releasePage(pCur->apPage[pCur->iPage]);
3975 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00003976 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00003977 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00003978}
3979
3980/*
3981** Move the cursor to the root page
3982*/
drh5e2f8b92001-05-28 00:41:15 +00003983static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00003984 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00003985 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003986 Btree *p = pCur->pBtree;
3987 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00003988
drh1fee73e2007-08-29 04:00:57 +00003989 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00003990 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
3991 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
3992 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
3993 if( pCur->eState>=CURSOR_REQUIRESEEK ){
3994 if( pCur->eState==CURSOR_FAULT ){
3995 return pCur->skip;
3996 }
danielk1977be51a652008-10-08 17:58:48 +00003997 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00003998 }
danielk197771d5d2c2008-09-29 11:49:47 +00003999
4000 if( pCur->iPage>=0 ){
4001 int i;
4002 for(i=1; i<=pCur->iPage; i++){
4003 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004004 }
danielk1977172114a2009-07-07 15:47:12 +00004005 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004006 }else{
4007 if(
danielk197771d5d2c2008-09-29 11:49:47 +00004008 SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]))
drh777e4c42006-01-13 04:31:58 +00004009 ){
4010 pCur->eState = CURSOR_INVALID;
4011 return rc;
4012 }
danielk1977172114a2009-07-07 15:47:12 +00004013 pCur->iPage = 0;
4014
4015 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4016 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4017 ** NULL, the caller expects a table b-tree. If this is not the case,
4018 ** return an SQLITE_CORRUPT error. */
4019 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4020 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4021 return SQLITE_CORRUPT_BKPT;
4022 }
drhc39e0002004-05-07 23:50:57 +00004023 }
danielk197771d5d2c2008-09-29 11:49:47 +00004024
4025 pRoot = pCur->apPage[0];
4026 assert( pRoot->pgno==pCur->pgnoRoot );
danielk197771d5d2c2008-09-29 11:49:47 +00004027 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004028 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004029 pCur->atLast = 0;
4030 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004031
drh8856d6a2004-04-29 14:42:46 +00004032 if( pRoot->nCell==0 && !pRoot->leaf ){
4033 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004034 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh8856d6a2004-04-29 14:42:46 +00004035 assert( pRoot->pgno==1 );
drh43605152004-05-29 21:46:49 +00004036 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
drh8856d6a2004-04-29 14:42:46 +00004037 assert( subpage>0 );
danielk1977da184232006-01-05 11:34:32 +00004038 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004039 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004040 }else{
4041 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004042 }
4043 return rc;
drh72f82862001-05-24 21:06:34 +00004044}
drh2af926b2001-05-15 00:39:25 +00004045
drh5e2f8b92001-05-28 00:41:15 +00004046/*
4047** Move the cursor down to the left-most leaf entry beneath the
4048** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004049**
4050** The left-most leaf is the one with the smallest key - the first
4051** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004052*/
4053static int moveToLeftmost(BtCursor *pCur){
4054 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004055 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004056 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004057
drh1fee73e2007-08-29 04:00:57 +00004058 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004059 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004060 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4061 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4062 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004063 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004064 }
drhd677b3d2007-08-20 22:48:41 +00004065 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004066}
4067
drh2dcc9aa2002-12-04 13:40:25 +00004068/*
4069** Move the cursor down to the right-most leaf entry beneath the
4070** page to which it is currently pointing. Notice the difference
4071** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4072** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4073** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004074**
4075** The right-most entry is the one with the largest key - the last
4076** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004077*/
4078static int moveToRightmost(BtCursor *pCur){
4079 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004080 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004081 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004082
drh1fee73e2007-08-29 04:00:57 +00004083 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004084 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004085 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004086 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004087 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004088 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004089 }
drhd677b3d2007-08-20 22:48:41 +00004090 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004091 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004092 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004093 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004094 }
danielk1977518002e2008-09-05 05:02:46 +00004095 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004096}
4097
drh5e00f6c2001-09-13 13:46:56 +00004098/* Move the cursor to the first entry in the table. Return SQLITE_OK
4099** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004100** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004101*/
drh3aac2dd2004-04-26 14:10:20 +00004102int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004103 int rc;
drhd677b3d2007-08-20 22:48:41 +00004104
drh1fee73e2007-08-29 04:00:57 +00004105 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004106 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004107 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004108 if( rc==SQLITE_OK ){
4109 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004110 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004111 *pRes = 1;
4112 rc = SQLITE_OK;
4113 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004114 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004115 *pRes = 0;
4116 rc = moveToLeftmost(pCur);
4117 }
drh5e00f6c2001-09-13 13:46:56 +00004118 }
drh5e00f6c2001-09-13 13:46:56 +00004119 return rc;
4120}
drh5e2f8b92001-05-28 00:41:15 +00004121
drh9562b552002-02-19 15:00:07 +00004122/* Move the cursor to the last entry in the table. Return SQLITE_OK
4123** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004124** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004125*/
drh3aac2dd2004-04-26 14:10:20 +00004126int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004127 int rc;
drhd677b3d2007-08-20 22:48:41 +00004128
drh1fee73e2007-08-29 04:00:57 +00004129 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004130 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004131
4132 /* If the cursor already points to the last entry, this is a no-op. */
4133 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4134#ifdef SQLITE_DEBUG
4135 /* This block serves to assert() that the cursor really does point
4136 ** to the last entry in the b-tree. */
4137 int ii;
4138 for(ii=0; ii<pCur->iPage; ii++){
4139 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4140 }
4141 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4142 assert( pCur->apPage[pCur->iPage]->leaf );
4143#endif
4144 return SQLITE_OK;
4145 }
4146
drh9562b552002-02-19 15:00:07 +00004147 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004148 if( rc==SQLITE_OK ){
4149 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004150 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004151 *pRes = 1;
4152 }else{
4153 assert( pCur->eState==CURSOR_VALID );
4154 *pRes = 0;
4155 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004156 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004157 }
drh9562b552002-02-19 15:00:07 +00004158 }
drh9562b552002-02-19 15:00:07 +00004159 return rc;
4160}
4161
drhe14006d2008-03-25 17:23:32 +00004162/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004163** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004164**
drhe63d9992008-08-13 19:11:48 +00004165** For INTKEY tables, the intKey parameter is used. pIdxKey
4166** must be NULL. For index tables, pIdxKey is used and intKey
4167** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004168**
drh5e2f8b92001-05-28 00:41:15 +00004169** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004170** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004171** were present. The cursor might point to an entry that comes
4172** before or after the key.
4173**
drh64022502009-01-09 14:11:04 +00004174** An integer is written into *pRes which is the result of
4175** comparing the key with the entry to which the cursor is
4176** pointing. The meaning of the integer written into
4177** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004178**
4179** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004180** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004181** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004182**
4183** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004184** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004185**
4186** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004187** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004188**
drha059ad02001-04-17 20:09:11 +00004189*/
drhe63d9992008-08-13 19:11:48 +00004190int sqlite3BtreeMovetoUnpacked(
4191 BtCursor *pCur, /* The cursor to be moved */
4192 UnpackedRecord *pIdxKey, /* Unpacked index key */
4193 i64 intKey, /* The table key */
4194 int biasRight, /* If true, bias the search to the high end */
4195 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004196){
drh72f82862001-05-24 21:06:34 +00004197 int rc;
drhd677b3d2007-08-20 22:48:41 +00004198
drh1fee73e2007-08-29 04:00:57 +00004199 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004200 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004201 assert( pRes );
drha2c20e42008-03-29 16:01:04 +00004202
4203 /* If the cursor is already positioned at the point we are trying
4204 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004205 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4206 && pCur->apPage[0]->intKey
4207 ){
drhe63d9992008-08-13 19:11:48 +00004208 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004209 *pRes = 0;
4210 return SQLITE_OK;
4211 }
drhe63d9992008-08-13 19:11:48 +00004212 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004213 *pRes = -1;
4214 return SQLITE_OK;
4215 }
4216 }
4217
drh5e2f8b92001-05-28 00:41:15 +00004218 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004219 if( rc ){
4220 return rc;
4221 }
danielk197771d5d2c2008-09-29 11:49:47 +00004222 assert( pCur->apPage[pCur->iPage] );
4223 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004224 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004225 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004226 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004227 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004228 return SQLITE_OK;
4229 }
danielk197771d5d2c2008-09-29 11:49:47 +00004230 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004231 for(;;){
drh72f82862001-05-24 21:06:34 +00004232 int lwr, upr;
4233 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004234 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004235 int c;
4236
4237 /* pPage->nCell must be greater than zero. If this is the root-page
4238 ** the cursor would have been INVALID above and this for(;;) loop
4239 ** not run. If this is not the root-page, then the moveToChild() routine
4240 ** would have already detected db corruption. */
4241 assert( pPage->nCell>0 );
drh72f82862001-05-24 21:06:34 +00004242 lwr = 0;
4243 upr = pPage->nCell-1;
danielk1977171fff32009-07-11 05:06:51 +00004244 if( (!pPage->intKey && pIdxKey==0) ){
drh1e968a02008-03-25 00:22:21 +00004245 rc = SQLITE_CORRUPT_BKPT;
4246 goto moveto_finish;
drh4eec4c12005-01-21 00:22:37 +00004247 }
drhe4d90812007-03-29 05:51:49 +00004248 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004249 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004250 }else{
drhf49661a2008-12-10 16:45:50 +00004251 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004252 }
drh64022502009-01-09 14:11:04 +00004253 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004254 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4255 u8 *pCell; /* Pointer to current cell in pPage */
4256
drh366fda62006-01-13 02:35:09 +00004257 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004258 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004259 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004260 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004261 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004262 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004263 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004264 }
drha2c20e42008-03-29 16:01:04 +00004265 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004266 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004267 c = 0;
drhe63d9992008-08-13 19:11:48 +00004268 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004269 c = -1;
4270 }else{
drhe63d9992008-08-13 19:11:48 +00004271 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004272 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004273 }
danielk197711c327a2009-05-04 19:01:26 +00004274 pCur->validNKey = 1;
4275 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004276 }else{
danielk197711c327a2009-05-04 19:01:26 +00004277 /* The maximum supported page-size is 32768 bytes. This means that
4278 ** the maximum number of record bytes stored on an index B-Tree
4279 ** page is at most 8198 bytes, which may be stored as a 2-byte
4280 ** varint. This information is used to attempt to avoid parsing
4281 ** the entire cell by checking for the cases where the record is
4282 ** stored entirely within the b-tree page by inspecting the first
4283 ** 2 bytes of the cell.
4284 */
4285 int nCell = pCell[0];
4286 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4287 /* This branch runs if the record-size field of the cell is a
4288 ** single byte varint and the record fits entirely on the main
4289 ** b-tree page. */
4290 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4291 }else if( !(pCell[1] & 0x80)
4292 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4293 ){
4294 /* The record-size field is a 2 byte varint and the record
4295 ** fits entirely on the main b-tree page. */
4296 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004297 }else{
danielk197711c327a2009-05-04 19:01:26 +00004298 /* The record flows over onto one or more overflow pages. In
4299 ** this case the whole cell needs to be parsed, a buffer allocated
4300 ** and accessPayload() used to retrieve the record into the
4301 ** buffer before VdbeRecordCompare() can be called. */
4302 void *pCellKey;
4303 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004304 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004305 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004306 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004307 if( pCellKey==0 ){
4308 rc = SQLITE_NOMEM;
4309 goto moveto_finish;
4310 }
danielk197711c327a2009-05-04 19:01:26 +00004311 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0, 0);
4312 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004313 sqlite3_free(pCellKey);
drh1e968a02008-03-25 00:22:21 +00004314 if( rc ) goto moveto_finish;
drhe51c44f2004-05-30 20:46:09 +00004315 }
drh3aac2dd2004-04-26 14:10:20 +00004316 }
drh72f82862001-05-24 21:06:34 +00004317 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004318 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004319 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004320 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004321 break;
4322 }else{
drh64022502009-01-09 14:11:04 +00004323 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004324 rc = SQLITE_OK;
4325 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004326 }
drh72f82862001-05-24 21:06:34 +00004327 }
4328 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004329 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004330 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004331 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004332 }
drhf1d68b32007-03-29 04:43:26 +00004333 if( lwr>upr ){
4334 break;
4335 }
drhf49661a2008-12-10 16:45:50 +00004336 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004337 }
4338 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004339 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004340 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004341 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004342 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004343 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004344 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004345 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004346 }
4347 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004348 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004349 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004350 rc = SQLITE_OK;
4351 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004352 }
drhf49661a2008-12-10 16:45:50 +00004353 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004354 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004355 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004356 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004357 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004358 }
drh1e968a02008-03-25 00:22:21 +00004359moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004360 return rc;
4361}
4362
drhd677b3d2007-08-20 22:48:41 +00004363
drh72f82862001-05-24 21:06:34 +00004364/*
drhc39e0002004-05-07 23:50:57 +00004365** Return TRUE if the cursor is not pointing at an entry of the table.
4366**
4367** TRUE will be returned after a call to sqlite3BtreeNext() moves
4368** past the last entry in the table or sqlite3BtreePrev() moves past
4369** the first entry. TRUE is also returned if the table is empty.
4370*/
4371int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004372 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4373 ** have been deleted? This API will need to change to return an error code
4374 ** as well as the boolean result value.
4375 */
4376 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004377}
4378
4379/*
drhbd03cae2001-06-02 02:40:57 +00004380** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004381** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004382** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004383** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004384*/
drhd094db12008-04-03 21:46:57 +00004385int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004386 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004387 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004388 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004389
drh1fee73e2007-08-29 04:00:57 +00004390 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004391 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004392 if( rc!=SQLITE_OK ){
4393 return rc;
4394 }
drh8c4d3a62007-04-06 01:03:32 +00004395 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004396 if( CURSOR_INVALID==pCur->eState ){
4397 *pRes = 1;
4398 return SQLITE_OK;
4399 }
danielk1977da184232006-01-05 11:34:32 +00004400 if( pCur->skip>0 ){
4401 pCur->skip = 0;
4402 *pRes = 0;
4403 return SQLITE_OK;
4404 }
4405 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004406
danielk197771d5d2c2008-09-29 11:49:47 +00004407 pPage = pCur->apPage[pCur->iPage];
4408 idx = ++pCur->aiIdx[pCur->iPage];
4409 assert( pPage->isInit );
4410 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004411
drh271efa52004-05-30 19:19:05 +00004412 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004413 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004414 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004415 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004416 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004417 if( rc ) return rc;
4418 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004419 *pRes = 0;
4420 return rc;
drh72f82862001-05-24 21:06:34 +00004421 }
drh5e2f8b92001-05-28 00:41:15 +00004422 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004423 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004424 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004425 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004426 return SQLITE_OK;
4427 }
danielk197730548662009-07-09 05:07:37 +00004428 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004429 pPage = pCur->apPage[pCur->iPage];
4430 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004431 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004432 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004433 rc = sqlite3BtreeNext(pCur, pRes);
4434 }else{
4435 rc = SQLITE_OK;
4436 }
4437 return rc;
drh8178a752003-01-05 21:41:40 +00004438 }
4439 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004440 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004441 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004442 }
drh5e2f8b92001-05-28 00:41:15 +00004443 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004444 return rc;
drh72f82862001-05-24 21:06:34 +00004445}
drhd677b3d2007-08-20 22:48:41 +00004446
drh72f82862001-05-24 21:06:34 +00004447
drh3b7511c2001-05-26 13:15:44 +00004448/*
drh2dcc9aa2002-12-04 13:40:25 +00004449** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004450** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004451** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004452** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004453*/
drhd094db12008-04-03 21:46:57 +00004454int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004455 int rc;
drh8178a752003-01-05 21:41:40 +00004456 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004457
drh1fee73e2007-08-29 04:00:57 +00004458 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004459 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004460 if( rc!=SQLITE_OK ){
4461 return rc;
4462 }
drha2c20e42008-03-29 16:01:04 +00004463 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004464 if( CURSOR_INVALID==pCur->eState ){
4465 *pRes = 1;
4466 return SQLITE_OK;
4467 }
danielk1977da184232006-01-05 11:34:32 +00004468 if( pCur->skip<0 ){
4469 pCur->skip = 0;
4470 *pRes = 0;
4471 return SQLITE_OK;
4472 }
4473 pCur->skip = 0;
danielk1977da184232006-01-05 11:34:32 +00004474
danielk197771d5d2c2008-09-29 11:49:47 +00004475 pPage = pCur->apPage[pCur->iPage];
4476 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004477 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004478 int idx = pCur->aiIdx[pCur->iPage];
4479 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004480 if( rc ){
4481 return rc;
4482 }
drh2dcc9aa2002-12-04 13:40:25 +00004483 rc = moveToRightmost(pCur);
4484 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004485 while( pCur->aiIdx[pCur->iPage]==0 ){
4486 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004487 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004488 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004489 return SQLITE_OK;
4490 }
danielk197730548662009-07-09 05:07:37 +00004491 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004492 }
drh271efa52004-05-30 19:19:05 +00004493 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004494 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004495
4496 pCur->aiIdx[pCur->iPage]--;
4497 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004498 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004499 rc = sqlite3BtreePrevious(pCur, pRes);
4500 }else{
4501 rc = SQLITE_OK;
4502 }
drh2dcc9aa2002-12-04 13:40:25 +00004503 }
drh8178a752003-01-05 21:41:40 +00004504 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004505 return rc;
4506}
4507
4508/*
drh3b7511c2001-05-26 13:15:44 +00004509** Allocate a new page from the database file.
4510**
danielk19773b8a05f2007-03-19 17:44:26 +00004511** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004512** has already been called on the new page.) The new page has also
4513** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004514** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004515**
4516** SQLITE_OK is returned on success. Any other return value indicates
4517** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004518** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004519**
drh199e3cf2002-07-18 11:01:47 +00004520** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4521** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004522** attempt to keep related pages close to each other in the database file,
4523** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004524**
4525** If the "exact" parameter is not 0, and the page-number nearby exists
4526** anywhere on the free-list, then it is guarenteed to be returned. This
4527** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004528*/
drh4f0c5872007-03-26 22:05:01 +00004529static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004530 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004531 MemPage **ppPage,
4532 Pgno *pPgno,
4533 Pgno nearby,
4534 u8 exact
4535){
drh3aac2dd2004-04-26 14:10:20 +00004536 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004537 int rc;
drh35cd6432009-06-05 14:17:21 +00004538 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004539 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004540 MemPage *pTrunk = 0;
4541 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004542 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004543
drh1fee73e2007-08-29 04:00:57 +00004544 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004545 pPage1 = pBt->pPage1;
drh1662b5a2009-06-04 19:06:09 +00004546 mxPage = pagerPagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004547 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004548 testcase( n==mxPage-1 );
4549 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004550 return SQLITE_CORRUPT_BKPT;
4551 }
drh3aac2dd2004-04-26 14:10:20 +00004552 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004553 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004554 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004555 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4556
4557 /* If the 'exact' parameter was true and a query of the pointer-map
4558 ** shows that the page 'nearby' is somewhere on the free-list, then
4559 ** the entire-list will be searched for that page.
4560 */
4561#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004562 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004563 u8 eType;
4564 assert( nearby>0 );
4565 assert( pBt->autoVacuum );
4566 rc = ptrmapGet(pBt, nearby, &eType, 0);
4567 if( rc ) return rc;
4568 if( eType==PTRMAP_FREEPAGE ){
4569 searchList = 1;
4570 }
4571 *pPgno = nearby;
4572 }
4573#endif
4574
4575 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4576 ** first free-list trunk page. iPrevTrunk is initially 1.
4577 */
danielk19773b8a05f2007-03-19 17:44:26 +00004578 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004579 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004580 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004581
4582 /* The code within this loop is run only once if the 'searchList' variable
4583 ** is not true. Otherwise, it runs once for each trunk-page on the
4584 ** free-list until the page 'nearby' is located.
4585 */
4586 do {
4587 pPrevTrunk = pTrunk;
4588 if( pPrevTrunk ){
4589 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004590 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004591 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004592 }
drhdf35a082009-07-09 02:24:35 +00004593 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004594 if( iTrunk>mxPage ){
4595 rc = SQLITE_CORRUPT_BKPT;
4596 }else{
danielk197730548662009-07-09 05:07:37 +00004597 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004598 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004599 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004600 pTrunk = 0;
4601 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004602 }
4603
4604 k = get4byte(&pTrunk->aData[4]);
drhdf35a082009-07-09 02:24:35 +00004605 testcase( k==(u32)(pBt->usableSize/4 - 2) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004606 if( k==0 && !searchList ){
4607 /* The trunk has no leaves and the list is not being searched.
4608 ** So extract the trunk page itself and use it as the newly
4609 ** allocated page */
4610 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004611 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004612 if( rc ){
4613 goto end_allocate_page;
4614 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004615 *pPgno = iTrunk;
4616 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4617 *ppPage = pTrunk;
4618 pTrunk = 0;
4619 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004620 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004621 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004622 rc = SQLITE_CORRUPT_BKPT;
4623 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004624#ifndef SQLITE_OMIT_AUTOVACUUM
4625 }else if( searchList && nearby==iTrunk ){
4626 /* The list is being searched and this trunk page is the page
4627 ** to allocate, regardless of whether it has leaves.
4628 */
4629 assert( *pPgno==iTrunk );
4630 *ppPage = pTrunk;
4631 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004632 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004633 if( rc ){
4634 goto end_allocate_page;
4635 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004636 if( k==0 ){
4637 if( !pPrevTrunk ){
4638 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4639 }else{
4640 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4641 }
4642 }else{
4643 /* The trunk page is required by the caller but it contains
4644 ** pointers to free-list leaves. The first leaf becomes a trunk
4645 ** page in this case.
4646 */
4647 MemPage *pNewTrunk;
4648 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004649 if( iNewTrunk>mxPage ){
4650 rc = SQLITE_CORRUPT_BKPT;
4651 goto end_allocate_page;
4652 }
drhdf35a082009-07-09 02:24:35 +00004653 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004654 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004655 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004656 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004657 }
danielk19773b8a05f2007-03-19 17:44:26 +00004658 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004659 if( rc!=SQLITE_OK ){
4660 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004661 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004662 }
4663 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4664 put4byte(&pNewTrunk->aData[4], k-1);
4665 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004666 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004667 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004668 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004669 put4byte(&pPage1->aData[32], iNewTrunk);
4670 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004671 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004672 if( rc ){
4673 goto end_allocate_page;
4674 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004675 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4676 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004677 }
4678 pTrunk = 0;
4679 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4680#endif
danielk1977e5765212009-06-17 11:13:28 +00004681 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004682 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004683 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004684 Pgno iPage;
4685 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004686 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004687 if( rc ){
4688 goto end_allocate_page;
4689 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004690 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004691 u32 i;
4692 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004693 closest = 0;
4694 dist = get4byte(&aData[8]) - nearby;
4695 if( dist<0 ) dist = -dist;
4696 for(i=1; i<k; i++){
4697 int d2 = get4byte(&aData[8+i*4]) - nearby;
4698 if( d2<0 ) d2 = -d2;
4699 if( d2<dist ){
4700 closest = i;
4701 dist = d2;
4702 }
4703 }
4704 }else{
4705 closest = 0;
4706 }
4707
4708 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004709 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004710 if( iPage>mxPage ){
4711 rc = SQLITE_CORRUPT_BKPT;
4712 goto end_allocate_page;
4713 }
drhdf35a082009-07-09 02:24:35 +00004714 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004715 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004716 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004717 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004718 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4719 ": %d more free pages\n",
4720 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4721 if( closest<k-1 ){
4722 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4723 }
4724 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004725 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004726 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004727 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004728 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004729 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004730 if( rc!=SQLITE_OK ){
4731 releasePage(*ppPage);
4732 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004733 }
4734 searchList = 0;
4735 }
drhee696e22004-08-30 16:52:17 +00004736 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004737 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004738 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004739 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004740 }else{
drh3aac2dd2004-04-26 14:10:20 +00004741 /* There are no pages on the freelist, so create a new page at the
4742 ** end of the file */
danielk197789d40042008-11-17 14:20:56 +00004743 int nPage = pagerPagecount(pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00004744 *pPgno = nPage + 1;
danielk1977afcdd022004-10-31 16:25:42 +00004745
danielk1977bea2a942009-01-20 17:06:27 +00004746 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){
4747 (*pPgno)++;
4748 }
4749
danielk1977afcdd022004-10-31 16:25:42 +00004750#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977266664d2006-02-10 08:24:21 +00004751 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){
danielk1977afcdd022004-10-31 16:25:42 +00004752 /* If *pPgno refers to a pointer-map page, allocate two new pages
4753 ** at the end of the file instead of one. The first allocated page
4754 ** becomes a new pointer-map page, the second is used by the caller.
4755 */
danielk1977ac861692009-03-28 10:54:22 +00004756 MemPage *pPg = 0;
danielk1977afcdd022004-10-31 16:25:42 +00004757 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno));
danielk1977599fcba2004-11-08 07:13:13 +00004758 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004759 rc = btreeGetPage(pBt, *pPgno, &pPg, 0);
danielk1977ac861692009-03-28 10:54:22 +00004760 if( rc==SQLITE_OK ){
4761 rc = sqlite3PagerWrite(pPg->pDbPage);
4762 releasePage(pPg);
4763 }
4764 if( rc ) return rc;
danielk1977afcdd022004-10-31 16:25:42 +00004765 (*pPgno)++;
drh72190432008-01-31 14:54:43 +00004766 if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; }
danielk1977afcdd022004-10-31 16:25:42 +00004767 }
4768#endif
4769
danielk1977599fcba2004-11-08 07:13:13 +00004770 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
danielk197730548662009-07-09 05:07:37 +00004771 rc = btreeGetPage(pBt, *pPgno, ppPage, 0);
drh3b7511c2001-05-26 13:15:44 +00004772 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004773 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004774 if( rc!=SQLITE_OK ){
4775 releasePage(*ppPage);
4776 }
drh3a4c1412004-05-09 20:40:11 +00004777 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004778 }
danielk1977599fcba2004-11-08 07:13:13 +00004779
4780 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004781
4782end_allocate_page:
4783 releasePage(pTrunk);
4784 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004785 if( rc==SQLITE_OK ){
4786 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4787 releasePage(*ppPage);
4788 return SQLITE_CORRUPT_BKPT;
4789 }
4790 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004791 }else{
4792 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004793 }
drh3b7511c2001-05-26 13:15:44 +00004794 return rc;
4795}
4796
4797/*
danielk1977bea2a942009-01-20 17:06:27 +00004798** This function is used to add page iPage to the database file free-list.
4799** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004800**
danielk1977bea2a942009-01-20 17:06:27 +00004801** The value passed as the second argument to this function is optional.
4802** If the caller happens to have a pointer to the MemPage object
4803** corresponding to page iPage handy, it may pass it as the second value.
4804** Otherwise, it may pass NULL.
4805**
4806** If a pointer to a MemPage object is passed as the second argument,
4807** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004808*/
danielk1977bea2a942009-01-20 17:06:27 +00004809static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4810 MemPage *pTrunk = 0; /* Free-list trunk page */
4811 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4812 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4813 MemPage *pPage; /* Page being freed. May be NULL. */
4814 int rc; /* Return Code */
4815 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004816
danielk1977bea2a942009-01-20 17:06:27 +00004817 assert( sqlite3_mutex_held(pBt->mutex) );
4818 assert( iPage>1 );
4819 assert( !pMemPage || pMemPage->pgno==iPage );
4820
4821 if( pMemPage ){
4822 pPage = pMemPage;
4823 sqlite3PagerRef(pPage->pDbPage);
4824 }else{
4825 pPage = btreePageLookup(pBt, iPage);
4826 }
drh3aac2dd2004-04-26 14:10:20 +00004827
drha34b6762004-05-07 13:30:42 +00004828 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004829 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004830 if( rc ) goto freepage_out;
4831 nFree = get4byte(&pPage1->aData[36]);
4832 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004833
drhfcce93f2006-02-22 03:08:32 +00004834#ifdef SQLITE_SECURE_DELETE
4835 /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then
4836 ** always fully overwrite deleted information with zeros.
4837 */
danielk197730548662009-07-09 05:07:37 +00004838 if( (!pPage && (rc = btreeGetPage(pBt, iPage, &pPage, 0)))
danielk1977bea2a942009-01-20 17:06:27 +00004839 || (rc = sqlite3PagerWrite(pPage->pDbPage))
4840 ){
4841 goto freepage_out;
4842 }
drhfcce93f2006-02-22 03:08:32 +00004843 memset(pPage->aData, 0, pPage->pBt->pageSize);
4844#endif
4845
danielk1977687566d2004-11-02 12:56:41 +00004846 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004847 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004848 */
danielk197785d90ca2008-07-19 14:25:15 +00004849 if( ISAUTOVACUUM ){
danielk1977bea2a942009-01-20 17:06:27 +00004850 rc = ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0);
4851 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004852 }
danielk1977687566d2004-11-02 12:56:41 +00004853
danielk1977bea2a942009-01-20 17:06:27 +00004854 /* Now manipulate the actual database free-list structure. There are two
4855 ** possibilities. If the free-list is currently empty, or if the first
4856 ** trunk page in the free-list is full, then this page will become a
4857 ** new free-list trunk page. Otherwise, it will become a leaf of the
4858 ** first trunk page in the current free-list. This block tests if it
4859 ** is possible to add the page as a new free-list leaf.
4860 */
4861 if( nFree!=0 ){
4862 int nLeaf; /* Initial number of leaf cells on trunk page */
4863
4864 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004865 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004866 if( rc!=SQLITE_OK ){
4867 goto freepage_out;
4868 }
4869
4870 nLeaf = get4byte(&pTrunk->aData[4]);
4871 if( nLeaf<0 ){
4872 rc = SQLITE_CORRUPT_BKPT;
4873 goto freepage_out;
4874 }
4875 if( nLeaf<pBt->usableSize/4 - 8 ){
4876 /* In this case there is room on the trunk page to insert the page
4877 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00004878 **
4879 ** Note that the trunk page is not really full until it contains
4880 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
4881 ** coded. But due to a coding error in versions of SQLite prior to
4882 ** 3.6.0, databases with freelist trunk pages holding more than
4883 ** usableSize/4 - 8 entries will be reported as corrupt. In order
4884 ** to maintain backwards compatibility with older versions of SQLite,
4885 ** we will contain to restrict the number of entries to usableSize/4 - 8
4886 ** for now. At some point in the future (once everyone has upgraded
4887 ** to 3.6.0 or later) we should consider fixing the conditional above
4888 ** to read "usableSize/4-2" instead of "usableSize/4-8".
4889 */
danielk19773b8a05f2007-03-19 17:44:26 +00004890 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00004891 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00004892 put4byte(&pTrunk->aData[4], nLeaf+1);
4893 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhfcce93f2006-02-22 03:08:32 +00004894#ifndef SQLITE_SECURE_DELETE
danielk1977bea2a942009-01-20 17:06:27 +00004895 if( pPage ){
4896 sqlite3PagerDontWrite(pPage->pDbPage);
4897 }
drhfcce93f2006-02-22 03:08:32 +00004898#endif
danielk1977bea2a942009-01-20 17:06:27 +00004899 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00004900 }
drh3a4c1412004-05-09 20:40:11 +00004901 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00004902 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00004903 }
drh3b7511c2001-05-26 13:15:44 +00004904 }
danielk1977bea2a942009-01-20 17:06:27 +00004905
4906 /* If control flows to this point, then it was not possible to add the
4907 ** the page being freed as a leaf page of the first trunk in the free-list.
4908 ** Possibly because the free-list is empty, or possibly because the
4909 ** first trunk in the free-list is full. Either way, the page being freed
4910 ** will become the new first trunk page in the free-list.
4911 */
danielk197730548662009-07-09 05:07:37 +00004912 if( ((!pPage) && (0 != (rc = btreeGetPage(pBt, iPage, &pPage, 0))))
shane63207ab2009-02-04 01:49:30 +00004913 || (0 != (rc = sqlite3PagerWrite(pPage->pDbPage)))
danielk1977bea2a942009-01-20 17:06:27 +00004914 ){
4915 goto freepage_out;
4916 }
4917 put4byte(pPage->aData, iTrunk);
4918 put4byte(&pPage->aData[4], 0);
4919 put4byte(&pPage1->aData[32], iPage);
4920 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
4921
4922freepage_out:
4923 if( pPage ){
4924 pPage->isInit = 0;
4925 }
4926 releasePage(pPage);
4927 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00004928 return rc;
4929}
danielk1977bea2a942009-01-20 17:06:27 +00004930static int freePage(MemPage *pPage){
4931 return freePage2(pPage->pBt, pPage, pPage->pgno);
4932}
drh3b7511c2001-05-26 13:15:44 +00004933
4934/*
drh3aac2dd2004-04-26 14:10:20 +00004935** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00004936*/
drh3aac2dd2004-04-26 14:10:20 +00004937static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00004938 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00004939 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00004940 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00004941 int rc;
drh94440812007-03-06 11:42:19 +00004942 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00004943 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00004944
drh1fee73e2007-08-29 04:00:57 +00004945 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00004946 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00004947 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00004948 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00004949 }
drh6f11bef2004-05-13 01:12:56 +00004950 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00004951 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00004952 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00004953 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
4954 assert( ovflPgno==0 || nOvfl>0 );
4955 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00004956 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004957 MemPage *pOvfl = 0;
danielk1977e589a672009-04-11 16:06:15 +00004958 if( ovflPgno<2 || ovflPgno>pagerPagecount(pBt) ){
4959 /* 0 is not a legal page number and page 1 cannot be an
4960 ** overflow page. Therefore if ovflPgno<2 or past the end of the
4961 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00004962 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00004963 }
danielk1977bea2a942009-01-20 17:06:27 +00004964 if( nOvfl ){
4965 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
4966 if( rc ) return rc;
4967 }
4968 rc = freePage2(pBt, pOvfl, ovflPgno);
4969 if( pOvfl ){
4970 sqlite3PagerUnref(pOvfl->pDbPage);
4971 }
drh3b7511c2001-05-26 13:15:44 +00004972 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00004973 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00004974 }
drh5e2f8b92001-05-28 00:41:15 +00004975 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00004976}
4977
4978/*
drh91025292004-05-03 19:49:32 +00004979** Create the byte sequence used to represent a cell on page pPage
4980** and write that byte sequence into pCell[]. Overflow pages are
4981** allocated and filled in as necessary. The calling procedure
4982** is responsible for making sure sufficient space has been allocated
4983** for pCell[].
4984**
4985** Note that pCell does not necessary need to point to the pPage->aData
4986** area. pCell might point to some temporary storage. The cell will
4987** be constructed in this temporary area then copied into pPage->aData
4988** later.
drh3b7511c2001-05-26 13:15:44 +00004989*/
4990static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00004991 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00004992 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00004993 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00004994 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00004995 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00004996 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00004997){
drh3b7511c2001-05-26 13:15:44 +00004998 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00004999 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005000 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005001 int spaceLeft;
5002 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005003 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005004 unsigned char *pPrior;
5005 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005006 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005007 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005008 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005009 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005010
drh1fee73e2007-08-29 04:00:57 +00005011 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005012
drhc5053fb2008-11-27 02:22:10 +00005013 /* pPage is not necessarily writeable since pCell might be auxiliary
5014 ** buffer space that is separate from the pPage buffer area */
5015 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5016 || sqlite3PagerIswriteable(pPage->pDbPage) );
5017
drh91025292004-05-03 19:49:32 +00005018 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005019 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005020 if( !pPage->leaf ){
5021 nHeader += 4;
5022 }
drh8b18dd42004-05-12 19:18:15 +00005023 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005024 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005025 }else{
drhb026e052007-05-02 01:34:31 +00005026 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005027 }
drh6f11bef2004-05-13 01:12:56 +00005028 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005029 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005030 assert( info.nHeader==nHeader );
5031 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005032 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005033
5034 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005035 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005036 if( pPage->intKey ){
5037 pSrc = pData;
5038 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005039 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005040 }else{
drh20abac22009-01-28 20:21:17 +00005041 if( nKey>0x7fffffff || pKey==0 ){
5042 return SQLITE_CORRUPT;
5043 }
drhf49661a2008-12-10 16:45:50 +00005044 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005045 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005046 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005047 }
drh6f11bef2004-05-13 01:12:56 +00005048 *pnSize = info.nSize;
5049 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005050 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005051 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005052
drh3b7511c2001-05-26 13:15:44 +00005053 while( nPayload>0 ){
5054 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005055#ifndef SQLITE_OMIT_AUTOVACUUM
5056 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005057 if( pBt->autoVacuum ){
5058 do{
5059 pgnoOvfl++;
5060 } while(
5061 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5062 );
danielk1977b39f70b2007-05-17 18:28:11 +00005063 }
danielk1977afcdd022004-10-31 16:25:42 +00005064#endif
drhf49661a2008-12-10 16:45:50 +00005065 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005066#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005067 /* If the database supports auto-vacuum, and the second or subsequent
5068 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005069 ** for that page now.
5070 **
5071 ** If this is the first overflow page, then write a partial entry
5072 ** to the pointer-map. If we write nothing to this pointer-map slot,
5073 ** then the optimistic overflow chain processing in clearCell()
5074 ** may misinterpret the uninitialised values and delete the
5075 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005076 */
danielk19774ef24492007-05-23 09:52:41 +00005077 if( pBt->autoVacuum && rc==SQLITE_OK ){
5078 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5079 rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap);
danielk197789a4be82007-05-23 13:34:32 +00005080 if( rc ){
5081 releasePage(pOvfl);
5082 }
danielk1977afcdd022004-10-31 16:25:42 +00005083 }
5084#endif
drh3b7511c2001-05-26 13:15:44 +00005085 if( rc ){
drh9b171272004-05-08 02:03:22 +00005086 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005087 return rc;
5088 }
drhc5053fb2008-11-27 02:22:10 +00005089
5090 /* If pToRelease is not zero than pPrior points into the data area
5091 ** of pToRelease. Make sure pToRelease is still writeable. */
5092 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5093
5094 /* If pPrior is part of the data area of pPage, then make sure pPage
5095 ** is still writeable */
5096 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5097 || sqlite3PagerIswriteable(pPage->pDbPage) );
5098
drh3aac2dd2004-04-26 14:10:20 +00005099 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005100 releasePage(pToRelease);
5101 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005102 pPrior = pOvfl->aData;
5103 put4byte(pPrior, 0);
5104 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005105 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005106 }
5107 n = nPayload;
5108 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005109
5110 /* If pToRelease is not zero than pPayload points into the data area
5111 ** of pToRelease. Make sure pToRelease is still writeable. */
5112 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5113
5114 /* If pPayload is part of the data area of pPage, then make sure pPage
5115 ** is still writeable */
5116 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5117 || sqlite3PagerIswriteable(pPage->pDbPage) );
5118
drhb026e052007-05-02 01:34:31 +00005119 if( nSrc>0 ){
5120 if( n>nSrc ) n = nSrc;
5121 assert( pSrc );
5122 memcpy(pPayload, pSrc, n);
5123 }else{
5124 memset(pPayload, 0, n);
5125 }
drh3b7511c2001-05-26 13:15:44 +00005126 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005127 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005128 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005129 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005130 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005131 if( nSrc==0 ){
5132 nSrc = nData;
5133 pSrc = pData;
5134 }
drhdd793422001-06-28 01:54:48 +00005135 }
drh9b171272004-05-08 02:03:22 +00005136 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005137 return SQLITE_OK;
5138}
5139
drh14acc042001-06-10 19:56:58 +00005140/*
5141** Remove the i-th cell from pPage. This routine effects pPage only.
5142** The cell content is not freed or deallocated. It is assumed that
5143** the cell content has been copied someplace else. This routine just
5144** removes the reference to the cell from pPage.
5145**
5146** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005147*/
shane0af3f892008-11-12 04:55:34 +00005148static int dropCell(MemPage *pPage, int idx, int sz){
drh43605152004-05-29 21:46:49 +00005149 int i; /* Loop counter */
5150 int pc; /* Offset to cell content of cell being deleted */
5151 u8 *data; /* pPage->aData */
5152 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005153 int rc; /* The return code */
drh43605152004-05-29 21:46:49 +00005154
drh8c42ca92001-06-22 19:15:00 +00005155 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005156 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005157 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005158 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005159 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005160 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005161 pc = get2byte(ptr);
drhc5053fb2008-11-27 02:22:10 +00005162 if( (pc<pPage->hdrOffset+6+(pPage->leaf?0:4))
5163 || (pc+sz>pPage->pBt->usableSize) ){
shane0af3f892008-11-12 04:55:34 +00005164 return SQLITE_CORRUPT_BKPT;
5165 }
shanedcc50b72008-11-13 18:29:50 +00005166 rc = freeSpace(pPage, pc, sz);
5167 if( rc!=SQLITE_OK ){
5168 return rc;
5169 }
drh43605152004-05-29 21:46:49 +00005170 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5171 ptr[0] = ptr[2];
5172 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005173 }
5174 pPage->nCell--;
drh43605152004-05-29 21:46:49 +00005175 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5176 pPage->nFree += 2;
shane0af3f892008-11-12 04:55:34 +00005177 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005178}
5179
5180/*
5181** Insert a new cell on pPage at cell index "i". pCell points to the
5182** content of the cell.
5183**
5184** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005185** will not fit, then make a copy of the cell content into pTemp if
5186** pTemp is not null. Regardless of pTemp, allocate a new entry
5187** in pPage->aOvfl[] and make it point to the cell content (either
5188** in pTemp or the original pCell) and also record its index.
5189** Allocating a new entry in pPage->aCell[] implies that
5190** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005191**
5192** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5193** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005194** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005195** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005196*/
danielk1977e80463b2004-11-03 03:01:16 +00005197static int insertCell(
drh24cd67e2004-05-10 16:18:47 +00005198 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005199 int i, /* New cell becomes the i-th cell of the page */
5200 u8 *pCell, /* Content of the new cell */
5201 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005202 u8 *pTemp, /* Temp storage space for pCell, if needed */
danielk19774dbaa892009-06-16 16:50:22 +00005203 Pgno iChild /* If non-zero, replace first 4 bytes with this value */
drh24cd67e2004-05-10 16:18:47 +00005204){
drh43605152004-05-29 21:46:49 +00005205 int idx; /* Where to write new cell content in data[] */
5206 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005207 int end; /* First byte past the last cell pointer in data[] */
5208 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005209 int cellOffset; /* Address of first cell pointer in data[] */
5210 u8 *data; /* The content of the whole page */
5211 u8 *ptr; /* Used for moving information around in data[] */
5212
danielk19774dbaa892009-06-16 16:50:22 +00005213 int nSkip = (iChild ? 4 : 0);
5214
drh43605152004-05-29 21:46:49 +00005215 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005216 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5217 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh43605152004-05-29 21:46:49 +00005218 assert( sz==cellSizePtr(pPage, pCell) );
drh1fee73e2007-08-29 04:00:57 +00005219 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +00005220 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005221 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005222 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005223 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005224 }
danielk19774dbaa892009-06-16 16:50:22 +00005225 if( iChild ){
5226 put4byte(pCell, iChild);
5227 }
drh43605152004-05-29 21:46:49 +00005228 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005229 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005230 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005231 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005232 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005233 int rc = sqlite3PagerWrite(pPage->pDbPage);
5234 if( rc!=SQLITE_OK ){
5235 return rc;
5236 }
5237 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005238 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005239 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005240 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005241 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005242 rc = allocateSpace(pPage, sz, &idx);
5243 if( rc ) return rc;
5244 assert( idx>=end+2 );
5245 if( idx+sz > pPage->pBt->usableSize ){
shane34ac18d2008-11-11 22:18:20 +00005246 return SQLITE_CORRUPT_BKPT;
shane0af3f892008-11-12 04:55:34 +00005247 }
drh43605152004-05-29 21:46:49 +00005248 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005249 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005250 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005251 if( iChild ){
5252 put4byte(&data[idx], iChild);
5253 }
drh0a45c272009-07-08 01:49:11 +00005254 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005255 ptr[0] = ptr[-2];
5256 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005257 }
drh43605152004-05-29 21:46:49 +00005258 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005259 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005260#ifndef SQLITE_OMIT_AUTOVACUUM
5261 if( pPage->pBt->autoVacuum ){
5262 /* The cell may contain a pointer to an overflow page. If so, write
5263 ** the entry for the overflow page into the pointer map.
5264 */
danielk197746aa38f2009-06-25 16:11:05 +00005265 return ptrmapPutOvflPtr(pPage, pCell);
danielk1977a19df672004-11-03 11:37:07 +00005266 }
5267#endif
drh14acc042001-06-10 19:56:58 +00005268 }
danielk1977e80463b2004-11-03 03:01:16 +00005269
danielk1977e80463b2004-11-03 03:01:16 +00005270 return SQLITE_OK;
drh14acc042001-06-10 19:56:58 +00005271}
5272
5273/*
drhfa1a98a2004-05-14 19:08:17 +00005274** Add a list of cells to a page. The page should be initially empty.
5275** The cells are guaranteed to fit on the page.
5276*/
5277static void assemblePage(
5278 MemPage *pPage, /* The page to be assemblied */
5279 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005280 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005281 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005282){
5283 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005284 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005285 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005286 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5287 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5288 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005289
drh43605152004-05-29 21:46:49 +00005290 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005291 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005292 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005293 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005294
5295 /* Check that the page has just been zeroed by zeroPage() */
5296 assert( pPage->nCell==0 );
5297 assert( get2byte(&data[hdr+5])==nUsable );
5298
5299 pCellptr = &data[pPage->cellOffset + nCell*2];
5300 cellbody = nUsable;
5301 for(i=nCell-1; i>=0; i--){
5302 pCellptr -= 2;
5303 cellbody -= aSize[i];
5304 put2byte(pCellptr, cellbody);
5305 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005306 }
danielk1977fad91942009-04-29 17:49:59 +00005307 put2byte(&data[hdr+3], nCell);
5308 put2byte(&data[hdr+5], cellbody);
5309 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005310 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005311}
5312
drh14acc042001-06-10 19:56:58 +00005313/*
drhc3b70572003-01-04 19:44:07 +00005314** The following parameters determine how many adjacent pages get involved
5315** in a balancing operation. NN is the number of neighbors on either side
5316** of the page that participate in the balancing operation. NB is the
5317** total number of pages that participate, including the target page and
5318** NN neighbors on either side.
5319**
5320** The minimum value of NN is 1 (of course). Increasing NN above 1
5321** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5322** in exchange for a larger degradation in INSERT and UPDATE performance.
5323** The value of NN appears to give the best results overall.
5324*/
5325#define NN 1 /* Number of neighbors on either side of pPage */
5326#define NB (NN*2+1) /* Total pages involved in the balance */
5327
danielk1977ac245ec2005-01-14 13:50:11 +00005328
drh615ae552005-01-16 23:21:00 +00005329#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005330/*
5331** This version of balance() handles the common special case where
5332** a new entry is being inserted on the extreme right-end of the
5333** tree, in other words, when the new entry will become the largest
5334** entry in the tree.
5335**
5336** Instead of trying balance the 3 right-most leaf pages, just add
5337** a new page to the right-hand side and put the one new entry in
5338** that page. This leaves the right side of the tree somewhat
5339** unbalanced. But odds are that we will be inserting new entries
5340** at the end soon afterwards so the nearly empty page will quickly
5341** fill up. On average.
5342**
5343** pPage is the leaf page which is the right-most page in the tree.
5344** pParent is its parent. pPage must have a single overflow entry
5345** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005346**
5347** The pSpace buffer is used to store a temporary copy of the divider
5348** cell that will be inserted into pParent. Such a cell consists of a 4
5349** byte page number followed by a variable length integer. In other
5350** words, at most 13 bytes. Hence the pSpace buffer must be at
5351** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005352*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005353static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5354 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005355 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005356 int rc; /* Return Code */
5357 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005358
drh1fee73e2007-08-29 04:00:57 +00005359 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005360 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005361 assert( pPage->nOverflow==1 );
5362
drhd46b6c22009-06-04 17:02:51 +00005363 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005364
danielk1977a50d9aa2009-06-08 14:49:45 +00005365 /* Allocate a new page. This page will become the right-sibling of
5366 ** pPage. Make the parent page writable, so that the new divider cell
5367 ** may be inserted. If both these operations are successful, proceed.
5368 */
drh4f0c5872007-03-26 22:05:01 +00005369 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005370
danielk1977eaa06f62008-09-18 17:34:44 +00005371 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005372
5373 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005374 u8 *pCell = pPage->aOvfl[0].pCell;
5375 u16 szCell = cellSizePtr(pPage, pCell);
5376 u8 *pStop;
5377
drhc5053fb2008-11-27 02:22:10 +00005378 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005379 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5380 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005381 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005382
5383 /* If this is an auto-vacuum database, update the pointer map
5384 ** with entries for the new page, and any pointer from the
5385 ** cell on the page to an overflow page. If either of these
5386 ** operations fails, the return code is set, but the contents
5387 ** of the parent page are still manipulated by thh code below.
5388 ** That is Ok, at this point the parent page is guaranteed to
5389 ** be marked as dirty. Returning an error code will cause a
5390 ** rollback, undoing any changes made to the parent page.
5391 */
5392 if( ISAUTOVACUUM ){
5393 rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno);
5394 if( szCell>pNew->minLocal && rc==SQLITE_OK ){
5395 rc = ptrmapPutOvflPtr(pNew, pCell);
5396 }
5397 }
danielk1977eaa06f62008-09-18 17:34:44 +00005398
danielk19776f235cc2009-06-04 14:46:08 +00005399 /* Create a divider cell to insert into pParent. The divider cell
5400 ** consists of a 4-byte page number (the page number of pPage) and
5401 ** a variable length key value (which must be the same value as the
5402 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005403 **
danielk19776f235cc2009-06-04 14:46:08 +00005404 ** To find the largest key value on pPage, first find the right-most
5405 ** cell on pPage. The first two fields of this cell are the
5406 ** record-length (a variable length integer at most 32-bits in size)
5407 ** and the key value (a variable length integer, may have any value).
5408 ** The first of the while(...) loops below skips over the record-length
5409 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005410 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005411 */
danielk1977eaa06f62008-09-18 17:34:44 +00005412 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005413 pStop = &pCell[9];
5414 while( (*(pCell++)&0x80) && pCell<pStop );
5415 pStop = &pCell[9];
5416 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5417
danielk19774dbaa892009-06-16 16:50:22 +00005418 /* Insert the new divider cell into pParent. */
5419 insertCell(pParent,pParent->nCell,pSpace,(int)(pOut-pSpace),0,pPage->pgno);
danielk19776f235cc2009-06-04 14:46:08 +00005420
5421 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005422 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5423
danielk1977e08a3c42008-09-18 18:17:03 +00005424 /* Release the reference to the new page. */
5425 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005426 }
5427
danielk1977eaa06f62008-09-18 17:34:44 +00005428 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005429}
drh615ae552005-01-16 23:21:00 +00005430#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005431
danielk19774dbaa892009-06-16 16:50:22 +00005432#if 0
drhc3b70572003-01-04 19:44:07 +00005433/*
danielk19774dbaa892009-06-16 16:50:22 +00005434** This function does not contribute anything to the operation of SQLite.
5435** it is sometimes activated temporarily while debugging code responsible
5436** for setting pointer-map entries.
5437*/
5438static int ptrmapCheckPages(MemPage **apPage, int nPage){
5439 int i, j;
5440 for(i=0; i<nPage; i++){
5441 Pgno n;
5442 u8 e;
5443 MemPage *pPage = apPage[i];
5444 BtShared *pBt = pPage->pBt;
5445 assert( pPage->isInit );
5446
5447 for(j=0; j<pPage->nCell; j++){
5448 CellInfo info;
5449 u8 *z;
5450
5451 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005452 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005453 if( info.iOverflow ){
5454 Pgno ovfl = get4byte(&z[info.iOverflow]);
5455 ptrmapGet(pBt, ovfl, &e, &n);
5456 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5457 }
5458 if( !pPage->leaf ){
5459 Pgno child = get4byte(z);
5460 ptrmapGet(pBt, child, &e, &n);
5461 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5462 }
5463 }
5464 if( !pPage->leaf ){
5465 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5466 ptrmapGet(pBt, child, &e, &n);
5467 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5468 }
5469 }
5470 return 1;
5471}
5472#endif
5473
danielk1977cd581a72009-06-23 15:43:39 +00005474/*
5475** This function is used to copy the contents of the b-tree node stored
5476** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5477** the pointer-map entries for each child page are updated so that the
5478** parent page stored in the pointer map is page pTo. If pFrom contained
5479** any cells with overflow page pointers, then the corresponding pointer
5480** map entries are also updated so that the parent page is page pTo.
5481**
5482** If pFrom is currently carrying any overflow cells (entries in the
5483** MemPage.aOvfl[] array), they are not copied to pTo.
5484**
danielk197730548662009-07-09 05:07:37 +00005485** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005486**
5487** The performance of this function is not critical. It is only used by
5488** the balance_shallower() and balance_deeper() procedures, neither of
5489** which are called often under normal circumstances.
5490*/
5491static int copyNodeContent(MemPage *pFrom, MemPage *pTo){
5492 BtShared * const pBt = pFrom->pBt;
5493 u8 * const aFrom = pFrom->aData;
5494 u8 * const aTo = pTo->aData;
5495 int const iFromHdr = pFrom->hdrOffset;
5496 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
5497 int rc = SQLITE_OK;
5498 int iData;
5499
5500 assert( pFrom->isInit );
5501 assert( pFrom->nFree>=iToHdr );
5502 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5503
5504 /* Copy the b-tree node content from page pFrom to page pTo. */
5505 iData = get2byte(&aFrom[iFromHdr+5]);
5506 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5507 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5508
5509 /* Reinitialize page pTo so that the contents of the MemPage structure
5510 ** match the new data. The initialization of pTo "cannot" fail, as the
5511 ** data copied from pFrom is known to be valid. */
5512 pTo->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00005513 TESTONLY(rc = ) btreeInitPage(pTo);
danielk1977cd581a72009-06-23 15:43:39 +00005514 assert( rc==SQLITE_OK );
5515
5516 /* If this is an auto-vacuum database, update the pointer-map entries
5517 ** for any b-tree or overflow pages that pTo now contains the pointers to. */
5518 if( ISAUTOVACUUM ){
5519 rc = setChildPtrmaps(pTo);
5520 }
5521 return rc;
5522}
5523
5524/*
danielk19774dbaa892009-06-16 16:50:22 +00005525** This routine redistributes cells on the iParentIdx'th child of pParent
5526** (hereafter "the page") and up to 2 siblings so that all pages have about the
5527** same amount of free space. Usually a single sibling on either side of the
5528** page are used in the balancing, though both siblings might come from one
5529** side if the page is the first or last child of its parent. If the page
5530** has fewer than 2 siblings (something which can only happen if the page
5531** is a root page or a child of a root page) then all available siblings
5532** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005533**
danielk19774dbaa892009-06-16 16:50:22 +00005534** The number of siblings of the page might be increased or decreased by
5535** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005536**
danielk19774dbaa892009-06-16 16:50:22 +00005537** Note that when this routine is called, some of the cells on the page
5538** might not actually be stored in MemPage.aData[]. This can happen
5539** if the page is overfull. This routine ensures that all cells allocated
5540** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005541**
danielk19774dbaa892009-06-16 16:50:22 +00005542** In the course of balancing the page and its siblings, cells may be
5543** inserted into or removed from the parent page (pParent). Doing so
5544** may cause the parent page to become overfull or underfull. If this
5545** happens, it is the responsibility of the caller to invoke the correct
5546** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005547**
drh5e00f6c2001-09-13 13:46:56 +00005548** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005549** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005550** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005551**
5552** The third argument to this function, aOvflSpace, is a pointer to a
5553** buffer page-size bytes in size. If, in inserting cells into the parent
5554** page (pParent), the parent page becomes overfull, this buffer is
5555** used to store the parents overflow cells. Because this function inserts
5556** a maximum of four divider cells into the parent page, and the maximum
5557** size of a cell stored within an internal node is always less than 1/4
5558** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5559** enough for all overflow cells.
5560**
5561** If aOvflSpace is set to a null pointer, this function returns
5562** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005563*/
danielk19774dbaa892009-06-16 16:50:22 +00005564static int balance_nonroot(
5565 MemPage *pParent, /* Parent page of siblings being balanced */
5566 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005567 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5568 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005569){
drh16a9b832007-05-05 18:39:25 +00005570 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005571 int nCell = 0; /* Number of cells in apCell[] */
5572 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005573 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005574 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005575 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005576 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005577 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005578 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005579 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005580 int usableSpace; /* Bytes in pPage beyond the header */
5581 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005582 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005583 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005584 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005585 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005586 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005587 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005588 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005589 u8 *pRight; /* Location in parent of right-sibling pointer */
5590 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005591 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5592 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005593 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005594 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005595 u8 *aSpace1; /* Space for copies of dividers cells */
5596 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005597
danielk1977a50d9aa2009-06-08 14:49:45 +00005598 pBt = pParent->pBt;
5599 assert( sqlite3_mutex_held(pBt->mutex) );
5600 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005601
danielk1977e5765212009-06-17 11:13:28 +00005602#if 0
drh43605152004-05-29 21:46:49 +00005603 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005604#endif
drh2e38c322004-09-03 18:38:44 +00005605
danielk19774dbaa892009-06-16 16:50:22 +00005606 /* At this point pParent may have at most one overflow cell. And if
5607 ** this overflow cell is present, it must be the cell with
5608 ** index iParentIdx. This scenario comes about when this function
5609 ** is called (indirectly) from sqlite3BtreeDelete(). */
5610 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5611 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5612
danielk197711a8a862009-06-17 11:49:52 +00005613 if( !aOvflSpace ){
5614 return SQLITE_NOMEM;
5615 }
5616
danielk1977a50d9aa2009-06-08 14:49:45 +00005617 /* Find the sibling pages to balance. Also locate the cells in pParent
5618 ** that divide the siblings. An attempt is made to find NN siblings on
5619 ** either side of pPage. More siblings are taken from one side, however,
5620 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005621 ** has NB or fewer children then all children of pParent are taken.
5622 **
5623 ** This loop also drops the divider cells from the parent page. This
5624 ** way, the remainder of the function does not have to deal with any
5625 ** overflow cells in the parent page, as if one existed it has already
5626 ** been removed. */
5627 i = pParent->nOverflow + pParent->nCell;
5628 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005629 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005630 nOld = i+1;
5631 }else{
5632 nOld = 3;
5633 if( iParentIdx==0 ){
5634 nxDiv = 0;
5635 }else if( iParentIdx==i ){
5636 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005637 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005638 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005639 }
danielk19774dbaa892009-06-16 16:50:22 +00005640 i = 2;
5641 }
5642 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5643 pRight = &pParent->aData[pParent->hdrOffset+8];
5644 }else{
5645 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5646 }
5647 pgno = get4byte(pRight);
5648 while( 1 ){
5649 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5650 if( rc ){
5651 memset(apOld, 0, i*sizeof(MemPage*));
5652 goto balance_cleanup;
5653 }
danielk1977634f2982005-03-28 08:44:07 +00005654 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005655 if( (i--)==0 ) break;
5656
5657 if( pParent->nOverflow && i+nxDiv==pParent->aOvfl[0].idx ){
5658 apDiv[i] = pParent->aOvfl[0].pCell;
5659 pgno = get4byte(apDiv[i]);
5660 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5661 pParent->nOverflow = 0;
5662 }else{
5663 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5664 pgno = get4byte(apDiv[i]);
5665 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5666
5667 /* Drop the cell from the parent page. apDiv[i] still points to
5668 ** the cell within the parent, even though it has been dropped.
5669 ** This is safe because dropping a cell only overwrites the first
5670 ** four bytes of it, and this function does not need the first
5671 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005672 ** later on.
5673 **
5674 ** Unless SQLite is compiled in secure-delete mode. In this case,
5675 ** the dropCell() routine will overwrite the entire cell with zeroes.
5676 ** In this case, temporarily copy the cell into the aOvflSpace[]
5677 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5678 ** is allocated. */
5679#ifdef SQLITE_SECURE_DELETE
5680 memcpy(&aOvflSpace[apDiv[i]-pParent->aData], apDiv[i], szNew[i]);
5681 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5682#endif
danielk19774dbaa892009-06-16 16:50:22 +00005683 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i]);
5684 }
drh8b2f49b2001-06-08 00:21:52 +00005685 }
5686
drha9121e42008-02-19 14:59:35 +00005687 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005688 ** alignment */
drha9121e42008-02-19 14:59:35 +00005689 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005690
drh8b2f49b2001-06-08 00:21:52 +00005691 /*
danielk1977634f2982005-03-28 08:44:07 +00005692 ** Allocate space for memory structures
5693 */
danielk19774dbaa892009-06-16 16:50:22 +00005694 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005695 szScratch =
drha9121e42008-02-19 14:59:35 +00005696 nMaxCells*sizeof(u8*) /* apCell */
5697 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005698 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005699 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005700 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005701 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005702 rc = SQLITE_NOMEM;
5703 goto balance_cleanup;
5704 }
drha9121e42008-02-19 14:59:35 +00005705 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005706 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005707 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005708
5709 /*
5710 ** Load pointers to all cells on sibling pages and the divider cells
5711 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005712 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005713 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005714 **
5715 ** If the siblings are on leaf pages, then the child pointers of the
5716 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005717 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005718 ** child pointers. If siblings are not leaves, then all cell in
5719 ** apCell[] include child pointers. Either way, all cells in apCell[]
5720 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005721 **
5722 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5723 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005724 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005725 leafCorrection = apOld[0]->leaf*4;
5726 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005727 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005728 int limit;
5729
5730 /* Before doing anything else, take a copy of the i'th original sibling
5731 ** The rest of this function will use data from the copies rather
5732 ** that the original pages since the original pages will be in the
5733 ** process of being overwritten. */
5734 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5735 memcpy(pOld, apOld[i], sizeof(MemPage));
5736 pOld->aData = (void*)&pOld[1];
5737 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5738
5739 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005740 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005741 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005742 apCell[nCell] = findOverflowCell(pOld, j);
5743 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005744 nCell++;
5745 }
5746 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005747 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005748 u8 *pTemp;
5749 assert( nCell<nMaxCells );
5750 szCell[nCell] = sz;
5751 pTemp = &aSpace1[iSpace1];
5752 iSpace1 += sz;
5753 assert( sz<=pBt->pageSize/4 );
5754 assert( iSpace1<=pBt->pageSize );
5755 memcpy(pTemp, apDiv[i], sz);
5756 apCell[nCell] = pTemp+leafCorrection;
5757 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005758 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005759 if( !pOld->leaf ){
5760 assert( leafCorrection==0 );
5761 assert( pOld->hdrOffset==0 );
5762 /* The right pointer of the child page pOld becomes the left
5763 ** pointer of the divider cell */
5764 memcpy(apCell[nCell], &pOld->aData[8], 4);
5765 }else{
5766 assert( leafCorrection==4 );
5767 if( szCell[nCell]<4 ){
5768 /* Do not allow any cells smaller than 4 bytes. */
5769 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005770 }
5771 }
drh14acc042001-06-10 19:56:58 +00005772 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005773 }
drh8b2f49b2001-06-08 00:21:52 +00005774 }
5775
5776 /*
drh6019e162001-07-02 17:51:45 +00005777 ** Figure out the number of pages needed to hold all nCell cells.
5778 ** Store this number in "k". Also compute szNew[] which is the total
5779 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005780 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005781 ** cntNew[k] should equal nCell.
5782 **
drh96f5b762004-05-16 16:24:36 +00005783 ** Values computed by this block:
5784 **
5785 ** k: The total number of sibling pages
5786 ** szNew[i]: Spaced used on the i-th sibling page.
5787 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5788 ** the right of the i-th sibling page.
5789 ** usableSpace: Number of bytes of space available on each sibling.
5790 **
drh8b2f49b2001-06-08 00:21:52 +00005791 */
drh43605152004-05-29 21:46:49 +00005792 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005793 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005794 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005795 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005796 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005797 szNew[k] = subtotal - szCell[i];
5798 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005799 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005800 subtotal = 0;
5801 k++;
drheac74422009-06-14 12:47:11 +00005802 if( k>NB+1 ){ rc = SQLITE_CORRUPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005803 }
5804 }
5805 szNew[k] = subtotal;
5806 cntNew[k] = nCell;
5807 k++;
drh96f5b762004-05-16 16:24:36 +00005808
5809 /*
5810 ** The packing computed by the previous block is biased toward the siblings
5811 ** on the left side. The left siblings are always nearly full, while the
5812 ** right-most sibling might be nearly empty. This block of code attempts
5813 ** to adjust the packing of siblings to get a better balance.
5814 **
5815 ** This adjustment is more than an optimization. The packing above might
5816 ** be so out of balance as to be illegal. For example, the right-most
5817 ** sibling might be completely empty. This adjustment is not optional.
5818 */
drh6019e162001-07-02 17:51:45 +00005819 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005820 int szRight = szNew[i]; /* Size of sibling on the right */
5821 int szLeft = szNew[i-1]; /* Size of sibling on the left */
5822 int r; /* Index of right-most cell in left sibling */
5823 int d; /* Index of first cell to the left of right sibling */
5824
5825 r = cntNew[i-1] - 1;
5826 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00005827 assert( d<nMaxCells );
5828 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00005829 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
5830 szRight += szCell[d] + 2;
5831 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00005832 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00005833 r = cntNew[i-1] - 1;
5834 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00005835 }
drh96f5b762004-05-16 16:24:36 +00005836 szNew[i] = szRight;
5837 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00005838 }
drh09d0deb2005-08-02 17:13:09 +00005839
danielk19776f235cc2009-06-04 14:46:08 +00005840 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00005841 ** a virtual root page. A virtual root page is when the real root
5842 ** page is page 1 and we are the only child of that page.
5843 */
5844 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00005845
danielk1977e5765212009-06-17 11:13:28 +00005846 TRACE(("BALANCE: old: %d %d %d ",
5847 apOld[0]->pgno,
5848 nOld>=2 ? apOld[1]->pgno : 0,
5849 nOld>=3 ? apOld[2]->pgno : 0
5850 ));
5851
drh8b2f49b2001-06-08 00:21:52 +00005852 /*
drh6b308672002-07-08 02:16:37 +00005853 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00005854 */
drheac74422009-06-14 12:47:11 +00005855 if( apOld[0]->pgno<=1 ){
5856 rc = SQLITE_CORRUPT;
5857 goto balance_cleanup;
5858 }
danielk1977a50d9aa2009-06-08 14:49:45 +00005859 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00005860 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00005861 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00005862 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00005863 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00005864 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005865 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00005866 nNew++;
danielk197728129562005-01-11 10:25:06 +00005867 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00005868 }else{
drh7aa8f852006-03-28 00:24:44 +00005869 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00005870 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00005871 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00005872 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00005873 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00005874
5875 /* Set the pointer-map entry for the new sibling page. */
5876 if( ISAUTOVACUUM ){
5877 rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno);
5878 if( rc!=SQLITE_OK ){
5879 goto balance_cleanup;
5880 }
5881 }
drh6b308672002-07-08 02:16:37 +00005882 }
drh8b2f49b2001-06-08 00:21:52 +00005883 }
5884
danielk1977299b1872004-11-22 10:02:10 +00005885 /* Free any old pages that were not reused as new pages.
5886 */
5887 while( i<nOld ){
5888 rc = freePage(apOld[i]);
5889 if( rc ) goto balance_cleanup;
5890 releasePage(apOld[i]);
5891 apOld[i] = 0;
5892 i++;
5893 }
5894
drh8b2f49b2001-06-08 00:21:52 +00005895 /*
drhf9ffac92002-03-02 19:00:31 +00005896 ** Put the new pages in accending order. This helps to
5897 ** keep entries in the disk file in order so that a scan
5898 ** of the table is a linear scan through the file. That
5899 ** in turn helps the operating system to deliver pages
5900 ** from the disk more rapidly.
5901 **
5902 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00005903 ** n is never more than NB (a small constant), that should
5904 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00005905 **
drhc3b70572003-01-04 19:44:07 +00005906 ** When NB==3, this one optimization makes the database
5907 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00005908 */
5909 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005910 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005911 int minI = i;
5912 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00005913 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00005914 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00005915 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005916 }
5917 }
5918 if( minI>i ){
5919 int t;
5920 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00005921 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00005922 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00005923 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00005924 apNew[minI] = pT;
5925 }
5926 }
danielk1977e5765212009-06-17 11:13:28 +00005927 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00005928 apNew[0]->pgno, szNew[0],
5929 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
5930 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
5931 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
5932 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
5933
5934 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
5935 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00005936
drhf9ffac92002-03-02 19:00:31 +00005937 /*
drh14acc042001-06-10 19:56:58 +00005938 ** Evenly distribute the data in apCell[] across the new pages.
5939 ** Insert divider cells into pParent as necessary.
5940 */
5941 j = 0;
5942 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00005943 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00005944 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00005945 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00005946 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00005947 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00005948 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00005949 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00005950
danielk1977ac11ee62005-01-15 12:45:51 +00005951 j = cntNew[i];
5952
5953 /* If the sibling page assembled above was not the right-most sibling,
5954 ** insert a divider cell into the parent page.
5955 */
danielk19771c3d2bf2009-06-23 16:40:17 +00005956 assert( i<nNew-1 || j==nCell );
5957 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00005958 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00005959 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00005960 int sz;
danielk1977634f2982005-03-28 08:44:07 +00005961
5962 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00005963 pCell = apCell[j];
5964 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00005965 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00005966 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00005967 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00005968 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00005969 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00005970 ** then there is no divider cell in apCell[]. Instead, the divider
5971 ** cell consists of the integer key for the right-most cell of
5972 ** the sibling-page assembled above only.
5973 */
drh6f11bef2004-05-13 01:12:56 +00005974 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00005975 j--;
danielk197730548662009-07-09 05:07:37 +00005976 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00005977 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00005978 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00005979 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00005980 }else{
5981 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00005982 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00005983 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00005984 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00005985 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00005986 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00005987 ** insertCell(), so reparse the cell now.
5988 **
5989 ** Note that this can never happen in an SQLite data file, as all
5990 ** cells are at least 4 bytes. It only happens in b-trees used
5991 ** to evaluate "IN (SELECT ...)" and similar clauses.
5992 */
5993 if( szCell[j]==4 ){
5994 assert(leafCorrection==4);
5995 sz = cellSizePtr(pParent, pCell);
5996 }
drh4b70f112004-05-02 21:12:19 +00005997 }
danielk19776067a9b2009-06-09 09:41:00 +00005998 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00005999 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006000 assert( iOvflSpace<=pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006001 rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno);
danielk1977e80463b2004-11-03 03:01:16 +00006002 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006003 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006004
drh14acc042001-06-10 19:56:58 +00006005 j++;
6006 nxDiv++;
6007 }
6008 }
drh6019e162001-07-02 17:51:45 +00006009 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006010 assert( nOld>0 );
6011 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006012 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006013 u8 *zChild = &apCopy[nOld-1]->aData[8];
6014 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006015 }
6016
danielk197713bd99f2009-06-24 05:40:34 +00006017 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6018 /* The root page of the b-tree now contains no cells. The only sibling
6019 ** page is the right-child of the parent. Copy the contents of the
6020 ** child page into the parent, decreasing the overall height of the
6021 ** b-tree structure by one. This is described as the "balance-shallower"
6022 ** sub-algorithm in some documentation.
6023 **
6024 ** If this is an auto-vacuum database, the call to copyNodeContent()
6025 ** sets all pointer-map entries corresponding to database image pages
6026 ** for which the pointer is stored within the content being copied.
6027 **
6028 ** The second assert below verifies that the child page is defragmented
6029 ** (it must be, as it was just reconstructed using assemblePage()). This
6030 ** is important if the parent page happens to be page 1 of the database
6031 ** image. */
6032 assert( nNew==1 );
6033 assert( apNew[0]->nFree ==
6034 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6035 );
6036 if( SQLITE_OK==(rc = copyNodeContent(apNew[0], pParent)) ){
6037 rc = freePage(apNew[0]);
6038 }
6039 }else if( ISAUTOVACUUM ){
6040 /* Fix the pointer-map entries for all the cells that were shifted around.
6041 ** There are several different types of pointer-map entries that need to
6042 ** be dealt with by this routine. Some of these have been set already, but
6043 ** many have not. The following is a summary:
6044 **
6045 ** 1) The entries associated with new sibling pages that were not
6046 ** siblings when this function was called. These have already
6047 ** been set. We don't need to worry about old siblings that were
6048 ** moved to the free-list - the freePage() code has taken care
6049 ** of those.
6050 **
6051 ** 2) The pointer-map entries associated with the first overflow
6052 ** page in any overflow chains used by new divider cells. These
6053 ** have also already been taken care of by the insertCell() code.
6054 **
6055 ** 3) If the sibling pages are not leaves, then the child pages of
6056 ** cells stored on the sibling pages may need to be updated.
6057 **
6058 ** 4) If the sibling pages are not internal intkey nodes, then any
6059 ** overflow pages used by these cells may need to be updated
6060 ** (internal intkey nodes never contain pointers to overflow pages).
6061 **
6062 ** 5) If the sibling pages are not leaves, then the pointer-map
6063 ** entries for the right-child pages of each sibling may need
6064 ** to be updated.
6065 **
6066 ** Cases 1 and 2 are dealt with above by other code. The next
6067 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6068 ** setting a pointer map entry is a relatively expensive operation, this
6069 ** code only sets pointer map entries for child or overflow pages that have
6070 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006071 MemPage *pNew = apNew[0];
6072 MemPage *pOld = apCopy[0];
6073 int nOverflow = pOld->nOverflow;
6074 int iNextOld = pOld->nCell + nOverflow;
6075 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6076 j = 0; /* Current 'old' sibling page */
6077 k = 0; /* Current 'new' sibling page */
6078 for(i=0; i<nCell && rc==SQLITE_OK; i++){
6079 int isDivider = 0;
6080 while( i==iNextOld ){
6081 /* Cell i is the cell immediately following the last cell on old
6082 ** sibling page j. If the siblings are not leaf pages of an
6083 ** intkey b-tree, then cell i was a divider cell. */
6084 pOld = apCopy[++j];
6085 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6086 if( pOld->nOverflow ){
6087 nOverflow = pOld->nOverflow;
6088 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6089 }
6090 isDivider = !leafData;
6091 }
6092
6093 assert(nOverflow>0 || iOverflow<i );
6094 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6095 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6096 if( i==iOverflow ){
6097 isDivider = 1;
6098 if( (--nOverflow)>0 ){
6099 iOverflow++;
6100 }
6101 }
6102
6103 if( i==cntNew[k] ){
6104 /* Cell i is the cell immediately following the last cell on new
6105 ** sibling page k. If the siblings are not leaf pages of an
6106 ** intkey b-tree, then cell i is a divider cell. */
6107 pNew = apNew[++k];
6108 if( !leafData ) continue;
6109 }
6110 assert( rc==SQLITE_OK );
6111 assert( j<nOld );
6112 assert( k<nNew );
6113
6114 /* If the cell was originally divider cell (and is not now) or
6115 ** an overflow cell, or if the cell was located on a different sibling
6116 ** page before the balancing, then the pointer map entries associated
6117 ** with any child or overflow pages need to be updated. */
6118 if( isDivider || pOld->pgno!=pNew->pgno ){
6119 if( !leafCorrection ){
6120 rc = ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno);
6121 }
6122 if( szCell[i]>pNew->minLocal && rc==SQLITE_OK ){
6123 rc = ptrmapPutOvflPtr(pNew, apCell[i]);
6124 }
6125 }
6126 }
6127
6128 if( !leafCorrection ){
6129 for(i=0; rc==SQLITE_OK && i<nNew; i++){
6130 rc = ptrmapPut(
6131 pBt, get4byte(&apNew[i]->aData[8]), PTRMAP_BTREE, apNew[i]->pgno);
6132 }
6133 }
6134
6135#if 0
6136 /* The ptrmapCheckPages() contains assert() statements that verify that
6137 ** all pointer map pages are set correctly. This is helpful while
6138 ** debugging. This is usually disabled because a corrupt database may
6139 ** cause an assert() statement to fail. */
6140 ptrmapCheckPages(apNew, nNew);
6141 ptrmapCheckPages(&pParent, 1);
6142#endif
6143 }
6144
danielk197771d5d2c2008-09-29 11:49:47 +00006145 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006146 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6147 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006148
drh8b2f49b2001-06-08 00:21:52 +00006149 /*
drh14acc042001-06-10 19:56:58 +00006150 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006151 */
drh14acc042001-06-10 19:56:58 +00006152balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006153 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006154 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006155 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006156 }
drh14acc042001-06-10 19:56:58 +00006157 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006158 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006159 }
danielk1977eaa06f62008-09-18 17:34:44 +00006160
drh8b2f49b2001-06-08 00:21:52 +00006161 return rc;
6162}
6163
drh43605152004-05-29 21:46:49 +00006164
6165/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006166** This function is called when the root page of a b-tree structure is
6167** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006168**
danielk1977a50d9aa2009-06-08 14:49:45 +00006169** A new child page is allocated and the contents of the current root
6170** page, including overflow cells, are copied into the child. The root
6171** page is then overwritten to make it an empty page with the right-child
6172** pointer pointing to the new page.
6173**
6174** Before returning, all pointer-map entries corresponding to pages
6175** that the new child-page now contains pointers to are updated. The
6176** entry corresponding to the new right-child pointer of the root
6177** page is also updated.
6178**
6179** If successful, *ppChild is set to contain a reference to the child
6180** page and SQLITE_OK is returned. In this case the caller is required
6181** to call releasePage() on *ppChild exactly once. If an error occurs,
6182** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006183*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006184static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6185 int rc; /* Return value from subprocedures */
6186 MemPage *pChild = 0; /* Pointer to a new child page */
6187 Pgno pgnoChild; /* Page number of the new child page */
6188 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006189
danielk1977a50d9aa2009-06-08 14:49:45 +00006190 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006191 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006192
danielk1977a50d9aa2009-06-08 14:49:45 +00006193 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6194 ** page that will become the new right-child of pPage. Copy the contents
6195 ** of the node stored on pRoot into the new child page.
6196 */
6197 if( SQLITE_OK!=(rc = sqlite3PagerWrite(pRoot->pDbPage))
6198 || SQLITE_OK!=(rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0))
6199 || SQLITE_OK!=(rc = copyNodeContent(pRoot, pChild))
6200 || (ISAUTOVACUUM &&
6201 SQLITE_OK!=(rc = ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno)))
6202 ){
6203 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006204 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006205 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006206 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006207 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6208 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6209 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006210
danielk1977a50d9aa2009-06-08 14:49:45 +00006211 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6212
6213 /* Copy the overflow cells from pRoot to pChild */
6214 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6215 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006216
6217 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6218 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6219 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6220
6221 *ppChild = pChild;
6222 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006223}
6224
6225/*
danielk197771d5d2c2008-09-29 11:49:47 +00006226** The page that pCur currently points to has just been modified in
6227** some way. This function figures out if this modification means the
6228** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006229** routine. Balancing routines are:
6230**
6231** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006232** balance_deeper()
6233** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006234*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006235static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006236 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006237 const int nMin = pCur->pBt->usableSize * 2 / 3;
6238 u8 aBalanceQuickSpace[13];
6239 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006240
shane75ac1de2009-06-09 18:58:52 +00006241 TESTONLY( int balance_quick_called = 0 );
6242 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006243
6244 do {
6245 int iPage = pCur->iPage;
6246 MemPage *pPage = pCur->apPage[iPage];
6247
6248 if( iPage==0 ){
6249 if( pPage->nOverflow ){
6250 /* The root page of the b-tree is overfull. In this case call the
6251 ** balance_deeper() function to create a new child for the root-page
6252 ** and copy the current contents of the root-page to it. The
6253 ** next iteration of the do-loop will balance the child page.
6254 */
6255 assert( (balance_deeper_called++)==0 );
6256 rc = balance_deeper(pPage, &pCur->apPage[1]);
6257 if( rc==SQLITE_OK ){
6258 pCur->iPage = 1;
6259 pCur->aiIdx[0] = 0;
6260 pCur->aiIdx[1] = 0;
6261 assert( pCur->apPage[1]->nOverflow );
6262 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006263 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006264 break;
6265 }
6266 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6267 break;
6268 }else{
6269 MemPage * const pParent = pCur->apPage[iPage-1];
6270 int const iIdx = pCur->aiIdx[iPage-1];
6271
6272 rc = sqlite3PagerWrite(pParent->pDbPage);
6273 if( rc==SQLITE_OK ){
6274#ifndef SQLITE_OMIT_QUICKBALANCE
6275 if( pPage->hasData
6276 && pPage->nOverflow==1
6277 && pPage->aOvfl[0].idx==pPage->nCell
6278 && pParent->pgno!=1
6279 && pParent->nCell==iIdx
6280 ){
6281 /* Call balance_quick() to create a new sibling of pPage on which
6282 ** to store the overflow cell. balance_quick() inserts a new cell
6283 ** into pParent, which may cause pParent overflow. If this
6284 ** happens, the next interation of the do-loop will balance pParent
6285 ** use either balance_nonroot() or balance_deeper(). Until this
6286 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6287 ** buffer.
6288 **
6289 ** The purpose of the following assert() is to check that only a
6290 ** single call to balance_quick() is made for each call to this
6291 ** function. If this were not verified, a subtle bug involving reuse
6292 ** of the aBalanceQuickSpace[] might sneak in.
6293 */
6294 assert( (balance_quick_called++)==0 );
6295 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6296 }else
6297#endif
6298 {
6299 /* In this case, call balance_nonroot() to redistribute cells
6300 ** between pPage and up to 2 of its sibling pages. This involves
6301 ** modifying the contents of pParent, which may cause pParent to
6302 ** become overfull or underfull. The next iteration of the do-loop
6303 ** will balance the parent page to correct this.
6304 **
6305 ** If the parent page becomes overfull, the overflow cell or cells
6306 ** are stored in the pSpace buffer allocated immediately below.
6307 ** A subsequent iteration of the do-loop will deal with this by
6308 ** calling balance_nonroot() (balance_deeper() may be called first,
6309 ** but it doesn't deal with overflow cells - just moves them to a
6310 ** different page). Once this subsequent call to balance_nonroot()
6311 ** has completed, it is safe to release the pSpace buffer used by
6312 ** the previous call, as the overflow cell data will have been
6313 ** copied either into the body of a database page or into the new
6314 ** pSpace buffer passed to the latter call to balance_nonroot().
6315 */
6316 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006317 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006318 if( pFree ){
6319 /* If pFree is not NULL, it points to the pSpace buffer used
6320 ** by a previous call to balance_nonroot(). Its contents are
6321 ** now stored either on real database pages or within the
6322 ** new pSpace buffer, so it may be safely freed here. */
6323 sqlite3PageFree(pFree);
6324 }
6325
danielk19774dbaa892009-06-16 16:50:22 +00006326 /* The pSpace buffer will be freed after the next call to
6327 ** balance_nonroot(), or just before this function returns, whichever
6328 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006329 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006330 }
6331 }
6332
6333 pPage->nOverflow = 0;
6334
6335 /* The next iteration of the do-loop balances the parent page. */
6336 releasePage(pPage);
6337 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006338 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006339 }while( rc==SQLITE_OK );
6340
6341 if( pFree ){
6342 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006343 }
6344 return rc;
6345}
6346
drhf74b8d92002-09-01 23:20:45 +00006347
6348/*
drh3b7511c2001-05-26 13:15:44 +00006349** Insert a new record into the BTree. The key is given by (pKey,nKey)
6350** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006351** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006352** is left pointing at a random location.
6353**
6354** For an INTKEY table, only the nKey value of the key is used. pKey is
6355** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006356**
6357** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006358** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006359** been performed. seekResult is the search result returned (a negative
6360** number if pCur points at an entry that is smaller than (pKey, nKey), or
6361** a positive value if pCur points at an etry that is larger than
6362** (pKey, nKey)).
6363**
6364** If the seekResult parameter is 0, then cursor pCur may point to any
6365** entry or to no entry at all. In this case this function has to seek
6366** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006367*/
drh3aac2dd2004-04-26 14:10:20 +00006368int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006369 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006370 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006371 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006372 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006373 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006374 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006375){
drh3b7511c2001-05-26 13:15:44 +00006376 int rc;
danielk1977de630352009-05-04 11:42:29 +00006377 int loc = seekResult;
drh14acc042001-06-10 19:56:58 +00006378 int szNew;
danielk197771d5d2c2008-09-29 11:49:47 +00006379 int idx;
drh3b7511c2001-05-26 13:15:44 +00006380 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006381 Btree *p = pCur->pBtree;
6382 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006383 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006384 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006385
drh1fee73e2007-08-29 04:00:57 +00006386 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006387 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006388 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006389 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006390 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6391
6392 /* If this is an insert into a table b-tree, invalidate any incrblob
6393 ** cursors open on the row being replaced (assuming this is a replace
6394 ** operation - if it is not, the following is a no-op). */
6395 if( pCur->pKeyInfo==0 ){
6396 invalidateIncrblobCursors(p, pCur->pgnoRoot, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006397 }
danielk197796d48e92009-06-29 06:00:37 +00006398
drhfb982642007-08-30 01:19:59 +00006399 if( pCur->eState==CURSOR_FAULT ){
6400 return pCur->skip;
6401 }
danielk1977da184232006-01-05 11:34:32 +00006402
danielk19779c3acf32009-05-02 07:36:49 +00006403 /* Save the positions of any other cursors open on this table.
6404 **
danielk19773509a652009-07-06 18:56:13 +00006405 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006406 ** example, when inserting data into a table with auto-generated integer
6407 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6408 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006409 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006410 ** that the cursor is already where it needs to be and returns without
6411 ** doing any work. To avoid thwarting these optimizations, it is important
6412 ** not to clear the cursor here.
6413 */
danielk1977de630352009-05-04 11:42:29 +00006414 if(
6415 SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || (!loc &&
danielk19773509a652009-07-06 18:56:13 +00006416 SQLITE_OK!=(rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc))
danielk1977de630352009-05-04 11:42:29 +00006417 )){
danielk1977da184232006-01-05 11:34:32 +00006418 return rc;
6419 }
danielk1977b980d2212009-06-22 18:03:51 +00006420 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006421
danielk197771d5d2c2008-09-29 11:49:47 +00006422 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006423 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006424 assert( pPage->leaf || !pPage->intKey );
drh3a4c1412004-05-09 20:40:11 +00006425 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6426 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6427 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006428 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006429 allocateTempSpace(pBt);
6430 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006431 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006432 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006433 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006434 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006435 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006436 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006437 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006438 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006439 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006440 rc = sqlite3PagerWrite(pPage->pDbPage);
6441 if( rc ){
6442 goto end_insert;
6443 }
danielk197771d5d2c2008-09-29 11:49:47 +00006444 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006445 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006446 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006447 }
drh43605152004-05-29 21:46:49 +00006448 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006449 rc = clearCell(pPage, oldCell);
drh2e38c322004-09-03 18:38:44 +00006450 if( rc ) goto end_insert;
shane0af3f892008-11-12 04:55:34 +00006451 rc = dropCell(pPage, idx, szOld);
6452 if( rc!=SQLITE_OK ) {
6453 goto end_insert;
6454 }
drh7c717f72001-06-24 20:39:41 +00006455 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006456 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006457 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006458 }else{
drh4b70f112004-05-02 21:12:19 +00006459 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006460 }
danielk197771d5d2c2008-09-29 11:49:47 +00006461 rc = insertCell(pPage, idx, newCell, szNew, 0, 0);
danielk19773f632d52009-05-02 10:03:09 +00006462 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006463
danielk1977a50d9aa2009-06-08 14:49:45 +00006464 /* If no error has occured and pPage has an overflow cell, call balance()
6465 ** to redistribute the cells within the tree. Since balance() may move
6466 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6467 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006468 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006469 ** Previous versions of SQLite called moveToRoot() to move the cursor
6470 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006471 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6472 ** set the cursor state to "invalid". This makes common insert operations
6473 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006474 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006475 ** There is a subtle but important optimization here too. When inserting
6476 ** multiple records into an intkey b-tree using a single cursor (as can
6477 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6478 ** is advantageous to leave the cursor pointing to the last entry in
6479 ** the b-tree if possible. If the cursor is left pointing to the last
6480 ** entry in the table, and the next row inserted has an integer key
6481 ** larger than the largest existing key, it is possible to insert the
6482 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006483 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006484 pCur->info.nSize = 0;
6485 pCur->validNKey = 0;
6486 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006487 rc = balance(pCur);
6488
6489 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006490 ** fails. Internal data structure corruption will result otherwise.
6491 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6492 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006493 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006494 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006495 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006496 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006497
drh2e38c322004-09-03 18:38:44 +00006498end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006499 return rc;
6500}
6501
6502/*
drh4b70f112004-05-02 21:12:19 +00006503** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006504** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006505*/
drh3aac2dd2004-04-26 14:10:20 +00006506int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006507 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006508 BtShared *pBt = p->pBt;
6509 int rc; /* Return code */
6510 MemPage *pPage; /* Page to delete cell from */
6511 unsigned char *pCell; /* Pointer to cell to delete */
6512 int iCellIdx; /* Index of cell to delete */
6513 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006514
drh1fee73e2007-08-29 04:00:57 +00006515 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006516 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006517 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006518 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006519 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6520 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6521
danielk19774dbaa892009-06-16 16:50:22 +00006522 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6523 || NEVER(pCur->eState!=CURSOR_VALID)
6524 ){
6525 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006526 }
danielk1977da184232006-01-05 11:34:32 +00006527
danielk197796d48e92009-06-29 06:00:37 +00006528 /* If this is a delete operation to remove a row from a table b-tree,
6529 ** invalidate any incrblob cursors open on the row being deleted. */
6530 if( pCur->pKeyInfo==0 ){
6531 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006532 }
6533
6534 iCellDepth = pCur->iPage;
6535 iCellIdx = pCur->aiIdx[iCellDepth];
6536 pPage = pCur->apPage[iCellDepth];
6537 pCell = findCell(pPage, iCellIdx);
6538
6539 /* If the page containing the entry to delete is not a leaf page, move
6540 ** the cursor to the largest entry in the tree that is smaller than
6541 ** the entry being deleted. This cell will replace the cell being deleted
6542 ** from the internal node. The 'previous' entry is used for this instead
6543 ** of the 'next' entry, as the previous entry is always a part of the
6544 ** sub-tree headed by the child page of the cell being deleted. This makes
6545 ** balancing the tree following the delete operation easier. */
6546 if( !pPage->leaf ){
6547 int notUsed;
6548 if( SQLITE_OK!=(rc = sqlite3BtreePrevious(pCur, &notUsed)) ){
6549 return rc;
6550 }
6551 }
6552
6553 /* Save the positions of any other cursors open on this table before
6554 ** making any modifications. Make the page containing the entry to be
6555 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006556 ** entry and finally remove the cell itself from within the page.
6557 */
6558 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6559 if( rc ) return rc;
6560 rc = sqlite3PagerWrite(pPage->pDbPage);
6561 if( rc ) return rc;
6562 rc = clearCell(pPage, pCell);
6563 if( rc ) return rc;
6564 rc = dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell));
6565 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006566
danielk19774dbaa892009-06-16 16:50:22 +00006567 /* If the cell deleted was not located on a leaf page, then the cursor
6568 ** is currently pointing to the largest entry in the sub-tree headed
6569 ** by the child-page of the cell that was just deleted from an internal
6570 ** node. The cell from the leaf node needs to be moved to the internal
6571 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006572 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006573 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6574 int nCell;
6575 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6576 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006577
danielk19774dbaa892009-06-16 16:50:22 +00006578 pCell = findCell(pLeaf, pLeaf->nCell-1);
6579 nCell = cellSizePtr(pLeaf, pCell);
6580 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006581
danielk19774dbaa892009-06-16 16:50:22 +00006582 allocateTempSpace(pBt);
6583 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006584
drha4ec1d42009-07-11 13:13:11 +00006585 rc = sqlite3PagerWrite(pLeaf->pDbPage);
6586 if( rc ) return rc;
6587 rc = insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n);
6588 if( rc ) return rc;
6589 rc = dropCell(pLeaf, pLeaf->nCell-1, nCell);
6590 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006591 }
danielk19774dbaa892009-06-16 16:50:22 +00006592
6593 /* Balance the tree. If the entry deleted was located on a leaf page,
6594 ** then the cursor still points to that page. In this case the first
6595 ** call to balance() repairs the tree, and the if(...) condition is
6596 ** never true.
6597 **
6598 ** Otherwise, if the entry deleted was on an internal node page, then
6599 ** pCur is pointing to the leaf page from which a cell was removed to
6600 ** replace the cell deleted from the internal node. This is slightly
6601 ** tricky as the leaf node may be underfull, and the internal node may
6602 ** be either under or overfull. In this case run the balancing algorithm
6603 ** on the leaf node first. If the balance proceeds far enough up the
6604 ** tree that we can be sure that any problem in the internal node has
6605 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6606 ** walk the cursor up the tree to the internal node and balance it as
6607 ** well. */
6608 rc = balance(pCur);
6609 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6610 while( pCur->iPage>iCellDepth ){
6611 releasePage(pCur->apPage[pCur->iPage--]);
6612 }
6613 rc = balance(pCur);
6614 }
6615
danielk19776b456a22005-03-21 04:04:02 +00006616 if( rc==SQLITE_OK ){
6617 moveToRoot(pCur);
6618 }
drh5e2f8b92001-05-28 00:41:15 +00006619 return rc;
drh3b7511c2001-05-26 13:15:44 +00006620}
drh8b2f49b2001-06-08 00:21:52 +00006621
6622/*
drhc6b52df2002-01-04 03:09:29 +00006623** Create a new BTree table. Write into *piTable the page
6624** number for the root page of the new table.
6625**
drhab01f612004-05-22 02:55:23 +00006626** The type of type is determined by the flags parameter. Only the
6627** following values of flags are currently in use. Other values for
6628** flags might not work:
6629**
6630** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6631** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006632*/
drhd677b3d2007-08-20 22:48:41 +00006633static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006634 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006635 MemPage *pRoot;
6636 Pgno pgnoRoot;
6637 int rc;
drhd677b3d2007-08-20 22:48:41 +00006638
drh1fee73e2007-08-29 04:00:57 +00006639 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006640 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006641 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006642
danielk1977003ba062004-11-04 02:57:33 +00006643#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006644 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006645 if( rc ){
6646 return rc;
6647 }
danielk1977003ba062004-11-04 02:57:33 +00006648#else
danielk1977687566d2004-11-02 12:56:41 +00006649 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006650 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6651 MemPage *pPageMove; /* The page to move to. */
6652
danielk197720713f32007-05-03 11:43:33 +00006653 /* Creating a new table may probably require moving an existing database
6654 ** to make room for the new tables root page. In case this page turns
6655 ** out to be an overflow page, delete all overflow page-map caches
6656 ** held by open cursors.
6657 */
danielk197792d4d7a2007-05-04 12:05:56 +00006658 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006659
danielk1977003ba062004-11-04 02:57:33 +00006660 /* Read the value of meta[3] from the database to determine where the
6661 ** root page of the new table should go. meta[3] is the largest root-page
6662 ** created so far, so the new root-page is (meta[3]+1).
6663 */
danielk1977602b4662009-07-02 07:47:33 +00006664 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006665 pgnoRoot++;
6666
danielk1977599fcba2004-11-08 07:13:13 +00006667 /* The new root-page may not be allocated on a pointer-map page, or the
6668 ** PENDING_BYTE page.
6669 */
drh72190432008-01-31 14:54:43 +00006670 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006671 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006672 pgnoRoot++;
6673 }
6674 assert( pgnoRoot>=3 );
6675
6676 /* Allocate a page. The page that currently resides at pgnoRoot will
6677 ** be moved to the allocated page (unless the allocated page happens
6678 ** to reside at pgnoRoot).
6679 */
drh4f0c5872007-03-26 22:05:01 +00006680 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006681 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006682 return rc;
6683 }
danielk1977003ba062004-11-04 02:57:33 +00006684
6685 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006686 /* pgnoRoot is the page that will be used for the root-page of
6687 ** the new table (assuming an error did not occur). But we were
6688 ** allocated pgnoMove. If required (i.e. if it was not allocated
6689 ** by extending the file), the current page at position pgnoMove
6690 ** is already journaled.
6691 */
danielk1977003ba062004-11-04 02:57:33 +00006692 u8 eType;
6693 Pgno iPtrPage;
6694
6695 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006696
6697 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006698 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006699 if( rc!=SQLITE_OK ){
6700 return rc;
6701 }
6702 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006703 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6704 rc = SQLITE_CORRUPT_BKPT;
6705 }
6706 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006707 releasePage(pRoot);
6708 return rc;
6709 }
drhccae6022005-02-26 17:31:26 +00006710 assert( eType!=PTRMAP_ROOTPAGE );
6711 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006712 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006713 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006714
6715 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006716 if( rc!=SQLITE_OK ){
6717 return rc;
6718 }
danielk197730548662009-07-09 05:07:37 +00006719 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006720 if( rc!=SQLITE_OK ){
6721 return rc;
6722 }
danielk19773b8a05f2007-03-19 17:44:26 +00006723 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006724 if( rc!=SQLITE_OK ){
6725 releasePage(pRoot);
6726 return rc;
6727 }
6728 }else{
6729 pRoot = pPageMove;
6730 }
6731
danielk197742741be2005-01-08 12:42:39 +00006732 /* Update the pointer-map and meta-data with the new root-page number. */
danielk1977003ba062004-11-04 02:57:33 +00006733 rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0);
6734 if( rc ){
6735 releasePage(pRoot);
6736 return rc;
6737 }
danielk1977aef0bf62005-12-30 16:28:01 +00006738 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006739 if( rc ){
6740 releasePage(pRoot);
6741 return rc;
6742 }
danielk197742741be2005-01-08 12:42:39 +00006743
danielk1977003ba062004-11-04 02:57:33 +00006744 }else{
drh4f0c5872007-03-26 22:05:01 +00006745 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006746 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006747 }
6748#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006749 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006750 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006751 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006752 *piTable = (int)pgnoRoot;
6753 return SQLITE_OK;
6754}
drhd677b3d2007-08-20 22:48:41 +00006755int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6756 int rc;
6757 sqlite3BtreeEnter(p);
6758 rc = btreeCreateTable(p, piTable, flags);
6759 sqlite3BtreeLeave(p);
6760 return rc;
6761}
drh8b2f49b2001-06-08 00:21:52 +00006762
6763/*
6764** Erase the given database page and all its children. Return
6765** the page to the freelist.
6766*/
drh4b70f112004-05-02 21:12:19 +00006767static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006768 BtShared *pBt, /* The BTree that contains the table */
drh4b70f112004-05-02 21:12:19 +00006769 Pgno pgno, /* Page number to clear */
danielk1977c7af4842008-10-27 13:59:33 +00006770 int freePageFlag, /* Deallocate page if true */
6771 int *pnChange
drh4b70f112004-05-02 21:12:19 +00006772){
danielk19776b456a22005-03-21 04:04:02 +00006773 MemPage *pPage = 0;
drh8b2f49b2001-06-08 00:21:52 +00006774 int rc;
drh4b70f112004-05-02 21:12:19 +00006775 unsigned char *pCell;
6776 int i;
drh8b2f49b2001-06-08 00:21:52 +00006777
drh1fee73e2007-08-29 04:00:57 +00006778 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789d40042008-11-17 14:20:56 +00006779 if( pgno>pagerPagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006780 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006781 }
6782
danielk197771d5d2c2008-09-29 11:49:47 +00006783 rc = getAndInitPage(pBt, pgno, &pPage);
danielk19776b456a22005-03-21 04:04:02 +00006784 if( rc ) goto cleardatabasepage_out;
drh4b70f112004-05-02 21:12:19 +00006785 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006786 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006787 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006788 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006789 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006790 }
drh4b70f112004-05-02 21:12:19 +00006791 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006792 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006793 }
drha34b6762004-05-07 13:30:42 +00006794 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006795 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006796 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006797 }else if( pnChange ){
6798 assert( pPage->intKey );
6799 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006800 }
6801 if( freePageFlag ){
drh4b70f112004-05-02 21:12:19 +00006802 rc = freePage(pPage);
danielk19773b8a05f2007-03-19 17:44:26 +00006803 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006804 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006805 }
danielk19776b456a22005-03-21 04:04:02 +00006806
6807cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006808 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006809 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006810}
6811
6812/*
drhab01f612004-05-22 02:55:23 +00006813** Delete all information from a single table in the database. iTable is
6814** the page number of the root of the table. After this routine returns,
6815** the root page is empty, but still exists.
6816**
6817** This routine will fail with SQLITE_LOCKED if there are any open
6818** read cursors on the table. Open write cursors are moved to the
6819** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00006820**
6821** If pnChange is not NULL, then table iTable must be an intkey table. The
6822** integer value pointed to by pnChange is incremented by the number of
6823** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00006824*/
danielk1977c7af4842008-10-27 13:59:33 +00006825int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00006826 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00006827 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00006828 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00006829 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00006830
6831 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
6832 ** is the root of a table b-tree - if it is not, the following call is
6833 ** a no-op). */
6834 invalidateIncrblobCursors(p, iTable, 0, 1);
6835
6836 if( SQLITE_OK==(rc = saveAllCursors(pBt, (Pgno)iTable, 0)) ){
danielk197762c14b32008-11-19 09:05:26 +00006837 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00006838 }
drhd677b3d2007-08-20 22:48:41 +00006839 sqlite3BtreeLeave(p);
6840 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006841}
6842
6843/*
6844** Erase all information in a table and add the root of the table to
6845** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00006846** page 1) is never added to the freelist.
6847**
6848** This routine will fail with SQLITE_LOCKED if there are any open
6849** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00006850**
6851** If AUTOVACUUM is enabled and the page at iTable is not the last
6852** root page in the database file, then the last root page
6853** in the database file is moved into the slot formerly occupied by
6854** iTable and that last slot formerly occupied by the last root page
6855** is added to the freelist instead of iTable. In this say, all
6856** root pages are kept at the beginning of the database file, which
6857** is necessary for AUTOVACUUM to work right. *piMoved is set to the
6858** page number that used to be the last root page in the file before
6859** the move. If no page gets moved, *piMoved is set to 0.
6860** The last root page is recorded in meta[3] and the value of
6861** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00006862*/
danielk197789d40042008-11-17 14:20:56 +00006863static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00006864 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00006865 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00006866 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00006867
drh1fee73e2007-08-29 04:00:57 +00006868 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006869 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00006870
danielk1977e6efa742004-11-10 11:55:10 +00006871 /* It is illegal to drop a table if any cursors are open on the
6872 ** database. This is because in auto-vacuum mode the backend may
6873 ** need to move another root-page to fill a gap left by the deleted
6874 ** root page. If an open cursor was using this page a problem would
6875 ** occur.
6876 */
6877 if( pBt->pCursor ){
danielk1977404ca072009-03-16 13:19:36 +00006878 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
6879 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00006880 }
danielk1977a0bf2652004-11-04 14:30:04 +00006881
danielk197730548662009-07-09 05:07:37 +00006882 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00006883 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00006884 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00006885 if( rc ){
6886 releasePage(pPage);
6887 return rc;
6888 }
danielk1977a0bf2652004-11-04 14:30:04 +00006889
drh205f48e2004-11-05 00:43:11 +00006890 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00006891
drh4b70f112004-05-02 21:12:19 +00006892 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00006893#ifdef SQLITE_OMIT_AUTOVACUUM
drha34b6762004-05-07 13:30:42 +00006894 rc = freePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00006895 releasePage(pPage);
6896#else
6897 if( pBt->autoVacuum ){
6898 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00006899 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006900
6901 if( iTable==maxRootPgno ){
6902 /* If the table being dropped is the table with the largest root-page
6903 ** number in the database, put the root page on the free list.
6904 */
6905 rc = freePage(pPage);
6906 releasePage(pPage);
6907 if( rc!=SQLITE_OK ){
6908 return rc;
6909 }
6910 }else{
6911 /* The table being dropped does not have the largest root-page
6912 ** number in the database. So move the page that does into the
6913 ** gap left by the deleted root-page.
6914 */
6915 MemPage *pMove;
6916 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00006917 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006918 if( rc!=SQLITE_OK ){
6919 return rc;
6920 }
danielk19774c999992008-07-16 18:17:55 +00006921 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006922 releasePage(pMove);
6923 if( rc!=SQLITE_OK ){
6924 return rc;
6925 }
danielk197730548662009-07-09 05:07:37 +00006926 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00006927 if( rc!=SQLITE_OK ){
6928 return rc;
6929 }
6930 rc = freePage(pMove);
6931 releasePage(pMove);
6932 if( rc!=SQLITE_OK ){
6933 return rc;
6934 }
6935 *piMoved = maxRootPgno;
6936 }
6937
danielk1977599fcba2004-11-08 07:13:13 +00006938 /* Set the new 'max-root-page' value in the database header. This
6939 ** is the old value less one, less one more if that happens to
6940 ** be a root-page number, less one again if that is the
6941 ** PENDING_BYTE_PAGE.
6942 */
danielk197787a6e732004-11-05 12:58:25 +00006943 maxRootPgno--;
danielk1977599fcba2004-11-08 07:13:13 +00006944 if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){
6945 maxRootPgno--;
6946 }
danielk1977266664d2006-02-10 08:24:21 +00006947 if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00006948 maxRootPgno--;
6949 }
danielk1977599fcba2004-11-08 07:13:13 +00006950 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
6951
danielk1977aef0bf62005-12-30 16:28:01 +00006952 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00006953 }else{
6954 rc = freePage(pPage);
6955 releasePage(pPage);
6956 }
6957#endif
drh2aa679f2001-06-25 02:11:07 +00006958 }else{
danielk1977a0bf2652004-11-04 14:30:04 +00006959 /* If sqlite3BtreeDropTable was called on page 1. */
drha34b6762004-05-07 13:30:42 +00006960 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00006961 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00006962 }
drh8b2f49b2001-06-08 00:21:52 +00006963 return rc;
6964}
drhd677b3d2007-08-20 22:48:41 +00006965int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
6966 int rc;
6967 sqlite3BtreeEnter(p);
6968 rc = btreeDropTable(p, iTable, piMoved);
6969 sqlite3BtreeLeave(p);
6970 return rc;
6971}
drh8b2f49b2001-06-08 00:21:52 +00006972
drh001bbcb2003-03-19 03:14:00 +00006973
drh8b2f49b2001-06-08 00:21:52 +00006974/*
danielk1977602b4662009-07-02 07:47:33 +00006975** This function may only be called if the b-tree connection already
6976** has a read or write transaction open on the database.
6977**
drh23e11ca2004-05-04 17:27:28 +00006978** Read the meta-information out of a database file. Meta[0]
6979** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00006980** through meta[15] are available for use by higher layers. Meta[0]
6981** is read-only, the others are read/write.
6982**
6983** The schema layer numbers meta values differently. At the schema
6984** layer (and the SetCookie and ReadCookie opcodes) the number of
6985** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00006986*/
danielk1977602b4662009-07-02 07:47:33 +00006987void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00006988 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006989
drhd677b3d2007-08-20 22:48:41 +00006990 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00006991 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006992 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00006993 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00006994 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00006995
danielk1977602b4662009-07-02 07:47:33 +00006996 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00006997
danielk1977602b4662009-07-02 07:47:33 +00006998 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
6999 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007000#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007001 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007002#endif
drhae157872004-08-14 19:20:09 +00007003
drhd677b3d2007-08-20 22:48:41 +00007004 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007005}
7006
7007/*
drh23e11ca2004-05-04 17:27:28 +00007008** Write meta-information back into the database. Meta[0] is
7009** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007010*/
danielk1977aef0bf62005-12-30 16:28:01 +00007011int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7012 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007013 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007014 int rc;
drh23e11ca2004-05-04 17:27:28 +00007015 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007016 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007017 assert( p->inTrans==TRANS_WRITE );
7018 assert( pBt->pPage1!=0 );
7019 pP1 = pBt->pPage1->aData;
7020 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7021 if( rc==SQLITE_OK ){
7022 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007023#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007024 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007025 assert( pBt->autoVacuum || iMeta==0 );
7026 assert( iMeta==0 || iMeta==1 );
7027 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007028 }
drh64022502009-01-09 14:11:04 +00007029#endif
drh5df72a52002-06-06 23:16:05 +00007030 }
drhd677b3d2007-08-20 22:48:41 +00007031 sqlite3BtreeLeave(p);
7032 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007033}
drh8c42ca92001-06-22 19:15:00 +00007034
danielk1977a5533162009-02-24 10:01:51 +00007035#ifndef SQLITE_OMIT_BTREECOUNT
7036/*
7037** The first argument, pCur, is a cursor opened on some b-tree. Count the
7038** number of entries in the b-tree and write the result to *pnEntry.
7039**
7040** SQLITE_OK is returned if the operation is successfully executed.
7041** Otherwise, if an error is encountered (i.e. an IO error or database
7042** corruption) an SQLite error code is returned.
7043*/
7044int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7045 i64 nEntry = 0; /* Value to return in *pnEntry */
7046 int rc; /* Return code */
7047 rc = moveToRoot(pCur);
7048
7049 /* Unless an error occurs, the following loop runs one iteration for each
7050 ** page in the B-Tree structure (not including overflow pages).
7051 */
7052 while( rc==SQLITE_OK ){
7053 int iIdx; /* Index of child node in parent */
7054 MemPage *pPage; /* Current page of the b-tree */
7055
7056 /* If this is a leaf page or the tree is not an int-key tree, then
7057 ** this page contains countable entries. Increment the entry counter
7058 ** accordingly.
7059 */
7060 pPage = pCur->apPage[pCur->iPage];
7061 if( pPage->leaf || !pPage->intKey ){
7062 nEntry += pPage->nCell;
7063 }
7064
7065 /* pPage is a leaf node. This loop navigates the cursor so that it
7066 ** points to the first interior cell that it points to the parent of
7067 ** the next page in the tree that has not yet been visited. The
7068 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7069 ** of the page, or to the number of cells in the page if the next page
7070 ** to visit is the right-child of its parent.
7071 **
7072 ** If all pages in the tree have been visited, return SQLITE_OK to the
7073 ** caller.
7074 */
7075 if( pPage->leaf ){
7076 do {
7077 if( pCur->iPage==0 ){
7078 /* All pages of the b-tree have been visited. Return successfully. */
7079 *pnEntry = nEntry;
7080 return SQLITE_OK;
7081 }
danielk197730548662009-07-09 05:07:37 +00007082 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007083 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7084
7085 pCur->aiIdx[pCur->iPage]++;
7086 pPage = pCur->apPage[pCur->iPage];
7087 }
7088
7089 /* Descend to the child node of the cell that the cursor currently
7090 ** points at. This is the right-child if (iIdx==pPage->nCell).
7091 */
7092 iIdx = pCur->aiIdx[pCur->iPage];
7093 if( iIdx==pPage->nCell ){
7094 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7095 }else{
7096 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7097 }
7098 }
7099
shanebe217792009-03-05 04:20:31 +00007100 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007101 return rc;
7102}
7103#endif
drhdd793422001-06-28 01:54:48 +00007104
drhdd793422001-06-28 01:54:48 +00007105/*
drh5eddca62001-06-30 21:53:53 +00007106** Return the pager associated with a BTree. This routine is used for
7107** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007108*/
danielk1977aef0bf62005-12-30 16:28:01 +00007109Pager *sqlite3BtreePager(Btree *p){
7110 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007111}
drh5eddca62001-06-30 21:53:53 +00007112
drhb7f91642004-10-31 02:22:47 +00007113#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007114/*
7115** Append a message to the error message string.
7116*/
drh2e38c322004-09-03 18:38:44 +00007117static void checkAppendMsg(
7118 IntegrityCk *pCheck,
7119 char *zMsg1,
7120 const char *zFormat,
7121 ...
7122){
7123 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007124 if( !pCheck->mxErr ) return;
7125 pCheck->mxErr--;
7126 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007127 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007128 if( pCheck->errMsg.nChar ){
7129 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007130 }
drhf089aa42008-07-08 19:34:06 +00007131 if( zMsg1 ){
7132 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7133 }
7134 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7135 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007136 if( pCheck->errMsg.mallocFailed ){
7137 pCheck->mallocFailed = 1;
7138 }
drh5eddca62001-06-30 21:53:53 +00007139}
drhb7f91642004-10-31 02:22:47 +00007140#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007141
drhb7f91642004-10-31 02:22:47 +00007142#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007143/*
7144** Add 1 to the reference count for page iPage. If this is the second
7145** reference to the page, add an error message to pCheck->zErrMsg.
7146** Return 1 if there are 2 ore more references to the page and 0 if
7147** if this is the first reference to the page.
7148**
7149** Also check that the page number is in bounds.
7150*/
danielk197789d40042008-11-17 14:20:56 +00007151static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007152 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007153 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007154 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007155 return 1;
7156 }
7157 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007158 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007159 return 1;
7160 }
7161 return (pCheck->anRef[iPage]++)>1;
7162}
7163
danielk1977afcdd022004-10-31 16:25:42 +00007164#ifndef SQLITE_OMIT_AUTOVACUUM
7165/*
7166** Check that the entry in the pointer-map for page iChild maps to
7167** page iParent, pointer type ptrType. If not, append an error message
7168** to pCheck.
7169*/
7170static void checkPtrmap(
7171 IntegrityCk *pCheck, /* Integrity check context */
7172 Pgno iChild, /* Child page number */
7173 u8 eType, /* Expected pointer map type */
7174 Pgno iParent, /* Expected pointer map parent page number */
7175 char *zContext /* Context description (used for error msg) */
7176){
7177 int rc;
7178 u8 ePtrmapType;
7179 Pgno iPtrmapParent;
7180
7181 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7182 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007183 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007184 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7185 return;
7186 }
7187
7188 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7189 checkAppendMsg(pCheck, zContext,
7190 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7191 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7192 }
7193}
7194#endif
7195
drh5eddca62001-06-30 21:53:53 +00007196/*
7197** Check the integrity of the freelist or of an overflow page list.
7198** Verify that the number of pages on the list is N.
7199*/
drh30e58752002-03-02 20:41:57 +00007200static void checkList(
7201 IntegrityCk *pCheck, /* Integrity checking context */
7202 int isFreeList, /* True for a freelist. False for overflow page list */
7203 int iPage, /* Page number for first page in the list */
7204 int N, /* Expected number of pages in the list */
7205 char *zContext /* Context for error messages */
7206){
7207 int i;
drh3a4c1412004-05-09 20:40:11 +00007208 int expected = N;
7209 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007210 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007211 DbPage *pOvflPage;
7212 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007213 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007214 checkAppendMsg(pCheck, zContext,
7215 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007216 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007217 break;
7218 }
7219 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007220 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007221 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007222 break;
7223 }
danielk19773b8a05f2007-03-19 17:44:26 +00007224 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007225 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007226 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007227#ifndef SQLITE_OMIT_AUTOVACUUM
7228 if( pCheck->pBt->autoVacuum ){
7229 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7230 }
7231#endif
drh45b1fac2008-07-04 17:52:42 +00007232 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007233 checkAppendMsg(pCheck, zContext,
7234 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007235 N--;
7236 }else{
7237 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007238 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007239#ifndef SQLITE_OMIT_AUTOVACUUM
7240 if( pCheck->pBt->autoVacuum ){
7241 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7242 }
7243#endif
7244 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007245 }
7246 N -= n;
drh30e58752002-03-02 20:41:57 +00007247 }
drh30e58752002-03-02 20:41:57 +00007248 }
danielk1977afcdd022004-10-31 16:25:42 +00007249#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007250 else{
7251 /* If this database supports auto-vacuum and iPage is not the last
7252 ** page in this overflow list, check that the pointer-map entry for
7253 ** the following page matches iPage.
7254 */
7255 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007256 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007257 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7258 }
danielk1977afcdd022004-10-31 16:25:42 +00007259 }
7260#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007261 iPage = get4byte(pOvflData);
7262 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007263 }
7264}
drhb7f91642004-10-31 02:22:47 +00007265#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007266
drhb7f91642004-10-31 02:22:47 +00007267#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007268/*
7269** Do various sanity checks on a single page of a tree. Return
7270** the tree depth. Root pages return 0. Parents of root pages
7271** return 1, and so forth.
7272**
7273** These checks are done:
7274**
7275** 1. Make sure that cells and freeblocks do not overlap
7276** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007277** NO 2. Make sure cell keys are in order.
7278** NO 3. Make sure no key is less than or equal to zLowerBound.
7279** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007280** 5. Check the integrity of overflow pages.
7281** 6. Recursively call checkTreePage on all children.
7282** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007283** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007284** the root of the tree.
7285*/
7286static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007287 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007288 int iPage, /* Page number of the page to check */
drh74161702006-02-24 02:53:49 +00007289 char *zParentContext /* Parent context */
drh5eddca62001-06-30 21:53:53 +00007290){
7291 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007292 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007293 int hdr, cellStart;
7294 int nCell;
drhda200cc2004-05-09 11:51:38 +00007295 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007296 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007297 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007298 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007299 char *hit = 0;
drh5eddca62001-06-30 21:53:53 +00007300
drh5bb3eb92007-05-04 13:15:55 +00007301 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007302
drh5eddca62001-06-30 21:53:53 +00007303 /* Check that the page exists
7304 */
drhd9cb6ac2005-10-20 07:28:17 +00007305 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007306 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007307 if( iPage==0 ) return 0;
7308 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007309 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drhb56cd552009-05-01 13:16:54 +00007310 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh2e38c322004-09-03 18:38:44 +00007311 checkAppendMsg(pCheck, zContext,
7312 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007313 return 0;
7314 }
danielk197793caf5a2009-07-11 06:55:33 +00007315
7316 /* Clear MemPage.isInit to make sure the corruption detection code in
7317 ** btreeInitPage() is executed. */
7318 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007319 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007320 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007321 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007322 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007323 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007324 return 0;
7325 }
7326
7327 /* Check out all the cells.
7328 */
7329 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007330 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007331 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007332 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007333 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007334
7335 /* Check payload overflow pages
7336 */
drh5bb3eb92007-05-04 13:15:55 +00007337 sqlite3_snprintf(sizeof(zContext), zContext,
7338 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007339 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007340 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007341 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007342 if( !pPage->intKey ) sz += (int)info.nKey;
drh72365832007-03-06 15:53:44 +00007343 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007344 if( (sz>info.nLocal)
7345 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7346 ){
drhb6f41482004-05-14 01:58:11 +00007347 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007348 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7349#ifndef SQLITE_OMIT_AUTOVACUUM
7350 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007351 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007352 }
7353#endif
7354 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007355 }
7356
7357 /* Check sanity of left child page.
7358 */
drhda200cc2004-05-09 11:51:38 +00007359 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007360 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007361#ifndef SQLITE_OMIT_AUTOVACUUM
7362 if( pBt->autoVacuum ){
7363 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7364 }
7365#endif
danielk197762c14b32008-11-19 09:05:26 +00007366 d2 = checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007367 if( i>0 && d2!=depth ){
7368 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7369 }
7370 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007371 }
drh5eddca62001-06-30 21:53:53 +00007372 }
drhda200cc2004-05-09 11:51:38 +00007373 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007374 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007375 sqlite3_snprintf(sizeof(zContext), zContext,
7376 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007377#ifndef SQLITE_OMIT_AUTOVACUUM
7378 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007379 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00007380 }
7381#endif
danielk197762c14b32008-11-19 09:05:26 +00007382 checkTreePage(pCheck, pgno, zContext);
drhda200cc2004-05-09 11:51:38 +00007383 }
drh5eddca62001-06-30 21:53:53 +00007384
7385 /* Check for complete coverage of the page
7386 */
drhda200cc2004-05-09 11:51:38 +00007387 data = pPage->aData;
7388 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007389 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007390 if( hit==0 ){
7391 pCheck->mallocFailed = 1;
7392 }else{
shane5780ebd2008-11-11 17:36:30 +00007393 u16 contentOffset = get2byte(&data[hdr+5]);
7394 if (contentOffset > usableSize) {
7395 checkAppendMsg(pCheck, 0,
7396 "Corruption detected in header on page %d",iPage,0);
shane0af3f892008-11-12 04:55:34 +00007397 goto check_page_abort;
shane5780ebd2008-11-11 17:36:30 +00007398 }
7399 memset(hit+contentOffset, 0, usableSize-contentOffset);
7400 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007401 nCell = get2byte(&data[hdr+3]);
7402 cellStart = hdr + 12 - 4*pPage->leaf;
7403 for(i=0; i<nCell; i++){
7404 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007405 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007406 int j;
drh8c2bbb62009-07-10 02:52:20 +00007407 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007408 size = cellSizePtr(pPage, &data[pc]);
7409 }
danielk19777701e812005-01-10 12:59:51 +00007410 if( (pc+size-1)>=usableSize || pc<0 ){
7411 checkAppendMsg(pCheck, 0,
7412 "Corruption detected in cell %d on page %d",i,iPage,0);
7413 }else{
7414 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7415 }
drh2e38c322004-09-03 18:38:44 +00007416 }
drh8c2bbb62009-07-10 02:52:20 +00007417 i = get2byte(&data[hdr+1]);
7418 while( i>0 ){
7419 int size, j;
7420 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7421 size = get2byte(&data[i+2]);
7422 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7423 for(j=i+size-1; j>=i; j--) hit[j]++;
7424 j = get2byte(&data[i]);
7425 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7426 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7427 i = j;
drh2e38c322004-09-03 18:38:44 +00007428 }
7429 for(i=cnt=0; i<usableSize; i++){
7430 if( hit[i]==0 ){
7431 cnt++;
7432 }else if( hit[i]>1 ){
7433 checkAppendMsg(pCheck, 0,
7434 "Multiple uses for byte %d of page %d", i, iPage);
7435 break;
7436 }
7437 }
7438 if( cnt!=data[hdr+7] ){
7439 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007440 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007441 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007442 }
7443 }
shane0af3f892008-11-12 04:55:34 +00007444check_page_abort:
drh8c2bbb62009-07-10 02:52:20 +00007445 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007446 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007447 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007448}
drhb7f91642004-10-31 02:22:47 +00007449#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007450
drhb7f91642004-10-31 02:22:47 +00007451#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007452/*
7453** This routine does a complete check of the given BTree file. aRoot[] is
7454** an array of pages numbers were each page number is the root page of
7455** a table. nRoot is the number of entries in aRoot.
7456**
danielk19773509a652009-07-06 18:56:13 +00007457** A read-only or read-write transaction must be opened before calling
7458** this function.
7459**
drhc890fec2008-08-01 20:10:08 +00007460** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007461** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007462** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007463** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007464*/
drh1dcdbc02007-01-27 02:24:54 +00007465char *sqlite3BtreeIntegrityCheck(
7466 Btree *p, /* The btree to be checked */
7467 int *aRoot, /* An array of root pages numbers for individual trees */
7468 int nRoot, /* Number of entries in aRoot[] */
7469 int mxErr, /* Stop reporting errors after this many */
7470 int *pnErr /* Write number of errors seen to this variable */
7471){
danielk197789d40042008-11-17 14:20:56 +00007472 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007473 int nRef;
drhaaab5722002-02-19 13:39:21 +00007474 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007475 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007476 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007477
drhd677b3d2007-08-20 22:48:41 +00007478 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007479 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007480 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007481 sCheck.pBt = pBt;
7482 sCheck.pPager = pBt->pPager;
danielk197789d40042008-11-17 14:20:56 +00007483 sCheck.nPage = pagerPagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007484 sCheck.mxErr = mxErr;
7485 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007486 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007487 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007488 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007489 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007490 return 0;
7491 }
drhe5ae5732008-06-15 02:51:47 +00007492 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007493 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007494 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007495 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007496 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007497 }
drhda200cc2004-05-09 11:51:38 +00007498 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007499 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007500 if( i<=sCheck.nPage ){
7501 sCheck.anRef[i] = 1;
7502 }
drhf089aa42008-07-08 19:34:06 +00007503 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007504
7505 /* Check the integrity of the freelist
7506 */
drha34b6762004-05-07 13:30:42 +00007507 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7508 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007509
7510 /* Check all the tables.
7511 */
danielk197789d40042008-11-17 14:20:56 +00007512 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007513 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007514#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007515 if( pBt->autoVacuum && aRoot[i]>1 ){
7516 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7517 }
7518#endif
danielk197762c14b32008-11-19 09:05:26 +00007519 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ");
drh5eddca62001-06-30 21:53:53 +00007520 }
7521
7522 /* Make sure every page in the file is referenced
7523 */
drh1dcdbc02007-01-27 02:24:54 +00007524 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007525#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007526 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007527 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007528 }
danielk1977afcdd022004-10-31 16:25:42 +00007529#else
7530 /* If the database supports auto-vacuum, make sure no tables contain
7531 ** references to pointer-map pages.
7532 */
7533 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007534 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007535 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7536 }
7537 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007538 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007539 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7540 }
7541#endif
drh5eddca62001-06-30 21:53:53 +00007542 }
7543
drh64022502009-01-09 14:11:04 +00007544 /* Make sure this analysis did not leave any unref() pages.
7545 ** This is an internal consistency check; an integrity check
7546 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007547 */
drh64022502009-01-09 14:11:04 +00007548 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007549 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007550 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007551 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007552 );
drh5eddca62001-06-30 21:53:53 +00007553 }
7554
7555 /* Clean up and report errors.
7556 */
drhd677b3d2007-08-20 22:48:41 +00007557 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007558 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007559 if( sCheck.mallocFailed ){
7560 sqlite3StrAccumReset(&sCheck.errMsg);
7561 *pnErr = sCheck.nErr+1;
7562 return 0;
7563 }
drh1dcdbc02007-01-27 02:24:54 +00007564 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007565 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7566 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007567}
drhb7f91642004-10-31 02:22:47 +00007568#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007569
drh73509ee2003-04-06 20:44:45 +00007570/*
7571** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007572**
7573** The pager filename is invariant as long as the pager is
7574** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007575*/
danielk1977aef0bf62005-12-30 16:28:01 +00007576const char *sqlite3BtreeGetFilename(Btree *p){
7577 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007578 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007579}
7580
7581/*
danielk19775865e3d2004-06-14 06:03:57 +00007582** Return the pathname of the journal file for this database. The return
7583** value of this routine is the same regardless of whether the journal file
7584** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007585**
7586** The pager journal filename is invariant as long as the pager is
7587** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007588*/
danielk1977aef0bf62005-12-30 16:28:01 +00007589const char *sqlite3BtreeGetJournalname(Btree *p){
7590 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007591 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007592}
7593
danielk19771d850a72004-05-31 08:26:49 +00007594/*
7595** Return non-zero if a transaction is active.
7596*/
danielk1977aef0bf62005-12-30 16:28:01 +00007597int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007598 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007599 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007600}
7601
7602/*
danielk19772372c2b2006-06-27 16:34:56 +00007603** Return non-zero if a read (or write) transaction is active.
7604*/
7605int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007606 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007607 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007608 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007609}
7610
danielk197704103022009-02-03 16:51:24 +00007611int sqlite3BtreeIsInBackup(Btree *p){
7612 assert( p );
7613 assert( sqlite3_mutex_held(p->db->mutex) );
7614 return p->nBackup!=0;
7615}
7616
danielk19772372c2b2006-06-27 16:34:56 +00007617/*
danielk1977da184232006-01-05 11:34:32 +00007618** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007619** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007620** purposes (for example, to store a high-level schema associated with
7621** the shared-btree). The btree layer manages reference counting issues.
7622**
7623** The first time this is called on a shared-btree, nBytes bytes of memory
7624** are allocated, zeroed, and returned to the caller. For each subsequent
7625** call the nBytes parameter is ignored and a pointer to the same blob
7626** of memory returned.
7627**
danielk1977171bfed2008-06-23 09:50:50 +00007628** If the nBytes parameter is 0 and the blob of memory has not yet been
7629** allocated, a null pointer is returned. If the blob has already been
7630** allocated, it is returned as normal.
7631**
danielk1977da184232006-01-05 11:34:32 +00007632** Just before the shared-btree is closed, the function passed as the
7633** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007634** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007635** on the memory, the btree layer does that.
7636*/
7637void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7638 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007639 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007640 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007641 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007642 pBt->xFreeSchema = xFree;
7643 }
drh27641702007-08-22 02:56:42 +00007644 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007645 return pBt->pSchema;
7646}
7647
danielk1977c87d34d2006-01-06 13:00:28 +00007648/*
danielk1977404ca072009-03-16 13:19:36 +00007649** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7650** btree as the argument handle holds an exclusive lock on the
7651** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007652*/
7653int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007654 int rc;
drhe5fe6902007-12-07 18:55:28 +00007655 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007656 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007657 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7658 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007659 sqlite3BtreeLeave(p);
7660 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007661}
7662
drha154dcd2006-03-22 22:10:07 +00007663
7664#ifndef SQLITE_OMIT_SHARED_CACHE
7665/*
7666** Obtain a lock on the table whose root page is iTab. The
7667** lock is a write lock if isWritelock is true or a read lock
7668** if it is false.
7669*/
danielk1977c00da102006-01-07 13:21:04 +00007670int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007671 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007672 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007673 if( p->sharable ){
7674 u8 lockType = READ_LOCK + isWriteLock;
7675 assert( READ_LOCK+1==WRITE_LOCK );
7676 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007677
drh6a9ad3d2008-04-02 16:29:30 +00007678 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007679 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007680 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007681 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007682 }
7683 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007684 }
7685 return rc;
7686}
drha154dcd2006-03-22 22:10:07 +00007687#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007688
danielk1977b4e9af92007-05-01 17:49:49 +00007689#ifndef SQLITE_OMIT_INCRBLOB
7690/*
7691** Argument pCsr must be a cursor opened for writing on an
7692** INTKEY table currently pointing at a valid table entry.
7693** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007694**
7695** Only the data content may only be modified, it is not possible to
7696** change the length of the data stored. If this function is called with
7697** parameters that attempt to write past the end of the existing data,
7698** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007699*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007700int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007701 int rc;
drh1fee73e2007-08-29 04:00:57 +00007702 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007703 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007704 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007705
danielk1977c9000e62009-07-08 13:55:28 +00007706 rc = restoreCursorPosition(pCsr);
7707 if( rc!=SQLITE_OK ){
7708 return rc;
7709 }
danielk19773588ceb2008-06-10 17:30:26 +00007710 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7711 if( pCsr->eState!=CURSOR_VALID ){
7712 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007713 }
7714
danielk1977c9000e62009-07-08 13:55:28 +00007715 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007716 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007717 ** (b) there is a read/write transaction open,
7718 ** (c) the connection holds a write-lock on the table (if required),
7719 ** (d) there are no conflicting read-locks, and
7720 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007721 */
danielk19774f029602009-07-08 18:45:37 +00007722 if( !pCsr->wrFlag ){
7723 return SQLITE_READONLY;
7724 }
danielk197796d48e92009-06-29 06:00:37 +00007725 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7726 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7727 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007728 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007729
danielk19779f8d6402007-05-02 17:48:45 +00007730 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007731}
danielk19772dec9702007-05-02 16:48:37 +00007732
7733/*
7734** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007735** overflow list for the current row. This is used by cursors opened
7736** for incremental blob IO only.
7737**
7738** This function sets a flag only. The actual page location cache
7739** (stored in BtCursor.aOverflow[]) is allocated and used by function
7740** accessPayload() (the worker function for sqlite3BtreeData() and
7741** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007742*/
7743void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007744 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007745 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007746 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007747 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007748 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007749}
danielk1977b4e9af92007-05-01 17:49:49 +00007750#endif